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Abstract

In this thesis we study time series containing pressure measurements from
a three phase flow pipeline at the Ekofisk oil field. The pipeline transports
a mixture of oil, water and gas from 15 wells for approximately 2.5km
to a production facility. Our aim is to develop techniques that allow the
selection and (to some extent) prediction of "non-standard" behavior in the
system (sharp pressure changes and other type of instabilities).

To advice this aim we perform a scalewise decomposition of the input
signal/time series and investigate the behavior of each scale separately. We
introduce the Sliding Window Wavelet Transform (SWWT) method. The
method evaluate the variability on different scales within the time interval
of a characteristic length (a window) and then trace these characteristics
as the window slides in time.

We use the discrete wavelet transform (DWT) in order to obtain the
scalewise decomposition within the window. Using orthonormal discrete
wavelets, we show that the variability of such sequences can be decomposed
into their corresponding scales.

Based on this, a thresholding algorithm is applied, characterizing the
state of the system any given time. The results we find are promising and
we show that different parameters in the thresholding algorithm extracts
different types of special events. We also show that in some cases, this
approach allows to predict special events before they really occur.

While we investigate one particular system in this thesis, the procedures
developed can be applied to other complicated systems where instability in
system parameters is important.





Sammendrag

I denne oppgaven studerer vi tidsrekker med trykkmålinger fra Ekofisk-
feltet i Nordsjøen. Målingene kommer fra transport (av en blanding med
olje, gass og vann) fra 15 brønner, gjennom en 2,5 kilometer lang rørledning.
Rørledningen ender på en produksjonsplattform, hvor olje, vann og gass
separeres. Målet med denne oppgaven er å utvikle teknikker som kan
oppdage og (til en viss grad) forutsi systemopprørsel som avviker fra det
normale (raske trykkforandringer og annen ustabil oppførsel).

Vi dekomponerer måledataene i komponenter på ulik skala for å
undersøke disse hver for seg. Vi introduserer så sliding window wavelet
transform (SWWT). Metoden måler variabiliteten på de ulike skalaene
innenfor et tidsinterval av en karakteristisk lengde (et vindu) og analyserer
hvordan den endrer seg over tid.

Vi bruker discrete wavelet transform (DWT) for å dekomponere signalet
avgrenset innenfor et slikt vindu. Ved å bruke ortonormale wavelet-
funksjoner viser vi at variansen til det avgrensede signalet kan dekompo-
neres med hensyn på skala.

Ved hjelp av disse redskapene definerer vi en thresholding−algoritme
som karakteriserer tidsintervaller hvor signalet er ustabilt. Vi oppnår gode
resultater. Blant annet viser vi at ulike parametere i algoritmen muliggjør
karakterisering av ulik systemoppførsel. Vi viser også at det i noen tilfeller,
er det mulig å forutsi hendelser før de inntreffer.

Selv om vi i oppgaven kun analyserer måledata fra et system, kan
metodene vi utvikler anvendes på andre systemer hvor variabilitet av
måledata er viktig.
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Notation
Wf(u, s) Wavelet transform of f
Wf(j, n) Discrete wavelet transform of f: s = 2j and uj = 2jn
f̂(ω) Fourier transform
SJ,L Sliding window wavelet transform (SWWT)
SBJ,L SWWT convolved with window B
Tα,δ Thresholding test with weighing α and threshold δ

V j Coarse scale j, see section 2.2.1
W j Detailed scale j, see section 2.2.1

ψ, ψp Wavelet function and its periodization over [0,1]
φ, φp Scaling function and its periodization over [0,1]
aj , dj Scaling and wavelet coefficients of scale j
apj , d

p
j Periodized scaling and wavelet coefficients of scale

j, obtained respectively with φpj and ψpj
ν2
j and ν̃2

j Wavelet and scaling variance on scale j

b ∈ `2 Sequence of length N = 2−J containing system measurements,
b[n] ≈ f(t0 + n), n = 1, . . . , N , for some initial time, t0

g(τ) = f(t0 +Nτ) Change of variable, obtaining τ ∈ [0,1] from t ∈ [t0, t0 +N], used
when relating b to scaling coefficient of a function

Xt0 ≡ (btm)p Notation used for periodized b, location in time is specified
V t0
j , W t0

j apj and dpj with t0 explicitly given s.t. b[n] ≈ f(t0 + n)

⟨f1, f2⟩A Inner product on A, A can be {L2(R), L2[0,1], `2}
f1 ∗ f2 Convolution between f1 and f2
f1 ⍟ f2 Circular convolution between f1 and f2
fp Periodization of f ∈ L2((R) to the interval [0,1]
fp Periodic extension of f ∈ L2[0,1] to R





Chapter 1
Introduction

In this thesis, we study time series containing measurements from a
complicated system. The main purpose is to detect and perhaps predict
time intervals with "non-standard" behavior of the system.

The particular system we will be analyzing is related to one of the
pipe lines at the Ekofisk oil field in the North Sea. In this system, "non-
standard", or special events, are periods of time where the system is not
operating with a stable pressure. We will come back to this later in the
text.

Being able to automatically detect special system behavior in general
can enable system operators to act faster when problems arise. As a
data analysis tool, system characterization based on time series could also
contribute to developing a better understanding about the problems and
the system as a whole. It could also give valuable insight on how to avoid
the problem in the future system designs.

Clearly, different types of systems demands a different approach,
implying that at least an informal understanding about how the particular
system functions is necessary. When a system has a certain level of
complexity, it can be virtually impossible to model it precisely. In such
cases, a statistical approach can be of great help. With such an approach
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2 CHAPTER 1. INTRODUCTION

it is natural to face the problem with a combination of empirical and
theoretical methods.

While this thesis investigate one particular system, the procedures
developed can be applied to other complicated systems where instability
in system parameters is important.

1.1 Available data

The amount of available data for analysis is growing rapidly in the oil
industry. However, the available data is not always clear cut, and there is
a present need for techniques that could extract vital information from the
huge amount of information.

The technology used in the North Sea is, and will for a long time remain,
a mix of new and old installations and wells, where the sophistication of the
instrumentation and the quality of measurements varies. This combination
of new and old systems makes the extraction of useful information harder.

Since most process data have some degree of noise, any good automatic
and self learning method that can detect state changes would be beneficial
for the mathematical and statistical analyses of the systems.

1.2 The system

As mentioned above, the data we will analyze in this text comes from
the Ekofisk oil field. This section describes in more detail the system our
datasets are measured from.

1.2.1 Ekofisk

Ekofisk is an oil field, operated by ConocoPhillips, in the southern part of
the North Sea. The production at the Ekofisk field began in 1971, making it
the oldest oil field in production on the Norwegian continental shelf. Since
then, the field has been under constant development.
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The operative parts of the Ekofisk Centre consists of several separated
facilities, see Figure 1.1 for an illustration. Our datasets come from the
pipeline routing production from the Ekofisk B platform, top left in the
figure, to the processing and production facility Ekofisk M, which is located
to the right of the "cluster" of facilities. For more information about Ekofisk,
see, e.g., [12].

Figure 1.1: Illustration of the Ekofisk complex. The Ekofisk B platform
is the top left platform of the illustration, while Ekofisk M is located on
the right hand side of the central cluster. The blue platforms are planned
installations, while the red are third party structures.
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1.2.2 Description of the system

The pipeline

The physical process our data is measured from is a three phase flow inside
a pipeline. Oil, water and gas enters the pipeline from 15 different wells
of Ekofisk B, and is transported approximately 2.5km inside this pipeline,
to the Ekofisk M facility, where the pipeline enters a high pressure (HP)
separator.

In the end of the pipeline between Ekofisk B and Ekofisk M, there is
located a slug control valve. The purpose of this valve is to limit the amount
of an unwanted phenomena called slugging. Slugs in the system result in
unstable flow. For a brief description of slugging, see section 1.2.3. We will
not go into any discussion about the slug control valve beyond its purpose.
Figure 1.2 shows a sketch of the system.

Figure 1.2: Sketch of the system our data comes from. The system output
comes from 15 wells at Ekofisk B. The three phase flow is transported to
Ekofisk M, through a 2.5km pipeline. At Ekofisk M, the flow is transported
up to the platform through the pipeline riser. Before the HP separator, the
pipeline goes through a slug control valve. See section 1.3 for a discussion
on the measure points.

Phase separation

The purpose of the HP separator is to separate the water, oil and gas that
is fed into it from the pipeline. This is an important process. The amount
of water in the processed oil is crucial and should be as low as possible.
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Water in the oil is unwanted, mainly because it can lead to corrosion and
other problems in subsequent processing systems. Because of this, it is
important that the separator functions optimally.

For the HP separator to work well, it is beneficial with a steady input
flow. An even input flow is unfortunately not the case in real life. As
mentioned above, the input from Ekofisk B originates from 15 wells. All of
these are usually in production. With 2.5km of unstable three phase flow
it is obvious that we are dealing with a system that is very hard to model
directly. In addition to the wells from Ekofisk B, wells of the Ekofisk M
platform are also being processed in the same separator, making a complete
analysis of the pipeline problems even harder.

1.2.3 Behavior of the system

We will now take a look at some of the different behaviors of the system.
Irregular flow is likely to reduce both the production quality and quantity,
and can in extreme cases cause system shutdowns [6]. Since irregular flow,
reflected by more rapid changes in pressure, is more likely to cause the
system to operate badly, we will consider such behavior special events in
the system. Figure 1.3 shows four examples of this occurring.

On the contrary, as already mentioned, the separation and production
process works best under stable input flow. We therefore say that on
intervals of time where we, loosely speaking, only observe small fluctuations
the system is in its ideal state. Figure 1.4 shows an example of this.

In reality, it is off course not this simple. There may be several different
good and bad states of a system and also different degrees of faulty behavior.
However, with the data we are given, we can only qualitatively distinguish
the different states and describe them with the information we actually do
have.

Slugging and special events

Since the system is quite complex, there can be several different causes
leading to unstable behavior. We will limit this discussion to one. We have
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Figure 1.3: Four examples of events in the data. All examples come from
the second dataset. The datasets are described in more detail in section
1.3. Top left: 25-26 September, top right: 6-7 November, bottom left: 27-
28 November, bottom right: 17-18 March, all in 2011.

already mentioned the phenomena above, namely slugging.
Slugging is one of the special events that regularly occur [6]. The

phenomena is characterized by a liquid blockage formed inside the pipeline.
This blocks the gas flow and leads to a build-up in pressure behind the slug.
When the pressure becomes sufficiently high, the gas forces itself past the
liquid block, creating instabilities in the system. Figure 1.5 illustrates the
phenomena. There are several different types of slugging, e.g. riser slugging
and terrain induced slugging. While the reason of their occurrence differs
slightly, the symptoms are pretty much the same.
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Figure 1.4: Left: Thirteen hour extract of the second dataset, see 1.3,
where the system is operating nicely. Right: The first few hours of the
same signal. Signal comes from 17 August 2011.

According to the company Neftemer - a company making products that
aims to reduce slugging - the current total loss caused by slugging worldwide
is approximately £6 billion per year. Neftemer also claim that slugging can
reduce production by up to 10% [11].

The platform operators do, in real time, notice the effects of slugs. Even
so, the occurrence of the phenomena is presently not recorded, since there
is no automatic procedure of detection. Being able to automatically detect
and also predict slugging in the system before it actually happens, could
therefore be valuable.

In the system discussed in this thesis there are not any good coun-
termeasures available for the operator today. A short term remedy is to
temporarily close down parts of the production. Although the system have
some tolerance for bad behavior, the resulting cost is unknown.

However, there are indications that actively responding to the system
could reduce the amount of slugging in the system quite a bit. Techniques
like automatic adjustments of the topside choke valve opening have been
implemented, yielding a positive impact [4, 5]. This further indicates the
possible value of our endeavor.
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Figure 1.5: Illustration of the occurrence of slugging in three phase system.
The dark colored liquid is water, the yellow liquid is oil and the white "fog" is
gas. The first image shows normal flow. In the second, a slug is formed and
the pressure behind it start increasing. In the last image the gas pressure
behind the slug is high and just about to force itself through. The images
are extracted from the short documentary "Laboratory Values" [14], made
by Sintef.
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1.3 Datasets

As mentioned earlier in this chapter, there exists a huge amount of
information available for analysis. The data which is most readily available
in general are pressure data from various points in the process. In addition
to the availability of these measurements, experience has shown that
the pressure measurements of our system is highly correlated with the
performance of the separation process. With these facts in mind, applying
our analysis on datasets of pressure measurements makes sense.

We are given three datasets, containing pressure measurements at the
points of the pipeline indicated in Figure 1.2. The three datasets are named:

1. EKOB pipeline pressure U S ESD
2. EKOM U S Slug EkoB riser vlv p
3. EKOM D S Slug EkoB riser vlv p

We will, for the most part, refer to these as respectively the first, second
and third dataset. The first dataset, EKOB pipeline pressure U S ESD, is
the pressure at the beginning of the pipeline leaving the Ekofisk B rig. The
second and third datasets, are the pressures in the same pipeline, arriving
at Ekofisk M, but before the HP separator. The second set, EKOM U S
Slug EkoB riser vlv p, consists of measurements just before the slug control
valve, briefly mentioned above, while the third set, EKOM D S Slug EkoB
riser vlv p is measured a few meters away from the second, but after the
slug control valve. Figure 1.6 shows an interval extracted from the three
datasets.

The average pressure at the first measure point is higher than at the
two others, while the second measure point has the second largest average
pressure. The average value of the three datasets are, respectively, 29.9,
25.7 and 19.7 barg (this is the average of all the available data). The fall
in pressure is off course expected. The fall between the first and second
dataset is mostly due to friction in the pipeline, while the difference between
the second and third dataset is due to the slug control valve. The difference
in pressure can be seen in Figure 1.6.
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Figure 1.6: Typical 48 hour extract of the three time series. First
dataset is black, the second dataset red, and the third dataset blue. Note
the difference in mean pressure between the three signals. The signal was
recorded between 15 and 17 February 2012.

Qualitatively, the second dataset has a higher amount of average
variation, or instability, while the third is usually more stable than the
others. Also this can be observed in the signal extracts in Figure 1.6.

Remark. Note that the above observations are based on the typical trend
of the signal overall, not on the extract of Figure 1.6.

Apart from the information in the three datasets, we do not have
information about any particular events. This means that we manually
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have to scan the datasets, looking for special events that can be of interest.
With the datasets spanning from 1 January 2010 to 6 March 2012, we

have more than 1.1 million data points for each of the three datasets. The
typical intervals we will be analyzing are on the timespan of between a few
hours to a few days. Further, the events occurring usually last between a
few minutes to a few hours. Keeping this in mind, we have an overwhelming
amount of data available. As we later note in section 2.6, this opens the
possibility for statistical optimization of the parameters in our algorithm
(we do not however carry out such an analysis in this thesis).

The sample frequency of the three data types is quite high with
respect to the scale we are interested in. Measurements are being done
approximately every second. However, only a fraction of this data is stored
and thus available for analysis. This is due to limitations in the current
control system. The stored data has an average, but not uniform, sampling
rate of approximately 40 seconds. In this text, we will convert the data
to minutely intervals. We come back to this preparation of the datasets in
section 2.7.

1.3.1 Example intervals

Different states

In Figure 1.7 we can clearly see three different behaviors, or states, of the
system. On roughly the first third of the interval, the system has a relatively
high variation, but does not contain big jumps or extreme values.

Then, the central part of the interval, the system seems to be behaving
in a nice and steady state. This behavior is what we associate with the
term ideal state.

At between 20:00 to 22:30 towards the end of the interval, we have
a slowly oscillating instability. We can observe big variation in pressure
changing slowly during this time. After, the system seems to jump back to
the state of the first part of the signal. We will get back to this extract of
the datasets later in the text.
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Figure 1.7: Time interval where the measurements vary from quite noisy,
to quite nice, before a big event occurrs at around 20:00 to 22:30 on the
last day of the interval. Note that the scales along the y-axes are not equal.
Extract from 10 to 12 October 2010

The slug control valve

We now briefly discuss the effect of the slug control valve. As mentioned,
the valve is situated between our second and third dataset and its purpose
is to reduce slugging and irregular behavior.

The effect of the valve can clearly be seen in both Figure 1.6 and 1.7.
The valve seems to be attenuating the oscillations of the second dataset.
We can still spot the unstable intervals in the third dataset, but it is not as
clear. Figure 1.8 shows an example where the unstable interval is merely
visible after the slug control valve.
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Figure 1.8: The irregularity on the centre of the interval is clearly reduced
through the valve. Irregularities are not always dampened as efficiently as
in this case. Extract from 7 to 9 January 2010.

1.4 Thesis structure

One of the goals of this thesis is to learn how to identify and analyze
different states of the system. Doing so, would give increased knowledge
of the system itself and could also make it possible to partly counteract
the unwanted changes in the system. Thereafter, the intention is to
investigate the possibility of predicting special events based on the newest
data available.

As mentioned, to pinpoint the cause of events is not our aim. We do not,
for instance, distinguish the effects caused by someone "pushing a button"
from the effects of special events.

In real life, these "false detections" would easily be associated with
changes done by the operator and thus safely overlooked. Therefore we
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only care about detecting that something is going on, and characterize the
behavior.

1.4.1 A brief overview

Our approach is based on the on the following understanding: In order to
detect special events within the signal, one has to analyze its components,
on various scales, rather than the signal as a whole. There are two types
of relevant time scales in our case: the scales corresponding to local and
global behavior.

The local scales will determine the characteristics of the time-frequency
decomposition, while the global scale determines the size of the window,
i.e., the size of the time-interval in which this decomposition is done. For
our particular problem, the global scale is approximately two hours, while
the local scales range from a couple minutes to roughly three quarters of
an hour.

With this approach we develop a Sliding Window Wavelet Transform
(SWWT) method that enables us to monitor the local variability of
multiscale coefficients, taken within a typical time interval (the global scale
from above). We evaluate the scalewise variance of these coefficients, while
the window moves along the time axis. The values of these variances are
used in order to indicate special events.

For convenience, we will distinguish between two cases: causal, when
the window location is attributed to the rightmost point of the window,
say t0, and non-causal, with the window centered around t0. In the
causal case, the transform does not, per definition, contain any "future
information", i.e., information occurring after t0. This is appropriate for
dealing with prediction of events. The non-causal alternative will be used
for characterizing past events from recored data.
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1.4.2 Description of the methods

Calculations within one window

In order to develop a multiscale decomposition within a window, we use
DWT. It is well adjusted to the discrete structure of the data, besides, the
orthogonality property simplifies the calculation of variances.

Additional advantage comes from the fact that one can use a variety of
numerical packages developed for DWT. We use the MATLAB package
WaveLab 850 for basic DWT operations. A collection of MATLAB
functions and scripts (built upon WaveLab 850 ) that implement the
techniques used in this thesis is also implemented.

We use the periodized wavelet transform with finite resolution and the
cascading databank algorithm to calculate DWT of a sequence. Once DWT
of a window is calculated, we use the orthogonality of the transform to
calculate the scalewise variance.

The sliding window

The SWWT truncates the dataset corresponding to the sliding window and
applies the the calculations described above in every window. From this
method, we obtain a trace of the localized variability on different scales
along the dataset, which we will base our analysis on.





Chapter 2
Mathematical background

In this chapter, we describe the mathematical background and also develop
necessary techniques. The chapter splits naturally into three parts. In
the first we describe the continuous and discrete wavelet transform for
functions f ∈ L2(R). In this part, we present the general theory. This
part consist of sections 2.1 and 2.2, presenting the continuous and discrete
wavelet transform.

The second part consists of section 2.3 and 2.4. Section 2.3 deals with
periodizing DWT in order to work with functions, f ∈ L2[0,1], with finite
domain. We associate a finite sequence of coefficients with a projection of
a function from L2[0,1] onto a space of finite resolution. In section 2.4 we
then define the wavelet variance of such sequences.

In the third part, section 2.5 to the end of the chapter, we define the
Sliding Window Wavelet Transform (SWWT). Based on this, we can to do
a time dependent analysis of variance on different scales along the datasets.
We finally define a thresholding algorithm to enable us to characterize
special behavior of the system.

We begin by describing wavelet and the discrete wavelet transform
(DWT) which is at the very heart of our algorithm, before introducing
discrete orthonormal wavelets in section 2.2.1. After periodizing the DWT

17
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and filter bank algorithm in section 2.3.1 and 2.3.2, we show how to
associate a finite sequence with the DWT of a continuous function. This is
done in section 2.3.3. Using these properties, we show that the variance of
a sequence can be precisely decomposed into information on the different
scales, using the wavelet variance, see section 2.4.

Section 2.5 introduce the time dependent SWWT, which is essentially
obtained by calculating DWT of signal extracts inside a moving window.
Section 2.6 finally introduce the thresholding algorithm, which we use in
order to characterize the signal.

2.1 The continuous wavelet transform

Wavelets is a relatively new tool in mathematical signal processing. During
the last couple decades, wavelet theory has been applied in many different
fields and have been proven to be very powerful. Some of its applications
worth mentioning are signal compression [16], singularity detection [8]
and denoising [2]. It has also been found to be useful in statistical
characterization of time series, e.g [13].

In contrast to Fourier analysis, where signals are decomposed into a
trigonometric basis, wavelet analysis decompose signals into a basis where
the basis elements are concentrated in time. While there only exists one
basis for Fourier analysis, there are multiple candidates in wavelet analysis.

Definition 2.1.1. A wavelet is any function ψ(t) ∈ L2(R), centered around
t = 0, satisfying

Cψ =

∞

∫

0

∣ψ̂(ω)∣2

∣ω∣
dω < ∞. (2.1)

This is usually called the admissibility condition for the wavelet, see, e.g.,
[7, 17]. Note that (2.1) implies

∞

∫
−∞

ψ(t)dt = 0.
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We also assume that ψ is normalized, i.e.,

∞

∫
−∞

∣ψ(t)∣2dt = 1.

Once a wavelet ψ is chosen, a wavelet basis is created by dilating and
translating ψ, yielding the following system of time-frequency atoms:

{ψs,u}u∈R,s∈R+ , ψu,s(t) =
1
√
s
ψ (

t − u

s
) .

The parameter s dilates the wavelet, while u translates it along the time
domain. The simplest example of a wavelet is the Haar wavelet, which is
defined by:

ψ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1, if − 1/2 ≤ t < 0
1 if 0 ≤ t < 1/2
0 otherwise.

Which gives us

ψs,u(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1/
√
s, if − s/2 + u ≤ t < u

1/
√
s if u ≤ t < s/2 + u

0 otherwise.

Three elements of the resulting Haar wavelet basis {ψs,u} are shown in
Figure 2.1. Figure 2.2 shows two other examples of wavelet functions.
These are of the form

ψ(t) = (−1)nθ(n)(t), (2.2)

where θ(n) is the nth derivative of the Gaussian. Note that these wavelets
does not in fact have compact support. They do however fulfill the
admissibility condition (2.1), and are therefore proper wavelets. The
wavelets defined by (2.2) are for instance very useful, for classifying signal
irregularities, see, i.e., [9]. We only consider compactly supported wavelets
from this point on.
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Figure 2.1: Illustration of the translation and dilation of the Haar wavelet.
The second and third plot shows a dilated, or compressed, version of the
first. The third subplot is a translation of the second.

Given a wavelet ψ and signal f , the continuous wavelet transform
(CWT) is given by:

Wψf(s, u) =

∞

∫
−∞

f(t)
1
√
s
ψ (

t − u

s
)dt =

∞

∫
−∞

f(t)ψs,u(t)dt.

The continuous wavelet transform has a well defined inverse and preserves
the L2-norm and is therefore stable, see e.g. [7], section 4.3. Figure 2.3
shows an example of CWT calculated on an extract from the first dataset,
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EKOB pipeline pressure U S ESD.

Figure 2.2: Wavelets on the form of (2.2). Top plot: The first derivative
of the Gaussian, Bottom plot: Second derivative of the Gaussian. The latter
is often called the mexican hat wavelet, because of its characteristic shape.

Applying the wavelet transform in any practical application forces us to
discretize the parameters s and t. When calculating the CWT of Figure 2.3,
we restricted the scales to s = 2j/v with v = 4 and the time to one minute
intervals, corresponding to the sampling rate of our data. In other words,
for every j, 211 values of the transform are calculated, and for every octave,
that is s ∈ [2k,2k+1), we calculate v = 4 scales. In the next section, we
introduce another discretization that yields the discrete wavelet transform.

2.2 The discrete wavelet transform

The discretization used in the calculation of Figure 2.3 is common when
numerically calculating CWT of a function. The resulting transform is
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(a) CWT using the first derivative of the
Gaussian

(b) CWT using the second derivative of the
Gaussian

Figure 2.3: Examples of CWT calculated on an interval of EKOB pipeline
pressure U S ESD. Black indicates positive coefficients, white negative and
grey corresponds to zero, or close to zero values. The signal was measured
between 17 to 19 March 2011.

highly redundant. In this section, we investigate a particular discretization
which enables an orthonormal representation of functions in L2(R).

If we choose to discretize using dyadic scales s = 2j in scale and uj = 2jn,
n ∈ Z in time, we get what is usually called the discrete wavelet transform
(DWT) [1, 7]:

Wψf(j, n) =

∞

∫
t=−∞

f(t)
1

√
2j
ψ (

t − 2jn
2j

)dt. (2.3)

Remark. Notice the difference between this discretization and the one we
used to approximate CWT. Here, the distance in time between the location
ofWf(j, n) andWf(j, n+1). This distance is greater on a scale j+1, then
on the scale j.
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2.2.1 Orthonormal discrete wavelet

We now show how to find wavelets ψ that create an orthonormal basis of
L2(R). We later see that this orthonormality is a very useful property for
our application. We follow the procedure of Mallat, [7], in this and the next
sections.

Definition 2.2.1. A multiresolution analysis (MRA) is a sequence of
subsets {V j}j∈Z ⊂ L2(R), satisfying

∀(j, k) ∈ Z2, f(t) ∈ V j ⇐⇒ f(t − 2jk) ∈ V j ,

∀j ∈ Z,V j+1 ⊂ V j ,

∀j ∈ Z, f(t) ∈ V j ⇐⇒ f(
t

2
) ∈ V j+1,

lim
j→∞

V j =
∞

⋂
j=−∞

V j = {0},

lim
j→−∞

V j = Closure(
∞

⋃
i=−∞

V j) = L
2
(R).

(2.4)

In addition there exists a function φ, called a scaling function s.t. {φ(t −
n)}n∈Z is an orthonormal basis of V 0.

Remark. The above definition can be generalized by requiring a Riesz basis
instead of an orthonormal basis. It is possible to create an orthonormal
basis from the Reisz basis (see for instance section 7.1 of [7]), so we assume
an orthonormal basis for convenience.

Given a MRA {V j}j∈Z with scaling function φ we get that {φj,n}n∈Z, where

φj,n(t) =
1

√
2j
φ(

t − 2jn
2j

) ,

is an orthonormal basis of V j for all j ∈ Z. Based of this, we
get the orthonormal projection of f onto any V j , given by: PV jf =
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∞

∑
n=−∞

⟨f, φj,n⟩φj,n. We introduce the notation: aj[n] = ⟨f, φj,n⟩. A change
of variables yields:

aj[n] = f ∗ φ̄j(2jn), where φ̄j(n) =
1

√
2j
φ(−2−jn).

The projection onto V j becomes:

PV jf =
∞

∑
n=−∞

aj[n]φj,n,

where aj[n] is a convolution. Since the convolution of two signals can
be computed quickly, using the fast Fourier transform (FFT), this is
convenient.

Quadrature mirror filter

We want to find a condition on φ that guarantees that the conditions of
(2.4) are satisfied. Observe that the third property of (2.4) implies that
2−1/2φ(t/2) ∈ V 1. The second property of the MRA also tells us that
V j+1 ⊂ V j , in particular V 1 ⊂ V 0. Hence, we can express 2−1/2φ(t/2) ∈ V 1,
using the basis elements {φ(t − n)}n∈Z of V 0:

1
√

2
φ(t/2) =

∞

∑
n=−∞

⟨
1

√
2
φ(t/2), φ(t − n)⟩φ(t − n)

This is called the scaling relation and is really a cornerstone of the theory
that follows. We define h[n] = ⟨ 1√

2φ(t/2), φ(t − n)⟩ and observe that

φ̂(2ω) = 1
√

2
ĥ(ω)φ̂(ω). (2.5)

Assuming that the φ̂ is continuous in the origin we obtain:

φ̂(ω) =
∞

∏
p=1

ĥ(2−p)
√

2
φ̂(0), (2.6)

by recursively substituting (2.5) into itself. A particular choice of h
guarantees that (2.6) is the Fourier transform of a scaling function.
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Definition 2.2.2. A quadrature mirror filter is a 2π-periodic function
h satisfying

∀ω ∈ R, ∣ĥ(ω)∣2 + ∣ĥ(ω + π)∣2 = 2.

From the above definition we see that quadrature mirror filters are
2π periodic. The following theorem from section 7.1 in [7] shows the
importance of such filters.

Theorem 2.2.1. Let φ ∈ L2(R) be a scaling function. Then the Fourier
series of h[n] = ⟨2−1/2φ(t/2), φ(t − n)⟩ satisfies

∣ĥ(ω)∣2 + ∣ĥ(ω + π)∣2 = 2, ∀ω ∈ R

and
ĥ(0) =

√
2.

Conversely, if ĥ(ω) satisfies (2.7) and (2.7), is periodic and continuously
differentiable in a neighborhood of ω = 0, then:

φ̂(ω) =
∞

∏
p=1

ĥ(2−p)
√

2

is the Fourier transform of a scaling function φ ∈ L2(R). If in addition
∣ĥ(ω)∣ is strictly positive for ω ∈ [−π/2, π/2], then the union of V j is dense
in L2(R).

It follows from the scaling relation that any scaling function is characterized
by a quadrature mirror filter h. The above also shows that φ̂(0) = 1,
indicating that

φ̂(0) =
∞

∫
−∞

φ(t)dt = 1. (2.7)

As earlier mentioned we only consider finitely supported wavelets in this
thesis. The following theorem, regarding the support of φ and ψ is used
later in the text:
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Theorem 2.2.2. The scaling function φ has a compact support if and only
if h, the quadrature mirror filter, has a compact support. In this case, their
supports coincide. If the support of g and φ is [N1, N2], the support of ψ
is [(N1 −N2 + 1)/2, (N2 −N1 + 1)/2].

The proof can be found in section 7.2 of [7].

Detail spaces

From (2.4) we know that V j is contained in V j−1. We now define detail
spaces by W j = V j−1 ⊖V j . This implies:

V j−1 = V L⊕
⎛

⎝

L

⊕
k=j

W k

⎞

⎠
, (2.8)

for all J ≤ L.

Remark. In the decomposition V j−1 = V j⊕W j , the space V j contains
the more "coarse" information, whileW j corresponds to the "finer details".
Therefore, equation (2.8) is a decomposition of the space V j−1 into a
coarse scale V L and multiple detail spaces, W k with k ∈ [j, . . . , L], each
containing details on scale 2k, justifying their name.

Orthonormal wavelet basis

Now we need bases {ψj,n}n∈Z which span W j for all j. Given a scaling
function φ and its corresponding quadrature mirror filter h we define ψ as
the function with Fourier transform

ψ̂(ω) =
1

√
2
ĝ (
ω

2
) φ̂(

ω

2
) ,

where ĝ(ω) = e−iωĥ∗(ω + π).
(2.9)

The inverse Fourier transform of ĝ yields g[n] = (−1)1−nh[1 − n]. It can
then be shown (see, e.g., [7]) that

ψj,n(t) =
1

√
2j
ψ (

t − 2jn
2j

) , n ∈ Z
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form an orthonormal basis {ψj,n}n∈Z of W j , for every scale j.
The following result from section 7.1 in [7] gives a necessary and

sufficient condition for ĝ to correspond to orthonormal wavelets ψ.

Theorem 2.2.3. {ψj,n}n∈Z created from (2.9) is an orthonormal basis of
W j for all scales j if and only if h and g satisfies:

∣ĝ(ω)∣2 + ∣ĝ(ω + π)∣2 = 2,
ĝ(ω)ĥ∗(ω) + ĝ(ω + π)ĥ∗(ω + π) = 0.

(2.10)

We now have the necessary tools to decompose any function f ∈ L2(R) in
orthonormal components of ψ.

Orthonormal representation

Given ψ, satisfying (2.9) with h and g satisfying (2.10), we now have
orthonormal bases for V j and W j , for all j. If we denote the coefficients
of the projections onto V j and W j by respectively

aj[n] = ⟨f, φj,n⟩,and dj[n] = ⟨f,ψj,n⟩,

the projections onto V j and W j are:

PV jf =
∞

∑
n=−∞

⟨f, φj,n⟩φj,n =
∞

∑
n=−∞

aj[n]φj,n,

PW jf =
∞

∑
n=−∞

⟨f,ψj,n⟩ψj,n =
∞

∑
n=−∞

dj[n]ψj,n.

We see that the coefficients aj[n] and dj[n] characterize the orthonor-
mal projection of f onto respectively V j and W j . Observe also that
∥PV jf∥

2
L2(R)

= ∥aj∥
2
`2 , and similarly ∥PW jf∥

2
L2(R)

= ∥dj∥
2
`2 .

Remark. We simply denote the sequences of coefficients aj[n] and dj[n]
by aj and dj , respectively, when discussing the coefficients of a projection
to the spaces V j or W j .
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Since the projections are orthonormal, the last condition of (2.4), combined
with (2.8) yields the following decomposition of energy:

∥f∥2
L2(R) =

L

∑
j=−∞

∥PW jf∥
2
L2(R) + ∥PV L

f∥2
L2(R)

=
L

∑
j=−∞

∥dj∥
2
`2 + ∥aL∥

2
`2 ,

(2.11)

for any f ∈ L2(R). This is the decomposition of the energy of functions f
from L2(R). Since we in applications we are working with finite signals, we
need to consider the corresponding decomposition of f ∈ L2[0,1]. This is
done in section 2.3.

Choice of orthonormal discrete wavelets

Different quadrature mirror filters lead to a different multiresolution
analysis and thus different wavelet functions. In this section, we briefly
discuss some of the possible properties these can have.

In contrast to the case of the continuous wavelet transform, the creation
of orthonormal discrete wavelet basis demands a very specific construction.
We use known filters, h and g, corresponding to orthonormal wavelet
functions in this thesis. For details on the construction of quadrature mirror
filters corresponding to orthonormal wavelet functions, see for instance
section 7.2 of [7].

A good choice of wavelet function, ψ, depends on the application in
which it is to be applied. The wavelet and scaling functions can have
several useful properties and characteristics. An example of this is wavelet
functions that yields sparse a representation of a signals of a particular
type, i.e., efficiently representing a function with relatively few coefficients.
This can for instance be exploited in signal compression and is one of the
main principles behind the still image compression standard jpeg 2000 [10].
A sparse transformation indicates that the chosen wavelet is able to extract
the characteristics of the signal.
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In section 2.3.4 we see that the support of φ, therefore the support
of h (by Theorem 2.2.2), affects the error incurred by assumptions in our
algorithm. Briefly summarized, the size of support affects the number of
biased wavelet coefficients. Therefore, we should not select a scaling filter
with large support.

Apart from the size of the support of the wavelet, the actual choice is
not crucial for the applications of this thesis. It is off course an advantage
that the shape of the wavelet can capture the characteristics of the signal
on the different scales. Keeping this in mind, we use the symmlet family
of wavelets. In particular we select the symmlet 4 wavelet and scaling
function, shown in Figure 2.4 (the number 4 indicates the order of ψ and
φ, see [7] for details).

Remark. Daubechies has shown, chapter 8 of [1], that the only symmet-
ric/antisymmetric discrete orthonormal wavelet is the Haar wavelet, shown
in Figure 2.1. The symmlet family of wavelets are constructed to be as
close to symmetric as possible. Because of this they are also known as the
least asymmetric wavelets.

Figure 2.4: Left plot: Symmlet 4 wavelet ψ, right plot: Symmlet 4 scaling
function . Note that the functions are indeed close to being symmetric.
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2.2.2 Filter bank algorithm

We now have an orthonormal basis for both V j and W j on every scale j.
Remember that the spacesW j are constructed, so that (2.8) always holds.
In this section we look at how PV j+1f and PW j+1f can be calculated from
PV jf , in other words how to decompose aj into aj+1 and dj+1.

Decomposition

The following theorem, by Mallat, shows how the coefficients of aj can be
used to calculate the coefficients of aj+1 and dj+1, so that:

PV jf =
∞

∑
n=−∞

aj[n]φj,n =
∞

∑
q=−∞

aj+1[q]φj+1,q +
∞

∑
q=−∞

dj+1[q]ψj+1,q.

Theorem 2.2.4. The sequences aj+1 and dj+1 are found by:

aj+1[q] =
∞

∑
n=−∞

h[n − 2q]aj[n] = aj ∗ h̄[2q],

dj+1[q] =
∞

∑
n=−∞

g[n − 2q]aj[n] = aj ∗ ḡ[2q].
(2.12)

Where x̄[n] = x[−n]. Also, given aj+1 and dj+1, we can reconstruct aj by:

aj[n] =
∞

∑
q=−∞

h[n − 2q]aj+1[q] +
∞

∑
q=−∞

g[n − 2q]dj+1[q]. (2.13)

The proof of the theorem can be found in section 7.3 of [7]. The theorem
states that we can calculate aj+1 and dj+1, simply by taking every second
value of the convolution of aj with respectively h̄ and ḡ. What really
happens in equation (2.12) is a downsampling of aj , into two smaller signals.
One, dj+1, containing the high frequencies of aj , the other, aj+1, containing
the low frequencies.

Equation (2.12) and (2.13), of Theorem 2.2.4, together make up what
is called the fast orthogonal wavelet transform, or, the cascade databank
algorithm [15].
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When we have done the decomposition (2.12) once, the decomposition
can be applied again, this time on aj+1. Repeating this process, we end up
with the following decomposition:

PV J
f =

L

∑
j=J+1

∞

∑
n=−∞

dj[n]ψj,n +
∞

∑
n=−∞

aL[n]ψL,n

=
L

∑
j=J+1

PW jf + PV L
f

(2.14)

for any initial projection of f onto V J and choice of integer, L.

Remark. Notice that the above equation has a finite resolution. In other
words: a finite number of scales j, J ≤ j ≤ L. For a representation of
f ∈ L2(R), let J Ð→ −∞ and LÐ→∞.

Figure 2.5 shows the projections, (2.14), of a test signal f from V −8, onto
V j , j = −8, . . . , −3, and W j , j = −7, . . . , −3. More precisely, the figure
depicts the periodized projections of a signal with domain [0, 1]. We discuss
the details of the procedure in section 2.3. The decomposition of functions
from L2(R) would look principally the same, along all of R. The wavelet
coefficients of Figure 2.5, on scales j = −7, . . . , −3 and scaling coefficients,
on the most coarse scale L, are shown in Figure 2.6.

2.3 Dealing with finite signals
Above, we have been considering signals f ∈ L2(R). In each step of our
calculations, we wish to deal only with the part of the signal located within
the given window. Thus we restrict to functions of finite domain.

Doing so cause problems related to the influence of the boundary
region. There are several ways to deal with this. The approach of this
thesis is periodization of the signal. In section 2.3.1 we describe the
periodization procedure and show that we can obtain an orthonormal basis
of L2[0,1]. Continuing, we see how the cascade databank algorithm should
be appropriately modified in section 2.3.2.
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Figure 2.5: Projection of a signal from V −8 onto subspaces V j and W j

as in (2.14). Top left: The original signal, top right: coarse approximation,
left column: projections onto detail spaces W j, right column: projections
onto coarse spaces V j. A projection in V j is the sum of the projections
in V j+1 and W j+1. Since the signal comes from V −8, the bottom right
plot contains the original signal. The test signal is available in Wavelab
.850 as msignal and was originally used in [9]. Symmlet 4 is used for the
calculations.

In numerical calculations, we usually have is a finite sequence of
coefficients that contain samples of a signal. Since the wavelet transform
operate on functions, we need to associate this finite sequence with the
projection of a function to a space of appropriate scale. We do this in
section 2.3.3. In section 2.3.4 we qualitatively discuss the error in numerical
calculations, due to the truncating (when initializing) and periodization.

2.3.1 Periodization of the transform

In applications we deal with functions defined on a finite interval, say [0,1]
for definiteness. Yet it is still convenient to prolongate it to the whole
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(a) ap
L, with L = −3

(b) dp
j for j = −7, . . . , −3.

Figure 2.6: The wavelet and scaling coefficients of msignal, shown in
Figure 2.5. The coefficients correspond to dpj , j = −7, . . . , −3 and apL, L = −3
of (2.14). apj and dpj are periodized scaling and wavelet coefficients and are
formally defined in section 2.3.2. The Symmlet 4 wavelet and scaling filter
was used for the calculation. The wavelet coefficients are scaled so that
maxj,k(aj[k]) = 1.



34 CHAPTER 2. MATHEMATICAL BACKGROUND

real axis, by taking the periodization. We need to transform the wavelet
basis elements {ψj,n}(j,n)∈Z2 from L2(R) into L2[0,1]. Given ψ ∈ L2(R),
we periodize ψj,n in the natural way, see, e.g., [7]:

ψpj,n(t) ≡
∞

∑
k=−∞

ψj,n(t + k) =
1

√
2j

∞

∑
k=−∞

ψ (
t − 2jn + k

2j
) .

For every j ≤ L ≤ 0 we then have 2−j basis elements in W j . Since ψpj,n is
only defined for j ≤ L ≤ 0, we also need the periodized scaling functions,
φL,n, on the most coarse scale L. We define φpL,n to be the periodization of
φL,n, defined like ψpj,n above.

The periodized discrete wavelet transform is:

Wψf(j, n) =

1

∫

0

f(t)ψpj,n(t)dt, (2.15)

where f ∈ L2[0,1] and the limits for j and n are given above. The
periodization of ψj,n is equivalent to periodically extending f over L2(R).
To see this, we define fp to be the 1 periodic extension of f , that is,
fp(t) ≡ f(t̃), t̃ = t mod 1, we then get:

Wψf(j, n) =

1

∫

0

f(t)ψpj,n(t)dt =
∞

∑
k=−∞

1

∫

0

f(t)ψj,n(t + k)dt

=
∞

∑
k=−∞

k+1

∫

k

f(u − k)ψj,n(u)du

=
∞

∑
k=−∞

k+1

∫

k

fp(u)ψj,n(u)du =
∞

∫
−∞

fp(u)ψj,n(u)du.

(2.16)

Remark. If f(0) is not equal to f(1), fp will clearly be discontinuous
at the boundary of the interval. This means that the periodized wavelet
coefficients ψpj,n with support outside [0,1] will be affected by the potential
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discontinuity. Figure 2.7 shows one such periodized wavelet ψpj,n with
support outside [0,1]. In fact, unless the function f and its derivatives
are periodic, the wavelet transform can detect an irregularity close to the
boundaries.

Figure 2.7: Example of a wavelet periodized over [0,1]. The wavelet ψ
depicted is the Daubechies 2 wavelet. The wavelet was created using Wavelab
.850 in MATLAB. The dashed line means that the wavelet is outside [0,1]
(and thus continues on the opposite side of the interval).

The following theorem, from section 7.5 of [7], states that periodized
wavelets, together with periodized scaling functions φpj,n, generate an
orthogonal basis of L2[0,1]:

Theorem 2.3.1. Given {ψj,n}(j,k)∈Z2, orthonormal wavelet basis of L2(R).
For any L ≤ 0,

[{ψpj,n}−∞< j≤L, 0<n≤2−j , {φ
p
L,n}0<n≤2−j]
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is an orthogonal basis of L2[0,1].

The above theorem states that the periodized discrete wavelet transform
(2.15) yields an orthonormal representation of functions f ∈ L2[0,1].

The projection of f ∈ L2[0,1] onto V J , using periodized wavelets
becomes

PV jfp(τ) =
2−j

∑
n=1

apj [n]φ
p
j,n(τ),

PW jfp(τ) =
2−j

∑
n=1

dpj [n]ψ
p
j,n(τ),

(2.17)

where apj and dpj are the periodic wavelet coefficients f ∈ L2[0,1],

apj [n] = ⟨f, φpj,n⟩, and dpj [n] = ⟨f,ψpj,n⟩.

The use of subscripted p’s, e.g., PV jfp indicates the use of the periodized
DWT applied on a function f ∈ L2[0,1].

In section 2.3.3, we project the functions to some finite scale resolution,
corresponding to the nature of the sampled data that is available. We
therefore consider such projections of f in the equations that follow. The
scale decomposition of periodized functions is:

PV J
fp =

L

∑
j=J+1

2−j

∑
n=1

dpj [n]ψj,n +
2−j

∑
n=1

apL[n]ψL,n

=
L

∑
j=J+1

PW jfp + PV L
fp,

(2.18)

for an integer L ≤ 0. The energy decomposition of the projection of f ∈

L2[0,1] onto V J is

∥PV J
fp∥

2
L2[0,1] =

L

∑
j=J+1

∥PW jfp∥
2
L2[0,1] + ∥PV L

fp∥
2
L2[0,1]

=
L

∑
j=J+1

∥dpj∥
2
`2 + ∥apL∥

2
`2 .

(2.19)
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The equations corresponding to (2.18) and (2.19), for functions from L2(R)

are (2.14) and (2.11).

2.3.2 Periodized cascading algorithm

We now look at how the cascading algorithm can be rewritten for periodized
functions and their corresponding periodized wavelet coefficients. Observe
that apj and dpj are now discrete, periodic filters of periodic length 2−j . As
in the above section, j ≤ L ≤ 0. By the same argument used in (2.16), we
can rewrite the coefficients in the following way:

apj [n] =⟨f, φ
p
j,n⟩L2[0,1] = ⟨fp, φj,n⟩L2(R),

dpj [n] =⟨f,ψ
p
j,n⟩L2[0,1] = ⟨fp, ψj,n⟩L2(R).

Remind that fp is a periodic extension of f ∈ L2[0,1] to the real line.
Inserting the sequences apj and dpj into (2.12) of Theorem 2.2.4, changing
to circular convolution, we see that the theorem still holds and:

apj+1[q] =
2−j

∑
n=1

h[n − 2q]apj [n] = a
p
j ⍟ h̄[2q],

dpj+1[q] =
2−j

∑
n=1

g[n − 2q]apj [n] = a
p
j ⍟ ḡ[2q].

(2.20)

Remark. Here, and in what follows, both the periodization and circular
convolution on the j’th scale will always correspond to a period of length
2−j .

For the periodized reconstruction, corresponding to (2.13), we first define,
for any sequence x ∈ `2:

x̌[q] =

⎧⎪⎪
⎨
⎪⎪⎩

x[m] if q=2m
0 if q=2m+1.

The above is simply an upsampling of x, inserting a zero between every two
samples, and doubling its length. Again, we change to circular convolution,
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obtaining:

aj[n] =
2−(j+1)

∑
q=1

h[n − 2q]apj+1[q] +
2−(j+1)

∑
q=1

g[n − 2q]dpj+1[n]

= ǎpj+1 ⍟ h[q] + ď
p
j+1 ⍟ g[q].

(2.21)

Implementations of the equations (2.20) and (2.21) are the main compo-
nents of computing DWT of a signal.

Remarks. 1) The calculation of DWT of a finite signal, using (2.20), is
very efficient. In fact, the computation of the transform is quicker than the
computation of FFT.

2) Other more complex, and actually more accurate, techniques for
dealing with the boundary issues are known, see, i.e., section 7.5 of
[7]. While other techniques can yield more accurate coefficients near the
boundaries, they come with a cost: They are both harder to implement and
have higher computational complexity, i.e., they are more computationally
expensive to calculate. As we later argue; the error due to periodization is
relatively small. More importantly, the sliding window, which we introduce
in section 2.5, further reduces the effect of the error.

2.3.3 Initialization

The last few sections showed how to calculate DWT of functions with finite
support in time, by applying a periodization procedure. As we pointed out
above, what we usually have when analyzing a signal is a sequence of signal
samples. In order to calculate the discrete wavelet transform based on these
coefficients, in any meaningful way, we need to associate these sequences
with a function, g, of which the DWT will be calculated. Note that we will
not need the function explicitly, but it is a formal necessity.

We will denote the sequence of sample data by b, such that b[n], n =

1, . . . , N denote the measured samples. Working with DWT, we have to
limit N to be of dyadic length, i.e., N = 2−J , for some negative integer J .
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We consider the periodized sequence

bp = {bp[n]}, bp[n] = b[n(modN)],

and directly associate this sequence with a function g ∈ L2[0,1], by

PVJ
gp(τ) =

2−J

∑
n=1

bp[n]φpJ,n(τ), τ ∈ [0,1]. (2.22)

By comparison with the first equation of (2.17) we see that bp now equals
apJ , the scaling coefficients on scale J , of the function g. This means that
calculating the DWT coefficients is a matter of applying the cascading
algorithm (2.20) on bp = apJ . Doing this recursively yields the wavelet and
scaling coefficients of g on the scales j = J + 1, . . . , L. We denote DWT of
PV J

g as a vector:

WψPVJ
g(j, n) = [aL ∣ dL ∣ dL−1 ∣ . . . ∣ dJ+2 ∣ dJ+1 ]. (2.23)

The intended interpretation of the above equation is explained in the
remark below.

Remark. In software libraries used for numerical computations of DWT,
the coefficients are often saved as a vector of length 2−J , equal to the signal
length. One such way, used for instance in Wavelab .850 [3], saves VL in the
first 2−L elements, [1, . . . , 2−L]. Thereafter Wj , j ∈ {L, . . . J + 1}, is saved
in the elements [1 + 2−j , 2−j+1]. Remind that J ≤ L ≤ 0 for finite signals.
Figure 2.8 shows the vector containing the coefficients from Figure 2.6.

This is (one of) the standard ways to numerically calculate the wavelet
transform. The above initialization, where we associate the elements of
b with the periodized scaling coefficients of a finite function, leads to
additional error. We discuss the error due to initialization after considering
the error due to truncation in the next section.
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Figure 2.8: The same scaling and wavelet coefficients as in Figure 2.6
stored in vector form. See (2.23) and the remark below it for explanation.

2.3.4 Estimate of error

In this section, we discuss the error related to performing DWT within
a single fixed window. Note that the effect of the error discussed in this
section is reduced in our final algorithm. We discuss this in section 2.5.5.

There are two main sources of error in our calculation of DWT. The
first comes from truncating the sequence aJ = {aJ[n] }

∞
n=−∞ by considering

the subsequence {aJ[n] }
2−J

n=1, for some negative integer, J . The second
error comes from periodizing this truncated sequence, yielding apJ . This is
essentially what we implicitly do in section 2.3.3.

Since we are considering the error induced by our method and not the
error of the measurements, we ignore measurement and interpolation error
of the original data.
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Error due to truncating

We remind that the samples corresponds to a discrete sampling of a "real"
signal, in our case the pressure measured at some point of the system. In
order understand the numerical calculation of DWT, it is convenient to
think of the originating function that the data is sampled from. Given the
sequence, b of length N = 2−J , we can assume

b[n] ≈ f(t0 + n), n = 1, . . . , N,

where t0 is some initial time of the physical system. The function f have
to be scaled, so that f(t) and f(t+n) are located n sample units from each
other. Since our data has minutely measurements, a change in time of n
units simply corresponds to n minutes.

If we fix k, we know that the sample b[k] is an averaging of f around
t0 + k, so we can assume

b[k] ≈

∞

∫
−∞

f(t)φ (t − t0 − k)dt,

where φ is a normalizedmasking function localized around zero. We assume
that the mask function generates MRA, see (2.4), in other words that φ is a
scaling function. Since scaling functions satisfy (2.7), this is an appropriate
assumption.

We rescale the original function so that the interval containing the
samples, [t0, t0 +N], is scaled to [0,1]:

g(τ) =
√

2−Jf(t0 +Nτ).

Then

b[n] ≈

∞

∫
−∞

g(τ)φJ,n(τ)dτ = aJ[n], n = 1, . . . , N, (2.24)

where
φJ,n(τ) =

1
√

2J
φ(

τ − 2Jn
2J

) .
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Having only a finite sequence of coefficients, we will deal with the truncated
projection

P̃V J
g(τ) =

N

∑
n=1

aJ[n]φJ,n(τ) ≈
N

∑
n=1

b[n]φJ,n(τ), (2.25)

which is concentrated mainly on [0,1]. Note that P̃V J
g is not equal to the

projection PV J
g close to τ = 0 and τ = 1, but yields an error. To see this,

remind that the projection is given by

PV J
g(τ) =

∞

∑
n=−∞

aJ[n]φJ,n(τ).

Assuming suppφ ⊆ [−C,C], yields

suppφJ,n = [
n −C

N
,
n +C

N
] . (2.26)

We are only interested in the projection on τ ∈ [0,1]. We see that the
coefficients affecting PV J

g ∣τ∈[0,1] are aJ[k] where k satisfies −C ≤ k < N+C.
This yields

PV J
g(τ) =

N+C−1
∑
n=−C

aJ[n]φJ,n(τ)

≈
N

∑
n=1

b[n]φJ,n(τ)

+
0
∑

m=−C

N+C−1
∑

m=N+1
aJ[m]φJ,m(τ), τ ∈ [0,1].

The error from truncating the sequence is

Et = ∥PV J
g − P̃V J

g∥L2[0,1]

≈ ∥ ∑
k∈At

aJ[k]φJ,k∥L2[0,1]

< ∥ ∑
k∈At

aJ[k]∥`2

(2.27)
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where At = {−C, −C+1, . . . , 0, N+1, . . . , N+C−1} is the set of k satisfying
suppφJ,k ∩ [0,1] ≠ ∅. The inequality of the last line is due to the fact that
parts of φJ,k lie outside [0,1]. In fact, a relatively big part of the basis
elements lie outside the interval, implying that the last estimate is quite
rough.

As an example, we use the Symmlet 4 scaling function, see Figure 2.4,
and set J = −7, i.e.,N = 27. The quadrature mirror filter of the Symmlet
4, shown in Figure 2.9, has eight elements. By Theorem 2.2.2 we know
that C = 4, yielding that At has 8 elements that contribute to the error.
From the above discussion, we know that only a portion of their energy
contributes to the error. With a total of N = 128 coefficients, the relative
error is quite small.

Remark. It can off course occur that the coefficients aJ[k], k ∈ At are big
compared to the coefficients that lie inside [0, 1]. This would off course
increase the error due to the truncation. The sliding window, mentioned
earlier in the text, will decrease the effect of this error.

Error due to periodization

We now consider error due to periodizing the truncated sequence. In other
words, the error introduced by using (2.22) to approximate (2.25).

Like in the above discussion, we consider f ∈ L2(R) where τ ∈ [t0, t0 +
2−J] is the area of interest. Scaling f , as we did in (??), we obtain g. We
compare the projections P̃V J

g and PV J
gp:

Ep = ∥
2−J

∑
n=1

aj[n]φj,n − a
p
J[n]φ

p
J,n∥

2
L2[0,1] = ∥

2−J

∑
n=1

aj[n] − a
p
J[n]∥

2
`2 . (2.28)

Clearly suppφJ,k ⊂ [0,1] implies φJ,k(τ) = φpJ,k(τ), τ ∈ [0,1]. If we assume
suppφ ⊆ [−C,C] (like in the discussion of truncation error), (2.26) yields
that

aJ[k] = a
p
J[k], k = C + 1, . . . , N −C.
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Figure 2.9: The eight quadrature mirror filter coefficients, h, for the
Symmlet 4 scaling function. The corresponding scaling function is shown
in Figure 2.4.

Equation (2.28) then simplifies to:

Ep = ∥ ∑
k∈Ap

aj[k] − a
p
j [k]∥

2
`2 . (2.29)

Above, Ap = {1,2, . . . , C, N −C +1, N −C +2, . . . , N} is the set of indices,
k, where aJ[k] = apJ[k]. This means that 2C elements are biased and
contribute to the error. If N = 2−J is sufficiently big, the relative number
of coefficients that does not coincide is small.

As an example, we again use the Symmlet 4 scaling function, see Figure
2.4. The quadrature mirror filter for this scaling function has 8 coefficients,
see Figure 2.9. This means that C = 4, implying that only 8 out of 128
coefficients, that is 6.25%, are biased.

Remark. Studying Figure 2.9, we see that 3 out of the 8 coefficients are
dominant. When the smaller coefficients lie outside the boundaries of the
sequence, the error they yield is relatively small. This improves the estimate
further.
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Total error

We now discuss the total error due to the truncation and periodization.
Selecting b from a larger dataset is essentially equivalent to truncating
an infinite sequence of measurements. By (2.24), the coefficients b[k] are
approximately aJ[k], for k = 1, . . . , N . Thus the error due to truncation is
Et. Similarly, having the finite sequence b, the error due to periodizing it is
Ep.

The total error can be estimated by comparing the original function,
necessarily projected onto V J , PV J

g, with the function we base the
calculation of DWT on, PV J

gp, on the interval [0,1]. The resulting error
is:

E = ∥PV J
gp − PV J

g∥L2[0,1]

≤ ∥PV J
gp − P̃V J

g∥L2[0,1] + ∥P̃V J
g − PV J

g∥L2[0,1]

= Ep + Et,

where Et and Ep are given by (2.27) and (2.29).

2.4 Wavelet variance

In this section, we will show how the above theory can be used to
decompose the variance of a sampled signal into a scalewise variance. Using
orthonormal wavelet and scaling functions, we show that the variance can
be decomposed into components corresponding to the scales of DWT.

Signal variance

In what follows we do not distinguish between the finite sequence X and
its natural periodization. Remind that the estimated variance of a discrete
sequence X, of length N , is

V ar(X) =
1
N

N

∑
n=1

(X[n] − X̄)
2
=

1
N

∥X∥
2
`2 − X̄

2, (2.30)
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where X̄ denotes the mean of the sequence. Having the sequence of samples
b[n] = f(t0 + n), n = 1, . . . , N, N = 2−J for some initial point t0, we fix
X[n] = bp[n].

Like in section 2.3.3, we associate bp with a function g ∈ L2[0,1] by
(2.22). Then bp corresponds to the periodized scaling coefficients of g on
scale J . Using the periodic cascading algorithm, we calculate the wavelet
and scaling coefficients on scales J +1, . . . , L with L ≤ 0. By (2.19) we have

∥X∥
2
`2 = ∥bp∥2

`2 =
L

∑
j=J+1

∥dpj∥
2
`2 + ∥apL∥

2
`2 , (2.31)

which inserted into (2.30) yields

Var(X) =
1

2−J
⎛

⎝

L

∑
j=J+1

∥dpj∥
2
`2 + ∥apL∥

2
`2
⎞

⎠
− X̄2. (2.32)

This motivates the following definition of the wavelet variance, on scale j,
of a signal of dyadic length N = 2−J :

ν2
j =

1
2−J

∥dpj∥
2
`2 ,

and the corresponding scaling variance:

ν̃2
j =

1
2−J

∥apj∥
2
`2 .

The above definition of wavelet variance corresponds to the definition of
Percival, see, e.g., [13]. Inserting the two expressions into (2.32), yields the
wavelet decomposition of variance:

V ar(X) =
L

∑
j=J+1

ν2
j + ν̃

2
L − X̄

2.

We can now decompose the variance of a sequence into the components
corresponding to behavior of different frequencies.

Figure 2.10 shows an example of this on two artificial signals. While the
signals are clearly of a different nature, they have the same signal variance.
In the figure, we see that the wavelet variance captures the different nature
of the signals.
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Figure 2.10: Example of the decomposition of wavelet variance on
two artificial signals. The signals are the sums of two sine functions
with different frequencies. The sines of the first signal have 10 and 30
oscillations on [0,1], while the second have 5 and 100. For both signals
N = 210, implying J = −10, and the variance of the two signals are the
same. The two bottom plots shows the wavelet variances of the signals
on scales j, J = −10 < j ≤ L = −3. The different variance captures the
different oscillations well. The scaling variance is of little interest to us
and is therefore not included in the figure.



48 CHAPTER 2. MATHEMATICAL BACKGROUND

2.5 Sliding Window Wavelet Transform

In the last section, we dealt with signals restricted to a single, large scale
window. We obtained local characteristics (wavelet variance) of the window
content. We now wish to investigate the state of the system with respect
to time. In order to do this, we introduce a sliding window and observe
how these local characteristics change in time.

We fix J ≤ L ≤ 0 and consider

btm[n] ≈ f(tm + n), n = 1, . . . , 2−J ,

with tm = t0 +m. We explicitly indicate the location of the window since
the position in time now is quite central. We denote the periodization of
btm by:

Xtm = (btm)
p. (2.33)

As in section 2.4, we do not distinguish between Xtm and its natural
periodization. We can now apply the techniques from section 2.3.3 on
Xtm for all m. To denote the wavelet and scaling coefficients of Xtm , we
introduce the notation

W tm
j [n] =dpj [n], j = J + 1, . . . , L

V tm
L [n] =apL[n],

where dpj , j = J + 1, . . . , L and apL are calculated using (2.20) with the
initial coefficients Xt0 = (btm)p. This leads to the time dependent wavelet
and scaling variance

ν2
j,t0 =

1
2−J

∥W t0
j ∥

2
`2 , and ν̃2

j,t0 =
1

2−J
∥V t0

j ∥
2
`2 .

The decomposed signal variance of Xtm is then

V ar(Xtm) =
L

∑
j=J+1

ν2
j,tm + ν̃2

L,tm − (X̄tm)
2.
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2.5.1 Sliding window wavelet transform

Fix J ≤ L ≤ 0 and some initial position in time, t0. Given {Xtm}Mm=0, for
some integer M , where Xtm is given by (2.33), the sliding window wavelet
transform (SWWT), SJ,L ∶ R2−J

Ð→ RL−J , is

SJ,LX
tm = (ν2

J+1,tm , ν
2
J+2,tm , . . . , ν

2
L,tm) , m = 0, . . . , M.

Note that ν̃2
L,tm

is not included in SJ,L. This is because we are not interested
in scales more coarse than L. When J and L are fixed, we will omit them
in the notation.

Figure 2.11 shows the result of applying the sliding window operator on
the data from the first dataset of Figure 1.6. In the figure, J = −7, L = −3.
Notice that the green and yellow scales (the two most detailed) "notice"
something at 21:00 in the beginning of the interval, while the higher scales
do not. On the big oscillation between 18:00 and 21:00, in the middle of
the interval, also the two most coarse scales feel something going on. We
use this phenomena to characterize different events in section 2.6.

2.5.2 Smoothening SWWT

The values of SXtm will often fluctuate around a local trend as the
window moves in time. This makes the thresholding algorithm, defined
in section 2.6, unstable. To obtain more stable values we apply a scalewise
smoothening on the output of S. Let B be a sequence representing a
rectangular window of length l with ∑ln=1B[n] = 1. The smoothened sliding
window wavelet transform is:

S
BXtm = (ν2

J+1,tm ⋆ B, . . . , ν2
L,tm ⋆ B) ,

where we only use the central part of of the convolution (of size M). We
will always apply this convolution below. The smoothening of SXtm in
Figure 2.11 is shown in Figure 2.12 (the first two plots).
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Figure 2.11: Top subplot: The first dataset of the extract shown in Figure
1.6, Bottom subplot: SWWT of the above signal. Notice that the values
of the wavelet variance fluctuates quite a bit from one point to the next,
especially within the chaotic area between 18:00 to 21:00 towards the end
of the signal. We smoothen these lines, obtaining a more stable, localized,
trend in section 2.5.2, see Figure 2.12

2.5.3 Position of the sliding window

When we defined Xtm above, we related the coefficients to f by Xtm[n] =
f(tm + n), n = 1, . . . , N . In other words the window is located to the right
of tm. In numerical applications, other conventions are be more convenient.
The window is moved appropriately by substituting tm with tm +∆J , for a
suiting integer ∆J .

When we wish to characterize events, we center the window around
tm, so that SBXtm is based on a symmetric window around t0. When we
investige the possibility of predicting events, we locate the window to the
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left of tm, obtaining a causal transform (indicating that the transform only
depends on past and present data to calculate SBXtm).

2.5.4 Choice of scales

This far, we have not discussed the relationship between the scales of the
wavelet transform and the physical scale it corresponds to. The parameters
affecting the relationship are the sampling rate of the measurements, the
window size N = 2−J and choice of wavelet/scaling function. We consider
our system in particular in the discussion below.

Fix k and J . Then Xtk ≈ atkJ , by (2.24). The scaling coefficients,atkJ , are
obtained with: φJ,n, n = 1, . . . , N . Minutely sampling rate and the symmlet
4 scaling function yields that these scaling coefficients have a main support
∼ 3 minutes (by the arguments of section 2.3.4).

Applying the cascade databank algorithm, Xtk is split in two: W tk
J+1

and V tk
J+1. The former contains the details of Xtk on scales ∼ 3 minutes,

while the latter contains scales ∼ 6 minutes and all more coarse scales.
Repeating the procedure, W tk

J+2 contains the details on ∼ 6 minute scales,
V tk
J+2 contains ∼ 12 minutes and everything more coarse and so on. Thus

the wavelet coefficients on scale j, J < j ≤ L contain details on the scale
∼ 3 ⋅ 2j−J−1 minutes.

We add the restriction L < 0. There are several arguments for this, one
being that the biased interval grows as we increase j (while, however the
relative error on the biased interval declines). This is outside the scope of
this thesis and we do not discuss it any further and set a provisional upper
boundary of L to be −3. This is possibly artificially strict.

The choice of J decides the the global scale, e.g., the number of
coefficients inside the window. The relationship between wavelet scale
and global scale is independent of the numerical value, but the size of the
window is, off course, affected. With a large number of elements in Xt

m,
SWWT will become less sensitive to changes in time. On the other hand,
a short short window will limit the number of scales in the analysis and
will lack the wanted averaging (needed to obtain the localized trend), and
thereby also be very sensitive to small signal changes.
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Figure 2.12 shows a comparison of SBJ,LXtm with J = −7, L = −3 and
J = −6, L = −2, using the same extract, Xtm , as in Figure 2.11. The latter
do seem to give a more localized characterization and also captures the
same behavior as the former. However, it violates our upper boundary for
L. With J = −8 we get a global scale of over four hours and the resulting
SWWT gives less information than with J = −7. Unless anything else is
specified, we use J = −7, L = −3 in what follows.

2.5.5 SWWT’s effect on error

Fix k. The calculation of SBXtk then corresponds to calculating the wavelet
variance of a single sequence Xtk . In section 2.3.4 we discussed the error
due to the truncation and periodization of Xtk . Naturally, this error yields
an error in wavelet variance. This is true for every k, indicating that SBXtm

is somewhat biased for all m.
However, we assume that the spread around the average error is small.

This implies that even if the computed values are not exact, they are
quantitatively correct. In other words: when moving along in time, the
effect of the error efficiently becomes smaller.
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Figure 2.12: SWWT after smoothing with two different choices of J and
L. The top pair shows the result when using J = −7, L = −3, the bottom
pair shows J = −6, L = −2, i.e., we are considering the same physical scales.
Notice that the detected events of the latter are better localized, but has
L = −2. The signal extract is the first dataset of Figure 1.6.
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2.6 Thresholding algorithm
Using SWWT, defined in the last section, we can now define a thresholding
algorithm, indicating whether the signal is stable or not.

Given a dataset containing measurements from the system on the
interval of interest, fix J ≤ L < 0. Fix an initial point t0 and an end
point tM = t0 +M . Using the notation from the last section, Xtm contains
2−J measurements related to tm in one of the ways discussed in section 2.5.3
(either with tm in the middle of end of the window).

We denote the output of the (smoothened) SWWT at time tm,
i.e., SBXtm , by the column vector Sm = (ν2

J+1,tm , ν
2
J+2,tm , . . . , ν

2
L,tm)

T .
With weighting coefficients α = (αJ+1, αJ+2, . . . , αL), the thresholding
coefficients are:

α ⋅ Sm =
L

∑
j=J+1

αjν
2
j,tm , m = 0, . . . , M.

The threshold value δ ∈ R, leads to the thresholding test

Tα,δ[m] = Tα,δ (Sm) =

⎧⎪⎪
⎨
⎪⎪⎩

0, if α ⋅ Sm < δ

1, if α ⋅ Sm ≥ δ.

The thresholding test indicates whether a weighted sum of the local
variability is higher than some prescribed value, δ.
Remark. The developed thresholding algorithm is appropriate for real
time surveillance of a system. Assume that we use a causal window and that
Tα,δ[m] is known for 0 ≤ m < M before the value at time tm is measured.
When we know tm, we only need to calculate Tα,δ[M], using XtM , which
is then added to the already known measurements.

2.6.1 Algorithm parameters

The idea is that by choosing appropriately parameters α and thresholding
value δ, different characteristics of the signal can be detected. More
specifically, we can characterize the signal based on its local variability
on different scales.
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Example

Figure 2.13 shows Tα,δ of the signal extract shown in Figure 2.12, with two
different α. We set J = −3, L = −3. In the figure, α1 = [1, 1, 0, 0], and
α2 = [0, 0, 1, 1]. In other words, the first figure extracts details on a small
scale, the second on a larger scale. The threshold levels are the same in
both cases: δ = 0.05, δ = 0.1, δ = 0.25. Note that the first result successfully
captures the ares that have high frequent oscillations and the second only
captures the event with the larger time scale. An explanation of the plots
follow.

Explanation of the thresholding test plot

The first subplot shows the input signal. The second subplot of the figures
show the value of α ⋅ Sm (solid line) and it’s components:

αJ+1ν
2
J+1,tm , αJ+2ν

2
J+2,tm , . . . , αLν

2
L,tm

(the grey dashed lines) with respect to tm. The horizontal lines represent
threshold values δ.

The third subplot of the figures plots Tα,δ[m] with respect to m for the
values δ. The colors in the third plot correspond to the colors of the vertical
lines on the second. When Tα,δ[m] ≥ 0, it is indicated with a filled box.
The higher boxes correspond to higher thresholds. The threshold values δ
in the results are denoted by T in the legend box.

Parameter values

An appropriate choice of α and δ depends on the nature of the input signal.
All three datasets analyzed in this thesis require different parameters (due
to the differences in their variability). In addition, the average overall
variability of the three time series is not constant over time, further
complicating the matter. However this change of average variability occurs
only a few times over a timespan of more than two years, so it is likely that
system changes are the cause of this.
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Figure 2.13: The result of the thresholding algorithm applied on the extract
in Figure 1.6, first dataset, with J = −7, L = −3. For the first calculation
α1 = [1, 1, 0, 0], while for the second α2 = [0, 0, 1, 1]. The threshold values
δ are denoted by T in the plot. An explanation of the plots is given in the
text.
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In the results presented in this thesis, the parameters are chosen
manually, based on SWWT on the relevant interval of data. An automatic
process for choosing these parameters, for instance based on statistical
analysis, could be investigated.

2.7 Time series preparation
In section 1.3 we mentioned that the three datasets from our system, while
being sampled every second, is stored roughly every forty second. The
sampling rate of this data is not uniform, and large gaps in the data is not
uncommon. The signal is fitted minutely intervals in the following way:

1. Every measurement is fitted to whole minutes. If there are multiple
measurements within one minute, the average value is used

2. If there is no measurement on a given minute, the last available value
is used

When the control system receives several data points where the change in
the data is very small, its compression algorithm ignores the data. This
justifies the second rule above. However, it can happen that data is actually
missing over large intervals in time. We have tried to avoid such intervals
in our examples.

The first rule in our dataset preparation can clearly yield signal samples
that are not correct, but with no better data available, we are not left with
much choice.

Remarks. 1) The data received from ConocoPhillips have already been
fitted to minutely observations.

2) As we have mentioned, the limited sampling rate of the stored data
is due to limitations of the control system. A newer control system, with an
increased bandwidth, will increase this rate. At Ekofisk, there are plans to
replace the control system, during 2013. This could improve the resolution
of our algorithm, enabling analysis on finer scales.





Chapter 3
Results

In this chapter we present some examples that illustrate typical results
achieved using the methods developed in this thesis.

All calculations are done on the Ekofisk time series described in section
1.3 and use the Symmlet 4 wavelet and scaling filter.

3.1 Detection and signal characterization

The characterization of different irregular behavior of the system, based
on an analysis of the time series, was the initial goal of this thesis. The
example shown in section 2.6.1 indicates that our method achieves this.
In what follows, we consider a few more examples that indicate that our
approach is successful. When we calculate SSWT in this section, we use
a centering of the window, i.e., the samples in Xtm are centered around
tm. The parameters α and δ are chosen manually, based on SWWT of the
signal extract.
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Example 1

In section 1.2.3 we pointed out that Figure 1.7 contains three obviously
different types of behavior. We now try to extract the time intervals
containing the different behaviors. We apply SWWT and the thresholding
algorithm to the second dataset.

We use J = −7 and L = −3 and calculate SBXtm , shown in Figure
3.1. Observe that the most coarse scale practically only detects the event

Figure 3.1: SWWT of the second dataset on the interval shown in
Figure 1.7. The scales are put in separate subplots in order to study them
independently. The calculations use J = −7 and L = −3. The first plot shows
the signal, while the rest represent the wavelet variance of the different
scales, along the signal.
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between roughly 20:00 and 22:00, while the chaotic behavior in the very
beginning and end of the signal is captured in the more detailed scale. We
calculate Tα,δ with parameters α1 = [1,1,0.5,0] and α2 = [0,0,0,2] and
δ = {1,2,3} (the latter are indicated by T in the figure). The result is
shown in Figure 3.2. The algorithm successfully extracts the two wanted
types of behavior we expected it to. Observe that the localization of the
events is quite good.
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Figure 3.2: Results of the thresholding algorithm applied on the extract of
Figure 1.7 (second dataset). The parameters of the first results are α1 =

[1,1,0.5,0] and the second α2 = [0,0,0,2] Threshold values are δ = {1,2,3}
(indicated by T in the figures). As expected, variability on high frequencies,
i.e., small scales, are detected in the first, and variability on low frequencies,
large scale, in the second.
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Example 2

From experimenting with different time intervals, it generally seems that
the the third dataset is harder to analyze than the first and second. We
are however still able to gain some information from it.

The following example applies our procedure on the third dataset of the
signal extract of Figure 3.3 (the same extract, second dataset, is shown in
Figure 1.3, section 1.2.3). The information from the thresholding algorithm
with J = −7 is in this case very limited. We therefore try the procedure
with J = −6 and L = −2. The result is shown in Figure 3.4.

Figure 3.3: Dataset used in example 2. Signal extracted from 25 to 26
September 2011. This is the interval of the first example in Figure 1.3.

We choose to analyze the most detailed and the most coarse scales:
α1 = [10, 0, 0, 0] and α2 = [0, 0, 0, 10] and δ = {0.2, 0.4, .7} (notice the
high values of the weighting parameters). The results of Tα,δ are shown in
Figure 3.5.

From the first result shown in Figure 3.5, we observe that the sightly
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more chaotic interval of the extract, between 03:00 and 14:00 is marked. In
the second result we also observe that the areas that seem to have a slightly
higher instability (on a coarse scale) are detected. The main events from
the first and second dataset are marked, in addition to a few other parts of
the signal.

Figure 3.4: SWWT of the third dataset on the interval shown in Figure
3.3. The extracted signal spans the time interval between the 25 to the 26
September 2011. Note that in this case J = −6 and L = −2.
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Figure 3.5: The result of the thresholding algorithm applied on the
third dataset of the extract in Figure 3.3. For the first calculation
α1 = [10, 0, 0, 0], while for the second α2 = [0, 0, 0, 10]. The large
values relatively low variation in the data. The threshold values are
δ = {0.2, 0.4, .7}.
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3.2 Prediction
The idea that we could be able to predict events before they actually occur
is related to the physical system itself. Instabilities on a small scale could
slowly build up energy that eventually is released, leading to what we
classify as unwanted events.

We will use a window Xtm located to the left of tm in this section,
yielding a causal system, as discussed section 2.5.3. An increase in the
variability on a scale at a point in time will then only depend on past
values.

In this section we show some results of SWWT that indicate that the
prediction of unwanted events is plausible. The example below use J = −7
and L = −3.

The first example is shown in Figure 3.6. The signal extract comes
from the second dataset between the 28 and 29 June 2010. The increased
variability in both the scale of ∼ 3 and ∼ 6 minutes could represent the
cause of the sudden pressure change at around 04:00.

Similar behavior can be seen both in Figure 3.7 and in Figure 3.8. In
Figure 3.7 the most detailed scale, ∼ 3 minutes, increase, followed by the ∼ 6
minute scale before the average pressure of the entire system drops several
barg, leading to a decrease in both scales.

The same can be seen in Figure 3.8, where we observe an increase in the
variability on the scale ∼ 3 minutes a few hours before the mean pressure
is suddenly lowered several barg.

We can naturally not draw conclusions solely from examples like the
ones shown in this section. Our results do however indicate that our
hypothesis about the possibility of developing a prediction system should
be investigated further.
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Figure 3.6: An example where the variability on the scales of ∼3 and ∼6
minutes seems to be building up before an event on a larger scale occurs.
From 28 to 29 June 2010.
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Figure 3.7: An increase of variability on the two most detailed scales before
the average pressure drops. This extract comes from the second dataset.
Extract from 16 to 19 March 2011.
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Figure 3.8: Like in both Figure 3.6 and 3.7, the variability on a small
scale increase before a change on a larger scale occurs. This extract comes
from the first dataset between 14 to 16 April 2011.





Chapter 4
Concluding remarks

In this thesis we have developed procedures that enable the characterization
of certain complex system. In particular, we have analyzed a system where
variability on different scales are of interest.

With the sliding window wavelet transform (SWWT) we created a
time dependent scalewise decomposition of variance. By weighting SWWT
appropriately and thresholding the output, we showed how to detect
different types of special events.

We also found indications that SWWT could be applied to predict
future events in the system, before they do occur, by detecting a build-up of
variability on small scales that precedes special events in the measurements
of the signal.

While the numerical examples of this thesis were based on pressure
measurements in a pipeline with three phase flow, the techniques applied
would also work on systems where instability of the system is relevant.

4.1 Further work

There are multiple ways the theory and techniques developed in this thesis
could, and should, be developed further.
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A statistical analysis for optimizing the parameters of the thresholding
algorithm should be carried out. This would be necessary in order to apply
the method in the industrially. The large amount of available data should
enable this to be done.

Further, as mentioned in the introduction of the thesis, the amount of
available data is growing fast in the oil industry. In the particular system
our datasets come from, there are several other types of available data, one
of which is the water content of the oil leaving the HP separator. This is
one of the key factors in the system. Relating this, and possibly other, data
with the results from our method would be a very interesting and would
quite possibly give promising results.

Our hypothesis about prediction of events is also quite interesting and
deserves further investigation.

Both the case shown in Figure 2.12 and the discussion around the second
example of section 3.1 indicates a shorter window yields a more localized,
but still qualitatively similar SWWT. This indicates that a survey regarding
the, provisional, upper boundary of L should be carried out.

The above are just a few ideas, out of the many possibilities.
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