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Abstract

In this thesis we explore several statistical methods for addressing the risk of colli-
sion between two petroleum wells. Such a collision is a potentially dangerous but
rare event that can occur in situations with directional drilling.

The common practice in the petroleum industry today is to use the two closest
points in the two wells in a hypothesis test, in order to make a conclusion on
whether we should drill as planned based on the collision risk. We suggest a more
accurate version of the hypothesis test, which turns out to be more conservative
than the original test.

In order to extend the usual approach of only considering the two closest points
in the collision risk calculations, we obtain a joint statistical distribution for the
position coordinates of all the survey points in two neighboring wells.

As an alternative measure of the collision risk, we estimate the probability of
collision. This is done in two different ways, namely by considering only the two
closest points and by considering the whole wells. In the latter case, we use the
joint distribution for all the survey points. For some well pair cases, the collision
probability is much larger when we consider all the survey points in two wells, than
when we only consider the two single closest points.

We estimate the probability values by using Monte Carlo simulation methods.
Since a well collision is considered to be a rare event, we introduce two methods
in order to increase the accuracy in the situations where the original Monte Carlo
method needs an inconveniently large number of samples. These methods give
accurate results even when the collision probability is very small.
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Sammendrag

I denne masteroppgaven undersgker vi en rekke statistiske metoder som beskriver
risikoen for kollisjon mellom to petroleumsbrgnner. En slik kollisjon er en potensielt
farlig, men sjelden hendelse, som kan oppsté i situasjoner der man benytter seg av
retningsboring.

I dag er den vanlige fremgangsmaten i petroleumsindustrien a4 bruke de to
naermeste punktene i de to brgnnene i en hypotesetest for & komme fram til en kon-
klusjon om hvorvidt vi skal bore som vi har planlagt, basert pa kollisjonsrisikoen.
Vi foreslar en mer ngyaktig versjon av hypotesetesten, som viser seg & vaere mer
konservativ enn den opprinnelige testen.

Som en utvidelse av den vanlige tilngermingen der man kun tar for seg de
to neermeste punktene i risikoberegningene, finner vi den simultane statistiske
fordelingen til posisjonskoordinatene til alle méalepunktene i to nabobrgnner.

Som et alternativt mal pa kollisjonsrisiko, finner vi sannsynligheten for kollisjon.
Dette gjores pa to forskjellige mater, nemlig ved & betrakte kun to enkeltpunkter,
og ved a betrakte hele brgnnene. I det siste tilfellet gjgr vi bruk av den simultane
fordelingen til alle malepunktene. For noen brgnnpar er kollisjonssannsynligheten
mye stgrre nar vi betrakter alle malepunktene enn nar vi kun betrakter de to
naermeste punktene.

Vi estimerer sannsynligheten ved hjelp av Monte Carlo-simuleringsmetoder.
Siden en brgnnkollisjon anses & vaere en sjelden hendelse, innfgrer vi to metoder for
& forbedre ngyaktigheten i situasjoner der den opprinnelige Monte Carlo-metoden
trenger et upraktisk stort antall simuleringer. Disse metodene gir ngyaktige resul-
tater selv om kollsisjonssannsynligheten er sveert liten.
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Chapter 1

Introduction

In the petroleum industry, the term directional drilling is used for the operation of
drilling a petroleum well in directions that are not necessarily vertical. The ability
to drill in three dimensions makes it possible to make a complex system of wells
far below the surface. For instance, at Statoil’s offshore field named Heidrun, there
is a subsea template that contains 56 slots (Hansen et al., 2011), which leads to a
high density of wells. When we drill a new well in such an area, we must be aware
of the risk of collision with adjacent wells. In this thesis we will explore various
methods for describing and measuring the possibility of such a collision.

One benefit with directional drilling is that a large area can be covered by one
stationary rig. Also, it is easier to reach targets that are inaccessible with vertical
wells. On the other hand, the task of deciding the position of the drill string at all
times is more complex than for vertical wells. In addition, there are a number of
error sources that influence the position measurements, complicating the problem.

While it is important to know the position of the well accurately in order to
achieve the objective of the well, like hitting a target reservoir, it is also necessary
to know as much as possible about the position in order to be able to avoid well
collisions.

1.1 Measurement While Drilling

Measurement while drilling (MWD) is a technique for measuring properties of
a petroleum well during the drilling operation. The measurements are made at
appropriate well length intervals, often at around every 30 meters. This is the
regular length of drill pipes (or stands), and an MWD survey is often made during
the non-drilling period that arises when a new drill pipe is attached to the drill
string. A well point where a survey is made is called a survey point or a survey
station. For an offshore well with nine survey points, the situation is described by
Figure 1.1.

Our focus will be on magnetic measurement while drilling, because this is the
most common kind of MWD in the petroleum industry today. From now on in this
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Figure 1.1: A simplified example of an offshore well consisting of K + 1 = 9 survey
points. The distance between survey points is often about 30 meters.

thesis, MWD implicitly means magnetic MWD.

The MWD tool, which is a part of the bottom hole assembly of the drill string,
measures many different values, for instance the temperature and various mud flow
properties. For directional drilling, the most important measurements are the ones
from accelerometers and magnetometers. Using these instruments, we can measure
the gravity field and the magnetic field at a survey point. We use these values to
estimate the North, Fast and Vertical Depth coordinates, also known as the NEV
coordinates, of the survey point.

1.2 Well Collision Avoidance

In the past, all wells were vertical, and the risk of collision between wells was
negligible. With directional drilling, the possibility that a well collision occurs
must be considered when the well that is being drilled, called the reference well, is
close to previously drilled wells, called offset wells. The risk that is taken should be
as small as possible, because such a collision would at best cause major economic
damage. If the collision leads to a blow-out, one could in addition potentially face
life-threatening and environmental consequences.

If one knew the exact positions of all wells, there should be no risk of collision at
all. There are, however, various error sources, which give uncertainty to the NEV
position coordinates of the well. This uncertainty can be used to draw conclusions
about the risk of collision between two wells.

When it comes to well collision avoidance, the current practice in the petroleum
industry is to find the two closest points in the two neighboring wells. One then
uses the uncertainty of the positions to make a conclusion in a hypothesis test on
whether the risk of collision is small enough to proceed the drilling. In this thesis
we will explore this hypothesis test, and we will also suggest a new and improved
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alternative test.

The task of considering segments of wells in the collision avoidance calculations,
rather than only single points, has previously been attempted solved by Tsao et al.
(1999), Thorogood et al. (1991) and Brooks (2008). However, they do not take
into account the correlation between different areas of the segments or between the
two wells. In this thesis, we introduce a method that obtains the joint statistical
distribution of all the survey points in two wells, in order to completely describe
the position uncertainty.

We also introduce and compare various ways of estimating the probability of
well collision, as an alternative measure of the risk that is taken if we decide to
drill as planned. We obtain this probability in two ways, by first considering only
the two closest points and then by considering all the survey points in the wells.
In the latter case, we use the previously mentioned joint distribution of the points.

1.3 Overview

In Chapter 2 we introduce the concept of well positioning, that is to estimate the
position coordinates of the points in a petroleum based on MWD measurements.
We also find the statistical distribution of the NE'V coordinates of the survey points
in a petroleum well, by using error propagation.

In Chapter 3 the goal is to find various ways of describing the risk of well
collision. This involves finding the probability of well collision in different (and
new) ways. Methods that rely on Monte Carlo simulations are computationally
challenging, especially in a rare-event situation, which is often the case for a well
collision. An important contribution from this thesis is the use of a cross-entropy
method and the enhanced Monte Carlo method in order to reduce the computational
efforts in such situations.

In Chapter 4 we introduce a number of well pair test cases in order to explore
and compare the methods introduced in Chapter 3. We also gain some initial
insight into how the well geometry parameters crossing angle, well direction and
depth influence the collision risk for the test cases.

Finally, we summarize the results in Chapter 5.
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Chapter 2

Well Positioning and Error
Propagation

Our goal in this chapter is to find the NEV coordinates of the survey points in
a petroleum well, based on the MWD measurements in the points. This task is
also known as well positioning. In addition, we will obtain the uncertainty of the
estimated positions, based on the error propagation of various error sources.

We will consider a petroleum well where the MWD measurements are made (or
planned) at K + 1 survey points (or survey stations) k € {0, ..., K}. Each survey
point belongs to one of the survey series I € {1,..., L}. Each survey series contains
surveys that are made with the same survey tool. The situation is described in
Figure 2.1. We assume that the survey series are non-overlapping, although this
assumption may not always be true in a real situation.’

In Section 2.1 we will define the coordinate systems that are used in the calcu-
lations, as well as some useful angles like the inclination I and the azimuth A that
describes the direction of the well path in each point. In Section 2.2 we introduce
the MWD measurements of the gravity field G and the magnetic field B, and in
Section 2.3 we calculate the angels I and A from G and B. Finally, using I, A
and the measured depth D (from now on called the DIA values), we show how to
obtain the NEV coordinates of the survey points in Section 2.4. Summarized, the
procedure is given by

D,G,B—D,I,A—> N,E,V.

Simultaneously, we will show how to find the joint statistical distribution of
the estimated NEV positions, including their covariance matrix Xy gy . In Section
2.2 we begin with a number of error sources that are assumed to influence the
position measurements, described by the covariance matrix ¥.. In Section 2.3
we show how the uncertainty propagates to the uncertainty of the DIA values,

1Even though we have chosen to assume non-overlapping survey series for convenience, there
is nothing that indicates that it is impossible to generalize the forthcoming calculations so that
they apply to overlapping survey series as well.
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Figure 2.1: A simplified example of an offshore well consisting of K + 1 = 9 survey
points. There are L = 2 survey series in this example. The points 0-4
belong to the first survey series while the points 5-8 belong to the second
series.

by approximating the covariance matrix X pra, and in Section 2.4 we finally find
the statistical distribution of the NEV positions, including the covariance matrix
3 nyEv. In short, the procedure is described by

Y. — Xpra — XnNEV.

In order to do the transition from one covariance matrix to the next, we use the
error propagation theory described in Appendix A. In Section 2.5 we generalize
the calculations in order to obtain the joint statistical distribution for the survey
points in two or more wells.

The exploration of well position uncertainty began with the work of Walstrom
et al. (1969). Here, all error sources were assumed to be random and indepen-
dent between different survey stations. Wolff and de Wardt (1981) introduced the
concept of systematic (or survey-specific) error sources, while Brooks and Wilson
(1996) introduced error propagation theory in order to find the 3 x 3 covariance
matrix for the NEV coordinates at a point k. This method was developed further
by Williamson (2000), whose normal (Gaussian) error model makes up the basis
for this thesis, as it did for Gjerde (2008) and Gjerde et al. (2011).

By introducing matrix notation, much more information than only the marginal
3 x 3 covariance matrices can be obtained, namely the covariance values between
different survey points. If we for instance want to simulate the NEV positions from
the joint statistical distribution of several points in a larger part of the well, rather
than considering one single point, it is important to know about the correlation
between the different points. Here, we will therefore eventually find the joint 3K x
3K covariance matrix Xy gy for the NEV positions of all the survey points in a
petroleum well. We assume that the initial position pg is known. In the forthcoming
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calculations, we will also assume that we are given the measured (or planned) DIA

values at every survey point in the well.

2.1 Definitions of Coordinate Systems and Angles

In order to describe the position of a point in the well, we will use an NEV coordi-
nate system. The NEV coordinates are often given relative to a subsea template
or a platform, as seen in Figure 2.2. This coordinate system is spanned by the
N(orth), E(ast) and V(ertical depth)? directions. In Figure 2.2 we also see another
coordinate system that we will use in the well positioning. With its origin in the
MWD tool (drawn as a black square), the tool coordinate system is spanned by the

X, Y and Z directions.

platform

-
- =7 surface plane

BHA

MWD tool

Z

drill bit %

Figure 2.2: The coordinate systems used in this thesis. In an offshore setting, the NEV
coordinate system often has its origin at the platform, and the NFE plane is
the water surface plane. The tool coordinate system consists of the X, Y
and Z directions and has its origin in the MWD tool, which is drawn as a
black square. The tool is a part of the bottom hole assembly (BHA) of the

drill string.

2The V direction is also known as TVD or True Vertical Depth.
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The NEV coordinate system is actually an extended version of an universal
transverse mercator (UTM) coordinate system. In a UTM system, the earth’s
surface is divided into a number of two dimensional zones. By extending to three
dimensions within such a zone, we have a Cartesian coordinate system where the
N axis is in the direction of the geographical north, while the V' axis points in the
downward vertical direction. The E axis then corresponds to the direction of the
geographical east.

In Figure 2.3 we have depicted the coordinate system after translating the
origin to a survey point in the well, in order to see how the azimuth angle A and
the inclination angle I are defined. These angels are used to describe the direction
of the well path in the point. Let a direction vector t start at the well point of
interest, and let the vector point in the direction of the well path in that point.
The azimuth A is defined as the angle from the positive N axis to the projection
of the direction vector on the NE plane, while the inclination angle I is the angle
from the positive V axis to the direction vector.

Figure 2.3: The NEV coordinate system. The direction vector t gives the direction
of the well path in a well point. After t is translated to the origin of the
coordinate system, one can obtain the azimuth angle A and the inclination
angle 1.

The tool coordinate system is a coordinate system where the origin is in the
MWD tool at all times. This is a Cartesian coordinate system as well, where the
Z axis points in the direction of the well path (in the drilling direction), while the
X and Y axes are fixed (with respect to the tool) in two directions perpendicular
on Z, as depicted in Figure 2.4.

The high-side direction is defined as the projection of the negative V' direction
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Figure 2.4: The tool coordinate system with the definition of the toolface angle 7 and
the high-side direction. The inclination angle I is also included.

on the XY plane, as shown in figure 2.4. The toolface angle 7 is then defined as
the angle from the high-side direction vector to the positive Y axis. The toolface
angle is useful because the tool rotates during drilling. When we know the toolface
angle 7, we also know the directions of the X and Y axes, since these are fixed with
respect to the tool. We need to know these directions, since the magnetometer and
accelerometer instruments measure values that are decomposed in the X, Y and
Z directions. Note that the toolface angle is undefined for wells that are exactly
vertical. We will therefore assume that the given well data are such that the wells
are never ezactly vertical, which should be a reasonable assumption in a practical
situation.

2.2 Measurements and Error Sources

The accelerometer sensors in the MWD tool measure the gravity field G, decom-
posed in the three directions of the tool coordinate system, giving G, G, and
G,. Similarly, the magnetometer sensors measure the magnetic field B in three
directions, giving B, By and B,. From the decomposed values, the values of the
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total fields are given by

= /G2 +GE+ G2,
= /B%+ B+ B2

The direction of the gravity field is in the downward vertical V' direction. The
direction of the magnetic field is defined by a magnetic dip angle § and a declination
angle §, as described in figure 2.5. The dip angle is defined as the angle from the
geographical north N to the magnetic north N,,, which is a direction in the NFE
plane. The declination angle is the angle from N,, to the magnetic field vector.

Figure 2.5: The declination angle § gives the magnetic north N,,, while N,, and the
magnetic dip angle 0 gives the direction of the magnetic field B.

Another measurement that is made is the measured depth D, defined as the
distance from the surface to the survey point when one follows the well path. In
other words, D is the along-hole distance from the surface to the point of interest.

For all these measurements, there are several types of error sources that need
to be considered when we eventually want to find the statistical distribution of
the NEV positions in the survey points. The 19 MWD errors that makes up the
error model that we will use in the forthcoming example cases in this thesis are
listed in Table 2.1. The reasoning behind the different error sources is described in
Appendix B. We assume that all the errors can be categorized as one of the three
propagation modes named random, systematic and global. These three types of
errors will be explained shortly. We also assume that the 19 different error sources
are independent and normally distributed with mean equal to zero.

First, a short note on notation. Consider a d-variate normal distributed vector
X = [z1,Z2,...,24)", where superscript ¢ denotes that a matrix is transposed. When
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Table 2.1: The error sources €;,7 = 1,...,19, used in this thesis. The propagation mode
of an error is either random (R), systematic (S) or global (G).
Error Description Standard Propagation
number, % deviation, o; mode
1-3 G, Gy, G, bias 0.0039 m/s? S
4-6 Gy, Gy, G, scale 0.0005 S
79 B, By, B, bias 70 nT S
10-12 B, By, B, scale 0.0016 S
13 Depth reference 0.35 m R
14 Depth scale factor 6-1074 S
15 Depth stretch type 2.5-107" m™! G
16 Declination 0.36° G
17 Declination B dependent 5000° nT G
18 Sag 0.08° S
19 Axial magnetism in string 150 nT S

x has mean vector p,, and covariance matrix 3., we write
X~ Nd(l"’z? 21)

Also, let I,, denote the n x n sized identity matrix.

A random error is random between all survey points in the well. In other words,
a random error source ¢ gives an error sf‘k at each survey point £ =0,..., K, but
the error at one point is independent of the errors at all the other points in the
well. Their joint distribution is given by

EiR = [5505551)"‘765K]t ~ NK+1 ([Ovoa"'ao]taza,i) ) (21)

with covariance matrix of size (K + 1) x (K + 1) given by . ; = 02T 1.

A systematic error (or survey-specific error) is random between the different
survey series [ = 1,..., L in the well. Within one series [, the error siSJ is the same
for all points, but the errors for points in different series are independent. These
errors are distributed as

ef = [e51e8ae8) ~ Ve ([0,0,....0]", 32, (2.2)

with the L x L sized covariance matrix X, ; = o21y.

A global error is the same for the whole well, or more generally, it is the same for
the whole geographical area surrounding the well. Neighboring wells are therefore
influenced by the exact same error. The distribution of a global error is simply
given by

e ~ N (0,2.), (2.3)

where the covariance "matrix" now equals the scalar value o known as the variance
of the distribution, that is X, ; = o2

-
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A useful observation is that the random propagation mode and the global prop-
agation mode in fact are special cases of the systematic propagation mode: A
systematic error is a random error when there are K + 1 survey series (equal to the
number of survey points), while it is a global error when there is only one survey
series. This means that a random error and a global error will propagate to the
DIA values in the same way as a systematic error. When we consider a random
error, we just imagine that there are K + 1 survey series with one survey point in
each. When we consider a global error, we imagine that there is only one survey
series containing K + 1 measurements. Then we can make the calculations for any
error as if it is a systematic error.

Since all the 19 errors in Table 2.1 are assumed to be independent, we can
combine their distributions given by (2.1) - (2.3) into the joint distribution

[61,52,...7519]tNNd([O,O,...,O}t725), (2.4)

where the covariance matrix is

DIEETS

Here we have disregarded the the superscripts R, S and G on the g;’s. The dimen-
sion d is given by the sum of the dimensions of the 19 distributions.

2.3 The DIA Values and Their Distribution

From the geometry in Figure 2.4 we can find expression for the gravity components
that include the inclination I and the toolface 7,

G, = —GsinlsinT, (2.5)
Gy, = —GsinlcosrT, (2.6)
G, = Gcosl. (2.7

By solving equations (2.5) - (2.7) for the inclination angle I, we obtain

\/ G2+ GE
— . (2.8)

I = arctan
G.

We use equations (2.5) - (2.6) to find an expression for the toolface angle,

T = arctan —Ge
= —Gy .
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Williamson (2000) show that the magnetic components are given by

B, = DB(cosfcoslcosAy,sint —sinfsinlsinT + cosfsin A,, cos7) (2.9)
B, = B/(cosfcoslcosA,cosT—sinfsinlcosT — cosbsin A, sin7)2.10)
B, = B(cosfcosIcosA,, +sinfcosl) (2.11)

The magnetic azimuth A,, is defined as the angle from the magnetic north N,,,
as seen in figure 2.5, to the vector projection on the NFE plane. This is the same
definition as for the original azimuth A, except that N is now replaced with N,,.
From the expressions (2.9) - (2.11), the magnetic azimuth can be shown (Gjerde,
2008) to be

B,cosT — B,sinTt
A, = arctan ( i Y > .

[BysinT + By cosT]cosI + B, sin ]

By combining the declination angle § and a grid correction (because of meridian
convergence) into an estimated correction value dcopr, we have that (Gjerde, 2008)

A= beorr + Anm. (2.12)

In summary, we need the measured values G, Gy, G., By, B, and B, in
addition to given reference values for the angles § and .o as we describe in
Appendix C.3, in order to calculate I and A from the expressions (2.8) and (2.12).

Now we will find the approximate statistical distribution of the DIA values. Let
all the DIA values of the K + 1 survey points be contained in the vector

a = [Do, Io, Ag, - .., Dic, Irc, Ax]" . (2.13)

By non-linear error propagation theory, as shown in Appendix A, the joint distri-
bution of « is approximated by (A.5), that is

o ~ Nr+1)x3 ([uDo,mo,uAm e D s Piag] EDIA) , (2.14)

with covariance matrix
t
Ypra=JpraXJIpra,

which will be explained in more details shortly.

The mean vector in (2.14) consists of the expected depth values pp,,k €
{0,..., K}, and the calculated values py, and pa, obtained from (2.8) and (2.12)
if we could have used the expected values of the variables on the right-hand sides.
We can estimate pp, by using measured values, while we can estimate p7, and g4,
by calculating (2.8) and (2.12) using measured values on the right-hand sides.

The covariance matrix X py4 contains linear combinations of weighted elements
of the covariance matrix X., given in (2.4). The weights are given by the elements
in the Jacobian matrix Jpra. From (A.4), the Jacobian matrix is given by

Jpra = [W17W2,-~-,W19}t7 (2.15)
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where - _
Wil
1
Wi
ni
W1 )
ni+
W9
W, = 3 , (2.16)
ni—rt+ng
W2
ni+-+np_1+1
W, L
K
L WL i
for i € {1,...,19}. Here, n; is the number of survey points in survey series [, when

we consider a systematic error source. From the observations in Section 2.2, n; = 1
and L = K 4+ 1 when error ¢ is random, while n; = K + 1 and L = 1 when it is
global. The blank parts of the matrix indicate zeros.

The weighting function w¥, for measurement station number & (which belongs
to survey number 1) is given k;y

v [0Dy 0L 0A]!
Wi’l_ a’fi,l 85“ 861',1

(2.17)

where all the derivatives are evaluated at the expectation of the variables of the dif-
ferentiated functions, corresponding to the matrix elements in (A.4). The weighting
functions Wﬁl,i € {1,...,19}, can be found in Appendix C.1.

2.4 The NEV Positions and Their Distribution

In this section, we will show how to find the NEV position coordinates pr =
[N, Ex, V]! of a survey point k € {1,...,K} in a well, by using a minimum
curvature method, as derived by Sawaryn and Thorogood (2003). In such a method,
two neighboring survey points k£ — 1 and k are assumed to lie on a circular arc in
the three dimensional space, as shown in Figure 2.6.

By using the known NEV position pg of an initial point, which for instance can
be given at the water surface, together with the DIA values e in (2.13), the NEV
positions can be calculated recursively by

ADf(x) sin I, 1 cos Ap,_1 + sin I, cos Ay,
Pr = Pr_1+ ———= |sinlp_qsin Ay_1 +sinIysin Ag | , (2.18)
2
cosIy_q1 + cos Iy
where
_ tan(k/2)

AD =Dy — Di—1,  f(k) K2
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tg

Figure 2.6: The minimum curvature method assumes that the well path between two
survey points kK —1 and k is a circular arc. Here, p; is the NE'V coordinates
of point j € {k — 1,k}, t; is the direction vector in point j, and « is the
dogleg angle. In addition, p* is the position and t* is the direction vector
of some point between the survey points.

I, — Ih_ Ay — Ap_
K = 2arcsin <\/sin2 (162“) + sin I;;_1 sin Ij, sin? (I€2m)> . (2.19)

The value &, expressed in (2.19), is known as the dogleg angle. This angle is defined
as the change in inclination from point k — 1 to point k, as shown in Figure 2.6.

We will now find the approximated statistical distribution of the estimated
NEYV positions. Let all the NEV coordinates of the unknown K survey points be
contained in the vector

p=[pi...pk] = [N,E,Vi,..., Nk, Exc, Vic]".

For simplicity, we will use the differences Apx = px — Prx—1,k € 1,..., K. We will
now assume that the dogleg angle k is small, so that we can use the limit formula

. tanx
lim =1,
z—0 X

implying the approximation f(x) ~ 1 in expression (2.18). We then have

Di—D sin Iy, cos Ay, +sin I, _1 cos Ap_1
k kol sin I sin Ay, +sinlp_1sin Ap_1 | . (2.20)
2
cosly +coslp_q

Apy =

From the error propagation theory, the distribution of the position differences is
approximated by

[Apy, Aps, .. .,APK]t ~ Nk 3 ([Ap,pl,Aupz,...,AppK]t,EAp) ,
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with covariance matrix
t
Yap =JapXprada,.

The Jacobian matrix is

Rio Rin
Ro1 Rap
Tap = ) . : (2.21)
Rixrx-1 Rixk

where we have defined the weighting functions

[aApj 9Ap; aAPJ}
Rji= .

0Dy, oI, 0A

The elements of R ;; are given explicitly in Appendix C.2.
The relationship between the NEV positions pi and the differences Apy is

simply
k

Pr=DPo+ Y Apm. (2.22)
m=1
We have assumed that the known initial position pg has no uncertainty. By using
the error propagation theory one last time we find the approximate joint position
distribution

[phPQ,...,Pk]t ~ NK><3 (l:/lzpl,ﬂizm,...,l,l,pk}t,zNEv) y (223)

with covariance matrix
t
YXney =330

-
From (2.22) the Jacobain matrix in (2.23) is

I3
L I

J,=1|. (2.24)
L I, ... I

In sum, the total covariance matrix for all the NEV postions py in the survey
points k € {1,..., K} in a well is given by

Svev = Jpdapd praZedbad4,Jb. (2.25)

We can also obtain the position p* of a point between two survey points k& — 1
and k, as seen in Figure 2.6, by using the interpolation formula (Sawaryn and
Thorogood, 2003) given by

AD*f (k85

P =pr-1+ 5 ) (tp_1 +t%). (2.26)
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Here, t;x_1 and t* are two direction vectors, as shown in Figure 2.6. The vector
tr—1 is given by
sin I, _qcos Ap_1
tr_1 = |sinlp_1sin Ap_4
cosly_q

)

while the the direction vector corresponding to the unknown position is

. sin ([1 — AA%*D sin (%n)
t* = to1 + ——— L

sin K sin K

(2.27)

In addition, AD* is the difference in measured depth between the middle point
and survey point k£ — 1.

2.5 Several Wells

The method described so far can be generalized in order to obtain a multivariate
statistical distribution that includes two or more wells. We will follow the same
procedure as for one well. In short, the procedure is described by

total total total
Ea 7 EDIA 2NEVa

where the covariance matrices in the previous sections are generalized in order to
be applied to several wells, as indicated by the superscript total.

The covariance matrix associated with the error sources in Table 2.1 for M
wells is given by

1
ZJE;R,S

ytotal — E (2.28)
ks
EE;G

where X7, ¢ corresponds to the measurment error covariance matrix for well m as
given in (2.4), except that the covariance values for global errors are not included
in these matrices. The global error covariances, combined into a diagonal matrix
X..q, are instead placed in the bottom of Ezoml. These error sources should only
be included once, since the global property implies that the error is the same for
all wells.

2.5.1 Distribution of the DIA Values for M Wells

We now let all the DIA values be contained in [a!, ..., aM]

t where
mo__ m m m m m m
o™ = [DP I A, DR IR AR

contains the DIA values for well m, with K, + 1 equaling the number of survey
points in well m. The total distribution is given by
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[Otlvoﬂ’. .. ,afw]t ~ Ny ([Ij,al,ua27 .. "/J'aM]t, Etﬁﬂ) , (229)

with covariance matrix
total __ ytotal gvtotal ytotal,t
Ypra=JpaXx" Jpra- (2.30)

The dimension is d =3 x ) (K, +1), and p,m is the expectation vector for the
values in well m. The Jacobian matrix is given by

1 1
JDIA;R,S WG
total __ .
JDIA -

M M
JDIA;R,S Wwe

The matrices J}5; 4.z g corresponds to the Jacobian matrix for well m as given in
(2.15), except that the weighting matrices W, that correspond to global errors are
removed. These are instead placed at the right side of J tg}ﬂ, in order to correspond
with the placement of the covariance values in 3%l as shown in (2.28). If we
let ngy equal the number of global error sources, then a weighting matrix W¢ in

Jg}% for m € {1,..., M}, is given by
o=[Wg, . Wg, ]

)

where the blocks are the weighting matrices obtained from (2.16), which were used
when we considered one well and one error source 4.

The joint distribution of all the DIA values is therefore given by (2.29), with
covariance matrix given by (2.30).

2.5.2 Distribution of the NEV Positions for M Wells

Following the procedure in the case a single well, we now let all the NEV position
differences be contained in [Ap?, ..., ApM]t, where

Ap™ = [ApT, ..., Ap%,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>