
RapIoT Toolkit: Rapid Prototyping of Collaborative
Internet of Things Applications

Francesco Gianni, Simone Mora, Monica Divitini

Norwegian University of Science and Technology
Department of Computer Science, Sem Sælandsvei 9

Trondheim, Norway

Abstract

The Internet of Things holds huge promise in enhancing collaboration in mul-

tiple application domains. Bringing internet connectivity to everyday objects

and environments promotes ubiquitous access to information and integration

with third-party systems. Further, connected “things” can be used as physical

interfaces to enable users to cooperate, leveraging multiple devices via parallel

and distributed actions. Yet creating prototypes of IoT systems is a complex

task for developers non-expert in IoT, as it requires dealing with multi-layered

hardware and software infrastructures. We introduce RapIoT, a software toolkit

that facilitates the prototyping of IoT systems by providing an integrated set

of technologies. Our solution abstracts low-level details and communication

protocols, allowing developers non-expert in IoT to focus on application logic,

facilitating rapid prototyping. RapIoT supports the development of collabora-

tive applications by enabling the definition of high-level data type primitives

and allowing interactions spread among multiple smart objects. RapIoT prim-

itives act as a loosely coupled interface between generic IoT devices and appli-

cations, simplifying the development of systems that make use of an ecology of

devices distributed to multiple users and environments. We illustrate the poten-

tial of our toolkit by presenting the development process of an IoT application

ideated during a workshop with non-expert developers and addressing real-world

Email addresses: francesco.gianni@ntnu.no (Francesco Gianni), simone.mora@ntnu.no
(Simone Mora), monica.divitini@ntnu.no (Monica Divitini)

Preprint submitted to Elsevier March 14, 2019

challenges affecting smart cities. We conclude by discussing the strength and

limitations of our platform, highlighting further possible uses for collaborative

applications.

Keywords: Internet of Things, IoT, Ubiquitous Computing, Development,

Toolkit, Smart Cities

1. Introduction

The Internet of Things (IoT) holds huge promise in enhancing computer-

supported collaboration in several application domains. By enabling seamless

interconnection of people, computers, everyday objects, and environments, it

promotes collaboration off the screen in our everyday routines. Additionally,

increasing the amount and quality of information captured by connected objects

might ultimately improve collaboration among people using those objects [1].

The technological matrix of Computer Supported Cooperative Work (CSCW)

is evolving to facilitate context-aware computing, mobile communication, and

interaction. Support for this paradigm shift also comes from the already estab-

lished collaborative potentials and implications of the IoT [2].

Research has shown how IoT systems can leverage connected objects in

collaborative applications, for example, to support patient/physician dialogue

in chronic disease treatments [3], to foster social communication among friends

and relatives [4], to enhance collaboration in crisis management [5], and to

support citizens’ participation in public administration [6].

Since the term “Internet of Things” was coined in 1999 by technologist Kevin

Ashton [7], research has mainly focused on developing machine-centric infras-

tructures to enable connected things to exchange information over the internet.

Wireless sensor networks (WSN), machine-to-machine (M2M) communication,

and technologies connected to design, deployment, and operation of WSN are

some of the most common topics of interest.

Few works [8, 1] have investigated how the IoT can enable collaboration and

how HCI theory could drive the development of IoT collaborative applications.

2

Likewise, only a few works have investigated collaborative IoT application au-

thoring [9] and how to involve users in design activities [10, 11].

We define a collaborative IoT application as a technological application

where users are engaged in a joint effort, having the ability and flexibility to align

their interactions through the support provided by ecologies of interconnected

things.

The CSCW agenda has become relevant for these activities, having expanded

out of the boundaries of the work environment, and diversified into new areas of

human activity. The social organization of these activities, as well as the inter-

twining of social science with computer science to explore, inform, and propel

technological research, is of crucial importance to the continued development of

CSCW [12]. Further, connected and interactive objects have been employed in

CSCW applications for long time; for example as awareness and coordination

devices [13].

With RapIoT, we concentrate on supporting interaction in the physical world

in connection with the digital domain. Starting from a list of design goals,

grouped in infrastructure, support for developers, and support for collaborative

applications, we propose an architecture oriented to support IoT applications

that make use of tangible interaction through smart objects in the physical

world. We foresee “things” and smart objects as enabling artifacts for shared,

collective, and collaborative activities [14]. This concept has its roots in Green-

berg’s conceptualization of physical collaborative interfaces [15] as devices situ-

ated in the physical world and designed for collaborative use. These devices may

retain the appearance of everyday objects but are able to collect data, visualize

information, provide feedback, and sense user interaction and manipulation.

This is a substantial and novel paradigm shift for IoT applications, since

lack of mobility is a typical limitation of common IoT devices [16].

The target end user of a RapIoT application needs only to be able to physi-

cally interact with the augmented object, which does not require any particular

skill, since the object retains its original affordances.

We define RapIoT developers as “non-experts” in IoT. They differ from

3

professionals in the fact that they do not have any skill in electronics, networking

protocols, or the assembling and configuration of IoT devices. They do have

some programming proficiency and are able to code using standard constructs

of high-level programming languages such as JavaScript, Python, etc.

Makers, designers, and students are examples of non-expert developers who

can be part of a participatory design-oriented strategy to allow a wide population

to take advantage of the potential that IoT technologies offer for collaborative

applications.

We foresee that their involvement in design and programming for the IoT

will result from a lowering of the threshold of skills required to build proto-

types. Although a number of tools are available to support IoT development,

those tools often (i) do not offer integrated support to multiple architectural

layers, (ii) require pre-existing knowledge in hardware development or embed-

ded programming, and are thus not suitable for non-experts in IoT, and (iii) are

often bound to specific hardware and vendor-locked technologies. This results

in a steep learning curve for the tools and large time for integration, obstruct-

ing the ability and speed with which developers may explore design choices by

iterating on the implementation of functional prototypes.

Rapid prototyping is an important development process when creating inno-

vative IoT applications. Ideas can be quickly tested and refined, keeping costs

low. Through rapid prototyping, we aim to encourage and engage non-expert

developers in exploring the vast solution space offered by IoT technologies. How-

ever, prototyping IoT systems is challenging because doing so requires dealing

with a heterogeneous mix of hardware and software components arranged in a

multi-layer architecture. Lowering the entry barriers and facilitating adoption

are steps needed to achieve participation in brainstorming and other collective

activities [17]. Toolkits for IoT address these issues: They provide an integrated

set of technologies and practices to simplify and scaffold prototyping.

A popular architectural pattern for IoT toolkits consists of three layers [18]:

• an embedded layer, implemented as a physical object augmented with sen-

4

sors, actuators, and short-range wireless connectivity to provide sensing

and user interface capabilities;

• a gateway layer, implemented as a device such as a smartphone or WiFi

router, to provide connectivity to the embedded layer, enabling ubiquitous

access to information;

• a server layer, implemented as a cloud service, which enables data storage

and integration with third-party services.

RapIoT provides support for all three layers of this type of architecture.

RapIoT does not explicitly support a specific application domain, acting as an

enabling technology allowing non-experts to develop collaborative applications.

From this perspective, RapIoT enables the definition, implementation, and ma-

nipulation of high-level data type primitives. RapIoT primitives allow developers

to abstract out low-level implementation details and provide a loosely coupled

interface between different architectural layers, allowing IoT devices to serve

different applications without the need for firmware reprogramming and thus

offering a platform as a service. They introduce a simple shared construct that

traverses the three layers of the architecture, providing continuity and facilitat-

ing rapid prototyping and deployment of IoT applications.

We envision the emerging domain of collaborative IoT applications for smart

cities as a possible application context, where the city is not merely a group of

persons but a vibrant ecosystem of communities. Through collaborative prac-

tices involving multiple artifacts, citizens build awareness and enable lifelong

learning [19]. We concentrate on this domain, which is particularly timely and

fitting, given the stagnation of technological advancements in applications for

smart cities [20] and the potential impact on society, supporting improvements

of all key factors contributing to regional competitiveness: mobility, environ-

ment, people, quality of life, and governance [21].

In Section 2, we provide an analysis of existing IoT frameworks and toolkits.

In Section 3, we summarize the characteristics of an IoT toolkit that can support

non-experts in developing collaborative applications. We then present RapIoT,

5

an integrated set of tools to support rapid prototyping of IoT applications,

previously introduced in [22]. The RapIoT approach is then described in detail,

in relation to IoT applications developed in the smart city domain. We discuss

the strengths and weaknesses of our approach, and we conclude the paper by

highlighting future works.

2. Related Work

Several works have provided tools to facilitate the development of IoT sys-

tems. Aside from relying on standard protocols and APIs that allow mutual

integration, each tool often focuses on supporting a specific architectural layer.

In the remainder of this section, we survey development toolkits that can be

used for IoT prototyping.

2.1. Embedded Layer

Modkit [23] extends the Arduino [24] platform providing a block-based vi-

sual programming language based on the Scratch project [25], further expanding

Arduino target users to non-professional developers such as kids, designers, and

artists. Focused on developing interfaces based on simple input/output feed-

backs, Bloctopus [26] provides a platform based on modules with sensor-actuator

couplings and a hybrid visual and textual programming language. Micro:bit [27]

is a small electronic board equipped with a microcontroller, a low-fidelity display,

and a few sensors. Micro:bit can be programmed with high-level programming

languages and has been used extensively in schools.

2.2. Gateway Layer

Developing or deploying gateways to provide internet connectivity to resource-

constrained embedded devices is particularly limiting for non-experts, as it re-

quires pre-existing knowledge of low-level technologies such as transport proto-

cols and wireless networks.

Fabryq [28] simplifies the development and deployment of internet gateways

for Bluetooth low-energy (BLE) devices by abstracting the complexity of dealing

6

with multiple languages and networking aspects. Rather than invoking BLE

commands on each local device, the platform provides a proxy to access multiple

devices via a centralized API.

Zhu et al. [29] have addressed the development of a gateway for ZigBee1

wireless devices. IoT devices can be controlled and accessed remotely, and the

gateway handles conversion between different data protocols.

Commercial IoT gateways such as Libelium’s Meshlium2 and Multitech’s

MultiConnect Conduit3 are standalone fixed devices which provide a bridge be-

tween WSNs and the cloud. Conduit offers BLE connectivity for IoT devices,

while Meshlium relies only on the ZigBee protocol to communicate with the sen-

sors. On the cloud side, they both offer WiFi and 3G/4G connection; MQTT

protocol4 is also supported. Conduit’s onboard software can be developed, de-

pending on the specific model, using either the Node-RED visual programming

language or the mLinux development environment, which allows coding in C++,

C#, Python, and Java, among others. Meshlium allows only local data storage

or the transfer of sensor readings to a list of supported cloud services such as

IBM Bluemix, Microsoft Azure IoT Hub, and Amazon IoT.

2.3. Server Layer

The server layer is the core element that manages IoT devices connected

via multiple gateways and interacts with third-party web services such as data

providers or social networks.

The framework PatRICIA [30] leverages a programming model and a cloud-

based execution environment to reduce complexity and support scalable devel-

opment of IoT applications. Similarly, the framework developed by Khodadadi

et al. [31] focuses on connecting data sources by managing querying and filtering

of data and facilitating sharing with third-party platforms. Their work takes

1http://www.zigbee.org
2http://www.libelium.com/products/meshlium/wsn
3https://www.multitech.com/brands/multiconnect-conduit
4http://mqtt.org

7

into account data gathering from multiple sources such as sensor networks and

other web applications (blogs, social media, databases). Users are provided with

an API to configure data sources and to trigger actions within stand alone appli-

cations. Kovatsch et al. [32] describe a similar higher-level architecture. They

address the need for an API for connected devices for pushing and retrieving

data.

IFTTT is an online platform to connect event conditions, called “triggers”,

generated by a device or online service, to “actions” associated with other de-

vices or services. IFTTT is not exclusively oriented to the IoT but supports

a number of physical smart devices that can be used to trigger events or to

perform actions in response to a triggered event.

SpaceBrew5 is a software toolkit to connect interactive things to each other,

which can be defined as publishers or subscribers. The data is exchanged as

Boolean, numeric, or string values. Data processing is handled by the interactive

things themselves in addition to sensing or actuation.

Paraimpu [33] allows developers to connect sensors and actuators through a

centralized RESTful service. Data is exchanged in several formats, among which

are numeric, text, JSON, and XML. A simple programmable layer between

sensor and actuator allows developers to specify filters and conditional logic.

The programming language to code the logic is dependent on the data type used

by the sensor, for example, RegEx, JavaScript, or XPath. Internet services like

Twitter can act as a sensor and be connected to actuators. Arduino can be

used as an actuator, but a specific sketch should be generated and downloaded

to embed the logic and to handle the output pins.

Node-RED is a visual data flow programming language (VDFPL) which

also targets IoT scenarios. It allows developers to create flows connecting self-

contained blocks which are treated as black boxes, following the principles driv-

ing the VDFPL paradigm.

Shiftr.io is an online MQTT broker as a service. It allows interconnection

5http://docs.spacebrew.cc/about

8

of MQTT clients and online message flow visualization. Data and MQTT con-

nected services sharing is publicly encouraged by the platform’s design. Shiftr.io

uses the same MQTT messaging protocol adopted in RapIoT. The service tar-

gets the IoT facilitating the interconnection of MQTT clients, which can run on

different types of hardware devices.

Amazon AWS offers two IoT oriented services: AWS Greengrass and AWS

IoT Platform. Both provide secure messaging among devices, connection to

the AWS cloud and an SDK to code the application. Greengrass targets the

gateway layer, while IoT Platform addresses the cloud.

WoTkit [9] is a toolkit for IoT mashups: web applications that blend data

and services available on the web with physical data sources such as IoT de-

vices. Data is combined and visualized through a dashboard, accessible using a

browser. WotKit focuses less on the integration of applications, rather providing

basic built-in visuals and processing components [9].

2.4. The RapIoT Position

Our system takes advantage of the Arduino platform but differs from the ap-

proach used by Modkit, Micro:bit, and Bloctopus since we do not try to include

any application logic in the embedded layer. In RapIoT, the implementation

of the embedded layer simply provides a domain-specific language (DSL) as an

Arduino library whose only purpose is to facilitate the definition and coding of

input/output primitives. The approach used in Fabryq [28] requires pre-existing

knowledge about the BLE protocol, so the toolkit is not suitable for the skill level

of non-expert developers. The gateway solution by Zhu et al. [29] implies that

only the parent node is connected to the network; child nodes are not directly

accessible from the application environment, hindering multi-object dynamics in

the application logic. Conduit gateway is a powerful device, but its limitations

mainly consist of the price being around ten times the price of a smartphone with

the same connectivity, processing power and of the device not being designed to

be power efficient or portable. Both Conduit and Meshlium are devices clearly

oriented to WSNs deployed in a fixed environment. They do not fit in a scenario

9

where deployment flexibility is a requirement: To support a new sensor topol-

ogy, the application on the gateway needs to be updated and redeployed. This

process requires an external computer and programming skills in the languages

supported. The proposed approach and implementation of RapMobile is suited

to solve many of the limitations conventional IoT gateways present. Zachariah

et al. [18] describe in detail the shortcomings of current IoT gateways. Their

envisioned solution presents many points in common with RapMobile, includ-

ing (i) disentangling of network connectivity, in-network processing, and user

interface functions; (ii) leveraging of BLE connectivity for IoT devices and a

mobile application as a gateway; (iii) providing application-agnostic connectiv-

ity; (iv) using a single mobile application to connect heterogeneous BLE devices

in an opportunistic way; and (v) moving the power burden of WiFi/3G/4G

network protocols from the IoT devices to the gateway. The framework PatRI-

CIA [30] focuses on providing sensor management in a cloud environment and

storing data received from connected devices, neglecting interaction with other

third-party solutions. They also neglect the management of connected devices

through an API and rather focus on reading and combining data from different

sources. Each device needs to be directly connected to the cloud through the

MQTT protocol, which prevents the inclusion of mobile and low-powered IoT

devices. The solution proposed by Kovatsch et al. [32] enables devices to publish

data to third-party servers but doesn’t support bi-directional exchange of events

in real-time. The restrictions of IFTTT lie in its supported services, devices,

triggers, and actions, which are limited to those offered by the platform and

not extensible by end users. Users are then constrained to mixing and match-

ing triggers and events already implemented. SpaceBrew and Paraimpu do not

facilitate deployment of applications; the user has to find a way to connect the

things, sensors, and actuators to the web. They also lack a unified structure for

the messaging protocol and data format. In Paraimpu, the programming logic

is also dependent on the data format, requiring programming skills in different

languages even for simple scenarios. Both platforms allow only very simple logic

constructs in the applications, and SpaceBrew is also constrained by the data

10

type used: For example, it is not possible to connect a publisher of Boolean

values to a subscriber that handles strings. In SpaceBrew, computation does

not happen in the cloud but on the devices, which by definition are usually quite

limited in processing power and are often running on batteries. The Node-RED

platform is based on an interesting programming approach which can possi-

bly complement the RapIoT platform. Node-RED supports the programming

phase but is not a full-stack toolkit intended to handle and scaffold deployment,

hardware device programming, and data flow from BLE-enabled sensors and

actuators. Although Shiftr.io provides some advanced MQTT functionalities

such as graph-based live visualization of messages and data sharing, the core

function remains to serve as an online MQTT broker. Limitations are imposed

on the supported Arduino hardware, which should have onboard WiFi/Ether-

net connectivity, restricting the choice to few boards such as Arduino Yún or

others that require cable-based connectivity6. RapIoT already integrates an

online MQTT broker supporting the message flow from the hardware devices to

the programming environment. Shiftr.io does not offer an integrated full-stack

platform, presenting similar limitations as the ones discussed for Node-RED.

The Amazon AWS services for IoT allow developers to connect IoT devices to

the Amazon cloud. However, no low-power BLE hardware is supported, and

the devices are required to have support for WiFi/Ethernet connectivity and

run a Linux OS or a software stack such as Python, Node.js, or Java, which is

not usually supported by low-power microcontrollers. No support is provided

for a gateway able to bridge BLE connections from IoT devices to the cloud.

Compared to WoTkit [9], RapIoT focuses more on interaction in the physical

world. No widget or computer-based visualizations are supported since the ar-

chitecture of RapIoT is oriented to tangible interaction through smart objects

in the physical world.

6https://github.com/256dpi/arduino-mqtt

11

2.5. Summary of Differences with Related Works

We reviewed toolkits that can be used to support the development of the

embedded, gateway, and server layers of an IoT infrastructure and summarized

the results in Table 1. Current solutions often support only a subset of the

architectural layers of a common IoT toolkit. The knowledge required to use

each tool also varies according to the level of abstraction it provides and the

complexity of the applications that can be achieved. With RapIoT, we chose to

relax some of the constraints typically found in single-layer toolkits — namely

device-specific optimizations or fine-tuned trade-offs among energy efficiency,

accuracy, and latency — to gain a better support for non-expert developers and

rapid prototyping.

Table 1: Architecture layers covered and non-expert developers support of related works and

RapIoT.

M
o
d

k
it

B
lo

ct
o
p

u
s

F
a
b

ry
q

Z
h
u

et
a
l.
[2

9
]

M
es

h
li
u

m

C
o
n

d
u

it

P
a
tR

IC
IA

K
h

o
d

a
d

a
d

i
et

a
l.
[3

1
]

K
o
v
a
ts

ch
et

a
l.
[3

2
]

IF
T

T
T

S
p

a
ce

B
re

w

P
a
ra

im
p

u

N
o
d

e-
R

E
D

S
h

if
tr

.i
o

W
o
T

k
it

A
W

S

R
a
p

Io
T

Embedded • • • • •

Gateway • • • • • •

Cloud • • • • • • • • • • • •

Non-experts • • • • • • •

3. RapIoT Fundamentals

3.1. RapIoT Architecture: Design Goals

RapIoT aims at providing holistic support to non-experts developing col-

laborative IoT applications. The following architectural design goals constitute

the foundation of our platform; we grouped them into (i) hardware and infras-

tructure guidelines (Table 2), (ii) directions to support non-expert developers

(Table 3), and (iii) characteristics supporting collaborative applications (Ta-

ble 4).

12

Table 2: Hardware and infrastructure.

A1 Support both novice and expert developers – provide basic, simple-to-use

functionalities without hindering expert users in building complex systems.

A2 Decouple infrastructure from application – provide the IoT infrastructure as

a service to applications. In this way the infrastructure (IoT devices, gateways, and

servers) is completely decoupled and can be reused across different applications with

no or little changes.

A3 Hide hardware complexities – provide high-level representations of low-level em-

bedded hardware complexities.

A4 Hide networking details – spare developers from implementing connection and

data transfer protocols.

A5 Support for generic embedded devices – enable the development of applications

that make use of a wide range of IoT devices, no matter of manufacturer.

A6 Support for multiple embedded devices – enable the development of IoT sys-

tems that make use of multiple devices which collaborate as a structured ecology.

Table 3: Support for non-expert developers.

B1 Employ technology close to the user – use of mainstream solutions and tech-

nologies that are easily accessible and widespread.

B2 Provide an efficient workflow – minimize the time needed to deploy a first pro-

totype of an IoT application; this includes using programming languages which allow

for quick evaluation of the application code.

B3 Have a low cost – adopt low-cost hardware and software solutions which are free

to use and preferably open source.

B4 Have a generic architecture – provide a structure that is adaptable and extensible

to different problem domains.

B5 Empower community support – facilitate cooperative work and reuse of knowl-

edge. All the points above allow for community-based sharing of knowledge and

support.

With these goals, we promote hands-on collaboration based on the shared

physical experience of a small community. At the same time, we also support

asynchronous coordination and information sharing via connected services.

3.2. Input/Output Primitives

One of the crucial features of RapIoT is the concept and implementation

of high-level input/output primitives. We envisioned a developer-friendly con-

struct that could be easily grasped by non-experts while supporting data ex-

change in collaborative multi-object IoT applications. Making primitives human

readable facilitates development and debugging as opposed to dealing with raw

13

Table 4: Support for collaborative applications.

C1 Support for coordination of interdependent activities across space – which

is one of the problems faced by actors engaged in cooperative work in the wild [34].

C2 Integration with third-party services – provide hooks for web standards and

cloud computing, which are base technologies for IoT systems [35].

C3 Support for tangible interaction, physical user interfaces, and smart ob-

jects – use of physical affordances to interact with computer systems, which have

been proved effective in supporting collaboration [36, p. 97]. The IoT can leverage

physical and embodied interaction approaches to interact with the “things”.

C3 Interaction spread among multiple things – support a user experience dis-

tributed on an ecology of devices, providing more opportunities for collaboration via

distributed actions performed by users on multiple interfaces.

sensor data. A RapIoT input primitive is discrete information sensed by an

IoT device, for example, a data-point captured by a sensor or a manipulation

performed via a user interface. An output primitive is an action that can be

performed by the IoT device via output components such as actuators or dis-

plays, for example, a motor spinning or an LED (light-emitting diode) blinking

(Figure 1). Primitives act as a loosely coupled interface between embedded de-

vices and the application logic. Each primitive encapsulates a data type plus

up to two optional parameters as payload. An example of an input primitive

is “AirQuality (primitive name), city center (parameter 1), low (parameter 2)”

in case of an air quality sensor device or “Knocked, twice” in case of a smart

home equipped with an accelerometer device on the front door. Otherwise “Vi-

brate, long” represents an output primitive that issues a vibrate command to a

necklace equipped with a haptic motor device.

The role of primitives is twofold. They allow an event-driven approach to

programming, providing at the same time simple constructs to describe the data

exchanged between embedded devices and applications. Furthermore, they al-

low non-expert developers to think in terms of high-level abstractions without

dealing with hardware complexities, e.g., “shake, clockwise rotation, free fall”

for physical manipulations detected by accelerometer data. The definition, im-

plementation, and registration of primitives is performed by programming the

firmware of an Arduino-compatible device, and the primitives are then available

14

Figure 1: Structure of input and output primitives.

to the toolkit. When coding the firmware, it is possible to deal with low-level

hardware details, for example, accelerometer or GPS sensors as well as motor or

display actuators. Primitives not only support simple input/output operations,

they can also encapsulate more complex behaviors to support the development

of physical interfaces, as illustrated in [11]. An example of HCI primitive in-

troduced in [11] is the “proximity” input primitive. The primitive does not

encapsulate any sensor data from the surrounding environment but is triggered

when one or more IoT devices are moved close to one another. It is available to

be used by devices that have the on-board hardware to support the functional-

ity (i.e., RFID antennas and tags to sense one another). Primitives completely

rely on the operations supported by the hardware, both in terms of input and

output capabilities. They are bound to the hardware device and its sensing and

actuation means. The gateway and server layer do not embed any specific list

of primitives; rather, these two architectural layers transparently allow the pro-

grammer to work with any primitive supported by the hardware when coding

the application.

3.3. Architecture

We now present the architecture of RapIoT, describing the requirements for

the hardware, supported devices, software features and developer interaction.

RapIoT follows the three-layer architecture described in Section 1 and repre-

15

sented in Figure 2. The implementation of each software stack is discussed in

Section 6.

Figure 2: RapCloud infrastructure implementation.

Server Layer

Rapcloud : This consists of an online IDE7, a JavaScript library, and a web-

based configuration utility, as seen in Figure 3. The online IDE is based on

the Cloud98 platform, which combines a code editor and a back-end server

workspace based on Ubuntu9 Linux. The whole platform is provided as SaaS

(software as a service) through the browser; developers do not need to install any

software on their own computers, as the application code developed is automat-

ically saved and ready to be executed directly on the server. To get started with

the application coding, as a first step, the developer gets access to the web-based

configuration utility and signs up, choosing a username and password. She can

then create the skeleton of her first IoT application, picking a name and adding

as many Virtual Devices as needed. Virtual Devices are placeholders used as

IoT device handlers. They are available in the form of JavaScript objects when

writing the application code. As an example, for a “smart shower” application,

7Integrated Development Environment
8https://c9.io
9https://www.ubuntu.com

16

two Virtual Devices can be named “shower handle” and “shower light”. To

add a Virtual Device, the developer needs only to specify its name; no other

information is needed. The developer can then launch the Cloud9 IDE, where a

precompiled JavaScript source file is made available to be extended with custom

application code. The precompiled source file includes the JavaScript objects of

the Virtual Devices previously defined, ready to be employed by the developer

when coding the application logic and handling the primitives.

Figure 3: RapCloud infrastructure: the Cloud9 online IDE on the left and the web-based

configuration utility on the right.

Gateway Layer

RapMobile: This is a cross-platform mobile app for Android and iOS devices

that acts as an internet gateway and allows developers discover and configure

IoT devices. The app at first connects to the RapCloud server, and a user-

name and password must be entered to identify the user. The end user is then

presented with the list of applications that the developer previously created in

RapCloud, fetched directly from the server. Tapping on the application that

needs to be launched, the user is faced with the list of Virtual Devices for that

application, previously defined in the RapCloud environment. Following on our

“smart shower” example, the “shower handle” and “shower light” entries will be

visualized. Tapping on each Virtual Device, the user can associate it to a BLE

IoT device available in proximity to the smartphone. Since there might be sev-

eral BLE devices in the vicinity, the user is presented with a list to choose from,

17

containing the BLE advertised names. Tapping on one of the advertised names

associates the IoT device to the Virtual Device. The association is stored locally

on the RapMobile app and is remembered until the user deletes it. Once all the

Virtual Devices have been associated to physical devices, the IoT application

(i.e., the “smart shower” application) can be started directly from the mobile

app. Whenever the application is running, the phone can be set in standby

mode, but it should remain within a 10 meter reach of the hardware devices

to ensure reliable data transfer. We call this process of association between

virtual and physical devices application appropriation. The GUI supporting

appropriation and execution of the application is shown in Figure 4.

Figure 4: RapMobile application.

The RapMobile app transparently bridges the BLE and MQTT protocols.

When a primitive is received from a BLE device, the internal components of

the app re-route the complete primitive packet through the MQTT connection

with RapCloud. The RapMobile gateway includes all the needed information to

correctly route the primitives: For every input primitive received, the sender

IoT device is known, and the associated Virtual Device belongs to an appli-

cation running on RapCloud, to which the MQTT packet is forwarded. The

same packet routing steps apply in inverse order when an output primitive is

forwarded from RapCloud to the IoT device.

18

Embedded Layer

RapEmbedded : This consists of an Arduino library to support the definition

and implementation of input and output primitives on electronic Arduino boards

and microcontrollers. Arduino is a popular prototyping platform which includes

both a microcontroller board to which sensors and actuators can be wired and

a software library created to simplify writing code without limiting flexibil-

ity [24]. The Arduino library spares developers from learning microcontroller-

specific instructions or electronic principles. Device-specific optimizations are

handled by the deployment toolchain, which compiles the Arduino code into a

microcontroller-optimized binary.

3.4. Hardware Requirements

The server-side software runs completely on Linux. A low-end Linux server

or a small Linux virtual machine will suffice to cover the requirements. The

requirements for the device running the mobile application, typically a smart-

phone, are limited to providing BLE and WiFi or cellular connectivity. The

BLE interface is used to connect one or more Arduino-enabled boards, while a

WiFi or cellular network provides TCP/IP connectivity to the cloud. The low-

est architectural layer comprises BLE-enabled, Arduino-compatible boards and

microcontrollers such as RFDUINO10 and Simblee11 boards. RFDUINO is able

to run the RapEmbedded firmware without introducing any bottleneck in terms

of CPU speed, flash, or RAM size. The microcontroller is based on a 16 MHz

ARM Cortex-M0 CPU, 128kB of flash memory and 8kB of RAM. There are no

other technical requirements for the embedded layer; the board can be equipped

with additional I/O ports, extra connectivity, or sensors/actuators. Thanks to

the open-source nature of Arduino, several independent producers were able to

add Arduino compatibility to their products, allowing non-expert developers to

choose from several royalty-free, affordable BLE-enabled microcontrollers and

10http://rfduino.com
11http://simblee.com

19

boards while at the same time taking advantage of the support provided by

the growing Arduino community. Expert developers can still choose to build

their own hardware, assembling the electronic to create a smart augmented

object, while non-experts can simply buy a pre-assembled Arduino board, al-

ready equipped with sensors and actuators. Arduino boards are typically low

power, small sized and can run on small batteries. RapIoT builds on Arduino’s

strengths and extends a similar approach to the IoT world. Developers inter-

ested in building applications are offered a set of primitives tailored and specific

to the affordances of the IoT hardware in use, but at the same time they share

a common semantic structure and are used in the same way when coding the

application logic. Another point in common is the abstraction of vendor-specific

programming mechanisms: Like the Arduino user, who is not required to know

the type and producer of the microcontroller, RapIoT developers are not re-

quired to know any hardware- or software-related details of the IoT device. The

non-expert developer need only to be aware of the set of primitives defined and

available to be used for application development. The RapEmbedded software

layer might be completely transparent to non-expert developers, who can buy a

pre-programmed Arduino board embedded with the library and a firmware to

handle input/output primitives. More skilled developers can decide to upgrade

the firmware with a community-developed version, which can, for example, im-

plement more or different primitives for the hardware in use. While no program-

ming is needed to upgrade the firmware, expert developers are free to implement

new primitives using the RapEmbedded Arduino library and flashing the new

firmware on the board afterward. The RapEmbedded library provides functions

to (i) register primitive definitions according to the name of the primitive, type

(input or output), and name of (up to two) optional parameters and (ii) code

conditions under which primitives are triggered, in case of input primitives, or

consumed, as for output primitives.

20

4. Creating RapIoT Applications

In this section we illustrate how RapIoT can be employed to support the

prototyping phase of an IoT application. The list of required steps and their

relation with RapIoT components is reported in Figure 5. We use an IoT

application for smart cities as a running example.

RapEmbedded RapMobile RapCloud

Arduino IDE

Primitive-speci c code

BluetoothLE Wi /4G

Mobile OS NodeJS Server

Application-speci c code

De nes primitives and
implements hw/sw

functionalities

Code functionalities
that make use
of primitives

Non-expert developerExpert developer

End User

IoT application startup Application appropriation
phase

Developer’s code

RapIoT toolkit

Third-party components

1 2

43

JS Library

Figure 5: The RapIoT toolkit, development and deployment process.

RapIoT-supported application development and deployment is a four-step

process. The first and second steps entail application development by develop-

ers, while the last two involve application appropriation by end users.

Step 1: Device development – This involves, in order of complexity for non-

experts, either of these options: (i) building a hardware prototype of

an IoT device using electronic components on a BLE-enabled, Arduino-

compatible board using the RapEmbedded Arduino library to implement

and register input/output primitives and flashing the firmware on the Ar-

duino board; (ii) purchasing a complete IoT device or smart object based

on an Arduino BLE microcontroller, coding the primitives as explained

in the previous option or flashing a pre-made firmware embedding a set

of primitives for the specific device; and (iii) purchasing a ready-to-use,

RapIoT-compatible IoT device or smart object that mounts out of the box

a firmware with coded primitives.

21

Step 2: Application development – This entails creating an application through

the web-based configuration utility and coding the application logic by

using the online IDE provided by RapCloud. Input and output primitives

are here employed as programming constructs.

Step 3: Application appropriation – This involves selecting and starting from

the RapMobile app an application previously developed on RapCloud and

performing the wireless discovery of the BLE-enabled devices built in Step

1, as previously described in Section 3.3.

Step 4: Application startup – This entails tapping the “start application” but-

ton on the RapMobile app. The IoT application source code hosted on

RapCloud is then executed.

These steps do not require advanced skills in hardware, electronics, or net-

work protocols, only a general knowledge in coding using high-level program-

ming languages. This matches our definition of non-expert developers reported

in Section 1.

To describe the development process of RapIoT applications, we introduce as

a running example the development of an application idea generated using the

Tiles Ideation Toolkit for IoT [37]. The idea was produced during a workshop

which involved computer science university students and consists of a Smart

Shower, an augmented shower to promote learning of sustainable behaviors in

children. The application targets children and parents, requiring a collaborative

approach at a family level. The Smart Shower makes use of several connected

IoT devices that provide feedback to the user, connect with online services, and

sense the user interaction aimed at controlling the water flow. The system makes

use of an IoT device that connects to the shower water handle. When the handle

is operated by the child, the tilt is sensed by the IoT device, which can then infer

water temperature and flow. This information is sent to the RapCloud server,

which computes the energy consumption based on the temperature and quantity

of the water used. The application logic is then configured to trigger different

types of feedback based on water and energy thresholds reached. A second

22

IoT device, in the form of an LED array governed by a BLE-enabled Arduino

microcontroller, is used to provide shared ambient feedback that are visible to

individual users or to the family, for example signalling that a weekly family

consumption threshold has been reached, a common goal has been achieved,

or visualizing triggers to collaborative reflection based on individual consump-

tion compared to the rest of the household. When the RapCloud application

computes the reach of a threshold, it triggers an output primitive addressed to

the LED array, which changes color from green to yellow or from yellow to red

when too much water is being used. The RapCloud application collects data

about water and energy usage, which is then shared using an online spreadsheet

or charting service. Based on the data, parents can reward their children for

sustainable behaviors. Families can set group goals for weekly or monthly con-

sumption and check their progress day by day, increasing community awareness

and improving collaboration to reach the shared objective. In the following, we

describe the applications development and deployment process.

4.1. Device Development

Device development includes hardware and firmware development. Hard-

ware development involves plugging together electronic components using an

Arduino-compatible BLE board (Figure 6). Firmware development requires

writing Arduino code that controls the hardware and handles input and output

of the primitives. According to our example, the electronic for the Smart Shower

uses of a Tiles Square module (an Arduino-compatible BLE board) [11] and an

LED array (Figure 6). The Tiles Square module embeds in a single compact

package an RFDUINO microcontroller, an acceleromenter, an RGB LED light,

and haptic feedback vibration.

After having installed the RapEmbedded library in the Arduino IDE, the de-

veloper defines the input primitive Orientation and the output primitive Light-

Color. The Orientation primitive models the 3D position of the shower handle;

it is triggered by sensor readings continuously provided by the accelerometer

on the Tiles Square and has a Position parameter that reports the angular

23

Figure 6: LED array light and Tiles Square module hardware devices. The Tiles Square

measures approximately 4x4 cm.

orientation on X,Y,Z axes. The LightColor output primitive defines the color

parameter which can assume “green”, “yellow”, and “red” states and causes the

LED array to light up in different colors.

RIOTe.regPrimitive(in,"Orientation","Position");

RIOTe.regPrimitive(out,"LightColor","Color");

Finally, the developer codes the loop of conditions under which the input

primitives are triggered according to readings from the accelerometer and im-

plements how to consume the output primitives by issuing commands to cause

the LED array to light up in different colors.

RapEmbedded: Tiles Square code

if(Accelerometer.movement_detected())

RIOTe.trigger("Orientation", Accelerometer.3D_position());

RapEmbedded: LED Array code

RIOTe.when("LightColor", "green", LED.set_color("green"));

RIOTe.when("LightColor", "red", LED.set_color("red"));

4.2. Application Development and Deployment

After the firmware is developed and deployed, each hardware device is au-

tonomous and ready to establish a connection with RapCloud to send and re-

ceive primitives via the RapMobile app, which acts as a gateway. Primitives

are now available while coding the application logic using the RapCloud online

IDE. Back to our example, the developer first registers the application name

and the Virtual Devices required in the web-based configuration utility. Then

24

she proceeds with coding the application logic. When the first Orientation

primitive is received, the application logic starts keeping track of the shower

time. Water and energy consumption are inferred based on the orientation of

the handle. When the consumption of either energy or water exceeds the first

configured threshold, the Light Color output primitive is triggered to switch

the LED array to yellow. If the second threshold is also reached, another Light

Color primitive is triggered to change the LED array color to red. When the

child finishes showering, data about time, energy, and water consumption is

uploaded to an online spreadsheet or charting service.

The application code is written directly in the browser using the RapCloud

online IDE (Figure 3). When the code is executed, the application is immedi-

ately available to end users.

4.3. Application Appropriation

Using the RapMobile app, the end user performs the application appropri-

ation process as described in detail in Section 3.3. She can then start the

application directly from the RapMobile app.

5. Initial Evaluation

Two preliminary evaluations of the system were performed: a pilot test with

five computer science university students and a workshop with 14 high school

students, aged 15 and 16. The users were asked to develop and deploy an IoT

application in less than 60 minutes. We decided to focus the assessment on

the support provided by RapIoT during the implementation of an IoT applica-

tion, starting from a provided idea. For this reason, and to avoid a complicated

application logic, the example application does not include any particular col-

laborative aspect. All the participants had some experience in programming,

although none of them declared to be an expert. Their knowledge of IoT was

rather generic and limited, if any; they fit into our definition of non-expert

developers in IoT provided in Section 1. Data was collected in the form of ob-

25

servations of the process, answers to a five-point Likert scale questionnaire, and,

for the pilot test only, analysis of the source code produced.

The pilot test users were divided into two groups, referenced as A and B.

Both groups were able to rapidly get started with application coding and proto-

typing with no help from workshop supervisors. A scenario describing the IoT

application they were asked to develop was provided: Have you ever been to

a party where your shoes have been separated and you can find only one when

leaving? To solve this problem, you can implement an application to find a shoe

when you have located the other. Double tapping on one shoe will turn on the

LEDs on both shoes and vibrate the other shoe. Tilting any shoe will turn off

the LEDs on both shoes.

The code produced by group A of the pilot test can be seen in Listing 1.

The groups utilized two separate IoT devices and employed two input primitives

(Double Tap, Tilt) and four output primitives (Haptic Long, Haptic Burst, Led

On, Led Off). Using the online IDE, both the groups implemented correctly

the functionalities described in the scenario provided. The participants were

also able to deploy the IoT devices and connect them to RapCloud using the

RapMobile app and the web-based configuration utility. The official documen-

tation available on the web-based configuration utility provided guidance for

application deployment and development.

1 var tilesLib = require('/tiles -lib/api');

2 var client = new tilesLib.TilesClient('Petter ', 'Petter_test ', '

↪→ cloud.rapiot.com ', 1883).connect ();

3 var reader = new tilesLib.EventReader ();

4

5 client.on('receive ', function (tileId , event) {

6 /* AUTO GENERATED CODE START (do not remove) */

7 var shoe_right = reader.getTile('shoe_right ', client);

8 var shoe_left = reader.getTile('shoe_left ', client);

9 /* AUTO GENERATED CODE END (do not remove) */

10 var tileEvent = reader.readEvent(event , client);

11

12 if (tileEvent.pName == "double tap") {

13 shoe_right.trigger("led", "on", "green");

14 shoe_left.trigger("led", "on", "green");

15 if(tileEvent.name == shoe_left.name) {

26

16 shoe_right.trigger("haptic", "burst");

17 } else {

18 shoe_left.trigger("haptic", "burst");

19 }

20 }

21 if(tileEvent.pName == "tilt") {

22 shoe_right.trigger("led", "off");

23 shoe_left.trigger("led", "off");

24 } });

Listing 1: Source code produced by group A during the pilot test.

The two groups adopted different programming strategies to code the be-

havior. Group A produced a shorter but less robust program than group B,

which included additional controls that might have been helpful when extend-

ing the application. During the workshop, we tested the same scenario used in

the pilot test, providing the same tools and documentation. The participants

were younger and less experienced compared to the pilot test. They were di-

vided into four groups; each group had at its disposal a laptop, an Android

smartphone running the RapMobile app, and several IoT devices. The stu-

dents were ultimately able to prototype the IoT scenario with little help from

workshop supervisors, although they had some difficulties understanding the

JavaScript syntax. This issue is not indicative of a systemic problem: RapIoT

can retain the same architecture and paradigm while being updated to support

more user-friendly high-level programming languages. The adoption of different

abstractions such as visual programming languages is a possible extension.

In Fig. 7, we report the results from six of the questionnaire statements:

Q5 - the steps of the prototyping process were easy to follow; Q6 - I faced few

challenges with the process description; Q8 - during the prototyping process, it

was always clear to me what I was supposed to do; Q9 - following the steps of

the prototyping process was fun; Q14 - using the RapCloud web IDE was easy;

Q15 - I faced few challenges using the RapCloud web IDE.

Most of the questionnaire answers reported are in the positive end of the

Likert scale. The participants of the workshop found the prototyping process

slightly more difficult to follow than the pilot test users did. Based on the

27

0% 20% 40% 60% 80% 100%

Q15

Q14

Q9

Q8

Q6

Q5

Agree Partially	agree Neutral Partially	disagree Disagree

Figure 7: Questionnaire results.

feedback received and the observed behaviors, the problem seemed due to the

fact that the students, being familiar with the Python programming language,

tried to use its syntax when coding in JavaScript.

During the pilot test, we observed the participants struggling with the Rap-

Mobile application; however, no issues were recorded during the workshop,

where a redesigned and updated version of the application was used.

6. Implementation

Here we describe in more in detail the building blocks and technicalities of

the RapIoT framework. RapIoT comprises three different stacks of software

modules implementing the functionalities provided by RapCloud, RapMobile,

and RapEmbedded (Fig. 2).

This design choice spares the implementation of event routing, since each

IoT device can be unequivocally controlled by an application running in the

cloud no matter where the application or the hardware is deployed. This archi-

tecture enables the reuse of deployed devices for different applications without

changing the firmware. The development of RapIoT applications is supported

by the Cloud9 platform, which allows non-expert developers to create, run, and

debug code in a browser. Each user-made application is stored in a user-assigned

28

workspace. The Cloud9 IDE has been extended with a configuration GUI that

allows developers to create workspaces, assign them to users, and generate tem-

plate code directly in a user’s workspace. Both the IDE and the configuration

GUI (Fig. 3) interact with lower RapCloud tiers via a REST interface defined

by RapCloud APIs, allowing for easy IDE replacement or for usage of multiple

IDEs. When writing the logic of a RapIoT application, non-expert developers

need only to handle instances of input primitives received from the IoT de-

vices and send instances of output primitives to those devices without the need

to know how the modules implement the actual recognition and actuation of

primitives. The primitives available to the user within the Cloud9 IDE can be

created via the APIs provided by the RapEmbedded library. The library imple-

ments both registration of primitives and handling of primitives at run-time.

The library is written in C++ and built on top of the Arduino IDE. The library

is compatible with most Arduino boards that provide BLE connectivity (see Sec-

tion 3.4). Once primitives are implemented through the RapEmbedded library,

they can be exchanged back and forth between applications and IoT devices.

Instances of output primitives are generated by an application and propagated

to a specific IoT device. Otherwise, instances of input primitives are generated

by a device and propagated to an application. RapIoT makes use of MQTT

as a transport protocol to exchange primitives between RapCloud and RapMo-

bile stacks. Primitives are coded in JSON-formatted messages that contain a

unique identifier for the IoT device, followed by the identifier of the primitive

and two optional parameters. The current implementation of the unique identi-

fier allows the IoT device to use a BLE advertised parameter. This guarantees

consistency between different mobile OSs, compared to using the Bluetooth

MAC address as an identifier. Problems arise in particular with iOS, which

scrambles the Bluetooth MAC address, preventing a robust mapping between

IoT devices and application logic. An alternative, more reliable solution is to

use a UUID12, advertised by the IoT device via Bluetooth, before connecting to

12https://tools.ietf.org/html/rfc4122

29

the mobile app gateway. After an application written using the Cloud9 IDE is

started, it begins exchanging instances of primitives on an event-driven basis.

Multiple applications can run at the same time inside the server, although one

device can exchange primitives with one application only. The JavaScript ap-

plication created by the developer generates or consumes primitives thanks to

the RapCloud library and API. The library parses input primitives and triggers

JavaScript events that are handled by the developer’s code. When an output

primitive is triggered, the library takes care of building a well-formed JSON

packet and forwarding it to the user’s gateway over MQTT. The library makes

use of Ponte13, to bridge the REST interfaces exposed towards the Cloud9 IDE

and administration GUI. Ponte also bridges RapCloud with the MQTT inter-

face exposed towards RapMobile. Finally, RapCloud employs MongoDB14 to

store associations among users, applications, gateways, virtual devices, and real

devices. The RapCloud stack runs on top of the Node.js JavaScript runtime

environment15. RapMobile bridges IoT devices with applications; the app has

two roles. During application appropriation (Section 3.3), it assigns Virtual

Devices to physical devices in Bluetooth range and locks them within a specific

application belonging to a user. This operation is done by the user through the

RapMobile app (Fig. 4), which is developed using the Ionic Framework16. At

run-time, RapMobile translates MQTT packages containing JSON-formatted

primitives into simple comma-separated values that are forwarded to paired de-

vices over a BLE link. Bluetooth connectivity is guaranteed thanks to the BLE

library provided by the Cordova BLE Central plugin17. RapMobile also takes

care of error handling when devices move out of Bluetooth range, disconnect

from the network, or turn off because they run out of battery power. Concur-

rent access to a single IoT device, resulting in an access conflict, is prevented by

13http://eclipse.org/ponte/
14https://www.mongodb.com/
15https://nodejs.org
16https://ionicframework.com/
17https://github.com/don/cordova-plugin-ble-central

30

the BLE handshaking mechanism: When a device is connected to a gateway, it

stops advertising and accepting further connections. On the gateway, a single

IoT application at a time can be started. Furthermore, hardware modules can

be discovered, attached to, or removed from the platform while applications

are running. Special system-wide events inform connected applications of the

availability of new devices in real time.

7. Discussion

In this section, we discuss strengths and limitations of RapIoT in relation to

the design goals described in Section 3.1. We then elaborate on how collabora-

tion is supported and why the approach of the toolkit is interesting for smart

cities applications.

7.1. Meeting the Design Goals

Using qualitative assessments and the initial evaluation of the software toolkit

presented in Section 5, we now connect the requirements listed in Section 3 with

the components of RapIoT. Primitives provide high-level abstraction to encap-

sulate input and output data packets. Development of plug-and-play software

and hardware prototyping platforms based on such high-level object abstrac-

tions could mitigate the challenges related to heterogeneity and complexity of

Internet of Things network nodes as well as the diversity of modes of communi-

cation [38]. In line with the plug-and-play philosophy, RapIoT hides hardware

and network complexities (A3, A4), allowing non-expert developers to concen-

trate the technical effort into the cloud-supported programming phase (B2). On

the other hand, more expert developers can extend the primitives supported

by the IoT devices through the RapEmbedded Arduino library (A1). Primi-

tives permit developers to decouple the application logic, which resides in the

cloud, from the rest of the infrastructure tasked with generating, consuming and

routing the application-independent primitives across the embedded, gateway,

and cloud layers (A2). Thanks to the neutral and multi-purpose nature of the

31

primitives, the architecture is not tied to any specific application domain (B4).

Bluetooth-equipped networked sensor nodes can achieve good interoperability

with consumer devices, have lower power consumption than WiFi, and have a

lower cost (B3) [39]. Bluetooth is also by far the most widespread technology

supported by existing consumer devices (B1) [39]. BLE connectivity and the

RapMobile implementation allow for several IoT devices to be connected to the

application layer at the same time (A6). Constraints on the supported IoT hard-

ware are dictated only by Arduino compatibility, which is currently provided

by many hardware manufacturers and devices, while new ones are constantly

added (A5). Being as both RapIoT and Arduino are open source, community

support is a viable medium to share and reuse knowledge (B5). Our approach

to IoT system development embeds mechanisms that facilitate the authoring

of collaborative applications. Primitives are flexible constructs that allow de-

velopers to break down interaction routines and data flows into simpler blocks

that can be combined when writing the application logic. The RapIoT toolkit

presents four fundamental features that help in the development of collaborative

applications:

• Support for multiple devices – RapIoT supports applications that make use

of several IoT devices connected to the same gateway (C1). This allows

multiple users to interact with various devices placed in the same environ-

ment, which are then ruled by a centralized application logic running on

the RapCloud server.

• HCI primitives for physical interaction – Some of the primitives rely on

composite human actions and events (C3), which involve more than one

physical device. It is possible to design and implement applications that

support time coordination, sequential actions, awareness, proximity, and

other forms of cooperative practices that characterize coordinated ecolo-

gies of devices (C4). Under this perspective, the application matches with

the definition of a CSCW product: a technology-driven application sup-

porting coordination of collaborative activities [40] and with the notion of

32

physical collaborative interface [15].

• Distributed gateways and devices – Applications developed with RapIoT

can use several gateways physically located in different places, each of

which can control a group of devices. This opens these devices up to more

flexible scenarios of use: (i) groups of users can move from site to site where

different groups of IoT devices are located and perform collaborative tasks

that involve IoT devices at the site, e.g., a collaborative treasure hunt

game and (ii) users can carry one or more IoT devices connected to their

smartphones and perform some tasks or collect data in the environment,

remotely cooperating with other users who are following the same workflow

but at a different site.

• Integration with online services – Connection with third-party collabora-

tive services and online data sets is supported through specific primitives

(C2). Asynchronous collaboration is facilitated, allowing users to reflect

and cooperate on shared resources connected to the IoT application logic.

To make collaboration happen, users should be engaged in a joint effort,

with the ability and flexibility to align their goals and resources with others in

real time. All parties should be brought into alignment around what’s needed

[41]. The technical infrastructure of RapIoT supports this collaborative effort,

allowing the creation of collaborative IoT applications addressing a shared goal

or challenging and engaging users at different levels.

7.2. RapIoT in a Smart City Context

Starting from ideas generated by a set of possible end users, the RapIoT

architecture has been used to design the technical infrastructure of IoT ap-

plications aimed at solving real problems affecting modern smart cities. The

simplicity of the approach used, resulting from the architectural choices at the

base of RapIoT, can allow developers to prototype and program an initial demo

of the wished behavior in a few hours. Future scenarios can involve physical

33

data visualization devices in the city [42] and development of customized prim-

itives tailored to handle smart city sensor data. RapIoT is not limited to any

particular domain but is a promising approach able to address the problem of

technical stagnation in smart city applications [20].

7.3. Limitations

The RapIoT architecture does not comprehend any coded application logic

embedded into IoT devices. Since the primitives have to follow a complete round

trip from the embedded layer to the application layer, network latency can be a

significant factor affecting performance and application responsiveness. Network

quality and availability is crucial for the entire period when the application

is in use. This limitation can be particularly amplified when the application

layer deals with batches of primitives in rapid sequence. In these cases, most

of the execution time is spent waiting for the network, which can hinder the

user experience. Another possible limitation is connected to the concept of

primitives: for some applications, the behavior to encapsulate in a primitive

can be too complex to be exposed with a simple interface like the one provided

by input/output primitives. This restriction could be partially mitigated by

splitting the logic into two or more primitives, with the drawback of delegating

more work to the network.

8. Conclusions

In this paper, we presented the RapIoT toolkit for rapid prototyping of IoT

applications. The development of a RapIoT application has been presented

by describing the prototyping process of a solution addressing real challenges of

smart cities. RapIoT leverages the concept of data primitives as communication

blocks and interfaces between generic IoT devices and the application layer. Fur-

ther, we have highlighted how RapIoT primitives can support the development

of collaborative applications via multiple embedded devices, physical interfaces,

and distributed gateways. RapIoT takes advantage of and builds on the most

34

recent technological evolutions in the field, such as the Arduino platform, cloud

computing, BLE radios, and mobile applications, reducing complexity and en-

try barriers for non-experts. Compared to the state of the art, with RapIoT we

are lowering the adoption threshold by shielding developers from some of the

complexity connected to prototyping IoT applications. This process is also facil-

itated by the holistic nature of the architecture encompassing all three layers of

a typical IoT system. In this paper, we have focused on providing an overview

of RapIoT and have illustrated through a preliminary evaluation how the devel-

opment process is supported and facilitated by the toolkit. We have conducted

workshops with different users to test the system: Non-expert developers were

asked to code and prototype a simple IoT scenario previously presented to them.

The groups were able to program the desired behavior and test the final IoT

application by physically interacting with the IoT devices employed. As part

of our future work, we aim to conduct more systematic studies with users with

different levels of programming skill to evaluate what scaffolding mechanisms

can be embedded in the toolkit so that it can be used directly by end users with

no programming knowledge.

Acknowledgements

We would like to thank all the students that participated in the development

of RapIoT, contributing with their work to the publication of this article.

References

[1] O. Eris, J. Drury, D. Ercolini, A collaboration-focused taxonomy of the

Internet of Things, 2015 IEEE 2nd World Forum on Internet of Things

(WF-IoT) (2015) 29–34.

[2] K. Schmidt, L. Bannon, Constructing CSCW: The first quarter century,

Computer Supported Cooperative Work (CSCW) 22 (4-6) (2013) 345–372.

35

[3] A. J. Jara, M. A. Zamora, A. F. G. Skarmeta, An internet of things–based

personal device for diabetes therapy management in ambient assisted living

(AAL), Personal and Ubiquitous Computing 15 (4) (2011) 431–440.

[4] M. Brereton, A. Soro, K. Vaisutis, P. Roe, The Messaging Kettle: Pro-

totyping Connection over a Distance Between Adult Children and Older

Parents, in: Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems, CHI ’15, ACM, Seoul, Republic of Korea,

2015, pp. 713–716.

[5] L. Yang, S. H. Yang, L. Plotnick, How the internet of things technology

enhances emergency response operations, Technological Forecasting and

Social Change 80 (9) (2013) 1854–1867.

[6] N. Taylor, U. Hurley, P. Connolly, Making Community: The Wider Role

of Makerspaces in Public Life, in: Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems, CHI ’16, ACM, Santa Clara,

California, USA, 2016, pp. 1415–1425.

[7] K. Ashton, That ”internet of things” thing, RFiD Journal 22 (7) (2009)

97–114.

[8] T. L. Koreshoff, T. Robertson, T. W. Leong, Internet of Things: A Re-

view of Literature and Products, in: Proceedings of the 25th Australian

Computer-Human Interaction Conference: Augmentation, Application, In-

novation, Collaboration, OzCHI ’13, ACM, Adelaide, Australia, 2013, pp.

335–344.

[9] M. Blackstock, R. Lea, IoT mashups with the WoTKit, in: 2012 3rd Inter-

national Conference on the Internet of Things (IOT), 2012, pp. 159–166.

[10] D. De Roeck, K. Slegers, J. Criel, M. Godon, L. Claeys, K. Kilpi, A. Ja-

cobs, I Would DiYSE for It!: A Manifesto for Do-it-yourself Internet-of-

things Creation, in: Proceedings of the 7th Nordic Conference on Human-

36

Computer Interaction: Making Sense Through Design, NordiCHI ’12,

ACM, Copenhagen, Denmark, 2012, pp. 170–179.

[11] S. Mora, J. Asheim, A. Kjøllesdal, M. Divitini, Tiles Cards: A Card-based

Design Game for Smart Objects Ecosystems, in: Proceedings of the First

International Workshop on Smart Ecosystems cReation by Visual dEsign

Co-Located with the International Working Conference on Advanced Visual

Interfaces (AVI 2016), Vol. 1602, CEUR-WS, Bari, Italy, 2016, pp. 19–24.

[12] A. Crabtree, T. Rodden, S. Benford, Moving with the times: IT research

and the boundaries of CSCW, Computer Supported Cooperative Work

(CSCW) 14 (3) (2005) 217–251.

[13] B. A. Farshchian, M. Divitini, Collaboration support for mobile users in

ubiquitous environments, Handbook of Ambient Intelligence and Smart

Environments (2010) 173–199.

[14] S. Bødker, Third-wave HCI, 10 years later—participation and sharing, in-

teractions 22 (5) (2015) 24–31.

[15] S. Greenberg, Toolkits and interface creativity, Multimedia Tools and Ap-

plications 32 (2) (2007) 139–159.

[16] A. Botta, W. De Donato, V. Persico, A. Pescapé, On the integration of

cloud computing and internet of things, in: Future Internet of Things and

Cloud (FiCloud), 2014 International Conference On, IEEE, 2014, pp. 23–

30.

[17] J. Grudin, S. Poltrock, Computer Supported Cooperative Work: The

Encyclopedia of Human-Computer Interaction, Encyclopedia of Human-

Computer Interaction.

[18] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, P. Dutta,

The internet of things has a gateway problem, in: Proceedings of the 16th

International Workshop on Mobile Computing Systems and Applications,

ACM, 2015, pp. 27–32.

37

[19] I. Wagner, M. Basile, L. Ehrenstrasser, V. Maquil, J.-J. Terrin, M. Wag-

ner, Supporting community engagement in the city: Urban planning in

the MR-tent, in: Proceedings of the Fourth International Conference on

Communities and Technologies, ACM, 2009, pp. 185–194.

[20] F. Gianni, M. Divitini, Technology-enhanced Smart City Learning: A Sys-

tematic Mapping of the Literature., IxD&A 27 (2016) 28–43.

[21] R. G. Hollands, Will the real smart city please stand up?, City 12 (3) (2008)

303–320.

[22] S. Mora, F. Gianni, M. Divitini, RapIoT Toolkit: Rapid Prototyping of

Collaborative Internet of Things Applications, in: Collaboration Technolo-

gies and Systems (CTS), 2016 International Conference On, IEEE, 2016,

pp. 438–445.

[23] A. Millner, E. Baafi, Modkit: Blending and Extending Approachable Plat-

forms for Creating Computer Programs and Interactive Objects, in: Pro-

ceedings of the 10th International Conference on Interaction Design and

Children, IDC ’11, ACM, Ann Arbor, Michigan, 2011, pp. 250–253.

[24] D. Mellis, M. Banzi, D. Cuartielles, T. Igoe, Arduino: An open electronic

prototyping platform, in: Proceedings of CHI Extended Abstracts, ACM,

2007, pp. 1–11.

[25] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The Scratch

Programming Language and Environment, ACM Transactions on Comput-

ing Education (TOCE) 10 (4) (2010) 16–15.

[26] J. Sadler, K. Durfee, L. Shluzas, P. Blikstein, Bloctopus: A Novice Modular

Sensor System for Playful Prototyping, in: TEI ’15: Proceedings of the

Ninth International Conference on Tangible, Embedded, and Embodied

Interaction, ACM, 2015, pp. 347–354.

[27] S. Sentance, J. Waite, S. Hodges, E. MacLeod, L. Yeomans, Creating Cool

Stuff: Pupils’ Experience of the BBC micro: Bit, in: Proceedings of the

38

2017 ACM SIGCSE Technical Symposium on Computer Science Education,

ACM, 2017, pp. 531–536.

[28] W. McGrath, M. Etemadi, S. Roy, B. Hartmann, Fabryq: Using phones

as gateways to prototype internet of things applications using web script-

ing, in: Proceedings of the 7th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, ACM, 2015, pp. 164–173.

[29] Q. Zhu, R. Wang, Q. Chen, Y. Liu, W. Qin, IOT Gateway: Bridging Wire-

less Sensor Networks into Internet of Things, in: Embedded and Ubiqui-

tous Computing (EUC), 2010 IEEE/IFIP 8th International Conference On,

2010, pp. 347–352.

[30] S. Nastic, S. Sehic, M. Vögler, H.-L. Truong, S. Dustdar, PatRICIA–A

Novel Programming Model for IoT Applications on Cloud Platforms, in:

2013 IEEE 6th International Conference on Service-Oriented Computing

and Applications, IEEE, 2013, pp. 53–60.

[31] F. Khodadadi, R. N. Calheiros, R. Buyya, A data-centric framework for de-

velopment and deployment of Internet of Things applications in clouds, in:

2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP), 2015, pp. 1–6.

[32] M. Kovatsch, S. Mayer, B. Ostermaier, Moving Application Logic from

the Firmware to the Cloud: Towards the Thin Server Architecture for the

Internet of Things, in: 2012 Sixth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), IEEE, 2012,

pp. 751–756.

[33] A. Pintus, D. Carboni, A. Piras, The anatomy of a large scale social web

for internet enabled objects, in: Proceedings of the Second International

Workshop on Web of Things, ACM, 2011, p. 6.

[34] K. Schmidt, Divided by a common acronym: On the fragmentation of

CSCW, in: ECSCW 2009, Springer, 2009, pp. 223–242.

39

[35] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT):

A vision, architectural elements, and future directions, Future Generation

Computer Systems 29 (7) (2013) 1645–1660.

[36] O. Shaer, E. Hornecker, Tangible User Interfaces: Past, Present, and Future

Directions, Foundations and Trends in Human–Computer Interaction 3 (1-

2) (2009) 1–137.

[37] S. Mora, F. Gianni, M. Divitini, Tiles: A Card-based Ideation Toolkit for

the Internet of Things, in: Proceedings of the 2017 ACM Conference Com-

panion Publication on Designing Interactive Systems, DIS ’17 Companion,

ACM, Edinburgh, Scotland, 2017, pp. 587–598.

[38] I. P. Cvijikj, F. Michahelles, The toolkit approach for end-user participation

in the internet of things, Architecting the Internet of Things (2011) 65–96.

[39] P. P. Pereira, J. Eliasson, R. Kyusakov, J. Delsing, A. Raayatinezhad,

M. Johansson, Enabling cloud connectivity for mobile internet of things

applications, in: Service Oriented System Engineering (SOSE), 2013 IEEE

7th International Symposium On, IEEE, 2013, pp. 518–526.

[40] P. H. Carstensen, K. Schmidt, Computer supported cooperative work: New

challenges to systems design, in: In K. Itoh (Ed.), Handbook of Human

Factors, Citeseer, 1999, pp. 619–636.

[41] R. Ashkenas, There’s a Difference Between Cooperation and Collaboration,

Harvard Business Review.

[42] S. Houben, C. Golsteijn, S. Gallacher, R. Johnson, S. Bakker, N. Mar-

quardt, L. Capra, Y. Rogers, Physikit: Data engagement through physi-

cal ambient visualizations in the home, in: Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems, ACM, 2016, pp.

1608–1619.

40

	Introduction
	Related Work
	Embedded Layer
	Gateway Layer
	Server Layer
	The RapIoT Position
	Summary of Differences with Related Works

	RapIoT Fundamentals
	RapIoT Architecture: Design Goals
	Input/Output Primitives
	Architecture
	Hardware Requirements

	Creating RapIoT Applications
	Device Development
	Application Development and Deployment
	Application Appropriation

	Initial Evaluation
	Implementation
	Discussion
	Meeting the Design Goals
	RapIoT in a Smart City Context
	Limitations

	Conclusions

