
Efficient Calculation of Optimal Decisions
in Graphical Models

Marie Lilleborge

Master of Science in Physics and Mathematics

Supervisor: Håkon Tjelmeland, MATH

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

Preface

This project report is my Master’s thesis, and represents 20 weeks of work.
Writing this thesis is the last part of the Master of Science in Industrial Math-
ematics program at the Norwegian University of Science and Technology. The
first years of studies, I tried not to think about the fact that I would have to
write a Master’s thesis during my tenth and last semester. I have loved being a
student, and I have very much enjoyed each and every one of the last five years.
Especially, I have loved this Spring semester. Working with this project and
this thesis, it turned out to be maybe the best semester of all. I have learned a
lot, both of statistical knowledge, but also a lot about writing a report.

First and foremost, I would like to thank my adviser Professor H̊akon Tjelme-
land for the invaluable cooperation, for each of our many discussions, and for
lots of inspiration and constructive feedback. I am very thankful for all the time
he has spent on this project.

I would also like to thank ”Matteland”, and with that, all of my classmates,
for creating a great place to work, but also space and time for much needed
breaks. Then, I would like to thank the Norwegian Computing Center for hopes
and dreams for the future. My mother very much deserves a special thanks
for her continuous support, as does my grandmother for being the most original
person I know. Also, a big thanks to my dad, for telling his 16 year old daughter
that girls are not able to do Mathematics.

At last, I would like to thank Black Sabbath, longboarding, Thin Lizzy, cross
country skiing, coffee, unicycling, Led Zeppelin, Rubik’s cube and the wonderful
spring in Trondheim for making each of my days special.

Trondheim, June 2012
Marie Lilleborge

i

ii

Abstract

We present a method for finding the optimal decision on Random
Variables in a graphical model. Upper and lower bounds on the exact
value for each decision are used to reduce the complexity of the algorithm,
while we still ensure that the decision chosen actually represents the exact
optimal choice. Since the highest lower bound value is also a lower bound
on the value of the optimal decision, we rule out any candidate with
an upper bound of lower value than the highest lower bound. By this
strategy, we try to reduce the number of candidates to a number we can
afford to do exact calculations on.

We generate five Bayesian Networks with corresponding value func-
tions, and apply our strategy to these. The bounds on the values are
obtained by use of an available computer program, where the complexity
is controlled by an input constant. We study the number of decisions ac-
cepted for different values of this input constant. From the first Network,
we learn that the bounds does not work well unless we split the calcula-
tions into parts for different groups of the nodes. We observe that this
splitting works well on the next three Networks, while the last Network
illustrates how the method fails when we add more edges to the graph.
We realize that our improved strategy is successful on sparse graphs, while
the method is unsuccessful when we increase the density of edges among
the nodes.

iii

Sammendrag

Vi presenterer en metode for å finne optimal beslutning p̊a tilfeldige
variable i grafiske modeller. Øvre og nedre skranker for eksakt verdi blir
brukt for å redusere metodens kompleksitet, samtidig som det sørger for at
beslutningen som velges til slutt faktisk er den optimale. Da den høyeste
nedre skranken ogs̊a er en nedre skranke for verdien av den optimale
beslutningen, kan vi forkaste enhver kandidat med lavere øvre skranke enn
den høyeste nedre skranken. Slik prøver vi å redusere antallet kandidater
til et antall vi klarer å regne eksakt p̊a.

Vi genererer fem Bayesianske nettverk med tilhørende verdifunksjoner,
og tester metoden p̊a disse. Skrankene blir funnet ved hjelp av et tilgjen-
gelig dataprogram, hvor kompleksiteten styres av brukeren. Vi har variert
denne, og sett p̊a hvor mange kandidater vi klarer å forkaste. Av det første
nettverket ser vi at skrankene fungerer d̊arlig dersom vi ikke splitter utreg-
ningene i deler for ulike grupper av nodene. Fra neste tre nettverkene, ser
vi at oppsplittingen fungerer godt, samtidig som det siste nettverket viser
hvordan metoden slutter å fungere n̊ar vi legger til flere kanter p̊a grafen.
Vi ser derfor at resultatet blir bra for grafer med relativt f̊a koblinger
mellom nodene, men n̊ar tettheten av disse øker, ser vi at metoden slutter
å fungere.

iv

Contents

1 Introduction 1

2 Bayesian Networks 2
2.1 Mathematical Results . 5
2.2 Conditional Independence . 9
2.3 Markov Random Fields . 12

3 Pseudo-Boolean functions 16
3.1 A graph structure for coefficients 19
3.2 Converting between exponential and linear form 21
3.3 Probability Distribution for a Bayesian Network 21

3.3.1 An example Network . 23

4 Approximate Forward-Backward Algorithm 25

5 Mathematical Formulation of the Problem 29

6 Mathematical Formulation of the Solution 32

7 Generating Bayesian Networks 37
7.1 The Directed Acyclic Graph . 38
7.2 The Joint Probability Distribution 40
7.3 The Cost and Income functions 41

8 First Set of Tests: BN1 43

9 Second Set of Tests 47
9.1 Sparse graphs: BN2-BN4 . 51

9.1.1 BN2 . 52
9.1.2 BN3 . 59
9.1.3 BN4 . 65

9.2 A less sparse graph: BN5 . 72

10 Some Analysis on Complexity 77

11 Closing Remarks 80

A Implementation of Graph Structure 84

v

B A short User Oriented Introduction to
”The AMRF Programs” 85
B.1 A pseudo-Boolean function as input 86
B.2 Calculating an approximate normalizing constant 86
B.3 Calculating bounds for the normalizing constant 87
B.4 An approximate Viterbi algorithm 88

C Probability Distribution, Cost and Income
Functions for Section 8 and Section 9 89
C.1 Distribution, Cost and Income functions BN1 89
C.2 Distribution, Cost and Income functions BN2 92
C.3 Distribution, Cost and Income functions BN3 101
C.4 Distribution, Cost and Income functions BN4 110
C.5 Distribution, Cost and Income functions BN5 123

vi

1 Introduction

Continuously, we try our best to find the best decision for something. Usually,
we want do ”the right thing”, but even with the best intentions, our decisions
can lead to outcomes we don’t like. This is because we usually don’t control all
surroundings that will influence the result of our decision, when set into action.
That means that we don’t know for sure what will be the end result of acting
according to some decision. Then, we want to reason about how good a decision
is on average. To handle this problem, we set up a probabilistic model for the
surroundings, and associate Random Variables to the sources of influence to
our end result. On these Random Variables, we construct a Joint Probability
Distribution.

The Joint Probability Distribution associates a probability to each event
concerning the surroundings, that is, some number telling how often we would
expect this collection of criteria on the surroundings to be true. But the Joint
Probability Distribution also contains more information about how the Random
Variables depend on each other in a probabilistic setting. So, when setting up
such a probabilistic model, we have to be able to encode all such information.
In general, a causal model is both the easiest to set up, and the easiest to
work with after. That means setting up a marginal probability distribution
for each Random Variable to depend on the other Random Variables having a
direct influence on the first one, and merging all these marginals to the Joint
Probability Distribution.

To visualize these dependencies, it is usually convenient to set it all up in
a graphical model. That means drawing a circle to represent each Random
Variable, and put arrows between them to encode dependencies. In a directed
graphical model, the arrows have a direction, and correspondingly, in an undi-
rected graphical model, arrows are undirected. For the directed causal model,
we would set an arrow to point from a Random Variable to another if the first
one has direct influence on the other. After specifying the graphical model, that
is, the circles and arrows, the graphical model encodes some structure on the
Joint Probability Distribution. This structure usually also makes it easier to
specify the numbers we need to have the full Joint Probability Distribution.

Given the graphical probabilistic model, we can start reasoning about the
effect of our decision; what could happen, and how often it would. To figure
out what is actually the best decision, we have to be able to associate a value to
each realization. That is, a combination of our decision and an assignment to
the unknown surroundings should correspond to some number representing the
value. These values are then a function depending both on our deterministic

1

decision and several unknown Random Variables. And then, with our proba-
bilistic graphical model in hand, we can find the expected value of a decision.
Comparing the expected values for different decisions, we choose the decision
with the highest expected value, and call this the optimal decision.

As an example of application, we have a search for hydrocarbons, as in
Martinelli et al. (2011). The Random Variables represent different places where
hydrocarbons might be present. The structure of the graph is specified by
where hydrocarbons can be generated, and where it can flow. That is, the
probabilistic model and the Joint Probability Distribution is set up by looking
at some geological data. We would like to expect as high a gross income as
possible, and our decision would be which areas to check. The value function
would represent the gross income of a realization, that is, the sum over incomes
for findings, minus both development costs for the findings and costs for checking
all of the areas we decided to.

The general problem described above is exactly what we try to solve in this
report. First, in Section 2, we introduce theory about such probabilistic models,
where we focus on Bayesian Networks, which is a type of directed graphical
models. In Section 3, we present the representation of functions that will be
used throughout the report, and also, in Section 4, we present an algorithm that
will be used when we calculate the expected value. Then, we give a mathematical
formulation of our problem in Section 5, and a mathematical formulation of the
solution is given in Section 6. Sections 7, 8 and 9 present information and the
actual results from tests of our solution method, and Section 10 discusses the
complexity of the algorithms. Finally, Section 11 provides some closing remarks.

2 Bayesian Networks

From Cormen et al. (2009), we have the following definition of a directed graph.

Definition 2.1. A directed graph G is a pair pV,Eq, where V is a finite set
and E is a binary relation on V . The set V is called the vertex set of G, and
its elements are called vertices or nodes. The set E is called the edge set of G,
and its elements are called edges.

We will refer to the elements in V as the nodes in G, and represent them
as circles in our figures. As described in Definition 2.1, the elements in E
are ordered pairs of nodes. That is, if e “ pXi, Xjq P E, there is an edge e
from node Xi to node Xj . This edge e will be represented by an arrow from
node Xi to node Xj in our figures. Correspondingly, an undirected graph has

2

Figure 1: An example graph G “ pV,Eq. All graphs in this report are drawn
by use of the matlab Biograph tool.

undirected edges. That is, the elements in E are unordered pairs of nodes, and
can therefore be viewed as if there was a directed edge in both directions. From
now on, when the term graph is used, we assume that the graph is a directed
one, unless otherwise specified.

A visualization of an example graph can be seen in Figure 1. Observe that
in this graph,

V “ t K1, P1, P2, S1, S2, S3 u

and

E “ t pK1, P1q, pK1, P2q, pP1, P2q, pP1, S1q, pP2, S2q, pP2, S3q u .

A Bayesian Network is a way to express conditional independence assump-
tions among a set of Random Variables by use of a graph. Each Random
Variable is represented as a node Xi, and arrows between the nodes encode
a possible conditional dependence relationship. In this discussion, we will not
distinguish between the Random Variable and its corresponding node. In graph
theory the terminology for nodes at the different end points of an edge is as
follows.

3

Definition 2.2. If there is an edge e “ pXj , Xkq from node Xj to node Xk,
node Xj is a parent of node Xk, and node Xk is a child of node Xj.

If there are no edges e from any node to node Xj , we say that Xj is a root node.
If there are no edges e to any node from node Xj , we say that Xj is a leaf node.
Also, a path is a list of edges, such that the end node at each edge is the start
node of the next. Then, the path describes a way to traverse the graph from the
first start node to the last end node by just following the directed edges in the
graph. If there is a path along the directed edges E “ teiui from node Xj to
node Xk, we say that Xj is an ancestor of Xk, and Xk is an descendant of Xj .
Letting 2V denote the power set of V , this introduces the following functions.

Pa : V Ñ 2V such that PapXiq “ tXk P V | pXk, Xiq P Eu

Ch : V Ñ 2V such that ChpXiq “ tXk P V | pXi, Xkq P Eu

That is, PapXiq is the set of nodes Xk such that Xk is a parent of Xi and
ChpXiq is the set of nodes Xk such that Xk is a child of Xi. Correspondingly,
we also let AncpXiq denote the set of ancestors of Xi and DespXiq denote the
set of descendants of Xi.

With some graph terminology in hand, we present the following definition
of a Bayesian Network from Russell and Norvig (2003).

Definition 2.3. A Bayesian Network is a graph, consisting of a set of nodes
V “ tXiu

n
i“1 and a set of directed edges E “ teiu

ne
i“1 between pairs of the nodes.

It is required that the graph has no directed cycles, i.e. it is a Directed Acyclic
Graph. In addition, each node Xi has a set of Local Probability Distributions
P pXi|PapXiqq associated with it.

That is, for each assignment of PapXiq, P pXi|PapXiqq is a probability distribu-
tion for the Random Variable Xi.

The nodes and the edges specify what is called the topology of the net-
work. Since the topology of the Bayesian Network constitutes a Directed Acyclic
Graph, there is a topological ordering of the nodes. That is, there exists a bi-
jective numbering of the nodes

` : tXiu
n
i“1 Ñ t1, ¨ ¨ ¨ , nu

such that for any edge e “ pXj , Xkq in the network, we have `pXjq ă `pXkq.
Also, this means that for any nodes Xj , Xk with `pXjq ă `pXkq, there is no
directed path from Xk to Xj .

4

Given a Bayesian Network with its topology and the sets of Local Probability
Distributions, one uniquely determines the full Joint Probability Distribution
over all the Random Variables represented in the network by the formula

PpX1, ¨ ¨ ¨ , Xnq “

n
ź

i“1

P pXi|PapXiqq . (2.1)

2.1 Mathematical Results

Notice that, given a subset Aj of the Random Variables, we can divide the
probability distribution into

PpX1, ¨ ¨ ¨ , Xnq “
ź

XkPAj

P pXk|PapXkqq
ź

XkRAj

P pXk|PapXkqq .

Note that we have introduced the short hand P pXj |PapXjqq for the more correct
expression P pXj “ xj |Xk “ xk @Xk P PapXjqq. Given a Random Variable Xj ,
we let Cj Ď ChpXjq, and extend the definition of the function Anc to sets Cj
of nodes such that

AncpCjq “
ď

XkPCj

AncpXkq.

Now, let
Aj “ Cj YAncpCjq YAncpXjq Y tXju , (2.2)

and also
Acj “ tX1, ¨ ¨ ¨ , Xnu zAj .

Notice that if Cj ‰ H,

AncpXjq Y tXju Ď AncpCjq.

We are going to prove that for any assignment of the Random Variables in Aj ,

ÿ

XiPAcj

ź

XkPAcj

P pXk|PapXkqq “ 1. (2.3)

Without loss of generality, assume that the numbering i of the nodes Xi is such
that

Aj “ tX1, X2, ¨ ¨ ¨ , Xm´1u , Acj “ tXm, Xm`1, ¨ ¨ ¨ , Xnu ,

5

and that X1, X2, ¨ ¨ ¨ , Xn is actually a topological ordering of all the Random
Variables tX1, ¨ ¨ ¨ , Xnu in the Bayesian Network. Then, given an assignment
of the Random Variables in Aj ,

ÿ

XiPAcj

ź

XkPAcj

P pXk|PapXkqq “
ÿ

Xm

¨ ¨ ¨
ÿ

Xn´1

ÿ

Xn

ź

XkPAcj

P pXk|PapXkqq

“
ÿ

Xm

¨ ¨ ¨
ÿ

Xn´1

ÿ

Xn

n
ź

k“m

P pXk|PapXkqq

“
ÿ

Xm

¨ ¨ ¨
ÿ

Xn´1

n´1
ź

k“m

P pXk|PapXkqq
ÿ

Xn

P pXn|PapXnqq

“
ÿ

Xm

¨ ¨ ¨
ÿ

Xn´1

n´1
ź

k“m

P pXk|PapXkqq

¨ ¨ ¨

“
ÿ

Xm

P pXm|PapXmqq

“1,

since for each k, and any assignment of the Random Variables in PapXkq,
P pXk|PapXkqq is a probability distribution for the Random Variable Xk, and
thus sums to one. The fact that P pXk|PapXkqq does not depend on any vari-
able Xi for which Xi is succeding Xk in a topological ordering, is used to
move products outside the innermost sum. That is, in a topological ordering,
a given node is succeeding all of its ancestors. The Local Probability Distribu-
tion P pXk|PapXkqq, varies only with the different assignments to Xk’s parents,
which is a subset of Xk’s ancestors. Therefore, this Local Probability Distri-
bution cannot depend on a node Xi succeeding the node Xk in the topological
ordering, in this setting denoted by k ă i.

By Bayes Rule,

PpXj |PapXjqq “
PpXj ,PapXjqq

PpPapXjqq
. (2.4)

Let
Cj “ H,

and note that this implies that

Aj “ AncpXjq Y tXju .

6

Define

Ãj “ AjzPapXjqz tXju

“ pAncpXjq Y tXjuq z pPapXjq Y tXjuq

“ AncpXjqzPapXjq.

For any assignment of the Random Variables in PapXjq, the denominator in
(2.4) can be expressed as

PpPapXjqq “
ÿ

XiPpPapXjqqc

PpX1, ¨ ¨ ¨ , Xnq

“
ÿ

Xi2PÃjYtXju

ÿ

Xi1PA
c
j

ź

XkPAj

P pXk|PapXkqq
ź

XkPAcj

P pXk|PapXkqq

“
ÿ

Xi2PÃjYtXju

ź

XkPAj

P pXk|PapXkqq

¨

˝

ÿ

Xi1PA
c
j

ź

XkPAcj

P pXk|PapXkqq

˛

‚

“
ÿ

XiPÃjYtXju

ź

XkPAj

P pXk|PapXkqq

“
ÿ

XiPÃj

ÿ

Xj

P pXj |PapXjqq
ź

XkPAncpXjq

P pXk|PapXkqq

“
ÿ

XiPÃj

ź

XkPAncpXjq

P pXk|PapXkqq

¨

˝

ÿ

Xj

P pXj |PapXjqq

˛

‚

“
ÿ

XiPÃj

ź

XkPAncpXjq

P pXk|PapXkqq,

where we have used (2.3) for Cj “ H. Correspondingly, for any assignment of
the Random Variables in PapXjq Y tXju,

PpXj ,PapXjqq “
ÿ

XiPptXjuYPapXjqqc

PpX1, ¨ ¨ ¨ , Xnq

“
ÿ

Xi2PÃj

ÿ

Xi1PA
c
j

ź

XkPAj

P pXk|PapXkqq
ź

XkPAcj

P pXk|PapXkqq

“
ÿ

Xi2PÃj

ź

XkPAj

P pXk|PapXkqq

¨

˝

ÿ

Xi1PA
c
j

ź

XkPAcj

P pXk|PapXkqq

˛

‚

7

“
ÿ

XiPÃj

ź

XkPAj

P pXk|PapXkqq

“
ÿ

XiPÃj

P pXj |PapXjqq
ź

XkPAncpXjq

P pXk|PapXkqq

“P pXj |PapXjqq
ÿ

XiPÃj

ź

XkPAncpXjq

P pXk|PapXkqq

“P pXj |PapXjqq ¨ PpPapXjqq.

That is, the Local Probability Distributions P pXk|PapXkqq equals the Condi-
tional Probability Distributions PpXk|PapXkqq, since (2.4) reduces to

PpXj |PapXjqq “
PpXj ,PapXjqq

PpPapXjqq
“ P pXk|PapXkqq.

Thus, we can write (2.1) as

PpX1, ¨ ¨ ¨ , Xnq “

n
ź

i“1

PpXi|PapXiqq. (2.5)

Then again, let Aj be any set as in (2.2), and hpX1, ¨ ¨ ¨ , Xnq be a function
whose value only depends on the assignment of the variables in Aj . We know
that

Eh “
ÿ

All RVs

hpX1, ¨ ¨ ¨ , XnqPpX1, ¨ ¨ ¨ , Xnq

“
ÿ

Xi1PAj

ÿ

Xi2PA
c
j

hpX1, ¨ ¨ ¨ , XnqPpX1, ¨ ¨ ¨ , Xnq

“
ÿ

Xi1PAj

ÿ

Xi2PA
c
j

hpX1, ¨ ¨ ¨ , Xnq
ź

XkPAj

PpXk|PapXkqq
ź

XkPAcj

PpXk|PapXkqq.

Since h only depends on variables in Aj , we could write h “ hpXAj q, and get

Eh “
ÿ

Xi1PAj

ÿ

Xi2PA
c
j

hpXAj q
ź

XkPAj

PpXk|PapXkqq
ź

XkPAcj

PpXk|PapXkqq

“
ÿ

Xi1PAj

hpXAj q
ź

XkPAj

PpXk|PapXkqq

¨

˝

ÿ

Xi2PA
c
j

ź

XkPAcj

PpXk|PapXkqq

˛

‚

“
ÿ

Xi1PAj

hpXAj q
ź

XkPAj

PpXk|PapXkqq. (2.6)

8

Actually,
ź

XkPAj

PpXk|PapXkqq “ PpXAj q,

which, in fact, is easily proved by (2.6) by letting hpX1, ¨ ¨ ¨ , Xnq be the indicator
function for some assignment of the Random Variables in Aj . However, the main
observation from (2.6), is that to find the expected value Eh, it is sufficient to
use the probability distribution we get by ignoring all the factors in (2.5) which
are Conditional Probability Distributions for the Random Variables in Acj . That
is, letting PpXAj q denote the product in the above equation, we get

EhpXAj q “
ÿ

Aj

hpXAj qPpXAj q. (2.7)

2.2 Conditional Independence

As mentioned, each edge in the graph encodes a possible conditional dependence
relationship between two nodes. That is, the edges in the graph determines the
factors in the formula (2.5), which in turn allows for certain conditional de-
pendence relationships. Whether a set of variables actually are conditionally
dependent of each other, is determined by the conditional probability distribu-
tions tPpXi|PapXiqqu.

We let X K Y denote that two Random Variables X,Y are independent, i.e.

PpX “ xq “ PpX “ x|Y “ yq @x, y.

An equivalent statement is

PpX “ x, Y “ yq “ PpX “ xq ¨ PpY “ yq @x, y.

Also, the symbol | indicates that we are discussing a conditional probability
distribution, that is, X K Y | Z means

PpX “ x, Y “ y|Z “ zq “ PpX “ x|Z “ zq ¨ PpY “ y|Z “ zq @x, y, z.

Note that this means that X K Y and X K Y | H are equivalent statements.
Correspondingly, we let X M Y denote that the graph does not encode that

the Random Variables X,Y are independent. Also, X M Y | Z means that the
graph does not encode that X and Y are independent conditional on Z. That
does not mean, however, that there are no set of conditional probability distri-
butions that makes them independent. In fact, if we let X or Y be a constant,

9

they will always be conditionally independent, but their joint distribution can
still be represented on a graph where they are connected by edges. The edges
just allow for Random Variables not to be independent.

As an example, we study the graph in Figure 1. There are algorithms for
finding all conditional independence relationships, see for example the Bouncing
Ball Algorithm in Jordan (n.d.). However, this will not be covered in our scope.
To introduce some intuition, we will present some of the possible conditional
independence relationships from the graph in Figure 1, and give a brief, non
rigorous discussion of what they mean for a given example.

We could look at the nodes in Figure 1 as persons, and let the edges indicate
where messages could be sent. Say, K1 suddenly wants to have a dinner party,
and on his phone he only has the phone numbers to P1 and P2. Correspondingly,
P1 can only communicate a message to P2 and S1, and P2 to S2 and S3. Say, K1

would want all to come, but he can only say this to P1 and P2. However, through
them all persons can be reached, but P1 and P2 would only forward the message
if they are going themselves. The Random Variable for each node would here be
a Boolean variable tTrue,Falseu indicating whether the person is attending the
dinner party or not. If K1 is having the party for sure, he would be a constant
Random Variable, having value True with probability 1. Otherwise, his node
could be associated with some probability distribution indicating a probability
for him inviting to a dinner party or not. In that case, assuming all telephones
are working perfectly, and all persons are going if they get the message, we know
that all Random Variables are either True or all Random Variables are False.
Thus, we cannot have

S1 K S2,

K1 K S1

nor
S2 K S3.

However, if we know the value of P2, then S1 and S2 are independent, written

S2 K S3 | P2.

Then, allow for the telephones not to be perfect, that is, not all messages sent
will be received. For each message sent, whether it is received or not is assumed
to be independent of whether any other sent message is received. For example,
the statement

S1 K S2 | P2

10

is explained by the fact that knowing whether P2 is going or not leaves only
what we non rigorously can call independent randomness for the impact on the
values of S1 and S2, respectively.

Note that any M statement can be proved by a counter example, while the
explanations for the K statements above just serves as describing examples.
The above examples can be summarized in the following list of conditional
independence statements for the graph in Figure 1.

• K1 M S1

• K1 K S1 | P1

• S2 M S3

• S2 K S3 | P2

• S1 M S2

• S1 K S2 | P1

• S1 K S2 | P2

• S1 K S2 | P1, P2

• S1 M S2 | K1

Note that this is just a small excerpt of all the possible conditional independence
statements we could deduce from Figure 1. To find more of them, or for a more
rigorous check, the reader is referred to either the Bouncing Ball Algorithm in
Jordan (n.d.), or to do the more tedious work of checking by use of Bayes Rule
on the general Joint Probability Distribution (2.5) for the given graph.

In general, there are two standard conditional independence relations that
are characteristic for all Bayesian Networks. They are to be found in the follow-
ing two Theorems from Russell and Norvig (2003), and assume a Joint Proba-
bility Distribution where each assignment of the Random Variables X1, ¨ ¨ ¨ , Xn

has a positive probability,

PpX1, ¨ ¨ ¨ , Xnq ą 0.

Theorem 2.1. A Random Variable in a Bayesian Network is conditionally
independent of its non-descendants, given its parents.

To state the last theorem, we have to make the following definition as in Russell
and Norvig (2003).

11

Definition 2.4. The Markov Blanket of a Node in a Bayesian Network is de-
fined to be the set of its neighboring nodes, that is, its parents, its children and
the parents of its children.

Theorem 2.2. A Random Variable in a Bayesian Network is conditionally
independent of all other nodes in the network, given its Markov Blanket, as in
Definition 2.4

Theorems 2.1 and 2.2 can be proved by applying Bayes rule on the Joint Prob-
ability Distribution as in (2.5).

2.3 Markov Random Fields

In a Bayesian Network, a Directed Acyclic Graph is used to represent some de-
pendence properties of the Joint Probability Distribution for the Random Vari-
ables. But the same Joint Probability Distribution (2.5) can also be represented
on an undirected graph. A Markov Random Field is an undirected graphical
model to represent probabilistic relationships. That is, as for a Bayesian Net-
work, each node still represents a Random Variable, but in a Markov Random
Field the edges are undirected. Thus, we cannot talk about a node’s parents nor
its children, descendants or ancestors. Instead we have the following definition
from Bishop (2006).

Definition 2.5. A clique is a subset of the nodes in the undirected graph such
that there exists an (undirected) edge between all pairs of nodes in the subset.
Furthermore, a maximal clique is a clique for which it is not possible to include
any other nodes in the graph without it ceasing to be a clique.

A potential function ψ on a maximal clique is a non negative function on
the Random Variables in the clique. By letting Λ denote a maximal clique, and
XΛ denote the Random Variables in it, we can define a probability distribution
on an undirected graph as the product of all potential functions ψΛpXΛq, as in

PpX1, ¨ ¨ ¨Xnq “
1

C

ź

Λ

ψΛpXΛq, (2.8)

where C is the normalization constant that ensures it to be a probability distri-
bution. The undirected graph and the corresponding probability distribution is
then a Markov Random Field.

As for Bayesian Networks, there are also conditional independence state-
ments that are true in general for Markov Random Fields. The following is

12

from Bishop (2006), and assumes a Joint Probability Distribution where

PpX1, ¨ ¨ ¨ , Xnq ą 0

for any assignment to the Random Variables X1, ¨ ¨ ¨ , Xn.

Theorem 2.3. For three sets of nodes A,B,D, we have

A K B | D

if all possible (undirected) paths between a node in A and a node in B pass
through one or more nodes in D.

From this, we can deduce that a Random Variable is conditionally independent
of any subset of the other Random Variables given its neighbors. Thus, the
Markov Blanket of a Random Variable Xi in a Markov Random Field, is the
set of nodes Xj which shares an edge e “ tXi, Xju P E with Xi.

Given a Bayesian Network, we would like to find a corresponding Markov
Random Field. For the same conditional independence properties to hold, we
need the Markov Blanket for each Random Variable to be the same in both
representations. Hence, when going from the Bayesian Network representation
to the Markov Random Field representation, edges must be added between any
two nodes that have common children. In fact, according to Bishop (2006),
in addition to replacing all directed edges in the original Bayesian Network by
undirected ones, this is all we need to do. The process of adding the extra edges
between any pair of parents of the same child is called ”moralization”, and
is also referred to as ”marrying the parents”. The resulting undirected graph
is called the moral graph, and is also the corresponding undirected graphical
representation of the probability distribution.

For the Joint Probability Distribution, note from (2.5) and (2.8), that we
need to have

1

C

ź

Λ

ψΛpXΛq “

n
ź

i“1

PpXi|PapXiqq. (2.9)

As an example, we study the directed graph in Figure 1. Note that no
moralization has to be done, since K1 and P1 are the only nodes with common
children, and they already share an edge. Thus, the moral graph of Figure 1 has
the same nodes and the same edges, except that now the edges are undirected
ones. For this graph, the Bayesian Network tells us that

PpK1, ¨ ¨ ¨ , S3q “ PpK1qPpP1|K1qPpS1|P1qPpP2|K1, P1qPpS2|P2qPpS3|P2q.

13

The corresponding moral graph tells us that

PpK1, ¨ ¨ ¨ , S3q “
1

C
ψ1pP1, S1qψ2pP2, S2qψ3pP2, S3qψ4pK1, P1, P2q.

Comparing the two above equations, we observe from (2.9) that we can choose

ψ1pP1, S1q “ C1PpS1|P1q

ψ2pP2, S2q “ C2PpS2|P2q

ψ3pP2, S3q “ C3PpS3|P2q

ψ4pK1, P1, P2q “ C4PpK1qPpP1|K1qPpP2|K1, P1q

for some constants C1, C2, C3, C4 such that C “ 1
C1C2C3C4

. The general case is
similar, and we can always choose all Cis to be 1, and thus get C “ 1. From
now on, we will assume this choice.

In general, note that moralization ensures that for any node Xi, there exists
a maximal clique Λ in the moral graph such that

tXiu Y PapXiq Ď Λ.

Thus, we observe from (2.9), that for any maximal clique Λ, there is a non
empty subset λ Ď Λ such that

ψΛ “
ź

XiPλ

PpXi|PapXiqq.

Now, let us study a subset of the Random Variables in Figure 1. Let G̃ “
pṼ , Ẽq, where

Ṽ “ t P2, S2, S3 u Ă V and Ẽ “ t pP2, S2q, pP2, S3q u Ă E

for G “ pV,Eq in Figure 1. A visualization of G̃ can be found in Figure 2,
and the corresponding moral graph can be found in Figure 3. Observe that the
maximal cliques are

Λ1 “ t S2, P2 u and Λ2 “ t S3, P2 u .

Correspondingly, the potential functions must be of the form

ψ1 “ Φ1pP2qPpS2|P2q and ψ2 “ Φ2pP2qPpS3|P2q,

14

Figure 2: The graph G̃ created by a subset of the nodes in Figure 1.

Figure 3: A visualization of the moral graph for G̃, where G̃ is the graph
visualized in Figure 2. Note that no extra edges had to be added to obtain the
moral graph.

15

where Φ1pP2qΦ2pP2q “ PpS2q, and we can choose either Φ1pP2q ” 1 or Φ2pP2q ”

1.
From this example, we note that the choice of λ might not be unique for

each maximal clique Λ. In any case, the λs define a partition of all the nodes
X1, ¨ ¨ ¨ , Xn. That is, the λs are pairwise disjoint and their union contains all
nodes in the graph.

3 Pseudo-Boolean functions

In several applications, we are working with a set of variables that can take on
two values. In this section, we will present some theory about functions on such
a set. As in Hammer and Rudeanu (1968), we begin by the following definition.

Definition 3.1. The set B2 “ t0, 1u together with the operations of disjunction,
conjunction and negation is called the Boolean algebra.

That is, the operations mentioned is defined as follows.

Definition 3.2. Negation, denoted by ,̄ is associated with the function 1 ´ x,
and we get the following formulas

0̄ “ 1 and 1̄ “ 0.

Definition 3.3. Conjunction, denoted by ¨, works like usual multiplication.
That is

0 ¨ 0 “ 0 0 ¨ 1 “ 0 1 ¨ 0 “ 0 1 ¨ 1 “ 1.

Definition 3.4. Boolean disjunction is denoted by Y, and is defined by the
formulas

0Y 0 “ 0 0Y 1 “ 1 1Y 0 “ 1 1Y 1 “ 1.

Also, we let the term Boolean variable denote a variable that can take values in
the set B2. A Boolean function f is then a function

f : Bn2 Ñ B2,

that is, a function whose value and n arguments are all Boolean variables. This
concept of a Boolean function is then expanded to the following.

16

Definition 3.5. A pseudo-Boolean function f is a function

f : Bn2 Ñ R,

that is, a function from an n-tuple of bivalent variables to the real numbers.

Note that this definition allows us to look at the space of Boolean functions as
a subspace of all pseudo-Boolean functions.

The following result is from Hammer and Rudeanu (1968).

Theorem 3.1. Every pseudo-Boolean function may be written as a polynomial,
which is linear in each variable, and which, after the reduction of the similar
terms, is uniquely determined up to the order of the sums and products.

That is, let X “ rXks
n
k“1 be a vector of Boolean variables and f be a pseudo-

Boolean function. Then, there exists a collection T of sets λ Ď t1, ¨ ¨ ¨ , nu of
indexes and a corresponding set of coefficients tαλuλPT such that

fpXq “
ÿ

λPT

αλ
ź

kPλ

Xk. (3.1)

In fact, as mentioned in Theorem 3.1, there might be several choices of T . T
can always be the power set of t1, ¨ ¨ ¨ , nu, and in general

T Ď 2t1,¨¨¨ ,nu.

As an example, we look at a function h acting on the variables in Figure 1,

hpK1, P1, P2, S1, S2, S3q “

$

’

’

’

&

’

’

’

%

1 if S2 “ 0, S3 “ 0,

e if S2 “ 1, S3 “ 0,

e2 if S2 “ 0, S3 “ 1,

e` e2 ´ 1 if S2 “ 1, S3 “ 1.

(3.2)

For this function, we can let

T “ t H, tS1u, tS2u u,

and write h as

hpK1, P1, P2, S1, S2, S3q “ 1` pe´ 1qS2 ` pe
2 ´ 1qS3.

17

Theorem 3.1 is easily proved by a calculation of the coefficients tαλuλPT for a
general function, which can be done recursively as follows. First, for simplicity,
assume T “ 2t1,¨¨¨ ,nu, and let

vΛ “ rvks
n
k“1 such that vk “ 1 ô k P Λ.

That is, we assume T to be the power set of all indexes appearing in S, and vΛ

to be a vector where all entries with indexes in Λ are on, and all other entries
are off. This allows us to set

αH “ fpvHq “ fp~0q,

and for increasing size of Λ, set

αΛ “ f pvΛq ´
ÿ

λĹΛ

αλ.

After determining the full set of coefficients tαλu, the choice of T can be changed
by not including all λs where αλ “ 0.

In Hammer and Rudeanu (1968), several other representations of a pseudo-
Boolean function, also using combinations of the operations in Definition 3.2 and
Definition 3.4 are presented. In the following, we will assume the representation
from (3.1).

From Theorem 3.1, we also deduce that any such positive valued function
fpXq can be represented as the exponential of a pseudo-Boolean function. That
is,

fpXq “ exp

˜

ÿ

λPS

βλ
ź

kPλ

Xk

¸

. (3.3)

As an example, the function h in (3.2) can be written as

hpK1, P1, P2, S1, S2, S3q “ exp
`

S2 ` 2S3 ` S2S3plnpe` e
2 ´ 1q ´ 3q

˘

.

In the following, we will continue to write αλ for coefficients of the pseudo-
Boolean representation (3.1), and βλ for coefficients of the pseudo-Boolean rep-
resentation of the logarithm of the given function as in (3.3). Correspondingly,
T will denote the subsets we are summing over in the pseudo-Boolean represen-
tation (3.1), and S for the exponential version (3.3).

18

3.1 A graph structure for coefficients

When a computer program is given a pseudo-Boolean representation of a func-
tion, or when calculating the coefficients of that representation for a given func-
tion, a structure for storing coefficients of type αλ is needed. Also, expressions
of type

ÿ

λĹΛ

αλ

appear frequently in the formulas, so given Λ, its coefficient and the coefficients
of subsets of Λ should be easily accessed. This is easily solved by a graph
structure. The graph is a set of nodes, with one root node corresponding to
αH, and all other nodes divided into layers depending on the size of Λ for the
coefficient αΛ the node corresponds to. Let N denote the set of indexes for
the variables the given function f depends on. For simplicity, assume N “

t1, 2, ¨ ¨ ¨ , nu, and also that we study the full representation

fpXq “
ÿ

λĎN

αλ
ź

kPλ

Xk.

Then, for each Λ Ď N , in the coefficient graph, the corresponding node has all
subsets of Λ as ancestors. Especially, the parents of that given node are the
nodes corresponding to the sets in

t λ Ă Λ : |λ| “ |Λ| ´ 1 u “ t λ : λ “ Λztmu, m P Λ u .

That is, to obtain a child of a given node λ, one augments λ with an m P Nzλ.
Correspondingly, each parent is found by removing one of the elements in λ.
Such a coefficient graph with n “ 4 and four layers, can be seen in Figure 4.

As an example, given Λ “ t3, 4, 7u and n “ 7, we observe

PapΛq “ t t4, 7u, t3, 7u, t3, 4u u

and correspondingly,

ChpΛq “ t t1, 3, 4, 7u, t2, 3, 4, 7u, t3, 4, 5, 7u, t3, 4, 6, 7u u .

An illustration of the node Λ “ t3, 4, 7u and its parents and children is to be
found in Figure 5. We let layer r denote the set of nodes of distance r from
the root node, so that all children of a given node are in the same layer, and
similarly for all its parents.

For a further description of how we have implemented this graph structure,
the reader is referred to Appendix A.

19

1 2 3 4

1,2 1,3 1,42,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

Figure 4: An example coefficient graph of four layers including the root node,
with n “ 4. That is, coefficient nodes corresponding to |λ| ď 3 are represented.
The arrows are from parents to children.

4,7 3,7 3,4

3,4,7

1,3,4,7 2,3,4,7 3,4,5,7 3,4,6,7

Figure 5: An illustration of the example showing parents and children for the
node Λ “ t3, 4, 7u when n “ 7.

20

3.2 Converting between exponential and linear form

Given a set T of index sets λ, and the set coefficients tαλuλPT to describe a
function fpXq of the form

fpXq “
ÿ

λPT

αλ
ź

kPλ

Xk,

we want to find a corresponding set S, and the set of coefficients tβλuλPS to
write fpXq as

fpXq “ exp

˜

ÿ

λPS

βλ
ź

kPλ

Xk

¸

.

First, note that in general S ‰ T . As an example, note for a, b P R, we get
the following pair of equivalent representations

1` aX1 ` bX2 “ exp

ˆ

X1 lnp1` aq `X2 lnp1` bq `X1X2 ln
1` a` b

p1` aqp1` bq

˙

.

That is, in general, the exponential representation is full even though the linear
representation is sparse. Correspondingly, the linear representation might be
full for a function with sparse exponential representation.

For simplicity, assume S to be the power set of all indexes appearing in T ,
that is,

S “ 2tj : DλPT such that jPλu.

We get, for Λ P S,

βΛ “ ln

˜

ÿ

λPT : λĎΛ

αλ

¸

´
ÿ

λĹΛ

βλ.

This introduces an algorithm for calculating the βλs in order of increasing size
of λ. Correspondingly, for the converse case, we have for Λ P T

αΛ “ exp

˜

ÿ

λPS : λĎΛ

βλ

¸

´
ÿ

λĹΛ

αλ.

3.3 Probability Distribution for a Bayesian Network

Given a Bayesian Network with nodes X “ rXis
n
i“1, we have the full Joint

Probability Distribution as in (2.5), after specifying the conditional probabilities

21

P pXi|PapXiqq for each node Xi. As in Section 6, we might want to represent the
natural logarithm of the full Joint Probability Distribution as a pseudo-Boolean
function. Observe that

lnPpX1, ¨ ¨ ¨ , Xnq “

n
ÿ

i“1

lnP pXi|PapXiqq ,

where for each i, P pXi|PapXiqq is a function of the Random Variables in tXiuY

PapXiq. Thus, if we know the pseudo-Boolean representation of lnP pXi|PapXiqq

for each i, their sum equals the natural logarithm of the full Joint Probability
Distribution.

Given an index i, we write the pseudo-Boolean representation of the condi-
tional probability distribution P pXi|PapXiqq as

lnP pXi|PapXiqq “
ÿ

λPSi

γλi
ź

XkPλ

Xk,

where
Si “ 2tj | XjPtXiuYPapXiqu.

Note that here, the full representation is chosen, that is, we sum over the power
set of tXiu Y PapXiq. Also, from here, we let the coefficients of the pseudo-
Boolean representation of probability distributions be denoted by γs, in fact for
the conditional distribution P pXi|PapXiqq, we use tγλi uλ.

Now, we assume that the nodes represent binary Random Variables, that is
Xi P t0, 1u. Observe, that the coefficients γλi can be calculated recursively, in
order of increasing size of λ. In fact, first let

γHi “ lnP pXi “ 0|Xk “ 0 @Xk P PapXiqq .

Then, for any subset Λ Ď PapXiq,

γΛ
i “ lnP pXi “ 0|Xk “ 1 @Xk P Λ and Xj “ 0 @Xj P PapXiqzΛq ´

ÿ

λĹΛ

γλi .

Similarly, for any set Λ “ tXiu YΨ where Ψ Ď PapXiq,

γΛ
i “ lnP pXi “ 1|Xk “ 1 @Xk P Ψ and Xj “ 0 @Xj P PapXiqzΨq ´

ÿ

λĹΛ

γλi .

22

3.3.1 An example Network

This example will illustrate the Joint Probability Distribution for the tests pre-
sented in Sections 8 and 9. We have a Bayesian Network over Random Variables
that are either on or off, corresponding to the values 1 and 0, respectively. As-
sume we are given a probability pXi for each root node Xi, and then let

pXi “ PpXi “ 1q “ 1´ PpXi “ 0q.

This implies the following formula for the root nodes Xi,

lnPpXiq “ lnp1´ pXiq `Xipln pXi ´ lnp1´ pXiqq,

indicating

γHi “ lnp1´ pXiq

γ
tiu
i “ ln pXi ´ lnp1´ pXiq.

For each edge eXi,Xj from node Xi to node Xj , assume we are given two
probabilities, p0

Xi,Xj
and p1

Xi,Xj
, respectively. In fact, let

p0
Xi,Xj “ PpXj receives signal from Xi|Xi “ 0q

and
p1
Xi,Xj “ PpXj receives signal from Xi|Xi “ 1q.

Whether a child Xj receives a signal from one of its parents, say Xi, is assumed
to be conditionally independent of whether a signal is received in any other pair
of child and parent, given the value of the parent Xi. Assume that for any non
root node, its value is 1 if it has received a signal from at least one of its parents,
and 0 otherwise.

Given a node Xj and an assignment Xi “ xi to each of its parents Xi P

PapXjq, we let
PapXjq “ tXi | i P ΛYΨu,

where ΛYΨ is a decomposition of Xjs parents such that

xi “

#

1 if Xi P Λ,

0 if Xi P Ψ.

23

Observe that

lnPpXj “ 0|PapXjqq “ ln

˜

ź

iPΛ

´

1´ p1
Xi,Xj

¯

ź

iPΨ

´

1´ p0
Xi,Xj

¯

¸

“
ÿ

iPΛ

ln
´

1´ p1
Xi,Xj

¯

`
ÿ

iPΨ

ln
´

1´ p0
Xi,Xj

¯

,

which implies

γΛ
j “

ÿ

iPΛ

ln
´

1´ p1
Xi,Xj

¯

`
ÿ

iPΨ

ln
´

1´ p0
Xi,Xj

¯

´
ÿ

λĹΛ

γλj (3.4)

and

γ
ΛYtju
j “ ln

˜

1´
ź

iPΛ

´

1´ p1
Xi,Xj

¯

ź

iPΨ

´

1´ p0
Xi,Xj

¯

¸

´
ÿ

λĹΛYtju

γ
λYtju
j .

Observe from (3.4) that for a non root node Xj , we get

γHj “
ÿ

XiPPapXjq

lnp1´ p0
Xi,Xj q,

and if Xk P PapXjq,

γ
tku
j “ lnp1´ p1

Xk,Xj
q `

ÿ

XiPPapXjqztXku

lnp1´ p0
Xi,Xj q ´ γ

H

j

“ lnp1´ p1
Xk,Xj

q ´ lnp1´ p0
Xk,Xj

q.

But then also, for Xk, X` P PapXjq where k ‰ `, (3.4) reduces to

γ
tk,`u
j “ 0.

In fact, we get
γΛ
j “ 0 when |Λ| ě 2

by induction on the size of Λ.
As an example, we let p0

Xi,Xj
“ ε for all edges eXi,Xj and calculate the

representation of the corresponding conditional distribution for some of the
variables in Figure 1. For example, we get

lnPpK1q “ lnp1´ pK1q `K1pln pK1 ´ lnp1´ pK1qq,

24

lnPpP1|K1q “ lnp1´εq`K1 ln
1´ pK1,P1

1´ ε
`P1 ln

ε

1´ ε
`K1P1 ln

p1´ εqpK1,P1

p1´ pK1,P1
qε
.

and

lnPpS1|P1q “ lnp1´ εq ` P1 ln
1´ pP1,S1

1´ ε
` S1 ln

ε

1´ ε
` P1S1 ln

p1´ εqpP1,S1

p1´ pP1,S1
qε
.

Note that the formulas for lnPpS2|P2q and lnPpS3|P2q are similar to those for
lnPpP1|K1q and lnPpS1|P1q.

4 Approximate Forward-Backward Algorithm

From Tjelmeland and Austad (2011), we have an approximate forward-backward
algorithm for probability distributions of the form

PpX1, ¨ ¨ ¨ , Xnq “
1

C
exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

That is, the algorithm is constructed to sum out Random Variables, and return
the value of the sum. This is useful for example when working with Markov
Random Fields, where the normalization constant C might be unknown. From
Section 2.3, we recall that

C “
ÿ

X1,¨¨¨ ,Xn

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

.

Another application is for calculating the expected value Eh for some function
h on a set of Random Variables. Let

hpX1, ¨ ¨ ¨ , Xnq “ exp

˜

ÿ

λPS

βλ
ź

kPλ

Xk

¸

.

Then,

Eh “
ÿ

X1,¨¨¨ ,Xn

hpX1, ¨ ¨ ¨ , XnqPpX1, ¨ ¨ ¨ , Xnq

“
ÿ

X1,¨¨¨ ,Xn

exp

˜

ÿ

λPS

`

βλ ` γλ
˘

ź

kPλ

Xk

¸

.

25

Also, note that if h is a function which depends on more variables than our
Random Variables X1, ¨ ¨ ¨ , Xn, say

h “ hpX1, ¨ ¨ ¨ , Xn, Xn`1, ¨ ¨ ¨Xn`mq,

we would have

hpX1, ¨ ¨ ¨ , Xn`mq “ exp

˜

ÿ

λPS

βλ
ź

kPλ

Xk

¸

.

for a collection S of index sets λ where some of the indexes k P λ might have
k ą n. We get

Eh “
ÿ

X1,¨¨¨ ,Xn

hpX1, ¨ ¨ ¨ , Xn`mqPpX1, ¨ ¨ ¨ , Xnq

“
ÿ

X1,¨¨¨ ,Xn

exp

˜

ÿ

λPS

`

βλ ` γλ
˘

ź

kPλ

Xk

¸

,

which corresponds to looking for a function CpXn`1, ¨ ¨ ¨Xn`mq. Observe how
these three problems are essentially the same, and thus we can focus on how to
find the normalization constant C.

The exact forward-backward algorithm works by summing out one variable
at the time. That is, assume we want to calculate

C “
ÿ

Xn,Xn´1¨¨¨ ,X1

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

“
ÿ

Xn

¨ ¨ ¨
ÿ

X2

ÿ

X1

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

“
ÿ

Xn

¨ ¨ ¨
ÿ

X2

˜

ÿ

X1

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸¸

.

First, X1 is summed out, to get

ÿ

X1

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

“ exp

¨

˝

ÿ

λPŜ

γ̂λ
ź

kPλ

Xk

˛

‚

for some Ŝ and some collection of coefficients tγ̂λuλPŜ . Note that

X1 R λ @λ P Ŝ.

26

After this step,

C “
ÿ

X2¨¨¨ ,Xn

exp

¨

˝

ÿ

λPŜ

γ̂λ
ź

kPλ

Xk

˛

‚.

Continuing like this, we finally end up with some S̄ and some collection of
coefficients tγ̄λuλPS̄ such that

C “
ÿ

Xn

exp

˜

ÿ

λPS̄

γ̄λ
ź

kPλ

Xk

¸

.

We observe that in this stepwise procedure, each step is essentially the same.
Therefore, it is sufficient to consider how to calculate

C1pX2, ¨ ¨ ¨ , Xnq “
ÿ

X1

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

.

Observe that for any 9S Ď S,
ÿ

λPS

γλ
ź

kPλ

Xk “
ÿ

λP 9S

γλ
ź

kPλ

Xk `
ÿ

λPSz 9S

γλ
ź

kPλ

Xk.

Now, let
9S “ tλ P S | 1 P λu

Then,

C1pX2, ¨ ¨ ¨ , Xnq “
ÿ

X1

exp

¨

˝

ÿ

λP 9S

γλ
ź

kPλ

Xk `
ÿ

λPSz 9S

γλ
ź

kPλ

Xk

˛

‚

“
ÿ

X1

exp

¨

˝

ÿ

λP 9S

γλ
ź

kPλ

Xk

˛

‚exp

¨

˝

ÿ

λPSz 9S

γλ
ź

kPλ

Xk

˛

‚

“ exp

¨

˝

ÿ

λPSz 9S

γλ
ź

kPλ

Xk

˛

‚

ÿ

X1

exp

¨

˝

ÿ

λP 9S

γλ
ź

kPλ

Xk

˛

‚.

Thus, essentially, what needs to be calculated is

ÿ

X1

exp

˜

ÿ

λPS s.t. 1Pλ

γλ
ź

kPλ

Xk

¸

. (4.1)

27

Let
NeighpXi, Sq “ tXj | Dλ P S such that ti, ju Ď λu.

Then, NeighpX1, Sq is the set of nodes with indexes appearing in (4.1). In fact,
if we look at

1

C̃

ÿ

λPS

γλ
ź

kPλ

Xk

as the probability distribution for a Markov Random Field, then, NeighpX1, Sq
is the set of neighboring nodes of X1. In a visualization of this Markov Random
Field, this would be illustrated by an undirected arrow between each pair of
neighbors. Also, this implies that for this Markov Random Field G “ pV,Eq,
there is an edge e between the nodes Xi and Xj , denoted

e “ tXi, Xju P E

for each node Xj P NeighpXi, Sq. Recall from Section 2.3, that we can only have
conditional dependencies between nodes Xi and Xj given all other Random
Variables if Xi and Xj are neighbors.

Calculating (4.1) has a complexity of

Op2|NeighpXi,Sq|q.

Tjelmeland and Austad (2011) presents an algorithm which finds an approxi-
mate value of the sum with a complexity of Op2νq, for some input constant ν.
That is, if

|NeighpXi, Sq| ď ν,

the exact value of the sum is calculated. Otherwise, if

|NeighpXi, Sq| ą ν,

the approximation

f ”
ÿ

X1

exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

«
ÿ

X1

exp

¨

˝

ÿ

λPS̃

γ̃λ
ź

kPλ

Xk

˛

‚” f̃

is made for some S̃ and some collection of coefficients tγ̃λuλPS̃ such that

|NeighpX1, S̃q| ď ν.

28

The approximating function f̃ for the function f is chosen to minimize the error
sum of squares

SSEpf, f̃q “
ÿ

X

´

fpXq ´ f̃pXq
¯2

.

Now, the operation of summing out a Random Variable has a complexity which
is bounded by Op2νq for the input constant ν.

Also, in Tjelmeland and Austad (2011), a couple of possible ways to calculate
bounds on the error are discussed. These bounds together with the approximate
value of the sum, gives upper and lower bounds on the exact value. What is
referred to as ”Optimal bounds for pseudo-Boolean functions” in Tjelmeland
and Austad (2011) is already implemented, and will be used for the tests later
in this report. This computer program, implemented by Tjelmeland and Austad,
will be referred to as ”The AMRF Programs”, where AMRF is an abbreviation
for Approximate Markov Random Field. For a short user oriented presentation
of ”The AMRF Programs”, the reader is referred to Appendix B.

5 Mathematical Formulation of the Problem

Given a graphical model with n nodes numbered from 1 to n, we assume that
each node i is associated with a Boolean Random Variable Xi. Following the
notation from Tjelmeland and Austad (2011), let

N “ t1, 2, ¨ ¨ ¨ , nu,

and also, let
Ω “ t0, 1un

be the set of all Boolean vectors of length n. The vector

X “ rXis
n
i“1,

containing all the Random Variables Xi in our graphical model, is then a Ran-
dom Variable in the probability space

pΩ, 2Ω,Pq,

where P is the Joint Probability Distribution on the graph.
Observe that the function

9g : Ω Ñ 2N such that 9gpvq “ t j | vj “ 1 u

29

is one-to-one and onto, and thus defines a bijection between vectors in Ω and
subsets of N . This allows us to associate Ω with the power set 2N , and talk
about their corresponding elements. That is, a given subset of N contains the
indexes of the 1s in the corresponding vector in Ω.

Definition 5.1. A decision is a deterministic Boolean vector Z of length n,
that is, with each entry corresponding to one of the Random Variables Xi in
our graphical model.

Let u be an integer, and also, let Γ Ď N be the indexes of a subset of all nodes
in the graph. Define

ΩΓ,u “

#

Z P Ω : Zi “ 0 @i R Γ, and
n
ÿ

i“1

Zi ď u

+

,

to be our decision space. That is, for a decision Z, we only allow the entries Zi
with index i P Γ to take on the value 1, i.e. all other entries have to be 0. Also,
no more than u entries are allowed to have the value 1. Note that ΩΓ,u Ď Ω.

Given a function
f : ΩΓ,u Ñ R,

we look for a decision Z˚ P ΩΓ,u that maximizes the value of fpZq. That is,

Z˚ “ arg max
ZPΩΓ,u

tfpZqu .

We will refer to such a decision Z˚ as the optimal decision according to the
function f .

Assume we want to look for nodes i where Xi “ 1, and that it is not possible
to observe all nodes. In fact, assume that there is only a subset of the nodes for
which it is possible to observe the value of Xi, and also that there is an upper
limit of how many nodes we can observe. We let the value of the entries Zi
in the decision vector Z denote whether we are going to check the value of the
corresponding Random Variable, as in

Zi “

#

1 if we observe the value of Xi,

0 if we don’t observe the value of Xi.
.

Then, Γ Ď N contains the indexes of the nodes that are observable, and u is
the maximum number of nodes we are allowed to check. Also, for our graphical

30

model which encodes probabilistic information about the unknown variables in
X, we assume

fpZq “ EhpX,Zq “
ż

Ω

hpX,ZqPpdXq

for some function
h : Ωˆ ΩΓ,u Ñ R.

Let
c : ΩΓ,u Ñ R`

represent the cost of a decision. That is, cpZq is the cost associated with ob-
serving Xi for each i such that Zi “ 1. Also, let

w : Ωˆ ΩΓ,u Ñ R`

be the income of a decision for a specific assignment to the Random Variables
in the graph. That is wpX,Zq is the income associated with the observations
according to the decision Z if the Random Variables had the assignment as in
X. Now, we let hpX,Zq “ wpX,Zq ´ cpZq and get

fpzq “ E pprofit|following Zq

“ E pwpX,Zq ´ cpZqq
“ EwpX,Zq ´ cpZq

“
ÿ

X

wpX,ZqPpXq ´ cpZq.

This is the function f for which we want to find the optimal decision Z˚, and
we will refer to this as the optimal decision Z˚, and assume this choice of f to
be implicit.

As in Martinelli et al. (2011), the graphical model could be a Directed Acyclic
Graph which denotes the causal conditional distributions for the presence of
hydrocarbons in certain areas. We would let Xi “ 1 denote presence of hydro-
carbons in the area associated with node Xi, and correspondingly, Xi “ 0 would
denote absence of hydrocarbons. The nodes with indexes in Γ would represent
the Potential Drilling Sites, while the other nodes are used to impose geological
causal dependencies. Then, u is the maximum number of nodes we are allowed
to drill. Also, cpZq would be the cost of drilling the Potential Drilling Sites
with a nonzero entry in Z. Correspondingly, wpX,Zq would be the net income
after the finds of hydrocarbons according to X and Z. That is, we would find
hydrocarbons in node Xi if and only if Xi “ Zi “ 1.

31

6 Mathematical Formulation of the Solution

Typically, it is too time consuming to calculate the exact value of fpZq for all
Zs in our decision space ΩΓ,u. That is why we have to look at approximations.
Since we still want to make sure that we actually find the optimal decision, we
look at upper and lower bounds for the value of fpZq for each Z. An algorithm
for finding upper and lower bounds for the normalization constant C of a given
probability distribution

PpX1, ¨ ¨ ¨ , Xnq “
1

C
exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

,

as in Tjelmeland and Austad (2011), is already implemented. This will be
used as a ”Black Box” for finding upper and lower bounds on the value of
fpZq “ EhpX,Zq for a given Z. Recall from Section 4, that finding the expected
value of a function h on some Random Variables X is essentially the same
problem as finding the normalization constant for a distribution P pXq that is
not normalized. Letting some set of upper and lower bounds be implicit, this
lets us define the functions

f` : ΩΓ,u Ñ R

and
f´ : ΩΓ,u Ñ R.

We let f`pZq denote the upper bound for the expected profit, and correspond-
ingly, f´pZq denote the lower bound.

Given a set of bounds, we have to use the values of f`pZq and f´pZq for all
Zs to separate out as few candidates for the optimal decision as possible. By
the definition of the optimal decision Z˚, we know that

fpZ˚q ě fpZq @ Z P ΩΓ,u.

Also, for the upper and lower bounds, f`pZq and f´pZq, respectively, we know
that

f´pZq ď fpZq ď f`pZq @ Z P ΩΓ,u. (6.1)

From the two above equations, we deduce that

fpZ˚q ě f´pZq @ Z P ΩΓ,u,

32

which again implies
fpZ˚q ě max

ZPΩΓ,u
f´pZq.

Since (6.1) is true for any decision Z P ΩΓ,u, more specifically we also have

f´pZ˚q ď fpZ˚q ď f`pZ˚q,

which finally leaves us with

f`pZ˚q ě max
ZPΩΓ,u

f´pZq.

Thus, we know that any decision Z̃ with

f`pZ̃q ă max
ZPΩΓ,u

f´pZq.

is not a candidate for the optimal decision. This also tells us that if we could
find a 9Z such that

f´p 9Zq ě f`pZq @ Z P ΩΓ,uzt 9Zu,

we would know that Z˚ “ 9Z. In general, the upper and lower bounds are not
tight enough to separate out only one candidate for Z˚, but hopefully we would
be able to exclude a significant fraction of the possible decisions Z. Note that
it is sufficient to observe that

f`pZ̃q ă f´p 9Zq.

for some decisions Z̃, 9Z P ΩΓ,u to rule out Z̃ as a candidate for the optimal
decision.

Now, we have a plan for how to deal with a set of evaluations of the upper
and lower bounds. Our focus will now be on how to obtain such bounds. As
defined in Section 5, we assume that we are given a cost function cpZq and an
income function wpX,Zq. Recall from Section 3, that the cost function can be
represented as a pseudo-Boolean function.

cpZq “
ÿ

λPTcost

αλcost
ź

kPλ

Zk, (6.2)

where Tcost is some subset of the power set 2ΩΓ,ν

. Since we only observe the
values of X in the nonzero entries of Z, it is natural to assume that w is a

33

function of the scalar product X ¨ Z, where pX ¨ Zqi “ Xi ¨ Zi. Then, we can
write w as a pseudo-Boolean function of the following form,

wpX,Zq “
ÿ

λPTinc

αλinc
ź

kPλ

Xk ¨ Zk. (6.3)

Since we have assumed the income function to be a positive function wpX,Zq ą
0 of the decision Z and the Random Variables X, we also let Sinc denote a
collection of sets of indexes and tβλincuλPSinc Ă R denote coefficients such that

wpX,Zq “ exp

˜

ÿ

λPSinc

βλinc
ź

kPλ

Xk ¨ Zk

¸

. (6.4)

Recall that Section 3.2 presented an algorithm for how to convert between the
representations in (6.3) and (6.4). As in Section 3.3, we also write the probability
distribution of the Random Variables X in our graphical model as

PpXq “ exp

˜

ÿ

λPS

γλ
ź

kPλ

Xk

¸

. (6.5)

We introduce a variable X̃, which holds information from both the Random
Variable X and the decision Z. In fact, we let X̃ be a vector of length 2n, where
the first n entries are the entries in X, and the next n entries are the entries
in Z. That is, for the Random Variable X and a decision Z, element-wise we
define

X̃i “

#

Xi if i ď n,

Zi´n if i ą n.
(6.6)

Observe for a decision Z, X̃pX,Zq is a Random Variable where

P
´

X̃ “ rx, zs
¯

“

#

PpX “ xq if z ‰ Z,

0 if z “ Z,

for Boolean vectors x, z of length n. Thus, implicitly letting the choice of Z
deterministically fill out the last n entries of X̃, and also letting X̃kpX,Zq
denote the kth entry of X̃pX,Zq, (6.5) can be rewritten as

P
´

X̃pX,Zq
¯

“ exp

˜

ÿ

λPS

γλ
ź

kPλ

X̃kpX,Zq

¸

,

34

where the collection S of index sets λ is unchanged.
Correspondingly, (6.4) can be translated to

wpX,Zq “ exp

˜

ÿ

λPSinc

βλinc
ź

kPλ

´

X̃kpX,Zq ¨ X̃n`kpX,Zq
¯

¸

.

We define

θ : 2N Ñ 2t1,¨¨¨ ,2nu such that θpλq “ λY tj ` n | j P λu,

and let
S̃inc “ tθpλq | λ P Sincu .

Also, for each λ P Sinc, we let

β̃
θpλq
inc “ βλinc.

This allows us to define

w̃ : t0, 1u2n Ñ R such that w̃pX̃q “ exp

¨

˝

ÿ

λPS̃inc

β̃λinc
ź

kPλ

X̃k

˛

‚.

Note all of this is just to get

w̃
´

X̃pX,Zq
¯

“ wpX,Zq.

Assuming S̃inc “ S, as we could ensure by including zero-valued coefficients
if necessary, the expected value EwpX,Zq can be written as

EwpX,Zq “
ÿ

X

wpX,ZqPpXq

“
ÿ

X

w̃
´

X̃pX,Zq
¯

P
´

X̃pX,Zq
¯

“
ÿ

X

exp

˜

ÿ

λPS

´

β̃λinc ` γ
λ
¯

ź

kPλ

X̃kpX,Zq

¸

(6.7)

Assume we have the representation of wpX,Zq as in (6.4) and the representa-
tion of PpXq as in (6.5). After some modifications, as illustrated in the func-
tions defined for the augmented variable X̃, these can be plugged into ”The

35

AMRF Programs”, which will return upper and lower bounds, respectively, on
EwpX,Zq according to the input constant ν controlling the complexity of the
algorithm. The obvious upper and lower bounds, respectively, on fpZq would
then be the corresponding bound on EwpX,Zq minus the value of cpZq. This
way of calculating the value of fpZq corresponds to the equation

fpZq “ EwpX,Zq ´ cpZq,

as we saw it in Section 5. We will refer to this method as to Method 1.
Section 5 also presented the equivalent formula

fpZq “ E pwpX,Zq ´ cpZqq ,

which introduces a slightly different way of finding bounds on fpZq. That is,
here, we want ”The AMRF Programs” to work with the function

hpX,Zq “ wpX,Zq ´ cpZq

and return bounds on fpZq directly. However, hpX,Zq is not a positive function,
so we have to add a sufficient constant M , to get

hpX,Zq `M ą 0,

and thus be able to write

hpX,Zq `M “ exp

¨

˝

ÿ

λPS̃

βλ
ź

kPλ

X̃kpX,Zq

˛

‚

for some collection of index sets S̃ and corresponding collection of coefficients
tβλuλPS̃ . This will be referred to as Method 2. Note that adding the constant
M does not change the optimal decision, since

max
ZPΩΓ,u

tfpZq `Mu “ max
ZPΩΓ,u

tfpZqu `M,

and thus
arg max

ZPΩΓ,u
tfpZq `Mu “ arg max

ZPΩΓ,u
tfpZqu .

36

7 Generating Bayesian Networks

To test our solution method, which is presented in Section 6, we need Bayesian
Networks with corresponding cost and income functions. We want to be able
to easily generate several test cases, and we want to be able to do this for
different sizes of the graph. We also want to study cases where observing a
node is relatively cheap compared to the possible incomes, and cases where it is
expensive. We also want to be able to control the sparseness of the graph, i.e.
the density of edges between the nodes.

The problem discussed in Section 5 assumes that we are given a graphical
model G “ pX,Eq with n nodes represented as entries in the vector

X “ rX1, ¨ ¨ ¨ , Xns,

with a corresponding Joint Probability Distribution

PpX1, ¨ ¨ ¨ , Xnq.

For this graphical model, we also define a decision vector

Z “ rZ1, ¨ ¨ ¨ , Zns,

with each entry Zi corresponding to the Random variable Xi. It also assumes a
cost function cpZq and an income function wpX,Zq. Thus, we need to generate
sets

t G “ pX,Eq, PpXq, cpZq, wpX,Zq u .

to test our solution.
We will assume that our graphical model G is a Bayesian Network, and that

the observable nodes are the leaf nodes in the graph. Thus, Γ is the indexes
of the leaf nodes. Also, we assume the numbering i of the nodes Xi to be
according to some topological ordering where any root node is preceding all
non root nodes and any leaf node is succeeding all non leaf nodes. We adapt
the terminology from Martinelli et al. (2011), and refer to the root nodes as
Kitchens (K), the leaf nodes as Segments (S), and the intermediate nodes as
Prospects (P). A Bayesian Network with #K Kitchens, #P Prospects and #S
Segments, is therefore a graphical model with

n “ #K `#P `#S

37

nodes. Our numbering of the nodes plus the above terminology, introduce the
following re-naming of the nodes Xi,

Xi Ñ

$

’

&

’

%

Ki, 1 ď i ď #K

Pi´#K , #K ă i ď #K `#P

Si´#K´#P , #K `#P ă i ď #K `#P `#S

,

which results in

X “ rK1,K2 ¨ ¨ ¨ ,K#K , P1, P2, ¨ ¨ ¨ , P#P , S1, S2, ¨ ¨ ¨ , S#Ss.

7.1 The Directed Acyclic Graph

The first step is to generate the graph G “ pX,Eq. We let the number of
Kitchens #K, the number of Prospects #P , the number of Segments #S and
the total number of edges #E in the graph be deterministic. What is generated,
is the start and end point of each edge. By definition, each Kitchen has only
out-edges, that is, it can only be the start point of an edge. Also, we assume
that any edge from a Kitchen has to enter a Prospect. This implies that

@Ki ChpKiq Ď t P1, P2, ¨ ¨ ¨ , P#P u .

We also assume
@Ki Pi P ChpKiq, (7.1)

which implies that we need to have

#K ď #P.

Correspondingly, by definition, the Segments can only have in-edges, that is,
they can only be end points of an edge. More specifically, we assume that each
Segment has exactly one parent, which needs to be a Prospect. That is,

@Si DPj such that PapSiq “ tPju. (7.2)

We also assume that among the children of a Prospect, there is at least one
Segment. That implies that we need to have

#P ď #S.

The fact that each Prospect has at least one Segment among its children, ensures
that no Prospects are leaf nodes. The property in (7.1) ensures that no Kitchens

38

are leaf nodes either. Correspondingly, the property in (7.2) ensures that the
Segments are not root nodes. To ensure that no Prospects are root nodes, in
addition to the edges in (7.1), we need at least one parent for each Prospect Pi
with index i ą #K. By ensuring that all Prospects and Segments are not root
nodes, we get that

#E ě #P `#S.

Also, there is an upper limit to the possible number of edges. Actually,

#E “ The number of edges with a Prospect as end point `#S.

Since the numbering of the nodes is assumed to follow some topological ordering,
we know that

@Pi PapPiq Ď t K1, K2, ¨ ¨ ¨ ,K#K , P1, P2, ¨ ¨ ¨ , Pi´1 u ,

which implies that
|PapPiq| ď #K ` i´ 1.

Thus, the number of edges with a Prospect as end point is bounded,

#P
ÿ

i“1

|PapPiq| ď
#P
ÿ

i“1

p#K ` i´ 1q “ #P

ˆ

#K `
#P ´ 1

2

˙

.

To sum up the discussion, we get for the number of edges #E

#P `#S ď #E ď #P

ˆ

#K `
#P ´ 1

2

˙

`#S,

and for the number of nodes of each kind, #K, #P, #S, we have

1 ď #K ď #P ď #S “ n´#K ´#P.

An example graph according to these rules, can be seen in Figure 6.
Generating the edge set E sums up to the following algorithm. Start with

E “ H, then add edges as follows

• Add edge pKi, Piq for each i ď #K.

• Add edge pX,Piq for an X drawn uniformly from

t K1, K2, ¨ ¨ ¨ ,K#K , P1, P2, ¨ ¨ ¨ , Pi´1 u

for each #K ă i ď #K `#P .

39

Figure 6: An example plot of a Directed Acyclic Graph with one Kitchen, two
Prospects and three Segments.

• Add edge (X,Y), for an X drawn uniformly from all Kitchens and Prospects

t K1, K2, ¨ ¨ ¨ ,K#K , P1, P2, ¨ ¨ ¨ , P#P u

and a Y drawn uniformly from the Prospects succeeding X in the ordering.
Repeat until the current edge set E has size #E ´#S.

• Start by assuming that each Prospect has one Segment as a child. Then
draw a Prospect uniformly, and add one to its number of Segment children.
Repeat until the total number of Segment children is #S. Then for each
j ď #S, add edge pPi, Sjq where i starts at i “ 1 and is increased by 1
whenever Pi has the correct number of Segment children.

7.2 The Joint Probability Distribution

The Joint Probability Distribution PpX1, ¨ ¨ ¨ , Xnq for the Bayesian Network
over the Random Variables X1, ¨ ¨ ¨ , Xn, is assumed to be of the same form as in
Section 3.3.1. We also assume p0

Xi,Xj
“ ε for each edge eXi,Xj . That is, what we

need to specify to get the full Joint Probability Distribution, is the probability
pKi for each Kitchen Ki, and the probability p1

Xi,Xj
for each edge eXi,Xj , in

40

addition to the value of the parameter ε. The probabilities are all drawn from
a beta-distribution. The parameters for the beta-distribution, namely α, β, are
constant within all kitchen probabilities pKi drawn, and correspondingly, the
parameters are constant within all edge probabilities p1

Xi,Xj
drawn.

For the hydrocarbon example, as in Martinelli et al. (2011), we let a node
Xi correspond to some geographical area. The Kitchen nodes represent places
where hydrocarbons can be generated. Then, pKi is the probability that it has
been generated hydrocarbons there. That is, Ki “ 1 corresponds to the event
that hydrocarbons have been generated in the given area, and Ki “ 0 corre-
sponds to no hydrocarbons generated there. The edges in the graph corresponds
to possible directed paths for the hydrocarbons to flow. The probability p1

Xi,Xj
corresponding to edge eXi,Xj , is then the probability for hydrocarbons to flow
from Xi to Xj assuming that there are hydrocarbons in Xi. The Segment nodes
are the Potential Drilling Sites, and they will contain hydrocarbons, correspond-
ing to Sj “ 1, if hydrocarbons have arrived along at least one directed path in
the graph, starting at some Kitchen Ki with Ki “ 1.

The Joint Probability Distribution for the hydrocarbon example coincides
with the one discussed in Section 3.3.1. However, the above discussion makes it
tempting to set p0

Xi,Xj
“ 0, since no hydrocarbon in a node makes it impossible

to have hydrocarbons flowing from it. But actually assuming p0
Xi,Xj

“ 0 for
some edge eXi,Xj , introduces assignments to the Random Variables of proba-
bility 0. Then, the Joint Probability Distribution cannot be expressed as the
exponential of a pseudo-Boolean function, as we want. Thus, we introduce a
small ε ą 0, and deterministically set p0

Xi,Xj
“ ε for all edges eXi,Xj . Then,

the pseudo-Boolean representation of the Joint Probability Distribution is cal-
culated as for the example Network in Section 3.3.1.

7.3 The Cost and Income functions

With the graph G “ pV,Eq and the Joint Probability Distribution PpXq in
hand, the last step is to generate the cost function cpZq and the income function
wpX,Zq. We will assume a pseudo-Boolean representation of the cost function
and the income function, as in (6.2) and (6.3), respectively. Note that in our
setting, we have

Γ “ t#K `#P ` 1, #K `#P ` 2, ¨ ¨ ¨ , #K `#P `#Su,

that is, the observable nodes are exactly the leaf nodes, which equals the set
of Segments, placed in the end in the topological ordering by choice. Since we

41

study decisions Z P ΩΓ,u, we let

Tinc, Tcost Ď 2Γ.

Define
ϑ : N Ñ N such that ϑpmq “ #K `#P `m,

so that for each Segment Si, we have Si ” Xϑpiq. Then, we assume a model

where observing a Segment Si is associated with an exploring cost α
tϑpiqu
cost , and

also where observing two sibling Segments Si, Sj is associated with some savings

α
tϑpiq,ϑpjqu
cost . That is, exploring only Si has a total cost of

αHcost ` α
tϑpiqu
cost ,

and exploring both Si and Sj has a total cost of

αHcost ` α
tϑpiqu
cost ` α

tϑpjqu
cost ´ α

tϑpiq,ϑpjqu
cost .

Correspondingly, observing Si “ 1 is associated with some gross income α
tϑpiqu
inc ,

and due to savings we associate some extra gross income α
tϑpiq,ϑpjqu
cost to observing

Si “ Sj “ 1 for two sibling Segments Si, Sj . That is, we assume that there is
a discount effect corresponding to the costs of extracting the gain from two
sibling Segments, which results in a higher gross income. This, and also the
savings for the cost function, could represent savings caused by a partly shared
infrastructure. However, we also have to ensure that no combination of any size
corresponds to a free exploration. Higher order interactions are assumed not to
be present, for simplicity.

We have assumed that for each Segment Si

α
tϑpiqu
cost , α

tϑpiqu
inc ě 0,

and also, that for each pair of sibling Segments Si, Sj

mintα
tϑpiqu
cost , α

tϑpjqu
cost u ě ´α

tϑpiq,ϑpjqu
cost ě 0, α

tϑpiq,ϑpjqu
inc ě 0.

The model assumes that cost and income value interactions occur only between
Segments Si, Sj that are siblings in the graph representation, i.e. children of
the same Prospect Pk,

tSi, Sju Ď ChpPkq.

42

That is, we set

Tinc “ Tcost “

H
(

Y

tiu | i P Γ
(

Y

ti, ju | i, j P Γ, PapXiq “ PapXjq
(

.

Without loss of generality, we set αHinc “ αHcost “ 1. Then, for each Seg-

ment Si, the coefficient α
tϑpiqu
cost is drawn from a Gamma distribution with mean

µcost and standard deviation σcost, and correspondingly, the coefficient α
tϑpiqu
inc

is drawn from a Gamma distribution with mean µinc and standard deviation
σinc. That is,

α
tϑpiqu
cost „ Gammapµcost, σcostq,

and
α
tϑpiqu
inc „ Gammapµinc, σincq.

Then, for each pair of sibling Segments Si, Sj with k other Segment siblings, we
assume

ui,j „
1

k ` 1
Unif p0, 1q ,

and set
α
tϑpiq,ϑpjqu
cost “ ´ui,j ¨mintα

tϑpiqu
cost , α

tϑpjqu
cost u

and we also draw α
tϑpiq,ϑpjqu
inc from a Gamma distribution, according to

α
tϑpiq,ϑpjqu
inc „ Gamma

´µinc
10

,
σinc
10

¯

.

8 First Set of Tests: BN1

The first set of tests were done according to Method 1, as introduced in Sec-
tion 6, on a test case generated as described in Section 7. We represent the
income function wpX,Zq as the exponential of a pseudo-Boolean function, by
use of formulas from Section 3.2. Combining this with the representation of the
probability distribution, we get a representation for wpX,ZqPpXq. Then, we
calculate upper and lower bounds, respectively, on EwpX,Zq as in (6.7), by use
of ”The AMRF Programs” introduced in Section 4. This computer program
sums out the Random Variables according to the numbering of the nodes. The
first Random Variable to be summed out is K1 and the last is S#S . From the
resulting bound functions, we try to rule out candidates for the optimal decision,
as described in Section 6.

We will present a Bayesian Network with 4 Kitchens, 7 Prospects and 10
Segments. A visualization of the graph can be seen in Figure 7. Corresponding

43

Figure 7: BN1, the Bayesian Network for first set of tests

44

to this graph, we have a Joint Probability Distribution, which is characterized
by the numbers in Table 14 in Section C.1. This graph, with its corresponding
Joint Probability Distribution, will be named BN1. Two sets consisting of a
cost function cpZq and an income function wpX,Zq, are also generated, and can
be found in Tables 15 and 16, respectively, also in Section C.1. For the first set,
denoted by a, the parameters of the distribution for generating the coefficients
were set to

µcost,a “ 2000, σcost,a “ 2000, µinc,a “ 4500, σinc,a “ 1200.

Correspondingly, for the second set, denoted by b, the parameters were set to

µcost,b “ 4500, σcost,b “ 4000, µinc,b “ 4500, σinc,b “ 4000.

When we refer to BN1a, we think of BN1 with the cost and income functions
denoted by a, and correspondingly for BN1b. The parameters for drawing the
Joint Probability Distribution were set to

αKi “ 6.0, βKi “ 2.0, αei,j “ 5.0, βei,j “ 2.0,

and the ε parameter was given the value ε “ 0.01. Recall that the Joint Proba-
bility Distribution is exactly the same for test a and b.

Given a cost function and an income function, we calculate bounds on fpZq
corresponding to an input constant ν for ”The AMRF Programs”. Actually, we
calculate bounds for each

ν P t11, 12, 13, 14, 15, 16, 17, 18, 19u, (8.1)

and thus we get nine pairs consisting of upper bound functions f` and lower
bound functions f´, respectively, for each set a, b of cost function and income
function. We let f`ν,i denote the upper bound function obtained for the given

value of ν for cost and income function i, and correspondingly for f´ν,i. That is,

ν is as in (8.1), and i P ta, bu. For each pair f`ν,i, f
´
ν,i, we evaluate the values

f`ν,ipZq, f
´
ν,ipZq for each

Z P ΩΓ,u for u “ 5.

That is, we evaluate the upper and lower bounds for each decision that involves
observing a maximum of five Segments. For each pair pν, iq, the resulting number
of candidates for the optimal decision can be found in Tables 1 and 2 for a and
b, respectively.

45

Decision Total Number of accepted decisions for f`ν,a, f
´
ν,a for ν “

size number of
decisions 11 12 13 14 15 16 17 18 19

0 1 0 0 0 0 0 0 0 0 0
1 10 6 6 6 3 2 1 0 0 0
2 45 40 42 39 35 30 24 17 9 0
3 120 119 119 116 111 100 85 64 36 0
4 210 210 210 209 205 196 175 140 84 0
5 252 252 252 252 251 246 232 197 127 1
Sum 638 627 629 622 608 574 517 388 256 1

Table 1: Number of accepted decisions as a function of ν for the income function
and cost function from Table 15.

Decision Total Number of accepted decisions for f`ν,b, f
´
ν,b for ν “

size number of
decisions 11 12 13 14 15 16 17 18 19

0 1 1 0 0 0 0 0 0 0 0
1 10 6 7 7 3 2 1 0 0 0
2 45 41 42 39 36 31 25 18 10 1
3 120 119 119 116 110 100 85 64 36 0
4 210 210 210 209 205 195 175 140 84 0
5 252 252 252 252 251 246 231 196 126 0
Sum 638 629 630 623 605 517 418 388 256 1

Table 2: Number of accepted decisions as a function of ν for the income function
and cost function from Table 16.

46

Note that even though this is a quite small graph, we need ν “ 19 to find
the optimal decision, that is, for the bounds f`ν,i, f

´
ν,i to leave out only one

candidate. This is also the value of ν that ensures exact calculation of fpZq.
That is, νexact “ 19 corresponds to no approximations for this graph, and we
get

f`19,i ” f´19,i for i “ a, b.

Also note that exact calculation will only leave candidates that actually are
optimal decisions. That is, if we are left with more than one decision after
exact calculations, these must all correspond to the same value of f , that is, the
maximal value of f within ΩΓ,u. Thus, all decisions left are optimal. Hence,
needing ν “ 19 to separate out one candidate is actually the worst case for this
graph. Also, note that ν “ 18 leaves 256 candidates for the optimal decision in
both cases i “ 1, 2, from a total of 638 decisions in ΩΓ,u. That is, reducing the
value of ν with 1, and thus reducing the asymptotic complexity in run time from
O p2νexactq to O

`

2νexact´1
˘

, leaves us with roughly half of our initial decision
space still. A further reduction of the value of ν leads to at least 418 candidates
in all cases, which corresponds to a reduction by less than 35% of the candidates.
That is, we observe that we need a quite large value of ν to get useful results
for these examples.

Also note that for the first test, denoted a, the optimal decision implies
observing 5 nodes. In the next, b, the costs are higher, which results in an
optimal decision with only 3 observations.

The examples presented illustrates the general observations from tests ac-
cording to Method 1. As soon as approximations were made on our function
wpX,ZqPpXq, we end up with a large fraction of the initial decision space ΩΓ,u

left. Thus, we had to come up with a revised strategy to be able to find the
optimal decision more effectively on larger graphs.

9 Second Set of Tests

The tests of Method 1 indicated that we needed to rethink our strategy for
finding the optimal decision. First of all, we had to look for any unnecessary ap-
proximations. Observe that we can take advantage of (2.7) in Section 2.1. That
is, previously, when we calculated the expected value of the function wpX,Zq,
we took the expected value with respect to the full Joint Probability Distribu-
tion. That is, if the biggest maximal clique in the graph had a size greater than
the current value of ν in the calculations, in general, the approximations made
would introduce error terms for the whole graph.

47

However, the form we assume for the cost and income functions, presented
in Section 7.3, allows us to divide the cost and income functions into parts
corresponding to each Prospect. Let XBj denote Segment children of Prospect
Pj , that is

XBj “ tSi P ChpPjq |ϑpiq P Γu,

and also, let ZBj denote the corresponding entries in the decision vector. This
allows us to write the cost function as

cpZq “
#P
ÿ

j“1

cjpZBj q

and the income function as

wpX,Zq “
#P
ÿ

j“1

wjpXBj , ZBj q.

In fact, let

Tk “

H
(

Y

tiu|i P Γ, Xi P ChpPkq
(

Y

ti, ju|i, j P Γ, Xi, Xj P ChpPkq
(

.

Then,
Tinc “ Tcost “ Y

#P
j“1Tj ,

and for positive integers j, k ď #P

j ‰ k ô Tk X Tj “ tHu.

Thus,

wpX,Zq ` p#P ´ 1qαHinc “
#P
ÿ

j“1

ÿ

λPTj

αλinc
ź

kPλ

XkZk,

and

cpZq ` p#P ´ 1qαHcost “
#P
ÿ

j“1

ÿ

λPTj

αλcost
ź

kPλ

Zk.

If we ignore the multiples of αHcost and αHinc added, respectively, we get

wjpXBj , ZBj q “
ÿ

λPTj

αλinc
ź

kPλ

Zk

48

and
cjpZBj q “

ÿ

λPTj

αλcost
ź

kPλ

Zk.

Also note that our choice of

αHcost “ αHinc “ 1

actually implies

wpX,Zq ´ cpZq ”
#P
ÿ

j“1

`

wjpXBj , ZBj q ´ cjpZBj q
˘

.

Thus,

fpZq “ E pwpX,Zq ´ cpZqq

“ E

˜

#P
ÿ

j“1

`

wjpXBj , ZBj q ´ cjpZBj q
˘

¸

“

#P
ÿ

j“1

E
`

wjpXBj , ZBj q ´ cjpZBj q
˘

. (9.1)

Assume that j ď #P is a positive integer. It is when calculating

E
`

wjpXBj , ZBj q ´ cjpZBj q
˘

,

we get to use the observations from (2.7). Actually, let

Aj “ tPju YAncpPjq YBj ,

and observe that Aj meets the requirements set in (2.2). Thus,

E
`

wjpXBj , ZBj q ´ cjpZBj q
˘

“
ÿ

XiPAj

`

wjpXBj , ZBj q ´ cjpZBj q
˘

PpXAj q.

Let
Mj “ 1`max

ZBj

cjpZBj q,

define
Sj “

!

λ | tX̃i | i P λu P 2XBjYZBj
)

,

49

and let tβλj uλPSj be constants such that

0 ă wjpXBj , ZBj q ´ cjpZBj q `Mj “ exp

¨

˝

ÿ

λPSj

βλj
ź

kPλ

X̃k

˛

‚.

Note that we identify each variable X̃i with an entry in X or Z, respectively,
according to (6.6).

Finally, let

M “

#P
ÿ

j“1

Mj ,

and note that (9.1) implies

fpZq `M “ E pwpX,Zq ´ cpZq `Mq

“ E

˜

#P
ÿ

j“1

`

wjpXBj , ZBj q ´ cjpZBj q `Mj

˘

¸

“

#P
ÿ

j“1

E
`

wjpXBj , ZBj q ´ cjpZBj q `Mj

˘

“

#P
ÿ

j“1

¨

˝

ÿ

XiPAj

PpXAj q exp

¨

˝

ÿ

λPSj

βλj
ź

kPλ

X̃k

˛

‚

˛

‚.

Note that the core idea of Method 2 was introduced by adding the constants Mj .
Also note that, in practice, the above equation tells us to calculate fpZq `M
by adding the contributions corresponding to each prospect. That is, each of
those terms are obtained similarly as for Method 1 in Section 8, but now from
the distribution PpXAj q and the function

wjpXBj , ZBj q ´ cjpZBj q `Mj .

Also note that for any positive integer j ď #P ,

wjpXBj ,~0q “ αHinc “ 1 “ αHcost “ cjp~0q,

and thus
fp~0q “ 0.

50

The tests for Method 2 show that we need the graphs to be sparse for our
upper and lower bounds to be tight enough to eliminate a significant fraction
of the possible decisions Z P ΩΓ,u. This section presents tests where the ap-
proximations work well, but it also presents a description of how it fails for an
example Bayesian Network. Also in these tests, ”The AMRF Programs” sum
out the Random Variables according to our numbering of the nodes, and the
numbers we present for each test is as before. The strategy for finding the opti-
mal decision is still the same, we just calculate the bounds in a slightly different
way.

9.1 Sparse graphs: BN2-BN4

First, a set of tests on sparse graphs will be presented. Here, this means that
the number of edges in the graph is kept close to the minimum according to our
definitions in Section 7. These graphs will encode more conditional indepen-
dence assumptions than if more edges were added, and the clique sizes in the
corresponding undirected graph will be smaller than for a graph with more edges
added. That means that ”The AMRF Programs” will do less approximations,
and it is more likely that our strategy will work as we hope.

Three single Bayesian Networks of different sizes will be presented. For each
of these, we will study the number of accepted decisions Z as a function of the
approximation constant ν. To help the discussion of these numbers, we also
present the value of ν “ νexactpPiq that ensures exact calculation of the term of
fpZq corresponding to Prospect Pi.

For each of these three examples, the test is repeated 1000 times. That is, for
each example, 1000 Bayesian Networks with cost function and income function
are generated from the same distribution as for the corresponding example.
From each of these replications, we will study the value of ν needed to find the
optimal decision by our strategy, that is

νone “ min
ν
tν | Number of accepted decisionspνq “ 1u

We will also look at the value of ν needed to separate out just a few candidates.
In fact, we study

νacceptable “ min
ν
tν | Number of accepted decisionspνq ď 7u.

These two numbers will be compared to the value of ν that ensures exact cal-
culation of the expected gross income fpZq for the graph, that is

νexact “ max
Prospect Pi

νexactpPiq.

51

Then also, for a given value of ν, and corresponding upper bounds f` and lower
bounds f´, respectively, let Z̃ be the decision with the highest lower bound for
expected income. That is,

Z̃ “ arg max
ZPΩΓ,u

f´pZq.

Define

Lν “
fpZ˚q ´ fpZ̃q

fpZ˚q
,

the percentage loss in exact expected income, when following the approximate
optimal decision Z̃ instead of the (exact) optimal decision Z˚. In each of the
three sets of 1000 tests, the value of ν corresponding to the loss Lν is chosen
so that we expected (according to our best guesses) that about half of the tests
in the set would have νexact ą ν. That is, so that our program would have to
make a guess for the optimal decision in about half the cases.

9.1.1 BN2

The following test describes a Bayesian Network with 7 Kitchens, 15 Prospects
and 40 Segments. The number of extra edges added after the minimum value of
55, is 10. That is, the result is a graph with 62 nodes and 65 edges, and it is vi-
sualized in Figure 8. A corresponding visualization where only the Kitchens and
the Prospects are shown, can be found in Figure 9. Observe that the undirected
version of this Bayesian Network consists of two connected components, that is,
the nodes tK2, P2, D2u do not have edges to or from any of the other nodes not
in this set. The Bayesian Network with corresponding cost and income func-
tions is generated as described in Section 7. The parameters for drawing cost
and income coefficients were set to

µcost “ 4000, σ2
cost “ 2500, µinc “ 5000, σ2

inc “ 2500.

The parameters for drawing the Joint Probability Distribution were set to

αKi “ 6.0, βKi “ 2.0, αei,j “ 5.0, βei,j “ 2.0,

and the ε parameter was given the value ε “ 0.1. For numbers fully describing
the probability distribution and the cost and income functions, see Tables 17-32
in Appendix C.2.

Observe from Table 3 that we need ν “ 11 to get exact numbers, but Table
4 tells us that already from ν “ 6, we get only one candidate for the optimal

52

Figure 8: The Bayesian Network 2BN.

53

Figure 9: BN2: A visualization of only the Kitchens, the Prospects and the
edges between them.

Prospect Pi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ν 1 1 7 3 3 11 1 3 3 7 3 3 2 7 11

Table 3: BN2: Value of ν that ensures exact calculation of expected gross income
function wi´ ci`Mi corresponding to prospect Pi for the Bayesian Network in
Figure 8.

54

Decision Total number Number of accepted decisions for ν “
size of decisions 1´ 3 4 5 6´ 11
0 1 1 1 0 0
1 40 40 40 0 0
2 780 780 770 1 1
3 9880 9880 9336 8 0
4 91390 91390 82081 28 0
5 658008 658008 567072 58 0

Sum 760099 760099 65930 95 1

Table 4: BN2: Number of accepted decisions as a function of ν.

decision. Even for ν “ 5, we get pretty good results. However, for ν ď 3, we
are not able to eliminate any decisions, and ν “ 4 only allows us to eliminate
13% of the decisions. Observe from Table 3, that 3 ď ν ď 6 all introduces
approximations for the functions corresponding to Prospects P3, P6, P10, P14 and
P15, so the stepwise improvements of the results from ν “ 3 to ν “ 6 are all
due to better approximations, and not to approximations on a smaller number
of functions.

This test was replicated 1000 times. That is, 1000 Bayesian Networks with 7
Kitchens, 15 Prospects and 40 Segments were generated, with Joint Probability
Distributions and cost and income functions drawn from the same distributions
as those for BN2. Recall from Section 9.1, that νexact is the smallest value of the
input constant ν that ensures ”The AMRF Programs” to do exact calculations
for each replication. Correspondingly, νacceptable is the smallest value of ν that
leaves us with a maximum of 7 candidates for the optimal decision, and νone is
the smallest value of ν that leaves us with only the optimal decision Z˚. The
results of the 1000 replications are summed up in Figures 10, 11, 13, 12 and 14.

Observe from Figure 10, how the values for νexact are dominated by odd
numbers. Actually, 931 tests have νexact P t7, 9, 11u. At the same time, Figure
11 tells us that for 70.5% of the tests, it is sufficient with ν “ 6 to separate out
only one candidate for the optimal decision. In fact, 625 tests had νone P t5, 6u,
while no tests had νexact P t5, 6u. Only one test had νexact “ 4, but actually,
in 80 of the 1000 tests, ν “ 4 was sufficient to find the optimal decision. We
observe from Figure 12 that 728 of the 1000 tests had a reduction of 3 or more
from the value of νexact to the value of νone. There is even a test where the

55

Figure 10: BN2: The value of ν needed to do exact calculations for the 1000
tests.

Figure 11: BN2: The value of ν needed to separate out only one candidate in
each of the 1000 tests.

56

Figure 12: BN2: The difference between νexact and νone in each of the 1000
tests.

Figure 13: BN2: The value of ν needed to separate out a maximum of seven
candidates in each of the 1000 tests.

57

Figure 14: BN2: The difference between νexact and νacceptable in each of the
1000 tests.

value of this reduction is 8, and as much as 48 had a reduction of at least 6.
Similarly, we observe from Figure 13, that for as much as 84.4% of the tests,
it is sufficient with ν “ 6 to reduce the number of candidates for the optimal
decision to seven or less. Actually, 737 tests had νacceptable P t5, 6u, and as much
as 107 tests had νacceptable “ 4. Figure 12 shows how 853 of the 1000 tests had
a reduction of 3 or more from νexact to the value of νacceptable. As few as 13%
of the tests had νacceptable “ νexact, and 59 of the 1000 tests had a reduction of
6 or more.

For these 1000 replications, we chose ν “ 6, and studied the loss fraction L6.
We got 40 cases where the loss fraction L6 was nonzero. These came from the in
total 295 cases where ν “ 6 was not enough to leave only one candidate for the
optimal decision. Of these 295 cases, where a guess of the optimal decision had
to be made, the average of L6 was 0.019, with a standard deviation of 0.081.
The smallest nonzero loss fraction was 3.905¨10´5, and the greatest loss fraction
was as high as 0.8318. Actually, there are five cases where the loss fraction is
higher than 0.3, and thus we get a large standard deviation. For a listing of
all nonzero loss fractions, the reader is referred to Table 33 in Section C.2. In
total, on all 1000 cases, that left us with an average loss L̄6 “ 0.0055, with a
standard deviation of 0.045.

58

Prospect Pi 1 2 3 4 5 6 7 8 9 10
ν 3 7 3 3 1 3 1 3 1 3

Prospect Pi 11 12 13 14 15 16 17 18 19 20
ν 3 3 1 3 3 1 3 3 1 3

Table 5: BN3: Value of ν that ensures exact calculation of expected gross income
function wi´ ci`Mi corresponding to prospect Pi for the Bayesian Network in
Figure 15.

9.1.2 BN3

The following test describes a Bayesian Network with 10 Kitchens, 20 Prospects
and 40 Segments. The number of extra edges added after the minimum value
of 60, is 10. That is, the result is a graph with 70 nodes and 70 edges, and it
is visualized in Figure 15. Observe that the undirected version of this Bayesian
Network consists of four connected components. The nodes in the leftmost
connected component is visualized in Figure 16, and correspondingly, we get
a closer look on the three rightmost connected components in Figure 17. The
Bayesian Network with corresponding cost and income functions is generated as
described in Section 7. The parameters for drawing cost and income coefficients
were set to

µcost “ 3000, σ2
cost “ 2500, µinc “ 5000, σ2

inc “ 2500.

The parameters for drawing the Joint Probability Distribution were set to

αKi “ 6.0, βKi “ 2.0, αei,j “ 5.0, βei,j “ 2.0,

and the ε parameter was given the value ε “ 0.01. For numbers fully describing
the probability distribution and the cost and income functions, see Tables 34-54
in Appendix C.3.

Observe from Table 5 that we need ν “ 7 to get exact numbers, but Table 6
tells us that already from ν “ 3, we are able to eliminate 99.8% of the possible
decisions. In addition, we only need ν ě 5 to get just one candidate for the
optimal decision. Also for ν “ 4, we are able to remove most of the candidates
for the optimal decision. Note from Table 5 that for ν P t1, 2u, we calculate exact
values for the functions corresponding to P5, P7, P9, P13, P16 and P19, but that
is not enough to eliminate any candidates. However, for ν ě 3, approximations
are only made on the function corresponding to P2, and as a result, the number

59

Figure 15: The Bayesian Network 3BN

60

Figure 16: BN3: The left connected component of the Bayesian Network in
Figure 15.

Figure 17: BN3: The right three connected components of the Bayesian Network
in Figure 15.

61

Decision Total number Number of accepted decisions for ν “
size of decisions 1´ 2 3 4 5´ 7
0 1 1 0 0 0
1 40 40 0 0 0
2 780 780 1 0 0
3 9880 9880 22 0 0
4 91390 91390 212 1 0
5 658008 658008 1331 4 1

Sum 760099 760099 1566 5 1

Table 6: BN3: Number of accepted decisions as a function of ν.

of candidates are dropping rapidly from ν “ 2 to ν “ 3. However, we note that
we still find the optimal decision for ν with value νexactpP2q ´ 2.

This test was replicated 1000 times, and the results are summed up in Figures
18, 19, 21, 20 and 22. Note that the Figures in this Section visualize the results
for the same variables as the corresponding Figures in Section 9.1.1. Observe
from Figure 18, how the values of νexact still are dominated by odd numbers.
Actually, 814 tests have νexact P t7, 9u. At the same time, Figure 19 tells us
that for 69.5% of the tests, it is sufficient with ν “ 5 to separate out only one
candidate for the optimal decision. In fact, 782 tests had νone P t4, 5, 6u, while
only 90 tests had νexact P t4, 5, 6u. We observe from Figure 20 that 541 of the
1000 tests had a reduction of 3 or more from the value of νexact to the value of
νone. 63.4% of the cases had a reduction of either 2, 3 or 4. Also, 37 of the 1000
tests had a reduction of at least 5, but there are also 243 tests with no reduction.
Similarly, we observe from Figure 21, that for as much as 80.5% of the tests,
it is sufficient with ν “ 5 to reduce the number of candidates for the optimal
decision to seven or less. Actually, 907 tests had νacceptable P t4, 5, 6u. Figure 20
shows how 651 of the 1000 tests had a reduction of 3 or more from the value of
νexact to the value of νacceptable. Also, 148 of the tests had νacceptable “ νexact,
a significant reduction from the 243 tests with νone “ νexact. Also note that 45
of the tests had a reduction of 5 or more from the value of νexact to the value
of νacceptable.

For these 1000 tests, we chose ν “ 5, and got 27 cases where L5 was nonzero.
These came from the in total 305 cases where ν “ 5 was not enough to leave
only one candidate for the optimal decision. Of these 305 cases, where a guess
of the optimal decision had to be made, the average of L5 was 0.0059, with a

62

Figure 18: BN3: The value of ν needed to do exact calculations for the 1000
tests.

Figure 19: BN3: The value of ν needed to separate out only one candidate in
each of the 1000 tests.

63

Figure 20: BN3: The difference between νexact and νone in each of the 1000
tests.

Figure 21: BN3: The value of ν needed to separate out a maximum of seven
candidates in each of the 1000 tests.

64

Figure 22: BN3: The difference between νexact and νacceptable in each of the
1000 tests.

standard deviation of 0.0354. The smallest nonzero loss fraction was 8.46 ¨10´4,
and the greatest loss fraction was 0.4682. There was only three cases where the
loss fraction was higher than 5%. For a listing of all nonzero loss fractions, the
reader is referred to Table 55 in Section C.3. In total, on all 1000 cases, that
left us with an average loss L̄5 “ 0.0018, with a standard deviation of 0.0197.

9.1.3 BN4

The following test describes a Bayesian Network with 10 Kitchens, 20 Prospects
and 60 Segments. The number of extra edges added after the minimum value
of 60, is 20. That is, the result is a graph with 90 nodes and 80 edges, and
it is visualized in Figure 23. A corresponding visualization where only the
Kitchens and the Prospects are shown, can be found in Figure 24. Observe
that the undirected version of this Bayesian Network is fully connected. That
is, assuming all edges undirected, it is possible to find a path from any node
to any other node. The Bayesian Network with corresponding cost and income
functions is generated as described in Section 7. The parameters for drawing
cost and income coefficients were set to

µcost “ 4000, σ2
cost “ 2500, µinc “ 5000, σ2

inc “ 2500.

The parameters for drawing the Joint Probability Distribution were set to

αKi “ 6.0, βKi “ 2.0, αei,j “ 5.0, βei,j “ 2.0,

65

Figure 23: The Bayesian Network 4BN.

66

Figure 24: BN4: A visualization of only the Kitchens, the Prospects and the
edges between them.

67

Prospect Pi 1 2 3 4 5 6 7 8 9 10
ν 3 7 1 3 9 13 7 3 3 3

Prospect Pi 11 12 13 14 15 16 17 18 19 20
ν 3 3 3 3 7 3 3 4 4 7

Table 7: BN4: Value of ν that ensures exact calculation of expected gross income
function wi´ ci`Mi corresponding to prospect Pi for the Bayesian Network in
Figure 23.

Decision Total number Number of accepted decisions for ν “
size of decisions 1´ 6 7 8 9´ 13
0 1 1 0 0 0
1 60 60 0 0 0
2 1770 1770 0 0 0
3 34220 34220 2 2 1
4 487635 487635 2 1 0

Sum 523686 523686 4 3 1

Table 8: BN4: Number of accepted decisions as a function of ν.

and the ε parameter was given the value ε “ 0.01. For numbers fully describing
the probability distribution and the cost and income functions, see Tables 56-76
in Appendix C.4.

Observe from Table 7 that we need ν “ 13 to get exact numbers, but Table 8
tells us that already from ν “ 7, we are able to eliminate a great fraction of the
possible decisions. In addition, we only need ν ě 9 to eliminate all non optimal
decisions. Observe from Table 7 that for ν ě 7, we calculate exact values for
the functions corresponding to all Prospects except P5 and P6. Also, for ν ě 9,
approximations are only made on the function corresponding to P6, and these
are the same νs that allows to eliminate all non optimal decisions.

This test was replicated 1000 times, and the results are summed up in Figures
25, 26, 28, 27 and 29. Note that the Figures in this Section visualizes the same
variables as the corresponding Figures in Sections 9.1.1 and 9.1.2. Observe from
Figure 25, that also here, the values for νexact are dominated by odd numbers.
Actually, 899 tests have νexact P t9, 11, 13u. At the same time, Figure 26 tells
us that for 47.9% of the tests, it is sufficient with ν “ 7 to separate out only
one candidate for the optimal decision. In fact, 658 tests had νone ď 8, while

68

Figure 25: BN4: The value of ν needed to do exact calculations for the 1000
tests.

Figure 26: BN4: The value of ν needed to separate out only one candidate in
each of the 1000 tests.

69

Figure 27: BN4: The difference between νexact and νone in each of the 1000
tests.

Figure 28: BN4: The value of ν needed to separate out a maximum of seven
candidates in each of the 1000 tests.

70

Figure 29: BN4: The difference between νexact and νacceptable in each of the
1000 tests.

only 8 tests had νexact ď 8. We observe from Figure 27 that 604 of the 1000
tests had a reduction of 3 or more from the value of νexact to the value of νone.
48.1% of the cases had a reduction of either 3, 4 or 5. Of the 1000 replications,
33 had a reduction of at least 7, but there are also 115 tests with no reduction
from νexact to νone. Similarly, we observe from Figure 28, that for as much as
56.8% of the tests, it is sufficient with ν “ 7 to reduce the number of candidates
for the optimal decision to seven or less. Actually, 734 tests had νacceptable ď 8.
Figure 27 shows how 698 of the 1000 tests had a reduction of 3 or more from the
value of νexact to the value of νacceptable. We observe that 88 of the tests had
νacceptable “ νexact, a significant reduction from the 115 tests with νone “ νexact.
Note that 37 of the 1000 tests had a reduction of 7 or more from the value of
νexact to the value of νacceptable. Also note that for one of the tests, the difference
between νexact and νacceptable is as high as 10.

Also, for the 1000 tests, we chose ν “ 7, and got 67 cases where L7 was
nonzero. These came from the in total 521 cases where ν “ 7 was not enough to
leave only one candidate for the optimal decision. Of these 521 cases, where a
guess of the optimal decision had to be made, the average of L7 was 0.032, with
a standard deviation of 0.12. The smallest nonzero loss fraction was 7.955 ¨10´6,
and the greatest loss fraction was 0.9579. In about half of the nonzero cases,
the loss fraction was higher than 15%, and actually in 13 cases, the loss fraction
is higher than 50%. For a listing of all nonzero loss fractions, the reader is
referred to Table 77 in Section C.4. In total, on all 1000 cases, that left us with

71

Prospect Pi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ν 2 3 3 7 3 3 7 3 7 7 3 7 6 16 17

Table 9: BN5: Value of ν that ensures exact calculation of expected gross income
function corresponding to this prospect for the Bayesian Network in Figure 30.

an average loss L̄7 “ 0.017, with a standard deviation of 0.092.

9.2 A less sparse graph: BN5

To put our solution to a bigger challenge, we increase the number of edges, in
order to observe how and when the solution method fails. Now, we look at a
Bayesian Network with 7 Kitchens, 15 Prospects, 40 Segments, and 40 edges
more than the minimum of 55 edges for this set of nodes. That means a graph
with in total 62 Nodes and 95 edges. A visualization of the Bayesian Network
can be seen in Figure 30. Notice the web of edges between the nodes, both in
Figure 30 and in Figure 31. The Bayesian Network with corresponding cost and
income functions was generated as described in Section 7. The parameters for
drawing cost and income coefficients were set to

µcost “ 4000, σ2
cost “ 2500, µinc “ 5000, σ2

inc “ 2500.

The parameters for drawing the Joint Probability Distribution were set to

αKi “ 6.0, βKi “ 2.0, αei,j “ 5.0, βei,j “ 2.0.

For numbers fully determining the probability distribution and the cost and
income functions, see Tables 78-93 in Section C.5.

From Table 9, we observe that for 7 ď ν ď 15, only approximations on
Ew14 ´ c14 and Ew15 ´ c15 are made. Correspondingly, for ν “ 16, only ap-
proximations on Ew15 ´ c15 are made. For the fraction of accepted decisions
for a given ν, see Table 10. The table clearly states that our approximations
are not good enough. Any ν ď 16 implies getting a lower bound function that
easily is strictly bounded by the smallest upper bound value. Hence, we are not
able to eliminate any decisions, except when all calculations are done exactly.
To study how and why this happens, we investigate the behavior of PpXA15

q

as we sum out the Random Variables, one at a time. First, we calculate upper
bounds on the log normalization constant for PpXA15q for each ν P t10, ¨ ¨ ¨ , 17u,
to obtain the data found in Table 11. Observe from this Table, that for all νs

72

Figure 30: The Bayesian Network BN5.

73

Figure 31: BN5: A visualization of only the Kitchens, the Prospects and the
edges between them.

Decision Total number Decisions accepted, ν “
size of decisions 1´ 16 17
0 1 1 0
1 40 40 0
2 780 780 1
3 9880 9880 0
4 91390 91390 0
5 658008 658008 0

Sum 760099 760099 1

Table 10: BN5: Number of accepted decisions as a function of ν. Observe from
Table 9 that we need ν “ 17 to get exact numbers, and that is the same value
that is needed to eliminate any candidates for the optimal decision.

74

ν Log normalization constant
10 193.930367
11 200.448060
12 231.803170
13 217.573379
14 243.259810
15 386.116269
16 92.7247710
17 ´0.0000000

Table 11: BN5: Upper bounds on the log normalization constant for the proba-
bility distribution π15 calculated with different νs. 17 is the smallest value of ν
that ensures no approximations to be made, and hence ν “ 17 gives the exact
value 0 “ ln 1. For all other values of ν, the upper bounds calculated are useless.

except ν “ 17, we get upper bounds with enormous values. Note that ν “ 17
corresponds to exact calculations and thus, we obtain the exact normalization
constant 1 “ e0. Hence, the upper bounds are useless in this case. Also note
that the normalization constant corresponds to some constant function

exp
`

βH
˘

,

and thus, that the bounds that failed to give good results, had resulted in a too
large value of this βH.

Still focusing on Prospect P15, we observe how the value of βH changes as
we sum out Random Variables in the expression for

Epw15pXB15 , ZB15q ´ cpZB15q.

This test is done for ν “ 10, and the result is to be found in Table 12. We
observe that the value of βH is slowly growing at first, and that the blow-up
starts at the 11th ancestor we sum out. Note that Prospect P15 has 13 ancestors,
which means that we have to sum out a total of 14 nodes, including P15 itself.
After summing out all of those Random Variables, the resulting upper bound
is a function of the decision Z, with βH “ 1968. Since the logarithm of the
exact value for no decision is even close to this number, this is an upper bound
function where no single evaluation of the lower bound function can compete
with even the minimum of the upper bound. Hence, no candidates for the
optimal decision can be eliminated.

75

Number of Value of βH

Random Variables in current
summed out representation

0 ´1.023
1 ´1.006
2 ´1.005
3 ´1.005
4 ´0.838
5 ´0.821
6 ´0.819
7 ´0.811
8 0.715
9 1.450
10 1.702
11 8.014
12 17.48
13 169.7
14 196.8

Table 12: BN5: Value of βH for the upper bound function determined in each
step, summing out a Random Variable at a time. Here, ν “ 10 and ε “ 0.01.

76

ν ε “ 0.01 ε “ 0.05 ε “ 0.1 ε “ 0.2
15 386.1 86.34 15.90 1.409
16 92.72 19.51 5.190 0.733
17 ´0.000 ´0.000 ´0.000 ´0.000

Table 13: BN5: Upper bounds on the log normalization constant for the prob-
ability distribution π15 calculated with different νs and different εs. 17 is the
smallest value of ν that ensures no approximations to be made, and hence ν “ 17
gives the exact value 0 “ ln 1.

Recall that we let ε ą 0 ensure that any assignment of the Random Variables
has a positive probability. For the results in Table 11 and Table 12, ε “ 0.01 has
been used. Taking the same Bayesian Network, with the same edge probabilities,
we can vary ε and observe if that has any effect on this seemingly hopeless
example. Again, we study only the probability distribution PpXA15

q. Table
13 shows the resulting log normalization constants. Note that an increase in
the value for ε introduces less error, but even high values of ε give useless
results. Note that the results for ε “ 0.2 are not too bad, but 0.2 is definitely a
questionable approximation to 0. Recall that ε ą 0, by definition, should be a
small probability, hence much closer to the value 0 than the value 1.

10 Some Analysis on Complexity

First, we want to study the complexity of calculating EhpX,Zq with a näıve,
and also exact, method, for some function h depending on the entries in X,Z.
If the function h and the probability distribution PpXq is on the exponential
pseudo-Boolean form, we can write

hpX,ZqPpXq “ exp

˜

ÿ

λPS

βλ
ź

kPλ

X̃kpX,Zq

¸

.

We could assume that S has size 2n`|Γ|. That corresponds to a full represen-
tation of PpXq, that is, 2n possible combinations of X1, ¨ ¨ ¨Xn, and also a full
representation for hpX,Zq for the variables X1, ¨ ¨ ¨Xn and Z1, ¨ ¨ ¨Zn with in-
dexes in Γ. That is, calculating the value of hpX,ZqPpXq for an assignment to
X,Z has complexity Op2n`|Γ|q. To get the expected value EhpX,Zq for a given
Z, we would have to sum the value of hpX,ZqPpXq for 2n different Xs. That

77

implies a complexity of Op22n`|Γ|q for finding the expected value for a given Z.
Our decision space ΩΓ,u is of size

ˇ

ˇΩΓ,u
ˇ

ˇ “

u
ÿ

i“1

ˆ

|Γ|

i

˙

P O p|Γ|uq ,

since we assume u ăă |Γ|. To evaluate the expected value EhpX,Zq for each Z
in our decision space would then have a total complexity of

Op|Γ|u ¨ 22n`|Γ|q. (10.1)

However, note that this is based on a very näıve approach. In fact, we assume
that the expected value is calculated as

ÿ

Xn

¨

˝

ÿ

Xn´1

¨ ¨ ¨

˜

ÿ

X1

exp

˜

ÿ

λPS

βλ
ź

kPλ

X̃kpX,Zq

¸¸

˛

‚,

where the expression inside each parenthesis pair is calculated without checking
whether any factors can be moved outside the sum.

Let us again assume that we want to do exact calculations for the expected
value EhpX,Zq, now for a function h and a probability distribution PpXq not in
the exponential pseudo-Boolean form. It is natural to assume that we find the
value of PpXq with Opnq calculations, and that the complexity of calculating
hpX,Zq is within this, and usually even simpler. The resulting total complexity
would then be

Opn ¨ 2n ¨ |Γ|uq. (10.2)

Now, we have two cases to compare to, and we want to study the complexity
for our method, using bounds. Again, first, assume that we start with the
function h and the probability distribution PpXq on the exponential pseudo-
Boolean form. For the input constant ν, recall that calculating EhpX,Zq as
a function of Z has complexity Opn ¨ 2νq, plus the time spent on calculating
the Approximate Markov Random Fields, which we assume is within the given
complexity. This function EhpX,Zq is of the form

EhpX,Zq “ exp

¨

˝

ÿ

λPS̃

β̃λ
ź

kPλ

Zk

˛

‚,

where for each λ P S̃, we have λ Ď Γ. Thus, evaluating the function EhpX,Zq
for a given Z requires a sum over 2|Γ| terms. Repeating this for each Z in our

78

decision space, yields a total complexity of

Opn ¨ 2ν ` 2|Γ| ¨ |Γ|uq. (10.3)

Comparing (10.1) and (10.3), we observe a significant reduction of complexity.
However, note that to get this reduction, we both assumed that we start with the
exponential pseudo-Boolean forms and that the approximations ”The AMRF
Program” makes are made in Opn ¨ 2νq time.

Looking at the case as in Section 8, we start with a function hpX,Zq of the
form

hpX,Zq “
ÿ

λPT

αλ
ź

kPλ

XkZk,

and then we need to calculate the form

hpX,Zq “ exp

˜

ÿ

λPS

βλh
ź

kPλ

XkZk

¸

.

We can assume S to be the power set of Γ, and hence that we need to calculate
2|Γ| coefficients βλh . Using formulas from Section 3.2 and the coefficient graph
structure and formulas from Section A, we get that calculating each βΛ

h is of
complexity Op|λ|2q. That is, we have assumed the βΛ

h s are calculated in order
according to increasing size of Λ, which ensures that all βλhs with λ Ĺ Λ are avail-
able when we are calculating βΛ

h . Then, calculating the wanted representation
for the function h has complexity

O

˜

ÿ

λĎΓ

|λ|2

¸

“ O

¨

˝

|Γ|
ÿ

i“1

i2
ˆ

|Γ|

i

˙

˛

‚Ď O
´

|Γ|2 ¨ 2|Γ|
¯

.

We also need to calculate the exponential pseudo-Boolean representation of the
probability distribution

PpX1, ¨ ¨ ¨Xnq “

n
ź

i“1

PpXi|PapXiq.

Assuming that
r “ max

1ďiďn
|PapXiq|,

we get the pseudo-Boolean representation of PpXi|PapXiqq in Op2r`1q calcula-
tions. Assuming r is not growing with n, which could be a reasonable assumption

79

if we assume a certain ”sparseness” to be constant as the size of the Bayesian
Network grows, this is a constant running time. Thus, calculating the represen-
tation of the full Joint Probability Distribution has a linear complexity in the
total number n of Random Variables. This is because we calculate something
of constant complexity for each Random Variable Xi. That would leave a total
complexity of

Op|Γ|2 ¨ 2|Γ| ` n` n ¨ 2ν ` 2|Γ| ¨ |Γ|uq Ď Opn ¨ 2ν ` 2|Γ| ¨ |Γ|uq, (10.4)

assuming u ě 2. Comparing (10.2) and (10.4), we still see a reduction of com-
plexity. Note that the calculation of each of the pseudo-Boolean representations
disappeared in the complexity of ”The AMRF Programs” and the evaluation for
all Zs, respectively. Also note that for the tests in Section 9, we would calculate
the representation of wj ´ cj for each Pj with a complexity of Opt2j2tj q, where
tj is twice the number of Pjs Segment children. If we assume that the biggest
such tj does not grow as we increase the size n of our Bayesian Network, this
would again mean that each wj ´ cj representation is calculated in constant
time. Thus, in total, all parts of h is calculated with with a complexity linear
in the number of Prospects, which could be assumed to grow linearly with the
total number n of Random Variables. In other words, this does not reduce the
complexity of the full calculations, but it would reduce some of the constant
factors.

11 Closing Remarks

We have studied five Boolean Bayesian networks; BN1-BN5, with Boolean deci-
sion vectors. First of all, from Section 8, we realized that our initial idea for how
to do the calculations did not lead to good results. After, we could easily say
that these calculations were done in a näıve way. But after some improvements,
we observed that our solution method worked well on sparse graphs, as in BN2,
BN3 and BN4. We also observed that usually, for a given ν, the loss fraction
Lν for an approximate optimal decision Z̃ had a value equal to or close to zero.
That means that on average, the approximate optimal decision Z̃ worked well.
Note that the value of ν was chosen to be fairly close to the expected size of
the maximal clique in the graph. However, in Table 77 in Section C.4, we find
several loss fractions Lν which clearly implies choosing a decision with a low
exact value. This is why we get a high value for the standard deviation, espe-
cially for BN4. On average, the performance is still good, because the algorithm
finds the optimal decision Z˚, or makes the right guess, in most cases, also with

80

approximate values. To get less cases with high loss fractions, the algorithm
could be modified to choose the exact best decision from the top few, according
to the lower bounds, for example the top 5 or top 10. This would still allow us
to do approximate calculations on most decisions.

We also observed how the solution method failed when the sparseness of the
graph decreased, that is, when more edges were added. A further study of when
this starts to happen, and how we could avoid this, would be interesting. Then,
it would be natural to take a closer look on how the ”optimal bounds” from
Tjelmeland and Austad (2011) are calculated, and look for improvements or
one’s own version of such bounds. One could also look for improvement on the
order of which the Random Variables are summed out, when calculating some
expected value. Also here, a broader understanding of how the error bounds
are calculated would be helpful.

This solution method could also be broadened by looking at upper and lower
bounds on the value for a decision Z P ΩΓ,u where we only specify some of the
entries. That is, for example, if we could find that any decision

Z1 P tZ P ΩΓ,u|Zi “ 1u

would do worse than the best decision Z2 P ΩΓ,u with Z2
i “ 0, we would know

that the optimal decision Z˚ does not have Zi “ 1. This could be done by some
approximate Viterbi algorithm.

As mentioned in the beginning of this section, we have assumed Boolean
Random Variables and Boolean decision vectors. However, there are no reason
why this solution method could not be expanded. We could assume Random
Variables that take on values in a set A with |A| ą 2. Then, our Random Vector
X would be living in Ω “ An. Correspondingly, there could be more than one
choice for what to do with each Random Variable, that is, more choices for the
values of the entries of the decision vector. The challenge is then in how to define
functions and probability distributions so that we still can do approximations
on these. In this report, we have assumed the approximations from Tjelmeland
and Austad (2011), which are defined on pseudo-Boolean functions. Of course,
each Random Variable Xi P A could be represented by a collection of Boolean
Variables, and correspondingly for the decision entries Zi. But probably, it
would be better to use other upper and lower bounds for that specific case. In
either case, the method for eliminating decisions as described in Section 6 is still
valid.

Also, we recall from Section 10, that, of course, this solution method with
”The AMRF Program” bounds, has the greatest reduction in complexity if

81

we start with functions that already are on exponential pseudo-Boolean form.
Thus, according to the complexity of the algorithm, this solution method would
be most useful for cases where it is natural to start with such a formulation of
the Joint Probability Distribution. However, note that for the dimensions in
the tests for this report, most computational time was spent on calculating the
expected value of the function w ´ c, and compared to that, the calculation of
the exponential pseudo-Boolean forms was done in no time. Anyway, it could
be interesting to look for applications, and study the performance on problems
where the exponential pseudo-Boolean form is more natural. It is worth noting
that in this report, we have only done tests for Bayesian Networks. Other
graphical models could be of great interest. Note that for a Markov Random
Field with Random Variables in X, and an unknown normalization constant C
for the probability distribution 1

CP pXq, an upper bound on the expected value
of a function hpXq could be expressed as

ř`

XhpXqP pXq
ř´

XP pXq
,

where we let
ř`

X denote the upper bounds on the sum over X, and corre-

spondingly,
ř´

X for the lower bound. Note that the Ising model is an example
of such a distribution, and so is also any other Markov Random Field where the
Joint Probability Distribution

PpXq “
1

C

ź

EpXq

exppEpXqq,

is defined by a collection of energy functions tEpXqu. Also, it could be interest-
ing to look for applications where it is more natural to have the value function as
the exponential of a pseudo-Boolean function. That is, where the value function
behaves more like a product.

82

References

Bishop, C. M. (2006). Graphical models, Pattern Recognition and Machine
Learning (Information Science and Statistics), Springer-Verlag New York,
Inc.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009). Introduction
to Algorithms, 3rd edn, The MIT Press.

Hammer, P. L. and Rudeanu, S. (1968). Boolean Methods in Operations Research
and Related Areas, 1st edn, Springer, Berlin.

Jordan, M. I. (n.d.). Conditional independence and factorization, An Introduc-
tion to Probabilistic Graphical Models. To appear.

Martinelli, G., Eidsvik, J. and Hauge, R. (2011). Dynamic decision making
for graphical models applied to oil exploration, Technical Report Preprint
Statistics no. 12/2011, Norwegian University of Science and Technology.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach,
2nd edn, Prentice Hall.

Tjelmeland, H. and Austad, H. M. (2011). An approximate forward-backward
algorithm applied to binary Markov random fields, Technical Report Preprint
Statistics no. 11/2011, Norwegian University of Science and Technology.

83

APPENDIX

A Implementation of Graph Structure

A graph like the one described in Section 3.1 is implemented by a C++ class.
An alternative way of storing the coefficients αλ would be in a vector of length
2n. That is, each subset λ Ď N corresponds to entry number Epλq “

ř

kPλ 2k

in the vector. Note that if we only want to look at sets λ of size |λ| ď L with
L ăă m, this alternative would imply a lot of unused entries in the vector.
For the graph alternative, we are able to only create the first L ` 1 layers of
the graph, including the root node. However, the main argument for the graph
alternative, is the efficient way of calculating sums over subsets, as in

ÿ

λĎΛ

αλ. (A.1)

The number of layers in the graph, L`1, together with the number of differ-
ent values appearing in the sets, give a unique description of the graph structure.
Also, each node is an instance of a struct holding a vector of pointers to its par-
ents, a vector of pointers to its children and a vector holding its corresponding
values. Associate each node with its index set λ, that is, in this discussion, we
will not distinguish between the index set and its corresponding node. Let the
root node be layer 0, and name each layer outwards layer 1, ¨ ¨ ¨ , L.

We introduce an ordering on the children and parents of node a, where child
b precedes child c if the element added to a to obtain b has a lower value than the
element added to obtain c. Correspondingly for the parents, parent c precedes
parent d if the element removed from a to obtain c has a lower value than the
element removed to obtain d. That is, the listings of children and parents in
Section 3.1 follows the ordering described above. In the graph, we let each node
λ hold pointers to its children and parents, respectively, according to this order.

The length of the value vector may depend on the problem, and what we
want to calculate for each node. Since we often want to calculate expressions of
the kind in (A.1), this length is a multiple of the layer number r. If our purpose
is to convert between the linear and exponential pseudo-Boolean representations
of a function, as in Section 3.2, we would let the value vector length be twice
the layer number, and let the root node hold two values. If we just want to store
coefficients, or calculate sums over subsets, it is sufficient with a value vector
length equal to the layer number, and the root node would hold one value. That
is, call the value vector v, and assume for simplicity that each node has only

84

one coefficient associated with it, i.e. we work with one set of coefficients αλ.
Then, the value vector has length r in layer r, and the first value element in
the node Λ holds the value of αΛ. The kth element, k ě 2, is the sum of the
coefficients αλ where λ Ă Λ and |Λzλ| “ k ´ 1. That is, the sum over the first
value element for each node in the layer k steps down, reachable from Λ by k
steps of going from a node to one of its parents. Then, if we let λÑ vrks denote
the kth entry in the value vector for the node λ, we obtain the following two
easy formulas for our graph structure,

ÿ

λĹΛ

αλ “ HÑ vr0s `

|λ|´1
ÿ

k“2

λÑ vrks, (A.2)

and
ÿ

λĎΛ

αλ “ HÑ vr0s `

|λ|´1
ÿ

k“1

λÑ vrks. (A.3)

Assume that we are given two nodes λ1 and λ2, where λ1 is an ancestor of
λ2, k layers up. There are k! different routes from y1 to y2, going from a node
to one of its children in each of the k steps. That is, in the first step, you have k
different coordinates you can turn on, each of which in the next step gives k´ 1
choices, and so on.

That results in the following formula, for 1 ă k ă |λ| ´ 1,

λÑ vrks “
1

k

ÿ

λ̃PPapλq

λ̃Ñ vrk ´ 1s. (A.4)

The resulting algorithm first creates the graph structure of the dimensions
wanted. Then, the first entry λ Ñ vr1s in the value vector for each node λ
is assigned the value αλ. After that, layer by layer, starting with the grand
children of the root node and continuing outwards, the rest of the values in each
value vector is filled out according to (A.4). In the end, the wanted sums as in
(A.1), are easily calculated by the formulas in (A.2) and (A.3).

B A short User Oriented Introduction to
”The AMRF Programs”

The programs referred to as ”The AMRF Programs”, are already implemented
algorithms from Tjelmeland and Austad (2011), as mentioned in Section 4. For

85

more information and the theory behind it, the reader is referred to Tjelmeland
and Austad (2011).

B.1 A pseudo-Boolean function as input

In addition to input parameters specific for each algorithm, a pseudo-Boolean
function of the form

fpXq “ exp

˜

ÿ

λPS

βλ
ź

kPλ

Xk

¸

is given in an input file. In the model assumed, the nodes are numbered from N0

to Nend, and each node k, with N0 ď k ď Nend, has a corresponding coefficient
βtku in the coefficient set

βλ
(

λPS
. The input file needs to be of the following

format. The first line holds the start node number N0, and the second line holds
the end node number Nend. Then, on each line, a set coefficient βλ is presented,
with no restriction on the order of the lines. But within each line, the following
criteria need to be met.

• The first number on each line, is the size |λ| of the coefficient set λ.

• The next numbers are the indexes k P λ, in increasing order.

• Last, is the value of the corresponding coefficient βλ.

As an example, the input file

1

3

0 -2.5

1 1 -2.8

1 2 -4.0

2 1 2 1.8

represents the function

f prX1, X2sq “ exp p´2.5´ 2.8X1 ´ 4.0X2 ` 1.8X1X2q .

B.2 Calculating an approximate normalizing constant

The approximate normalizing constant, or an approximation of a marginal, for
a pseudo-Boolean function as in Section B.1 will be found by use of the function
call

86

amrf_graph_v3

(graphfile, simulation, likelihood, sim,limit, sstop, thev),

where the input parameters are

• graphfile is the name of the file where the pseudo-Boolean function is
stored, as described in Section B.1.

• simulation is a file name for a file describing a realization for which the
likelihood is to be evaluated (we set sim=1 to get one).

• likelihood is the name of the file where the output will be stored.

• We set sim “ 1, since the program requires a realization to evaluate the
likelihood of.

• We set limit “ 0, since we don’t want to do approximations corresponding
to their ε parameter.

• sstop is the number of the last node to be summed out, i.e. we obtain
the marginal for the nodes xsstop`1 to xNend . Default is sstop “ 0, which
corresponds to all nodes being summed out, i.e. finding the normalizing
constant of the distribution.

• thev is the maximum number of neighbors for each node for not making
approximations before its summed out. That is, a small value of thev
usually means more approximations, while a high enough value means no
approximations.

B.3 Calculating bounds for the normalizing constant

The upper and lower bounds for the normalizing constant, or bounds of a
marginal, for a pseudo-Boolean function as in Section B.1, will be found by
use of the function call

amrf_graph_bound(graphfile,

simulation, likelihood, sim, limit, sstop, thev, maximum),

where the first seven input parameters are as for amrf graph v3, and the last
parameter is set to be 1 for the upper bound, and 0 for the lower bound.

87

B.4 An approximate Viterbi algorithm

The upper or lower bounds for the maximum function value, or a function
that bounds the maximum over a subset of the variables, for a pseudo-Boolean
function as in Section B.1, will be found by use of the function call

amrf_graph_viterbi(graphfile,

simulation, likelihood, sim, limit, sstop, thev, maximum),

where the input parameters are as for amrf graph bound.

88

C Probability Distribution, Cost and Income
Functions for Section 8 and Section 9

C.1 Distribution, Cost and Income functions BN1

First, Table 14 provides all edge probabilities pei,j to fully determine the Joint
Probability Distribution for the graph in Figure 7 in Section 8. Recall that we
have assumed the distribution to be as in Section 3.3.1. Then, Tables 15 and 16
provides the linear coefficients to fully determine the two sets of cost and income

functions, a and b, respectively. Recall that α
ϑpiq
cost represents the cost of drilling

Segment Si, while ´α
ϑpiq,ϑpjq
cost represents the savings in the costs when drilling

both Segment siblings Si, Sj , and correspondingly for the income coefficients.

Kitchen nr Ki PpKi “ 1q
K1 0.926
K2 0.728
K3 0.817
K4 0.735

Node pair pi, jq pei,j
(K1, P1) 0.217
(P1, D1) 0.840
(P1, D2) 0.637
(K2, P2) 0.773
(K3, P2) 0.916
(P2, D3) 0.805
(P2, D4) 0.515
(K2, P3) 0.608
(K3, P3) 0.788
(P3, D5) 0.909
(K4, P4) 0.471
(P2, P4) 0.575
(P4, D6) 0.818
(P4, D7) 0.762
(P4, P5) 0.616
(P5, D8) 0.613
(P2, P6) 0.717
(P4, P6) 0.797
(P6, D9) 0.583
(P4, P7) 0.609
(P6, P7) 0.409
(P7, D10) 0.524

Table 14: BN1: Probabilities for the Bayes Net in Figure 7.

89

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D1 4552 5660
D2 2222 4693
D3 5382 3996
D4 1769 6829
D5 501.9 3534
D6 44.11 7291
D7 3170 3868
D8 365.9 2871
D9 917.7 3342
D10 1997 5326

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D1, D2) 871.3 236.8
(D3, D4) 405.8 430.5
(D6, D7) 4.140 83.43

Table 15: BN1: Cost function a and income function a.

90

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D1 4729 4696
D2 4962 3830
D3 2419 2871
D4 5094 3342
D5 5758 5211
D6 2189 6161
D7 1928 5946
D8 3611 4478
D9 5277 7135
D10 1673 4884

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D1, D2) 3482 83.43
(D3, D4) 2180 139.3
(D6, D7) 649.8 288.9

Table 16: BN1: Cost function b and income function b.

91

C.2 Distribution, Cost and Income functions BN2

In this subsection, in addition to Sections C.3, C.4 and C.5, we will present the
edge probabilities pe, and also the cost and income coefficients in groups after
which Prospect Pi they belong to. That is, we say that pe belong to Prospect
Pi if Prospect Pi is the end point of edge e, or if e is an edge from Prospect Pi
to one of its Segment children. The cost and income coefficients under Prospect
Pi, belongs to Prospect Pis Segment children. Then, the numbers appear in
groups as we use them to calculate the representation of wj ´ cj and PpXAj q,
respectively. Note that the calculation of the latter also uses calculations corre-
sponding to previous Prospects, however. All numbers listed in this subsection,
corresponds to BN2 from Section 9.1.1, visualized in Figure 8. Sections C.2,
C.3 and C.4 also provides a table over the nonzero loss fractions Lν in the 1000
replications test for each, respectively.

Kitchen Ki PpKi “ 1q
K1 0.730
K2 0.778
K3 0.790
K4 0.836
K5 0.887
K6 0.732
K7 0.454

Table 17: Probabilities corresponding to each of Kitchens Ki.

Node pair pi, jq pei,j
(K1, P1) 0.616
(P1, D1) 0.358

PDS Di α
ϑpiq
cost α

ϑpiq

inc
D1 3975 5068

Table 18: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P1.

92

Node pair pi, jq pei,j
(K2, P2) 0.813
(P2, D2) 0.838

PDS Di α
ϑpiq
cost α

ϑpiq

inc
D2 4005 5037

Table 19: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P2.

Node pair pi, jq pei,j
(K3, P3) 0.982
(P3, D3) 0.700
(P3, D4) 0.805
(P3, D5) 0.496
(P3, D6) 0.781

PDS Di α
ϑpiq
cost α

ϑpiq

inc
D3 4036 5037
D4 4002 5034
D5 4012 5007
D6 3984 4951

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D3, D4) 345.6 522.8
(D3, D5) 153.9 490.1
(D3, D6) 603.1 493.7
(D4, D5) 1104 459.2
(D4, D6) 139.1 480.4
(D5, D6) 264.8 496.7

Table 20: BN2: Probabilities describing the probability distribution for Prospect
P3.

93

Node pair pi, jq pei,j
(K4, P4) 0.937
(P4, D7) 0.928
(P4, D8) 0.548

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D7 3947 5031
D8 4014 5037

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D7, D8) 3614 501.3

Table 21: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P4.

Node pair pi, jq pei,j
(K3, P5) 0.797
(K5, P5) 0.550
(P5, D9) 0.762
(P5, D10) 0.956

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D9 4046 5001
D10 4024 4945

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D9, D10) 3897 505.0

Table 22: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P5.

94

Node pair pi, jq pei,j
(K3, P6) 0.672
(K6, P6) 0.613
(P6, D11) 0.625
(P6, D12) 0.789
(P6, D13) 0.753
(P6, D14) 0.807
(P6, D15) 0.664
(P6, D16) 0.841

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D11 4095 4863
D12 3996 4985
D13 4005 4988
D14 4052 5110
D15 3944 4949
D16 4056 5003

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D11, D12) 223.4 499.0
(D11, D13) 288.7 496.5
(D11, D14) 358.0 498.4
(D11, D15) 656.3 502.3
(D11, D16) 348.0 491.0
(D12, D13) 567.7 494.2
(D12, D14) 218.1 501.6
(D12, D15) 243.5 507.2
(D12, D16) 576.5 495.3
(D13, D14) 159.1 514.3
(D13, D15) 322.9 500.7
(D13, D16) 720.9 504.7
(D14, D15) 413.2 514.7
(D14, D16) 328.2 491.4
(D15, D16) 672.0 500.2

Table 23: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P6.

Node pair pi, jq pei,j
(K7, P7) 0.803
(P7, D17) 0.626

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D17 3993 4982

Table 24: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P7.

95

Node pair pi, jq pei,j
(K6, P8) 0.606
(P8, D18) 0.934
(P8, D19) 0.529

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D18 3986 5010
D19 4049 5001

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D18, D19) 3804 510.9

Table 25: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P8.

Node pair pi, jq pei,j
(K1, P9) 0.265
(P3, P9) 0.723
(P9, D20) 0.354
(P9, D21) 0.587

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D20 3996 5032
D21 4017 5084

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D20, D21) 2830 470.1

Table 26: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P9.

96

Node pair pi, jq pei,j
(K3, P10) 0.825
(P4, P10) 0.809
(P10, D22) 0.934
(P10, D23) 0.759
(P10, D24) 0.676
(P10, D25) 0.718

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D22 3959 5017
D23 3989 4939
D24 4104 4976
D25 4008 4940

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D22, D23) 307.8 490.0
(D22, D24) 910.8 502.8
(D22, D25) 431.8 492.3
(D23, D24) 1096 465.9
(D23, D25) 1005 489.5
(D24, D25) 300.8 496.2

Table 27: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P10.

Node pair pi, jq pei,j
(P6, P11) 0.592
(P7, P11) 0.784
(P8, P11) 0.844
(P11, D26) 0.921
(P11, D27) 0.479

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D26 4066 5022
D27 4065 5009

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D26, D27) 3881 492.0

Table 28: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P11.

97

Node pair pi, jq pei,j
(K4, P12) 0.850
(P12, D28) 0.837
(P12, D29) 0.855

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D28 4024 5034
D29 4034 5043

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D28, D29) 1370 494.9

Table 29: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P12.

Node pair pi, jq pei,j
(P3, P13) 0.267
(P8, P13) 0.567
(P10, D30) 0.724

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D30 4046 4988

Table 30: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P13.

Node pair pi, jq pei,j
(K5, P14) 0.892
(P13, P14) 0.904
(P14, D31) 0.769
(P14, D32) 0.793
(P14, D33) 0.587
(P14, D34) 0.829

Segment Si α
ϑpiq
cost α

ϑpiq

inc
(D31, D32) 1054 487.1
(D31, D33) 223.3 502.5
(D31, D34) 184.9 478.8
(D32, D33) 579.3 502.7
(D32, D34) 817.4 517.1
(D33, D34) 420.3 524.8

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D9, D10) 3897 505.0

Table 31: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P14.

98

Node pair pi, jq pei,j
(K5, P15) 0.921
(P4, P15) 0.683
(P14, P15) 0.587
(P15, D35) 0.849
(P15, D36) 0.839
(P15, D37) 0.658
(P15, D38) 0.805
(P15, D39) 0.822
(P15, D40) 0.981

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D35 3952 4976
D36 3992 4958
D37 3909 5019
D38 3962 4965
D39 4070 4964
D40 4076 4912

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc

(D35, D36) 299.7 511.1
(D35, D37) 744.7 502.8
(D35, D38) 100.5 488.2
(D35, D39) 17.69 499.0
(D35, D40) 548.2 504.2
(D36, D37) 435.0 504.6
(D36, D38) 359.2 489.3
(D36, D39) 358.3 514.5
(D36, D40) 599.7 510.3
(D37, D38) 15.29 511.4
(D37, D39) 129.1 490.8
(D37, D40) 18.45 496.0
(D38, D39) 71.00 502.9
(D38, D40) 534.2 504.3
(D39, D40) 626.4 495.2

Table 32: BN2: Probabilities, cost coefficients and income coefficients, Prospect
P15.

99

Nonzero loss fractions L6

0.0039% 2.0994% 6.6597% 17.086%
0.0171% 3.0456% 8.5423% 22.791%
0.0468% 3.0662% 8.7180% 27.024%
0.0596% 3.2426% 8.9417% 29.596%
0.2432% 3.4734% 9.2905% 31.045%
0.3263% 4.3125% 12.990% 37.278%
0.4715% 4.4725% 14.813% 37.991%
0.7584% 5.2099% 15.040% 41.739%
0.7924% 5.3182% 15.099% 61.640%
1.8310% 6.0684% 16.650% 83.181%

Table 33: BN2: Listing of all nonzero loss fractions L6 for the 1000 tests in
Section 9.1.1.

100

C.3 Distribution, Cost and Income functions BN3

All numbers listed in this subsection, corresponds to BN3 from Section 9.1.1,
visualized in Figure 15.

Kitchen nr Ki PpKi “ 1q
K1 0.695
K2 0.944
K3 0.760
K4 0.638
K5 0.615
K6 0.668
K7 0.870
K8 0.593
K9 0.859
K10 0.821

Table 34: BN3: Probabilities corresponding to each of Kitchens Ki.

Node pair pi, jq pei,j
(K1, P1) 0.510
(P1, D1) 0.813
(P1, D2) 0.934

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D1 3003 4949
D2 3012 5053

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D1, D2) 1273 478.3

Table 35: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P1.

101

Node pair pi, jq pei,j
(K2, P2) 0.967
(P2, D3) 0.878
(P2, D4) 0.646
(P2, D5) 0.780
(P2, D6) 0.586

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D3 3004 4967
D4 2965 4987
D5 2933 5033
D6 2969 5050

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D3, D4) 84.85 518.9
(D3, D5) 950.4 483.4
(D4, D5) 478.8 499.2
(D3, D6) 219.1 532.8
(D4, D6) 805.0 464.1
(D5, D6) 566.4 531.5

Table 36: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P2.

Node pair pi, jq pei,j
(K1, P3) 0.740
(K3, P3) 0.585
(P3, D7) 0.830
(P3, D8) 0.968

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D7 3072 5060
D8 3000 4904

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D7, D8) 1663 488.6

Table 37: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P3.

102

Node pair pi, jq pei,j
(K4, P4) 0.581
(P4, D9) 0.589
(P4, D10) 0.378

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D9 3042 5070
D10 2990 5021

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D9, D10) 2256 510.0

Table 38: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P4.

Node pair pi, jq pei,j
(K5, P5) 0.782
(P5, D11) 0.576

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D11 3050 4999

Table 39: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P5.

Node pair pi, jq pei,j
(K6, P6) 0.532
(P6, D12) 0.325
(P6, D13) 0.692
(P6, D14) 0.640

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D12 3011 5044
D13 2988 4958
D14 3086 4982

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D12, D13) 586.1 509.0
(D12, D14) 252.3 529.2
(D13, D14) 431.3 490.3

Table 40: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P6.

103

Node pair pi, jq pei,j
(K7, P7) 0.778
(P7, D15) 0.687

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D15 2979 4939

Table 41: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P7.

Node pair pi, jq pei,j
(K8, P8) 0.563
(P8, D16) 0.816
(P8, D17) 0.790
(P8, D18) 0.494

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D16 3078 4998
D17 3065 4921
D18 3054 4999

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D16, D17) 1286 467.0
(D16, D18) 901.9 518.6
(D17, D18) 348.5 507.8

Table 42: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P8.

Node pair pi, jq pei,j
(K9, P9) 0.549
(P9, D19) 0.550

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D19 2932 5109

Table 43: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P9.

104

Node pair pi, jq pei,j
(K10, P10) 0.676
(P10, D20) 0.678
(P10, D21) 0.782

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D20 2987 5052
D21 3010 5033

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D20, D21) 2526 479.1

Table 44: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P10.

Node pair pi, jq pei,j
(P2, P11) 0.852
(P9, P11) 0.860
(P11, D22) 0.779
(P11, D23) 0.842

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D22 2941 4916
D23 2989 5011

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D22, D23) 2823 512.3

Table 45: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P11.

105

Node pair pi, jq pei,j
(K5, P12) 0.502
(P12, D24) 0.624
(P12, D25) 0.823
(P12, D26) 0.557

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D24 3005 5070
D25 2924 5016
D26 2946 5008

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D24, D25) 1247 511.6
(D24, D26) 641.8 490.1
(D25, D26) 956.3 497.4

Table 46: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P12.

Node pair pi, jq pei,j
(P10, P13) 0.976
(P13, D27) 0.901

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D27 3072 4992

Table 47: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P13.

Node pair pi, jq pei,j
(K10, P14) 0.978
(P4, P14) 0.817
(P9, P14) 0.696
(P14, D28) 0.659

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D28 2969 5022

Table 48: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P14.

106

Node pair pi, jq pei,j
(K2, P15) 0.763
(P7, P15) 0.890
(P13, P15) 0.836
(P15, D29) 0.850
(P15, D30) 0.861
(P15, D31) 0.776

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D29 2987 4951
D30 3004 5023
D31 3022 5020

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D29, D30) 267.8 497.1
(D29, D31) 894.1 482.6
(D30, D31) 1370 490.2

Table 49: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P15.

Node pair pi, jq pei,j
(P6, P16) 0.719
(P16, D32) 0.436

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D32 2966 4989

Table 50: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P16.

Node pair pi, jq pei,j
(P9, P17) 0.898
(P15, P17) 0.617
(P17, D33) 0.478
(P17, D34) 0.561

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D33 2913 4938
D34 2933 4980

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D33, D34) 1932 517.8

Table 51: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P17.

107

Node pair pi, jq pei,j
(K1, P18) 0.246
(P14, P18) 0.863
(P18, D35) 0.634

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D35 2956 4952

Table 52: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P18.

Node pair pi, jq pei,j
(P7, P19) 0.910
(P19, D36) 0.760
(P19, D37) 0.867

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D36 3050 5064
D37 2941 5023

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D36, D37) 1833 514.1

Table 53: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P19.

Node pair pi, jq pei,j
(K3, P20) 0.601
(P15, P20) 0.520
(P19, P20) 0.498
(P20, D38) 0.785
(P20, D39) 0.887
(P20, D40) 0.702

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D38 2920 5019
D39 2908 5048
D40 3003 4985

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D38, D39) 1395 514.6
(D38, D40) 179.8 523.7
(D39, D40) 289.0 480.6

Table 54: BN3: Probabilities, cost coefficients and income coefficients, Prospect
P20.

108

Nonzero loss fractions L5

0.0846% 0.1268% 0.1278%
0.1483% 0.1529% 0.6006%
1.1325% 1.7083% 1.7236%
1.8870% 2.5999% 2.6884%
3.2948% 3.3345% 3.4698%
3.8284% 4.1870% 4.5679%
5.1716% 5.4370% 6.0701%
6.9327% 10.1125% 20.0158%
20.5417% 25.1488% 45.8189%

Table 55: BN3: Listing of all nonzero loss fractions L5 for the 1000 tests in
Section 9.1.2.

109

C.4 Distribution, Cost and Income functions BN4

All numbers listed in this subsection, corresponds to BN4 from Section 9.1.1,
visualized in Figure 23.

Kitchen nr Ki PpKi “ 1q
K1 0.719
K2 0.487
K3 0.897
K4 0.759
K5 0.817
K6 0.904
K7 0.351
K8 0.678
K9 0.874
K10 0.680

Table 56: BN4: Probabilities corresponding to each of Kitchens Ki.

110

Node pair pi, jq pei,j
(K1, P1) 0.700
(K8, P1) 0.833
(P1, D1) 0.778
(P1, D2) 0.820
(P1, D3) 0.815

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D1 4030 5015
D2 4046 4989
D3 4037 5016

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D1, D2) 1889 471.4
(D1, D3) 284.2 488.2
(D2, D3) 457.7 495.3

Table 57: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P1.

111

Node pair pi, jq pei,j
(K2, P2) 0.678
(K3, P2) 0.844
(P2, D4) 0.707
(P2, D5) 0.504
(P2, D6) 0.516
(P2, D7) 0.760

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D4 4042 5028
D5 3989 5013
D6 4001 4999
D7 4000 5029

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D4, D5) 158.8 493.2
(D4, D6) 235.6 490.1
(D5, D6) 1198 504.3
(D4, D7) 178.5 502.7
(D5, D7) 242.3 511.3
(D6, D7) 878.2 515.7

Table 58: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P2.

Node pair pi, jq pei,j
(P3, D8) 0.714

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D8 4056 5050

Table 59: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P3.

112

Node pair pi, jq pei,j
(K4, P4) 0.478
(P3, P4) 0.815
(P4, D9) 0.621
(P4, D10) 0.735

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D9 4037 5044
D10 3955 4975

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D9, D10) 727.7 491.7

Table 60: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P4.

Node pair pi, jq pei,j
(K5, P5) 0.803
(K7, P5) 0.846
(P5, D11) 0.676
(P5, D12) 0.537
(P5, D13) 0.379
(P5, D14) 0.523
(P5, D15) 0.799

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D11 3953 5025
D12 4054 4959
D13 4043 4994
D14 3988 5099
D15 3954 4987

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D11, D12) 92.44 524.1
(D11, D13) 606.0 479.3
(D12, D13) 64.68 530.0
(D11, D14) 361.3 511.1
(D12, D14) 764.5 470.1
(D13, D14) 948.3 505.4
(D11, D15) 929.5 505.9
(D12, D15) 227.3 524.8
(D13, D15) 575.1 502.6
(D14, D15) 475.3 491.8

Table 61: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P5.

113

Node pair pi, jq pei,j
(K6, P6) 0.937
(P6, D16) 0.462
(P6, D17) 0.698
(P6, D18) 0.877
(P6, D19) 0.722
(P6, D20) 0.592
(P6, D21) 0.395
(P6, D22) 0.590

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D16 4064 5007
D17 3944 4934
D18 3964 4964
D19 3972 5068
D20 3959 5016
D21 4025 4982
D22 3952 5013

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D16, D17) 414.1 517.2
(D16, D18) 239.6 509.5
(D17, D18) 288.5 483.8
(D16, D19) 295.4 502.3
(D17, D19) 313.5 497.2
(D18, D19) 364.3 501.3
(D16, D20) 631.8 471.0
(D17, D20) 65.94 499.8
(D18, D20) 528.9 484.6
(D19, D20) 302.6 512.9
(D16, D21) 372.8 480.1
(D17, D21) 400.5 507.2
(D18, D21) 360.7 482.2
(D19, D21) 647.6 501.6
(D20, D21) 184.2 503.5
(D16, D22) 519.2 495.1
(D17, D22) 78.64 494.0
(D18, D22) 345.7 500.9
(D19, D22) 549.0 480.5
(D20, D22) 48.52 502.9
(D21, D22) 495.5 494.7

Table 62: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P6.

114

Node pair pi, jq pei,j
(K7, P7) 0.894
(P7, D23) 0.569
(P7, D24) 0.933
(P7, D25) 0.885
(P7, D26) 0.396

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D23 4008 5074
D24 3964 4969
D25 4029 5049
D26 4072 5025

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D23, D24) 155.5 485.7
(D23, D25) 286.2 510.0
(D24, D25) 1048 469.7
(D23, D26) 853.5 489.7
(D24, D26) 399.8 492.3
(D25, D26) 1079 491.1

Table 63: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P7.

Node pair pi, jq pei,j
(K1, P8) 0.801
(K8, P8) 0.862
(P8, D27) 0.768
(P8, D28) 0.943

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D27 4028 5016
D28 4028 4933

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D27, D28) 980.0 510.6

Table 64: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P8.

115

Node pair pi, jq pei,j
(K9, P9) 0.838
(P9, D29) 0.757
(P9, D30) 0.759

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D29 4042 4938
D30 4078 4945

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D29, D30) 1355 496.9

Table 65: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P9.

Node pair pi, jq pei,j
(K3, P10) 0.838
(K6, P10) 0.674
(K10, P10) 0.753
(P10, D31) 0.677
(P10, D32) 0.840
(P10, D33) 0.776

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D31 4042 5005
D32 3934 4966
D33 3949 5013

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D31, D32) 332.0 499.2
(D31, D33) 931.6 480.5
(D32, D33) 1910 484.4

Table 66: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P10.

116

Node pair pi, jq pei,j
(K7, P11) 0.813
(P5, P11) 0.554
(P8, P11) 0.766
(P11, D34) 0.623
(P11, D35) 0.475
(P11, D36) 0.697

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D34 3930 5065
D35 3969 4944
D36 4058 5007

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D34, D35) 581.2 474.5
(D34, D36) 1263 504.4
(D35, D36) 531.3 484.6

Table 67: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P11.

Node pair pi, jq pei,j
(P3, P12) 0.900
(P12, D37) 0.858
(P12, D38) 0.613

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D37 4004 5034
D38 3986 4980

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D37, D38) 3758 491.5

Table 68: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P12.

117

Node pair pi, jq pei,j
(K4, P13) 0.706
(K7, P13) 0.653
(P9, P13) 0.816
(P13, D39) 0.563
(P13, D40) 0.895

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D39 3965 5049
D40 4043 4993

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D39, D40) 1186 476.6

Table 69: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P13.

Node pair pi, jq pei,j
(K5, P14) 0.866
(P14, D41) 0.822
(P14, D42) 0.593
(P14, D43) 0.508

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D41 4073 5059
D42 4015 4962
D43 3977 4963

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D41, D42) 292.3 511.7
(D41, D43) 1978 478.8
(D42, D43) 1792 486.1

Table 70: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P14.

118

Node pair pi, jq pei,j
(P11, P15) 0.605
(P12, P15) 0.864
(P15, D44) 0.853
(P15, D45) 0.572
(P15, D46) 0.532
(P15, D47) 0.942

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D44 4059 5024
D45 4045 4921
D46 3992 4975
D47 3992 5049

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D44, D45) 72.11 485.5
(D44, D46) 696.3 475.1
(D45, D46) 449.1 522.0
(D44, D47) 950.7 489.1
(D45, D47) 777.7 458.4
(D46, D47) 1012 516.7

Table 71: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P15.

Node pair pi, jq pei,j
(K1, P16) 0.625
(P16, D48) 0.590
(P16, D49) 0.488

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D48 4002 5015
D49 3967 4955

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D48, D49) 2572 484.7

Table 72: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P16.

119

Node pair pi, jq pei,j
(P4, P17) 0.633
(P5, P17) 0.826
(P17, D50) 0.822
(P17, D51) 0.963
(P17, D52) 0.555

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D50 4055 4999
D51 3964 4993
D52 4081 4947

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D50, D51) 739.5 501.3
(D50, D52) 701.6 502.1
(D51, D52) 1895 510.7

Table 73: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P17.

Node pair pi, jq pei,j
(P3, P18) 0.841
(P4, P18) 0.750
(P15, P18) 0.771
(P18, D53) 0.711
(P18, D54) 0.971

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D53 4049 5046
D54 4062 5044

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D53, D54) 146.4 502.4

Table 74: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P18.

120

Node pair pi, jq pei,j
(K1, P19) 0.695
(P2, P19) 0.833
(P5, P19) 0.618
(P16, P19) 0.351
(P19, D55) 0.386
(P19, D56) 0.741

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D55 3944 5013
D56 3923 5003

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D55, D56) 2692 508.8

Table 75: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P19.

Node pair pi, jq pei,j
(K3, P20) 0.669
(P14, P20) 0.984
(P19, P20) 0.813
(P20, D57) 0.509
(P20, D58) 0.633
(P20, D59) 0.774
(P20, D60) 0.789

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D57 4003 4981
D58 4042 4964
D59 4051 4945
D60 3945 4938

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D57, D58) 802.0 509.7
(D57, D59) 304.2 472.6
(D58, D59) 439.7 499.7
(D57, D60) 279.4 530.4
(D58, D60) 951.4 491.4
(D59, D60) 423.4 512.8

Table 76: BN4: Probabilities, cost coefficients and income coefficients, Prospect
P20.

121

Nonzero loss fractions L7

0.0008% 0.0143% 0.1081% 0.1408%
0.4298% 0.4729% 1.2513% 1.3379%
1.4173% 1.5933% 1.6141% 1.6901%
2.3847% 2.4245% 3.1822% 3.7893%
3.8178% 4.3210% 4.3220% 4.9154%
5.3173% 5.8367% 6.0373% 6.1426%
6.6618% 7.5549% 8.2433% 9.0723%
9.3761% 9.5243% 10.5092% 12.3766%
14.8005% 15.5166% 15.6522% 17.3257%
17.6869% 17.7826% 19.2693% 20.2625%
20.9264% 21.2441% 23.4648% 24.5481%
26.7271% 27.8775% 29.7215% 36.6901%
36.9098% 39.4034% 40.1745% 44.1414%
47.6808% 49.1176% 50.9428% 53.4218%
55.2268% 63.2664% 66.5337% 66.7269%
69.9822% 72.1796% 73.6152% 76.5762%
78.0995% 90.0164% 95.7869%

Table 77: BN4: Listing of all nonzero loss fractions L7 for the 1000 tests in
Section 9.1.3.

122

C.5 Distribution, Cost and Income functions BN5

All numbers listed in this subsection, corresponds to BN5 from Section 9.2,
visualized in Figure 30.

Kitchen Ki PpKi “ 1q
K1 0.730
K2 0.778
K3 0.790
K4 0.836
K5 0.887
K6 0.732
K7 0.454

Table 78: BN5: Probabilities corresponding to each of Kitchens Ki.

Node pair pi, jq pei,j
(K1, P1) 0.616
(K4, P1) 0.813
(P1, D1) 0.769

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D1 3863 4996

Table 79: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P1.

123

Node pair pi, jq pei,j
(K2, P2) 0.982
(P2, D2) 0.793
(P2, D3) 0.587

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D2 3985 5005
D3 3988 5001

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D2, D3) 313.8 494.2

Table 80: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P2.

Node pair pi, jq pei,j
(K1, P3) 0.937
(K3, P3) 0.797
(P3, D4) 0.829
(P3, D5) 0.849

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D4 4052 5110
D5 3996 5058

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D4, D5) 3511 501.6

Table 81: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P3.

124

Node pair pi, jq pei,j
(K4, P4) 0.550
(P4, D6) 0.839
(P4, D7) 0.658
(P4, D8) 0.805
(P4, D9) 0.822

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D6 3981 5052
D7 4046 4944
D8 4091 5048
D9 4002 5036

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D6, D7) 473.2 502.3
(D6, D8) 940.6 484.3
(D7, D8) 1312 517.3
(D6, D9) 1160 495.3
(D7, D9) 1201 504.7
(D8, D9) 540.3 491.4

Table 82: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P4.

Node pair pi, jq pei,j
(K3, P5) 0.672
(K5, P5) 0.613
(K7, P5) 0.803
(P5, D10) 0.981
(P5, D11) 0.459

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D10 3990 5002
D11 3993 4982

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D10, D11) 516.4 493.2

Table 83: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P5.

125

Node pair pi, jq pei,j
(K3, P6) 0.606
(K6, P6) 0.265
(P4, P6) 0.723
(P6, D12) 0.677
(P6, D13) 0.520
(P6, D14) 0.863

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D12 4054 4928
D13 3956 5036
D14 4009 5034

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D12, D13) 1456 494.1
(D12, D14) 85.20 508.3
(D13, D14) 1244 486.7

Table 84: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P6.

Node pair pi, jq pei,j
(K7, P7) 0.825
(P7, D15) 0.589
(P7, D16) 0.996
(P7, D17) 0.495
(P7, D18) 0.478

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D15 4017 4989
D16 3939 5077
D17 3961 5021
D18 3978 4948

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D15, D16) 225.9 502.8
(D15, D17) 678.7 465.9
(D16, D17) 117.9 484.0
(D15, D18) 1085 481.0
(D16, D18) 429.6 492.3
(D17, D18) 998.7 489.5

Table 85: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P7.

126

Node pair pi, jq pei,j
(K4, P8) 0.809
(K6, P8) 0.592
(P4, P8) 0.784
(P8, D19) 0.624
(P8, D20) 0.603
(P8, D21) 0.625

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D19 3936 4976
D20 4024 5034
D21 4030 4968

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D19, D20) 480.0 504.2
(D19, D21) 1540 514.3
(D20, D21) 1748 491.0

Table 86: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P8.

Node pair pi, jq pei,j
(K1, P9) 0.844
(K3, P9) 0.850
(P1, P9) 0.267
(P3, P9) 0.567
(P5, P9) 0.892
(P9, D22) 0.877
(P9, D23) 0.635
(P9, D24) 0.443

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D22 3951 5004
D23 3965 5009
D24 4119 4985

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D22, D23) 1700 506.7
(D22, D24) 963.1 502.5
(D23, D24) 872.3 502.7

Table 87: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P9.

127

Node pair pi, jq pei,j
(K3, P10) 0.904
(P3, P10) 0.921
(P4, P10) 0.683
(P10, D25) 0.501
(P10, D26) 0.798
(P10, D27) 0.707
(P10, D28) 0.807

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D25 4007 4939
D26 4046 5046
D27 4028 5104
D28 3956 4921

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D25, D26) 599.3 487.0
(D25, D27) 1076 492.0
(D26, D27) 738.7 486.4
(D25, D28) 626.0 470.9
(D26, D28) 452.6 510.1
(D27, D28) 532.4 504.6

Table 88: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P10.

Node pair pi, jq pei,j
(P6, P11) 0.587
(P7, P11) 0.358
(P8, P11) 0.838
(P11, D29) 0.860

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D29 3962 4965

Table 89: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P11.

128

Node pair pi, jq pei,j
(K2, P12) 0.700
(K3, P12) 0.805
(K4, P12) 0.496
(P6, P12) 0.781
(P7, P12) 0.928
(P11, P12) 0.548
(P12, D30) 0.591

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D30 3953 4964

Table 90: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P12.

Node pair pi, jq pei,j
(P2, P13) 0.762
(P3, P13) 0.956
(P6, P13) 0.625
(P8, P13) 0.789
(P10, P13) 0.753
(P13, D31) 0.846
(P13, D32) 0.795
(P13, D33) 0.716
(P13, D34) 0.808

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D31 4037 5070
D32 3964 4989
D33 4010 5076
D34 3885 4979

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D31, D32) 262.9 499.0
(D31, D33) 747.7 497.8
(D32, D33) 644.5 504.2
(D31, D34) 825.0 510.3
(D32, D34) 30.57 496.0
(D33, D34) 873.2 504.3

Table 91: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P13.

129

Node pair pi, jq pei,j
(K5, P14) 0.807
(K6, P14) 0.664
(K7, P14) 0.841
(P1, P14) 0.626
(P2, P14) 0.934
(P8, P14) 0.529
(P9, P14) 0.354
(P10, P14) 0.587
(P12, P14) 0.934
(P13, P14) 0.759
(P14, D35) 0.921
(P14, D36) 0.750

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D35 3986 4977
D36 4018 4985

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D35, D36) 2715 493.5

Table 92: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P14.

130

Node pair pi, jq pei,j
(K5, P15) 0.676
(P1, P15) 0.718
(P4, P15) 0.921
(P8, P15) 0.479
(P12, P15) 0.837
(P13, P15) 0.855
(P14, P15) 0.724
(P15, D37) 0.913
(P15, D38) 0.650
(P15, D39) 0.873
(P15, D40) 0.611

Segment Si α
ϑpiq
cost α

ϑpiq

inc
D37 3983 5030
D38 3971 5035
D39 4000 5008
D40 3982 5028

Segment siblings Si, Sj ´α
ϑpiq,ϑpjq
cost α

ϑpiq,ϑpjq

inc
(D37, D38) 524.5 505.4
(D37, D39) 972.3 493.8
(D38, D39) 372.8 509.1
(D37, D40) 1251 486.5
(D38, D40) 1257 508.7
(D39, D40) 289.9 495.8

Table 93: BN5: Probabilities, cost coefficients and income coefficients, Prospect
P15.

131

	Title Page
	masteroppgave.pdf

