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Abstract

We present a method for finding the optimal decision on Random
Variables in a graphical model. Upper and lower bounds on the exact
value for each decision are used to reduce the complexity of the algorithm,
while we still ensure that the decision chosen actually represents the exact
optimal choice. Since the highest lower bound value is also a lower bound
on the value of the optimal decision, we rule out any candidate with
an upper bound of lower value than the highest lower bound. By this
strategy, we try to reduce the number of candidates to a number we can
afford to do exact calculations on.

We generate five Bayesian Networks with corresponding value func-
tions, and apply our strategy to these. The bounds on the values are
obtained by use of an available computer program, where the complexity
is controlled by an input constant. We study the number of decisions ac-
cepted for different values of this input constant. From the first Network,
we learn that the bounds does not work well unless we split the calcula-
tions into parts for different groups of the nodes. We observe that this
splitting works well on the next three Networks, while the last Network
illustrates how the method fails when we add more edges to the graph.
We realize that our improved strategy is successful on sparse graphs, while
the method is unsuccessful when we increase the density of edges among
the nodes.
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Sammendrag

Vi presenterer en metode for & finne optimal beslutning pa tilfeldige
variable i grafiske modeller. @Jvre og nedre skranker for eksakt verdi blir
brukt for a redusere metodens kompleksitet, samtidig som det sgrger for at
beslutningen som velges til slutt faktisk er den optimale. Da den hgyeste
nedre skranken ogsa er en nedre skranke for verdien av den optimale
beslutningen, kan vi forkaste enhver kandidat med lavere gvre skranke enn
den hgyeste nedre skranken. Slik prgver vi a redusere antallet kandidater
til et antall vi klarer a regne eksakt pa.

Vi genererer fem Bayesianske nettverk med tilhgrende verdifunksjoner,
og tester metoden pa disse. Skrankene blir funnet ved hjelp av et tilgjen-
gelig dataprogram, hvor kompleksiteten styres av brukeren. Vi har variert
denne, og sett pa hvor mange kandidater vi klarer a forkaste. Av det forste
nettverket ser vi at skrankene fungerer darlig dersom vi ikke splitter utreg-
ningene i deler for ulike grupper av nodene. Fra neste tre nettverkene, ser
vi at oppsplittingen fungerer godt, samtidig som det siste nettverket viser
hvordan metoden slutter a fungere nar vi legger til flere kanter pa grafen.
Vi ser derfor at resultatet blir bra for grafer med relativt fa koblinger
mellom nodene, men nar tettheten av disse gker, ser vi at metoden slutter
a fungere.
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1 Introduction

Continuously, we try our best to find the best decision for something. Usually,
we want do ”the right thing”, but even with the best intentions, our decisions
can lead to outcomes we don’t like. This is because we usually don’t control all
surroundings that will influence the result of our decision, when set into action.
That means that we don’t know for sure what will be the end result of acting
according to some decision. Then, we want to reason about how good a decision
is on average. To handle this problem, we set up a probabilistic model for the
surroundings, and associate Random Variables to the sources of influence to
our end result. On these Random Variables, we construct a Joint Probability
Distribution.

The Joint Probability Distribution associates a probability to each event
concerning the surroundings, that is, some number telling how often we would
expect this collection of criteria on the surroundings to be true. But the Joint
Probability Distribution also contains more information about how the Random
Variables depend on each other in a probabilistic setting. So, when setting up
such a probabilistic model, we have to be able to encode all such information.
In general, a causal model is both the easiest to set up, and the easiest to
work with after. That means setting up a marginal probability distribution
for each Random Variable to depend on the other Random Variables having a
direct influence on the first one, and merging all these marginals to the Joint
Probability Distribution.

To visualize these dependencies, it is usually convenient to set it all up in
a graphical model. That means drawing a circle to represent each Random
Variable, and put arrows between them to encode dependencies. In a directed
graphical model, the arrows have a direction, and correspondingly, in an undi-
rected graphical model, arrows are undirected. For the directed causal model,
we would set an arrow to point from a Random Variable to another if the first
one has direct influence on the other. After specifying the graphical model, that
is, the circles and arrows, the graphical model encodes some structure on the
Joint Probability Distribution. This structure usually also makes it easier to
specify the numbers we need to have the full Joint Probability Distribution.

Given the graphical probabilistic model, we can start reasoning about the
effect of our decision; what could happen, and how often it would. To figure
out what is actually the best decision, we have to be able to associate a value to
each realization. That is, a combination of our decision and an assignment to
the unknown surroundings should correspond to some number representing the
value. These values are then a function depending both on our deterministic



decision and several unknown Random Variables. And then, with our proba-
bilistic graphical model in hand, we can find the expected value of a decision.
Comparing the expected values for different decisions, we choose the decision
with the highest expected value, and call this the optimal decision.

As an example of application, we have a search for hydrocarbons, as in
Martinelli et al. (2011). The Random Variables represent different places where
hydrocarbons might be present. The structure of the graph is specified by
where hydrocarbons can be generated, and where it can flow. That is, the
probabilistic model and the Joint Probability Distribution is set up by looking
at some geological data. We would like to expect as high a gross income as
possible, and our decision would be which areas to check. The value function
would represent the gross income of a realization, that is, the sum over incomes
for findings, minus both development costs for the findings and costs for checking
all of the areas we decided to.

The general problem described above is exactly what we try to solve in this
report. First, in Section 2, we introduce theory about such probabilistic models,
where we focus on Bayesian Networks, which is a type of directed graphical
models. In Section 3, we present the representation of functions that will be
used throughout the report, and also, in Section 4, we present an algorithm that
will be used when we calculate the expected value. Then, we give a mathematical
formulation of our problem in Section 5, and a mathematical formulation of the
solution is given in Section 6. Sections 7, 8 and 9 present information and the
actual results from tests of our solution method, and Section 10 discusses the
complexity of the algorithms. Finally, Section 11 provides some closing remarks.

2 Bayesian Networks

From Cormen et al. (2009), we have the following definition of a directed graph.

Definition 2.1. A directed graph G is a pair (V,E), where V is a finite set
and E is a binary relation on V. The set V is called the vertex set of G, and
its elements are called vertices or nodes. The set E is called the edge set of G,
and its elements are called edges.

We will refer to the elements in V' as the nodes in G, and represent them
as circles in our figures. As described in Definition 2.1, the elements in E
are ordered pairs of nodes. That is, if e = (X;, X;) € E, there is an edge e
from node X; to node X;. This edge e will be represented by an arrow from
node X; to node X; in our figures. Correspondingly, an undirected graph has



Figure 1: An example graph G = (V, E). All graphs in this report are drawn
by use of the MATLAB Biograph tool.

undirected edges. That is, the elements in E are unordered pairs of nodes, and
can therefore be viewed as if there was a directed edge in both directions. From
now on, when the term graph is used, we assume that the graph is a directed
one, unless otherwise specified.
A visualization of an example graph can be seen in Figure 1. Observe that
in this graph,
V= { Kl, Pl, Pg, Sl, SQ, 53}

and
E={(Ky,P), (Ki,P), (P,P), (P1,51), (P2,52), (P,Ss3) }.

A Bayesian Network is a way to express conditional independence assump-
tions among a set of Random Variables by use of a graph. Each Random
Variable is represented as a node X;, and arrows between the nodes encode
a possible conditional dependence relationship. In this discussion, we will not
distinguish between the Random Variable and its corresponding node. In graph
theory the terminology for nodes at the different end points of an edge is as
follows.



Definition 2.2. If there is an edge e = (X;, Xy) from node X; to node X,
node X is a parent of node Xy, and node Xy, is a child of node X;.

If there are no edges e from any node to node X, we say that X is a root node.
If there are no edges e to any node from node X;, we say that X is a leaf node.
Also, a path is a list of edges, such that the end node at each edge is the start
node of the next. Then, the path describes a way to traverse the graph from the
first start node to the last end node by just following the directed edges in the
graph. If there is a path along the directed edges E = {e;}; from node X; to
node Xy, we say that X; is an ancestor of X}, and X}, is an descendant of Xj;.
Letting 2" denote the power set of V, this introduces the following functions.

Pa : V—-2Y  suchthat Pa(X;)={XpeV | (X X;) € F}
Ch : V-2 suchthat Ch(X;)={XpeV | (X;,Xy)eE}

That is, Pa(X;) is the set of nodes Xj such that X} is a parent of X; and
Ch(Xj;) is the set of nodes X}, such that X}, is a child of X;. Correspondingly,
we also let Anc(X;) denote the set of ancestors of X; and Des(X;) denote the
set of descendants of X;.

With some graph terminology in hand, we present the following definition
of a Bayesian Network from Russell and Norvig (2003).

Definition 2.3. A Bayesian Network is a graph, consisting of a set of nodes
V ={X,}I'_, and a set of directed edges E = {e;}<, between pairs of the nodes.
It is required that the graph has no directed cycles, i.e. it is a Directed Acyclic
Graph. In addition, each node X; has a set of Local Probability Distributions
P (X;|Pa(X;)) associated with it.

That is, for each assignment of Pa(X;), P (X;|Pa(X;)) is a probability distribu-
tion for the Random Variable X.

The nodes and the edges specify what is called the topology of the net-
work. Since the topology of the Bayesian Network constitutes a Directed Acyclic
Graph, there is a topological ordering of the nodes. That is, there exists a bi-
jective numbering of the nodes

X, - {1, 0}

such that for any edge e = (Xj;, X)) in the network, we have (X;) < £(Xy).
Also, this means that for any nodes X, X}, with ¢(X;) < ¢(X}), there is no
directed path from Xj to Xj;.



Given a Bayesian Network with its topology and the sets of Local Probability
Distributions, one uniquely determines the full Joint Probability Distribution
over all the Random Variables represented in the network by the formula

P(X1, - Xo) = | [ P(Xi[Pa(x,)). 1)

i=1

2.1 Mathematical Results

Notice that, given a subset A; of the Random Variables, we can divide the
probability distribution into

P(X1,---, Xa) = [[ P(XaPa(Xi) [] P(XulPa(Xy)).
Xk€A; XA,

Note that we have introduced the short hand P(X;|Pa(X;)) for the more correct
expression P(X; = x;| Xy = x VX € Pa(Xj)). Given a Random Variable X},
we let C; < Ch(Xj), and extend the definition of the function Anc to sets C;
of nodes such that
Anc(Cj) = U Anc(Xy).
X,elj

Now, let

Aj = Cj \ AHC(Cj) o AI’IC(Xj) U {X]‘}, (22)

and also

Notice that if C; # &,
Anc(X;) v {X;} < Anc(C)).

We are going to prove that for any assignment of the Random Variables in Aj,

[T PXwlPa(xy)) = 1. (2.3)

X,-,EA;: XkeAj

Without loss of generality, assume that the numbering i of the nodes X is such
that
Aj:{X13X27”’ 7Xm—1}7 A§:{X7rLaXm+17"' aX'rL}v



and that X, Xo,---, X, is actually a topological ordering of all the Random
Variables {X;,---,X,} in the Bayesian Network. Then, given an assignment
of the Random Variables in A;,

> T P(xklPa(xy)) 2 Z DU TT P(xelPa(xXy))

XEAr XkeA" Xn-1 Xn XkeA"

=YY ] P xalPalxy)
X

m Xn—1 Xn k=m

4

Xn

Xn—1 k=m
n—1
= -0 [T P (xxfPa(xy))

b
3

Xn—1k=m

Z P (X,,|Pa(X))
Xm
=1,
since for each k, and any assignment of the Random Variables in Pa(X}),
P(Xy|Pa(Xy)) is a probability distribution for the Random Variable X}, and
thus sums to one. The fact that P(X|Pa(X})) does not depend on any vari-
able X; for which X, is succeding X} in a topological ordering, is used to
move products outside the innermost sum. That is, in a topological ordering,
a given node is succeeding all of its ancestors. The Local Probability Distribu-
tion P(Xy|Pa(Xy)), varies only with the different assignments to X} ’s parents,
which is a subset of X}’s ancestors. Therefore, this Local Probability Distri-
bution cannot depend on a node X; succeeding the node Xy, in the topological
ordering, in this setting denoted by k < 1.
By Bayes Rule,

P(X;, Pa(X}))

B(Pa(X,)) 24

P(X;|Pa(X;)) =

Let

and note that this implies that
Aj e ADC(XJ) ) {X]} .



Define
Aj = Aj\Pa(X))\ {X;}

= (Anc(X;) v {X; P\ (Pa(X;) v {X;})
= Anc(X;)\Pa(Xj;).

For any assignment of the Random Variables in Pa(X}), the denominator in
(2.4) can be expressed as

P(Pa(X;) = Y,  P(Xi,---,X,)
Xie(Pa(X;))*
= o [T PxafPa(xy)) [ P(Xk[Pa(Xy))
XiQEAjU{Xj}XLleA XkEA XkEAC

= 2 H P(Xk|Pa(Xk))( Z H P(Xk|Pa(Xk))>

X eA;0{X;} XK€A; X, €AS XxeAS

= Y]] P(xlPa(xy)

XiEAju{Xj} XkEAJ

= > Y P(X;Pa(X;)  [[  P(XklPa(Xk))

X.eA; X Xi€Anc(X;)

=Y J]  POGPaxw) [ Y P(X;IPa(X;))
X

X;EAJ XkeAnC(Xj)

= > [T P(XklPa(Xy)),

XiEAj XkeAnC(Xj)

where we have used (2.3) for C; = ¢J. Correspondingly, for any assignment of
the Random Variables in Pa(X;) u {X;},

P(X;, Pa(X;)) = >, P(Xy, -, Xn)
X;e({X,}uPa(X;))e

= > D> ] PGEwPa(xy)) [ P(XklPa(Xk))

X; eA XlleA XreA; X,\eA°

= > ]] P&XxlPa(xy)) (Z 1 PXkPan)))

X eA; Xk€A; Xiy €AS Xp€eAS



= > [ P&XulPa(xy))

XeA; XK€A;

= > P(XjPa(X;))  []  P(XklPa(Xy))
X,€A; Xr€Anc(Xjy)
=P(X;[Pa(X;)) )] [ P&xPa(Xy)

X’eA XkeAnC(Xj)
~ P(X,[Pa(X;)) - B(Pa(X,)).
That is, the Local Probability Distributions P(Xy|Pa(X})) equals the Condi-
tional Probability Distributions P(X|Pa(Xy)), since (2.4) reduces to

P(Xj, Pa(X)))

P(X;[Pa(X,)) = ~ P(X,[Pa(Xy)).

P(Pa(X;))
Thus, we can write (2.1) as
P(Xy, -, Xy) = HP(Xi|Pa(Xi))- (2.5)

Then again, let A; be any set as in (2.2), and h(X4,---,X,) be a function
whose value only depends on the assignment of the variables in A;. We know
that

Eh= 3 h(X1,, Xn)P(X1, -, Xp)
All RVs

= 3 Y Xy X)B(X, X
X €Aj Xiy€AS

= > D) WXy X)) [] PG[Pa(Xy) [ P(Xk|Pa(Xe)).
X7‘,1€A_7‘ X,;2EA; XkEA XkGAC

Since h only depends on variables in A;, we could write h = h(X4,), and get
Eh= > >, h(Xa) || PXkPa(Xy) [] P(XklPa(Xk))

XiIGAj Xi2€A§ XkEA )(VICG.A.L

> h(Xay) [ PXkPa(Xi) | Y]] P(Xk[Pa(Xk))

XiIEAj XkEAj XiZEA;T Xk€A§
D h(Xa,) [] P(Xk[Pa(Xy)). (2.6)
XileA]‘ XkEA]‘



Actually,
[] P(XkPa(Xy)) = P(Xa4,),
XkGAj

which, in fact, is easily proved by (2.6) by letting h(X7, - -+, X,,) be the indicator
function for some assignment of the Random Variables in A;. However, the main
observation from (2.6), is that to find the expected value Eh, it is sufficient to
use the probability distribution we get by ignoring all the factors in (2.5) which
are Conditional Probability Distributions for the Random Variables in Af. That
is, letting P(X 4,) denote the product in the above equation, we get

ER(Xa,) = >, h(Xa,)P(Xa4,). (2.7)
Aj

2.2 Conditional Independence

As mentioned, each edge in the graph encodes a possible conditional dependence
relationship between two nodes. That is, the edges in the graph determines the
factors in the formula (2.5), which in turn allows for certain conditional de-
pendence relationships. Whether a set of variables actually are conditionally
dependent of each other, is determined by the conditional probability distribu-
tions {P(X;|Pa(X;))}.

We let X 1 Y denote that two Random Variables X, Y are independent, i.e.

PX =z)=P(X =z|]Y =y) Va,y.
An equivalent statement is
PX=zY=y)=PX=z)PY =y Va,y.

Also, the symbol | indicates that we are discussing a conditional probability
distribution, that is, X 1 Y | Z means

PX=zY=ylZ=2)=PX=2x|Z=2)-PY =y|Z ==2) Vz,y, 2.

Note that this means that X L Y and X 1 Y| &J are equivalent statements.
Correspondingly, we let X £ Y denote that the graph does not encode that
the Random Variables X,Y are independent. Also, X & Y| Z means that the
graph does not encode that X and Y are independent conditional on Z. That
does not mean, however, that there are no set of conditional probability distri-
butions that makes them independent. In fact, if we let X or Y be a constant,



they will always be conditionally independent, but their joint distribution can
still be represented on a graph where they are connected by edges. The edges
just allow for Random Variables not to be independent.

As an example, we study the graph in Figure 1. There are algorithms for
finding all conditional independence relationships, see for example the Bouncing
Ball Algorithm in Jordan (n.d.). However, this will not be covered in our scope.
To introduce some intuition, we will present some of the possible conditional
independence relationships from the graph in Figure 1, and give a brief, non
rigorous discussion of what they mean for a given example.

We could look at the nodes in Figure 1 as persons, and let the edges indicate
where messages could be sent. Say, K; suddenly wants to have a dinner party,
and on his phone he only has the phone numbers to P; and P,. Correspondingly,
P; can only communicate a message to P, and S, and P» to Se and S3. Say, K3
would want all to come, but he can only say this to P; and P,. However, through
them all persons can be reached, but P; and P, would only forward the message
if they are going themselves. The Random Variable for each node would here be
a Boolean variable {True, False} indicating whether the person is attending the
dinner party or not. If K is having the party for sure, he would be a constant
Random Variable, having value True with probability 1. Otherwise, his node
could be associated with some probability distribution indicating a probability
for him inviting to a dinner party or not. In that case, assuming all telephones
are working perfectly, and all persons are going if they get the message, we know
that all Random Variables are either True or all Random Variables are False.
Thus, we cannot have

S1 L So,

K15

nor
So L Ss.

However, if we know the value of P, then S7 and S5 are independent, written
Sy L S5 | Pa.

Then, allow for the telephones not to be perfect, that is, not all messages sent
will be received. For each message sent, whether it is received or not is assumed
to be independent of whether any other sent message is received. For example,
the statement

S1 LSy | Py

10



is explained by the fact that knowing whether P, is going or not leaves only
what we non rigorously can call independent randomness for the impact on the
values of S7 and Ss, respectively.

Note that any & statement can be proved by a counter example, while the
explanations for the L statements above just serves as describing examples.
The above examples can be summarized in the following list of conditional
independence statements for the graph in Figure 1.

e K1 £ 5
o K1 LS | Py
o S, £S5
oSy L S;| P
e 51 £ 5
¢S LS| P
e S 1Sy | Py

.SlJ_SQ‘P17P2
e 51 £S5 | Ky

Note that this is just a small excerpt of all the possible conditional independence
statements we could deduce from Figure 1. To find more of them, or for a more
rigorous check, the reader is referred to either the Bouncing Ball Algorithm in
Jordan (n.d.), or to do the more tedious work of checking by use of Bayes Rule
on the general Joint Probability Distribution (2.5) for the given graph.

In general, there are two standard conditional independence relations that
are characteristic for all Bayesian Networks. They are to be found in the follow-
ing two Theorems from Russell and Norvig (2003), and assume a Joint Proba-
bility Distribution where each assignment of the Random Variables Xy,--- , X,
has a positive probability,

P(Xy, -, Xn) > 0.

Theorem 2.1. A Random Variable in a Bayesian Network is conditionally
independent of its non-descendants, given its parents.

To state the last theorem, we have to make the following definition as in Russell
and Norvig (2003).

11



Definition 2.4. The Markov Blanket of a Node in a Bayesian Network is de-
fined to be the set of its neighboring nodes, that is, its parents, its children and
the parents of its children.

Theorem 2.2. A Random Variable in a Bayesian Network is conditionally
independent of all other nodes in the network, given its Markov Blanket, as in
Definition 2.4

Theorems 2.1 and 2.2 can be proved by applying Bayes rule on the Joint Prob-
ability Distribution as in (2.5).

2.3 Markov Random Fields

In a Bayesian Network, a Directed Acyclic Graph is used to represent some de-
pendence properties of the Joint Probability Distribution for the Random Vari-
ables. But the same Joint Probability Distribution (2.5) can also be represented
on an undirected graph. A Markov Random Field is an undirected graphical
model to represent probabilistic relationships. That is, as for a Bayesian Net-
work, each node still represents a Random Variable, but in a Markov Random
Field the edges are undirected. Thus, we cannot talk about a node’s parents nor
its children, descendants or ancestors. Instead we have the following definition
from Bishop (2006).

Definition 2.5. A clique is a subset of the nodes in the undirected graph such
that there exists an (undirected) edge between all pairs of nodes in the subset.
Furthermore, a mazimal clique is a clique for which it is not possible to include
any other nodes in the graph without it ceasing to be a clique.

A potential function 1 on a maximal clique is a non negative function on
the Random Variables in the clique. By letting A denote a maximal clique, and
X denote the Random Variables in it, we can define a probability distribution
on an undirected graph as the product of all potential functions ¥, (Xx), as in

P(X,, - X,) = él_[WXA% (2.8)
A

where C' is the normalization constant that ensures it to be a probability distri-
bution. The undirected graph and the corresponding probability distribution is
then a Markov Random Field.

As for Bayesian Networks, there are also conditional independence state-
ments that are true in general for Markov Random Fields. The following is

12



from Bishop (2006), and assumes a Joint Probability Distribution where
P(Xy,---,X,) >0
for any assignment to the Random Variables Xy, .-, X,,.

Theorem 2.3. For three sets of nodes A, B, D, we have
ALB|D

if all possible (undirected) paths between a node in A and a node in B pass
through one or more nodes in D.

From this, we can deduce that a Random Variable is conditionally independent
of any subset of the other Random Variables given its neighbors. Thus, the
Markov Blanket of a Random Variable X; in a Markov Random Field, is the
set of nodes X; which shares an edge e = {X;, X} € E with X;.

Given a Bayesian Network, we would like to find a corresponding Markov
Random Field. For the same conditional independence properties to hold, we
need the Markov Blanket for each Random Variable to be the same in both
representations. Hence, when going from the Bayesian Network representation
to the Markov Random Field representation, edges must be added between any
two nodes that have common children. In fact, according to Bishop (2006),
in addition to replacing all directed edges in the original Bayesian Network by
undirected ones, this is all we need to do. The process of adding the extra edges
between any pair of parents of the same child is called "moralization”, and
is also referred to as "marrying the parents”. The resulting undirected graph
is called the moral graph, and is also the corresponding undirected graphical
representation of the probability distribution.

For the Joint Probability Distribution, note from (2.5) and (2.8), that we

need to have .

1
e 1AT¢A<XA) = HlMXilPa<Xi>>. (29)

As an example, we study the directed graph in Figure 1. Note that no
moralization has to be done, since K; and P; are the only nodes with common
children, and they already share an edge. Thus, the moral graph of Figure 1 has
the same nodes and the same edges, except that now the edges are undirected
ones. For this graph, the Bayesian Network tells us that

P(Ky,---,S3) = P(K1)P(P|K1)P(S1|P1)P(Pa| K1, Py )P(Se| Py)P(S5| Ps).
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The corresponding moral graph tells us that

P(Ky,---,83) = é%(PhSOd)Q(Pz,52)¢3(P2,S3)¢4(K1,P1,P2)~

Comparing the two above equations, we observe from (2.9) that we can choose

1 (P, S1) = ChP(S1]P1)
Pa( Py, S2) = CoP(Sa| Ps)
Y3(P2, S3) = C3P(S3| )
Ya(Kyq, Pr, Py) = C4P(K,)P(Py | K, )P(P2|Ky, Pr)
for some constants Cy, Csy, C3, Cy such that C' = — L ___ The general case is

C1C2C3C4
similar, and we can always choose all C;s to be 1, and thus get C' = 1. From

now on, we will assume this choice.
In general, note that moralization ensures that for any node X;, there exists
a maximal clique A in the moral graph such that

(X} UPa(X;) € A.

Thus, we observe from (2.9), that for any maximal clique A, there is a non
empty subset A € A such that

va = || P(XilPa(X5)).

XiE)\

_ Now, let us study a subset of the Random Variables in Figure 1. Let G =
(V, E), where

V={Py, Sy, S3}cV and E={(P,S), (Ps,S3)}c E

for G = (V,E) in Figure 1. A visualization of G' can be found in Figure 2,
and the corresponding moral graph can be found in Figure 3. Observe that the
maximal cliques are

A12{527P2} and AQZ{Sg,PQ}.
Correspondingly, the potential functions must be of the form

wl = (I)l(PQ)P(SﬂPg) and 1/)2 = (I)Q(PQ)P(SE),‘PQ),

14



b

Figure 2: The graph G created by a subset of the nodes in Figure 1.

Figure 3: A visualization of the moral graph for G, where G is the graph

visualized in Figure 2. Note that no extra edges had to be added to obtain the
moral graph.
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where @1 (P,)Po(P,) = P(S3), and we can choose either ®1(Py) =1 or $5(Ps) =
1.

From this example, we note that the choice of A might not be unique for
each maximal clique A. In any case, the As define a partition of all the nodes
X1, ,X,. That is, the As are pairwise disjoint and their union contains all
nodes in the graph.

3 Pseudo-Boolean functions

In several applications, we are working with a set of variables that can take on
two values. In this section, we will present some theory about functions on such
a set. As in Hammer and Rudeanu (1968), we begin by the following definition.

Definition 3.1. The set By = {0, 1} together with the operations of disjunction,
conjunction and negation is called the Boolean algebra.

That is, the operations mentioned is defined as follows.

Definition 3.2. Negation, denoted by ~, is associated with the function 1 — x,
and we get the following formulas

—
Il
e

0=1 and

Definition 3.3. Conjunction, denoted by -, works like usual multiplication.
That is
0-0=0 0-1=0 1-0=0 1-1=1.

Definition 3.4. Boolean disjunction is denoted by v, and is defined by the
formulas
0u0=0 Oul=1 1lu0=1 lul=1.

Also, we let the term Boolean variable denote a variable that can take values in
the set By. A Boolean function f is then a function

f : Bg g BQ,
that is, a function whose value and n arguments are all Boolean variables. This

concept of a Boolean function is then expanded to the following.
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Definition 3.5. A pseudo-Boolean function f is a function
fiBy - R,
that is, a function from an n-tuple of bivalent variables to the real numbers.

Note that this definition allows us to look at the space of Boolean functions as
a subspace of all pseudo-Boolean functions.
The following result is from Hammer and Rudeanu (1968).

Theorem 3.1. FEvery pseudo-Boolean function may be written as a polynomial,
which is linear in each variable, and which, after the reduction of the similar
terms, is uniquely determined up to the order of the sums and products.

That is, let X = [X}]}'_; be a vector of Boolean variables and f be a pseudo-
Boolean function. Then, there exists a collection T' of sets A < {1,---,n} of
indexes and a corresponding set of coefficients {a*} c7 such that

FX) =D ]| X (3.1)

AeT ke

In fact, as mentioned in Theorem 3.1, there might be several choices of T. T
can always be the power set of {1,--- ,n}, and in general

T < 2t

As an example, we look at a function h acting on the variables in Figure 1,

1 if S =0,55 =0,
if S9=1,53=0

h(K1, Pi, Py, S1,52,53) = ZQ ;fSQ 0’53 17 (3:2)
2 =Y,03 =1

e+e?—-1 if 9 =1,85 = 1.
For this function, we can let

T={J, {Si}, {S2} },

and write h as

h(Kl,Pl,PQ,Sl,SQ,S3) =1+ (6 — 1)52 + (62 — 1)53

17



Theorem 3.1 is easily proved by a calculation of the coefficients {a*} et for a
general function, which can be done recursively as follows. First, for simplicity,
assume T = 211} and let

va = [vk]r such that vy =1<keA.

That is, we assume T to be the power set of all indexes appearing in S, and vp
to be a vector where all entries with indexes in A are on, and all other entries
are off. This allows us to set

a? = f(vg) = f(0),

and for increasing size of A, set

After determining the full set of coefficients {«}, the choice of T' can be changed
by not including all As where o = 0.

In Hammer and Rudeanu (1968), several other representations of a pseudo-
Boolean function, also using combinations of the operations in Definition 3.2 and
Definition 3.4 are presented. In the following, we will assume the representation
from (3.1).

From Theorem 3.1, we also deduce that any such positive valued function
f(X) can be represented as the exponential of a pseudo-Boolean function. That

f(X) = exp (Z e l_[Xk> : (3.3)

AeS keX

As an example, the function % in (3.2) can be written as
h(Kl, Py, P, 5,5, 53) = exp (SQ + 253 + 5253(11’1(6 +e2 — 1) — 3)) .

In the following, we will continue to write a* for coefficients of the pseudo-
Boolean representation (3.1), and 8* for coefficients of the pseudo-Boolean rep-
resentation of the logarithm of the given function as in (3.3). Correspondingly,
T will denote the subsets we are summing over in the pseudo-Boolean represen-
tation (3.1), and S for the exponential version (3.3).

18



3.1 A graph structure for coefficients

When a computer program is given a pseudo-Boolean representation of a func-
tion, or when calculating the coefficients of that representation for a given func-
tion, a structure for storing coefficients of type o is needed. Also, expressions

of type

2, o

AGA
appear frequently in the formulas, so given A, its coefficient and the coefficients
of subsets of A should be easily accessed. This is easily solved by a graph
structure. The graph is a set of nodes, with one root node corresponding to
a9, and all other nodes divided into layers depending on the size of A for the
coefficient a® the node corresponds to. Let N denote the set of indexes for
the variables the given function f depends on. For simplicity, assume N =
{1,2,--- ,n}, and also that we study the full representation

FX)= > M [ X

ASN kex

Then, for each A € N, in the coefficient graph, the corresponding node has all
subsets of A as ancestors. Especially, the parents of that given node are the
nodes corresponding to the sets in

(ACA A = [A]=1}={A: A=A\{m}, meA}.

That is, to obtain a child of a given node A, one augments A with an m € N\\.

Correspondingly, each parent is found by removing one of the elements in .

Such a coefficient graph with n = 4 and four layers, can be seen in Figure 4.
As an example, given A = {3,4,7} and n = 7, we observe

Pa(A) = { {4,7}, {3,7}, {3,4} }
and correspondingly,
Ch(A) = { {17 3,4, 7}7 {27 3,4, 7}’ {37 4,5, 7}7 {3» 4,6, 7} } :

An illustration of the node A = {3,4,7} and its parents and children is to be
found in Figure 5. We let layer r denote the set of nodes of distance r from
the root node, so that all children of a given node are in the same layer, and
similarly for all its parents.

For a further description of how we have implemented this graph structure,
the reader is referred to Appendix A.
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Figure 4: An example coefficient graph of four layers including the root node,
with n = 4. That is, coefficient nodes corresponding to |A| < 3 are represented.
The arrows are from parents to children.

Figure 5: An illustration of the example showing parents and children for the
node A = {3,4,7} when n = 7.
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3.2 Converting between exponential and linear form

Given a set T of index sets A, and the set coefficients {a*} er to describe a
function f(X) of the form

FX) = M [ X

XeT kel

we want to find a corresponding set S, and the set of coefficients {8} cs to

write f(X) as
f(X) =exp (Z BAnXk) :

AES keX

First, note that in general S # T. As an example, note for a,b € R, we get
the following pair of equivalent representations

1 b
1+ aX; +bX; = exp (Xlln(ua)+X21n(1+b)+X1X21n rax )

1+a)(1+0)

That is, in general, the exponential representation is full even though the linear
representation is sparse. Correspondingly, the linear representation might be
full for a function with sparse exponential representation.

For simplicity, assume S to be the power set of all indexes appearing in T,

that is,
S = 2{] : AXeT such that ]EA}.

We get, for A € S,
5A_1n< > ozA)—Zﬂ)‘.
AT : ACA ASA

This introduces an algorithm for calculating the 8*s in order of increasing size
of \. Correspondingly, for the converse case, we have for A € T

pen( 3 )z

AeS : ACA ASA

3.3 Probability Distribution for a Bayesian Network

Given a Bayesian Network with nodes X = [X;],, we have the full Joint
Probability Distribution as in (2.5), after specifying the conditional probabilities
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P (X;|Pa(X;)) for each node X;. Asin Section 6, we might want to represent the
natural logarithm of the full Joint Probability Distribution as a pseudo-Boolean
function. Observe that

mP(X, -, X,) = i InP (X;[Pa(X;)) ,

i=1

where for each i, P (X;|Pa(X;)) is a function of the Random Variables in {X;} U
Pa(X;). Thus, if we know the pseudo-Boolean representation of InP (X;|Pa(X;))
for each 4, their sum equals the natural logarithm of the full Joint Probability
Distribution.

Given an index i, we write the pseudo-Boolean representation of the condi-
tional probability distribution P (X;|Pa(X;)) as

P (X;[Pa(X:)) = > % [] X,

AES; XEEX

where
S; = 2{j \ Xje{Xi}uPa(Xy)}

Note that here, the full representation is chosen, that is, we sum over the power
set of {X;} U Pa(X;). Also, from here, we let the coefficients of the pseudo-
Boolean representation of probability distributions be denoted by ~s, in fact for
the conditional distribution P (X;|Pa(X;)), we use {7},

Now, we assume that the nodes represent binary Random Variables, that is
X; € {0,1}. Observe, that the coefficients 77 can be calculated recursively, in
order of increasing size of A. In fact, first let

—InP(X; = 0[X; = 0 VX, € Pa(X;)).
Then, for any subset A < Pa(Xj;),

=InP(X; =0/X; =1VYX;eAand X; =0 VX, € Pa(X;)\A) — Z .

Similarly, for any set A = {X;} U ¥ where ¥ C Pa(Xj;),

=InP(X; = 1|Xx = 1 VX; € ¥ and X; = 0 VX € Pa(X;)\W) — >~}
ASA

22



3.3.1 An example Network

This example will illustrate the Joint Probability Distribution for the tests pre-
sented in Sections 8 and 9. We have a Bayesian Network over Random Variables
that are either on or off, corresponding to the values 1 and 0, respectively. As-
sume we are given a probability px, for each root node X;, and then let

px, =P(X; = 1) = 1 - P(X; = 0).
This implies the following formula for the root nodes X,
InP(X;) =In(1 —px,) + Xi(lnpx, —In(1 — px;)),
indicating

Vz@ = ln(l - pXi)
,YZ{Z} = lani - ln(l _pXL)

For each edge ex, x, from node X; to node Xj, assume we are given two
probabilities, pg(i’ X, and pﬁ( X, respectively. In fact, let

pg(i’xj = P(X receives signal from X;|X; = 0)

and
P%{,;,Xj = P(X receives signal from X;|X; = 1).

Whether a child X; receives a signal from one of its parents, say X;, is assumed
to be conditionally independent of whether a signal is received in any other pair
of child and parent, given the value of the parent X;. Assume that for any non
root node, its value is 1 if it has received a signal from at least one of its parents,
and 0 otherwise.

Given a node X; and an assignment X; = x; to each of its parents X; €
Pa(Xj;), we let

Pa(Xj) = {Xz | 1eAu \I/},

where A U ¥ is a decomposition of X;s parents such that

1 leleA,
€Ty =
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Observe that

InP(X; = 0[Pa(X;)) = In (H (1-rkox, ) TT(1 —p%i,xj)>

€A iew
= Zln (171%(71,)(1) * Zln <17p())(”’xj)’
1EN ew

which implies

=S (1 —pﬁfi,Xj) +Y I (1 —p(}g,X) -2 (3.4)

€A ew ACA
and
Au{y Au{g
0 (1T T () ) - 3 )
ieA i€l ASAU{j}
Observe from (3.4) that for a non root node X;, we get
=3  I(-pk x,)
quEPa(Xj)
and if Xy, € Pa(Xj),
k
W =1 - pk, x) + > In(1 - p%, x,) =72
XiePa(X;)\{ Xk}

= In(1 —Pﬁf,ﬁ,xj) —In(1 —pg(k,xj)~

But then also, for X, X, € Pa(X;) where k # £, (3.4) reduces to
%{.k,é} = 0.

In fact, we get
vf =0 when |A| > 2

by induction on the size of A.

As an example, we let pg(h x, = € for all edges ex; x; and calculate the
representation of the corresponding conditional distribution for some of the
variables in Figure 1. For example, we get

InP(K;) = In(1 - pk,) + Ki(Inpg, —In(1 - pxk,)),
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1-— 1—

I P(Py K1) = In(1— ) + Ky In - PEeP  poy € g L= OPRR
1—c¢€ 1—e€ (]-_pKhPl)6

and

WP(S1P) = In(1 — ) + PyIn LoPPuSt 4 g€ pgpy L= PPus:
1—¢ 1—¢ (1 —pp,.s,)e

Note that the formulas for InIP(S3|P2) and InP(S5|P;) are similar to those for
11’1P(P1|K1) and lnIP’(Sl|P1)

4 Approximate Forward-Backward Algorithm

From Tjelmeland and Austad (2011), we have an approximate forward-backward
algorithm for probability distributions of the form

P(Xy, -, Xp) = %exp (Z WAHX,C>

AeS keX

That is, the algorithm is constructed to sum out Random Variables, and return
the value of the sum. This is useful for example when working with Markov
Random Fields, where the normalization constant C' might be unknown. From
Section 2.3, we recall that

C = Z exp (Z fyAnXk> .
X1,,Xn AeS ke

Another application is for calculating the expected value Eh for some function
h on a set of Random Variables. Let

hX1, -, Xn) =exp (Z BAHX;@> .

AES keX

Then,

&=
>
I

D h(Xy, e Xn)P(Xy, e, X)
le"'»Xn

- ZX" exp (Z (B> + ) ka> .

X1, AES keX



Also, note that if h is a function which depends on more variables than our
Random Variables X1, ---, X,, say

h = h(le T ,XannJrl» : "Xn+m)a

we would have

h(Xla' o 7Xn+m) = €xXp (Z 5A nXk> .
AeS kel

for a collection S of index sets A where some of the indexes k € A might have
k > n. We get

Eh = Z h(Xla : n+m)P(X17"' ’X’ﬂ)
= Z exp <Z (ﬁ)‘ + ’Y/\) nXk> )
X1, X AeS keX

which corresponds to looking for a function C'(X,,41, - Xp4m). Observe how
these three problems are essentially the same, and thus we can focus on how to
find the normalization constant C.

The exact forward-backward algorithm works by summing out one variable
at the time. That is, assume we want to calculate

C = sz_l N exp <§97A gxk>
> 2(2%%%%«))

First, X7 is summed out, to get

Zexp(Z HXk>—exp ST ] Xk

AeS ke Ae$ kel

for some S and some collection of coefficients {3} zeé- Note that

X1¢X  VAeS.
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After this step,
o= Y ew[NP]]x
Xo-, Xn reS  kex

Continuing like this, we finally end up with some S and some collection of
coefficients {*} .5 such that

C = Zexp (Z VAHXR>

AeS ke

We observe that in this stepwise procedure, each step is essentially the same.
Therefore, it is sufficient to consider how to calculate

CYXy,--, X Zexp (Z 7’\1_[Xk>

AeS ke

Observe that for any S € 9,

IR IR IR | ER SR | B

AeS ke AeS ke AeS\S keX

Now, let .
S={ eS|1le)}

Then,

CY(Xy, - Zexp ZWAHXk+ 2 ’y)‘nXk

AeS ke AeS\S ke
—Zexp Z*}/)‘HXk exp Z ’y)‘nXk
AeS kex AeS\S ke
—exp | Y [ Xk ZeXp M [k
AeS\S§  keA Xed§  kex

Thus, essentially, what needs to be calculated is

;exp< > ykﬂxk) (4.1)

AES s.t. 1leX ke
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Let
Neigh(X;, S) = {X; | 3IX € S such that {7, j} < A}.

Then, Neigh(X7, S) is the set of nodes with indexes appearing in (4.1). In fact,
if we look at )
A
IR IR
AeS ke

as the probability distribution for a Markov Random Field, then, Neigh(X7, S)
is the set of neighboring nodes of X;. In a visualization of this Markov Random
Field, this would be illustrated by an undirected arrow between each pair of
neighbors. Also, this implies that for this Markov Random Field G = (V, E),
there is an edge e between the nodes X; and X, denoted

e = {XZ,X]} ekl

for each node X; € Neigh(Xj;, S). Recall from Section 2.3, that we can only have
conditional dependencies between nodes X; and X; given all other Random
Variables if X; and X; are neighbors.

Calculating (4.1) has a complexity of

@(glNeigh(XnS)l),
Tjelmeland and Austad (2011) presents an algorithm which finds an approxi-
mate value of the sum with a complexity of O(2¥), for some input constant v.

That is, if
|Neigh(X;, S)| < v,

the exact value of the sum is calculated. Otherwise, if
|Neigh(X;, S)| > v,
the approximation
1= Son (S [13) = Now ( 5 [1) =7
X XeS  kex X red  keEA
is made for some S and some collection of coefficients {3*},_g such that

|Neigh(X1, S)| < v.
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The approximating function f for the function f is chosen to minimize the error
sum of squares ,
SSE(f, f) = X, (£(X) - F(0)) .

X
Now, the operation of summing out a Random Variable has a complexity which
is bounded by O(2") for the input constant v.

Also, in Tjelmeland and Austad (2011), a couple of possible ways to calculate
bounds on the error are discussed. These bounds together with the approximate
value of the sum, gives upper and lower bounds on the exact value. What is
referred to as ”Optimal bounds for pseudo-Boolean functions” in Tjelmeland
and Austad (2011) is already implemented, and will be used for the tests later
in this report. This computer program, implemented by Tjelmeland and Austad,
will be referred to as ”The AMRF Programs”, where AMRF is an abbreviation
for Approximate Markov Random Field. For a short user oriented presentation
of ”The AMRF Programs”, the reader is referred to Appendix B.

5 Mathematical Formulation of the Problem

Given a graphical model with n nodes numbered from 1 to n, we assume that
each node 7 is associated with a Boolean Random Variable X;. Following the
notation from Tjelmeland and Austad (2011), let

N= {1727 7n}7

and also, let
Q={0,1}"

be the set of all Boolean vectors of length n. The vector
X = [Xi]iey,

containing all the Random Variables X; in our graphical model, is then a Ran-
dom Variable in the probability space

(Q7 2Q7 IP))?

where P is the Joint Probability Distribution on the graph.
Observe that the function

g:Q — 2" suchthat g(v)={j|v;=1}
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is one-to-one and onto, and thus defines a bijection between vectors in 2 and
subsets of N. This allows us to associate © with the power set 2V, and talk
about their corresponding elements. That is, a given subset of IV contains the
indexes of the 1s in the corresponding vector in Q.

Definition 5.1. A decision is a deterministic Boolean vector Z of length n,
that is, with each entry corresponding to one of the Random Variables X; in
our graphical model.

Let u be an integer, and also, let I' € IV be the indexes of a subset of all nodes
in the graph. Define

QF’U’:{ZEQ: Z;=0Vi¢I', and ZZiéu},
i=1

to be our decision space. That is, for a decision Z, we only allow the entries Z;
with index 7 € T to take on the value 1, i.e. all other entries have to be 0. Also,
no more than v entries are allowed to have the value 1. Note that QU* < Q.
Given a function
fobv - R,

we look for a decision Z* € Q"% that maximizes the value of f(Z). That is,

*
Z* = arg max {f(Z)}.
We will refer to such a decision Z* as the optimal decision according to the
function f .

Assume we want to look for nodes 7 where X; = 1, and that it is not possible
to observe all nodes. In fact, assume that there is only a subset of the nodes for
which it is possible to observe the value of X;, and also that there is an upper
limit of how many nodes we can observe. We let the value of the entries Z;
in the decision vector Z denote whether we are going to check the value of the
corresponding Random Variable, as in

7 {1 if we observe the value of X,

0 if we don’t observe the value of Xj.

Then, I' € N contains the indexes of the nodes that are observable, and u is
the maximum number of nodes we are allowed to check. Also, for our graphical
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model which encodes probabilistic information about the unknown variables in
X, we assume
£(2) = EN(X.2) = | h(X.2)P(dX)
Q

for some function
h: QxQb* — R

Let
c: QB RT

represent the cost of a decision. That is, ¢(Z) is the cost associated with ob-
serving X; for each i such that Z; = 1. Also, let

w: Ox QU 5 RY

be the income of a decision for a specific assignment to the Random Variables
in the graph. That is w(X, Z) is the income associated with the observations
according to the decision Z if the Random Variables had the assignment as in
X. Now, we let h(X,Z) = w(X,Z) — ¢(Z) and get

f(z) = E (profit|oliowing z)
=Ew(X,Z) - c(2))
=Ew(X,Z) —c(2)

=Y w(X, 2)P(X) - ¢(Z).
X

This is the function f for which we want to find the optimal decision Z*, and
we will refer to this as the optimal decision Z*, and assume this choice of f to
be implicit.

As in Martinelli et al. (2011), the graphical model could be a Directed Acyclic
Graph which denotes the causal conditional distributions for the presence of
hydrocarbons in certain areas. We would let X; = 1 denote presence of hydro-
carbons in the area associated with node X, and correspondingly, X; = 0 would
denote absence of hydrocarbons. The nodes with indexes in I would represent
the Potential Drilling Sites, while the other nodes are used to impose geological
causal dependencies. Then, u is the maximum number of nodes we are allowed
to drill. Also, ¢(Z) would be the cost of drilling the Potential Drilling Sites
with a nonzero entry in Z. Correspondingly, w(X, Z) would be the net income
after the finds of hydrocarbons according to X and Z. That is, we would find
hydrocarbons in node X; if and only if X; = Z; = 1.
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6 Mathematical Formulation of the Solution

Typically, it is too time consuming to calculate the exact value of f(Z) for all
Zs in our decision space Q1% That is why we have to look at approximations.
Since we still want to make sure that we actually find the optimal decision, we
look at upper and lower bounds for the value of f(Z) for each Z. An algorithm
for finding upper and lower bounds for the normalization constant C' of a given
probability distribution

P(Xy, -+, Xp) = %exp (ZVAHX’“)

AeS ke

as in Tjelmeland and Austad (2011), is already implemented. This will be
used as a ”"Black Box” for finding upper and lower bounds on the value of
f(Z) =Eh(X, Z) for a given Z. Recall from Section 4, that finding the expected
value of a function h on some Random Variables X is essentially the same
problem as finding the normalization constant for a distribution P(X) that is
not normalized. Letting some set of upper and lower bounds be implicit, this
lets us define the functions

frooobr 5 R
and
fm o obr - R

We let f1(Z) denote the upper bound for the expected profit, and correspond-
ingly, f~(Z) denote the lower bound.

Given a set of bounds, we have to use the values of f*(Z) and f~(Z) for all
Zs to separate out as few candidates for the optimal decision as possible. By
the definition of the optimal decision Z*, we know that

f(Zz¥=f(z) VY zZeQbw

Also, for the upper and lower bounds, f*(Z) and f~(Z), respectively, we know
that
)< f2)y<f(2z) Vvzea™ (6.1)

From the two above equations, we deduce that

[(Z% > (2) ¥ Zeq™,

32



which again implies
VA > max Z).
/ ( ) . ai",u / ( )

Since (6.1) is true for any decision Z € Q"% more specifically we also have
2% < J(2%) < £7(27),

which finally leaves us with

Thus, we know that any decision Z with

Yz —(Z2).
f7(2) < max f~(2)
is not a candidate for the optimal decision. This also tells us that if we could
find a Z such that

7 (2)=f"(2) Y ZeQ "{Z},

we would know that Z* = Z. In general, the upper and lower bounds are not
tight enough to separate out only one candidate for Z*, but hopefully we would
be able to exclude a significant fraction of the possible decisions Z. Note that
it is sufficient to observe that

fH(2) < f7(2).

for some decisions Z,Z € Q" to rule out Z as a candidate for the optimal
decision.

Now, we have a plan for how to deal with a set of evaluations of the upper
and lower bounds. Our focus will now be on how to obtain such bounds. As
defined in Section 5, we assume that we are given a cost function ¢(Z) and an
income function w(X, Z). Recall from Section 3, that the cost function can be
represented as a pseudo-Boolean function.

C(Z) = Z ag\ost n Zk’ (62)

AT cost keX

where T,..s 18 some subset of the power set 29" Since we only observe the
values of X in the nonzero entries of Z, it is natural to assume that w is a
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function of the scalar product X - Z, where (X - Z); = X; - Z;. Then, we can
write w as a pseudo-Boolean function of the following form,

w(X,2) = >, ahe | [ Xx- 2k (6.3)

AeTine ke

Since we have assumed the income function to be a positive function w(X, Z) >
0 of the decision Z and the Random Variables X, we also let S;,. denote a
collection of sets of indexes and {537 .}xes,,. = R denote coefficients such that

inc

w(X,Z) = exp ( 0 B [ [ X Zk> . (6.4)

AESine ke

Recall that Section 3.2 presented an algorithm for how to convert between the
representations in (6.3) and (6.4). As in Section 3.3, we also write the probability
distribution of the Random Variables X in our graphical model as

P(X) = exp <Z A HXk> . (6.5)

AeS keX

We introduce a variable X , which holds information from both the Random
Variable X and the decision Z. In fact, we let X be a vector of length 2n, where
the first n entries are the entries in X, and the next n entries are the entries
in Z. That is, for the Random Variable X and a decision Z, element-wise we
define

(6.6)

o [x s
Zi—n if i > n.

Observe for a decision Z, X (X, Z) is a Random Variable where

P(repa)= )7 TS

for Boolean vectors x, z of length n. Thus, implicitly letting the choice of Z
deterministically fill out the last n entries of X, and also letting Xy (X, Z)
denote the kth entry of X (X, Z), (6.5) can be rewritten as

P (X(X,Z)) = exp (Z ’Y)‘HXk(XvZ)> )

AeS keX
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where the collection S of index sets A is unchanged.
Correspondingly, (6.4) can be translated to

w(X,Z) = exp ( Z Z)‘MH (X'k(X7 Z) Xnin(X, Z))) .

AESine kel

We define
g : 2NV — ofls 2} such that ON) =Au{j+n]jel}

and let ~
Sine = {0(A\) | A€ Sinc}-
Also, for each \ € S, we let

59(/\) _ aA

inc ~ Minc*

This allows us to define

@ : {0,1}>" >R such that W(X) = exp Z Be nXk
AeSine ke

Note all of this is just to get
W (X(X, Z)) - w(X, 2).

Assuming S;,. = S, as we could ensure by including zero-valued coefficients
if necessary, the expected value Ew(X, Z) can be written as

Ew(X, Z) = Y w(X, Z)P(X)
X

=N (X(X, Z)) P (X(X, Z))

X
:Zexp (Z (~{\nc+’y)‘)n)~(k(X,Z)> (6.7)
X AeS keX

Assume we have the representation of w(X, Z) as in (6.4) and the representa-
tion of P(X) as in (6.5). After some modifications, as illustrated in the func-
tions defined for the augmented variable X, these can be plugged into ”The
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AMRF Programs”, which will return upper and lower bounds, respectively, on
Ew(X, Z) according to the input constant v controlling the complexity of the
algorithm. The obvious upper and lower bounds, respectively, on f(Z) would
then be the corresponding bound on Ew(X, Z) minus the value of ¢(Z). This
way of calculating the value of f(Z) corresponds to the equation

1(2) = Ew(X, Z) — (2),

as we saw it in Section 5. We will refer to this method as to Method 1.
Section 5 also presented the equivalent formula

[(2) =E(w(X,2) - c(2)),

which introduces a slightly different way of finding bounds on f(Z). That is,
here, we want ”The AMRF Programs” to work with the function

WX, Z) = w(X,Z) - c(2)

and return bounds on f(Z) directly. However, h(X, Z) is not a positive function,
so we have to add a sufficient constant M, to get

WX, Z)+ M >0,

and thus be able to write

WX, Z)+ M =exp | Y. A [ [ Xi(X, 2)
Ae§ ke

for some collection of index sets S and corresponding collection of coefficients
{BM} seg- This will be referred to as Method 2. Note that adding the constant
M does not change the optimal decision, since

Jmax {f(Z)+M} = max {f(Z)}+M,

and thus
VA MY = Z)}.
are ngg%r),(u {/(2) + M} = arg ngggu 2]
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7 Generating Bayesian Networks

To test our solution method, which is presented in Section 6, we need Bayesian
Networks with corresponding cost and income functions. We want to be able
to easily generate several test cases, and we want to be able to do this for
different sizes of the graph. We also want to study cases where observing a
node is relatively cheap compared to the possible incomes, and cases where it is
expensive. We also want to be able to control the sparseness of the graph, i.e.
the density of edges between the nodes.

The problem discussed in Section 5 assumes that we are given a graphical
model G = (X, E) with n nodes represented as entries in the vector

X =[X1,, Xa],
with a corresponding Joint Probability Distribution
P(Xy, -, Xp).
For this graphical model, we also define a decision vector
Z =2, ,Znl,

with each entry Z; corresponding to the Random variable X;. It also assumes a
cost function ¢(Z) and an income function w(X, Z). Thus, we need to generate
sets

{G=(X,E), P(X), c(2), w(X,2Z) }.

to test our solution.

We will assume that our graphical model G is a Bayesian Network, and that
the observable nodes are the leaf nodes in the graph. Thus, I' is the indexes
of the leaf nodes. Also, we assume the numbering 7 of the nodes X; to be
according to some topological ordering where any root node is preceding all
non root nodes and any leaf node is succeeding all non leaf nodes. We adapt
the terminology from Martinelli et al. (2011), and refer to the root nodes as
Kitchens (K), the leaf nodes as Segments (S), and the intermediate nodes as
Prospects (P). A Bayesian Network with #K Kitchens, # P Prospects and #5S
Segments, is therefore a graphical model with

n=#K+#P + #S
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nodes. Our numbering of the nodes plus the above terminology, introduce the
following re-naming of the nodes X,

K; 1< ¢ <#K
Xi = Piyk, #K < i <#K +#P )
Si—uk—up, #K +#P < i <H#K+H#P +#S

which results in

X =[Ki,Ky- - ,Kyr,P1,Ps, -+ ,Pyp,S1,5, -, %s]

7.1 The Directed Acyclic Graph

The first step is to generate the graph G = (X, FE). We let the number of
Kitchens # K, the number of Prospects # P, the number of Segments #5 and
the total number of edges #FE in the graph be deterministic. What is generated,
is the start and end point of each edge. By definition, each Kitchen has only
out-edges, that is, it can only be the start point of an edge. Also, we assume
that any edge from a Kitchen has to enter a Prospect. This implies that

VK; Ch(Ki)g{Pl, Py, ,P#p}.

We also assume

which implies that we need to have
#K < #P.

Correspondingly, by definition, the Segments can only have in-edges, that is,
they can only be end points of an edge. More specifically, we assume that each
Segment has exactly one parent, which needs to be a Prospect. That is,

V.S, 3P; such that Pa(S;) = {P;}. (7.2)

We also assume that among the children of a Prospect, there is at least one
Segment. That implies that we need to have

#HP < H#S.

The fact that each Prospect has at least one Segment among its children, ensures
that no Prospects are leaf nodes. The property in (7.1) ensures that no Kitchens
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are leaf nodes either. Correspondingly, the property in (7.2) ensures that the
Segments are not root nodes. To ensure that no Prospects are root nodes, in
addition to the edges in (7.1), we need at least one parent for each Prospect P;
with index ¢ > # K. By ensuring that all Prospects and Segments are not root
nodes, we get that

#HE > #P +#8S.

Also, there is an upper limit to the possible number of edges. Actually,
#FE = The number of edges with a Prospect as end point + #5.

Since the numbering of the nodes is assumed to follow some topological ordering,
we know that

VP Pa(P) c{ Ki, Ky,-- Ky, P1, Pp,--- ,Pi_1 },

which implies that
|Pa(P;)| < #K +i—1.

Thus, the number of edges with a Prospect as end point is bounded,

L #P—l)

#P
Zuwﬂnszy#K+i—n:#P(#K+

i=1

2

To sum up the discussion, we get for the number of edges #FE

#P—1
2

#P+#S<#E<#P<#K+ )+#S,

and for the number of nodes of each kind, #K, #P, #S5, we have
1 < #K < #P < #S=n—#K — #P.

An example graph according to these rules, can be seen in Figure 6.
Generating the edge set E sums up to the following algorithm. Start with
E = ¢, then add edges as follows

e Add edge (K;, ;) for each i < #K.
e Add edge (X, P;) for an X drawn uniformly from
{K17 K27"‘ 7K#K7 Pla P27"' aPi—l }

for each #K < i < #K + #P.
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Figure 6: An example plot of a Directed Acyclic Graph with one Kitchen, two
Prospects and three Segments.

e Add edge (X,Y), for an X drawn uniformly from all Kitchens and Prospects
{Kla KQ;"' aK#Ka P17 PQa"' 7P#P }

and a Y drawn uniformly from the Prospects succeeding X in the ordering.
Repeat until the current edge set E has size #E — #S.

e Start by assuming that each Prospect has one Segment as a child. Then
draw a Prospect uniformly, and add one to its number of Segment children.
Repeat until the total number of Segment children is #S. Then for each
J < #55, add edge (P;, S;) where i starts at ¢ = 1 and is increased by 1
whenever P; has the correct number of Segment children.

7.2 The Joint Probability Distribution

The Joint Probability Distribution P(Xy,---,X,,) for the Bayesian Network
over the Random Variables X, --- , X,,, is assumed to be of the same form as in
Section 3.3.1. We also assume pX x, = € for each edge ex, x,. That is, what we
need to specify to get the full Joint Probablhty Dlstrlbutlon is the probability
pk; for each Kitchen K;, and the probability pXi’ X, for each edge ex, x;, in
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addition to the value of the parameter e. The probabilities are all drawn from
a beta-distribution. The parameters for the beta-distribution, namely «, 3, are
constant within all kitchen probabilities pg, drawn, and correspondingly, the
parameters are constant within all edge probabilities pﬁ(h X, drawn.

For the hydrocarbon example, as in Martinelli et al. (2011), we let a node
X; correspond to some geographical area. The Kitchen nodes represent places
where hydrocarbons can be generated. Then, pg, is the probability that it has
been generated hydrocarbons there. That is, K; = 1 corresponds to the event
that hydrocarbons have been generated in the given area, and K; = 0 corre-
sponds to no hydrocarbons generated there. The edges in the graph corresponds
to possible directed paths for the hydrocarbons to flow. The probability p}g X,
corresponding to edge ex, x;, is then the probability for hydrocarbons to flow
from X; to X; assuming that there are hydrocarbons in X;. The Segment nodes
are the Potential Drilling Sites, and they will contain hydrocarbons, correspond-
ing to S; = 1, if hydrocarbons have arrived along at least one directed path in
the graph, starting at some Kitchen K; with K; = 1.

The Joint Probability Distribution for the hydrocarbon example coincides
with the one discussed in Section 3.3.1. However, the above discussion makes it
tempting to set pg(i, X, = 0, since no hydrocarbon in a node makes it impossible
to have hydrocarbons flowing from it. But actually assuming pg(i, X, = 0 for
some edge ex, x,, introduces assignments to the Random Variables of proba-
bility 0. Then, the Joint Probability Distribution cannot be expressed as the
exponential of a pseudo-Boolean function, as we want. Thus, we introduce a
small € > 0, and deterministically set p5, x, = € for all edges ex, x;. Then,
the pseudo-Boolean representation of the Joint Probability Distribution is cal-
culated as for the example Network in Section 3.3.1.

7.3 The Cost and Income functions

With the graph G = (V, E) and the Joint Probability Distribution P(X) in
hand, the last step is to generate the cost function ¢(Z) and the income function
w(X, Z). We will assume a pseudo-Boolean representation of the cost function
and the income function, as in (6.2) and (6.3), respectively. Note that in our
setting, we have

P={#K+#P+1, #K +#P+2, --- | #K + #P + #5},

that is, the observable nodes are exactly the leaf nodes, which equals the set
of Segments, placed in the end in the topological ordering by choice. Since we
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study decisions Z € Q"% we let
Tinm Tcost < 2F~

Define
9 : N > N such that d(m) = #K + #P + m,

so that for each Segment S;, we have S; = Xy(;). Then, we assume a model

where observing a Segment .S, is associated with an exploring cost aigs(i)}, and

also where observing two sibling Segments S;, S; is associated with some savings
ot

('09

)00 That is, exploring only S; has a total cost of

9(i
gst + aiogz)}7

and exploring both S; and S; has a total cost of

o+ o) + all) — O

{9(9)}

wmc ?

Correspondingly, observing S; = 1 is associated with some gross income «;
and due to savings we associate some extra gross income aigs( DG} ¢ observing
S; = S; = 1 for two sibling Segments S;, S;. That is, we assume that there is
a discount effect corresponding to the costs of extracting the gain from two
sibling Segments, which results in a higher gross income. This, and also the
savings for the cost function, could represent savings caused by a partly shared
infrastructure. However, we also have to ensure that no combination of any size
corresponds to a free exploration. Higher order interactions are assumed not to
be present, for simplicity.
We have assumed that for each Segment S;
PR L0 N 0,

Qost” s nc

and also, that for each pair of sibling Segments 5;, S;

0@} 06} Q@06 5 QP@OIG} S .

mln{a(‘oet y Qeost } Qeost ’ Xine

The model assumes that cost and income value interactions occur only between
Segments S;,.S; that are siblings in the graph representation, i.e. children of
the same Prospect Py,

{Si, SJ} c Ch(Pk)
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That is, we set
/Tinc = Tcost = {@} o {{7’} | i€ P} Y {{7’7]} | Z?J € P? Pa‘(X’L) = Pa(XJ)}

Without loss of generality, we set o2 = a2, = 1. Then, for each Seg-

inc cost
9(i)} e .
ioﬁ)} is drawn from a Gamma distribution with mean

Leost and standard deviation o..s¢, and correspondingly, the coefficient ozi:fc(i)}

is drawn from a Gamma distribution with mean p;,. and standard deviation
Oine. That is,

ment S;, the coefficient «

{9(9)}

Aeost

~ Gamma(,u/cost 3 Ucost) )

and ‘
afsgl)} ~ Gamma(ﬂinw Uinc)-
Then, for each pair of sibling Segments S;, S; with & other Segment siblings, we

assume 1
Uq,5 ~ mUnlf (07 1) s

and set o
IRCIQRIC))

cost

{9(4)

inc

{2096}

. 9(i I(j
uij - minfall ooy

and we also draw « YO} from a Gamma distribution, according to

Hinc Oine
~ Gamma .

10 7 10

8 First Set of Tests: BN1

The first set of tests were done according to Method 1, as introduced in Sec-
tion 6, on a test case generated as described in Section 7. We represent the
income function w(X,Z) as the exponential of a pseudo-Boolean function, by
use of formulas from Section 3.2. Combining this with the representation of the
probability distribution, we get a representation for w(X, Z)P(X). Then, we
calculate upper and lower bounds, respectively, on Ew(X, Z) as in (6.7), by use
of ”The AMRF Programs” introduced in Section 4. This computer program
sums out the Random Variables according to the numbering of the nodes. The
first Random Variable to be summed out is K; and the last is Sys. From the
resulting bound functions, we try to rule out candidates for the optimal decision,
as described in Section 6.

We will present a Bayesian Network with 4 Kitchens, 7 Prospects and 10
Segments. A visualization of the graph can be seen in Figure 7. Corresponding
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Figure 7: BN1, the Bayesian Network for first set of tests
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to this graph, we have a Joint Probability Distribution, which is characterized
by the numbers in Table 14 in Section C.1. This graph, with its corresponding
Joint Probability Distribution, will be named BN1. Two sets consisting of a
cost function ¢(Z) and an income function w(X, Z), are also generated, and can
be found in Tables 15 and 16, respectively, also in Section C.1. For the first set,
denoted by a, the parameters of the distribution for generating the coefficients
were set to

Mcost,a = 2000, Ocost,a = 2000, Hinc,a = 4500, Oinc,a = 1200.
Correspondingly, for the second set, denoted by b, the parameters were set to
Heost,b = 45007 Ocost,b = 40007 Hinc,b = 45007 Oinc,b = 4000.

When we refer to BN1a, we think of BN1 with the cost and income functions
denoted by a, and correspondingly for BN1b. The parameters for drawing the
Joint Probability Distribution were set to

ax, =60, Bx, =20, ., =50, B, =20,

and the e parameter was given the value € = 0.01. Recall that the Joint Proba-
bility Distribution is exactly the same for test a and b.

Given a cost function and an income function, we calculate bounds on f(Z)
corresponding to an input constant v for ?The AMRF Programs”. Actually, we
calculate bounds for each

ve{11,12,13,14,15,16,17,18,19}, (8.1)

and thus we get nine pairs consisting of upper bound functions f* and lower
bound functions f~, respectively, for each set a,b of cost function and income
function. We let f,jf , denote the upper bound function obtained for the given

value of v for cost and income function 4, and correspondingly for f, ;. That is,
v is as in (8.1), and i € {a,b}. For each pair f:mf;,w we evaluate the values

f:i(Z)7f,,_7i(Z) for each
Ze Qb for u=>5.

That is, we evaluate the upper and lower bounds for each decision that involves
observing a maximum of five Segments. For each pair (v, i), the resulting number
of candidates for the optimal decision can be found in Tables 1 and 2 for a and
b, respectively.
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Decision | Total Number of accepted decisions for f,7,, f,-, for v =
size number of

decisions 11 12 13 14 15 16 17 18 19
0 1 0 0 0 0 0 0 0 0 0
1 10 6 6 6 3 2 1 0 0 0
2 45 40 |42 |39 |35 |30 |24 |17 |9 0
3 120 119 | 119 | 116 | 111 | 100 | 85 |64 |36 | O
4 210 210 | 210 | 209 | 205 | 196 | 175 | 140 | 84 | O
5 252 252 | 252 | 252 | 251 | 246 | 232 | 197 | 127 | 1
Sum 638 627 | 629 | 622 | 608 | 574 | 517 | 388 | 256 | 1

Table 1: Number of accepted decisions as a function of v for the income function
and cost function from Table 15.

Decision | Total Number of accepted decisions for f,j ps Sy for v =
size number of

decisions 11 12 13 14 15 16 17 18 19
0 1 1 0 0 0 0 0 0 0 0
1 10 6 7 7 3 2 1 0 0 0
2 45 41 |42 |39 |36 |31 |25 |18 |10 |1
3 120 119 | 119 | 116 | 110 | 100 | 85 | 64 |36 | O
4 210 210 | 210 | 209 | 205 | 195 | 175 | 140 | 84 | O
5 252 252 | 252 | 252 | 251 | 246 | 231 | 196 | 126 | 0
Sum 638 629 | 630 | 623 | 605 | 517 | 418 | 388 | 256 | 1

Table 2: Number of accepted decisions as a function of v for the income function
and cost function from Table 16.
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Note that even though this is a quite small graph, we need v = 19 to find
the optimal decision, that is, for the bounds fj i» /i to leave out only one
candidate. This is also the value of v that ensures exact calculation of f(Z).
That is, Vegqet = 19 corresponds to no approximations for this graph, and we
get

fio. = J19.i for i=a,b.

Also note that exact calculation will only leave candidates that actually are
optimal decisions. That is, if we are left with more than one decision after
exact calculations, these must all correspond to the same value of f, that is, the
maximal value of f within Q. Thus, all decisions left are optimal. Hence,
needing v = 19 to separate out one candidate is actually the worst case for this
graph. Also, note that v = 18 leaves 256 candidates for the optimal decision in
both cases i = 1,2, from a total of 638 decisions in Q"*. That is, reducing the
value of v with 1, and thus reducing the asymptotic complexity in run time from
O (2vesact) to O (2¥ewaet1), leaves us with roughly half of our initial decision
space still. A further reduction of the value of v leads to at least 418 candidates
in all cases, which corresponds to a reduction by less than 35% of the candidates.
That is, we observe that we need a quite large value of v to get useful results
for these examples.

Also note that for the first test, denoted a, the optimal decision implies
observing 5 nodes. In the next, b, the costs are higher, which results in an
optimal decision with only 3 observations.

The examples presented illustrates the general observations from tests ac-
cording to Method 1. As soon as approximations were made on our function
w(X, Z)P(X), we end up with a large fraction of the initial decision space QF**
left. Thus, we had to come up with a revised strategy to be able to find the
optimal decision more effectively on larger graphs.

9 Second Set of Tests

The tests of Method 1 indicated that we needed to rethink our strategy for
finding the optimal decision. First of all, we had to look for any unnecessary ap-
proximations. Observe that we can take advantage of (2.7) in Section 2.1. That
is, previously, when we calculated the expected value of the function w(X, Z),
we took the expected value with respect to the full Joint Probability Distribu-
tion. That is, if the biggest maximal clique in the graph had a size greater than
the current value of v in the calculations, in general, the approximations made
would introduce error terms for the whole graph.

47



However, the form we assume for the cost and income functions, presented
in Section 7.3, allows us to divide the cost and income functions into parts
corresponding to each Prospect. Let X, denote Segment children of Prospect
P;, that is

X, = {Si € Ch(P,) [9(i) e T},

and also, let Zp; denote the corresponding entries in the decision vector. This
allows us to write the cost function as

#P
o(Z) =), ci(Zg,)
j=1
and the income function as
#P
’LU(X,Z)I ’LUJ(XB],ZBJ)
j=1

In fact, let
Ty = {@} v {{i}liel, X; € Ch(Py)}u{{i,j}i,jel, Xi, X, € Ch(P)}.

Then,

#P

,-_anc = Tcost = UJ 147>

and for positive integers j, k < #P
j#k < T, nT; = {}.

Thus,

#P
’U)(X,Z) (#P_l znc Z Z zncHXk?Zk’

€T keX

and

( ) (#P _1 cost Z 2 Qrost HZIG

J=1X\eT} keX

If we ignore the multiples of awét and amc added, respectively, we get

wj(XBj7ZB_7‘) = Z a;\ncnzk

AeT; ke

48



and

= Z a?ost HZ’C

AET; ke
Also note that our choice of
O‘gst = O‘gbc =1
actually implies
#P
w(X, Z) = Z w;(Xp,, Zp,) — ¢j(Zg,)) .

Thus,

f(2) =E(w(X, Z2) — (%))

#P

= E (Z (wj(XBjusz> — Cj(ZB].))>
#PJ?

= Y E(w;(Xs,,Z5,) — ¢;(Z5,)) - (9.1)
j=1

Assume that j < #P is a positive integer. It is when calculating
E (wj(Xs,,Z5,) — ¢;(Z5,))
we get to use the observations from (2.7). Actually, let
A; = {P;} u Anc(P;) U B;,
and observe that A; meets the requirements set in (2.2). Thus,

E (wj(XBj’ZBj) - Cj(ZBj)) = 2 (wj(XBj’ZBj) - Cj(ZBj)) P(Xa4,).
Xi€A;

Let
M; =1+ maxc;(Zp,;),

Bj

define ~
Si={M 1 {Xi|iexye ¥ ot
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and let {Bj\}Aesj be constants such that
0 <w;(XB;,ZB,) —¢j(Zp,;) + M; = exp Z ﬂ;‘ nXk
AeS; ke
Note that we identify each variable X; with an entry in X or Z, respectively,

according to (6.6).
Finally, let

and note that (9.1) implies

)+ M =E(wX,Z)—cZ)+ M)

#P
=E (Z (wj(Xij Zs,;) — ¢j(ZB,) + MJ))

j=1
#P

= Z E (w;(XB,,Zs,) — ¢;(Zg,) + M)
j=1
#P ~

=3 Y Pxaexp [ Y B[ Xk
J=1 \ Xi€4; AeS; ke

Note that the core idea of Method 2 was introduced by adding the constants M;.
Also note that, in practice, the above equation tells us to calculate f(Z) + M
by adding the contributions corresponding to each prospect. That is, each of
those terms are obtained similarly as for Method 1 in Section 8, but now from
the distribution P(X 4,) and the function

wj(XBJwZBj) 7Cj(ZBj) Jer.

Also note that for any positive integer j < #P,

—,

w;(Xp,.0) = af, =1 =02, = c;(0),

mne cost

and thus

-,

F(0) = o0.
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The tests for Method 2 show that we need the graphs to be sparse for our
upper and lower bounds to be tight enough to eliminate a significant fraction
of the possible decisions Z € Q*. This section presents tests where the ap-
proximations work well, but it also presents a description of how it fails for an
example Bayesian Network. Also in these tests, "The AMRF Programs” sum
out the Random Variables according to our numbering of the nodes, and the
numbers we present for each test is as before. The strategy for finding the opti-
mal decision is still the same, we just calculate the bounds in a slightly different
way.

9.1 Sparse graphs: BN2-BN4

First, a set of tests on sparse graphs will be presented. Here, this means that
the number of edges in the graph is kept close to the minimum according to our
definitions in Section 7. These graphs will encode more conditional indepen-
dence assumptions than if more edges were added, and the clique sizes in the
corresponding undirected graph will be smaller than for a graph with more edges
added. That means that ”The AMRF Programs” will do less approximations,
and it is more likely that our strategy will work as we hope.

Three single Bayesian Networks of different sizes will be presented. For each
of these, we will study the number of accepted decisions Z as a function of the
approximation constant v. To help the discussion of these numbers, we also
present the value of v = Vegqct (P;) that ensures exact calculation of the term of
f(Z) corresponding to Prospect P;.

For each of these three examples, the test is repeated 1000 times. That is, for
each example, 1000 Bayesian Networks with cost function and income function
are generated from the same distribution as for the corresponding example.
From each of these replications, we will study the value of v needed to find the
optimal decision by our strategy, that is

Vone = min{r | Number of accepted decisions(v) = 1}
v

We will also look at the value of v needed to separate out just a few candidates.
In fact, we study

Vacceptable = Min{v | Number of accepted decisions(v) < 7}.
174

These two numbers will be compared to the value of v that ensures exact cal-
culation of the expected gross income f(Z) for the graph, that is

Vegzact = max Vezact(Pi)~
Prospect P;

o1



Then also, for a given value of v, and corresponding upper bounds f T and lower
bounds f~, respectively, let Z be the decision with the highest lower bound for
expected income. That is,

7 = arg Jmax = (2).

Define ~
f(z*) - f(2)

f(z=)
the percentage loss in exact expected income, when following the approximate
optimal decision Z instead of the (exact) optimal decision Z*. In each of the
three sets of 1000 tests, the value of v corresponding to the loss L, is chosen
so that we expected (according to our best guesses) that about half of the tests
in the set would have Ve, > v. That is, so that our program would have to
make a guess for the optimal decision in about half the cases.

L, =

9.1.1 BN2

The following test describes a Bayesian Network with 7 Kitchens, 15 Prospects
and 40 Segments. The number of extra edges added after the minimum value of
55, is 10. That is, the result is a graph with 62 nodes and 65 edges, and it is vi-
sualized in Figure 8. A corresponding visualization where only the Kitchens and
the Prospects are shown, can be found in Figure 9. Observe that the undirected
version of this Bayesian Network consists of two connected components, that is,
the nodes { K2, P2, D2} do not have edges to or from any of the other nodes not
in this set. The Bayesian Network with corresponding cost and income func-
tions is generated as described in Section 7. The parameters for drawing cost
and income coefficients were set to
Lheost = 4000, o2 . = 2500, fine = 5000, o2 = 2500.

cos inc

The parameters for drawing the Joint Probability Distribution were set to
ak, = 6.0, Bk, = 2.0, ae, ; = 5.0, Be,; = 2.0,

and the e parameter was given the value ¢ = 0.1. For numbers fully describing
the probability distribution and the cost and income functions, see Tables 17-32
in Appendix C.2.

Observe from Table 3 that we need v = 11 to get exact numbers, but Table
4 tells us that already from v = 6, we get only one candidate for the optimal
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The Bayesian Network 2BN.

Figure 8



Figure 9: BN2: A visualization of only the Kitchens, the Prospects and the
edges between them.

Prospect P, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
v 1 1 7 3 3 111 3 3 7 3 3 2 7 11

Table 3: BN2: Value of v that ensures exact calculation of expected gross income
function w; — ¢; + M; corresponding to prospect P; for the Bayesian Network in
Figure 8.
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Decision | Total number Number of accepted decisions for v =
size of decisions 1-3 4 5 6—11

0 1 1 1 0 0

1 40 40 40 0 0

2 780 780 770 1 1

3 9880 9880 9336 8 0

4 91390 91390 82081 28 0

5 658008 658008 567072 58 0

Sum 760099 760099 65930 95 1

Table 4: BN2: Number of accepted decisions as a function of v.

decision. Even for v = 5, we get pretty good results. However, for v < 3, we
are not able to eliminate any decisions, and v = 4 only allows us to eliminate
13% of the decisions. Observe from Table 3, that 3 < v < 6 all introduces
approximations for the functions corresponding to Prospects Ps, Ps, P1o, P14 and
Pi5, so the stepwise improvements of the results from v = 3 to v = 6 are all
due to better approximations, and not to approximations on a smaller number
of functions.

This test was replicated 1000 times. That is, 1000 Bayesian Networks with 7
Kitchens, 15 Prospects and 40 Segments were generated, with Joint Probability
Distributions and cost and income functions drawn from the same distributions
as those for BN2. Recall from Section 9.1, that vegqc¢ is the smallest value of the
input constant v that ensures ”The AMRF Programs” to do exact calculations
for each replication. Correspondingly, Vacceptabie is the smallest value of v that
leaves us with a maximum of 7 candidates for the optimal decision, and v, is
the smallest value of v that leaves us with only the optimal decision Z*. The
results of the 1000 replications are summed up in Figures 10, 11, 13, 12 and 14.

Observe from Figure 10, how the values for veq.s are dominated by odd
numbers. Actually, 931 tests have Vegqaer € {7,9,11}. At the same time, Figure
11 tells us that for 70.5% of the tests, it is sufficient with v = 6 to separate out
only one candidate for the optimal decision. In fact, 625 tests had vy, € {5, 6},
while no tests had Vegqer € {5,6}. Only one test had vezqer = 4, but actually,
in 80 of the 1000 tests, v = 4 was sufficient to find the optimal decision. We
observe from Figure 12 that 728 of the 1000 tests had a reduction of 3 or more
from the value of vegqct to the value of v,,.. There is even a test where the
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Number of decisions Z

Figure 10: BN2: The value of v needed to do exact calculations for the 1000
tests.

Number of decisions Z

150 -
100 -
il ] |
0 /_‘ — 1 1 1 —_
7 8 9 10 1 12

4 5 6 13 14 15 16

Vone

Figure 11: BN2: The value of v needed to separate out only one candidate in
each of the 1000 tests.
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Number of decisions Z
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0 1 2 3 4 5 6 7 8
Vezact — Vone

Figure 12: BN2: The difference between veg .t and vy,e in each of the 1000
tests.

Number of decisions Z

100 — A
50— -
0 —

7 8 9

10 " 12 13
Vacceptable

Figure 13: BN2: The value of v needed to separate out a maximum of seven
candidates in each of the 1000 tests.
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Number of decisions Z

0 1 2 3 4 5 6 7 8
Vexact — Vaccentable

Figure 14: BN2: The difference between vegacr and Vecceptabie in each of the
1000 tests.

value of this reduction is 8, and as much as 48 had a reduction of at least 6.
Similarly, we observe from Figure 13, that for as much as 84.4% of the tests,
it is sufficient with v = 6 to reduce the number of candidates for the optimal
decision to seven or less. Actually, 737 tests had Vecceptasie € {5, 6}, and as much
as 107 tests had Vgeceptabie = 4. Figure 12 shows how 853 of the 1000 tests had
a reduction of 3 or more from Vezqer to the value of Vycceptabie- As few as 13%
of the tests had vacceptabie = Veract, and 59 of the 1000 tests had a reduction of
6 or more.

For these 1000 replications, we chose v = 6, and studied the loss fraction Lg.
We got 40 cases where the loss fraction Lg was nonzero. These came from the in
total 295 cases where v = 6 was not enough to leave only one candidate for the
optimal decision. Of these 295 cases, where a guess of the optimal decision had
to be made, the average of Lg was 0.019, with a standard deviation of 0.081.
The smallest nonzero loss fraction was 3.905-107°, and the greatest loss fraction
was as high as 0.8318. Actually, there are five cases where the loss fraction is
higher than 0.3, and thus we get a large standard deviation. For a listing of
all nonzero loss fractions, the reader is referred to Table 33 in Section C.2. In
total, on all 1000 cases, that left us with an average loss Lg = 0.0055, with a
standard deviation of 0.045.
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Prospect P, 1 2 3 4 5 6 7 8 9 10

v 3 7 3 3 1 3 1 3 1 3
Prospect P, 11 12 13 14 15 16 17 18 19 20
v 3 3 1 3 3 1 3 3 1 3

Table 5: BN3: Value of v that ensures exact calculation of expected gross income
function w; — ¢; + M; corresponding to prospect P; for the Bayesian Network in
Figure 15.

9.1.2 BN3

The following test describes a Bayesian Network with 10 Kitchens, 20 Prospects
and 40 Segments. The number of extra edges added after the minimum value
of 60, is 10. That is, the result is a graph with 70 nodes and 70 edges, and it
is visualized in Figure 15. Observe that the undirected version of this Bayesian
Network consists of four connected components. The nodes in the leftmost
connected component is visualized in Figure 16, and correspondingly, we get
a closer look on the three rightmost connected components in Figure 17. The
Bayesian Network with corresponding cost and income functions is generated as
described in Section 7. The parameters for drawing cost and income coefficients
were set to
Leost = 3000, o2 = 2500, Hine = 5000, o2 = 2500.

cost inc

The parameters for drawing the Joint Probability Distribution were set to
ak, = 6.0, Bk, = 2.0, Qe, ; = 5.0, Be,, = 2.0,

and the e parameter was given the value € = 0.01. For numbers fully describing
the probability distribution and the cost and income functions, see Tables 34-54
in Appendix C.3.

Observe from Table 5 that we need v = 7 to get exact numbers, but Table 6
tells us that already from v = 3, we are able to eliminate 99.8% of the possible
decisions. In addition, we only need v > 5 to get just one candidate for the
optimal decision. Also for v = 4, we are able to remove most of the candidates
for the optimal decision. Note from Table 5 that for v € {1, 2}, we calculate exact
values for the functions corresponding to Ps, Pr, Py, P13, P1g and Pig, but that
is not enough to eliminate any candidates. However, for v > 3, approximations
are only made on the function corresponding to P», and as a result, the number
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Figure 16: BN3: The left connected component of the Bayesian Network in
Figure 15.
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Figure 17: BN3: The right three connected components of the Bayesian Network
in Figure 15.
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Decision | Total number | Number of accepted decisions for v =
size of decisions 1-2 3 4 5—17
0 1 1 0 0 0
1 40 40 0 0 0
2 780 780 1 0 0
3 9880 9880 22 0 0
4 91390 91390 212 1 0
5 658008 658008 | 1331 4 1
Sum 760099 760099 | 1566 5 1

Table 6: BN3: Number of accepted decisions as a function of v.

of candidates are dropping rapidly from v = 2 to v = 3. However, we note that
we still find the optimal decision for v with value vegqee(Pa) — 2.

This test was replicated 1000 times, and the results are summed up in Figures
18,19, 21, 20 and 22. Note that the Figures in this Section visualize the results
for the same variables as the corresponding Figures in Section 9.1.1. Observe
from Figure 18, how the values of Ve 4t still are dominated by odd numbers.
Actually, 814 tests have Vegaer € {7,9}. At the same time, Figure 19 tells us
that for 69.5% of the tests, it is sufficient with v = 5 to separate out only one
candidate for the optimal decision. In fact, 782 tests had ven. € {4,5, 6}, while
only 90 tests had Vegaer € {4,5,6}. We observe from Figure 20 that 541 of the
1000 tests had a reduction of 3 or more from the value of vezqer to the value of
Vone- 63.4% of the cases had a reduction of either 2,3 or 4. Also, 37 of the 1000
tests had a reduction of at least 5, but there are also 243 tests with no reduction.
Similarly, we observe from Figure 21, that for as much as 80.5% of the tests,
it is sufficient with v = 5 to reduce the number of candidates for the optimal
decision to seven or less. Actually, 907 tests had Vgcceptapie € {4, 5,6}. Figure 20
shows how 651 of the 1000 tests had a reduction of 3 or more from the value of
Vezact t0 the value of Vgcceptable. Also, 148 of the tests had vicceptabie = Vewact,
a significant reduction from the 243 tests with vope = Vezact- Also note that 45
of the tests had a reduction of 5 or more from the value of Vgzqet to the value
of Vacceptable-

For these 1000 tests, we chose v = 5, and got 27 cases where L5 was nonzero.
These came from the in total 305 cases where ¥ = 5 was not enough to leave
only one candidate for the optimal decision. Of these 305 cases, where a guess
of the optimal decision had to be made, the average of Ly was 0.0059, with a
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Figure 18: BN3: The value of v needed to do exact calculations for the 1000
tests.
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Figure 19: BN3: The value of v needed to separate out only one candidate in
each of the 1000 tests.
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Figure 22: BN3: The difference between vegacr and Vecceptabie in each of the
1000 tests.

standard deviation of 0.0354. The smallest nonzero loss fraction was 8.46-1074,
and the greatest loss fraction was 0.4682. There was only three cases where the
loss fraction was higher than 5%. For a listing of all nonzero loss fractions, the
reader is referred to Table 55 in Section C.3. In total, on all 1000 cases, that
left us with an average loss Ls = 0.0018, with a standard deviation of 0.0197.

9.1.3 BN4

The following test describes a Bayesian Network with 10 Kitchens, 20 Prospects
and 60 Segments. The number of extra edges added after the minimum value
of 60, is 20. That is, the result is a graph with 90 nodes and 80 edges, and
it is visualized in Figure 23. A corresponding visualization where only the
Kitchens and the Prospects are shown, can be found in Figure 24. Observe
that the undirected version of this Bayesian Network is fully connected. That
is, assuming all edges undirected, it is possible to find a path from any node
to any other node. The Bayesian Network with corresponding cost and income
functions is generated as described in Section 7. The parameters for drawing
cost and income coefficients were set to

fheost = 4000, 02 =2500,  pine = 5000, o2, = 2500.
The parameters for drawing the Joint Probability Distribution were set to

ax, =60,  Bx, =20, @, =50, B, =20,
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Figure 23: The Bayesian Network 4BN.
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Figure 24: BN4: A visualization of only the Kitchens, the Prospects and the
edges between them.
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Prospect P, 1 2 3 4 5 6 7 8 9 10

v 3 7 1 3 9 13 7 3 3 3
Prospect P, 11 12 13 14 15 16 17 18 19 20
v 3 3 3 3 7 3 3 4 4 7

Table 7: BN4: Value of v that ensures exact calculation of expected gross income
function w; — ¢; + M; corresponding to prospect P; for the Bayesian Network in
Figure 23.

Decision | Total number Number of accepted decisions for v =
size of decisions 1-6 7 8 9—-13

0 1 1 0 0 0

1 60 60 0 0 0

2 1770 1770 0 0 0

3 34220 34220 2 2 1

4 487635 487635 2 1 0

Sum 523686 523686 4 3 1

Table 8: BN4: Number of accepted decisions as a function of v.

and the e parameter was given the value ¢ = 0.01. For numbers fully describing
the probability distribution and the cost and income functions, see Tables 56-76
in Appendix C.4.

Observe from Table 7 that we need v = 13 to get exact numbers, but Table 8
tells us that already from v = 7, we are able to eliminate a great fraction of the
possible decisions. In addition, we only need v > 9 to eliminate all non optimal
decisions. Observe from Table 7 that for v > 7, we calculate exact values for
the functions corresponding to all Prospects except Ps and Pgs. Also, for v > 9,
approximations are only made on the function corresponding to Py, and these
are the same vs that allows to eliminate all non optimal decisions.

This test was replicated 1000 times, and the results are summed up in Figures
25, 26, 28, 27 and 29.  Note that the Figures in this Section visualizes the same
variables as the corresponding Figures in Sections 9.1.1 and 9.1.2. Observe from
Figure 25, that also here, the values for ve;..; are dominated by odd numbers.
Actually, 899 tests have Vegqer € {9,11,13}. At the same time, Figure 26 tells
us that for 47.9% of the tests, it is sufficient with v = 7 to separate out only
one candidate for the optimal decision. In fact, 658 tests had v,,. < 8, while
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Figure 25: BN4: The value of v needed to do exact calculations for the 1000
tests.
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Figure 26: BN4: The value of v needed to separate out only one candidate in
each of the 1000 tests.
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Figure 27: BN4: The difference between veg .t and vy, in each of the 1000
tests.
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Figure 28: BN4: The value of v needed to separate out a maximum of seven
candidates in each of the 1000 tests.
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Figure 29: BN4: The difference between vegacr and Vgcceptabie in each of the
1000 tests.

only 8 tests had vegqer < 8. We observe from Figure 27 that 604 of the 1000
tests had a reduction of 3 or more from the value of ve;qer to the value of vge.
48.1% of the cases had a reduction of either 3,4 or 5. Of the 1000 replications,
33 had a reduction of at least 7, but there are also 115 tests with no reduction
from vegqer t0 Vone. Similarly, we observe from Figure 28, that for as much as
56.8% of the tests, it is sufficient with v = 7 to reduce the number of candidates
for the optimal decision to seven or less. Actually, 734 tests had Vacceptaste < 8.
Figure 27 shows how 698 of the 1000 tests had a reduction of 3 or more from the
value of Vegqer to the value of Vgcceptanie: We observe that 88 of the tests had
Vacceptable = Vexact, & significant reduction from the 115 tests with vone = Vegqet-
Note that 37 of the 1000 tests had a reduction of 7 or more from the value of
Vegact t0 the value of Vgeceptanie. Also note that for one of the tests, the difference
between Vezaer and Vgeceptabie 18 as high as 10.

Also, for the 1000 tests, we chose v = 7, and got 67 cases where L; was
nonzero. These came from the in total 521 cases where v = 7 was not enough to
leave only one candidate for the optimal decision. Of these 521 cases, where a
guess of the optimal decision had to be made, the average of Ly was 0.032, with
a standard deviation of 0.12. The smallest nonzero loss fraction was 7.955-107,
and the greatest loss fraction was 0.9579. In about half of the nonzero cases,
the loss fraction was higher than 15%, and actually in 13 cases, the loss fraction
is higher than 50%. For a listing of all nonzero loss fractions, the reader is
referred to Table 77 in Section C.4. In total, on all 1000 cases, that left us with
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Prospect P, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
v 2 3 3 7 3 3 v 3 v v 3 7T 6 16 17

Table 9: BN5: Value of v that ensures exact calculation of expected gross income
function corresponding to this prospect for the Bayesian Network in Figure 30.

an average loss Ly = 0.017, with a standard deviation of 0.092.

9.2 A less sparse graph: BN5

To put our solution to a bigger challenge, we increase the number of edges, in
order to observe how and when the solution method fails. Now, we look at a
Bayesian Network with 7 Kitchens, 15 Prospects, 40 Segments, and 40 edges
more than the minimum of 55 edges for this set of nodes. That means a graph
with in total 62 Nodes and 95 edges. A visualization of the Bayesian Network
can be seen in Figure 30. Notice the web of edges between the nodes, both in
Figure 30 and in Figure 31. The Bayesian Network with corresponding cost and
income functions was generated as described in Section 7. The parameters for
drawing cost and income coefficients were set to
Lheost = 4000, o2 . = 2500, fine = 5000, o2 . = 2500.

cost inc

The parameters for drawing the Joint Probability Distribution were set to
K, = 6.0, BK,i = 2.0, O‘ei,j = 5.0, ﬂei,j = 2.0.

For numbers fully determining the probability distribution and the cost and
income functions, see Tables 78-93 in Section C.5.

From Table 9, we observe that for 7 < v < 15, only approximations on
Ewi4 — c14 and Ewy5 — ¢15 are made. Correspondingly, for v = 16, only ap-
proximations on Ew;5 — ¢15 are made. For the fraction of accepted decisions
for a given v, see Table 10. The table clearly states that our approximations
are not good enough. Any v < 16 implies getting a lower bound function that
easily is strictly bounded by the smallest upper bound value. Hence, we are not
able to eliminate any decisions, except when all calculations are done exactly.
To study how and why this happens, we investigate the behavior of P(X4,.)
as we sum out the Random Variables, one at a time. First, we calculate upper
bounds on the log normalization constant for P(X 4,.) for each v € {10,--- , 17},
to obtain the data found in Table 11. Observe from this Table, that for all vs
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Figure 30: The Bayesian Network BNb5.
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Figure 31: BN5: A visualization of only the Kitchens, the Prospects and the
edges between them.

Decision | Total number | Decisions accepted, v =
size of decisions 1—-16 17
0 1 1 0
1 40 40 0
2 780 780 1
3 9880 9880 0
4 91390 91390 0
5 658008 658008 0
Sum 760099 760099 1

Table 10: BN5: Number of accepted decisions as a function of v. Observe from
Table 9 that we need v = 17 to get exact numbers, and that is the same value
that is needed to eliminate any candidates for the optimal decision.
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v Log normalization constant

10 193.930367
11 200.448060
12 231.803170
13 217.573379
14 243.259810
15 386.116269
16 92.7247710
17 —0.0000000

Table 11: BN5: Upper bounds on the log normalization constant for the proba-
bility distribution w5 calculated with different vs. 17 is the smallest value of v
that ensures no approximations to be made, and hence v = 17 gives the exact
value 0 = In 1. For all other values of v, the upper bounds calculated are useless.

except v = 17, we get upper bounds with enormous values. Note that v = 17
corresponds to exact calculations and thus, we obtain the exact normalization
constant 1 = e°. Hence, the upper bounds are useless in this case. Also note
that the normalization constant corresponds to some constant function

exp (89),

and thus, that the bounds that failed to give good results, had resulted in a too
large value of this 89.

Still focusing on Prospect Pj5, we observe how the value of < changes as
we sum out Random Variables in the expression for

E(U}15(XB15, ZBls) - C(ZBls)'

This test is done for v = 10, and the result is to be found in Table 12. We
observe that the value of 39 is slowly growing at first, and that the blow-up
starts at the 11th ancestor we sum out. Note that Prospect P;5 has 13 ancestors,
which means that we have to sum out a total of 14 nodes, including P;5 itself.
After summing out all of those Random Variables, the resulting upper bound
is a function of the decision Z, with 39 = 1968. Since the logarithm of the
exact value for no decision is even close to this number, this is an upper bound
function where no single evaluation of the lower bound function can compete
with even the minimum of the upper bound. Hence, no candidates for the
optimal decision can be eliminated.
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Number of Value of 39

Random Variables in current
summed out representation
0 —1.023

1 —1.006

2 —1.005

3 —1.005

4 —0.838

) —0.821

6 —0.819

7 —0.811

8 0.715

9 1.450

10 1.702

11 8.014

12 17.48

13 169.7

14 196.8

Table 12: BN5: Value of 39 for the upper bound function determined in each
step, summing out a Random Variable at a time. Here, v = 10 and € = 0.01.
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v e=001 €=005 €=01 €e€=0.2

15 386.1 86.34 15.90 1.409
16 92.72 19.51 5.190 0.733
17 —-0.000  —-0.000  —0.000 —0.000

Table 13: BN5: Upper bounds on the log normalization constant for the prob-
ability distribution 75 calculated with different vs and different es. 17 is the
smallest value of v that ensures no approximations to be made, and hence v = 17
gives the exact value 0 = In 1.

Recall that we let € > 0 ensure that any assignment of the Random Variables
has a positive probability. For the results in Table 11 and Table 12, ¢ = 0.01 has
been used. Taking the same Bayesian Network, with the same edge probabilities,
we can vary € and observe if that has any effect on this seemingly hopeless
example. Again, we study only the probability distribution P(X4,,). Table
13 shows the resulting log normalization constants. Note that an increase in
the value for e introduces less error, but even high values of e give useless
results. Note that the results for € = 0.2 are not too bad, but 0.2 is definitely a
questionable approximation to 0. Recall that € > 0, by definition, should be a
small probability, hence much closer to the value 0 than the value 1.

10 Some Analysis on Complexity

First, we want to study the complexity of calculating Eh(X, Z) with a nalve,
and also exact, method, for some function i depending on the entries in X, Z.
If the function h and the probability distribution P(X) is on the exponential
pseudo-Boolean form, we can write

h(X,Z)P(X) = exp <2 B Xe(x, Z)> .

AES keX

We could assume that S has size 2" T/T. That corresponds to a full represen-
tation of P(X), that is, 2™ possible combinations of X7, --X,, and also a full
representation for (X, Z) for the variables Xi,---X,, and Z;,---Z, with in-
dexes in I". That is, calculating the value of h(X, Z)P(X) for an assignment to
X, Z has complexity O(2"*IT1). To get the expected value Eh(X, Z) for a given
Z, we would have to sum the value of h(X, Z)P(X) for 2" different Xs. That
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implies a complexity of ©(22"*+I'1) for finding the expected value for a given Z.
Our decision space Q" is of size

Qbv| = | eO (|l
ry= 3 () e oamm.
since we assume u << |I'|. To evaluate the expected value Eh(X, Z) for each Z
in our decision space would then have a total complexity of

o) - 22T, (10.1)

However, note that this is based on a very naive approach. In fact, we assume
that the expected value is calculated as

D ---(;leXP<ZBAn)~(k(X,Z)>> ,

Xn \Xn-1 AeS ke

where the expression inside each parenthesis pair is calculated without checking
whether any factors can be moved outside the sum.

Let us again assume that we want to do exact calculations for the expected
value Eh(X, Z), now for a function h and a probability distribution P(X) not in
the exponential pseudo-Boolean form. It is natural to assume that we find the
value of P(X) with O(n) calculations, and that the complexity of calculating
h(X, Z) is within this, and usually even simpler. The resulting total complexity
would then be

O(n-2"-|T|"). (10.2)

Now, we have two cases to compare to, and we want to study the complexity
for our method, using bounds. Again, first, assume that we start with the
function h and the probability distribution P(X) on the exponential pseudo-
Boolean form. For the input constant v, recall that calculating Eh(X,Z) as
a function of Z has complexity O(n - 2¥), plus the time spent on calculating
the Approximate Markov Random Fields, which we assume is within the given
complexity. This function Eh(X, Z) is of the form

Eh(X,Z) =exp | Y. B[ | 2 |,

AeS ke

where for each A € S, we have A = I'. Thus, evaluating the function En(X,Z)
for a given Z requires a sum over 2/'l terms. Repeating this for each Z in our
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decision space, yields a total complexity of
O(n-2v + 2. 0w). (10.3)

Comparing (10.1) and (10.3), we observe a significant reduction of complexity.
However, note that to get this reduction, we both assumed that we start with the
exponential pseudo-Boolean forms and that the approximations ”The AMRF
Program” makes are made in O(n - 2”) time.

Looking at the case as in Section 8, we start with a function h(X, Z) of the

form
WX, Z)= > o [ [ XuZ,
AeT kel

and then we need to calculate the form

h(X,Z) = exp (Z ]l Xka> .

AeS keX

We can assume S to be the power set of I', and hence that we need to calculate
211 coefficients 3. Using formulas from Section 3.2 and the coefficient graph
structure and formulas from Section A, we get that calculating each 51/1\ is of
complexity O(|A|?). That is, we have assumed the /s are calculated in order
according to increasing size of A, which ensures that all 5;){5 with A € A are avail-
able when we are calculating B,/l\. Then, calculating the wanted representation
for the function h has complexity

0 (Z |>\|2> e lf]i?('i') co(irp-2m).

AcT i=1

We also need to calculate the exponential pseudo-Boolean representation of the
probability distribution

P(Xy,- - Xn) = [ [P(Xi[Pa(X;).
=1
Assuming that
r = max |Pa(X;)],

1<igsn

we get the pseudo-Boolean representation of P(X;|Pa(X;)) in O(2"1) calcula-
tions. Assuming r is not growing with n, which could be a reasonable assumption
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if we assume a certain ”sparseness” to be constant as the size of the Bayesian
Network grows, this is a constant running time. Thus, calculating the represen-
tation of the full Joint Probability Distribution has a linear complexity in the
total number n of Random Variables. This is because we calculate something
of constant complexity for each Random Variable X;. That would leave a total
complexity of

O - 2™ +n4n-2v + 200" < O(n - 2¥ + 2T 0|, (10.4)

assuming u > 2. Comparing (10.2) and (10.4), we still see a reduction of com-
plexity. Note that the calculation of each of the pseudo-Boolean representations
disappeared in the complexity of " The AMRF Programs” and the evaluation for
all Zs, respectively. Also note that for the tests in Section 9, we would calculate
the representation of w; — ¢; for each P; with a complexity of O(t52"% ), where
t; is twice the number of P;s Segment children. If we assume that the biggest
such ¢; does not grow as we increase the size n of our Bayesian Network, this
would again mean that each w; — ¢; representation is calculated in constant
time. Thus, in total, all parts of A is calculated with with a complexity linear
in the number of Prospects, which could be assumed to grow linearly with the
total number n of Random Variables. In other words, this does not reduce the
complexity of the full calculations, but it would reduce some of the constant
factors.

11 Closing Remarks

We have studied five Boolean Bayesian networks; BN1-BN5, with Boolean deci-
sion vectors. First of all, from Section 8, we realized that our initial idea for how
to do the calculations did not lead to good results. After, we could easily say
that these calculations were done in a naive way. But after some improvements,
we observed that our solution method worked well on sparse graphs, as in BN2,
BN3 and BN4. We also observed that usually, for a given v, the loss fraction
L, for an approximate optimal decision Z had a value equal to or close to zero.
That means that on average, the approximate optimal decision Z worked well.
Note that the value of v was chosen to be fairly close to the expected size of
the maximal clique in the graph. However, in Table 77 in Section C.4, we find
several loss fractions L, which clearly implies choosing a decision with a low
exact value. This is why we get a high value for the standard deviation, espe-
cially for BN4. On average, the performance is still good, because the algorithm
finds the optimal decision Z*, or makes the right guess, in most cases, also with
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approximate values. To get less cases with high loss fractions, the algorithm
could be modified to choose the exact best decision from the top few, according
to the lower bounds, for example the top 5 or top 10. This would still allow us
to do approximate calculations on most decisions.

We also observed how the solution method failed when the sparseness of the
graph decreased, that is, when more edges were added. A further study of when
this starts to happen, and how we could avoid this, would be interesting. Then,
it would be natural to take a closer look on how the ”optimal bounds” from
Tjelmeland and Austad (2011) are calculated, and look for improvements or
one’s own version of such bounds. One could also look for improvement on the
order of which the Random Variables are summed out, when calculating some
expected value. Also here, a broader understanding of how the error bounds
are calculated would be helpful.

This solution method could also be broadened by looking at upper and lower
bounds on the value for a decision Z € Q" where we only specify some of the
entries. That is, for example, if we could find that any decision

Zte{zeO "z, =1}

would do worse than the best decision Z2 € Q% with Z2? = 0, we would know
that the optimal decision Z* does not have Z; = 1. This could be done by some
approximate Viterbi algorithm.

As mentioned in the beginning of this section, we have assumed Boolean
Random Variables and Boolean decision vectors. However, there are no reason
why this solution method could not be expanded. We could assume Random
Variables that take on values in a set A with |A| > 2. Then, our Random Vector
X would be living in Q = A™. Correspondingly, there could be more than one
choice for what to do with each Random Variable, that is, more choices for the
values of the entries of the decision vector. The challenge is then in how to define
functions and probability distributions so that we still can do approximations
on these. In this report, we have assumed the approximations from Tjelmeland
and Austad (2011), which are defined on pseudo-Boolean functions. Of course,
each Random Variable X; € A could be represented by a collection of Boolean
Variables, and correspondingly for the decision entries Z;. But probably, it
would be better to use other upper and lower bounds for that specific case. In
either case, the method for eliminating decisions as described in Section 6 is still
valid.

Also, we recall from Section 10, that, of course, this solution method with
"The AMRF Program” bounds, has the greatest reduction in complexity if
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we start with functions that already are on exponential pseudo-Boolean form.
Thus, according to the complexity of the algorithm, this solution method would
be most useful for cases where it is natural to start with such a formulation of
the Joint Probability Distribution. However, note that for the dimensions in
the tests for this report, most computational time was spent on calculating the
expected value of the function w — ¢, and compared to that, the calculation of
the exponential pseudo-Boolean forms was done in no time. Anyway, it could
be interesting to look for applications, and study the performance on problems
where the exponential pseudo-Boolean form is more natural. It is worth noting
that in this report, we have only done tests for Bayesian Networks. Other
graphical models could be of great interest. Note that for a Markov Random
Field with Random Variables in X, and an unknown normalization constant C'
for the probability distribution %P(X ), an upper bound on the expected value
of a function h(X) could be expressed as

2 MX)P(X)
2 xPX)

where we let Z+ y denote the upper bounds on the sum over X, and corre-

)

spondingly, >;  for the lower bound. Note that the Ising model is an example
of such a distribution, and so is also any other Markov Random Field where the
Joint Probability Distribution

P(X) = & [] exp(B(X)),
E(X)

is defined by a collection of energy functions {E(X)}. Also, it could be interest-
ing to look for applications where it is more natural to have the value function as
the exponential of a pseudo-Boolean function. That is, where the value function
behaves more like a product.
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APPENDIX

A Implementation of Graph Structure

A graph like the one described in Section 3.1 is implemented by a C++ class.
An alternative way of storing the coefficients a* would be in a vector of length
2". That is, each subset A € N corresponds to entry number E(\) = Y, | 2¥
in the vector. Note that if we only want to look at sets A of size |A\| < L with
L << m, this alternative would imply a lot of unused entries in the vector.
For the graph alternative, we are able to only create the first L + 1 layers of
the graph, including the root node. However, the main argument for the graph
alternative, is the efficient way of calculating sums over subsets, as in

>t (A1)

ACA

The number of layers in the graph, L+ 1, together with the number of differ-
ent values appearing in the sets, give a unique description of the graph structure.
Also, each node is an instance of a struct holding a vector of pointers to its par-
ents, a vector of pointers to its children and a vector holding its corresponding
values. Associate each node with its index set A, that is, in this discussion, we
will not distinguish between the index set and its corresponding node. Let the
root node be layer 0, and name each layer outwards layer 1,--- , L.

We introduce an ordering on the children and parents of node a, where child
b precedes child c if the element added to a to obtain b has a lower value than the
element added to obtain c¢. Correspondingly for the parents, parent ¢ precedes
parent d if the element removed from a to obtain ¢ has a lower value than the
element removed to obtain d. That is, the listings of children and parents in
Section 3.1 follows the ordering described above. In the graph, we let each node
A hold pointers to its children and parents, respectively, according to this order.

The length of the value vector may depend on the problem, and what we
want to calculate for each node. Since we often want to calculate expressions of
the kind in (A.1), this length is a multiple of the layer number r. If our purpose
is to convert between the linear and exponential pseudo-Boolean representations
of a function, as in Section 3.2, we would let the value vector length be twice
the layer number, and let the root node hold two values. If we just want to store
coefficients, or calculate sums over subsets, it is sufficient with a value vector
length equal to the layer number, and the root node would hold one value. That
is, call the value vector v, and assume for simplicity that each node has only
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one coefficient associated with it, i.e. we work with one set of coefficients a.
Then, the value vector has length r in layer r, and the first value element in
the node A holds the value of a®. The kth element, k > 2, is the sum of the
coefficients a* where A = A and |A\M| = k — 1. That is, the sum over the first
value element for each node in the layer k steps down, reachable from A by k
steps of going from a node to one of its parents. Then, if we let A — v[k] denote
the kth entry in the value vector for the node A, we obtain the following two
easy formulas for our graph structure,

A1
Z o = @ — v[0] + Z A — v[k], (A.2)
AGA k=2

and At
Z ot = — v[0] + Z A — v[k]. (A.3)
ACA k=1

Assume that we are given two nodes A; and Ao, where A; is an ancestor of
A2, k layers up. There are k! different routes from y; to yo, going from a node
to one of its children in each of the k steps. That is, in the first step, you have k
different coordinates you can turn on, each of which in the next step gives k — 1
choices, and so on.

That results in the following formula, for 1 < k < |A] — 1,

Aol =1 Y Aoolk—1]. (A.4)

The resulting algorithm first creates the graph structure of the dimensions
wanted. Then, the first entry A — o[1] in the value vector for each node A
is assigned the value o*. After that, layer by layer, starting with the grand
children of the root node and continuing outwards, the rest of the values in each
value vector is filled out according to (A.4). In the end, the wanted sums as in
(A.1), are easily calculated by the formulas in (A.2) and (A.3).

B A short User Oriented Introduction to
”The AMRF Programs”

The programs referred to as " The AMRF Programs”, are already implemented
algorithms from Tjelmeland and Austad (2011), as mentioned in Section 4. For
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more information and the theory behind it, the reader is referred to Tjelmeland
and Austad (2011).

B.1 A pseudo-Boolean function as input

In addition to input parameters specific for each algorithm, a pseudo-Boolean

function of the form
F(X) = exp (Z s HM)
AeS kel

is given in an input file. In the model assumed, the nodes are numbered from Ny
to Neng, and each node k, with Ny < k < N4, has a corresponding coefficient
B} in the coefficient set {B)‘} yes- The input file needs to be of the following
format. The first line holds the start node number Ny, and the second line holds
the end node number N,,,q. Then, on each line, a set coefficient 5* is presented,
with no restriction on the order of the lines. But within each line, the following
criteria need to be met.

e The first number on each line, is the size |A| of the coefficient set .
e The next numbers are the indexes k € A, in increasing order.
e Last, is the value of the corresponding coefficient 5.

As an example, the input file

N == O W
|
N

represents the function

f ([Xl, XQ]) = exp (—25 - 28X1 - 40X2 + 18X1X2> .

B.2 Calculating an approximate normalizing constant

The approximate normalizing constant, or an approximation of a marginal, for
a pseudo-Boolean function as in Section B.1 will be found by use of the function
call
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amrf_graph_v3
(graphfile, simulation, likelihood, sim,limit, sstop, thev),

where the input parameters are

e graphfile is the name of the file where the pseudo-Boolean function is
stored, as described in Section B.1.

e simulation is a file name for a file describing a realization for which the
likelihood is to be evaluated (we set sim=1 to get one).

e likelihood is the name of the file where the output will be stored.

e We set sim = 1, since the program requires a realization to evaluate the
likelihood of.

o We set limit = 0, since we don’t want to do approximations corresponding
to their € parameter.

e sstop is the number of the last node to be summed out, i.e. we obtain
the marginal for the nodes sst0p+1 to 2n,,,. Default is sstop = 0, which
corresponds to all nodes being summed out, i.e. finding the normalizing
constant of the distribution.

e thev is the maximum number of neighbors for each node for not making
approximations before its summed out. That is, a small value of thev
usually means more approximations, while a high enough value means no
approximations.

B.3 Calculating bounds for the normalizing constant

The upper and lower bounds for the normalizing constant, or bounds of a
marginal, for a pseudo-Boolean function as in Section B.1, will be found by
use of the function call

amrf_graph_bound(graphfile,
simulation, likelihood, sim, limit, sstop, thev, maximum),

where the first seven input parameters are as for amrf_graph_v3, and the last
parameter is set to be 1 for the upper bound, and 0 for the lower bound.
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B.4 An approximate Viterbi algorithm

The upper or lower bounds for the maximum function value, or a function
that bounds the maximum over a subset of the variables, for a pseudo-Boolean
function as in Section B.1, will be found by use of the function call

amrf_graph_viterbi(graphfile,
simulation, likelihood, sim, limit, sstop, thev, maximum),

where the input parameters are as for amrf_graph_bound.
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C Probability Distribution, Cost and Income
Functions for Section 8 and Section 9

C.1 Distribution, Cost and Income functions BN1

First, Table 14 provides all edge probabilities pe, ; to fully determine the Joint
Probability Distribution for the graph in Figure 7 in Section 8. Recall that we
have assumed the distribution to be as in Section 3.3.1. Then, Tables 15 and 16
provides the linear coefficients to fully determine the two sets of cost and income

9(4)

functions, a and b, respectively. Recall that « represents the cost of drilling

cost
Segment S;, while —afo(g’ﬂ(j ) represents the savings in the costs when drilling

both Segment siblings S;, S;, and correspondingly for the income coefficients.

Kitchen nr K; P(K; =1)

K1 0.926
K2 0.728
K3 0.817
K4 0.735
Node pair (i, 5) Pe; j
(K1, P1) 0.217
(P1, D1) 0.840
(P1, D2) 0.637
(K2, P2) 0.773
(K3, P2) 0.916
(P2, D3) 0.805
(P2, D4) 0.515
(K2, P3) 0.608
(K3, P3) 0.788
(P3, D5) 0.909
(K4, P4) 0.471
(P2, P4) 0.575
(P4, D6) 0.818
(P4, D7) 0.762
(P4, P5) 0.616
(P5, D8) 0.613
(P2, P6) 0.717
(P4, P6) 0.797
(P6, D) 0.583
(P4, PT) 0.609
(P6, PT) 0.409
(P7, D10) 0.524

Table 14: BN1: Probabilities for the Bayes Net in Figure 7.
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Segment S; 0‘29(52: a%?
D1 4552 5660
D2 2222 4693
D3 5382 3996
D4 1769 6829
D5 501.9 3534
D6 44.11 7291
D7 3170 3868
D8 365.9 2871
D9 917.7 3342
D10 1997 5326
Segment siblings S;, S; —afé;)t’ﬁ(]) a?éz)ﬁ(])
(D1, D2) 871.3 236.8
(D3, D4) 405.8 430.5
(D6, D7) 4.140 83.43

Table 15: BN1: Cost function a and income function a.
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Segment S; a2 ()

cost inc
D1 4729 4696
D2 4962 3830
D3 2419 2871
D4 5094 3342
D5 5758 5211
D6 2189 6161
D7 1928 5946
D8 3611 4478
D9 5277 7135
D10 1673 4884
Segment siblings S;, 5 faig;)t’ﬁ(]) a%z)’ﬂ(”
(D1, D2) 3482 83.43
(D3, D4) 2180 139.3
(D6, D7) 649.8 288.9

Table 16: BN1: Cost function b and income function b.
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C.2 Distribution, Cost and Income functions BIN2

In this subsection, in addition to Sections C.3, C.4 and C.5, we will present the
edge probabilities p., and also the cost and income coefficients in groups after
which Prospect P; they belong to. That is, we say that p. belong to Prospect
P; if Prospect P; is the end point of edge e, or if e is an edge from Prospect P;
to one of its Segment children. The cost and income coefficients under Prospect
P;, belongs to Prospect P;s Segment children. Then, the numbers appear in
groups as we use them to calculate the representation of w; — ¢; and P(X4,),
respectively. Note that the calculation of the latter also uses calculations corre-
sponding to previous Prospects, however. All numbers listed in this subsection,
corresponds to BN2 from Section 9.1.1, visualized in Figure 8. Sections C.2,
C.3 and C.4 also provides a table over the nonzero loss fractions L, in the 1000
replications test for each, respectively.

Kitchen K; P(K; =1)

K1 0.730
K2 0.778
K3 0.790
K4 0.836
K5 0.887
K6 0.732
K7 0.454

Table 17: Probabilities corresponding to each of Kitchens K;.

Node pair (z,7) De;
(K1, P1) 0.616
(P1, D1) 0.358

Iz I(z
bDs D, SR
D1 3975 5068

Table 18: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P
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Node pair (4, 7) De;

(K2, P2) 0.813
(P2, D2) 0.838

I (7 I(z
PDS D; Opout  Opre
D2 4005 5037

Table 19: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P,

Node pair (3, j) Pe;

(K3, P3) 0.982

(P3, D3) 0.700

(P3, D4) 0.805

(P3, D5) 0.496

(P3, D6) 0.781

PDS D, als) apn
D3 4036 5037
D4 4002 5034
D5 4012 5007
D6 3984 4951
Segment siblings S;, S; —afé;)t’ﬁ(]) a%?‘ﬁm
(D3, D4) 345.6 522.8
(D3, D5) 153.9 490.1
(D3, D6) 603.1 493.7
(D4, D5) 1104 459.2
(D4, D6) 139.1 480.4
(D5, D6) 264.8 496.7

Table 20: BN2: Probabilities describing the probability distribution for Prospect
Ps.
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Node pair (4, 5) Pe;

(K4, P4) 0.937

(P4, D7) 0.928

(P4, D8) 0.548
Segment S; oaf(gz)t a%?
D7 3947 5031
D8 4014 5037
Segment siblings S;, S; —a%zﬂ%]) ai&?‘ﬁm
(D7, D8) 3614 501.3

Table 21: BN2: Probabilities, cost coefficients and income coefficients, Prospect
Py.

Node pair (3, j) Pe; ;

(K3, P5) 0.797

(K5, P5) 0.550

(P5, D9) 0.762

(P5, D10) 0.956
Segment S; af(gz a%?
D9 4046 5001
D10 4024 4945
Segment siblings S;, S; fa%;l’ﬁ(]) a%?’ﬂ(ﬂ
(D9, D10) 3897 505.0

Table 22: BN2: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.
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Node pair (%, j) De;

(K3, P6) 0.672

(K6, P6) 0.613

(P6, D11) 0.625

(P6, D12) 0.789

(P6, D13) 0.753

(P6, D14) 0.807

(P6, D15) 0.664

(P6, D16) 0.841
Segment S; aféz a%?
D11 4095 4863
D12 3996 4985
D13 4005 4988
D14 4052 5110
D15 3944 4949
D16 4056 5003
Segment siblings S;, S; faif;l’ﬁ(ﬁ afygz)’ﬂ(])
(D11, D12) 223.4 499.0
(D11, D13) 288.7 496.5
(D11, D14) 358.0 498.4
(D11, D15) 656.3 502.3
(D11, D16) 348.0 491.0
(D12, D13) 567.7 494.2
(D12, D14) 218.1 501.6
(D12, D15) 243.5 507.2
(D12, D16) 576.5 495.3
(D13, D14) 159.1 514.3
(D13, D15) 322.9 500.7
(D13, D16) 720.9 504.7
(D14, D15) 4132 514.7
(D14, D16) 328.2 491.4
(D15, D16) 672.0 500.2

Table 23: BN2: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.

Node pair (4, 7) De;
(K7, P7) 0.803
(P7, D17) 0.626
Segment S; 120(25 %?
DI7 3993 4982

Table 24: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P
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Node pair (4, 5) Pe;

(K6, P8) 0.606

(P8, D18) 0.934

(P8, D19) 0.529
Segment S; oaf(gz)t a%?
D18 3986 5010
D19 4049 5001
Segment siblings S;, S; —a%zﬂ%]) ai&?‘ﬁm
(D18, D19) 3804 510.9

Table 25: BN2: Probabilities, cost coefficients and income coefficients, Prospect
Ps.

Node pair (4, 5) Pe;

(K1, P9) 0.265

(P3, P9) 0.723

(P9, D20) 0.354

(P9, D21) 0.587
Segment S; af(gz a%?
D20 3996 5032
D21 4017 5084
Segment siblings S;, S; fa%;l’ﬁ(]) a%?’ﬂ(ﬂ
(D20, D21) 2830 470.1

Table 26: BN2: Probabilities, cost coefficients and income coefficients, Prospect
Py.
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Node pair (%, j) Pe; 4

(K3, P10) 0.825

(P4, P10) 0.809

(P10, D22) 0.934

(P10, D23) 0.759

(P10, D24) 0.676

(P10, D25) 0.718
Segment S; ocféz a%?
D22 3959 5017
D23 3989 4939
D24 4104 4976
D25 4008 4940
Segment siblings S;, S —afé?{ﬁw) a%z)’ﬂ(”
(D22, D23) 307.8 490.0
(D22, D24) 910.8 502.8
(D22, D25) 431.8 492.3
(D23, D24) 1096 465.9
(D23, D25) 1005 489.5
(D24, D25) 300.8 496.2

Table 27: BN2: Probabilities, cost coefficients and income coefficients, Prospect
PlO'

Node pair (4, 5) De;

(P6 P11) 0.592

(P7, P11) 0.784

(P8, P11) 0.844

(P11, D26) 0.921

(P11, D27) 0.479
Segment S; O‘fo(?t a%?
D26 4066 5022
D27 4065 5009
Segment siblings S;,S; — fé:)tﬁ(ﬂ ZE? 00)
(D26, D27) 3881 492.0

Table 28: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P11~
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Node pair (%, j) Pe;

(K4, P12) 0.850

(P12, D28) 0.837

(P12, D29) 0.855

Segment S; O‘IZLEZ a%?

D28 4024 5034

D29 4034 5043
Py 9(2),9(7 9(2),9(7

Segment siblings S;, S; *auggs @ aié? @

(D28, D29) 1370 494.9

Table 29: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P12.

Node pair (i, j) Pei
(P3, P13) 0.267
(P8, P13) 0.567
(P10, D30) 0.724
Segment S; cx%;i a%?
D30 4046 4988

Table 30: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P13.

Node pair (4, 5) Pe;

(K5, P14) 0.892

(P13, P14) 0.904

(P14, D31) 0.769

(P14, D32) 0.793

(P14, D33) 0.587

(P14, D34) 0.829
Segment S; a%?t a%?
(D31, D32) 1054 487.1
(D31, D33) 223.3 502.5
(D31, D34) 184.9 478.8
(D32, D33) 579.3 502.7
(D32, D34) 817.4 517.1
(D33, D34) 420.3 524.8
Segment siblings S;, S; —a%zﬂ%]) ai&?‘ﬁm
(D9, D10) 3897 505.0

Table 31: BN2: Probabilities, cost coeflicients and income coefficients, Prospect
P14.
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Node pair (%, j) Pe;

(K5, P15) 0.921

(P4, P15) 0.683

(P14, P15) 0.587

(P15, D35) 0.849

(P15, D36) 0.839

(P15, D37) 0.658

(P15, D38) 0.805

(P15, D39) 0.822

(P15, D40) 0.981
Segment S; oaf(gz)t a%?
D35 3952 4976
D36 3992 4958
D37 3909 5019
D38 3962 4965
D39 4070 4964
D40 4076 4912
Segment siblings S;, S _afé;){ﬁ@) a%z)’ﬂ(”
(D35, D36) 299.7 511.1
(D35, D37) 744.7 502.8
(D35, D38) 100.5 488.2
(D35, D39) 17.69 499.0
(D35, D40) 548.2 504.2
(D36, D37) 435.0 504.6
(D36, D38) 359.2 489.3
(D36, D39) 358.3 514.5
(D36, D40) 599.7 510.3
(D37, D38) 15.29 511.4
(D37, D39) 129.1 490.8
(D37, D40) 18.45 496.0
(D38, D39) 71.00 502.9
(D38, D40) 534.2 504.3
(D39, D40) 626.4 495.2

Table 32: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P15.
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Nonzero loss fractions Lg
0.0039%  2.0994%  6.6597%  17.086%
0.0171%  3.0456%  8.5423% 22.791%
0.0468%  3.0662%  8.7180%  27.024%
0.0596%  3.2426%  8.9417%  29.596%
0.2432%  3.4734%  9.2905%  31.045%
0.3263%  4.3125%  12.990%  37.278%
0.4715%  4.4725%  14.813%  37.991%
0.7584%  5.2099%  15.040%  41.739%
0.7924%  5.3182%  15.099%  61.640%
1.8310% 6.0684%  16.650%  83.181%

Table 33: BN2: Listing of all nonzero loss fractions Lg for the 1000 tests in
Section 9.1.1.
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C.3 Distribution, Cost and Income functions BN3

All numbers listed in this subsection, corresponds to BN3 from Section 9.1.1,
visualized in Figure 15.

Kitchen nr K; P(K; =1)

K1 0.695
K2 0.944
K3 0.760
K4 0.638
K5 0.615
K6 0.668
K7 0.870
K8 0.593
K9 0.859
K10 0.821

Table 34: BN3: Probabilities corresponding to each of Kitchens K.

Node pair (%, j) Pe;

(K1, P1) 0.510

(P1, D1) 0.813

(P1, D2) 0.934

Segment S; 0‘159(525 a%?

D1 3003 4949

D2 3012 5053
R 9(2),9(7 9(2),9(7

Segment siblings S;, S; faagll ) aiéz) @

(D1, D2) 1273 4783

Table 35: BN3: Probabilities, cost coeflicients and income coefficients, Prospect
P
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Node pair (%, j) De; j

(K2, P2) 0.967

(P2, D3) 0.878

(P2, D4) 0.646

(P2, D5) 0.780

(P2, D6) 0.586
Segment S; O‘fo(?t afé?
D3 3004 4967
D4 2965 4987
D5 2933 5033
D6 2969 5050
Segment siblings S;, S; —a%zﬂ%]) afé?’ﬁm
(D3, D4) 84.85 518.9
(D3, D5) 950.4 483.4
(D4, D5) 478.8 499.2
(D3, D6) 219.1 532.8
(D4, D6) 805.0 464.1
(D5, D6) 566.4 531.5

Table 36: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P,

Node pair (, j) Pe;
(K1, P3) 0.740
(K3, P3) 0.585
(P3, D7) 0.830
(P3, D8) 0.968
Segment S; a%?t a%?
D7 3072 5060
D8 3000 4904

Segment siblings S;, S; —afég’ﬁ(j) 7 D:90)

anc
(D7, D8) 1663 488.6

Table 37: BN3: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.
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Node pair (3, j) Pe; ;

(K4, P4) 0.581
(P4, D9) 0.589
(P4, D10) 0.378
Segment S; O‘fé;)t O‘%?
DY 3042 5070
D10 2990 5021

Segment siblings S;, S —afé?t’ﬁ(j) a9

wnc
(D9, D10) 2256 510.0

Table 38: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Py.

Node pair (4, 5) Pe; 4
(K5, P5) 0.782
(P5, D11) 0.576
Segment S; f(gz)t a%?
D11 3050 4999

Table 39: BN3: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.

Node pair (3, j) Pe;

(K6, P6) 0.532

(P6, D12) 0.325

(P6, D13) 0.692

(P6, D14) 0.640
Segment S; O‘ZEQ: a%?
D12 3011 5044
D13 2988 4958
D14 3086 4982
Segment siblings S;, S —afé;)t’ﬁm a%z)ﬁ(])
(D12, D13) 586.1 509.0
(D12, D14) 252.3 529.2
(D13, D14) 431.3 490.3

Table 40: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Ps.
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Node pair (4, 5) Pe;

(K7, P7) 0.778
(P7, D15) 0.687
Segment S; O‘ZEZ a%?
D15 2979 4939

Table 41: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Pr.

Node pair (3, j) Pe;

(K8, P8) 0.56

(P8, D16) 0.816

(P8, D17) 0.790

(P8, D18) 0.494
Segment S; 0‘159525 afé?
D16 3078 4998
D17 3065 4921
D18 3054 4999
Segment siblings S;, S —afé?t’wj) cx%?‘ﬂ(”
(D16, D17) 1286 467.0
(D16, D18) 901.9 518.6
(D17, D18) 348.5 507.8

Table 42: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Ps.

Node pair (%, j) Pe;
(K9, P9) 0.549
(P9, D19) 0.550
Segment S; afég a%?
D19 2932 5109

Table 43: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Py.
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Node pair (4, 5) Pe;

(K10, P10) 0.676

(P10, D20) 0.678

(P10, D21) 0.782
Segment S; oaf(gz)t a%?
D20 2987 5052
D21 3010 5033
Segment siblings S;, S; —a%zﬂ%]) ai&?‘ﬁm
(D20, D21) 2526 479.1

Table 44: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P10~

Node pair (4, 5) Pe;

(P2, P11) 0.852

(P9, P11) 0.860

(P11, D22) 0.779

(P11, D23) 0.842
Segment S; af(gz a%?
D22 2941 4916
D23 2989 5011
Segment siblings S;, S; fa%;l’ﬁ(]) a%?’ﬂ(ﬂ
(D22, D23) 2823 512.3

Table 45: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Py
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Node pair (3, j) De;

(K5, P12) 0.502

(P12, D24) 0.624

(P12, D25) 0.823

(P12, D26) 0.557
Segment S; 0‘159525 afé?
D24 3005 5070
D25 2924 5016
D26 2946 5008
Segment siblings S;, S —afé?t’wj) cx%?‘ﬂ(”
(D24, D25) 1247 511.6
(D24, D26) 641.8 490.1
(D25, D26) 956.3 497.4

Table 46: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P12 .

Node pair (4, 7) Pe; 4
(P10, P13) 0.976
(P13, D27) 0.901
Segment S; O‘ffgi)t a%?
D27 3072 4992

Table 47: BN3: Probabilities, cost coeflicients and income coefficients, Prospect
P13.

Node pair (i, 5) Pe; 4
(K10, P14) 0.978
(P4, P14) 0.817
(P9, P14) 0.696
(P14, D28) 0.659
Segment S; afég a%?
D28 2969 5022

Table 48: BN3: Probabilities, cost coefficients and income coefficients, Prospect
Pyy.
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Node pair (3, j) Pe;

(K2 P15) 0.763

(P7, P15) 0.890

(P13 P15) 0.836

(P15, D29) 0.850

(P15, D30) 0.861

(P15, D31) 0.776
Segment S; 0‘29(52: a%?
D29 2987 4951
D30 3004 5023
D31 3022 5020
Segment siblings S;, S —afé;)t’ﬁ(]) 19(1) o)
(D29, D30) 267.8 497 1
(D29, D31) 894.1 482.6
(D30, D31) 1370 490.2

Table 49: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P15.

Node pair (3, j) Pe; ;
(P6, P16) 0.719
(P16, D32) 0.436
Segment S; O‘fé;?s a%?
D32 2966 4989

Table 50: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P16.

Node pair (3, j) Pe; ;

(P9, P17) 0.898

(P15, P17) 0.617

(P17, D33) 0.478

(P17, D34) 0.561
Segment S; 0‘29(52: ig?
D33 2913 4938
D34 2933 4980
Segment siblings S;,S; — %Z’ﬁ(]) a%?’ﬂ(])
(D33, D34) 1932 517.8

Table 51: BN3: Probabilities, cost coeflicients and income coeflicients, Prospect
Py
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Node pair (4, j) DPe;

(K1, P18) 0.246
(P14, P18) 0.863
(P18, D35) 0.634
Segment S; O‘igi)t a%?
D35 2956 4952

Table 52: BN3: Probabilities, cost coeflicients and income coefficients, Prospect
P].S'

Node pair (%, j) Pe;
(P7, P19) 0.910
(P19, D36) 0.760
(P19, D37) 0.867
Segment S; O‘IZLEZ a%?
D36 3050 5064
D37 2941 5023

Segment siblings S;, S; faféil’ﬁ(j) 7905

anc
(D36, D37) 1833 514.1

Table 53: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P19.

Node pair (3, j) Pe;

(K3, P20) 0.601

(P15, P20) 0.520

(P19, P20) 0.498

(P20, D38) 0.785

(P20, D39) 0.887

(P20, D40) 0.702
Segment S; Oéfo(;)t afé?
D38 2920 5019
D39 2908 5048
D40 3003 4985
Segment siblings S;, S; fa%;)t’ﬁ(]) a%z)’ﬂ(”
(D38, D39) 1395 514.6
(D38, D40) 179.8 523.7
(D39, D40) 289.0 480.6

Table 54: BN3: Probabilities, cost coeflicients and income coefficients, Prospect
PQO.
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Nonzero loss fractions Ls
0.0846% 0.1268% 0.1278%
0.1483% 0.1529% 0.6006%
1.1325% 1.7083% 1.7236%
1.8870% 2.5999% 2.6884%
3.2948% 3.3345% 3.4698%
3.8284% 4.1870% 4.5679%
5.1716% 5.4370% 6.0701%
6.9327% 10.1125%  20.0158%
20.5417%  25.1488%  45.8189%

Table 55: BN3: Listing of all nonzero loss fractions Ls for the 1000 tests in
Section 9.1.2.
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C.4 Distribution, Cost and Income functions BN4

All numbers listed in this subsection, corresponds to BN4 from Section 9.1.1,
visualized in Figure 23.

Kitchen nr K; P(K; =1)

K1 0.719
K2 0.487
K3 0.897
K4 0.759
K5 0.817
K6 0.904
K7 0.351
K8 0.678
K9 0.874
K10 0.680

Table 56: BN4: Probabilities corresponding to each of Kitchens K.
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Node pair (%, j) Pe;

(K1, P1) 0.700

(K8, P1) 0.833

(P1, D1) 0.778

(P1, D2) 0.820

(P1, D3) 0.815
Segment S; a%?t a%?
D1 4030 5015
D2 4046 4989
D3 4037 5016
Segment siblings S;, S —afég)t’ﬁ(]) aféz)’ﬂ(”
(D1, D2) 1889 471.4
(D1, D3) 284.2 488.2
(D2, D3) 457.7 495.3

Table 57: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Py.
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Node pair (%, j) Pe;
K2, P2) 0.678

(

(K3, P2) 0.844

(P2, D4) 0.707

(P2, D5) 0.504

(P2, D6) 0.516

(P2, D7) 0.760
Segment S; ocfé?t a%?
D4 4042 5028
D5 3989 5013
D6 4001 4999
D7 4000 5029
Segment siblings S;, S fa%;)t’ﬁ(]) a%?’ﬂ(”
(D4, D5) 158.8 493.2
(D4, D6) 235.6 490.1
(D5, D6) 1198 504.3
(D4, D7) 178.5 502.7
(D5, D7) 242.3 511.3
(D6, D7) 878.2 515.7

Table 58: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Ps.

Node pair (4, 5) De;
(P3, D8) 0.714
Segment S; fo(?t %?
B8 2056 5050

Table 59: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Ps.
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Node pair (%, j) Pe; j

(K4, P4) 0.478
(P3, P4) 0.815
(P4, D9) 0.621
(P4, D10) 0.735
Segment S; aféz a%?
D9 4037 5044
D10 3955 4975

Segment siblings S;, S —afé?t’ﬁ(j) a%?’ﬂ(j)

(D9, D10) 727.7 491.7

Table 60: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Py.

Node pair (%, j) Pe;

(K5, P5) 0.803

(K7, P5) 0.846

(P5, D11) 0.676

(P5, D12) 0.537

(P5, D13) 0.379

(P5, D14) 0.523

(P5, D15) 0.799
Segment S; O‘f(gz)t a%?
D11 3953 5025
D12 4054 4959
D13 4043 4994
D14 3988 5099
D15 3954 4987
Segment siblings S;, S; faif;l’ﬁ(ﬁ afygz)’ﬂ(])
(D11, D12) 92.44 5241
(D11, D13) 606.0 479.3
(D12, D13) 64.68 530.0
(D11, D14) 361.3 511.1
(D12, D14) 764.5 470.1
(D13, D14) 948.3 505.4
(D11, D15) 929.5 505.9
(D12, D15) 227.3 524.8
(D13, D15) 575.1 502.6
(D14, D15) 475.3 491.8

Table 61: BN4: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.
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Node pair (%, j) De; j

(K6, P6) 0.937

(P6, D16) 0.462

(P6, D17) 0.698

(P6, D18) 0.877

(P6, D19) 0.722

(P6, D20) 0.592

(P6, D21) 0.395

(P6, D22) 0.590
Segment S; O g o,
D16 4064 5007
D17 3944 4934
D18 3964 4964
D19 3972 5068
D20 3959 5016
D21 4025 4982
D22 3952 5013
Segment siblings S;, S; faig;) o) a%?’ﬂ(”
(D16, D17) 414.1 517.2
(D16, D18) 239.6 509.5
(D17, D18) 288.5 483.8
(D16, D19) 295.4 502.3
(D17, D19) 313.5 497.2
(D18, D19) 364.3 501.3
(D16, D20) 631.8 471.0
(D17, D20) 65.94 499.8
(D18, D20) 528.9 484.6
(D19, D20) 302.6 512.9
(D16, D21) 372.8 480.1
(D17, D21) 400.5 507.2
(D18, D21) 360.7 482.2
(D19, D21) 647.6 501.6
(D20, D21) 184.2 503.5
(D16, D22) 519.2 495.1
(D17, D22) 78.64 494.0
(D18, D22) 345.7 500.9
(D19, D22) 549.0 480.5
(D20, D22) 48.52 502.9
(D21, D22) 495.5 494.7

Table 62: BN4: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.
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Node pair (%, j) De; j

(K7, P7) 0.894

(P7, D23) 0.569

(P7, D24) 0.933

(P7, D25) 0.885

(P7, D26) 0.396
Segment S; O‘fo(?t afé?
D23 4008 5074
D24 3964 4969
D25 4029 5049
D26 4072 5025
Segment siblings S;, S; —a%zﬂ%]) ZEZ) 00)
(D23, D24) 155.5 485.7
(D23, D25) 286.2 510.0
(D24, D25) 1048 469.7
(D23, D26) 853.5 489.7
(D24, D26) 399.8 492.3
(D25, D26) 1079 491.1

Table 63: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P

Node pair (, j) Pe;
(K1, P8) 0.801
(K8, P8) 0.862
(P8, D27) 0.768
(P8, D28) 0.943
Segment S; a%?t a%?
D27 4028 5016
D28 4028 4933

Segment siblings S;, S; — fési ) aﬂ(i)’ﬁ(j)

anc
(D27, D28) 930.0 510.6

Table 64: BN4: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.
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Node pair (%, j) Pe; 4

(K9, P9) 0.838

(P9, D29) 0.757

(P9, D30) 0.759

Segment S; af(gz a%?

D29 4042 4938

D30 4078 4945
11 9(2),9(7 9(2),9(7

Segment siblings S;, S —acég)t ) aiéz) @)

(D29, D30) 1355 496.9

Table 65: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Py.

Node pair (%, j) Pe;

(K3, P10) 0.83

(K6, P10) 0.674

(K10, P10) 0.753

(P10, D31) 0.677

(P10, D32) 0.840

(P10, D33) 0.776
Segment S; aig;i a%?
D31 4042 5005
D32 3934 4966
D33 3949 5013
Segment siblings S;, S; —afég)t’ﬁm a?fﬁz)ﬁ(])
(D31, D32) 332.0 499.2
(D31, D33) 931.6 480.5
(D32, D33) 1910 484.4

Table 66: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P10~
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Node pair (%, j) Pe; 4

(K7, P11) 0.813

(P5, P11) 0.554

(P8, P11) 0.766

(P11, D34) 0.623

(P11, D35) 0.475

(P11, D36) 0.697
Segment S; oafé?t %?
D34 3930 5065
D35 3969 4944
D36 4058 5007
Segment siblings S;, S; 701169(52,19(]) afé?’ﬂ(])
(D34, D35) 581.2 4745
(D34, D36) 1263 504.4
(D35, D36) 531.3 484.6

Table 67: BN4: Probabilities, cost coeflicients and income coefficients, Prospect
Pll .

Node pair (, j) Pe; ;

(P3, P12) 0.900

(P12, D37) 0.858

(P12, D38) 0.613

Segment S; O‘ZEQ‘, ;975?

D37 4004 5034

D38 3986 4980
R 9(2),9(7 9(2),9(7

Segment siblings S;, S —acé;)t @) 041-75? @

(D37, D38) 3758 491.5

Table 68: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P12.
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Node pair (%, j) Pe; 4

(K4, P13) 0.706

(K7, P13) 0.653

(P9, P13) 0.816

(P13, D39) 0.563

(P13, D40) 0.895
Segment S; af(gz,i a%?
D39 3965 5049
D40 4043 4993
Segment siblings S;, S; fa%;)t’ﬁ(]) a%?’ﬂ(”
(D39, D40) 1186 476.6

Table 69: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P13.

Node pair (4, 5) Pe;

(K5, P14) 0.866

(P14, D41) 0.822

(P14, D42) 0.593

(P14, D43) 0.508
Segment S; aig;i a%?
D41 4073 5059
D42 4015 4962
D43 3977 4963
Segment siblings S;, S; —afég)t’ﬁm a?fﬁz)ﬁ(])
(D41, D42) 292.3 511.7
(D41, D43) 1978 478.8
(D42, D43) 1792 486.1

Table 70: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Pyy.

118



Node pair (%, j) De; j

(P11, P15) 0.605

(P12, P15) 0.864

(P15, D44) 0.853

(P15, D45) 0.572

(P15, D46) 0.532

(P15, D47) 0.942
Segment S; af(gz,i %C)
D44 4059 5024
D45 4045 4921
D46 3992 4975
D47 3992 5049
Segment siblings S;, S; fafégf’ﬁ(]) 04?752)’19(])
(D44, D45) 72.11 485.5
(D44, D46) 696.3 475.1
(D45, D46) 449.1 522.0
(D44, D47) 950.7 489.1
(D45, D47) 7777 458.4
(D46, D47) 1012 516.7

Table 71: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Pls.

Node pair (%, j) De; j
(K1, P16) 0.625
(P16, D48) 0.590
(P16, D49) 0.488
Segment S; a%?t a%?
D48 4002 5015
D49 3967 4955

Segment siblings S;,S;  — fési IO NI ORI

anc
(D48, D49) 2572 4847

Table 72: BN4: Probabilities, cost coeflicients and income coefficients, Prospect
P]_G.
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Node pair (3, j) Pe;

(P4, P17) 0.633

(P5, P17) 0.826

(P17, D50) 0.822

(P17, D51) 0.963

(P17, D52) 0.555
Segment S; af(gz a%?
D50 4055 4999
D51 3964 4993
D52 4081 4947
Segment siblings S;, S; _afégﬁ(ﬂ oa?rg?’ﬁ(])
(D50, D51) 739.5 501.3
(D50, D52) 701.6 502.1
(D51, D52) 1895 510.7

Table 73: BN4: Probabilities, cost coeflicients and income coefficients, Prospect
P17.

Node pair (3, j) Pe;

(P3, P18) 0.841

(P4, P18) 0.750

(P15, P18) 0.771

(P18, D53) 0.711

(P18, D54) 0.971
Segment S; aféz a%?
D53 4049 5046
D54 4062 5044
Segment siblings S;, S fa%;)t’ﬁ(]) aféz)’ﬂ(”
(D53, D54) 146.4 502.4

Table 74: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P18.
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Node pair (3, j) De;

(K1, P19) 0.695

(P2, P19) 0.833

(P5, P19) 0.618

(P16, P19) 0.351

(P19, D55) 0.386

(P19, D56) 0.741
Segment S; O‘fo(?t afé?
D55 3944 5013
D56 3923 5003
Segment siblings S;, S;  — 109(52719(]) afrg?’ﬂ(])
(D55, D56) 2692 508.8

Table 75: BN4: Probabilities, cost coefficients and income coefficients, Prospect
Plg.

Node pair (3, j) Pe; ;

(K3, P20) 0.669

(P14, P20) 0.984

(P19, P20) 0.813

(P20, D57) 0.509

(P20, D58) 0.633

(P20, D59) 0.774

(P20, D60) 0.789
Segment S; 0‘12525 a%?
D57 4003 4981
D58 4042 4964
D59 4051 4945
D60 3945 4938
Segment siblings S;, S; fa%;l’ﬁ(]) a%?’ﬂ(ﬂ
(D57, D58) 802.0 509.7
(D57, D59) 304.2 472.6
(D58, D59) 439.7 499.7
(D57, D60) 279.4 530.4
(D58, D60) 951.4 491.4
(D59, D60) 423.4 512.8

Table 76: BN4: Probabilities, cost coefficients and income coefficients, Prospect
PQO.
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Nonzero loss fractions L7

0.0008% 0.0143% 0.1081% 0.1408%
0.4298% 0.4729% 1.2513% 1.3379%
1.4173% 1.5933% 1.6141% 1.6901%
2.3847% 2.4245% 3.1822% 3.7893%
3.8178% 4.3210% 4.3220% 4.9154%
5.3173% 5.8367% 6.0373% 6.1426%
6.6618% 7.5549% 8.2433% 9.0723%
9.3761% 9.5243% 10.5092%  12.3766%
14.8005% 15.5166% 15.6522% 17.3257%
17.6869%  17.7826%  19.2693%  20.2625%
20.9264%  21.2441%  23.4648%  24.5481%
26.7271%  27.8775%  29.7215%  36.6901%
36.9098%  39.4034%  40.1745%  44.1414%
47.6808%  49.1176%  50.9428%  53.4218%
55.2268%  63.2664%  66.5337%  66.7269%
69.9822%  72.1796%  73.6152%  76.5762%
78.0995%  90.0164%  95.7869%

Table 77: BN4: Listing of all nonzero loss fractions L; for the 1000 tests in
Section 9.1.3.
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C.5 Distribution, Cost and Income functions BN5

All numbers listed in this subsection, corresponds to BN5 from Section 9.2,
visualized in Figure 30.

Kitchen K; P(K; =1)

K1 0.730
K2 0.778
K3 0.790
K4 0.836
K5 0.887
K6 0.732
K7 0.454

Table 78: BN5: Probabilities corresponding to each of Kitchens K.

Node pair (3, j) Pe;
(K1, P1) 0.616
(K4, P1) 0.813
(P1, D1) 0.769
Segment S; ig;)t a%?
D1 3863 4996

Table 79: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P
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Node pair (4, 5) Pe;

(K2, P2) 0.982

(P2, D2) 0.793

(P2, D3) 0.587

Segment S; oaf(gz)t a%?

D2 3985 5005

D3 3988 5001
. IORIC] 90,90

Segment siblings S;, S; —%E;)t 2 O‘MEZ) @)

(D2, D3) 313.8 494.2

Table 80: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Ps.

Node pair (3, j) Pe; ;

(K1, P3) 0.937

(K3, P3) 0.797

(P3, D4) 0.829

(P3, D5) 0.849
Segment S; af(gz a%?
D4 4052 5110
D5 3996 5058
Segment siblings S;, S; fa%;l’ﬁ(]) a%?’ﬂ(ﬂ
(D4, D5) 3511 501.6

Table 81: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Ps.
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Node pair (%, j) Pe;

(K4, P4) 0.550

(P4, D6) 0.839

(P4, D7) 0.658

(P4, D8) 0.805

(P4, D9) 0.822
Segment S; afgg a%?
D6 3981 5052
D7 4046 4944
D8 4091 5048
D9 4002 5036
Segment siblings S;,S;  — 109(53719(]) oa?rg?’ﬁ(])
(D6, D7) 473.2 502.3
(D6, D8) 940.6 484.3
(D7, D8) 1312 517.3
(D6, D9) 1160 495.3
(D7, DY) 1201 504.7
(D8, DY) 540.3 491.4

Table 82: BN5: Probabilities, cost coeflicients and income coefficients, Prospect
Py.

Node pair (%, j) Pe;
(K3, P5) 0.672
(K5, P5) 0.613
(K7, P5) 0.803
(P5, D10) 0.981
(P5, D11) 0.459
Segment S; O‘fo(.?t afé?
D10 3990 5002
D11 3993 4982

Segment siblings S;, S; —aféii’wﬂ ?D90)

wnc
(D10, D11) 516.4 4932

Table 83: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Ps.
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Node pair (4, 5) Pe;

(K3, P6) 0.606

(K6, P6) 0.265

(P4, P6) 0.723

(P6, D12) 0.677

(P6, D13) 0.520

(P6, D14) 0.863
Segment S; afgi)t a%?
D12 4054 4928
D13 3956 5036
D14 4009 5034
Segment siblings S;, S —afég)t’m]) a%z)’ﬂ(”
(D12, D13) 1456 494.1
(D12, D14) 85.20 508.3
(D13, D14) 1244 486.7

Table 84: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Ps.

Node pair (%, j) Pe;

(K7, P7) 0.825

(P7, D15) 0.589

(P7, D16) 0.996

(P7, D17) 0.495

(P7, D18) 0.478
Segment S; aig;i a%?
D15 4017 4989
D16 3939 5077
D17 3961 5021
D18 3978 4948
Segment siblings S;,S;  — fﬁg’ﬁ(]) aféz)’ﬂ(])
(D15, D16) 225.9 502.8
(D15, D17) 678.7 465.9
(D16, D17) 117.9 484.0
(D15, D18) 1085 481.0
(D16, D18) 429.6 492.3
(D17, D18) 998.7 489.5

Table 85: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Pr.
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Node pair (3, j) De;

(K4, P8) 0.809

(K6, P8) 0.592

(P4, P8) 0.784

(P8, D19) 0.624

(P8, D20) 0.603

(P8, D21) 0.625
Segment S; O‘fo(?t afé?
D19 3936 4976
D20 4024 5034
D21 4030 4968
Segment siblings S;, S; 70/69‘5;){19(]) a%?’ﬂ(”
(D19, D20) 480.0 504.2
(D19, D21) 1540 514.3
(D20, D21) 1748 491.0

Table 86: BN5: Probabilities, cost coeflicients and income coefficients, Prospect
Ps.

Node pair (%, j) De;

(K1, P9) 0.844

(K3, P9) 0.850

(P1, P9) 0.267

(P3, P9) 0.567

(P5, P9) 0.892

(P9, D22) 0.877

(P9, D23) 0.635

(P9, D24) 0.443
Segment S; aflgz a%?
D22 3951 5004
D23 3965 5009
D24 4119 4985
Segment siblings S;, S —afé;)t’wj) a%?‘ﬂm
(D22, D23) 1700 506.7
(D22, D24) 963.1 502.5
(D23, D24) 872.3 502.7

Table 87: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Py.
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Node pair (4, 5) Pe;

(K3, P10) 0.904

(P3, P10) 0.921

(P4, P10) 0.683

(P10, D25) 0.501

(P10, D26) 0.798

(P10, D27) 0.707

(P10, D28) 0.807
Segment S; afi?t a%?
D25 4007 4939
D26 4046 5046
D27 4028 5104
D28 3956 4921
Segment siblings S;, S fa%;)t’ﬁ(]) a%?’ﬂ(”
(D25, D26) 599.3 487.0
(D25, D27) 1076 492.0
(D26, D27) 738.7 486.4
(D25, D28) 626.0 470.9
(D26, D28) 452.6 510.1
(D27, D28) 532.4 504.6

Table 88: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Pl().

Node pair (3, j) Pe;
(P6, P11) 0.587
(P7, P11) 0.358
(P8, P11) 0.838
(P11, D29) 0.860
Segment S; afég a%?
D29 3962 4965

Table 89: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Py
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Node pair (i, j) Pei

(K2, P12) 0.700
(K3, P12) 0.805
(K4, P12) 0.496
(P6, P12) 0.781
(P7, P12) 0.928
(P11, P12) 0.548
(P12, D30) 0.591
Segment S; O‘iggs a%?
D30 3953 4964

Table 90: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P12.

Node pair (3, j) Pe; i

(P2, P13) 0.762

(P3, P13) 0.956

(P6, P13) 0.625

(P8, P13) 0.789

(P10, P13) 0.753

(P13, D31) 0.846

(P13, D32) 0.795

(P13, D33) 0.716

(P13, D34) 0.808
Segment S; afé?t a%?
D31 4037 5070
D32 3964 4989
D33 4010 5076
D34 3885 4979
Segment siblings S;, S fa%;)t’ﬁ(]) a%z)’ﬂ(”
(D31, D32) 262.9 499.0
(D31, D33) 747.7 497.8
(D32, D33) 644.5 504.2
(D31, D34) 825.0 510.3
(D32, D34) 30.57 496.0
(D33, D34) 873.2 504.3

Table 91: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P13.
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Node pair (%, j) Pe;

(K5, P14) 0.807

(K6, P14) 0.664

(K7, P14) 0.841

(P1, P14) 0.626

(P2, P14) 0.934

(P8, P14) 0.529

(P9, P14) 0.354

(P10, P14) 0.587

(P12, P14) 0.934

(P13, P14) 0.759

(P14, D35) 0.921

(P14, D36) 0.750
Segment S; ig?t a%?
D35 3986 4977
D36 4018 4985
Segment siblings S;, S; —aféﬁ’ﬁ(n aféz)’ﬁ(])
(D35, D36) 2715 4935

Table 92: BN5: Probabilities, cost coeflicients and income coefficients, Prospect
P14.
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Node pair (3, j) De;

(K5, P15) 0.676

(P1, P15) 0.718

(P4, P15) 0.921

(P8, P15) 0.479

(P12, P15) 0.837

(P13, P15) 0.855

(P14, P15) 0.724

(P15, D37) 0.913

(P15, D38) 0.650

(P15, D39) 0.873

(P15, D40) 0.611
Segment S; afégi a%?
D37 3983 5030
D38 3971 5035
D39 4000 5008
D40 3982 5028
Segment siblings S;, S; 7&3{5;1,19(1) afygz)’ﬂ(])
(D37, D38) 524.5 505.4
(D37, D39) 972.3 493.8
(D38, D39) 372.8 509.1
(D37, D40) 1251 486.5
(D38, D40) 1257 508.7
(D39, D40) 289.9 495.8

Table 93: BN5: Probabilities, cost coefficients and income coefficients, Prospect
Pys.
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