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Abstract

In this thesis we explore several statistical methods for addressing the risk of colli-
sion between two petroleum wells. Such a collision is a potentially dangerous but
rare event that can occur in situations with directional drilling.

The common practice in the petroleum industry today is to use the two closest
points in the two wells in a hypothesis test, in order to make a conclusion on
whether we should drill as planned based on the collision risk. We suggest a more
accurate version of the hypothesis test, which turns out to be more conservative
than the original test.

In order to extend the usual approach of only considering the two closest points
in the collision risk calculations, we obtain a joint statistical distribution for the
position coordinates of all the survey points in two neighboring wells.

As an alternative measure of the collision risk, we estimate the probability of
collision. This is done in two different ways, namely by considering only the two
closest points and by considering the whole wells. In the latter case, we use the
joint distribution for all the survey points. For some well pair cases, the collision
probability is much larger when we consider all the survey points in two wells, than
when we only consider the two single closest points.

We estimate the probability values by using Monte Carlo simulation methods.
Since a well collision is considered to be a rare event, we introduce two methods
in order to increase the accuracy in the situations where the original Monte Carlo
method needs an inconveniently large number of samples. These methods give
accurate results even when the collision probability is very small.
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Sammendrag

I denne masteroppgaven undersøker vi en rekke statistiske metoder som beskriver
risikoen for kollisjon mellom to petroleumsbrønner. En slik kollisjon er en potensielt
farlig, men sjelden hendelse, som kan oppstå i situasjoner der man benytter seg av
retningsboring.

I dag er den vanlige fremgangsmåten i petroleumsindustrien å bruke de to
nærmeste punktene i de to brønnene i en hypotesetest for å komme fram til en kon-
klusjon om hvorvidt vi skal bore som vi har planlagt, basert på kollisjonsrisikoen.
Vi foreslår en mer nøyaktig versjon av hypotesetesten, som viser seg å være mer
konservativ enn den opprinnelige testen.

Som en utvidelse av den vanlige tilnærmingen der man kun tar for seg de
to nærmeste punktene i risikoberegningene, finner vi den simultane statistiske
fordelingen til posisjonskoordinatene til alle målepunktene i to nabobrønner.

Som et alternativt mål på kollisjonsrisiko, finner vi sannsynligheten for kollisjon.
Dette gjøres på to forskjellige måter, nemlig ved å betrakte kun to enkeltpunkter,
og ved å betrakte hele brønnene. I det siste tilfellet gjør vi bruk av den simultane
fordelingen til alle målepunktene. For noen brønnpar er kollisjonssannsynligheten
mye større når vi betrakter alle målepunktene enn når vi kun betrakter de to
nærmeste punktene.

Vi estimerer sannsynligheten ved hjelp av Monte Carlo-simuleringsmetoder.
Siden en brønnkollisjon anses å være en sjelden hendelse, innfører vi to metoder for
å forbedre nøyaktigheten i situasjoner der den opprinnelige Monte Carlo-metoden
trenger et upraktisk stort antall simuleringer. Disse metodene gir nøyaktige resul-
tater selv om kollsisjonssannsynligheten er svært liten.
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Chapter 1

Introduction

In the petroleum industry, the term directional drilling is used for the operation of
drilling a petroleum well in directions that are not necessarily vertical. The ability
to drill in three dimensions makes it possible to make a complex system of wells
far below the surface. For instance, at Statoil ’s offshore field named Heidrun, there
is a subsea template that contains 56 slots (Hansen et al., 2011), which leads to a
high density of wells. When we drill a new well in such an area, we must be aware
of the risk of collision with adjacent wells. In this thesis we will explore various
methods for describing and measuring the possibility of such a collision.

One benefit with directional drilling is that a large area can be covered by one
stationary rig. Also, it is easier to reach targets that are inaccessible with vertical
wells. On the other hand, the task of deciding the position of the drill string at all
times is more complex than for vertical wells. In addition, there are a number of
error sources that influence the position measurements, complicating the problem.

While it is important to know the position of the well accurately in order to
achieve the objective of the well, like hitting a target reservoir, it is also necessary
to know as much as possible about the position in order to be able to avoid well
collisions.

1.1 Measurement While Drilling

Measurement while drilling (MWD) is a technique for measuring properties of
a petroleum well during the drilling operation. The measurements are made at
appropriate well length intervals, often at around every 30 meters. This is the
regular length of drill pipes (or stands), and an MWD survey is often made during
the non-drilling period that arises when a new drill pipe is attached to the drill
string. A well point where a survey is made is called a survey point or a survey
station. For an offshore well with nine survey points, the situation is described by
Figure 1.1.

Our focus will be on magnetic measurement while drilling, because this is the
most common kind of MWD in the petroleum industry today. From now on in this

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A simplified example of an offshore well consisting of K + 1 = 9 survey
points. The distance between survey points is often about 30 meters.

thesis, MWD implicitly means magnetic MWD.
The MWD tool, which is a part of the bottom hole assembly of the drill string,

measures many different values, for instance the temperature and various mud flow
properties. For directional drilling, the most important measurements are the ones
from accelerometers and magnetometers. Using these instruments, we can measure
the gravity field and the magnetic field at a survey point. We use these values to
estimate the North, East and Vertical Depth coordinates, also known as the NEV
coordinates, of the survey point.

1.2 Well Collision Avoidance

In the past, all wells were vertical, and the risk of collision between wells was
negligible. With directional drilling, the possibility that a well collision occurs
must be considered when the well that is being drilled, called the reference well, is
close to previously drilled wells, called offset wells. The risk that is taken should be
as small as possible, because such a collision would at best cause major economic
damage. If the collision leads to a blow-out, one could in addition potentially face
life-threatening and environmental consequences.

If one knew the exact positions of all wells, there should be no risk of collision at
all. There are, however, various error sources, which give uncertainty to the NEV
position coordinates of the well. This uncertainty can be used to draw conclusions
about the risk of collision between two wells.

When it comes to well collision avoidance, the current practice in the petroleum
industry is to find the two closest points in the two neighboring wells. One then
uses the uncertainty of the positions to make a conclusion in a hypothesis test on
whether the risk of collision is small enough to proceed the drilling. In this thesis
we will explore this hypothesis test, and we will also suggest a new and improved
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alternative test.
The task of considering segments of wells in the collision avoidance calculations,

rather than only single points, has previously been attempted solved by Tsao et al.
(1999), Thorogood et al. (1991) and Brooks (2008). However, they do not take
into account the correlation between different areas of the segments or between the
two wells. In this thesis, we introduce a method that obtains the joint statistical
distribution of all the survey points in two wells, in order to completely describe
the position uncertainty.

We also introduce and compare various ways of estimating the probability of
well collision, as an alternative measure of the risk that is taken if we decide to
drill as planned. We obtain this probability in two ways, by first considering only
the two closest points and then by considering all the survey points in the wells.
In the latter case, we use the previously mentioned joint distribution of the points.

1.3 Overview
In Chapter 2 we introduce the concept of well positioning, that is to estimate the
position coordinates of the points in a petroleum based on MWD measurements.
We also find the statistical distribution of the NEV coordinates of the survey points
in a petroleum well, by using error propagation.

In Chapter 3 the goal is to find various ways of describing the risk of well
collision. This involves finding the probability of well collision in different (and
new) ways. Methods that rely on Monte Carlo simulations are computationally
challenging, especially in a rare-event situation, which is often the case for a well
collision. An important contribution from this thesis is the use of a cross-entropy
method and the enhanced Monte Carlo method in order to reduce the computational
efforts in such situations.

In Chapter 4 we introduce a number of well pair test cases in order to explore
and compare the methods introduced in Chapter 3. We also gain some initial
insight into how the well geometry parameters crossing angle, well direction and
depth influence the collision risk for the test cases.

Finally, we summarize the results in Chapter 5.
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Chapter 2

Well Positioning and Error
Propagation

Our goal in this chapter is to find the NEV coordinates of the survey points in
a petroleum well, based on the MWD measurements in the points. This task is
also known as well positioning. In addition, we will obtain the uncertainty of the
estimated positions, based on the error propagation of various error sources.

We will consider a petroleum well where the MWD measurements are made (or
planned) at K + 1 survey points (or survey stations) k ∈ {0, . . . ,K}. Each survey
point belongs to one of the survey series l ∈ {1, . . . , L}. Each survey series contains
surveys that are made with the same survey tool. The situation is described in
Figure 2.1. We assume that the survey series are non-overlapping, although this
assumption may not always be true in a real situation.1

In Section 2.1 we will define the coordinate systems that are used in the calcu-
lations, as well as some useful angles like the inclination I and the azimuth A that
describes the direction of the well path in each point. In Section 2.2 we introduce
the MWD measurements of the gravity field G and the magnetic field B, and in
Section 2.3 we calculate the angels I and A from G and B. Finally, using I, A
and the measured depth D (from now on called the DIA values), we show how to
obtain the NEV coordinates of the survey points in Section 2.4. Summarized, the
procedure is given by

D,G,B −→ D, I,A −→ N,E, V.

Simultaneously, we will show how to find the joint statistical distribution of
the estimated NEV positions, including their covariance matrix ΣNEV . In Section
2.2 we begin with a number of error sources that are assumed to influence the
position measurements, described by the covariance matrix Σε. In Section 2.3
we show how the uncertainty propagates to the uncertainty of the DIA values,

1Even though we have chosen to assume non-overlapping survey series for convenience, there
is nothing that indicates that it is impossible to generalize the forthcoming calculations so that
they apply to overlapping survey series as well.

5



6 CHAPTER 2. WELL POSITIONING AND ERROR PROPAGATION

Figure 2.1: A simplified example of an offshore well consisting of K + 1 = 9 survey
points. There are L = 2 survey series in this example. The points 0–4
belong to the first survey series while the points 5–8 belong to the second
series.

by approximating the covariance matrix ΣDIA, and in Section 2.4 we finally find
the statistical distribution of the NEV positions, including the covariance matrix
ΣNEV . In short, the procedure is described by

Σε −→ ΣDIA −→ ΣNEV .

In order to do the transition from one covariance matrix to the next, we use the
error propagation theory described in Appendix A. In Section 2.5 we generalize
the calculations in order to obtain the joint statistical distribution for the survey
points in two or more wells.

The exploration of well position uncertainty began with the work of Walstrom
et al. (1969). Here, all error sources were assumed to be random and indepen-
dent between different survey stations. Wolff and de Wardt (1981) introduced the
concept of systematic (or survey-specific) error sources, while Brooks and Wilson
(1996) introduced error propagation theory in order to find the 3 × 3 covariance
matrix for the NEV coordinates at a point k. This method was developed further
by Williamson (2000), whose normal (Gaussian) error model makes up the basis
for this thesis, as it did for Gjerde (2008) and Gjerde et al. (2011).

By introducing matrix notation, much more information than only the marginal
3 × 3 covariance matrices can be obtained, namely the covariance values between
different survey points. If we for instance want to simulate the NEV positions from
the joint statistical distribution of several points in a larger part of the well, rather
than considering one single point, it is important to know about the correlation
between the different points. Here, we will therefore eventually find the joint 3K×
3K covariance matrix ΣNEV for the NEV positions of all the survey points in a
petroleum well. We assume that the initial position p0 is known. In the forthcoming
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calculations, we will also assume that we are given the measured (or planned) DIA
values at every survey point in the well.

2.1 Definitions of Coordinate Systems and Angles

In order to describe the position of a point in the well, we will use an NEV coordi-
nate system. The NEV coordinates are often given relative to a subsea template
or a platform, as seen in Figure 2.2. This coordinate system is spanned by the
N(orth), E(ast) and V(ertical depth)2 directions. In Figure 2.2 we also see another
coordinate system that we will use in the well positioning. With its origin in the
MWD tool (drawn as a black square), the tool coordinate system is spanned by the
X, Y and Z directions.

Figure 2.2: The coordinate systems used in this thesis. In an offshore setting, the NEV
coordinate system often has its origin at the platform, and the NE plane is
the water surface plane. The tool coordinate system consists of the X, Y
and Z directions and has its origin in the MWD tool, which is drawn as a
black square. The tool is a part of the bottom hole assembly (BHA) of the
drill string.

2The V direction is also known as TVD or True Vertical Depth.
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The NEV coordinate system is actually an extended version of an universal
transverse mercator (UTM) coordinate system. In a UTM system, the earth’s
surface is divided into a number of two dimensional zones. By extending to three
dimensions within such a zone, we have a Cartesian coordinate system where the
N axis is in the direction of the geographical north, while the V axis points in the
downward vertical direction. The E axis then corresponds to the direction of the
geographical east.

In Figure 2.3 we have depicted the coordinate system after translating the
origin to a survey point in the well, in order to see how the azimuth angle A and
the inclination angle I are defined. These angels are used to describe the direction
of the well path in the point. Let a direction vector t start at the well point of
interest, and let the vector point in the direction of the well path in that point.
The azimuth A is defined as the angle from the positive N axis to the projection
of the direction vector on the NE plane, while the inclination angle I is the angle
from the positive V axis to the direction vector.

Figure 2.3: The NEV coordinate system. The direction vector t gives the direction
of the well path in a well point. After t is translated to the origin of the
coordinate system, one can obtain the azimuth angle A and the inclination
angle I.

The tool coordinate system is a coordinate system where the origin is in the
MWD tool at all times. This is a Cartesian coordinate system as well, where the
Z axis points in the direction of the well path (in the drilling direction), while the
X and Y axes are fixed (with respect to the tool) in two directions perpendicular
on Z, as depicted in Figure 2.4.

The high-side direction is defined as the projection of the negative V direction
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Figure 2.4: The tool coordinate system with the definition of the toolface angle τ and
the high-side direction. The inclination angle I is also included.

on the XY plane, as shown in figure 2.4. The toolface angle τ is then defined as
the angle from the high-side direction vector to the positive Y axis. The toolface
angle is useful because the tool rotates during drilling. When we know the toolface
angle τ , we also know the directions of the X and Y axes, since these are fixed with
respect to the tool. We need to know these directions, since the magnetometer and
accelerometer instruments measure values that are decomposed in the X, Y and
Z directions. Note that the toolface angle is undefined for wells that are exactly
vertical. We will therefore assume that the given well data are such that the wells
are never exactly vertical, which should be a reasonable assumption in a practical
situation.

2.2 Measurements and Error Sources

The accelerometer sensors in the MWD tool measure the gravity field G, decom-
posed in the three directions of the tool coordinate system, giving Gx, Gy and
Gz. Similarly, the magnetometer sensors measure the magnetic field B in three
directions, giving Bx, By and Bz. From the decomposed values, the values of the
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total fields are given by

G =
√
G2
x +G2

y +G2
z,

B =
√
B2
x +B2

y +B2
z .

The direction of the gravity field is in the downward vertical V direction. The
direction of the magnetic field is defined by a magnetic dip angle θ and a declination
angle δ, as described in figure 2.5. The dip angle is defined as the angle from the
geographical north N to the magnetic north Nm, which is a direction in the NE
plane. The declination angle is the angle from Nm to the magnetic field vector.

Figure 2.5: The declination angle δ gives the magnetic north Nm, while Nm and the
magnetic dip angle θ gives the direction of the magnetic field B.

Another measurement that is made is the measured depth D, defined as the
distance from the surface to the survey point when one follows the well path. In
other words, D is the along-hole distance from the surface to the point of interest.

For all these measurements, there are several types of error sources that need
to be considered when we eventually want to find the statistical distribution of
the NEV positions in the survey points. The 19 MWD errors that makes up the
error model that we will use in the forthcoming example cases in this thesis are
listed in Table 2.1. The reasoning behind the different error sources is described in
Appendix B. We assume that all the errors can be categorized as one of the three
propagation modes named random, systematic and global. These three types of
errors will be explained shortly. We also assume that the 19 different error sources
are independent and normally distributed with mean equal to zero.

First, a short note on notation. Consider a d-variate normal distributed vector
x = [x1, x2, . . . , xd]

t, where superscript t denotes that a matrix is transposed. When
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Table 2.1: The error sources εi, i = 1, . . . , 19, used in this thesis. The propagation mode
of an error is either random (R), systematic (S) or global (G).

Error Description Standard Propagation
number, i deviation, σi mode

1–3 Gx, Gy, Gz bias 0.0039 m/s2 S
4–6 Gx, Gy, Gz scale 0.0005 S
7–9 Bx, By, Bz bias 70 nT S
10–12 Bx, By, Bz scale 0.0016 S
13 Depth reference 0.35 m R
14 Depth scale factor 6 · 10−4 S
15 Depth stretch type 2.5 · 10−7 m−1 G
16 Declination 0.36◦ G
17 Declination B dependent 5000◦ nT G
18 Sag 0.08◦ S
19 Axial magnetism in string 150 nT S

x has mean vector µx and covariance matrix Σx, we write

x ∼ Nd(µx,Σx).

Also, let In denote the n× n sized identity matrix.
A random error is random between all survey points in the well. In other words,

a random error source i gives an error εRi,k at each survey point k = 0, . . . ,K, but
the error at one point is independent of the errors at all the other points in the
well. Their joint distribution is given by

εRi =
[
εRi,0, ε

R
i,1, . . . , ε

R
i,K

]t ∼ NK+1

([
0, 0, . . . , 0

]t
,Σε,i

)
, (2.1)

with covariance matrix of size (K + 1)× (K + 1) given by Σε,i = σ2
i IK+1.

A systematic error (or survey-specific error) is random between the different
survey series l = 1, . . . , L in the well. Within one series l, the error εSi,l is the same
for all points, but the errors for points in different series are independent. These
errors are distributed as

εSi =
[
εSi,1, ε

S
i,2, . . . , ε

S
i,L

]t ∼ NL ([0, 0, . . . , 0]t ,Σε,i

)
, (2.2)

with the L× L sized covariance matrix Σε,i = σ2
i IL.

A global error is the same for the whole well, or more generally, it is the same for
the whole geographical area surrounding the well. Neighboring wells are therefore
influenced by the exact same error. The distribution of a global error is simply
given by

εGi ∼ N1

(
0,Σε,i

)
, (2.3)

where the covariance "matrix" now equals the scalar value σ2
i known as the variance

of the distribution, that is Σε,i = σ2
i .
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A useful observation is that the random propagation mode and the global prop-
agation mode in fact are special cases of the systematic propagation mode: A
systematic error is a random error when there are K+1 survey series (equal to the
number of survey points), while it is a global error when there is only one survey
series. This means that a random error and a global error will propagate to the
DIA values in the same way as a systematic error. When we consider a random
error, we just imagine that there are K + 1 survey series with one survey point in
each. When we consider a global error, we imagine that there is only one survey
series containing K + 1 measurements. Then we can make the calculations for any
error as if it is a systematic error.

Since all the 19 errors in Table 2.1 are assumed to be independent, we can
combine their distributions given by (2.1) - (2.3) into the joint distribution[

ε1, ε2, . . . , ε19

]t ∼ Nd ([0, 0, . . . , 0]t ,Σε

)
, (2.4)

where the covariance matrix is

Σε =


Σε,1

Σε,2

. . .
Σε,19

 .
Here we have disregarded the the superscripts R, S and G on the εi’s. The dimen-
sion d is given by the sum of the dimensions of the 19 distributions.

2.3 The DIA Values and Their Distribution

From the geometry in Figure 2.4 we can find expression for the gravity components
that include the inclination I and the toolface τ ,

Gx = −G sin I sin τ, (2.5)
Gy = −G sin I cos τ, (2.6)
Gz = G cos I. (2.7)

By solving equations (2.5) - (2.7) for the inclination angle I, we obtain

I = arctan


√
G2
x +G2

y

Gz

 . (2.8)

We use equations (2.5) - (2.6) to find an expression for the toolface angle,

τ = arctan

(
−Gx
−Gy

)
.
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Williamson (2000) show that the magnetic components are given by

Bx = B (cos θ cos I cosAm sin τ − sin θ sin I sin τ + cos θ sinAm cos τ) (2.9)
By = B (cos θ cos I cosAm cos τ − sin θ sin I cos τ − cos θ sinAm sin τ)(2.10)
Bz = B (cos θ cos I cosAm + sin θ cos I) (2.11)

The magnetic azimuth Am is defined as the angle from the magnetic north Nm,
as seen in figure 2.5, to the vector projection on the NE plane. This is the same
definition as for the original azimuth A, except that N is now replaced with Nm.
From the expressions (2.9) - (2.11), the magnetic azimuth can be shown (Gjerde,
2008) to be

Am = arctan

(
Bx cos τ −By sin τ

[Bx sin τ +By cos τ ] cos I +Bz sin I

)
.

By combining the declination angle δ and a grid correction (because of meridian
convergence) into an estimated correction value δcorr, we have that (Gjerde, 2008)

A = δcorr +Am. (2.12)

In summary, we need the measured values Gx, Gy, Gz, Bx, By and Bz, in
addition to given reference values for the angles δ and δcorr as we describe in
Appendix C.3, in order to calculate I and A from the expressions (2.8) and (2.12).

Now we will find the approximate statistical distribution of the DIA values. Let
all the DIA values of the K + 1 survey points be contained in the vector

α =
[
D0, I0, A0, . . . , DK , IK , AK

]t
. (2.13)

By non-linear error propagation theory, as shown in Appendix A, the joint distri-
bution of α is approximated by (A.5), that is

α ∼ N(K+1)×3

([
µD0

, µI0 , µA0
, . . . , µDK

, µIK , µAK

]t
, ΣDIA

)
, (2.14)

with covariance matrix
ΣDIA = JDIAΣεJ

t
DIA,

which will be explained in more details shortly.
The mean vector in (2.14) consists of the expected depth values µDk

, k ∈
{0, ...,K}, and the calculated values µIk and µAk

obtained from (2.8) and (2.12)
if we could have used the expected values of the variables on the right-hand sides.
We can estimate µDk

by using measured values, while we can estimate µIk and µAk

by calculating (2.8) and (2.12) using measured values on the right-hand sides.
The covariance matrix ΣDIA contains linear combinations of weighted elements

of the covariance matrix Σε, given in (2.4). The weights are given by the elements
in the Jacobian matrix JDIA. From (A.4), the Jacobian matrix is given by

JDIA =
[
W1,W2, . . . ,W19

]t
, (2.15)
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where

Wi =



w0
i,1

w1
i,1
...

wn1
i,1

wn1+1
i,2
...

wn1+n2
i,2

. . .
w
n1+···+nL−1+1
i,L

...
wK
i,L



, (2.16)

for i ∈ {1, . . . , 19}. Here, nl is the number of survey points in survey series l, when
we consider a systematic error source. From the observations in Section 2.2, nl = 1
and L = K + 1 when error i is random, while nl = K + 1 and L = 1 when it is
global. The blank parts of the matrix indicate zeros.

The weighting function wk
i,l for measurement station number k (which belongs

to survey number l) is given by

wk
i,l =

[
∂Dk

∂εi,l

∂Ik
∂εi,l

∂Ak
∂εi,l

]t
, (2.17)

where all the derivatives are evaluated at the expectation of the variables of the dif-
ferentiated functions, corresponding to the matrix elements in (A.4). The weighting
functions wk

i,l, i ∈ {1, . . . , 19}, can be found in Appendix C.1.

2.4 The NEV Positions and Their Distribution
In this section, we will show how to find the NEV position coordinates pk =
[Nk, Ek, Vk]t of a survey point k ∈ {1, . . . ,K} in a well, by using a minimum
curvature method, as derived by Sawaryn and Thorogood (2003). In such a method,
two neighboring survey points k − 1 and k are assumed to lie on a circular arc in
the three dimensional space, as shown in Figure 2.6.

By using the known NEV position p0 of an initial point, which for instance can
be given at the water surface, together with the DIA values α in (2.13), the NEV
positions can be calculated recursively by

pk = pk−1 +
∆Df(κ)

2

sin Ik−1 cosAk−1 + sin Ik cosAk
sin Ik−1 sinAk−1 + sin Ik sinAk

cos Ik−1 + cos Ik

 , (2.18)

where
∆D = Dk −Dk−1, f(κ) =

tan(κ/2)

κ/2
,
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Figure 2.6: The minimum curvature method assumes that the well path between two
survey points k−1 and k is a circular arc. Here, pj is the NEV coordinates
of point j ∈ {k − 1, k}, tj is the direction vector in point j, and κ is the
dogleg angle. In addition, p∗ is the position and t∗ is the direction vector
of some point between the survey points.

κ = 2 arcsin

(√
sin2

(
Ik − Ik−1

2

)
+ sin Ik−1 sin Ik sin2

(
Ak −Ak−1

2

))
. (2.19)

The value κ, expressed in (2.19), is known as the dogleg angle. This angle is defined
as the change in inclination from point k − 1 to point k, as shown in Figure 2.6.

We will now find the approximated statistical distribution of the estimated
NEV positions. Let all the NEV coordinates of the unknown K survey points be
contained in the vector

p =
[
pt1 . . .p

t
K

]t
=
[
N1, E1, V1, . . . , NK , EK , VK

]t
.

For simplicity, we will use the differences ∆pk = pk − pk−1, k ∈ 1, . . . ,K. We will
now assume that the dogleg angle κ is small, so that we can use the limit formula

lim
x→0

tanx

x
= 1,

implying the approximation f(κ) ≈ 1 in expression (2.18). We then have

∆pk =
Dk −Dk−1

2

sin Ik cosAk + sin Ik−1 cosAk−1

sin Ik sinAk + sin Ik−1 sinAk−1

cos Ik + cos Ik−1

 . (2.20)

From the error propagation theory, the distribution of the position differences is
approximated by[

∆p1,∆p2, . . . ,∆pK
]t ∼ NK×3

([
∆µp1 ,∆µp2 , . . . ,∆µpK

]t
,Σ∆p

)
,
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with covariance matrix
Σ∆p = J∆pΣDIAJt∆p.

The Jacobian matrix is

J∆p =


R1,0 R1,1

R2,1 R2,2

. . . . . .
RK,K−1 RK,K

 , (2.21)

where we have defined the weighting functions

Rj,k =

[
∂∆pj
∂Dk

∂∆pj
∂Ik

∂∆pj
∂Ak

]
.

The elements of Rj,k are given explicitly in Appendix C.2.
The relationship between the NEV positions pk and the differences ∆pk is

simply

pk = p0 +

k∑
m=1

∆pm. (2.22)

We have assumed that the known initial position p0 has no uncertainty. By using
the error propagation theory one last time we find the approximate joint position
distribution [

p1,p2, . . . ,pk
]t ∼ NK×3

([
µp1 ,µp2 , . . . ,µpk

]t
,ΣNEV

)
, (2.23)

with covariance matrix
ΣNEV = JpΣ∆pJ

t
p.

From (2.22) the Jacobain matrix in (2.23) is

Jp =


I3

I3 I3

...
...

. . .
I3 I3 . . . I3

 . (2.24)

In sum, the total covariance matrix for all the NEV postions pk in the survey
points k ∈ {1, . . . ,K} in a well is given by

ΣNEV = JpJ∆pJDIAΣεJ
t
DIAJt∆pJ

t
p. (2.25)

We can also obtain the position p∗ of a point between two survey points k − 1
and k, as seen in Figure 2.6, by using the interpolation formula (Sawaryn and
Thorogood, 2003) given by

p∗ = pk−1 +
∆D∗f

(
κ∆D∗

∆D

)
2

(tk−1 + t∗) . (2.26)
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Here, tk−1 and t∗ are two direction vectors, as shown in Figure 2.6. The vector
tk−1 is given by

tk−1 =

sin Ik−1 cosAk−1

sin Ik−1 sinAk−1

cos Ik−1

 ,
while the the direction vector corresponding to the unknown position is

t∗ =
sin
([

1− ∆D∗

∆D

])
sinκ

tk−1 +
sin
(

∆D∗

∆D κ
)

sinκ
tk. (2.27)

In addition, ∆D∗ is the difference in measured depth between the middle point
and survey point k − 1.

2.5 Several Wells

The method described so far can be generalized in order to obtain a multivariate
statistical distribution that includes two or more wells. We will follow the same
procedure as for one well. In short, the procedure is described by

Σtotal
ε −→ Σtotal

DIA −→ Σtotal
NEV ,

where the covariance matrices in the previous sections are generalized in order to
be applied to several wells, as indicated by the superscript total.

The covariance matrix associated with the error sources in Table 2.1 for M
wells is given by

Σtotal
ε =


Σ1
ε;R,S

. . .
ΣM
ε;R,S

Σε;G

 (2.28)

where Σm
ε;R,S corresponds to the measurment error covariance matrix for well m as

given in (2.4), except that the covariance values for global errors are not included
in these matrices. The global error covariances, combined into a diagonal matrix
Σε;G, are instead placed in the bottom of Σtotal

ε . These error sources should only
be included once, since the global property implies that the error is the same for
all wells.

2.5.1 Distribution of the DIA Values for M Wells

We now let all the DIA values be contained in [α1, . . . ,αM ]t, where

αm =
[
Dm

1 , I
m
1 , A

m
1 , . . . , D

m
Km

, ImKm
, AmKm

]
contains the DIA values for well m, with Km + 1 equaling the number of survey
points in well m. The total distribution is given by
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[
α1,α2, . . . ,αM

]t ∼ Nd ([µα1 ,µα2 , . . . ,µαM

]t
, Σtotal

DIA

)
, (2.29)

with covariance matrix

Σtotal
DIA = Jtotal

DIAΣtotal
ε Jtotal,t

DIA . (2.30)

The dimension is d = 3×
∑
m(Km + 1), and µαm is the expectation vector for the

values in well m. The Jacobian matrix is given by

Jtotal
DIA =

J1
DIA;R,S W1

G

. . .
...

JMDIA;R,S WM
G

 .
The matrices JmDIA;R,S corresponds to the Jacobian matrix for well m as given in
(2.15), except that the weighting matrices Wi that correspond to global errors are
removed. These are instead placed at the right side of Jtotal

DIA, in order to correspond
with the placement of the covariance values in Σtotal

ε , as shown in (2.28). If we
let ng equal the number of global error sources, then a weighting matrix Wm

G in
Jtotal
DIA, for m ∈ {1, . . . ,M}, is given by

Wm
G =

[
Wm

G,1, . . . ,W
m
G,ng

]
,

where the blocks are the weighting matrices obtained from (2.16), which were used
when we considered one well and one error source i.

The joint distribution of all the DIA values is therefore given by (2.29), with
covariance matrix given by (2.30).

2.5.2 Distribution of the NEV Positions for M Wells
Following the procedure in the case a single well, we now let all the NEV position
differences be contained in [∆p1, . . . ,∆pM ]t, where

∆pm =
[
∆pm1 , . . . ,∆pmKM

]
contains the position difference vectors of wellm. The distribution is approximated
by [

∆p1,∆p2, . . . ,∆pM
]t ∼ Nd ([µ∆p1 ,µ∆p2 , . . . ,µ∆pM

]t
, Σtotal

∆p

)
, (2.31)

with covariance matrix

Σtotal
∆p = Jtotal

∆p Σtotal
DIAJtotal,t

∆p .

The dimension is d = 3×
∑
m(Km + 1), and the weighting Jacobian matrix is

Jtotal
∆p =


J1

∆p

J2
∆p

. . .
JM∆p


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where the blocks equals the Jacobian matrices when considering only one well, as
shown in (2.21).

Finally, we let all the NEV positions for all the M wells be contained in
[p1, . . . ,pM ]t, where

pm =
[
pm1 , . . . ,p

m
KM

]
contains the position vectors of well m. The distribution is approximated by[

p1,p2, . . . ,pM
]t ∼ Nd ([µp1 ,µp2 , . . . ,µpM ]t , Σtotal

NEV

)
, (2.32)

with dimension d = 3×
∑
m(Km + 1) and covariance matrix

Σtotal
NEV = Jtotal

p Σtotal
∆p Jtotal,t

p .

The weighting Jacobian matrix is

Jtotal
p =


J1
p

J2
p

. . .
JMp

 (2.33)

where the block matrices can be found from (2.24).
We have now obtained that the covariance matrix for the NEV positions of all

the survey points in M wells can be expressed as

Σtotal
NEV = Jtotal

p Jtotal
∆p Jtotal

DIAΣtotal
ε Jtotal,t

DIA Jtotal,t
∆p Jtotal,t

p . (2.34)

2.5.3 An Example With Two Wells
In Figure 2.7 we see the well path of two real petroleum wells from the North Sea,
along with the NEV axes. They are seen to be very close to each other down to
about 1000 meters below sea level. For both wells the measurements are made
with three different survey tools, which means that each survey point belongs to
one of three survey series. The blue reference well has 203 survey stations, while
the red offset well has 193 survey stations. We denote the vectors containing the
NEV coordinates of the two wells by p and q respectively.

We can find the covariance matrix Σtotal
NEV for all the NEV coordinates

[pt,qt] =
[
Np

1 , E
p
1 , V

p
1 , . . . , N

p
203, E

p
203, V

p
203, N

q
1 , E

q
1 , V

q
1 , . . . , N

q
193, E

q
193, V

q
193

]
of the two wells by calculating expression (2.34), using given DIA values at survey
points in the wells in the calculation of the Jacobian matrices.

In order to discuss the correlation between the different values, we find the cor-
responding correlation matrix P. This matrix has the same size as the covariance
matrix. Its elements are given by

P (i, j) =
Σtotal
NEV (i, j)√

Σtotal
NEV (i, i)Σtotal

NEV (j, j)
.
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Figure 2.7: Two petroleum wells from the North Sea. All three axes has unit meter.
The blue reference well (of which the end is the most to the east of the two)
has 203 survey stations, while the red offset well has 193 survey stations.
The reference well starts out at p0 = [Np

0 , E
p
0 , V

p
0 ]t = [970.10, 816.50, 0]t

going straight down before hitting the seabed at V p1 = 349.5. The offset
well starts at q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [976.20, 817.70, 0], going straight down

to V q1 = 336.50. At the seabed level the wells go in the south-west direction.
Later they turn and go in the south-east direction.

The calculated correlation matrix for the two wells is shown in Figure 2.8. Here,
the correlation values are represented by colors. By the number of survey points
in the wells, the dimension of the matrix is 3 × (203 + 193) = 1188, as seen on
the horizontal axis. Here we multiplied by 3 because there are three coordinates
(N , E and V ) at each point. As we have marked on the vertical axis, the 609 first
values in each row and column correspond to the NEV values of the first well, while
the rest corresponds to the NEV values of the second well. For instance, element
Σtotal
NEV (2, 4) shows the correlation between the coordinates Ep1 and Np

2 in the first
well, while element Σtotal

NEV (611, 3) gives the correlation between Eq1 in the second
well and V p1 in the first well.

Focusing on the upper left quarter of the matrix, which gives the correlation
values between the NEV values in the first well, we observe that there is some kind
of change in behavior around row (and column) 130, and then again around row
340. This behavior is because of the systematic error sources in our error model.
The correlation values from row 1 to about row 130 corresponds to NEV values
calculated from measurements from the first survey series in the first well. The
values from about row 130 to about row 240 corresponds to the second survey
series, and so on. In general, the correlation values within the series are seen to
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Figure 2.8: Correlation matrix for the NEV coordinates of the survey points in the two
wells in Figure 2.7.

be higher than the correlation values between points that belongs to two different
series. The same observation can be made for the second well, by considering the
lower right quarter of the matrix.

Similar observations can be made for the upper right and lower left quarter
of the correlation matrix. These parts contain correlation values between pair of
points where one point belongs to the first well, and the other point belongs to the
second well. These correlation values are different from zero only because of the
global errors in the error model, and therefore they are in general smaller than the
other correlation values originating from all kind of error sources.

We also include a plot of the variance values of the NEV coordinates in both
wells in Figure 2.9, equaling the diagonal values of Σtotal

NEV . In general, the variances
tend to increase when the survey number increases. This is as expected, since we
are moving further and further away from the known initial positions p0 and q0,
which should intuitively contribute to an increase in the uncertainty. However,
they do not always increase, as seen by the upper plots of the variance of the north
coordinates. In this case, the decrease seems to occur for the survey points where
the direction in the NE plane starts to stabilize, after the turn seen to the left of
Figure 2.7. This is confirmed by Figure 2.10, where we plot the variance values
against the azimuth values of the survey points. This might suggest that a stable
behavior of a well geometry variable like the azimuth may cause a decrease in the
uncertainty when we move downwards in a well.

The plots in this example intends to give some confirmation that the method
shown in this chapter results in a reasonable covariance matrix for the NEV posi-
tions of survey points.
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In this case we actually obtain a covariance matrix that seems to be close to
singular. In order to be able to find the inverse of the matrix in later calculations3
we follow the strategy of ignoring the most uninformative variables until we are
able to find a useable pdf value. This method is thorougly described in Appendix
D. In this case, we end up ignoring the uninformative variables that has correlation
values above the value of 0.89.

3We will need the inverse in Chapter 3 when we perform a cross-entropy method (Sec. 3.2.3)
which is based on the statistical distributions found in this chapter.
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Figure 2.9: Variance values for the NEV coordinates of the survey points in the two
wells in Figure 2.7.
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Figure 2.10: Variance values of the north coordinates (red, dashed) compared to the
azimuth values (blue) of the survey points in the reference well in Figure
2.7.



Chapter 3

The Risk of Well Collision

When we drill a petroleum well in an area that contains other wells, we want to
know the risk that a well collision occurs. If we are not able to avoid such a collision,
the consequences could become disastrous. Our goal in this chapter is to describe
various ways of addressing the risk of well collision.

Consider the setting where we drill (or plan to drill) a reference well close to
an offset well. We define that a well collision happens if

r ≤ r1 + r2, (3.1)

where r is the shortest distance between the center lines of the two wells, and r1 and
r2 denote the radii of the reference well and the offset well, respectively. Throughout
this thesis, we will use the assumption that r1 + r2 = 0.5 m + 0.5 m = 1 m, which
is reasonable compared to many real situations.

We assume that the shortest distance r is a stochastic value. The value of r
depends on the positions of the two wells, of which the DIA values and the NEV
coordinates of the survey points are assumed to behave stochastically according to
the statistical distributions (2.29) and (2.32) in Chapter 2. As explained thoroughly
in that chapter, we are able to estimate the NEV coordinates of the survey points
in the two wells by using MWD measurements in addition to some reference values.
Let the measured NEV coordinates be contained in the position vector

[pt,qt] =
[
Np

1 , E
p
1 , V

p
1 , . . . , N

p
Kp
, EpKp

, V pKp
, Nq

1 , E
q
1 , V

q
1 , . . . , N

q
Kq
, EqKq

, V qKq

]
, (3.2)

where Kp and Kq denote the number of survey points in the two wells when we
leave out the known initial points p0 = [Np

0 , E
p
0 , V

p
0 ]
t and q0 = [Nq

0 , E
q
0 , V

q
0 ]
t.

In the petroleum industry today, the common practice regarding collision avoid-
ance calculations is to consider only the two closest points in the two wells (IS-
CWSA, 2011). We denote the NEV coordinates of these two points by pc =
[Np

c , E
p
c , V

p
c ]
t and qc = [Nq

c , E
q
c , V

q
c ]
t. The situation is depicted in Figure 3.1.

The closest points are found by calculating the NEV positions of all the survey
points in both wells, as expressed by the vector in expression (3.2), possibly in
addition to some interpolated points, as described in Section 2.4. We then use

25
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Figure 3.1: A simple sketch of a reference well being drilled close to an offset well. The
shortest distance between the wells is denoted by r, while pc = [Np

c , E
p
c , V

p
c ]
t

and qc = [Nq
c , E

q
c , V

q
c ]
t are the two closest points.

some method to find the two points in the wells that are closest to each other.
Some of these methods are described by ISCWSA (2011) and Gjerde (2008). In
the most common method, called 3D closest approach, we simply estimate the two
points that have the shortest Euclidean distance between them. We describe an
approximated 3D closest approach method in Appendix E.

One way to draw conclusions regarding the risk of a collision taking place, is to
perform a hypothesis test. This is the common practice in the industry today. The
uncertainty in the measured two closest points is used to perform a test where the
null hypothesis states that the expected value µr of the shortest distance r leads
to a collision, that is

H0 : µr ≤ r1 + r2.

The hypothesis test will then reveal whether or not we can trust our measurements
enough to continue the drilling, based on a chosen significance level. We decide to
drill the well only if the null hypothesis is rejected.

We describe two such tests in Section 3.1. In Section 3.1.1 we explore the
standard hypothesis test, in which we approximate the distribution of the shortest
distance r by a normal distribution, by using the error propagation theory in Ap-
pendix A. As described in Section 3.1.2, it turns out that it is also possible to do
a more exact test, where the statistical distribution of the squared distance r2 is
found without the need of an additional normal approximation.

As an alternative to a hypothesis test, we describe how to estimate the proba-
bility of well collision in Section 3.2. This is the value defined by

l = P (Well collision) = P (r ≤ r1 + r2) .
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An estimate of this value can be used to draw conclusions on whether the well
plan should be changed, by comparing it to a predetermined maximum toleration
value. In Section 3.2.1 we begin by calculating the probability that the positions
of the two closest point are coinciding, in the sense that their distance is within
the sum of the radii of the two wells, by following a similar analytical approach as
for the more exact hypothesis test. The calculations are based on the statistical
distribution of the NEV coordinates of the two points. We will also estimate the
probability value by performing a Monte Carlo (MC) simulation method based on
the same distribution.

Up to this point, we have introduced collision risk methods in which we only
consider the two closest points. There is a drawback with this: The fact that the
two points pc and qc are expected to be the closest ones, does not necessarily mean
that there can not be other points (survey points or intermediate points) having
uncertainty such that there is a non-zero probability that they too will coincide,
which would give an additional contribution to the total collision probability. A
method that analyzes the risk of collision should ideally take this into account.
We aim to investigate this principle further in Section 3.2.2. There we use a MC
simulation method where we simulate the DIA values of all the points in the two
wells, instead of just using the position values of the two closest points. Finding
an analytical solution, as we do when we consider only the two closest points, is
outside scope of this thesis.

We illustrate the difference between the two-points method and the all-points
method for estimating the collision probability in Figure 3.2. In the two-points
MC simulation method we simulate B samples of the NEV coordinate of the two
closest points, and calculate the percentage of samples where the simulated points
coincide. In the all-points method we simulate B samples of the DIA values of
all the survey points, and calculate the percentage of simulated well pairs where
a collision occurs. The resulting percentages are the estimates of the collision
probability for the two methods. The all-points method is obviously more time-
consuming than the two-points method, but it should give a more correct result,
since we exploit more of the available information about the wells.

An additional important challenge associated with the MC simulation methods
for estimating the probability of collision is the fact that a collision is usually
considered to be a rare event. In Section 3.2.3 we will discuss a cross-entropy
method in order to make the simulation methods more effective in both the two-
points situation and the all-points situation.

Another simulation method for rare events is the enhanced Monte Carlo method,
which we discuss in Section 3.2.4. We only consider this method in the all-points
paradigm in order to have an additional method for estimating the probability
value in this situation, since we are not able to obtain any analytical value, which
we are in the two-points situation.

In summary, we will look at the following collision risk methods in this chapter.

• Two hypothesis tests when considering the two closest points (Sec. 3.1).
We present a normal approximated test (Sec. 3.1.1), which is used by the
industry today. We also look at a more exact test (Sec. 3.1.2).
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Figure 3.2: An illustration of the difference between the two-points MC simulation
method and the all-points MC simulation method that are introduced in
this chapter. To the right we have sketched B = 5 simulated pairs of points,
based solely on the coordinates pc and qc of the two closest points in Figure
3.1. To the left we have sketched B = 3 simulated pairs of wells, based on
the DIA values of the entire well segments in Figure 3.1. The three well
pairs are drawn with different line types.

• An analytical calculation of the probability of collision when considering the
two closest points (Sec. 3.2.1).

• Monte Carlo simulation of the probability of collision when considering the
two closest points (Sec. 3.2.1).

• Monte Carlo simulation of the probability of collision when considering all
the points in the two wells (Sec. 3.2.2).

• Aiming at increasing the accuracy in a rare-event situation, we also look at
the cross-entropy method (Sec. 3.2.3) and the enhanced Monte Carlo method
(Sec. 3.2.4).

In Chapter 4, we will perform all these collision risk methods on various pairs
of petroleum wells, in order to obtain numerical results and discuss the methods
more carefully.

3.1 Hypothesis Tests
Today, the industry practice on making conclusions about the possibility of a col-
lision between two wells is to perform a hypothesis test on whether or not the ex-
pected positions of the wells implies a collision. The common practice (Williamson,
2000) is to only consider the two closest points in the two wells.
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The common practice also includes a normal approximation of the distribution
of the shortest distance r. An important disadvantage with this method is that the
resulting normal distribution is defined for both positive and negative values, while
r should always be non-negative. Gjerde (2008) argues that this approximation is
valid when the collision probability is small, which usually is the case. However,
in the interesting and important cases where the wells actually are very close, the
collision probability might not be that small, which could possibly result in wrong
conclusions.

Here, we therefore propose a new hypothesis test that does not make the ap-
proximation that the shortest distance itself is normal distributed. We first explain
the original normal approximated test in Section 3.1.1. In Section 3.1.2, we then
show the derivation of a more exact hypothesis test. Later, in Section 4.2.1, we
compare the two tests performed on various well cases, in order to try to detect
any major differences between them.

In both tests, the null hypothesis is that a collision between the two wells does
take place when we consider the expected value of the shortest distance between
the wells, that is

H0 : µr ≤ r1 + r2,

while the alternative hypothesis is defined as

H1 : µr > r1 + r2.

The significance level α is chosen in order to ensure that

P (Reject H0 | H0 is true) = α. (3.3)

For instance, a typical value to choose is α = 1/500. Then we make sure that we
reject the null hypothesis only once out of 500 times in the situation where the null
hypothesis is in fact true. In other words, the probability that we decide to go on
with an existing well plan that is expected to end in a collision is equal to α.

Let pc = [Np
c , E

p
c , V

p
c ]
t and qc = [Nq

c , E
q
c , V

q
c ]
t contain the NEV coordinates of

the two closest points. The estimated distance between the two points is given by
the Euclidean distance

r =

√
(Np

c −Nq
c )

2
+ (Epc − Eqc )2 + (V pc − V qc )2. (3.4)

The vector [ptc,q
t
c] = [Np

c , E
p
c , V

p
c , N

q
c , E

q
c , V

q
c ]t is now assumed to be normal

distributed as [
ptc,q

t
c

]
∼ N6

(
[µtpc ,µ

t
qc ],Σpc,qc

)
. (3.5)

This distribution is motivated by the marginal distribution of the two survey points
succeeding pc and qc in the wells. That distribution is in turn obtained by simply
ignoring the elements that corresponds to other coordinates in the expectation
vector and covariance matrix of the total joint distribution in (2.32) of all the NEV
coordinates [pt,qt]. We estimate the covariance matrix Σpc,qc by the marginal
covariance matrix of the succeeding points. However, instead of estimating the
expectation vector by the coordinates of the succeeding points, we use the measured
or planned values of the closest points [ptc,q

t
c], in order to obtain the distribution

in (3.5).
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3.1.1 The Approximated Test

As is the common practice in the petroleum industry, the statistical distribution
of the shortest distance r can be approximated by using the error propagation
theory in Appendix A. Following the error propagation theory, we have that r is
approximately normal distributed as

r ∼ N1

(
µr, σ

2
r

)
(3.6)

with variance given by
σ2
r = JrΣpc,qcJ

t
r. (3.7)

When we approximate by using the succeeding survey points, the Jacobian matrix
in (3.7) is given by

Jr =

[
∂r

∂Np
c

∂r

∂Epc

∂r

∂V pc

∂r

∂Nq
c

∂r

∂Eqc

∂r

∂Eqc

]
=

[
Np
c −Nq

c

r

Epc − Eqc
r

V pc − V qc
r

Nq
c −Np

c

r

Eqc − Epc
r

V qc − V pc
r

]
.

In the first matrix the differentiated functions are evaluated in the measured or
planned values [ptc,q

t
c].

In a hypothesis test one rejects the null hypothesis when the p-value p is lower
than the significance level, that is when p < α. If r̂ is our estimate of the shortest
distance based on the measured or planned values [ptc,q

t
c], then the p-value is

defined to be the probability that a new obtained distance r in fact is as extreme
as (or more extreme than) r̂, given the null hypothesis H0. In other words,

p = P (r ≥ r̂ | µr ≤ r1 + r2)

= P

(
r − µr
σr

≥ r̂ − µr
σr

| µr = r1 + r2

)
= 1− Φ

(
r̂ − (r1 + r2)

σr

)
,

where Φ(·) is the known cumulative distribution function (cdf) of the standard
normal distribution. In the second equation, we recognize that an equality in the
conditional expression will cover the worst case, that is when it is most difficult to
detect a collision.

The industry often follows the equivalent decision rule of rejecting H0 when
ω > 1, where ω is known as the separation factor given by the expression

ω =
r̂ − (r1 + r2)

kασr
, (3.8)

where kα is the 100(1 − α)th percentile of the standard normal distribution. For
instance, for the significance level α = 1/500 we have that kα = 2.878. An argument
for this expression is given in Appendix F.



3.1. HYPOTHESIS TESTS 31

3.1.2 The More Exact Test

Now, we will show how to find the exact distribution of the squared distance be-
tween the two closest points pc = [Np

c , E
p
c , V

p
c ]t and qc = [Nq

c , E
q
c , V

q
c ]t, that is

r2 = (Np
c −Nq

c )2 + (Epc − Eqc )2 + (V pc − V qc )2,

and we will use this distribution to create a hypothesis test that is more exact,
in the sense that we do not need an additional normal approximation in order to
find the distribution of r. However, we still have to do the normal approximations
in Chapter 2, which involves the assumption of the NEV coordinates [pt,qt] in
expression (3.2) being normal distributed. The statistical distribution of the two
closest points [µtpc ,µ

t
qc ] is still assumed to be given by expression (3.5).

Let us start by defining
d = pc − qc. (3.9)

By the error propagation theory in Appendix A, the statistical distribution of d is
a trivariate normal distribution with mean vector µd = µpc − µqc , that is

d ∼ N3 (µd,Σd) .

The covariance matrix is given by

Σd = JdΣpc,qcJ
t
d. (3.10)

This transition is actually exact because d is defined as a linear function of p and
q. The Jacobian matrix is namely

Jd =
[
I3 −I3

]
,

where I3 is the 3× 3 identity matrix. The resulting covariance matrix for d turns
out to be

Σd = Σpc + Σqc − Γpc,qc − Γqc,pc ,

where we have defined

Σpc,qc =

[
Σpc Γpc,qc

Γqc,pc Σqc

]
.

Now, Sheil and O’Muircheartaigh (1977) show how to find the statistical dis-
tribution of

r2 = dtd, (3.11)

exploiting the work of Ruben (1962) and Kotz et al. (1967). They use a linear
transformation given by

b = (LV)
−1
µd.

The 3×3 matrix L is a lower triangular matrix defined by a Cholesky decomposition
Σd = LLt. An eigendecomposition of Σd is given by

Σd = VDV−1,



32 CHAPTER 3. THE RISK OF WELL COLLISION

where the columns of the 3 × 3 matrix V are the eigenvectors of Σd, and the
diagonal matrix D consists of the corresponding eigenvalues α1 ≥ α2 ≥ α3.

According to Sheil and O’Muircheartaigh (1977), the cdf of dtd is given by

P
(
dtd ≤ t

)
=

∞∑
k=0

ckF (3 + 2k, t/β) , (3.12)

where F (y, ν) is the cumulative distribution function of a central χ2 distribution
with ν degrees of freedom for some value y. The constant β can be chosen freely;
however, it must be contained in (0, 2αmin) in order to have a converging series in
expression (3.12). Sheil and O’Muircheartaigh (1977) propose β = 0.90625αmin for
efficiency reasons. The coefficients ck are given by

ck =

{
Ae−λ/2 , k = 0,
1
k

∑k−1
r=0 gk−rcr , k ≥ 1,

where

A =

3∑
j=1

√
β

αj
, λ =

3∑
j=1

b2j ,

gm =
m

2

3∑
j=1

b2jγ
m−1
j +

1

2

3∑
j=1

(
1−mb2j

)
γmj (m ≥ 1) ,

with

γj = 1− β

αj
(j = 1, 2, . . . , n) .

Since there are an infinite number of terms in the sum in expression (3.12), we
must truncate the series after a chosen number of terms N , in order to be able to
compute the probability. In this case, Sheil and O’Muircheartaigh (1977) gives an
upper limit for the error,

∞∑
k=N+1

ckF (3 + 2k, t/β) <

(
1−

N∑
k=0

)
F (3 + 2N, t/β) .

If we denote our measured realization of d by d̂, then correspondingly to the
normal approximated test, the p-value is defined as the probability that a squared
measured distance dtd actually is as extreme as (or more extreme than) d̂td̂, given
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the null hypothesis H0. Then the p-value can be obtained by

p = P
(
dtd ≥ d̂td̂ | H0

)
= P

(
dtd ≥ d̂td̂ | µtdµd ≤ (r1 + r2)

2
)

= P

dtd ≥ d̂td̂ | µd = argmax
µd

µt
dµd≤(r1+r2)2

{
P
(
dtd ≥ d̂td̂

)}
= P

dtd ≥ d̂td̂ | µr = argmax
µd

µt
dµd≤(r1+r2)2

{
1− P

(
dtd ≤ d̂td̂

)}
= 1− P

dtd ≤ d̂td̂ | µr = argmin
µd

µt
dµd≤(r1+r2)2

{
P
(
dtd ≤ d̂td̂

)}
The maximization in the third equation is made in order to get the most conserva-
tive result. The final minimization can be performed by using standard optimiza-
tion software, which for instance is included in MATLAB. In order to calculate the
final p-value, we use expression (3.12).

As a short example, we perform both the exact hypothesis test just described
in this section and the normal approximated test in Section 3.1.1 on the well pair
described in Figure 3.3. These artificial wells are seperated by a distance of 7.5
meters.

The probability distribution functions (pdf’s) f(r) under the null hypothesis

H0 : µr ≤ r1 + r2 = 1 m,

for both tests are plotted in Figure 3.4. The distributions are seen to differ sig-
nificantly. If r̂ denotes the measured shortest distance, then the p-value found as
the area to the right of r = r̂ below the graphs. Here, the shortest distance is
about r̂ = 7.5 m. Then, the p-value is seen to be smaller when we use the normal
approximated distribution in the first tests, than for the exact distribution in the
second tests, which would mean that we will less often reject H0 when performing
the exact test. However, we note that the p-values tends to be equal when the
distance r̂ increases, which fits well with the statement of Gjerde (2008) that the
normal approximated test is valid when the collision probability is small.

We will explore both tests more thoroughly in Chapter 4.
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Figure 3.3: Two artificial petroleum wells. The blue reference well is going strictly
downwards from the starting point p0 = [N0, E0, V0]

t = [300, 7.5, 0]t. The
red offset well starts out at q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [0, 0, 0]t going downwards,

before the inclination starts to increase. At the end, the well is horizontal,
going northwards. The shortest distance between the wells is 7.5 m, marked
with a black line.

Figure 3.4: The pdf’s of the shortest distance r under H0 for the two hypothesis tests
described in this chapter, as performed on the well pair in Figure 3.3.
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3.2 The Probability of Collision
We now want to find the probability that there will be a collision between two
neighboring wells. This is the value defined as

l = P (Well collision) = P (r(x) ≤ r1 + r2) ,

where r(·) is a function that returns the shortest distance between the two wells
based on the stochastic value x that contains the considered information regarding
the positions of the wells. In the two-points methods that we describe in Section
3.2.1, we only consider the NEV coordinates of the two closest points, implying
x = [ptc,q

t
c]. In the all-points method that we describe in Section 3.2.2, we consider

all the survey points in the wells, meaning x = α, where α is a vector containing
the DIA values of all the survey points in both wells, that is

α =
[
Dp

0 , I
p
0 , A

p
0, . . . , D

p
Dp
, IpKp

, ApKp
, Dq

0, I
q
0 , A

q
0, . . . , D

q
Kq
, IqKq

, AqKq

]
, (3.13)

where the superscript p indicates the reference well, while q indicates the offset
well. As before, Kp + 1 and Kq + 1 are the total numbers of survey points in each
well.

When we consider the two closest points, the probability ltwo can be calculated
in an analytical manner, based on the procedure that we used during the derivation
of the more exact hypothesis test in Section 3.1.2. When we consider all the points
method, an analytical calculation of the collision probability is outside the scope
of this thesis.

In both cases, we will estimate the probability by crude Monte Carlo (CMC)
simulation. We then need to realize that

P (r(x) ≤ r1 + r2) = ExI (r(x) ≤ r1 + r2)

=

∫
X
I(r(x) ≤ r1 + r2)f (x|u) dx,

where f(x|u) is the pdf of x, possibly depending on a parameter u. Also, Ef
indicates the expectation over x, I(·) is an indicator function, and X is some space
in which the stochastic vector x takes values.

A CMC estimate of l is then given by the plug-in estimate

l̂ = P̂ (Well collision) =
1

B

B∑
b=1

I (rb ≤ r1 + r2) (3.14)

Here we have defined rb = r(xb), where xb, for b = 1, . . . , B, are B simulated
realizations from the distribution of x. 1 The Strong Law of Large Numbers assures

1In this thesis we only consider the multivariate normal distribution, for which there are known
methods for simulation. In order to simulate x from the distribution Nd(µ,Σ), a common method
consists of simulating the vector z from the standard normal distribution Nd(0, Id), for instance
by using the Box-Muller algorithm. Then x = µ + Az, where A is defined by the Cholesky
decomposition AAt = Σ, is a realization from the distribution of interest.
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that the estimate l̂ converges to the expected value l when the sample size B is
large enough. From the Central Limit Theorem, the estimator given in (3.14) tends
to be normal distributed when B gets large.

In order to have a measure of the uncertainty in this estimate, we estimate the
standard deviation σl̂ of l̂ (Ripley, 1987) by the standard error of l̂ given by

σ̂l̂ =
1√
B

√√√√ 1

B − 1

B∑
b=1

(
I (rb ≤ r1 + r2)− l̂

)2

. (3.15)

An alternative error measure is the relative error (also known as the coefficient of
variation) of the estimate. This is defined as

RE =
σ̂l̂
l̂

, (3.16)

which is simply the standard error scaled according to the size of the estimate l̂
itself. The interval [

l̂ − σ̂l̂, l̂ + σ̂l̂

]
is known as the 68 % confidence interval of l, which is also a common measure of
the error in a Monte Carlo method (Goodman). From expression (3.15) we can
conclude that the sample size B should be as large as possible, in order to obtain
a narrow confidence interval and a small relative error.

In many cases, the probability of well collision may be very small, say of order ∼
10−6. In such cases, we consider a collision to be a rare event, while the probability
of collision is a rare-event probability. In order to obtain an accurate estimate of the
probability (which means that it has a narrow confidence interval) by using a Monte
Carlo simulation method, we may need a very large number of samples B. Since
the CMC simulations are very time-consuming and computer-intensive, especially
when we consider all the points in the wells, we might want to use methods that
can improve the accuracy of the estimates. In Section 3.2.3 we introduce a cross-
entropy method in order to increase the accuracy of the rare-event probability
estimate in both the two-points situation and in the all-points situation.

Since we calculate the probability value in an analytical manner only in the
two-points situation, we introduce a second rare-event method in the all-points
situation, in order to get an even broader foundation for comparison of the methods.
This is the enhanced Monte Carlo (EMC) method, which we introduce in Section
3.2.4.

The word crude in the term crude Monte Carlo simulation method implies that
the method does not take advantage of any of the two rare-event methods.

3.2.1 Considering the Two Closest Points
We will now find the collision probability in the same manner as we performed
the hypothesis tests in Section 3.1, meaning that we only consider the two closest
points in the two wells. That is, we want to find the probability ltwo that the two
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closest points pc = [Np, Ep, Vp]
t and qc = [Nq, Eq, Vq]

t are in fact coinciding, in
the way that their distance is shorter than r1 + r2.

In the introduction of the hypothesis tests in Section 3.1, we assumed that the
joint statistical distribution of the vector [ptc,q

t
c] is given by (3.5), that is[

ptc,q
t
c

]
∼ N6

(
[µtpc ,µ

t
qc ],Σpc,qc

)
, (3.17)

with expectation vector and covariance matrix as described in that section.
In Section 3.1.2 we described how to calculate the cdf P (dtd < t), as seen in

expression (3.12), where we defined d = pc−qc. Now we realize that the probability
of collision ltwo actually is equal to that cdf value, when we set t = (r1 + r2)2 and
approximate the expected values µpc and µqc by the planned or measured values.

That is, the probability value can be obtained analytically by

l̂analytical
two = P

(
dtd < (r1 + r2)2

)
,

where we use the cdf in expression (3.12).
In order to find a CMC estimate of ltwo, we use that the shortest distance

function is given by

r
([

ptc,q
t
c

])
=
√

(pc − qc)t(pc − qc).

The CMC simulations r1, . . . , rB , are then found by simulating B samples
[ptc,q

t
c]b, b = 1, . . . , B, from the distribution (3.17). Then,

rb = r
(
[ptc,q

t
c]b
)

=

√
(pc,b − qc,b)

t
(pc,b − qc,b)

for b = 1, . . . , B. The CMC probability estimate l̂CMC
two is finally calculated by

expression (3.14), that is

l̂CMC
two = P̂CMC

two (Well collision) =
1

B

B∑
b=1

I (rb ≤ r1 + r2) .

The uncertainty of this estimate can be described by the standard deviation σ̂l̂ in
(3.15) and the relative error RE in (3.16).

3.2.2 Considering All Points
Tsao et al. (1999), Thorogood et al. (1991) and Brooks (2008) all intend to find the
probability of collision for segments of two wells rather than just points, but they
all have in common that they do not take into account the correlation between
different areas of the segments or between the two wells. In this section we aim to
find a method that do take this into account.

We will do this by simulating B realizations of the DIA values

α = [αp,αq] (3.18)
=

[
Dp

0 , I
p
0 , A

p
0, . . . , D

p
Dp
, IpKp

, ApKp
, Dq

0, I
q
0 , A

q
0, . . . , D

q
Kq
, IqKq

, AqKq

]
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of all the survey points of the two wells from the distribution[
αp,αq

]t ∼ Nd ([µαp ,µαq

]t
, Σtotal

DIA

)
, (3.19)

as given in (2.29) in Section 2.5.1. The dimension is d = 3(Kp + Kq + 2). We
estimate the expectation vector by the given (planned or measured) values of α in
(3.18), while the covariance matrix Σtotal

DIA is obtained from expression (2.30).
The shortest distance function r(α) will now calculate the NEV coordinates

from the DIA values α by the methods described in Chapter 2. Then a 3D closest
approach method, as described in Appendix E, is used to approximate the shortest
distance between the wells.

We denote the simulated DIA values by αb, for b = 1, . . . , B. Finally, we
estimate the probability of collision with the plug-in estimate in expression (3.14),
giving the CMC estimate

l̂CMC
all = P̂CMC

all (Well collision) =
1

B

B∑
b=1

I (rb ≤ r1 + r2) ,

where rb = r (αb), for b = 1, . . . , B.
In the same way as in the CMC simulation method for two points, we should

now perform an error analysis including the standard deviation σ̂l̂ in (3.15) and
the relative error RE in (3.16).

3.2.3 The Cross-Entropy Method
One way to obtain an accurate estimate of a rare-event probability is to use a
cross-entropy (CE) method as described by de Boer et al. (2002) and Rubinstein
and Kroese (2004).

As we described in the introduction of Section 3.2, the probability of collision
between two wells is in general defined as

l = P (well collision) = P (r(x) ≤ γ)

= EfI (r(x) ≤ γ)

=

∫
X
I(r(x) ≤ γ)f (x|u) dx,

where we have defined the limit value

γ = r1 + r2.

The vector x contains the considered information regarding the positions of the
wells, while r(x) is a function that returns the shortest distance between the two
wells based on x. We now let f(x|u) be the pdf of x, which depends on a parameter
u.

In the two-points method we consider only the NEV coordinates of the two
closest points, implying

x =
[
ptc,q

t
c

]
= [Np

c , E
p
c , V

p
c , N

q
c , E

q
c , V

p
c ] .
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In this case, f(x|u) is the pdf of the trivariate normal distribution described by
expression (3.17). In the all-points method, we consider the DIA values of all the
survey points in the wells, implying

x = α =
[
Dp

0 , I
p
0 , A

p
0, . . . , D

p
Dp
, IpKp

, ApKp
, Dq

0, I
q
0 , A

q
0, . . . , D

q
Kq
, IqKq

, AqKq

]
.

Now, f(x|u) is the pdf of the multivariate normal distribution described by expres-
sion (3.19). In both cases, the parameter u is the expectation vector of x, having
dimension d. We assume the covariance matrix Σ to be known, giving the pdf

f (x|u,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− u)tΣ−1(x− u)

)
. (3.20)

In order to calculate the pdf value, we need the inverse Σ−1 of the covariance
matrix Σ of x, since this is a part of the density (3.20). If the covariance matrix is
singular or close to singular because of high correlation, we follow the principle of
ignoring the most uninformative variables until we are able to find a useable pdf
value. This method is thorougly described in Appendix D.

We previously showed that the CMC simulation method gives the estimate

l̂ =
1

B

B∑
b=1

I (r(xb) ≤ γ)

when we use B simulated samples xb, for b = 1 . . . , B, from f(x|u). In order to
obtain a satisfying width of the confidence interval for l, there is need for a very
large sample size B, especially when the event {r(x) ≤ γ} is known to be a rare
event. The CE method is a way to overcome this computational challenge.

The procedure is based on importance sampling. Instead of sampling from
f(x|u), one samples from another density g(x), which is such that

r(x) ≤ γ)f(x|u) = 0.

We then use the fact that l can be represented as

l =

∫
I(r(x) ≤ γ)

f(x|u)

g(x)
g(x)dx = EgI(r(x) ≤ γ)

f(x|u)

g(x)
.

By simulating B realizations from the density g(x), we can estimate l by the regular
plug-in estimate, which is called the importance sampling estimator or the likelihood
ratio estimator, given by

l̂ =
1

B

B∑
b=1

I(r(xb) ≤ γ)W (xb), (3.21)

where we have introduced the likelihood ratio

W (x) =
f(x|u)

g(x)
.
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Now, the CE method provides a way to find the density g(x) that somehow
optimizes the accuracy of the estimator l̂ in (3.21). The best choice would be to
use

g∗(x) =
I(r(x) ≤ γ)f(x|u)

l
, (3.22)

which would mean that l̂ in (3.21) equals l with zero variance. Of course, we can not
use this estimator because it depends on l itself. However, we use this observation to
find another density g(x) that is useable and gives an estimator l̂ with a satisfying
accuracy. According to de Boer et al. (2002), it is convenient to choose a density
g in the same density family as f(x|u). We therefore set g(x) = f(x|v), for some
unknown parameter v. We will now write the likelihood ratio as

W (x|u,v) =
f(x|u)

f(x|v)
.

The Kullback-Leibler distance or the cross-entropy between two densities h1(x)
and h2(x) is defined as

D(h1(x), h2(x)) = Eh2 ln
h1(x)

h2(x)
=

∫
h1(x) lnh1(x)dx−

∫
h2(x) lnh2(x)dx.

(3.23)
The cross-entropy method uses this measure of distance to find the density f(x|v)
that is closest to g∗ defined in (3.22), by finding the density that minimizes the
cross-entropy D(f(x|v), g∗(x)). By minimizing (3.23) with respect to v, they show
that for any parameter w, the optimal choice of g(x) is the density f(x|v∗), where

v∗ = argmax
v

EwI(r(x) ≤ γ)W (x|u,w) ln f(x|v),

which can be estimated by simulating x1, . . . ,xB1
from f(x|w), and then solving

1

B1

B1∑
b=1

I(r(xb) ≤ γ)W (xb|u,w)∇vf(xb|v) = 0 (3.24)

with respect to v.
Now, equation (3.24) can be solved analytically with respect to v. The solution

for an element vj in v is (de Boer et al., 2002)

vj =

∑B1

b=1 I(r(xb) ≤ γ)W (xb|u,w)xbj∑B1

b=1 I(r(xb) ≤ γ)W (xb|u,w)
. (3.25)

Finally, the procedure of the CE method is as follows.

1. Choose values for the parameter w and the sample sizes B and B1.

2. Simulate x1, . . . ,xB1
from f(x|w).

3. Calculate v by (3.25).
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4. Simulate x1, . . . ,xB from f(x|v).

5. Calculate the importance sampling estimate l̂ in (3.21) with g(x) = f(x|v).

Unfortunately, the result is not useful when the probability is "too small", which
may cause a problem when we are dealing with rare-event probabilities. Rubinstein
and Kroese (2004) solve this problem by using a multi-level algorithm. In the
algorithm they use a sequence of tuning parameters {v̂t, t ≥ 0} and a sequence of
levels {γ̂t, t ≥ 1}. In each iteration, an element is estimated in both sequences.
They also introduce a rarity parameter ρ that should be chosen to be not "too
small". Their suggestion is ρ = 0.1, which we will use when we perform the
method.

The algorithm is summarized as follows.

1. Choose values for the value ρ, the maximum number of iterations tmax and
the sample sizes B and B1.

2. Define v̂0 = u and set the iteration counter t = 1.

3. Simulate a B1-sized sample of realizations x1, . . . ,xB1 from f(x|v̂t−1). Esti-
mate the sample ρ-quantile γ̂t by the bρB1c’th order statistic of the sequence
r(x1), . . . , r(xB1

).

4. Use the sample x1, . . . ,xB1 found in the previous step to calculate v̂t, with
elements given by (3.25), using γ = γ̂t and w = v̂t−1 .

5. If both γ̂t > γ and t < tmax, set t = t+ 1 and go to step 3. Otherwise, go to
step 6.

6. Estimate the collision probability l by the importance sampling estimator in
(3.21),

l̂ =
1

B

B∑
b=1

I(r(xb) ≤ γ)W (xb|u, v̂t),

using a B-sized sample x1, . . . ,xB simulated from f(x|v̂t).

In the last step of the algorithm one finds the CE estimate l̂CE, which should
preferably give a narrower confidence interval than the CMC estimate while needing
less computational effort.

The standard error of the estimate is calculated by

σ̂l̂ =
1√
B

√√√√ 1

B − 1

B∑
b=1

(
I (rb ≤ r1 + r2)W (xb,u, v̂t)− l̂

)2

,

while the relative error is still defined as

RE =
σ̂l̂
l̂

.
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As an example, we perform the all-points CE method on the artificial well pair
described in Figure 3.3. In each iteration of the algorithm just described, a new
well pair is estimated, and their DIA values are contained in the vector v̂t. Only
two iterations were needed to reach the stopping criteria γ̂t ≤ γ = r1 + r2 = 1
m, resulting in a total of three well pairs, including the original pair. In Figure
3.5 we have depicted these well pairs. The blue reference well seem to have about
the exact same position in the three pairs. The original well pair is described by
v̂0 = u, estimated by the planned or measured DIA values α, while v̂1 and v̂2

contains the DIA values of the well pairs that have a shorter distance. In step
3 of the algorithm above we obtain the level values γ̂1 = 3.45 and γ̂2 = 0.50
before we finally estimate the collision probability l̂CE

all = 1.668 · 10−2 in step 6,
having a relative error of RE = 9.14 · 10−3. In Table 3.1 we give the numerical
results obtained when we apply both the CE method and the CMC method on the
same well pair. Even though we use a smaller number of samples in total, which
decreases the computational run time, the standard error and relative error is seen
to be smaller for the CE method than for the CMC method.

Figure 3.5: The three well pairs found when performing the CE method on the wells in
Figure 3.3.

In Chapter 4 we will perform the CE method on various well pair test cases, in
order to learn more about this method.
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Table 3.1: Numerical results obtained by performing the all-points CMC simulation
method and the all-points CE simulation method on the well pair in Fig-
ure 3.3. We have used the notation XeY = X · 10Y .

Method B B1 Run time (sec) l̂all σ̂l̂ RE

CMC 1e5 - 1927 1.621e-2 3.99e-4 2.46e-2
CE 5e4 5e3 1122 1.668e-2 1.54e-4 9.14e-3

3.2.4 The Enhanced Monte Carlo Method

Naess et al. (2009) propose a technique called Enhanced Monte Carlo (EMC), which
is originally used in estimation of the reliability of various structural problems. This
reliability is often expressed as a failure probability, which usually is very small.
Therefore, one could think that the method would be useful in other rare-event
problems, including the problem of estimating the probability of a well collision.

The EMC method is all about increasing the efficiency (that is, reducing the
computational running time) in the task of estimating some kind of failure proba-
bility p that depends on a safety margin M , in the way that p = P (M ≤M∗), for
some failure limit M∗. In our case, the safety margin M is the measured shortest
distance r between two petroleum wells, while the failure probability p corresponds
to the well collision probability l. The failure limit M∗ equals the critical distance
γ = r1 + r2, that is the sum of the radii of the two wells.

The method exploits the possibility that there are some values of the safety
margin other than our actual measured value that would result in a larger failure
probability. Calculating the corresponding failure probabilities using these other
values can be carried out with improved efficiency compared to the actual problem,
since there would be need for a smaller amount of simulations in order to obtain
a confidence interval of a similar size. Then, if there exists a relationship between
the probability of interest and the probability values that are easier to obtain, we
could hope to estimate the wanted probability value based on those other values.

In our case the probability of collision increases when the shortest distance
decreases. This means that by shifting one of the wells towards the other, we get
a larger collision probability. In order to perform this shifting, we introduce a
scaling parameter λ ∈ [0, 1]. Given a value λ, the corresponding shortest distance
is defined to be

r (λ) = r − µr (1− λ) .

Since we estimate the true shortest distance µr by a measurement r, we actually
have that r (λ) ≈ rλ.

Now it is assumed that the probability function lλ (λ) satisfies

lλ(λ) = q exp {−a (λ− b)c} , λ0 ≤ λ ≤ 1,

for some appropriate value λ0. After taking the logarithm of both sides, we find
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the parameters q∗, a∗, b∗ and c∗ that minimize the mean square error function

F (q, a, b, c) =

M∑
j=1

wj

(
log l̂ (λj)− log q + a (λj − b)c

)2

, (3.26)

where the suggested weight factor is given by

wj =
(
logC− (λj)− logC+ (λj)

)−2
.

Here we have used the limits of the 95% confidence interval for lλ, as estimated by

C± (λ) = l̂λ (λ)
(

1± 1.96 Cv

(
l̂λ

))
(3.27)

with an estimate of the coefficient of variation, equaling the value that we earlier
defined as the relative error, given by

Cv

(
l̂λ

)
= RE

(
l̂λ

)
=

σ̂λ

l̂λ (λ)
=

√
1− l̂λ
Bl̂λ

, (3.28)

where B is the number of samples in the MC simulation method for estimating l̂λ.
For any λ ∈ [λ0, 1], the probability is estimated by

l̂λ (λ) = q∗ exp
{
−a∗ (λ− b∗)c

∗}
. (3.29)

Then we can estimate the probability of interest l by

l̂ = l̂λ (1) = q∗ exp
{
−a∗ (1− b∗)c

∗}
. (3.30)

As always, we would like to know about the uncertainty of the estimate l̂ =
l̂λ(1). One way to approximate a confidence interval for l̂ is to use the confidence
interval in equation (3.27). In order to obtain a value for the coefficient of variation
Cv(l̂) in (3.28), we use the same value B that we use for estimating the other l̂λ
values, even though we never actually estimate l̂ using B samples in that way.

We can check if this approximation actually gives a satisfying estimate of the
confidence interval, by first estimating the collision probability as exact as pos-
sible, which takes a lot of time. Then we do many EMC runs, and count the
number of times that the "exact" probability value is inside the respective confi-
dence intervals. The resulting coverage ratio gives an indication of the degree to
which the confidence intervals actually are meaningful. When we estimate the 95
% confidence intervals of 500 EMC runs, we obtain that the coverage ratio is only
about 90 %. This clearly indicates that the width of these confidence intervals are
underestimated.

As an example, we once more use the well pair shown in Figure 3.3. When
performing the EMC method on these wells, we shift the blue reference well towards
the red reference well, as illustrated in Figure 3.6. In each new position we estimate
the collision probability using a crude Monte Carlo method.
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Figure 3.6: The new shifted well pairs used when performing the EMC method on the
wells in Figure 3.3.

The probability values are plotted as circles in the two plots of Figure 3.7. These
two plots show the same results, except that the ordinal axis is logarithmic in the
right-hand plot. We now find the parameters that minimizes the mean square
error function in expression (3.26), which gives us the fitted blue regression lines,
together with the red (and probably underestimated) 95 % confidence intervals from
expression (3.27). The final EMC estimate turns out to be l̂ = l̂λ(1) = 1.690 ·10−2,
having a relative error RE = 5.39 · 10−2.

We have plotted the CE estimate l̂ = 1.668 · 10−2 from the previous section as
a star in Figure 3.7. This value seem to be close to the fitted regression line, and it
is placed well inside the confidence interval, implying that the EMC method gives
a good estimate of l̂ in this case.

When we later apply this method on various well pair cases in Chapter 4, we
use a larger number of interpolating values in the area λ ∈ {0.2, 0.6}. These values
are more realistic to obtain in a real rare-event situation, because the probability
values l̂λ(λ) are so small when we are close to λ = 1. In Chapter 4, we will also
compare the EMC results with the numerical results obtained by the CMC method
and the CE method.
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Figure 3.7: The EMC method performed on the well pair in Figure 3.3 results in this
interpolation.



Chapter 4

Numerical Results

In this chapter we apply the collision risk methods from Chapter 3 on various
well pair cases, in order to compare and learn more about the different methods.
In addition, we make some observations regarding the relationship between the
geometry of the wells and the risk of collision.

In Section 4.1 we introduce six main test cases, that each consists of a well pair
having a distinguishable geometry. Some of the main cases are split into sub-cases,
making a total number of 15 test cases.

In the rest of the chapter, there are two main tasks involving numerical results
that will be carried out, using the well pair test cases. First, in Section 4.2, we apply
the methods from Section 3 on the test cases in order to compare and better describe
the various methods. Second, in Section 4.3, we use parts of the numerical results
in an attempt to describe the influence of the crossing angle, the well direction in
the NE plane and the measured depth on the collision risk.

The crossing angle, or the angle of incidence, is defined to be the angle between
the wells in the area around the two closest points, when we consider the most
natural two-dimensional plane in the NEV coordinate system for the specific well
pair geometry, for instance the NV plane or the horizontal NE plane. In order to
specify this angle uniquely, we must specify the considered plane in addition to the
numerical value of the angle. For instance, for the well pair shown in Figure 3.3 in
Section 3.1.2, the crossing angle is 90◦ in the NV plane.

4.1 Well Pair Test Cases

We now begin by describing the six different test cases that we use in the rest of
this chapter. Some of the cases consists of sub-cases, resulting in a total number
of 15 fundamentally different cases. In addition, we have some shifted versions of
some of these cases, meaning it is the same well pair with the same geometry, with
the only exception that the shortest distance is adjusted according to our needs.

Most of the cases are made-up artificial well pairs, while Case 6 is a real well
pair from the North Sea. We describe and depict the well pairs carefully in Section

47
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4.1.1 through 4.1.6. A whole lot of information will be presented, so we also make
a comprehensible summary of the test cases in Section 4.1.8.

4.1.1 Test Case 1: Crossing Angle of 90◦

The first test case consists of two sub-cases named 1-A and 1-B. Both pairs consist
of an artificial well pair where the crossing angle between the wells is set to be 90◦

in either the NV plane or the EV plane. The shortest distance between the wells
is 7.5 meters in both cases.

Case 1-A is depicted in Figure 4.1. The blue reference well is going strictly
downwards, while the red offset well is going downwards at first, before going
horizontally northwards, passing west of the reference well.

Case 1-B is shown in Figure 4.2, and is very similar to Case 1-A. The only
difference is that the red offset well now ends up going horizontally eastwards,
passing south of the reference well.

4.1.2 Test Case 2: Crossing Angle of 45◦

The second case is very similar to the first case, except that while the red offset
well ended up having an inclination of zero degrees in the first case, it now ends up
having an inclination of only 45◦. The crossing angle between the wells is thereby
constructed to be equal to 45◦ in either the NV plane or the EV plane. This case
also consists of two sub-cases. Case 2-A and Case 2-B is shown in Figure 4.3 and
Figure 4.4 respectively. In the exact same way as for Case 1-A and Case 1-B, the
offset well is heading northwards in Case 2-A, while it is going eastwards in Case
2-B. The shortest distance between the wells is 7.5 meters.

4.1.3 Test Case 3: Parallel Wells

The third case consists of six sub-cases named 3-A, 3-B, 3-C, 3-D, 3-E and 3-F.
In all these cases the two wells are parallel, both first going straight down in the
vertical direction, and then turning to the horizontal direction. Their distance is
constructed to be 3 meters the whole time. In the first three cases, the wells are
heading northwards, while in the last three cases they are heading eastwards.

The cases 3-A, 3-B and 3-C are all shown in Figure 4.5. The two cyan-colored
lines divides the wells into three parts. The upper vertical part is Case 3-A, the
middle part is Case 3-B, and the ending horizontal part is Case 3-C. The three
black lines indicate which two points we chose to consider when we only need the
two closest points.

The cases 3-D, 3-E and 3-F are shown in Figure 4.6. They are constructed in
the exact same way as the previous three cases, with the only exception that the
wells are heading eastwards instead of northwards.
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Figure 4.1: The artificial well pair in Case 1-A. This is exactly the same pair of wells
that were shown and described in Figure 3.3. The crossing angle is designed
to be 90◦ in the NV plane, while the shortest distance is 7.5 m. The starting
points are p0 = [N0, E0, V0]

t = [300, 7.5, 0]t for the blue reference well and
q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [0, 0, 0]t for the red offset well.

Figure 4.2: The artificial well pair in Case 1-B. The crossing angle is designed to be
90◦ in the EV plane, while the shortest distance is 7.5 m. The starting
points are p0 = [N0, E0, V0]

t = [300, 7.5, 0]t for the blue reference well and
q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [307.5,−300, 0]t for the red offset well.
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Figure 4.3: The artificial well pair in Case 2-A. This is exactly the same pair of wells that
were shown and described in Figure 4.1, except that the red offset well now
has an inclination of 45◦ in theNV plane, resulting in a crossing angle of 45◦.
The shortest distance is 7.5 m. The starting points are p0 = [N0, E0, V0]

t =
[300, 7.5, 0]t for the blue reference well and q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [0, 0, 0]t for

the red offset well.

Figure 4.4: The artificial well pair in Case 2-B. This is exactly the same pair of wells
that were shown and described in Figure 4.2, except that the red offset
well now has an inclination of 45◦ in the EV plane, resulting in a cross-
ing angle of 45◦. The shortest distance is 7.5 m. The starting points
are p0 = [N0, E0, V0]

t = [300, 7.5, 0]t for the blue reference well and
q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [307.5,−300, 0]t for the red offset well.
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Figure 4.5: The first artificial well pair in Case 3. The wells are designed to be parallel,
while their distance is 3 m. The well segments in considered in the three
sub-cases 3-A, 3-B and 3-C are limited by two cyan lines (the second and
fourth horizontal line from the top). The black lines indicate which points
we consider to be the closest ones for each case. The starting points are p0 =
[N0, E0, V0]

t = [0, 0, 0]t for the blue reference well and q0 = [Nq
0 , E

q
0 , V

q
0 ]
t =

[0, 3, 0]t for the red offset well.

Figure 4.6: The second artificial well pair in Case 3. The wells are designed to be
parallel, while their distance is 3 m. The well segments in considered in the
three sub-cases 3-D, 3-E and 3-F limited by two cyan lines (the second and
fourth horizontal line from the top). The black lines indicate which points
we consider to be the closest ones for each case. The starting points are p0 =
[N0, E0, V0]

t = [0, 0, 0]t for the blue reference well and q0 = [Nq
0 , E

q
0 , V

q
0 ]
t =

[3, 0, 0]t for the red offset well.
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4.1.4 Test Case 4: Horizontally Crossing Wells

In the fourth case, as depicted in Figure 4.7, both wells are going straight down at
first. At some chosen deep level, the inclination starts to increase, and they cross
with a crossing angle of 90◦ in the NE plane when both wells are heading in the
horizontal direction. As seen in the Figure, this case is parted into three sub-cases,
called 4-A, 4-B and 4-C, in order to better investigate the influence of the measured
depth of the wells on the risk of well collision. The well pair in Case 4-A crosses at
a vertical depth of about 1400 meters. For Case 4-B that vertical depth is about
3400 meters, while it is about 5400 meters for Case 4-C. The shortest distance is
about 10 meters in all sub-cases.

Figure 4.7: The three artificial well pairs in Case 4. In all the sub-cases, the wells
are designed to cross when both wells are going in the horizontal direction,
while the shortest distance is 10 m. Case 4-A is the upper pair. Case
4-B is the middle pair, while Case 4-C is the deepest pair. The starting
points are p0 = [N0, E0, V0]

t = [0, 0, 0]t for the blue reference well and
q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [400, 400, 10]t for the red offset well.

4.1.5 Test Case 5: Horizontal Crossing Angle of 45◦

The fifth case, as depicted in Figure 4.8, is very much the same as Case 4-A, except
that the crossing angle is now 45◦ in the NE plane. Both wells are going straight
down at first. Then the inclination starts to increase, and they cross when both
wells are heading in the horizontal direction.

4.1.6 Test Case 6: A Real Well Pair

The sixth test case consists of the real well pair that we considered in the NEV
covariance matrix example in Section 2.5.3. We repeat the well geometry in Figure
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Figure 4.8: The artificial well pair in Case 5. The wells are designed to cross when both
wells are going in the horizontal direction, with a crossing angle of 45◦. The
shortest distance is 10 m. The starting points are p0 = [N0, E0, V0]

t =
[0, 0, 0]t for the blue reference well and q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [150, 270, 12]t

for the red offset well.

4.9. As before, the shortest distance between the wells is 15.59 m.

Figure 4.9: The two real petroleum wells in Case 6. This is exactly the same pair of wells
that were shown and described in Figure 2.7. The shortest distance between
the wells is 15.59m, which is in the area down to the left where the wells seem
to cross. The starting points are p0 = [N0, E0, V0]

t = [970.10, 816.50, 0]t for
the blue reference well and q0 = [Nq

0 , E
q
0 , V

q
0 ]
t = [976.20, 817.70, 0]t for the

red offset well.



54 CHAPTER 4. NUMERICAL RESULTS

4.1.7 Shifted Test Cases
In addition to the test cases described in Section 4.1.1 through Section 4.1.6, we
will use some shifted versions of some of those cases. By that we mean that we will
use some of those well pairs without changing their geometry at all, with the only
exception that we shift the starting point of one of the wells in order to obtain a
specific value of the shortest distance between the wells.

We have made six such cases, named 1-AX, 1-AY, 2-AX, 2-AY, 6-X and 6-Y.
For instance, Case 1-AX will look exactly like Case 1-A, except that the shortest
distance between this new well pair is 11.1 meters instead of 7.5 meters. The
values of the shortest distances are chosen according to the hypothesis tests that
we perform in Section 4.2.1. There we will explain the reasoning behind the chosen
distances.

We list the well geometry properties of the shifted test cases in the bottom of
Table 4.1 in the next section.

4.1.8 Summary
In Table 4.1 we list the most relevant well geometry properties of the well pairs in
all the test cases described in Section 4.1.1 through Section 4.1.7.

For each case in the table, the first two columns contains the number of the
well pair test case and its corresponding figure number, as given in the previous
sections. The shortest distance is the shortest Euclidean distance r̂ based on the
given (planned or measured) DIA values for the two wells. The crossing angle is
specified along with the considered two-dimensional plane.

The value D is the measured (along-hole) distance of the well in the area around
the two closest points. From the definitions of the inclination I and azimuth A in
Chapter 2, we know that I = 0◦ is the vertical direction, while I = 90◦ is the
horizontal direction. Also, A = 0◦ is northwards, A = 90◦ is eastwards, A = 270◦

is westwards, while A = 315◦ is northwestwards. The azimuth is undefined when a
well is vertical, while the crossing angle is undefined when the wells are parallel.

4.2 Testing the Collision Risk Methods
Here, we present all the numerical results obtained by performing the collision
risk methods from Chapter 3 on all or some of the test cases that we described
thoroughly in Section 4.1.

In Section 4.2.1 we present the numerical results from the two hypothesis tests.
In Section 4.2.2 and 4.2.3 we present the estimates of the probability of collision, as
obtained by using the two-points methods and the all-points methods, respectively.

During these subsections we also discuss and compare the results, and we make
some observations in order to describe the various collision risk methods. The
applied test cases cover a variety of well geometry characteristics, which should
provide a good basis for making observations about the methods and their results.
However, for most of the different test cases, there is surely a large amount of
various well parameters that make up the well geometries, making it a challenge
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Table 4.1: A comprehensive summary of the well geometry properties of all the test
cases described in this chapter. The shifted test cases from Section 4.1.7
are listed in the bottom of the table, below the bar. The value D is the
measured (along-hole) distance of the well in the area around the two closest
points, while I is the inclination and A is the azimuth. The crossing angle is
undefined when the wells are parallel.

Well Short. Well geometry around the closest points
pair dist. Cross. Reference well Offset well
case Fig. r̂ (m) angle D (m) I A D (m) I A

1-A 4.1 7.5 90◦NV 620 0◦ - 830 90◦ 0◦
1-B 4.2 7.5 90◦EV 620 0◦ - 830 90◦ 90◦

2-A 4.3 7.5 45◦NV 800 0◦ - 890 45◦ 0◦
2-B 4.4 7.5 45◦EV 800 0◦ - 890 45◦ 90◦

3-A 4.5 3.0 - 1490 0◦ - 1490 0◦ -
3-B 4.5 3.0 - 3290 30◦ 0◦ 3290 30◦ 0◦
3-C 4.5 3.0 - 3890 90◦ 0◦ 3890 90◦ 0◦

3-D 4.6 3.0 - 1490 0◦ - 1490 0◦ -
3-E 4.6 3.0 - 3290 20◦ 90◦ 3290 20◦ 90◦
3-F 4.6 3.0 - 3890 90◦ 90◦ 3890 90◦ 90◦

4-A 4.7 10.0 90◦NE 1610 90◦ 0◦ 1610 90◦ 270◦
4-B 4.7 10.0 90◦NE 3620 90◦ 0◦ 3620 90◦ 270◦
4-C 4.7 10.0 90◦NE 5600 90◦ 0◦ 5600 90◦ 270◦

5 4.8 10.0 45◦NE 1610 90◦ 0◦ 1580 90◦ 315◦

6 4.9 15.6 40◦NE 2450 90◦ 160◦ 2400 90◦ 200◦

1-AX 4.1 11.1 90◦NV 620 0◦ - 830 90◦ 0◦
1-AY 4.2 11.2 90◦NV 620 0◦ - 830 90◦ 45◦

2-AX 4.3 10.0 45◦NV 800 0◦ - 890 45◦ 0◦
2-AY 4.3 10.1 45◦NV 800 0◦ - 890 45◦ 0◦

6-X 4.9 7.4 40◦NE 2450 90◦ 160◦ 2400 90◦ 200◦
6-Y 4.9 29.5 40◦NE 2450 90◦ 160◦ 2400 90◦ 200◦
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find explanations to the observations on a case-by-case level. Nevertheless, we
make some attempts on comparing the overall results from the various methods,
in order to detect any apparent differences or similarities between them. We will
also make some case-by-case observations in Section 4.3, where we are focusing on
the influence of a few chosen well geometry parameters.

In order to apply the various collision risk methods from Chapter 3, we have
made a MATLAB implementation that we run on an Intel Core i7 Quad 2.80
GHz processor. When performing the non-analytical methods for estimating the
probability of collision, we strive to obtain a relative error RE of order ∼ 10−2 for
each test case.

We present the results using a number of tables, one for each method. All
the tables begin with the column well pair case that contains the numbers of the
applied well pair test cases, where we follow the numbering in Section 4.1.1 through
Section 4.1.7. The shortest distance is the shortest Euclidean distance r̂ based on
the given (planned or measured) DIA values for the two wells. The run time is the
computational time given in seconds.

In order to save some space in the tables containing the numerical results, we
will from now on use the notation XeY = X · 10Y .

4.2.1 The Hypothesis Tests
In Table 4.2 we present the numerical results obtained by performing the two
hypothesis tests in Section 3.1 on the well pair test cases.

The null hypothesis is H0 : µr ≤ r1+r2 = 1 m for both the approximated test in
Section 3.1.1, as well as for the more exact test in Section 3.1.2. For each case, we
give the resulting p-value for both tests, and we conclude on whether or not the null
hypothesis should be rejected based on the significance value α = 1/500 = 0.002.
For the approximated test we also include the separation factor ω as calculated by
expression (3.8).

The first obvious observation to make from Table 4.2 is that the p-value is
higher for the more exact test than for the approximated test for all the test cases.
In other words, the exact test is more conservative than the approximated tests
for all the cases. This is further illustrated in Figure 4.10. Here we compare the
p-values for the two tests by plotting all the values from Table 4.2 in a log10 plot.
The line α = 0.002 is plotted in order to easily see when the null hypothesis is to
be rejected. We reject H0 when the p-value is below the significance value α.

For Case 4-A, 5 and 6, the difference between the p-values is seen to be especially
extreme, in the way that the approximated test is very far away from rejecting H0,
while the more exact test is very far away from non-rejection. On the other hand,
the p-values are not very different in Case 1-A, 1-B, 2-A and 2-B. Also, both the
p-values and their difference varies when we consider well pairs that have the same
shortest distance between them. In total, this indicates that both the p-values
themselves and the difference between them is very much dependent on the well
geometry of the well pair of interest.

For the six subcases of Case 3 and the three subcases of Case 4, the pattern
seems to be that the p-values from both tests are increasing when the measured
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Table 4.2: Numerical results obtained by performing the hypothesis tests described
in Section 3.1 on the well pair test cases.

Well Short. Run Approximated test More exact test
pair dist. time p- Sep. Rej. p- Rej.
case r̂ (m) (sec) value fact. ω H0 value H0

1-A 7.5 15 3.14e-2 0.647 No 4.10e-2 No
1-B 7.5 16 7.10e-2 0.510 No 0.102 No

2-A 7.5 15 1.85e-2 0.725 No 2.34e-2 No
2-B 7.5 16 5.32e-2 0.561 No 7.41e-2 No

3-A 3.0 16 9.57e-3 0.814 No 0.132 No
3-B 3.0 17 0.121 0.406 No 0.598 No
3-C 3.0 16 0.372 0.113 No 0.872 No
3-D 3.0 16 9.57e-3 0.814 No 0.132 No
3-E 3.0 16 0.141 0.374 No 0.616 No
3-F 3.0 17 0.452 0.065 No 0.926 No

4-A 10.0 17 6.88e-10 2.105 Yes 0.175 No
4-B 10.0 17 1.28e-3 1.048 Yes 0.228 No
4-C 10.0 18 2.49e-2 0.681 No 0.349 No

5 10.0 17 8.40e-11 2.220 Yes 2.48e-2 No

6 15.6 19 3.30e-11 2.269 Yes 0.112 No

1-AX 11.1 15 1.99e-3 1.000 Yes 2.40e-3 No
1-AY 11.2 16 1.67e-3 1.020 Yes 1.99e-3 Yes

2-AX 10.0 16 1.99e-3 1.000 Yes 2.38e-3 No
2-AY 10.1 16 1.68e-3 1.020 Yes 1.99e-3 Yes

6-X 7.4 19 1.99e-3 1.000 Yes 0.511 No
6-Y 29.5 17 1.06e-13 4.432 Yes 1.99e-3 Yes
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Figure 4.10: Graphical illustration of 10 base logarithm of the p-values for the two
different tests, using the values in Table 4.2.

depth of the two closest points is increasing. We will discuss this phenomenon
further in Section 4.3.3, where we make more observations about the influence of
the measured depth on the collision risk.

Now, we finally explain the reasoning behind the shifted well pair cases that
we introduced in Section 4.1.7. The hypothesis test results for these cases are
shown below the bar in Table 4.2. In the test cases marked with an X, we have
tuned the shortest distance of the corresponding original case to be the minimum
shortest distance that allows the null hypothesis of the approximated test to be
rejected, resulting in the p-value p = 1.99e-3 and the separation factor ω = 1.00.
For instance, Case 1-AX is made by shifting one of the wells in Case 1-A away from
the second well in the direction of the vector connecting the two closest points. We
stop the shifting when we reach the distance for which the null hypothesis in the
approximated test is rejected. Then the shortest distance is 11.1 meters instead of
the original 7.5 meters. The same argument holds for the test cases marked with
a Y , except that we have now tuned the shortest distance according to the more
exact test, resulting in a p-value of p = 1.99e-3 in that test.
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For Case 1-AX, 2-AX and 6-X, the two tests disagree on whether H0 should
be rejected or not. For all these three shifted test cases, the approximated test is
barely rejecting H0. For Case 6-X, the more exact test is very far from rejection,
while for the other two cases, the p-values of the more exact test are much closer
to those of the approximated test. The situation is similar for Case 1-AY, 2-AY
and 6-Y. For these cases, the more exact test barely rejects H0. For Case 6-Y,
the approximated test is clearly rejecting H0, while the p-values are much closer
for Case 1-AY and 2-AY. In sum, this does not indicate any immediately clear
relationship between the rejection areas for the two tests, in the way that when
one of the tests is on the border of rejection, having a p-value of p = 1.99e-3, the
other test does not result in a specific predetermined p-value that is independent
of the well geometry.

For the real well pair in Case 6, the probability distribution functions (pdf’s)
f(r) under H0 for both tests are plotted in Figure 4.11. Just as for Case 1-A, as
seen in Figure 3.4 at the end of Section 3.1.2, the distributions are seen to differ
significantly. If r̂ denotes the measured shortest distance, then the p-values are
found as the area to the right of r = r̂ below the graphs. The p-values are seen to
be very different at the actual shortest distance r̂ = 15.6 m for Case 6.

Figure 4.11: The pdf’s of the shortest distance r under H0 for the two hypothesis tests
as performed on Case 6. The pdf’s are almost exactly the same for the
shifted test cases 6-X and 6-Y.

In fact, since the shifted test cases 6-X and 6-Y only differ from Case 6 in
their shortest distances, the corresponding pdf’s for these cases are found to be
virtually indistinguishable from the pdf’s for Case 6 shown in Figure 4.11. For
these two cases, the p-values are found as the areas below the graphs to the right
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of r = r̂ = 7.4 m and r = r̂ = 29.5 m, respectively.
For the more exact test, this area is easily seen to be much larger for 6-X than

for Case 6, while the area for Case 6 is in turn much larger than for Case 6-Y.
For the approximated test, it is not that easy to see these differences directly from
Figure 4.11. However, we know that the pdf belongs to a normal distribution,
implying that the graph decreases exponentially. In sum, this helps us understand
the differences between the p-values for Case 6-X, 6 and 6-Y on the log10 plot in
Figure 4.11.

4.2.2 The Collision Probability Considering Two Points
Here we begin by performing the analytical two-points method for calculating the
probability of well collision l̂analytical

two , as descibed in Section 3.2.1, on the well pair
test cases in Section 4.1. The results are presented in Table 4.3.

For Case 6-Y, the collision probability is in practice equal to zero, but we have
chosen to include the obtained value in order to be able to know if the CMC and
CE simulation methods actually give a result even when the collision probability
is of order ∼ 10−41.

Now, in the log10 plot in Figure 4.12 we compare the p-values in the hypothesis
tests from Table 4.2 with the analytically calculated collision probability values
from Table 4.5. From Figure 4.12 we can make the remarkable observation that
the collision probability is smaller than both p-values in all the cases. For some
cases, there is not a huge difference, while in cases like 3-F, 5, 6 and 6-Y, the
difference is seen to be larger. Both the collision probability and its difference to
the p-values seems to be dependent on the well geometry of the well pair of interest.

Combining with the observations in the previous section, the pattern is that
the collision probability is smaller than the p-value of the approximated hypothesis
test, which in turn is smaller than the p-values of the more exact hypothesis test.

The numerical results reveal that there exist well geometries where a risk as-
sessment based on a hypothesis test gives a different result compared to a risk
assessment based on the collision probability. For instance, if we demand the colli-
sion probability to be below the value of 2e-4 to continue the drilling, then we would
not accept further drilling for the well pair in Case 1-AY considering the collision
probability l̂analytical

two = 5.679e-4, although we would reject H0 in both hypothesis
tests based on the significance level α = 0.002. However, for the horizontally cross-
ing well pair in Case 4-C, we would indeed accept further drilling considering the
collision probability l̂analytical

two = 1.588e-4, while we would not reject H0 in any of
the hypothesis tests.

If we had chosen the toleration value for the collision probability to be equal
to the significance value α, then the hypothesis tests would be more conservative
than the probability requirement for all the test cases, following from the observa-
tion that the collision probability is smaller than both p-values for all the cases.
However, there is no obvious reason to treat the two collision risk measures in such
a similar way, because of the fundamental differences between the two concepts.

From Chapter 3, a p-value is the probability of obtaining the shortest distance r̂
given that the expected distance implies a collision, while the collision probability is
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Table 4.3: Numerical results obtained by performing the analytical two-points
method on the well pair test cases for calculating the probability of colli-
sion.

Well Shortest Run Collision
pair distance Time probability
case r̂ (m) (sec) l̂analytical

two

1-A 7.5 0.08 9.629e-3
1-B 7.5 0.11 1.776e-2

2-A 7.5 0.10 5.908e-3
2-B 7.5 0.11 1.368e-2

3-A 3.0 0.50 1.411e-3
3-B 3.0 0.40 6.878e-3
3-C 3.0 0.41 6.223e-3

3-D 3.0 0.43 1.411e-3
3-E 3.0 0.39 7.795e-3
3-F 3.0 0.67 3.852e-3

4-A 10.0 0.14 1.57e-12
4-B 10.0 0.48 1.370e-5
4-C 10.0 1.16 1.588e-4

5 10.0 0.21 9.90e-13

6 15.6 1.75 1.45e-13

1-AX 11.1 0.08 6.784e-4
1-AY 11.2 0.08 5.679e-4

2-AX 10.0 0.09 6.723e-4
2-AY 10.1 0.10 5.648e-4

6-X 7.4 1.73 1.833e-5
6-Y 29.5 1.63 7.43e-41
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Figure 4.12: Graphical illustration of the 10 base logarithm of the p-values from Table
4.2 together with the calculated collision probability values l̂analytical

two from
Table 4.3. Here we have intentionally not included the probability value
l̂analytical
two = 7.43e-41 for Case 6-Y, which is in practice equal to zero.

the probability of r implying a collision, given that the expected shortest distance is
approximated by r̂. In Figure 4.13 we plot the pdf’s of r =

√
dtd, as first defined

in expression (3.11), both when considering the exact hypothesis test and when
considering the analytical collision probability, by using expression (3.12) in both
situations. The p-value

p = P
(
dtd ≥ d̂td̂ | µtdµd ≤ (r1 + r2)

2
)

of the more exact test is found as the area below the blue solid graph to the right
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of r = r̂ = 15.6 m, while the collision probability

l̂analytical
two = P

(
dtd < (r1 + r2)2 | µtdµd = r̂2

)
is found as the area below the red dashed graph to the left of r = r1 + r2 = 1 m.

Figure 4.13: The pdf’s of the shortest distance r, when considering the more exact
hypothesis test, and when considering the analytical two-points collision
probability.

All in all, we have to consider two very different distributions, just like when
we compared the pdf’s of the two hypothesis tests in Figure 4.11. For the test case
in Figure 4.13, it is easy to see that p >> l̂analytical

two . However, in the general case,
there is need for a deeper study of the properties of the distributions. The fact
that we fall short on finding a more rigid explanation of the observed phenomenon
about the collision probability tending to be smaller than the p-values, is obviously
not a strong argument for the general validity of the observation. On the other
hand, the observation is strengthened by the fact that we have used a variety of
well geometries in our test cases.

When we consider the shifted well pair cases 1-AX, 1-AY, 2-AX, 2-AY, 6-X and
6-Y in Figure 4.12 we observe that the collision probability l̂analytical

two is not the
same for all the X cases (where H0 is barely rejected in the approximated test),
neither is it the same for all the Y cases (where H0 is barely rejected in the more
exact test). This means that there is no immediately clear relationship between
rejection of H0 and the numerical value of the collision probability, except for the
one that the collision probability always seems to be less than both p-values.
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In Table 4.6 we now give the numerical results obtained by performing the two-
points crude Monte Carlo (CMC) simulation method for estimating the probability
of collision, as described in Section 3.2.1, on the well pair test cases. The column
B contains the sample size values in the MC simulation method. The remaining
columns contain the estimated collision probability l̂CMC

all , its standard error σ̂l̂, as
well as the relative error RE.

In Table 4.5 we give the numerical results for the two-points cross-entropy
(CE) simulation method, as described in Section 3.2.3. The table is very similar
structured as Table 4.4, except that we now also include the sample size B1 and
the number of iterations needed. When performing the CE method we have used
the maximum number of iterations tmax = 20 and the rarity parameter ρ = 0.1.

It is worth noting that in Case 4-A, 5, 6 and 6-Y, the collision probability is
so small that the CMC method is not able to give a result, since it would need a
inconveniently large number of samples to gain the needed accuracy. On the other
hand, the CE method does indeed give accurate results in these cases. This shows
the strength of the CE method versus the CMC method: In a rare-event situation,
the CE method is able to give answers when the CMC method is not.

When we compare the results given in Table 4.3, 4.4 and 4.5 we immediately see
that the collision probability are very similar for the three methods for all the cases.
This supports both the CMC method and the CE in the way that they both seem to
give an accurate estimate, at least when the sample size is large enough. This also
supports the correctness of the much faster calculation of the analytical calculated
probability values l̂analytical

two in Table 4.3. This in turn supports the correctness of
the p-values of the more exact hypothesis test in Table 4.2, since the calculations
in both cases are based on the same cdf P (dtd ≤ t), as given in expression (3.12).

4.2.3 The Collision Probability Considering All Points

In Table 4.6 we present the numerical results obtained by performing the all-points
crude Monte Carlo (CMC) simulation method for estimating the probability of
collision, as described in Section 3.2.2, on all the well pair test cases in Section 4.1,
except for the shifted cases.

The column B contains the sample size values in the MC simulation method.
The remaining columns contain the estimated collision probability l̂CMC

all , its stan-
dard error σ̂l̂, as well as the relative error RE.

In Table 4.7 we give the numerical results for all-points cross-entropy (CE)
simulation method, as described in Section 3.2.3. As for the two-points method,
we now also include the sample size B1 and the number of iterations needed. When
performing the CE method we have used the maximum number of iterations tmax =
5 and the rarity parameter ρ = 0.1.

Exactly as for the two-points methods, there are some cases (4-A, 5 and 6) in
which the collision probability seems to be so small that we are unable to obtain a
result when we apply the CMC method. In these cases, the CE method still seem
to give accurate results. This once again indicates that the CE method is better
in this kind of rare-event situations.
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Table 4.4: Numerical results obtained by applying the two-points CMC simulation
method for estimating the collision probability on the well pair test cases.

Well Shortest Run Collision probability &
pair distance time measures of uncertainty
case r̂ (m) B (sec) l̂CMC

two σ̂l̂ RE

1-A 7.5 1e8 114 9.624e-3 9.76e-6 1.01e-3
1-B 7.5 1e8 115 1.776e-2 1.32e-5 7.44e-4

2-A 7.5 1e6 113 5.915e-3 7.67e-6 1.30e-3
2-B 7.5 1e8 115 1.368e-2 1.16e-5 8.49e-4

3-A 3.0 1e8 116 1.408e-3 3.75e-6 2.66e-3
3-B 3.0 1e8 115 6.878e-3 8.26e-6 1.20e-3
3-C 3.0 1e8 115 6.217e-3 7.86e-6 1.26e-3

3-D 3.0 1e8 115 1.413e-3 3.76e-6 2.66e-3
3-E 3.0 1e8 115 7.789e-3 8.79e-6 1.13e-3
3-F 3.0 1e8 114 3.854e-3 6.20e-6 1.61e-3

4-A 10.0 1e8 116 0 0 -
4-B 10.0 1e8 114 1.376e-5 3.71e-7 2.70e-2
4-C 10.0 1e8 115 1.672e-4 1.29e-6 7.73e-3

5 10.0 2e8 230 0 0 -

6 15.6 1e8 123 0 0 -

1-AX 11.1 1e8 125 6.798e-4 2.61e-6 3.83e-3
1-AY 11.2 1e8 124 5.657e-4 2.38e-6 4.20e-3

2-AX 10.0 1e8 123 6.694e-4 2.59e-6 3.86e-3
2-AY 10.1 1e8 122 5.590e-4 2.36e-6 4.21e-3

6-X 7.4 1e8 123 1.800e-5 4.24e-7 2.36e-2
6-Y 29.5 1e8 125 0 0 -
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Table 4.5: Numerical results obtained by performing the two-points CE simulation
method for estimating the probability of collision on the well pair test cases.
For all tests, we have set tmax = 20 and ρ = 0.1.

Well Short. No. of Run Collision probability &
pair dist. itera- time measures of uncertainty
case r̂ (m) B B1 tions (sec) l̂CE

two σ̂l̂ RE

1-A 7.5 2e7 2e6 20 94 9.627e-3 7.02e-6 7.29e-4
1-B 7.5 2e7 2e6 20 94 1.775e-2 1.43e-5 8.08e-4

2-A 7.5 2e7 2e6 3 39 5.898e-3 4.22e-6 7.15e-4
2-B 7.5 2e7 2e6 20 95 1.369e-2 1.09e-5 7.99e-4

3-A 3.0 2e7 2e6 3 37 1.410e-3 1.25e-6 8.86e-4
3-B 3.0 2e7 2e6 5 44 6.851e-3 9.69e-6 1.41e-3
3-C 3.0 2e7 2e6 5 45 6.261e-3 1.66e-5 2.66e-3

3-D 3.0 2e7 2e6 3 40 1.413e-3 1.25e-6 8.85e-4
3-E 3.0 2e7 2e6 20 94 7.799e-3 1.12e-5 1.44e-3
3-F 3.0 2e7 2e6 20 94 3.831e-3 1.35e-5 3.54e-3

4-A 10.0 2e7 2e6 5 45 1.59e-12 4.6e-14 2.88e-2
4-B 10.0 2e7 2e6 20 94 1.361e-5 6.23e-8 4.57e-3
4-C 10.0 2e7 2e6 20 95 1.686e-4 9.30e-7 5.52e-3

5 10.0 2e7 2e6 5 47 9.74e-13 1.0e-15 1.03e-2

6 15.6 2e7 2e6 20 94 1.44e-13 1.2e-15 8.62e-3

1-AX 11.1 2e7 2e6 20 92 6.779e-4 5.17e-7 7.63e-4
1-AY 11.2 2e7 2e6 20 91 5.678e-4 4.34e-7 7.65e-4

2-AX 10.0 2e7 2e6 4 41 6.714e-4 5.01e-7 7.47e-4
2-AY 10.1 2e7 2e6 4 44 5.646e-4 4.23e-7 7.49e-4

6-X 7.4 2e7 2e6 5 48 1.822e-5 8.71e-8 4.78e-3
6-Y 29.5 2e7 2e6 20 94 7.70e-41 1.4e-42 1.82e-2
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Table 4.6: Numerical results obtained by performing the all-points CMC simulation
method for estimating the probability of collision on some of the well pair
test cases.

Well Short. Run Collision probability &
pair dist. time measures of uncertainty
case r̂ (m) B (sec) l̂CMC

all σ̂l̂ RE

1-A 7.5 1e5 1927 1.621e-2 3.99e-4 2.46e-2
1-B 7.5 1e5 1861 3.718e-2 5.98e-4 1.61e-2

2-A 7.5 1e5 1921 1.522e-2 3.87e-4 2.54e-2
2-B 7.5 1e5 1899 3.030e-2 5.42e-4 1.79e-2

3-A 3.0 1e5 1186 4.490e-3 2.11e-4 4.71e-2
3-B 3.0 1e5 1739 0.1118 9.97e-4 8.91e-3
3-C 3.0 1e5 859 3.677e-2 5.95e-4 1.62e-2

3-D 3.0 1e5 1177 4.630e-3 2.15e-4 4.64e-2
3-E 3.0 1e5 1814 0.1393 1.09e-3 7.86e-3
3-F 3.0 1e5 775 2.393e-2 4.83e-4 2.02e-2

4-A 10.0 1e5 1954 0 0 -
4-B 10.0 1e5 4118 1.270e-3 7.96e-5 6.27e-2
4-C 10.0 1e5 2069 1.667e-2 4.05e-4 2.43e-2

5 10.0 1e5 1917 0 0 -

6 15.6 1e5 2152 0 0 -

For the cases where the CMC method does in fact give a result, the probability
estimates obtained by the CMC method and the CE method are very similar, which
supports both methods.

For both methods we have achieved to obtain a relative error RE of order
∼ 10−2 for all the cases. The computational running time is in general seen to be
much less for the CE method than for the CMC method, meaning that it seems to
be more efficient. This observation is further illustrated in Figure 4.14, where we
have plotted the relative error RE against the run time for Case 4-B, using various
sample sizes B for both methods. Here we can see that the relative error decreases
when the run time is increasing for both methods, which is reasonable. We also
observe that the RE values seems to stabalize at some value, for which there is a
lot of additional run time needed in order to decrease the relative error further.
This seems to occur at the sample size B = 5e4 for the CMC method, and at the
sample size B = 5e4 for the CE method.
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Table 4.7: Numerical results obtained by performing the all-points CE simulation
method for estimating the probability of collision lall on some of the well
pair test cases. For all tests, we have set tmax = 5 and ρ = 0.1.

Well Short. No. of Run Collision probability &
pair dist. itera- time measures of uncertainty
case r̂ (m) B B1 tions (sec) l̂CE

all σ̂l̂ RE

1-A 7.5 5e4 5e3 2 1122 1.668e-2 1.54e-4 9.14e-3
1-B 7.5 5e4 5e3 2 1242 3.726e-2 3.71e-4 9.95e-3

2-A 7.5 5e4 5e3 2 1278 1.492e-2 1.36e-4 9.12e-3
2-B 7.5 5e4 5e3 2 1152 3.128e-2 3.05e-4 9.74e-3

3-A 3.0 2e5 5e3 5 2921 4.428e-3 1.77e-4 3.99e-2
3-B 3.0 5e4 5e3 1 1167 0.1120 1.64e-3 1.46e-2
3-C 3.0 2e5 5e3 5 2257 3.871e-2 5.04e-4 1.30e-2

3-D 3.0 2e5 5e3 5 2958 4.278e-3 1.73e-4 4.04e-2
3-E 3.0 5e4 5e3 1 1169 0.1378 1.61e-3 1.17e-2
3-F 3.0 5e4 5e3 5 642 2.414e-2 8.17e-4 3.38e-2

4-A 10.0 5e4 5e3 5 1574 3.806e-10 6.277e-12 1.65e-2
4-B 10.0 5e4 5e3 3 1500 1.080e-3 1.50e-5 1.38e-2
4-C 10.0 5e4 5e3 2 1482 1.638e-2 2.89e-4 1.77e-2

5 10.0 5e4 5e3 5 1586 6.267e-11 9.27e-13 1.48e-2

6 15.6 2e5 5e3 5 5475 1.495e-8 6.92e-10 4.63e-2
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Figure 4.14: The run time versus the relative error RE for a number of different sample
sizes B when performing the CMC method and the CE method on Case
4-B. For the CMC method we have used the sample sizes B ∈ {5e3, 1e4,
3e4, 5e4, 1e5, 2e5, 3e5, 4e5}. For the CE method we have used the sample
sizes B ∈ {5e3, 1e4, 3e4, 5e4, 7e4, 1e5}.

We continue by looking at the numerical results from the enhanced Monte Carlo
(EMC) simulation method in Table 4.8. Since this method is very time-consuming,
we have only applied it on six of the well pair cases. We have especially chosen to
use Case 4-A, 5 and 6, since the CMC method gave no results for these cases.

In Table 4.8 the sample size B is the number of samples in the CMC simulation
method we use in order to obtain the M probability estimates

l̂λ(λ0), . . . , l̂λ(λM−1).

We have chosen to use a number of equally-spaced scaling parameters in the area
λ ∈ {0.10, 0.82}, since for a rare-event, the probability values l̂λ(λ) are often too
small to be obtained by the CMC method when we are close to λ = 1.

For each case we have included a regular plot and a log10 plot that shows the
resulting interpolation. These are given in Figure 4.15 – 4.20. In the figures,
the middle blue line indicates the estimated probability values l̂λ(λ) obtained by
inserting values of λ ∈ [0, 1] in expression (3.29), while the outer red lines indicate
the 95% confidence interval from expression (3.27). The M probability estimates

l̂λ(λ0), . . . , l̂λ(λM−1)

are marked by circles.
For the rare-event cases 4-A, 5 and 6, the relative error RE is extremely large. In

all the figures, we have marked the corresponding CE estimate l̂CE
all with a star. The
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Table 4.8: Numerical results obtained by performing the all-points EMC simulation
method for estimating the probability of collision on some of the well pair
test cases.

Well Short. Run Collision probability &
pair dist. time measure of uncertainty
case r̂ (m) B λ0 λM−1 M (sec) l̂all RE

1-A 7.5 1e4 0.20 0.67 15 2794 1.732e-2 7.53e-2

2-A 7.5 1e4 0.20 0.67 15 2865 1.858e-2 7.27e-2

3-A 7.5 1e4 0.40 0.82 26 3154 4.563e-3 0.148

4-A 10.0 1e4 0.22 0.57 15 2844 8.469e-10 3.44e2

5 10.0 1e4 0.11 0.58 20 3799 4.080e-10 4.95e2

6 15.6 1e4 0.12 0.54 27 5823 9.239e-13 1.04e4

confidence intervals are seen to cover, or at least almost cover, this more accurate
estimate in all cases, including the last three. This indicates that the EMC method
at least to some degree supports the values obtained by the CE method in the cases
where we were unable to get a comparable estimate from the CMC method.

We note that in Figure 4.18 – 4.20, the lower confidence bound is so small that
it is essentially equal to zero, which makes it undefined in the log10 plot.

We finish this section by comparing the all-points probability values with the
two-points values. As seen in the regular plot in Figure 4.21 and in the log10 plot
in Figure 4.22, the probability values l̂CE

all from the all-points CE method in Table
4.7 are always much larger (often by a factor of order ∼ 10) than the corresponding
values l̂analytical

two from the analytical two-points method in Table 4.3. For the all-
points values we have used the CE values rather than the CMC values or the
EMC values because the relative error is in general seen to be smaller for the CE
method. The fact that the probability is larger for the all-points method is exactly
as expected from our introduction to Chapter 3.

We observe that the difference between the two methods varies between the
cases. For cases like 1-A and 1-B, and for the strictly vertical parallel wells in Case
3-A and 3-D, the difference is not very large. However, for the transition between
vertical wells and horizontal wells in Case 3-B and 3-E, and also for the horizontally
crossing wells in Case 4-A, 4-B, 4-C and 5, the difference is significant. All in all,
the consequence of performing a two-points method instead of an all-points method
is seen to be very much depending on the actual well geometry.
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Figure 4.15: The EMC method performed on Case 1-A results in this interpolation. The
estimated parameters q = 0.323, a = 0.882, b = −0.526 and c = 2.838 are
inserted in expression (3.30) in order to obtain the estimate l̂all = l̂λ(1) =
1.732e-2. The middle blue line indicates the estimated probability values
l̂λ(λ), while the outer red lines indicate the 95% confidence interval. The
more accurate estimate l̂all = 1.668e-2, obtained by the CE method, is
marked with a star.

Figure 4.16: The EMC method performed on Case 2-A results in this interpolation. The
estimated parameters q = 0.238, a = 3.220, b = 0.139 and c = 1.561 are
inserted in expression (3.30) in order to obtain the estimate l̂all = l̂λ(1) =
1.858e-2. The middle blue line indicates the estimated probability values
l̂λ(λ), while the outer red lines indicate the 95% confidence interval. The
more accurate estimate l̂all = 1.492e-2, obtained by the CE method, is
marked with a star.
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Figure 4.17: The EMC method performed on Case 3-A results in this interpolation. The
estimated parameters q = 2.28e2, a = 1.775, b = −1.705 and c = 1.816 are
inserted in expression (3.30) in order to obtain the estimate l̂all = l̂λ(1) =
4.563e-3. The middle blue line indicates the estimated probability values
l̂λ(λ), while the outer red lines indicate the 95% confidence interval. The
more accurate estimate l̂all = 4.428e-3, obtained by the CE method, is
marked with a star.

Figure 4.18: The EMC method performed on Case 4-A results in this interpolation. The
estimated parameters q = 0.516, a = 20.30, b = 1.90e-3 and c = 1.987 are
inserted in expression (3.30) in order to obtain the estimate l̂all = l̂λ(1) =
4.469e-10. The middle blue line indicates the estimated probability values
l̂λ(λ), while the outer red lines indicate the 95% confidence interval. The
more accurate estimate l̂all = 3.806e-10, obtained by the CE method, is
marked with a star.
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Figure 4.19: The EMC method performed on Case 5 results in this interpolation. The
estimated parameters q = 0.540, a = 20.61, b = −9.43e-3 and c = 2.010 are
inserted in expression (3.30) in order to obtain the estimate l̂all = l̂λ(1) =
4.080e-10. The middle blue line indicates the estimated probability values
l̂λ(λ), while the outer red lines indicate the 95% confidence interval. The
more accurate estimate l̂all = 6.267e-11, obtained by the CE method, is
marked with a star.

Figure 4.20: The EMC method performed on Case 6 results in this interpolation. The
estimated parameters q = 0.528, a = 15.36, b = −0.220 and c = 2.852 are
inserted in expression (3.30) in order to obtain the estimate l̂all = l̂λ(1) =
9.239e-13. The middle blue line indicates the estimated probability values
l̂λ(λ), while the outer red lines indicate the 95% confidence interval. The
more accurate estimate l̂all = 1.495e-8, obtained by the CE method, is
marked with a star.
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Figure 4.21: Comparison of the two-points probability values l̂analytical
two and the all-points

probability values l̂CE
all .

Figure 4.22: Comparison of the 10 base logarithm of the two-points probability values
l̂analytical
two and the all-points probability values l̂CE

all .
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4.3 Influence of Well Parameters
We finish this chapter by using the previously obtained numerical results in order
to gain some initial insight into how some chosen well geometry parameters might
influence the risk of collision.

As we emphasized in the previous section, knowing how a well geometry param-
eter actually influences the calculations of a collision risk method, is not a trivial
task, because of the complexity of these calculations and the variety of variables
that makes up the well geometry. Even though we might not be able to make
definitive conclusions about the well parameters in general, we can indeed make
some comments regarding the results for our particular well pair cases, which could
serve as a starting point for future investigations.

Although there is obviously a large amount of additional well parameters that
could be investigated, including for instance the inclination angle and the NEV
coordinates, we have chosen to make observations regarding the following three
parameters, by considering the indicated well pair cases.

• The crossing angle (Sec. 4.3.1). We consider the well pairs in Case 1-A, 2-A,
1-B, 2-B, 4-A and 5.

• The well direction in the NE plane (Sec. 4.3.2). By this we actually mean the
azimuth angle of the wells in the area around the closest points. We consider
the well pairs in Case 1-A, 1-B, 2-A, 2-B, 3-B, 3-C, 3-E and 3-F.

• The measured depth in the area around the closest points (Sec. 4.3.3). We
consider the well pairs in Case 3-A, 3-B, 3-C, 3-D, 3-E, 3-F, 4-A, 4-B and
4-C.

In the tables presented in these sections, we present the p-values of both hypoth-
esis tests from Table 4.2, the calculated two-points collision probability l̂analytical

two
from Table 4.3 and the estimated all-points collision probability l̂CE

all from Table
4.7.

In each table we have grouped the well pairs that have about the same geometry,
except for the parameter of interest. We will refer to such a collection of well pair
cases as a group. However, even though we have striven to rule out the influence
of other kind of geometry parameters within a group, there might still exist such
additional factors. We will comment on this in the forthcoming sections when
necessary.

4.3.1 Crossing Angle
The well pairs in Case 1-A, 1-B and 4-A have a crossing angle of 90◦, while the
well pairs in Case 2-A, 2-B and 5 have a crossing angle of 45◦. The collision risk
results for these cases are collected in Table 4.9.

In this table we have grouped the well pairs that seem to have the same geom-
etry, except for the crossing angle. This means that in order to make observations
regarding the influence of the crossing angle, we should compare Case 1-A against
Case 2-A, Case 1-B against Case 2-B and Case 4-A against Case 5.
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Table 4.9: The numerical results we use to make observations about the influence of the
crossing angle.

Well Hypothesis tests Collision probability
pair Crossing Approximated More exact
case angle p-value p-value l̂analytical

two l̂CE
all

1-A 90◦NV 3.14e-2 4.10e-2 9.629e-3 1.668e-2
2-A 45◦NV 1.85e-2 2.34e-2 5.908e-3 1.492e-2

1-B 90◦EV 7.10e-2 0.102 1.776e-2 3.726e-2
2-B 45◦EV 5.32e-2 7.41e-2 1.368e-2 3.128e-2

4-A 90◦NE 6.88e-10 0.175 1.57e-12 3.806e-10
5 45◦NE 8.40e-11 2.48e-2 9.90e-13 6.267e-11

From Table 4.9 we observe that for both hypothesis tests, the p-values are higher
in the 90◦ cases, meaning that the tests are farther away from rejecting H0 than
in the corresponding 45◦ cases. Also, the collision probability values l̂analytical

two and
l̂CE
all are higher when the crossing angle is 90◦. In sum, all the collision risk methods
give the result that there is a higher risk of collision when the crossing angle is 90◦

than when it is 45◦ for all these three groups, indicating that the crossing angle is
one of the many well geometry parameters that has an influence on the collision
risk.

However, in this case there are indeed additional well geometry factors that we
have not be able to keep constant within the groups, namely the inclination values
and the azimuth values, as given in Table 4.1. Even though it is true that the
crossing angle is changed from 90◦ to 45◦ within all the three groups, it is also the
case that the inclination angle of the offset well is changed from 90◦ to 45◦ within
the first two groups, while the azimuth angle of the offset well is changed from 270◦

to 315◦ within the third group. This might indicate that it is in fact the changes
in these angles, and not the crossing angle, that influence the collision risk values.
In order to find the correct explanation, more detailed studies that includes more
test cases will be needed.

Our suspicion about the influence of additional factors is strengthened by the
fact that we could actually expect the collision risk to increase when the crossing
angle changes from 90◦ to 45◦, since the volume of the coinciding region of two
colliding cylinders (wells) is larger when the cylinders are not colliding perpendic-
ularly.

4.3.2 Well Direction in the NE Plane

We now consider the direction of the wells in the NE plane in the area around
the closest points, which is the same as considering the azimuth angles of the two
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wells. In Table 4.10 we present the collision risk results for the relevant test cases.
Here we have grouped the well pairs that have the same geometry, except for the
azimuth angles.

Table 4.10: The numerical results that we use to make observations about the influence
of the well direction in the NE plane. The azimuth A is given for each well
in the area around the closest points. Also, A = 0◦ is northwards, while
A = 90◦ is eastwards. The azimuth is undefined when a well is vertical.

Well Azimuth Hypothesis tests Collision probability
pair A Approximated More exact
case Ref. Off. p-value p-value l̂analytical

two l̂CE
all

1-A - 0◦ 3.14e-2 4.10e-2 9.629e-3 1.668e-2
1-B - 90◦ 7.10e-2 0.102 1.776e-2 3.726e-2

2-A - 0◦ 1.85e-2 2.34e-2 5.908e-3 1.492e-2
2-B - 90◦ 5.32e-2 7.41e-2 1.368e-2 3.128e-2

3-A - - 9.57e-3 0.132 1.411e-3 4.428e-3
3-D - - 9.57e-3 0.132 1.411e-3 4.278e-3

3-B 0◦ 0◦ 0.121 0.598 6.878e-3 0.1120
3-E 90◦ 90◦ 0.141 0.616 7.795e-3 0.1378

3-C 0◦ 0◦ 0.372 0.872 6.223e-3 3.871e-2
3-F 90◦ 90◦ 0.452 0.926 3.852e-3 2.414e-2

We observe that for the strictly parallel well segments in Case 3-A and Case
3-D in the third group, all the collision risk values are about the same for both
cases. Here, the azimuth angles are undefined in both cases. Hence, their only
difference is that the starting positions of the wells in the NE plane are separated
in the east direction for Case 3-A and in the north direction for Case 3-D. This
difference itself is seen not to have any significant influence on the collision risk for
these two cases.

For the other groups, both p-values increases when the azimuth is increased
from 0◦ to 90◦, that is when going from the north direction to the east direction.
However, for the collision probability values, there is seen to be some inconsistency
in the way that the probability increases for all the groups except for the last one,
for which the probability decreases.

Summarized, there is seen to be a clear tendency for the hypothesis tests, in
the way that their p-values indicates a larger collision risk for the east direction
than for the north direction for all the groups. On the other hand, the collision
probability estimates show that the collision probability might actually decrease
when the azimuth angle increase from 0◦ to 90◦. Nevertheless, there is no doubt
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that there is at least some kind of change in the collision probability when the
azimuth angle is changed.

4.3.3 Measured Depth

In Table 4.11 we have grouped the well pairs that have the same geometry, except
for the measured depth of the wells in the area around the closest points.

Table 4.11: The numerical results that we use make observations about the influence of
the measured depth D. The given value is the depth in the area around the
closest points. Here the depth is approximately the same for both wells in
all the cases.

Well Hypothesis tests Collision probability
pair Depth Approximated More exact
case D (m) p-value p-value l̂analytical

two l̂CE
all

3-A 1490 9.57e-3 0.132 1.411e-3 4.428e-3
3-B 3290 0.121 0.598 6.878e-3 0.1120
3-C 3890 0.372 0.872 6.223e-3 3.871e-2

3-D 1490 9.57e-3 0.132 1.411e-3 4.278e-3
3-E 3290 0.141 0.616 7.795e-3 0.1378
3-F 3890 0.452 0.926 3.852e-3 2.414e-2

4-A 1610 6.88e-10 0.175 1.57e-12 3.806e-10
4-B 3620 1.28e-3 0.228 1.370e-5 1.080e-3
4-C 5600 2.49e-2 0.349 1.588e-4 1.638e-2

We observe that for all the three groups of well pairs in Table 4.11, the p-
values for both hypothesis tests are increasing when the measured depth increases.
The same observation applies to the collision probability values in the third group.
However, for the first two groups, containing the parallel well pairs, the collision
probabilities are the highest at the middle depth level, in the transition between
vertical wells and horizontal wells. Although it is difficult to make strong and
general conclusions based on these values, the results indicate that the collision
probability does not always increase when the wells get deeper, at least when it
comes to non-straight parallel wells. In this case, it seems that there are other well
geometry parameters than the measured depth, like the change of inclination, that
provides a larger contribution to the collision probability.

For the p-values, the tendency is much clearer. We observe that for all the three
groups in Table 4.11, the p-values for both tests increase with the measured depth.
In addition, the p-values for the approximated test seem to increase faster than
for the more exact test, which was also illustrated in Figure 4.10 in Section 4.2.1.
In order to describe this observation further, we show the pdf’s for the two tests
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applied on Case 4-A, 4-B and 4-C in Figure 4.23. As before, the p-values are found
as the areas under the graphs to the right of r = r̂ = 10.0 m. Here we easily see
that the differences between the p-values for the three cases are relatively larger
for the approximated test, as was evident on the log10 plot in Figure 4.10 as well.

This plot also illustrates the tendency that the p-value of the approximated
test actually gets closer and closer to the p-value of the more exact test when
the measured depth increases, in the way that the width of the pdf graph (which
illustrates the variance of the pdf) seems to increase faster for the approximated
test. This was also illustrated in Figure 4.10 in Section 4.2.1.

Figure 4.23: The pdf’s of the shortest distance r under H0 for the two hypothesis tests
as performed on the three subcases of Case 4. When we consider the
rightmost parts of the graphs, the graphs to the left belong to Case 4-A,
the middle graphs belong to Case 4-B, and the graphs to the right belong
to Case 4-C.
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Chapter 5

Closing Remarks

From the results obtained in the previous chapters, especially from the numerical
results in Chapter 4, we are able to make some concluding remarks. This includes
some topics that might be interesting to investigate in a possible future work on
this subject.

5.1 Conclusions

In this thesis we have explained and explored several methods for addressing the
risk of collision between petroleum wells.

In Chapter 2 we first explained how to obtain the approximated NEV coor-
dinates of points in a petroleum well based on magnetic MWD measurements in
addition to some reference values. We also described our new contribution of ob-
taining the joint statistical distribution of the NEV coordinates of all the survey
points of two wells. This is used in the methods that estimate the collision proba-
bility for the whole wells, rather than only the two closest points.

In Chapter 3 we thoroughly described the various collision risk methods, and
in Chapter 4 we applied the methods on a number of well pair test cases in order
to obtain numerical results.

The current industry practice regarding collision risk is to perform a hypothesis
test based solely on the NEV positions of the two closest points. The industry test
makes a normal approximation of the statistical distribution of the shortest distance
between the points. We have proposed a new and more exact hypothesis test in
which there is no need for this approximation. The resulting p-values are found
to be different for the two tests. In fact, the more exact test is more conservative
than the approximated test for all the test cases, meaning that the null hypothesis
is more often rejected than for the approximated test. This implies that there
are situations where the approximated test allows further drilling, while the more
exact test claims that the probability of obtaining the measured positions, given
an expected well collision, is higher than the chosen significance level. Both the
p-values themselves and the difference between them depends on the well geometry

81
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of interest.
In addition to the p-values of the hypothesis tests, we have striven to calculate

an alternative parameter that gives information about the risk of well collision,
namely the probability of such a collision. By deciding a maximum value for this
probability, we have a new kind of criterion for whether or not to continue the
drilling.

We have estimated the probability of collision in both the two-points situation,
where we consider the two closest points, as well as in the all-points situation,
where we consider the whole wells.

We have obtained the probability of collision between the two closest points in
three ways, using an analytical method, a crude Monte Carlo (CMC) simulation
method and a cross-entropy (CE) method. The analytical method is by far the
fastest method of these three. All three methods give similar probability estimates,
which give support to all the methods. This means that both the CMC method
and the CE method tend to give accurate results. However, for well pairs where
the probability of collision is very small, the CMC method is not able to calculate
an estimate unless the sample size is inconveniently large, while the CE method
still give accurate results in such rare-event situations.

When we compare the probability of collision between the two closest points
with the results of the hypothesis tests, we observe that the probability of collision
is smaller than the p-values of both tests for all our test cases.

Calculating the collision probability analytically when considering the whole
wells is outside the scope of this thesis. However, we have estimated this probability
in three different ways, using a CMC simulation method, a CE method and the
enhanced Monte Carlo (EMC) method. The CE method is more accurate (having
a smaller relative error) than the CMC method for the test cases where both
methods do give results. The CE method and the EMC method are able to obtain
an estimate of the probability for the rare-event test cases where the CMC method
fails, exactly as for the two-points methods. The CE method is much more accurate
than the EMC method in such a situation, even though the EMC method still gives
probability estimates that at least support the CE values to some degree for the
cases where the CMC method is useless.

The all-points methods result in larger collision probability estimates than the
two-points methods, which is as expected, since these methods take into account
that other parts of the well segments around the closest points might collide even
when the closest points do not. However, the magnitude of the difference is found
to be highly dependent on the well geometry, in the way that for some test cases,
the two-points methods and the all-points methods give very similar probability
values, while for other cases, the difference is seen to be significant.

At the end of Chapter 4 we made some observations about the influence of
some well geometry parameters on the collision risk in the well pair cases, which
could serve as a starting point for future investigations. Here we observed that
for our test cases, the collision probability does not necessarily increases when the
measured depth increases, at least not when it comes to non-straight parallel wells.
However, the p-values of the hypothesis tests indeed increased with the measured
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depth for the test cases.
We summarize the most important conclusions in the following.

• The approximated hypothesis test is less conservative than the more exact
test, which means that it underestimates the collision risk compared to our
new and improved test. Implementation of the more exact test is unproblem-
atic, and the method is not time-consuming.

• When it comes to the alternative collision risk measure that is the probability
of well collision, the analytical method is much faster than both the CMC
method and the CE method in the two-points situation. In the all-points
situation, the CE method is superior to the CMC method and the EMC
method, both in terms of accuracy and efficiency.

• The magnitude of the difference between the all-points results and the two-
points results, in the way that the two-points methods underestimate the
collision probability compared to the all-points methods, is found to be de-
pending on the well geometry. For some well geometries the difference is very
large, which might suggest a further investigation of this phenomenon. In this
thesis we have laid the foundation when it comes to the collision probability.

5.2 Further Work
Finally, there are several aspects of the work in this thesis that could be investigated
further. We now list some examples.

• The current industry practice is to perform a hypothesis test based on the
two closest points in the wells. In this thesis, we have dealt with the case of
calculating the probability of well collision when considering the whole wells
instead of only considering the two closest points. Is it possible to perform a
hypothesis test that is based on all the points in a similar way?

• More detailed comparisons between the hypothesis tests and the collision
probability can be made. Is there a more general relationship to be found?

• We have made some initial observations considering the influence of some
well geometry parameters. Is it possible to get a more rigid understanding of
the influence of such parameters on the collision risk values?

• What is the effect of the uncertainty of the NEV coordinates of a well on the
collision risk? And what is the effect of the correlation values between the
positions of two wells?

• What would be the consequences if the MWD error sources given in Chapter
2 are not normal distributed, as we have assumed in this thesis?

• Is it possible to extend the methods in this thesis to apply to other input data,
like gyroscopic measurements and other types of MWD directional data?
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Appendix A

Error Propagation Theory

Consider a d-variate normal distributed vector x = [x1, x2, . . . , xd]
t, where super-

script t denotes that a matrix is transposed. When x has mean vector µx and
covariance matrix Σx, we write

x ∼ Nd(µx,Σx).

Now consider a vector f = [f1, f2, . . . , fk]t containing k linear combinations of the
variables in x,

f(x) = a + Bx, (A.1)
where a is a vector of constants and B is a matrix of constants,

a = [a1, a2 . . . ak]t, B =


B1,1 B1,2 . . . B1,d

B2,1 B2,2 . . . B2,d

...
...

. . .
...

Bk,1 Bk,2 . . . Bk,d

 .
The uncertainty (or error) of the linear combinations f will be effected by the
uncertainty of x. In other words, the uncertainty of x, described by Σx, propagates
to f . By using the properties of the normal distribution, f(x) can be shown to be
distributed as

f(x) ∼ Nk(a + Bµx,BΣxB
t). (A.2)

The distribution of k nonlinear functions f = [f1, f2, . . . , fk]t of x can be approxi-
mated by linearizing f with the use of a first order Taylor series expansion centered
at µx. In matrix notation, this is given by

f(x) ≈ f(µx) + J(x− µx), (A.3)

where

J =


∂f1(µx)
∂x1

∂f1(µx)
∂x2

. . . ∂f1(µx)
∂xd

∂f2(µx)
∂x1

∂f2(µx)
∂x2

. . . ∂f2(µx)
∂xd

...
...

. . .
...

∂fk(µx)
∂x1

∂fk(µx)
∂x2

. . . ∂fk(µx)
∂xd

 (A.4)
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is the Jacobian matrix of f(x). An element J(i, j) of J is the partial derivative of
fi(x) with respect to xj , evaluated in x = µx.

The expressions f(µx)− Jµx and J in (A.3) corresponds to a and B in (A.1),
respectively. From (A.2), the distribution of f(x) is therefore approximately given
by

f(x) ∼ Nk (f(µx),Σf ) , (A.5)

with covariance matrix
Σf = JΣxJ

t.



Appendix B

Description of the Error
Sources

We will now describe the 19 error sources for measurment uncertainty as given in
Table 2.1. For convenience, we repeat this information in Table B.1.

Table B.1: The error sources εi, i = 1, . . . , 19, used in this thesis. The propagation mode
of an error is either random (R), systematic (S) or global (G).

Error Description Standard Propagation
number, i deviation, σi mode

1–3 Gx, Gy, Gz bias 0.0039 m/s2 S
4–6 Gx, Gy, Gz scale 0.0005 S
7–9 Bx, By, Bz bias 70 nT S
10–12 Bx, By, Bz scale 0.0016 S
13 Depth reference 0.35 m R
14 Depth scale factor 6 · 10−4 S
15 Depth stretch type 2.5 · 10−7 m−1 G
16 Declination 0.36◦ G
17 Declination B dependent 5000◦ nT G
18 Sag 0.08◦ S
19 Axial magnetism in string 150 nT S

The following descriptions are based on the work of Williamson (2000) and
Gjerde (2008).

The errors ε1, ε2, ε3 are the gravity bias errors, implying that they give an
additive noise to the the three gravity measurements Gx, Gy and Gz in each survey
series. The errors ε4, ε5, ε6 are the gravity scale errors, which means that they give
a contributions proportional to the expected values of the measurements.

As an example, consider the measurable value Gx of the gravity component in
the X direction. This value is assumed to be the sum of the unknown expected
value µGx and the contribution from two measurement errors; a bias error ε1 and
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a scale error ε4. We have assumed that ε1 and ε4 are independent, and

ε1 ∼ N
(
0, σ2

1

)
,

ε4 ∼ N
(
0, σ2

4

)
.

This means that in a well point k, a measured value is distributed as

Gx = µGx
+ ε1 + µGx

ε4 ∼ N
(
µGx

, σ2
1 + µ2

Gx
σ2

4

)
.

The expected value µGx
can be estimated by a sampled (measured) value of Gx,

denoted gx. Then,

Gx = gx + ε1 + gxε4 ∼ N
(
gx, σ2

1 + g2
xσ

2
4

)
. (B.1)

The errors ε7, ε8, ε9 are themagnetic bias errors, while the errors ε10, ε11, ε12 are
the magnetic scale errors. These error sources work on the magnetic measurements
Bx, By and Bz in the exact same way as the first six errors did on the gravity
measurements.

The errors ε13, ε14, ε15 are related to the measurement Dk of the measured
depth in well point k. They are the depth reference, depth scale factor and depth
stretch type error sources. For a measurable value D, their contribution is given by

D = µD + · · ·+ ε13 + µDε14 + µDµV ε15,

where µV is the expected vertical depth coordinate of the well point. The dots
take the place of other error sources that also influence the measured depth.

The errors ε16 and ε17 are declination errors, meaning they are related to the
declination angle δ, as defined in Section 2.2, for instance in Figure 2.5. The
error ε16 is the constant declination error, while the error ε17 is the B-dependent
declination error.1 These errors are assumed to influence a measured azimuth value
as

A = µA + · · ·+ ε16 +
1

B cos θ
ε17,

where the dots take the place of other error sources that also influence a measured
azimuth value.

The error ε18 is the sag error, which is caused by misalignment of the sensors
in the MWD tool. When the inclination angle is large, the weight might cause a
sag in the tool itself or its sensors. This error is assumed to influence a measured
inclination angle as

I = µI + · · ·+ sinµIε18.

The error ε19 is the axial magnetism error in the drill string, which is caused
by other equipment around the MWD tool, which affects the measured magnetic
field. This error is assumed to influence a measured azimuth angle as

A = µA + · · ·+ sin I sinAm
B cos θ

ε19.

1More precicely, the error is dependent on the horizontal projection of the magnetic field,
which is denoted by BH in Williamson (2000).
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We should emphasize that these 19 error sources make up an error model that
we simply assume to be correct. More error sources could be included, as described
by Williamson (2000).
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Appendix C

The Weighting Functions

Here, we will find the weighting functions that makes up the Jacobian matrices
JDIA and J∆p in Chapter 2. These matrices are used to find the covariance matrix
in the joint distribution of the NEV values, by using the equation (2.25), that is

ΣNEV = JpJ∆pJDIAΣεJ
t
DIAJt∆pJ

t
p.

C.1 Weighting Functions for the DIA Values
The Jacobian matrix JDIA is given in (2.15). The weighting function wk

i,l for
measurement station number k (which belongs to survey number l) is given by

wk
i,l =

[
∂Dk

∂εi,l

∂Ik
∂εi,l

∂Ak
∂εi,l

]t
, (C.1)

where all the derivatives are evaluated at the expectation of the variables of the
differentiated functions, corresponding to the matrix elements in (A.4).

The DIA values depend on some of the error sources in Table 2.1 (equaling
Table B.1) only indirectly, that is via some measured value. Therefore, in order
to find the elements in wk

i,l, one might have to use the chain rule for derivatives.
For instance, for the error sources i ∈ {1, 4}, when we use the expression of the
measured value Gx in (B.1), we get for the middle element in (C.1) that

∂Ik
∂ε1,l

=
∂Ik
∂Gx,k

∂Gx,k
∂ε1,l

=
∂Ik
∂Gx,k

, (C.2)

∂Ik
∂ε4,l

=
∂Ik
∂Gx,k

∂Gx,k
∂ε4,l

=
∂Ik
∂Gx,k

gx,k. (C.3)

All the derivatives are again evaluated at the expectation of the variables of the
differentiated functions.

Now follow the 19 weighting functions for the DIA values, one for each error
source in Table B.1.
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wk
1,l =

1

G

 0
− cos Ik sin τk

(cos Ik sinAm sin τk − cosAm cos τk) tan θ + cot Ik cos τk

 ,
wk

2,l =
1

G

 0
− cos Ik sin τk

(cos Ik sinAm cos τk − cosAm sin τk) tan θ − cot Ik sin τk

 ,
wk

3,l =
1

G

 0
− sin Ik

tan θ sin Ik sinAm,k

 ,
wk

4,l =

 0
sin Ik cos Ik sin2 τk

− (tan θ sin Ik (cos Ik sinAm,k sin τk − cosAm,k cos τk) + cos Ik cos τk) sin τk

 ,
wk

5,l =

 0
sin Ik cos Ik cos2 τk

− (tan θ sin Ik (cos Ik sinAm,k cos τk + cosAm,k sin τk)− cos Ik sin τk) cos τk

 ,
wk

6,l =

 0
− sin Ik cos Ik

tan θ sin Ik cos Ik sinAm,k

 ,
wk

7,l =

 0
0

1
B cos θ (cosAm,k cos τk − cos Ik sinAm,k sin τk)

 ,
wk

8,l =

 0
0

− 1
B cos θ (cosAm,k sin τk + cos Ik sinAm,k cos τk)

 ,
wk

9,l =

 0
0

− 1
B cos θ (sin Ik sinAm,k)

 ,
wk

10,l =


0
0

(cos Ik cosAm,k sin τk − tan θ sin Ik sin τk + sinAm,k cos τk)
· (cosAm,k cos τk − cos Ik sinAm,k sin τk)

 ,

wk
11,l =


0
0

− (cos Ik cosAm,k cos τk − tan θ sin Ik cos τk − sinAm,k sin τk)
· (cosAm,k sin τk + cos Ik sinAm,k cos τk)

 ,
wk

12,l =

 0
0

− (sin Ik cosAm,k + tan θ cos Ik) sin Ik sinAm,k

 ,
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wk
13,l =

1
0
0

 ,
wk

14,l =

Dk

0
0

 ,
wk

15,l =

Dk · Vk
0
0

 ,
wk

16,l =

0
0
1

 ,
wk

17,l =

 0
0
1

B cos θ

 ,
wk

18,l =

 0
sin Ik

0

 ,
wk

19,l =

 0
0

sin Ik sinAm,k

B cos θ

 .

C.2 Weighting Functions for the NEV Positions

The Jacobian matrix J∆p is given in (2.21). Its elements are the weighting functions
given by

Rj,k =

[
∂∆pj
∂Dk

∂∆pj
∂Ik

∂∆pj
∂Ak

]
.
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The elements in Rj,k are easily obtained from (2.20). They are given by

∂∆pk
∂Dk

=
1

2

sin Ik cosAk + sin Ik−1 cosAk−1

sin Ik sinAk + sin Ik−1 sinAk−1

cos Ik + cos Ik−1

 ,
∂∆pk
∂Dk−1

=
1

2

− sin Ik cosAk − sin Ik−1 cosAk−1

− sin Ik sinAk − sin Ik−1 sinAk−1

− cos Ik − cos Ik−1

 ,
∂∆pk
∂Ik

=
Dk −Dk−1

2

cos Ik cosAk
sin Ik sinAk
− sin Ik

 ,
∂∆pk
∂Ik−1

=
Dk −Dk−1

2

cos Ik−1 cosAk−1

sin Ik−1 sinAk−1

− sin Ik−1

 ,
∂∆pk
∂Ak

=
Dk −Dk−1

2

− sin Ik sinAk
sin Ik cosAk

0

 ,
∂∆pk
∂Ak−1

=
Dk −Dk−1

2

− sin Ik−1 sinAk−1

sin Ik−1 cosAk−1

0

 ,
where the derivatives are evaluated at the expectation of the variables of the dif-
ferentiated functions.

C.3 Reference Values

In the calculations of some the previously described weighting functions, there is
need for reference values for some of the other values discussed so far. A predicted
gravity field from Gjerde (2008) is given by

G =

{
978030 + 5186 sin2 φ+ 0.14DV (offshore well),
978030 + 5186 sin2 φ+ 0.10DV − 0.31h0 (onshore well). (C.4)

In (C.4), the gravity G is given in units mGal, where one unit equals 10−5 m/s2.
Also, φ is the latitude position measured in degrees, DV is the vertical depth
measured in meters, and h0 is the height of the (onshore) installation above the
mean sea level.

In the case of the magnetic field, the reference values that are typical for the
Norwegian Sea (Gjerde, 2008) are given by

B = 50000 nT, (C.5)
δ = 1, (C.6)
θ = 75. (C.7)
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Some of the weighting functions depend on the toolface angle τk, which should
ideally be given at every survey point. However, in the case of planning a well path,
the (future) rotation of the well bore is unknown. In this case, we will simulate the
toolface values uniformly from [0, 2π), as legitimized by Williamson (2000), even
though they also claim that this solution tend to give somewhat optimistic results.
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Appendix D

Pdf of Vectors With High
Correlation

For some well data, the procedure described in Chapter 2 may result in covariance
matrices that are either singular or nearly so.

Consider the d-variate normal distributed vector x = [x1, x2, . . . , xd]
t, having

mean vector µx and covariance matrix Σx, that is

x ∼ Nd(µx,Σx).

Singularity of Σx is simply explained by high correlation values between two
or more of the variables in the stochastic vector x. In other words, for the corre-
sponding correlation matrix P having elements

P (i, j) =
Σx(i, j)√

Σx(i, i)Σx(j, j)
,

one or more of the non-diagonal elements P (i, j), i 6= j, are very close to 1.
The pdf of x is given by

f (x|µx,Σx) =
1

(2π)d/2|Σx|1/2
exp

(
−1

2
(x− µx)tΣ−1

x (x− µx)

)
. (D.1)

When the covariance matrix Σx is close to singular, obtaining the pdf of the sta-
tistical distribution is a problematic task, since the function involves the inverse
Σ−1
x .
We approach this problem by realizing that a stochastic vector x, that contains

highly correlated values, behaves stochastically in the same way as the modified
vector x̃, in which we have ignored the uninformative elements. By this we mean
that if two or more values are highly correlated, we only consider one of them to be
informative, while the rest are uninformative. When we actually need the numeric
values of the ignored elements, we consider these values to be the equal to the value
of the corresponding informative variable.
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When we want to calculate the pdf in expression (D.1) of the vector x, we ignore
the elements of x and µx, and the rows and columns of Σx, that corresponds to
the uninformative elements of x.

Now, we need a limit value for the correlation value, in order to decide when
to consider a variable to be uninformative. This limit should be as close to 1 as
possible, in order to get an accurate approximation.

In a singular value decomposition (SVD) of Σx we find unitary matrices U and
V, and a diagonal matrix S, so that

Σx = USV∗,

where V∗ is the conjugate transpose of V. The diagonal elements of S are known
as the singular values of Σx.

The condition number cond of the covariance matrix Σx is defined as the ratio
of the largest singular value of Σx to the smallest. The inverse condition number
is defined as rcond = (cond)−1.

In MATLAB, the matrix Σx is considered to be poorly conditioned when rcond <
eps, where eps is a measure of the precision of a floating point number. In our ver-
sion of MATLAB, we have eps = 2.2204 ·10−16. The program then gives a warning
message about singularity when we try to invert a matrix that fulfills the condi-
tion rcond < eps. Motivated by this, we choose to ignore the most uninformative
elements until we reach rcond ≥ eps.

Finally, we only consider the remaining informative variables in calculating the
pdf in expression (D.1).



Appendix E

An Approximated 3D Closest
Approach Method

Well planning programs like COMPASS (2011) finds the positions of the two closest
points in two wells and the distance between them by use of a 3D closest approach
method. Here, we have developed our own approximated method for finding the
closest points, in order to be able to find the shortest distance using MATLAB
(2010).

The first approximation that is made in our approximated 3D closest approach
method is shown in Figure E.1. To the left we see the true shortest distance r̂
between two (three dimensional) wells. As described by the right-hand side of the
figure, an approximation r̃ of the shortest distance r is given by the minimum of
the distances between a finite number of points in both wells. That is, if we let
pi and qj represent the NEV position vectors for the points i ∈ {1, . . . ,H1} and
j ∈ {1, . . . ,H2}, with a total of H1 and H2 points in the two wells respectively,
then

r̃ = min
i,j
‖pi − qj‖,

where ‖ · ‖ is the Euclidean norm. The position vectors pi and qj are the positions
of survey points, as calculated in expression (2.18), or found by the use of the
interpolation formula (2.26) in the minimum curvature method. In order to get a
good approximation r̃, we need the NEV positions of a lot of intermediate points
as well as the survey points.

By now we have found the two closest points when we consider a finite number
of survey points and interpolated intermediate points. However, since the two
closest points might in fact happen to be between a pair of such points, we find a
more accurate estimate by approximating straight lines between the points (survey
points and intermediate points) in each well. There are known geometrical methods
for finding the shortest distance between such line segments, which we will apply in
an area around the previously approximated closest points in Figure E.1, in order
to find an even better approximation of the positions of the two closest points in
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the wells.

Figure E.1: To the left we have two wells (or parts of wells) that are close to each other.
Known positions (survey stations and interpolated positions) are shown as
dots, while the shortest distance r̂ between the wells is shown as a dashed
line. The same two well parts are depicted to the right. Now, each of
the dotted lines shows the distance between a pair of known positions, and
the approximated overall shortest distance r̃ (dashed line) is given by the
minimum of all these distances.



Appendix F

The Separation Factor in the
Hypothesis Test

In the hypothesis test in Section 3.1.1, the rejection rule is to reject H0 if we find
that r̂ > r∗, where r̂ is an estimate of r and r∗ is an unknown decision limit. We
will derive r∗ as follows, where we begin with the left-hand side of (3.3).

P (Reject H0 | H0 is true) = P (r̂ > r∗ | r ≤ r1 + r2)

= P

(
r̂ − µr̂
σr̂

>
r∗ − µr̂
σr̂

∣∣∣∣ r = r1 + r2

)
= P

(
Z >

r∗ − (r1 + r2)

σr̂

)
= α.

In the first equation we express the words with the defined symbols. In the second
equation we subtract both sides of the first inequality by the expectation µr̂ of
r̂ and divide by its standard deviation σr̂. For the conditioning expression to the
right, we recognize that an equality will cover the worst case, that is when it is most
difficult to detect a collision. In the third equation we use the assumption that r̂
is normal distributed, giving that Z = (r̂− µr̂)/σr̂ is standard normal distributed.
We also use that µr̂ = r = r1 +r2, which means that there is no longer need for the
conditioning expression. In the last line we repeat (3.3). The last two lines implies
that

r∗ − (r1 + r2)

σr̂
= kα,

where kα is the 100(1 − α)th percentile of the standard normal distribution. We
then obtain

r∗ = (r1 + r2) + kασr̂. (F.1)

Conclusively, the decision rule corresponding to the significance level α is to
reject H0 (and conclude that there will not be a collision) if r̂ > r∗, with r∗ as in
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(F.1). In other words, we chose to reject when

r̂

r∗
=

r̂

(r1 + r2) + kασr̂
> 1.

One can easily show that this decision rule is equivalent with the decision rule
given in (3.8). In other words,

r̂/r∗ > 1 ←→ ω > 1.
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