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Abstract—This paper presents a comparison of small-signal 
dynamics for a current controlled Virtual Synchronous Machine 
(VSM), a voltage controlled VSM and a df/dt-based control 
strategy for inertia emulation. The comparison is based on state-
space models of the considered control schemes, which are 
linearized and utilized for eigenvalue-based analysis. Starting 
from a comparison of the three schemes with manually tuned 
controller parameters, it is shown that the current controlled 
VSM can be unstable for strong grid conditions, while the df/dt-
based control becomes unstable when the grid impedance is 
high. Thus, an iterative tuning algorithm based on eigenvalue 
parametric sensitivities is applied to investigate how much the 
time-response and damping of the critical modes can be 
improved. Limitations to the dynamic performance are 
identified by participation factor analysis of the critical modes. 
The results demonstrate that all the investigated schemes can be 
stable for a wide range of operating conditions, but with 
inherent differences in the inertial response.  

Index Terms—Eigenvalues, Linearization, State-Space Models, 
Virtual Inertia, Virtual Synchronous Machines.  

I. INTRODUCTION

Large-scale integration of new generation sources with 
power electronic grid interfaces and corresponding 
decommissioning of traditional generation plants with 
synchronous generators is expected to cause a reduction of the 
equivalent inertia in power systems [1], [2]. To compensate 
for reduced rotating masses connected directly to the grid by 
electrical machines, power electronic converters can be 
controlled to provide virtual inertia. Various control strategies 
for inertia emulation have been proposed for a wide range of 
applications, including distributed generation sources, energy 
storage systems, STATCOMs and HVDC transmission 
schemes [3]-[8]. Especially HVDC converter stations have to 
the potential to provide significant contributions to the 
equivalent inertia due to the high power ratings. Thus, recent 
studies have proposed and analyzed various approaches for 
providing virtual inertia from HVDC systems [9]-[13]. 

This work was supported by the project “HVDC Inertia Provision” (HVDC 
Pro), financed by the ENERGIX program of the Research Council of 
Norway (RCN) with project number 268053/E20 and the industry partners; 
Statnett, Statoil, RTE and ELIA. 

The general intention with control strategies for providing 
virtual inertia from power electronic converters is to emulate 
the electromechanical characteristics of synchronous 
generators. Thus, several control schemes proposed for this 
purpose have been referred to as Virtual Synchronous 
Machines (VISMA or VSMs) [14]-[16], Virtual Synchronous 
Generators (VSGs) [17]-[20], or Synchronverters [21]. The 
various schemes generally obtain the emulation of 
synchronous machine inertia by two different approaches:  
i) Internal simulation of the electromechanical swing

equation of a synchronous machine. This approach ensures
a power-balance-based grid synchronization mechanism
and provides voltage or current references for controlling
the power converter to provide a similar response as a
synchronous machine.

ii) Calculation of the equivalent inertial response of a
synchronous machine from the measured derivative of the
grid frequency. The resulting power reference can be used
as an additional reference signal for a conventional control
scheme of the power electronic converter.

Only implementations with internal simulation of an
electromechanical swing equation would be capable of 
emulating all the operating modes of a synchronous machine, 
including islanded operation [22]. Thus, in the following, only 
such schemes are referred to as VSMs. However, these VSM-
based control schemes rely on the simulated virtual swing 
equation for grid synchronization and power flow control, 
which is not compatible with traditional decoupled control of 
active and reactive power based on grid synchronization by a 
Phase Locked Loop (PLL). Approaches for Inertia Emulation 
based on measurement of the grid frequency derivative (df/dt 
IE) are instead designed for providing an additional reference 
within a conventional PLL-based control system.  

Most of the presented schemes for VSM-based control or 
df/dt IE apply multiple control loops, with several adjustable 
controller parameters. Thus, manual analytical tuning and 
analysis of such control schemes is challenging. Moreover, it 
can be difficult to understand the inherent limitations and 
constrains for dynamic performance and stability implied by 
the system configuration. State-space modelling and 
eigenvalue-based analysis of small-signal dynamics can help 



to reveal the properties of such systems by studying the 
participation factors and parametric sensitivities of critical 
modes in the system [23]. Such techniques have been already 
applied to analyze individual VSMs and df/dt IE schemes, or 
larger systems with a single applied strategy for inertia 
emulation [9], [12], [13], [15], [16]. However, it is still an 
open issue to identify what is the most suitable approach for 
providing virtual inertia with desirable dynamic characteristics 
over a wide range of operating conditions. 

In this paper, the small-signal dynamics of two different 
VSM-based control schemes and one example of a df/dt IE 
scheme are compared by analyzing the eigenvalues, 
participation factors and parametric sensitivities of small-
signal state-space models representing each scheme. The three 
schemes are first analyzed with controller parameters selected 
by conventional tuning rules or simulation-based trial-and-
error procedures. It is subsequently evaluated how the system 
dynamics are influenced by large variations in the grid 
impedance. Then, an iterative tuning algorithm based on 
eigenvalue parametric sensitivity, as presented in [24], is 
applied to all the three schemes. The algorithm is utilized to 
adjust a subset of the controller parameters with the objective 
of obtaining the fastest possible response of the slowest mode 
in each case. The participation factors and sensitivities of the 
slowest mode resulting after applying the algorithm are 
discussed to identify the main properties limiting the dynamics 
and stability margins of each case. The results demonstrate 
that all the three investigated schemes can be tuned to ensure 
acceptable stability margins. The voltage controlled VSM can 
obtain the fastest and most damped response, but compared to 
the other schemes this limits the capability for providing fast 
inertial response during frequency variations.  

II. MODELLING AND SIMULATION OF INVESTIGATED

APPROACHES FOR PROVIDING VIRTUAL INERTIA

In the following, the three assumed control schemes, and 
their corresponding models when connected to an ideal grid 
equivalent, are briefly presented. As a point of reference and 
for verification of results from small-signal eigenvalue 
analysis, the three schemes are simulated in 
Matlab/Simulink/SimPowerSystems. Non-linear state-space 
models of the cases are also established on the general form:  

 ,fx x u  (1) 

These analytical models will be used to obtain linearized 
small-signal state-space models, and for calculating the 
steady-state operating points for linearization of the system. 
For the figures and equations presented in the following, upper 
case symbols indicate variables and parameters in physical 
quantities, while lower case symbols represent per unit 
quantities. Bold symbols represent variables expressed on 
complex space vector form as x = xd + jxq. The applied per 
unit system is based on the rated apparent power of the 
converter and the peak value of the rated phase voltage, and is 
used for all analysis and presentation of results.  

A. Current-Controlled Virtual Synchronous Machine

The first scheme is a VSM where a simulated synchronous
machine model provides current references for a conventional 
set of decoupled PI current controllers in a synchronous 

reference frame established by the VSM swing equation. A 
quasi-stationary equation is used to represent the impedance of 
the simulated synchronous machine, as proposed in [20]. 
Thus, this scheme is referred to as a Current Controlled VSM 
(CCVSM) with Quasi-Stationary Electrical Model (QSEM).  

An overview of the control system and the assumed 
electrical configuration with a simplified grid equivalent is 
shown in Fig. 1. A non-linear state-space model of the overall 
system is documented in detail in [16]. It should be noted that 
the QSEM representation of the simulated synchronous 
machines implies that the current references i*

cv for the 
converter correspond to the stator currents is of the emulated 
synchronous machine. These current references are calculated 
directly from the voltage amplitude reference v̂e provided by 
the voltage controller according to:  

 
* ˆQSEM e m
cv s

s VSM s

v

r j l


 
 

v
i i (2)

In this equation, rs and ls represent the equivalent resistance 
and inductance of the emulated synchronous machine, v̂e is the 
internal voltage behind this virtual impedance, and vm 
represents the low-pass filtered d- and q-axis components of 
the measured voltage vo.  

The virtual swing equation of the VSM is given by: 
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where ῶg is the estimated grid frequency needed for 
implementing the damping term. In this case, the grid 
frequency is estimated internally within the virtual swing 
equation by applying a low-pass filter with crossover 
frequency ωd to the VSM speed ωVSM [16]. A power-frequency 
droop, corresponding to an idealized governor function with a 
droop gain of kω, is also included in (3). For practical 
implementation, the phase angle θVSM, which is used for the 
dq-transformations of the control system, is obtained directly 
by integration of ωVSM. However, for the modelling of the 
system, only the phase angle displacement between the VSM 
reference frame and the grid voltage should be represented. 
The corresponding state equation is defined as:  

VSM
VSM b g b

d

dt

        (4)

The non-linear state-space model of the QSEM-based 
CCVSM from [16], is expressed on the form given by (1), 
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Fig. 1. Overview of control structure for current controlled VSM with 
quasi-stationary electrical model (QSEM) [16] 



with the state vector xCCVSM and the input vector uCCVSM 
defined by (5). 
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In addition to the variables already defined in Fig. 1 or 
explained for (2)-(4), γd,q represent integrator states of the 
current controllers, and φd,q represent states utilized for active 
damping of LC resonances. Furthermore, ξ represents the 
integrator state of the voltage controller, qm is the state of a 
low pass filer on the reactive power measurement, and κ 
represents the state of the low pass filter used for estimating 
the grid frequency. Based on the resulting non-linear state-
space model documented in [16], a small-signal model can be 
generated for any feasible operating point of the CCVSM.  

B. Voltage-Controlled Virtual Synchronous Machine

As the second case, a voltage controlled VSM (VCVSM)
is analyzed. Thus, a closed loop dq voltage controller provides 
the current references to the inner loop current controller. An 
overview of the control system is shown in Fig. 2, and further 
descriptions as well as documentation of the state-space model 
of this scheme are available in [15].  

Compared to the CCVSM described in the previous 
section, it should be noted that the applied VCVSM is 
utilizing a Phase Locked Loop (PLL) for estimating the grid 
frequency in the virtual swing equation. Furthermore, the 
internal voltage amplitude reference v̂r* is provided by a 
simple reactive power droop [15]. The voltage reference for 
the closed loop voltage controller is resulting from v̂r* and the 
voltage drop on a quasi-stationary virtual impedance as: 

 * *ˆr
o v VSM v ov r j l     v i  (6) 

The state-space model of the VCVSM, is defined by the 
state vector xVCVSM and the input vector uVCVSM given by: 
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The state variables and inputs are the same as for the 
CCVSM, except from vPLL and εPLL, which are internal states 
of the PLL, and ξd,q which represent the integrator states of the 
dq voltage controller.  

C. Conventional Control with df/dt Inertia Emulation

A general scheme for df/dt IE has also been studied for
comparison of small-signal dynamics with respect to the 
presented VSM-based schemes. An overview of the assumed 
control system is shown in Fig. 3. It can be seen from the 
figure that this scheme relies on a conventional PLL-based 
control structure with inner loop current controllers and closed 
loop control of active and reactive power. Thus, the inertia 
emulation is providing the additional power reference Δpo

* to 
the power controller. This structure is studied since it allows 
for inertia emulation by acting on the references for an outer 
loop controller of a conventional control system, without 
requiring modifications of the conventional control loops or 
the PLL-based grid synchronization strategy. Since the inertia 
emulation is provided by an outer loop power reference, this 
control scheme could be assumed to provide the slowest 
approach for df/dt-based inertia emulation. A faster df/dt-
based inertia emulation could for instance be achieved by 
acting directly on the current references [5], [25]  

For df/dt-based inertia emulation, it should also be 
considered that implementation of a pure derivative function 
can amplify noise in the control system. Thus, a limited 
derivative is preferred, and the power reference resulting from 
the inertia emulation with a frequency droop can be calculated 
from the grid frequency estimated by the PLL as [13]: 
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s
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In this equation, kJ is the constant associated with the 
equivalent inertia, and kω is the same droop gain constant as 
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used in the VSM schemes. The limited derivative of the grid 
frequency is obtained as the difference between the estimated 
frequency from the PLL and a low-pass filtered version of the 
same signal, where the crossover frequency of the low-pass 
filter is defined by ωLPω. Thus, the calculation of the power 
reference from the inertia emulation according to (8) can be 
easily expressed on state-space form.  

The resulting non-linear state-space model of the system in 
Fig. 3 is expressed on the form given by (1), with the state 
vector xdf/dt and the input vector u df/dt defined by: 
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A detailed documentation of the modelling of the inner control 
loops and the PLL is available in [26], and most of the 
variables in this model have been already defined for the VSM 
schemes. However, outer loop PI controllers for the active and 
reactive power, with low-pass filters in the feedback signals 
are included in the model. Thus, the state ρ represents the 
integrator of the active power controller, pm and qm represent 
the low pass filters on the power measurements, σ represents 
the integrator of the reactive power controller and v̂om 
represents a low pass filter on the voltage amplitude used for 
implementing a voltage droop in the reactive power controller. 

III. COMPARATIVE ANALYSIS OF SMALL-SIGNAL 

DYNAMICS 

For analyzing the small signal dynamics of the three 
control schemes presented in section II, the corresponding 
state-space models are linearized at an operating point 
specified by the input signals and expressed as: 

   0 0    x A x x B x u  (10) 

Eigenvalue-based analysis is then applied to study the 
characteristics of the small-signal dynamics for the three 
schemes with parameters and input signals as defined in Table 
I and Table II. It should be noted that all three cases are 
studied for connection to an ideal equivalent grid model with 
the frequency provided as an input variable. Thus, only the 
response of the local control system is considered, without 
attempting to assess dynamic interactions with the physical 
inertia of traditional generation plants.  

A. Analysis of Critical Modes of the Three Control Schemes 

As a starting point, the slowest modes for all the three 
schemes, with real part of the eigenvalues higher than −20 or 
damping ratio ζ lower than 8%, are listed in Table III. The 
main participating states in each mode are also listed in the 
table, in descending order according to the absolute value of 
the participation factor. Furthermore, the table includes a list 
of the parameters with the highest parameter sensitivity along 
the real axis for each analyzed mode. The real part of the 
sensitivity αn,k of the eigenvalue λn with respect to the 
parameter ρk is calculated as:  

 ,Re Re Re

T
n n

n k
n k T

k n n

 


 
           
 

A
Φ Ψ
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where Ψn and Φn are the left and right eigenvectors 
associated with λn. In Table III, the parameters are listed in 
descending order according to the absolute value of (11), and 
the direction of the sensitivity is indicated by a negative sign 
(−) in front of parameters for which an increase of the value 
will reduce the real part of the corresponding eigenvalue.  

From the results collected in Table III, it can be noticed 
that the CCVSM has two critical oscillatory modes λ1,2 and 
λ8,9. The mode λ1,2 with low oscillation frequency is clearly 
associated with the inertial dynamics of the VSM, since it has 
high participation from the states δθVSM, κ and ωVSM. However, 
the mode is also associated with the low pass filtering of the 
measured q-axis voltage, by the state vomq. The parametric 
sensitivities also show how this mode is sensitive to the virtual 
impedance parameters ls, and rs, as well as the inertia time 
constant Ta, and the crossover frequencies ωvo and ωd. These 
low pass filters are used for filtering the voltage measurement 
as part of the current reference calculation and for the 
estimation of the grid frequency in the damping of the virtual 
swing equation, respectively. The mode λ8,9 is instead mainly 
associated with the voltages and currents in the electrical 
circuit, and represent a LC-oscillation related to the output 
filter. However, it should be noticed that the parametric 
sensitivities reveal that λ8,9 is most sensitive to the virtual 
impedance parameters ls, and rs. This demonstrates that the 
CCVSM with a quasi-stationary electrical model implies a 
relatively strong coupling between the simulated electrical 
model of the VSM and the parameters of the electrical system. 

TABLE I COMMON PARAMETERS FOR THE THREE SCHEMES 

Parameter Value Parameter Value 

Rated voltage VN,LL,RMS 380kV Filter inductance l1 0.15 pu 

Rated power Sb 1.2 GVA Filter resistance rL1 0.003 pu 

Rated angular frequency ωb 2π*50 Hz Filter capacitance cf 0.09 pu 

Current controller gain: kpc, kic 2.39, 15 Grid side inductance lg 0.20 pu 

Active damping, kad, ωLP,ad 
1.5 
20 rad/s 

Grid side equivalent 
series resistance rg 

0.001 pu  

PLL voltage filter crossover 
frequency, ωLP,PLL 

500 rad/s 
PLL controller gains, 
kp,PLL, ki,PLL 

0.084, 
4.69

Frequency reference, ω* 1.0 pu 
Reactive power droop 
gains, kq (= 1/kv) 

0.1 pu 

Frequency droop gain, kω 20 pu Voltage reference v̂* 1.0 pu 

TABLE II PARAMETERS WITH SPECIFIC VALUES FOR EACH SCHEME 

Parameter Value Parameter Value 

VSM Inertia constant Ta 2 s 
Power controller gains for  
df/dt IE, kp,pac, ki,pac 

2, 50 

VSM Damping constant kd 50 
Active power measurement 
filter for df/dt IE, ωpac

50 rad/s 

CCVSM LP crossover 
frequency for grid frequency 
estimation ωa

10 rad/s 
Reactive power controller 
gains for df/dt IE, kp,qac, 
ki,qac 

1.0, 1.0 

CCVSM voltage filter 
crossover frequency ωvo

 10 rad/s 
Reactive power filter for 
df/d IE ωqac 

50 rad/s 

CCVSM voltage controller 
gain, kpv, kiv

1, 20 
Voltage amplitude filter,  
df/dt IE, ωvoa 

10 rad/s 

VCVSM dq voltage 
controller gain, kpv, kiv

0.7, 895 
Frequency filter for  df/dt 
IE, ωLP,ω 

6.3 rad/s

Virtual Impedance 
lv, = ls, rv = rs

0.2, 
0.01 pu 

Frequency derivative gain 
for df/dt IE, kJ 

80 



From the results listed in Table III, it can also be observed 
that the VCVSM does not have any critical eigenvalue with 
respect to stability for the parameters and operating conditions 
according to Table I and Table II. Indeed, the two slowest 
modes for this case are eigenvalues with only real parts, and 
they are mainly associated with the inner loop current 
controllers. 

The case with df/dt IE has two critical complex conjugate 
eigenvalues, λ1,2 and λ6,7. The results in Table III show that the 
mode λ1,2 with high oscillation frequency is associated with 
the q-axis voltage filtering in the PLL and with the electrical 
states of the system. Thus, the highest parameter sensitivity 
appears for the PLL gain as well as the gains of the current 
controllers and the active damping of LC oscillations. 
However, the mode λ6,7 is characterized by long settling time 
and low oscillation frequency. This mode is mainly associated 
with the bandwidth of the PLL and the estimation of the 
frequency derivative, as determined by the internal low pass 
filter state ωPLL,f and the estimated phase angle displacement 
δθPLL with respect to the grid voltage. The mode λ6,7 also has 
participation from the states ρ and pacm associated with the 
integrator and the low pass filter of the active power feedback, 
as well as from the integrator state εPLL of the PI controller of 
the PLL. Thus, this mode is mainly sensitive to the parameters 
of the PLL and the active power controller. It should also be 
noted that the df/dt IE has a very slow eigenvalue with a 
purely real value of −0.51, which is associated with the 
reactive power controller. Thus, this eigenvalue can be 
expected to limit the minimum settling time of the system.  

B. Variations of grid impedance

For further assessing and comparing how the different
schemes respond to parameter variations, Fig. 4 shows the 
eigenvalue trajectories when the grid inductance lg is changed 
in the range from 0.05 pu (SCR ≈20 – indicated by blue color) 
to 0.5 pu (SCR ≈2 – indicated by red color). In these figures, 
all eigenvalues are marked with black triangles for cases when 
the system is unstable. As shown in Fig. 4 a), the CCVSM 
experiences instability due to the mode given by λ8,9 for low 
values of the grid inductance. The mode λ1,2 also has very low 
damping in these conditions. However, this scheme is robust 
with respect to operation with high grid inductance values, 
corresponding to weak grid conditions.  

The VCVSM is stable for the full range of considered 
parameters variations and no potential instabilities are 
identified within reasonable parametric variations of the 
electrical system. However, it should be noted that this 
scheme can be difficult to tune, especially in case of low 
switching frequency limiting the bandwidth of the inner loop 
current controllers [24]. Still, the results show that when this 
scheme is properly tuned, it can ensure good performance with 
respect to small-signal stability. Indeed, it can be seen in Fig. 
4 b) that the slowest eigenvalues of the VCVSM are not 
influenced by the variations in the grid side inductance, and 
that no other eigenvalues are reaching a higher real value due 
to this range of parameter variations.  

For the df/dt IE, Fig. 4 c) shows that stability problems 
associated with mode λ1,2 appears for weak grid conditions 
with high values of grid inductance. The damping of mode λ6,7 

is also reduced and the settling time is increasing with higher 
grid inductance values. These limitations should be expected, 
since the df/dt IE depends on the PLL for estimating the grid 
frequency derivative, and weak grid conditions are known to 
cause stability problems due to interactions between the PLL 
and other control loops [27]. However, the measurement of 
the frequency derivative and the transient power injection due 
to the inertia emulation are aggravating this effect. Thus, very 
weak grid conditions with SCR below 2 are not considered in 
this context, since stable operation under such conditions 
could be expected to require retuning or redesign of the PLL. 
Beyond the two complex conjugate modes that are influenced 
by the grid inductance, it can be noticed that the slowest real 
pole of the system is not much influenced by grid inductance 
variations. 

IV. ITERATIVE TUNING FOR STABILITY ENFORCEMENT 

AND IMPROVEMENT OF DYNAMIC PERFORMANCE 

To study how a robust performance of all the three 
investigated schemes can be achieved over a wide range of 
system parameters, the tuning of the control systems has been 
reconsidered by applying the iterative sensitivity-based tuning 
algorithm proposed in [24]. This algorithm automatically 
identifies the eigenvalue with the highest real part and utilizes 
the parametric sensitivity according to (11) for identifying and 
modifying the parameter that has the highest influence on the 
real part of the eigenvalue. The algorithm can operate on a 
sub-set of the system parameters, so that the iterative 
operation for gradually moving the system eigenvalues 
towards the left is only allowed to change the freely tunable 
controller parameters. In the following, only the parameters of 
the outer loop controllers are selected as tunable parameters 

TABLE III IDENTIFIED CRITICAL MODES WITH CORRESPONDING 

PARTICIPATING STATES AND DOMINANT PARAMETER SENSITIVITIES 

Modes with Re(λ) > 
−20 or ζ <8 %

Main 
participating 
states (>0.05) 

Parameter 
sensitivities (max 5 

and >.2) 

C
C

V
SM

 

λ1,2 −1.78 ± j 10.80
δθVSM, vomq, κ, 

ωVSM 
ls, −rs, Ta, −ωvo, ωdf 

λ3 −13.74 κ, vomq, δθVSM 
ls, −rs, −ωdf, −ωvo, 

Ta

λ4 −17.91
κ, φq, φd, δθVSM, 

vomd, ξ, ωVSM 
ls, rs, kp,v,−kffe, −kq 

λ5 −6.02 ξ, q, vomd, d −kq, ls, kp,c, −rs, kp,v

λ6,7 −6.33 ± j 0.15 d, q, ξ, vomd kp,c, −kq, rs, ls, −ki,c 

λ8,9 −208.6 ± j2962 
voq, vod ioq icvd iod 

icvq  
−rs, −ls, −kad, kffv, kpv

V
C

V
SM

 λ1,2 −19.52 ± j27.20 
εPLL, δωVSM, δθPLL, 
δθVSM,  vPLLq 

−kp,PLL, lv, −rv, ta, 
ki,PLL

λ3,4 −10.52 ± j20.54 
δθVSM, δθPLL, 
δωVSM, εPLL 

−lv, kp,PLL, rv, ta,
−ki,PLL

λ5 −6.29 q kpc, −kic 
λ6 −6.29 d kpc, −kic 

df
/d

t I
E

 
λ1,2 −16.04 ± j1402 

vPLLq, io,d, io,q, vo,d, 
vo,q, icv,q, icv,d 

kp,PLL, kp,pac, kp,c, kffv, 
−kad

λ3,4 −19.99 ± j1.45 φq, φd, ρ, εPLL −ωad, kp,PLL

λ5 −0.51 σ  −ki,qac, kp,qac

λ6,7 −8.92± j4.97 
ωPLLf, δθPLL, ρ, 

pacm, εPLL 
−kp,PLL, kppac, −ωlpJ

λ8 −10.09 voAm −ωvoa, −kdrpq

λ9 −6.28 q, d, ωLPω kpc, ωlpJ, −ki,c 
λ10 −6.28 ωPLLf −ωlpJ



 

for the applied algorithm. Thus, no parameters related to the 
electrical circuit or the current controllers will be modified. 
The inertia time constant Ta is also kept constant, since it is 
assumed that this value will be specified according to a 
requirement for providing virtual inertia.  

A. Results from Iterative Tuning Algorithm 

The results from applying the sensitivity-based tuning 
algorithm from [24] are presented in Fig. 5 for all the three 
investigated schemes. For the CCVSM, the iterative tuning 
algorithm is applied for the case of lg = 0.05, since this was the 
worst investigated case with respect to stability as shown in 
Fig. 4 a). The resulting trajectory of the eigenvalues are shown 
in the upper part of Fig. 5 a), while the parameters that are 
modified by the algorithm are shown in the lower part. It can 
be noticed that the algorithm is first increasing the virtual 
inductance ls, which forces the unstable eigenvalues towards 
the left. Subsequently, the algorithm modifies the crossover 
frequency of the low pass filtering of the voltage 
measurements, ωoa. After changing these parameters, the 
instability of the system due to the mode λ8,9 from Table III is 
avoided. Thus, the algorithm is value of ls is reduced towards 
the initial value, to reduce the settling time of mode λ1,2. The 
algorithm also changes the power-frequency droop gain kω 
and the crossover frequency ωd for the damping in the virtual 
swing equation. As a result, stability is enforced for operation 
with low values of lg, and the settling time of the system is 
decreased for the full range of values assumed for the grid 
inductance. It can be verified that the parameters resulting 
from the sensitivity-based iterative re-tuning of the system 
ensure stability within the full range of considered grid 
inductance values.  

The iterative tuning algorithm has also been applied to the 
the VCVSM, for the highest grid inductance of lg = 0.5 pu. In 
this case, the algorithm is not allowed to change any of the 
parameters with the highest sensitivity with respect to the 
slowest pole, as given by Table III. However, for high grid 
inductance values these slow real eigenvalues have a small 
sensitivity with respect to the reactive power droop gain. Thus, 
the algorithm is attempting to move these eigenvalues towards 
the left by reducing the droop gain kq. Still, it can be seen from 
Fig. 5 b) that the slowest eigenvalues do not change much. 
Indeed, the information regarding these modes in Table III and 
the fact that the eigenvalues do not change much with the grid 
inductance already indicated that there were limited 
possibilities, as well as limited need, for modifying the tuning.  

For df/dt IE, the iterative tuning algorithm has been also 
applied with lg = 0.5 pu, since this case was unstable according 
to Fig. 4 c). As shown in Fig. 5 c), the iterative tuning 
algorithm is able to enforce stability of the critical eigenvalue 
by modifying the gains of the active power controller and the 
reactive power controller. When stability of the mode λ1,2 from  
Table III has been ensured, the algorithm is also trying to 
reduce the settling time associated with the real eigenvalue λ5 
by reducing the proportional gain kpqac of the reactive power 
controller. However, this mode cannot be changed much, and 
it is limited how far towards the left the eigenvalues of the 
system can be forced. Since this case initially experienced 
stability problems only for high values of the grid inductance, 
the controller parameters resulting from the iterative tuning 
algorithm with lg = 0.5 are ensuring that the system will be 
stable with grid inductance below this value.  

B. Evaluation of Critical Modes and Time Response After 
Sensitivity-based Tuning 

For verifying the small-signal characteristics of the three 
different schemes with the controller parameters resulting 
from the iterative tuning approach, the eigenvalues with the 
updated parameters have been evaluated for the same 
conditions as in Table III. The results are presented in Table 
IV and confirm that the stability characteristics have been 
improved for the assumed grid inductance value of lg = 0.2 pu. 
Indeed, the results for the CCVSM show that the mode λ8,9 
which caused instability with the initial parameters and low 
grid inductance values is now well damped. Since it has a 
damping ratio of 0.7 and is not a critical mode anymore, it is 
marked with grey in the table. The real part of the slowest 
remaining oscillatory mode λ3,4, which correspond to λ1,2 in 
Table III, has also been reduced. Thus, the settling time of the 
system has been decreased. This can also be confirmed from 
the time domain simulation results presented in Fig. 6 a), 
which shows a faster and more damped response to an ideal 
step in the grid frequency.  

For the VCVSM, it can be noticed that one of the 
oscillatory modes has become marginally slower due to the 
retuning of the parameters for a case with high grid 
inductance. At the same time, the damping has been improved 
even if the real part of eigenvalue λ1,2 has been increased. The 
real part of one of the modes has also been reduced below 
−20, so that it is not included in Table IV. However, it can be 
noticed from the simulation results in Fig. 6 b) that the change 
of parameters and the improved damping of the eigenvalue 
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Fig. 4. Eigenvalue trajectory for change of grid inductance from lg = 0.05 pu (blue) to lg = 0.5 pu (red) 



 

associated with the inertial dynamics leads to a lower 
overshoot and smoother response in the active power flow. 
Thus, the more damped small-signal characteristics are 
limiting the ability of the control system to provide short-term 
inertial response to grid frequency variations.   

For the df/dt IE with lg = 0.2 pu, the real part of the critical 
mode λ1,2 has not changed much with the application of the 
iterative tuning algorithm. However, the damping is improved, 
and this mode is now prevented from causing stability 
problems within the investigated range of grid inductance 

values. It can also be noted that the slowest real eigenvalue λ1,2 
is slightly more negative than in Table III, indicating that the 
settling time of the system has decreased. However, the minor 
changes of the eigenvalues during operation with lg = 0.2 pu 
have no significant influence on the time-response of the 
system as can be seen from Fig. 6 c). Thus, the result of the 
updated parameters is mainly that the stability range of the 
system has been improved, while the transient response of the 
inertia emulation has not been significantly influenced.  

V. CONCLUSION  

Inertia emulation from power converters is expected to 
become important in future power systems with a low 
presence of physical inertia. This paper presented a 
comparative analysis of the small-signal dynamics of three 
control schemes intended for providing virtual inertia, a 
Current Controlled Virtual Synchronous Machine (CCVSM), 
a Voltage Controlled Virtual Synchronous Machine 
(VCVSM) and a strategy for frequency-derivative-based 
Inertia Emulation (df/dt IE). The results demonstrate that the 
three schemes could offer the intended performance over a 
wide range of operating conditions, if they are properly tuned. 
However, the df/dt IE scheme can be prone to stability 
problems for high values of grid impedance, while the 
investigated CCVSM can experience stability problems when 
operating in strong grids with low inductance. The VCVSM 
scheme was shown to maintain stable operation over a wide 
range of grid impedances. Finally, the paper presented the 
results from applying an iterative tuning procedure based on 
eigenvalue parametric sensitivity, aiming at enforcing stability 
and improving the time response of the system by shifting the 
eigenvalue with the highest real part towards the left in the 
complex plane. The procedure was shown to prevent stability 
problems for the df/dt IE at high grid inductance values and 

TABLE IV IDENTIFIED CRITICAL MODES AFTER ITERATIVE TUNING, WITH 

CORRESPONDING PARTICIPATING STATES AND DOMINANT PARAMETER 

SENSITIVITIES 
 

Modes with Re(λ) > 
−20 or ζ <8 % 

Main participating 
states (>0.05) 

Parameter 
sensitivities (max 5 

and >.2) 

C
C

V
SM

 λ1,2 
−18.82± j 

1.66 
φd, φq, vomq, vomd ls, −rs, kad, −kp,c, −ωad 

λ3,4 −2.67± j 6.10 δθVSM, κ, ωVSM, vomq ls, Ta, −rs

λ5 −6.00 q, d, ξ, φq, φd kp,c, -kq, ls,−kffv, −ki,c 
λ6,7 −6.63± j 0.20 ξ, d, q, vomd, φd, φq −kq, kp,c, ls, kp,v,−kffe 

 
λ8,9 

−898.0± j 
838.2 

ioq, iod, voq, icvd, vod, 
vomq, icvq 

rs, ls, −kpc, kad, −kffv  

V
C

V
SM

 

λ1,2 
−8.12 ± 
j15.06 

δθVSM, δθPLL, δωVSM, 
εPLL

−lv, kp,PLL, Ta, rv, −ki,PLL 

λ3 −6.29 q kpc, −kic 
λ4 −6.29 d kpc, −kic 

df
/d

t 

λ1,2 −16.22 ± j767 
vPLLq,io,d, io,q, vo,d, 

vo,q, icv,q 
kp,PLL, kp,pac, kp,c, kffv, 

−kad

λ3,4 
−19.02 ± 

j2.49 
φd, φq, εPLL, ρ 

kp,PLL, −kp,qac, kad, -kp,c, 
− ωad

λ5 −2.11 σ kp,qac, −kdrpq, −ki,qac

λ6,7 −3.82± j5.20 δθPLL, ωLPω, pacm, ρ NA
λ9 −9.89 voAm kdrpq, −ωvoa, −kp,qac

 λ10 −6.28 q, d, ωLPω kp,c,  ωLPJ, −ki,c 
 λ11 −6.28 ωLPω −ωLPJ
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Fig. 5. Eigenvalue trajectory and corresponding trace of modifiable parameters when applying sensitivity-based iterative turning for forcing the 

eigenvalue with the highest real part towards the left 



ensure stability of the CCVSM in strong grids. After re-tuning 
the controller parameters, reasonable dynamic performance 
could be ensured for the three schemes over a large range of 
grid inductance values, with well damped inertial response 
ensured by the df/dt IE and the VCVSM and as slightly more 
oscillatory response with longer settling time for the CCVSM. 
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Fig. 6. Time domain simulations from Simulink/SimpowerSystems with initial parameters and parameters from sensitivity-based iterative tuning  


