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Abstract

This paper extends standard GARCH models of volatility with realized measures
for the realized GARCH framework. A key feature of the realized GARCH frame-
work is the measurement equation that relates the observed realized measure to
latent volatility. We pay special attention to linear and log-linear realized GARCH
models. Moreover, the framework enhance the joint modeling of returns and re-
alized measures of volatility. An empirical application with ICE Brent Crude Oil
future front month contracts shows that a realized GARCH specification improves
the empirical fit substantially relative to a standard GARCH model. The estimates
give weak evidence for a skewed student’s t distribution for the standardized error
term and the leverage function shows a clear negative asymmetry between today’s
return and tomorrow’s volatility.





Sammendrag

Denne artikkelen viderefører standard GARCH modeller for volatilitet med realis-
erte m̊alinger for realized GARCH rammeverket. Et nøkkelmoment for realized
GARCH rammeverket er m̊alingsligningen som relaterer den observerte realiserte
m̊alingen til latent volatilitet. Vi legger spesielt vekt p̊a lineære og log-lineære real-
ized GARCH modeller. Rammeverket forbedrer felles modelleringen for avkastning
og realiserte m̊alinger av volatilitet. En empirisk studie med ICE Brent Crude Oil
future front month kontrakter viser at en realized GARCH spesifikasjon forbedrer
den empiriske tilpasningen mye, relativt til en standard GARCH model. Estimerin-
gene gir svake bevis for en skjev student’s t fordeling for det standardiserte feil led-
det og leverage funksjonen viser en klar negativ asymmetri mellom dagens avkast-
ning og neste dags volatilitet.
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Chapter 1

Introduction

This paper incorporates high frequency data and realized volatility measures for
volatility modeling using GARCH models. The access to high frequency data from
oil markets, make realized GARCH applications possible. The main objective of
the paper is therefore to improve volatility estimation in oil markets using high
frequency data.

Volatility estimation is an important tool for a wide range of application. There
has been a significant amount of research on the estimation of volatility and quite
a number of models has been designed. International literature has a remarkable
number of papers and applications. The literature shows that volatility models
seem to capture most of the features found in financial markets.

These models are based on methods developed in the financial literature. In this
paper oil future prices and the underlying volatility will be modeled based on the
financial framework. (Bystrom 2005) showed that financial energy markets have
much of the same features as a financial market and in some cases they are identical.

The first model that was developed in the financial literature was the ARCH model,
introduced in the seminar paper from (Engle 1982). The GARCH framework, intro-
duced by (Bollerselv 1986), applies daily or weekly asset returns to specify the la-
tent conditional volatility. A GARCH model typically uses daily returns to say
something about the present and future level of volatility. Understanding the con-
ditional volatility is important for many applications, especially option pricing, risk
management and asset allocation.

In recent years high-frequency financial data has become available for a broad
range of markets. The financial data consists of tick-by-tick observations with in-
formation such as time, date and price. The use of tick-by-tick return data was
first discussed in the seminar paper of (Dacorogna 2001). These results led to the
suggestion that high frequency data was superior to daily returns. The next inno-
vation was a series of papers that managed to relate high frequency data to the
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quadratic variation theory (stochastic volatility). From this research came the con-
cept commonly known as realized variation. The main ideas and motivation was
first discussed in the papers of, (Andersen & Bollerslev 1998), (Barndorff-Nielsen
& Shephard 2001) and (Comte & Renault 1998). These important papers sug-
gested a nonparametric ex-post estimate of the return variation, known as realized
volatility. They also show that forecasting realized volatility is a better forecasting
tool then classical GARCH-X volatility forecasting.

However, more recently extended GARCH models has been constructed to incor-
porate realized measures. The MEM model introduced by (Engle & Gallo 2006)
and the HEAVY model by (Shephard & Sheppard 2010) are two models which
incorporates realized measures. The models are based on the GARCH framework
and adds an additional GARCH structure for each realized measure. Models with
potential several latent volatility structures can then be added. A conceptually
similar model related to the realized measures are the realized GARCH model in-
troduced by (Hansen, Huang & Shek 2011). This model is closely related to the
standard GARCH model, but includes a measurement equation that relates the
realized measures to latent volatility. While the MEM and HEAVY models have
several latent volatility factors, the realized GARCH model only has one. The
general structure of a realized GARCH(p,q) model can be represented with the
following tree equations

rt =
√
htzt

ht = ω +

p∑
i=1

βiht−i +

q∑
j=1

γjxj−i

xt = ξ + φht + τ(zt) + ut

where rt is the return, zt ∼ iid(0, 1), ut ∼ iid(0, σu) and ht = var(rt|Ft1) with
Ft = σ(rt, xt, rt1, xt1, ...). The last equation, xt , is known as the measurement
equation. τ(zt) represents the leverage function on the form τ(zt) = τ1zt+τ2(z2t 1).
This function estimates the correlation between daily return and future volatility
which results in significant improvements for the empirical fit. The structure of
the model together with a quadratic leverage function, makes the model simple
to estimate. The model initially assumes a standard normal distribution for the
standardized error term, zt. However, distributions like the student’s t and skewed
student’s t can also be included without redefining the maximum likelihood anal-
ysis.

In this paper quadratic variation theory is applied to ICE Brent Crude oil fu-
ture front month contracts. Realized measure using high frequency data for the
contracts will be represented and discussed. Furthermore, the realized measures
will be implemented as described above, and used to estimate the realized GARCH
model. The Log-likelihood will be used to compare the different models. The
main results show that high frequency data, in GARCH models, improves the log-
likelihood and therefore suggests improved estimation for the oil future market.

2



There is also found evidence for a clear asymmetry between today’s return and
tomorrows volatility.

The paper is organized as follows. Section 2 introduces quadratic variation theory
with special emphasis on the realized measures. Section 3 introduces the realized
GARCH model with a linear and log linear specification. The leverage effect and
news impact curve is discussed and the quasi maximum likelihood estimator is given
together with the asymptotic properties. Distributions for the standardized error
term, zt, is given together with their respective log-likelihood functions. Section
4 gives empirical results for the ICE Brent Crude oil future front month contract.
The results include realized variance, jump variation, realized GARCH estimates,
asymmetries and news impact curves. Section 5 summarizes and concludes.
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Chapter 2

Quadratic variation theory
and Realized volatility

This section will introduce quadratic variation theory (QVT). Oil future prices of-
ten follows specific characteristics including the existence of extreme jumps. Jump-
diffusion models are common for identifying these kinds of jump variations in as-
set price dynamics, (Barndorff-Nielsen & Shephard 2004, Andersen, Bollerslev &
Diebold 2007). Let p(t) donate the spot price of some asset, and that this price is
governed by a jump-diffusion process,

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t) (2.1)

where µ(t) and σ(t) are the drift and instantaneous volatility, W (t) is a standard
Brownian motion, and q(t) is a Poisson counting process, with the corresponding
time-varying intensity function λ(t). λ(t) is the intensity of arrival process for
jumps, with corresponding jump size κ(t) for any time t given that dq(t) = 1.

These Jumps gives an addition to the unobserved quadratic variation. The overall
variation is influenced by the number of jumps and their respective sizes. Quadratic
variation theory allows us to split the total variation, non-parametrically, into a
continuous simple path part and a jump part. The total quadratic variation can
then be represented as,

QVt =

∫ t

0

σ2(s)ds+

q(t)∑
s=1

κ2(s) (2.2)

Eq. (2.2) implies that with absence of jumps, the sum over the squared jump sizes
would be zero. Which again implies that the quadratic variation would be equal
to the integrated variance,

IVt =

∫ t

0

σ2(s)ds (2.3)
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Theoretically, jump-diffusion models are intuitive, but for real data the models
becomes difficult to estimate. (Andersen, Bollerslev, Diebold & Ebens 2001) pro-
posed to use the so-called realized variation or realized volatility as a proxy for
the unobserved quadratic variation represented above. They assumed that if the
frequency (M) of intradaily sampling increases then the quadratic variation could
be written as,

lim
M→∞

RVt =

∫ t

0

σ2(s)ds+

q(t)∑
s=1

κ2(s) (2.4)

Assume that there is high frequency data for some asset price over a period of T
days. The high frequency data can then be samples at frequency (M) over a period
of T days. If the data is sampled at equally spaced intervals, the intradaily returns
may be represented as,

rt,j = pt,j − pt,j−1, j = 1, ...,M, t = 1, ..., T (2.5)

Assuming that the sample contains a relatively high frequency (M), the drift µ(t) in
Eq. (2.1) is negligible. Hence, the realized variance in Eq. (2.4) can be represented
as the sum of squared intradaily returns,

RVt =

M∑
j=1

r2t,j (2.6)

This estimator is directly effected by the used sampling frequency. Eq. (2.4) shows
how theRVt estimator increases in precision when the sampling frequency increases.
Theoreticaly the optimal estimator would use the lowest resulution of data avalible.
In reality, the frequency used need to reflect the market features. The ICE Brent
Crude future market has high liquidity in the front month contracts. Hence, the
frequency of trading and the micro structure noise might directly influence the
result for closely sampled observations. Lower frequency of trading and possibly a
noisy bid/ask spread, would directly influence the estimators predictive abilities.
The resolution of data used will be discussed in more depth later in this paper.
(Barndorff-Nielsen & Shephard 2004) introduced a new extension to the realized
power variation, realized bipower variation. This estimate was proved quite robust,
implying that if there is stochastic volatility in connection with jumps, the realized
bipower variation estimates the quadratic variation of the jump component. The
realized bipower variation is defined by,

BV art = µ−21

M−1∑
j=1

|rt,j ||rt,j−1|, t = 1, ..., T (2.7)

where µ1 =
√

2
π . They also showed that the realized bipower variation has the

same properties as the realized variance when the resolution of data increases,

lim
M→∞

BV art →
∫ t

0

σ2(s)ds (2.8)
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It was first noted by (Barndorff-Nielsen & Shephard 2004) that combining Eq. (2.4)
and Eq. (2.8) could give a reasonable estimate for the discontinuous jump part of
the quadratic variation. Assume that there is a constant δ which has the following
property, δ → 0, then the contribution to the quadratic variation process due to
the discontinuities can be estimated by,

RVt(δ)−BV art(δ) =

q(t)∑
s=1

κ2(s) (2.9)

Eq. (2.7) is called the first lag estimate of the bipower variation. The bipower
variation becomes a good estimate if there is high evidence of jumps occurring
throughout the data. The energy market is one such market where you can expect
the existence of both frequent and extreme jumps. (Huang & Tauchen 2005) intro-
duced a modification to the bipower variation, namely second lag bipower variation
estimated for each day t represented as,

BV art =
1

µ2
1(1− 2

M )

M∑
j=3

|rt,j ||rt,j−2|, t = 1, ..., T (2.10)

(Huang & Tauchen 2005) found that the second-lag bipower variation in Eq. (2.10)
reduces the influence microstructure noise has on the bias for finding jumps. More
specific, it reduces the local serial correlation induced by microstructure noise.
Using the measure defined in Eq. (2.10), (Bollerslev, Kretschmer, Pigorsch &
Tauchen 2009) found that one possible way of defining jumps could be represented
as,

JV art = RV art −BV art (2.11)

where JV art represents the jump variation. Theoretically, the jump variation is
restricted to be non-negative, but there might occur negative values for specific
values of M in practice. Hence, the value of JV art is of importance when it comes
to identifying actual jumps. It is then reasonable to consider all values beyond a
certain threshold to be significant jumps. (Andersen, Bollerslev & Dobrev 2007b)
and (Lee & Mykland 2008) proposed a Z-test statistic for finding these significant
jumps. The statistic is represented as

Z(t, i) =
rt,i
σ̂(t, i)

, (2.12)

where

σ̂(t, i)2 =
1

K − 2

i−1∑
j=i−K+2

|rt,i||rt,i−1| (2.13)

The bipower variation is used as the measure for volatility in the denominator,
which suggests that the method is somewhat robust. The variation is calculated
over a period with K observations where K is based on the observation frequency.
(Lee & Mykland 2008) proposed to use K = 110, 156 and 270 with respective
observation frequencies 30, 15 and 5 minutes. Under the null hypothesis of no
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jumps the Z-test has a normal distribution with the same properties as the z-
test introduced by (Huang & Tauchen 2005). To suggest a rejection region (Lee
& Mykland 2008) proposed to look at the distribution of maxima for the Z-test.
They showed that when the observation frequency goes to zero the absolute value
of the statistic converges to a Gumbel distribution,

maxi,j |Z(t, j)| − Cn
Sn

d−→ ζ (2.14)

where ζ is standard Gumbel distributed.

Cn =
(2 log n)1/2

µ
− log π + log(log n)

2µ(2 log n)1/2
, and Sn =

1

µ(2 log n)1/2

where n is the number of intraday observations for each period t. Hence, using the
Gumbel distribution, we reject the hypothesis of no jumps at time t, i when

|Z(t, i)| − Cn
Sn

> β,

given that exp(−e−β) = 1− α, i.e. β = − log(− log(1− α)), where α is the signifi-
cance level.(Andersen, Bollerslev, Fredriksen & Ørregaard Nielsen 2010) proposed
to estimate the quadratic variation based on the continuous and jump components
respectably as

CVt = RVt − JVt, t = 1, ..., T (2.15)

JVt =

M∑
i=1

JVt,i, t = 1, ..., T (2.16)

where

JVt,i = I{κt,i 6=0}

(
κ2t,i −

1

m−M
∑

k∈{1,...,m}\{ji,...,jM}

r2t,k

)
, j = 1, ...,M,

is the quadratic variation increase for each intraday jump κt,i.
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Chapter 3

Realized GARCH

In this section we consider the Realized generalized autoregressive conditional
heteroskedasticity model (Realized GARCH) which was introduced by (Hansen
et al. 2011), the notation used also follows from the same paper. The Realized
GARCH model is closely related to the regular GARCH model, but incorporates
realized measures of volatility, such as the realized variance shown in Eq.(2.6). In
the GARCH(1,1) model the conditional variance, ht, is a function of ht−1 and the
squared returns r2t−1. Hence, the difference between the two models is the inclu-
sion of a measurement equation, that relates the realized measures to the latent
volatility. The general structure of the RealGARCH(p,q) model is given by,

rt =
√
htzt, (3.1)

ht = v(ht−1, ..., ht−p, xt−1, ..., xt−q), (3.2)

xt = m(ht, zt, ut), (3.3)

where zt ∼ iid(0, 1) and ut ∼ iid(0, σ2
u), with zt and ut being mutually indepen-

dent. The first two equations we refer to as the return equation and the GARCH
equation. These equations comes from the original GARCH-X models, where the
xt is treated as an exogenous variable. (Chen, Ghysels & Wang 2009) includes a
list of such models and some related models.

The last equation, Eq. (3.3), we shall call the measurement equation, since the
realized measure xt introduced in this context can be interpreted as a measure-
ment of the GARCH equation, ht. This equation relates the realized measure to
the returns, which in turn is found to be highly significant.

As an example the structure of a RealGARCH(1, 1) model is given below,

rt =
√
htzt,

ht = ω + βht−1 + γxt−1,

xt = ξ + φht + τ(zt) + ut,
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where ht = var(rt|Ft−1) with Ft = σ(rt, xt, rt−1, xt−1, ...). The standard GARCH
model and other variants of ARCH is somewhat nested in the realized GARCH
framework. (Bollerslev 2009) gives a list of such models. The following is two
examples included by (Hansen et al. 2011) which shows how the realized GARCH
is nested in the GARCH model and the EGARCH model by (Nelson 1991).

Substituting xt = r2t we can verify that the Realized GARCH(p,q) model nests
the GARCH(p,q) model. With the parameters p = q = 1 we get the following
GARCH(1,1) structure,

v(ht−1, r
2
t−1) = ω + αr2t−1 + βht−1,

m(ht, zt, ut) = htz
2
t

Where the measurement equation is simply an identity.

We can also obtain the EGARCH model by substituting xt = rt,

v(ht−1, rt−1) = exp{ω + α|zt−1|+ θzt−1 + β log ht−1}, zt−1 = rt−1/
√
ht−1,

m(ht, zt, ut) =
√
htzt

In the next section we introduce the log-linear realized GARCH model.

3.1 Log-Linear Realized GARCH Specification

The log linear realized GARCH model is given by the following GARCH equation
and measurement equation,

log ht = ω +

p∑
i=1

βi log ht−i +

q∑
j=1

γj log xt−j , (3.4)

log xt = ξ + φ log ht + τ(zt) + ut, (3.5)

where zt = rt/
√
ht ∼ iid(0, 1), ut ∼ iid(0, σ2

u) and τ(z) is the leverage func-
tion. The log-linear realized GARCH preserves the ARMA structure which can
be extended to the standard GARCH models. This property gives the realized
GARCH model certain advantages when comparing it to the standard GARCH
model. (Hansen et al. 2011) gives a proposition which shows the GARCH equation
with lagged squared returns. The GARCH equation is then given by the following
equation,

log ht = ω +

p∑
i=1

βi log ht−i +

q∑
j=1

γj log xt−j +

q∑
j=1

αj log r2t−j , (3.6)

where q = maxi{(αi, γi) 6= (0, 0)} .
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Proposition 1. Define ωt = τ(zt) + ut and vt = log z2t − κ, where κ = E log z2t .
The realized GARCH model defined by Eq.(15) and Eq.(17) implies

log ht = µh +

p∨q∑
i=1

(αi + βi + φγi) log ht−i +

q∑
j=1

(γjωt−j + αjvt−j),

log xt = µx +

p∨q∑
i=1

(αi + βi + φγi) log xt−i + ωt +

p∨q∑
j=1

{−(αj + βj)ωt−j + φαjvt−j}

log r2t = µr +

p∨q∑
i=1

(αi + βi + φγi) log r2t−i + vt +

p∨q∑
j=1

{γi(ωt−j − φvt−j)− βjvt−j},

where µh = ω+ γ•ξ +α•κ, µx = φ(ω+α•κ) + (1−α• − β•)ξ, and µr = ω+ γ•ξ +
(1− β• − φγ•)κ, with

α• =

q∑
j=1

αj , β• =

p∑
i=1

βi, and γ• =

q∑
j=1

γj ,

using the conventions βi = γj = αj = 0 for i > p and j > q.

This proposition gives the structure for the different realized GARCH equations.
It implies that log ht follows a ARMA(p∨q, q−1) structure, while log r2t and log xt
follows a ARIMA(p∨ q, p∨ q) structure. The persistence of volatility is also given
by the above proposition, such that,

π =

p∨q∑
i=1

(αi + βi + φγi) = α• + β• + φγ•.

The LGARCH model which is the logarithmic GARCH model is closely nested in
the log-linear framework see (Geweke 1986) and (Athreya & Pantula 1986).

3.2 The Leverage Function

In this section the leverage function will be introduced and discussed. The lever-
age effect is a well known phenomenon in stock markets of a negative correlation
between today’s return and tomorrow’s volatility. So in the RealGARCH frame-
work, the leverage function models the dependence between returns and tomorrows
volatility. Hence, the parameters τ1 and τ2 introduced below, will give an indica-
tion of how dependent volatility are to changes in return. The function can be
constructed based on different specifications. Based on the condition E(τ(zt)) = 0,
a leverage function can be constructed by using the form

τ(zt) = τ1a1(zt) + ...+ τkak(zt), where E(ak(zt)) = 0,∀k,
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indicating that the function is linear in the unknown parameters. This functional
form includes a broad class of leverage functions used in previous empirical analysis.
In this paper we will concentrate on the hermite polynomials of the form

τ(z) = τ1z + τ2(z2 − 1) + τ3(z3 − 3z) + τ4(z4 − 6z2 + 3) + ...,

(Hansen et al. 2011) showed that if more then the two terms of highest order in
the leverage function was included, then those would become insignificant. Hence,
the leverage function we consider will be a simple quadratic form, such as

τ(zt) = τ1zt + τ2(z2t − 1)

This polynomial gives a simplified expression for the asymmetries in the leverage
function which is similar to the EGARCH model (Nelson 1991). These asymmetries
captures the slope of the news impact curve which is introduced in the next section.
Hence, the asymmetries are summarized by the statistics,

ρ− = corr{τ(zt) + ut|zt > 0} and ρ+ = corr{τ(zt) + ut|zt < 0}.

3.3 News impact curve

The leverage function introduced in the previous section is closely related to the
news impact curve which will be presented in this section. The news impact curve
was first introduced by (Engle & Ng 1991) and shows how volatility is impacted by
shocks to the price. (Chen & Ghysels 2010) gives a detailed study of the news im-
pact curve with the use of high frequency data. The estimation of the news impact
curve are simplified with the use of a leverage function with hermite polynomial
form. Assuming a realized GARCH model with a log-linear specification we can
define the news impact curve by,

ν(z) = E(log ht+1|zt = z)− E(log ht+1),

which again implies that the percentage impact on volatility can be represented
by 100ν(z). Since the realized GARCH model can be represented with a ARIMA
structure, we have that ν(z) = γ1τ(zt).

3.4 Quasi-Maximum Likelihood Analysis

In this section the properties of the quasi-maximum likelihood estimator related to
the Realized GARCH(p,q) model is discussed. The relation between the Realized
GARCH(p,q) model and the original GARCH model was shown to be significant.
This in turn can also be said about the structure of the QMLE analysis. One of
the basic ideas is that both the GARCH equation and the measurement equation
are taken to be independent formulations of the likelihood function. This result in
a likelihood function that can be used to compare the GARCH(p, q) model to the
more sophisticated Realized GARH(q, p) model which will be presented later.
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In this section the underlying QMLE structure for the log-linear Realized GARCH
model will be represented. Both the score and the Hessian will be given and the reg-
ularity conditions will be discussed. The log likelihood function, where a Gaussian
specification is assumed, is given by,

l(r, x; θ) = −(
1

2
)

n∑
t=1

[log(ht) +
r2t
ht

+ log(σ2
u) +

u2t
σ2
u

]

Where the leverage function is represented as τ ′at = τ1a1(zt) + ...+ τ ′kak(zt), and
the parameters in the model is given as,

θ = (λ′, ψ′, σ2
u)′ and λ = (ω, β1, ..., βp, γ1, ..., γq)

′ ψ = (ξ, φ, τ ′)′

Both the GARCH and measurement equations can be simplified by writing ĥt =
log(ht), x̂t = log(xt) and express the equations as,

gt = (1, ĥt−1, ..., ĥt−p, x̂t−1, ..., x̂t−q)
′, mt = (1, ĥt, a

′
t)
′.

where
ĥt = λ′gt and x̂t = ψ′mt + ut

Next, both the score and the Hessian is represented as derivatives with respect to
λ. The next Lemma and proposition is taken from (Hansen et al. 2011).

Lemma 1. Define ḣt and ḧt = ∂2ĥt

∂λ∂λ′ . Then ḣs = 0 and ḧs = 0 for s ≤ 0,
and

ḣt =

p∑
i=1

βiḣt−i + gt and ḧt =

p∑
i=1

βiḧt−i + (Ḣt−1 + Ḣ ′t−1),

where Ḣt−1 = (01+p+q×1, ḣt−1, ..., ḣt−p, 01+p+q×q) is an p+q+1×p+q+1 matrix.
(ii) When p = q = 1 we have with β = β1 that

ḣt =

t−1∑
j=0

βjgt−j and ḧt =

t−1∑
k=1

kβk−1(Gt−k +G′t−k),

where Gt = (03×1, gt, 03×1).

Proposition 2. (i) The score, ∂l
∂θ =

∑n
t=1

∂lt
∂θ , is given by

∂lt
∂θ

= −1

2

 (1− z2t + 2ut

σ2
u
u̇t)ḣt

− 2ut

σ2
u
mt

σ2
u−u

2
t

σ4
u


where u̇t = ∂ut

∂ log ht
= −φ+ 1

2ztτ
′ȧt with ȧt = ∂a(zt)

∂zt
.

(ii) The second derivative, ∂2l
∂θ∂θ′ =

∑n
t=1

∂2lt
∂θ∂θ′ , is given by
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∂2lt
∂θ∂θ′

=

 − 1
2
{z2t +

2(u̇2
t+utüt)

σ2
u

}ḣtḣ′t − 1
2
{1− z2t + 2utu̇t

σ2
u
}ḧt • •

u̇t
σ2
u
mtḣ

′
t +

ut
σ2
u
btḣ
′
t − 1

σ2
u
mtm

′
t •

utu̇t
σ4
u
ḣ′t

ut
σ4
u
m′t

1
2

σ2
u−2u2

t
σ6
u


where bt = (0, 1,− 1

2ztȧ
′
t) and üt = − 1

4τ
′{ztȧt + z2t ät} with ät = ∂2a(zt)/∂z

2
t .

An important aspect of time series models is the stationary representation. Con-
sidering the above lemma and proposition, (Carrasco & Chen 2002) introduced a
proposition which can be used in this context. They stated that if π = β + φγ ∈
(−1, 1) then ĥt has a stationary representation. This condition can easily be ob-
tained trough an linear constrained optimization algorithm. For calculation of
standard errors, Proposition 3 in (Hansen et al. 2011) states that if {(rt, xt, ĥt)} is
stationary and ergodic, then

1√
n

n∑
t=1

∂lt
∂θ

d→ N(0, Jθ) and − 1

n

n∑
t=1

∂2lt
∂θ∂θ′

p→ Iθ

provided that

Jθ =


1
4E(1− z2t + 2ut

σ2
u
u̇t)

2E(ḣtḣ
′
t) • •

− 1
σ2
u
E(u̇tmtḣ

′
t)

1
σ2
u
E(mtm

′
t) •

−E(u3
t )E(u̇t)
2σ6

u
E(ḣ′t)

E(u3
t )

2σ6
u
E(m′t)

E(u2
t/σ

2
u−1)

2

4σ4
u


and

Iθ =

 { 12 +
E(u̇2

t )
σ2
u
}E(ḣtḣ

′
t) • 0

− 1
σ2
u
E{(u̇tmt + utbt)ḣ

′
t} 1

σ2
u
E(mtm

′
t) 0

0 0 1
2σ4

u


are finite. Using these propositions results in a model only valid for the stationary
case π < 1. For a more analytical approach the reader is refer to the appendix in
(Hansen et al. 2011).

3.5 Direct computation of standard errors

Standard errors can be obtained from numerical derivatives, but can also be com-
puted directly. By using the score and hessian the standard errors can be repre-
sented as,

Ĵ =
1

n

n∑
t=1

ŝtŝ
′

t, where ŝt =

{
1

2
(1− ẑ2t +

2ût
σ̂2
u

ût)ĥ
′

t,−
ût
σ̂2
u

m̂
′

t,
σ̂2
u − û2t
2σ̂4

u

}′
and
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Î =
1

n

n∑
t=1


1
2

{
ẑ2t +

2(ˆ̇u2
t+ût ˆ̈ut)

σ̂2
u

}
ˆ̇
ht
ˆ̇
h
′
t +

1
2

{
1− ẑ2t + 2ût ˆ̇ut

σ̂2
u

}
ˆ̈
ht • •

−σ̂−2
u (ˆ̇utm̂t + ûtb̂t)

ˆ̇
h
′
t

1
σ̂2
u
m̂tm̂

′
t •

− ût ˆ̇ut
σ̂4
u

ˆ̇
h
′
t − ût

σ̂4
u
m̂
′
t

1
2

2û2
t−σ̂

2
u

σ̂6
u



=
1

n

n∑
t=1


1
2

{
ẑ2t +

2(ˆ̇u2
t+ût

ˆ̈ut)
σ̂2
u

}
ˆ̇
ht

ˆ̇
h
′

t + 1
2

{
1− ẑ2t + 2ût

ˆ̇ut

σ̂2
u

}
ˆ̈
ht • •

−σ̂−2u (ˆ̇utm̂t + ûtb̂t)
ˆ̇
h
′

t
1
σ̂2
u
m̂tm̂

′

t •

− ût
ˆ̇ut

σ̂4
u

ˆ̇
h
′

t 0 1
σ̂4
u


such that the zero condition follows from

∑n
t=1 ûtm̂

′

t = 0. The above method
follows from the fisher information, such that the standard errors can be computed
based on asymptotic properties.

3.6 Standard GARCH model related to the Real-
GARCH model

The previous section introduced the log-likelihood function for the RealGARCH
model. This function can be expressed as

logL(({rt, xt})nt=1; θ) =

n∑
t=1

log f(rt, xt|Ft−1),

where rt are the returns, xt are the realized measure and Ft is the information
given for t ≥ 0. The realized measure expressed in the log-likelihood is not present
in the standard GARCH model, so we need to rewrite the likelihood function to be
able to compare these models. This can be done by factorizing the join conditional
density for (rt, xt) by

f(rt, xt|Ft−1) = f(rt|Ft−1)f(xt|rt, Ft−1)

This factorization gives us, by inspection, the possibility to split the joint likelihood
into the sum, such that

l(r, x) = −1

2

n∑
t=1

[log(2π) + log(ht) +
r2t
ht

] +−1

2

n∑
t=1

[log(2π) + log(σ2
u) +

u2t
σ2
u

] (3.7)

So the first part of Eq.(3.7) is equal to the log-likelihood specification for the stan-
dard logarithmic GARCH model. This can then be used to compare the standard
logarithmic GARCH model to the log-linear Realized GARCH model.
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3.7 Distributions

The Realized GARCH model initially assumes a Gaussian distribution for both zt
and ut/σu. In this section we introduce other possible distributions for the stan-
dardized error term zt in Eq. (3.1). (Hansen 1994) introduced a flexible density
function which incorporates both heavy tails and skewness. The density functions
which will be represented here also have closed form solutions which facilitates
quasi-likelihood estimation. The first density function we introduce is a general-
ization of the student’s t distribution with normalized unit variance,

g(z|ν) =

Γ

(
ν+1
2

)
√
π(ν − 2)Γ

(
ν
2

)(1 +
z2

(ν − 2)

)−(ν+1)/2

where 2 < ν <∞. The student’s t distribution is less restrictive then the Gaussian
distribution, allowing for variation in the parameters. Considering that the real-
ized GARCH model produces returns with access skewness, the skewed student’s
t distribution might be a natural extension to the regular student’s t distribution.
(Hansen 1994) introduced the following density function which allows for restric-
tions for the different parameters.

g(z|ν, ε) =


bc

(
1 + 1

ν−2

(
bz+a
1−ε

)2)−(ν+2)/2

if z < −ab

bc

(
1 + 1

ν−2

(
bz+a
1+ε

)2)−(ν+2)/2

if z ≥ −ab

(3.8)

where 2 < ν <∞. and −1 < ε < 1. The constants a, b, and c, are given by

a = 4εc

(
ν − 2

ν − 1

)
, b2 = 1 + 3ε2 − a2,

c =

Γ

(
ν+1
2

)
√
π(ν − 2)Γ

(
ν
2

)
The reader is referred to the Appendix in (Hansen 1994) for the proof that this is
a proper density function and it facilitates mean zero and unit variance, which is
important in the ARCH framework. By substituting ε = 0 in Eq.(3.8) the density
function reduces to the standard student’s t distribution and by setting ε = 0 and
ν =∞ we obtain the Gaussian distribution. If the skewness parameter ε is greater
then zero, the distribution mode is to the left of zero and distribution is skewed to
the right, and the opposite is true for ε less then zero.

Figure 3.1 represents the theoretical distributions for the above density functions
with zero mean and unit variance. The skewness and scale parameters are only for
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a visual representation and does not connect to the result.

Since the distributions only applies to the standardized error term zt, the mea-
surement equation will be unchanged. The same factorization used for the log-
likelihood is then valid, such that

L =

n∏
t=1

h(rt|x1, ..., xt−1)l(xt|x1, ..., xt−1, rt)

where h(rt|x1, ..., xt−1) is determined by the distribution of zt and l(xt|x1, ..., xt−1, rt)
is the normal distribution with mean µ+φ log σ2

t +τ(zt) and variance σ2
u. Introduc-

ing a new distribution for zt only changes the log-likelihood for h(..) and keeps l(..)
unchanged. As an example of a valid log-likelihood (Lambert & Laurent 2000, Lam-
bert & Laurent 2002) introduced an extension of the skewed student’s t density
which was proposed by (Fernández & Steel 1998).

−3 −2 −1 0 1 2 3

0
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0
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0
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0
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0
.4

0
.5

Conditional Density Estimation

Normal

Student’s t, dF=3

Skewed student’s t, dF = 10, Xi = 0.8

Figure 3.1: Density functions with zero mean and unit variance. The density functions
represented are the standard normal, student’s t with 3 degrees of freedom and skewed
student’s t distributions with 10 degrees of freedom and skew parameter 0.8.

G(zt|ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√
π(ν − 2)

(
1 +

z2t
ν − 2

)−(ν+1)/2

where zt = rt/ht, Γ(ν) =
∫∞
0
e−xxν−1dx is the gamma function and, ν is the

parameter that measures the tail thickness. By introducing the density into the
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GARCH framework the log-likelihood can be represented by,

Lsst(rt|xt, ε, ν) = − 1

2

n∑
t=1

[
log Γ

(
ν + 1

2

)
− log Γ

(
ν

2

)
− 1

2
log(π(ν − 2))

+ log

(
2

ε+ (1/ε)

)
+ log(s)− 1

2
log(ht) + (1 + ν)

log

(
1 +

(szt +m)2

ν − 2
ε−2It

)
− 1

2
log(2π) + log(σ2

u) +
u2t
σ2
u

]

where ε is the asymmetry parameter and ν is the degree of freedom for the distri-
bution. The distribution related to the measurement equation remains unchanged
while the skewed student’s t distribution has been incorporated for the GARCH
equation. The parameters m and s is represented as,

m =
Γ(ν−12 )

√
ν − 2

√
πΓ(ν2 )

(
ε− 1

ε

)
, s2 =

(
ε2 +

1

ε2
− 1

)
−m2

with the indicator function It given as,

It =

{
1, if zt ≥ −ms
−1 if zt < −ms

The log-likelihood for the generalized student’s t distribution follows from the
skewed student’s t distribution.

Lst(rt|xt, ν) = − 1

2

n∑
t=1

[
log Γ

(
ν + 1

2

)
− log Γ

(
ν

2

)
− 1

2
log(π(ν − 2))

− 1

2
log(ht) + (1 + ν) log

(
1 +

(
z2t

ν − 2

))
− 1

2
log(2π) + log(σ2

u) +
u2t
σ2
u

]
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Chapter 4

Empirical Results

In this section we present empirical results for the quadratic variation theory and
the realized GARCH model. The results are based on intraday returns for the
ICE Brent Crude Oil future front month contract. Detailed results are represented
for 3, 5, 10, 15 and 30 minute observation frequencies together with stylized facts
for the intraday returns and realized measures. We estimate the realized GARCH
model based on the five different frequencies. A more detailed study is done for the
3 minute realized variance with the inclusion of distributions for the standardized
error term and comparison to the logarithmic GARCH model.

In this paper we use the log-linear realized GARCH(1,2) model. (Hansen et al.
2011) states that the log-linear realized GARCH model is far less miss-specified
then the linear model. They show this by comparing robust and non-robust stan-
dard errors. The model can be represented as,

rt =
√
htzt

ht = exp{ω + β log ht−1 + γ1 log xt−1 + γ2 log xt−2}
log xt = ξ + φ log ht + τ(zt) + ut

We parametrize the model by setting p = 1 and q = 2, indicating that ht and
xt are included with one and two lags respectively. The parameters are based on
results where we found small, but statistical significant evidence for the realized
GARCH(1,2) model compared to the realized GARCH(1,1) model. The statistic
used was the likelihood ratio statistic where each of the three smaller models are
benchmarked against the largest model. In the QMLE framework the distribution
for the likelihood ratio, LRi, is given as a weighted sum of χ2-distributions 1.

1The likelihood ratio statistic given as,

LRi = 2{lRG(p,q)(r, x)− li(r, x)},

is only a indicator of significance.
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4.1 Data description

In this section we discuss the contract specifications for the ICE Brent Crude Fu-
tures and the data connected to these contracts. These are deliverable contracts
based on EFP 2 delivery with an option to cash settle. The contracts span a max-
imum of 72 consecutive months with addition to 6 contract months comprising of
June to December which will be listed for an additional three calender years. In
this paper we take a closer look at the front month contract. This contract span
one month with expiration date either on the 15th day before the first day of the
contract month or if the 15th is not a business day, the next proceeding business
day. Trading hours are based on UK hours with open 01:00 London local time
and close 22:00 London local time. The settlement price for the contract are based
on the weighted average price for trades during a three minute settlement period
from 19:27:00, London time. The trading hours reported in this paper refers to
London local time, indicating that EST opens at 20:00, Chicago opens at 19:00
and Singapore opens at 08:00. The data used in this paper contains information
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Figure 4.1: The figure shows settlement prices and returns for the ICE Brent Crude
front month contract for the period 1/1/2005 to 31/1/2012. The settlement price used for
both figures are based on a weighted average price during a three minute settlement period
from 19:27:00, London local time.

regarding every trade and/or quotation in the period 1/1/2005 to 31/1/2012. For
liquidity reasons, only the front month contract was taken into consideration when
constructing the time series. Previous empirical results has shown that the time
step between intraday returns should depend on the liquidity and micro structure
noise in the traded contract. In other words, if the liquidity is low (low trading fre-
quency) the time step between intraday returns should be increased. This results
in a better representation of the realized variance which limits the possibility for

2The Exchange of Futures for Physical (EFP) is an alternative mechanism that is used to price
physical crude oil. Participants can exchange their future positions for a physical position.

20



overestimation. In this paper we operate with five different observation frequen-
cies. Hence, prices are recorded with 3, 5, 10, 15 and 30 minute step sizes which
results in 421, 253, 127, 85 and 43 intraday observations respectively. Returns are
calculated based on weighted average trades between 19:27 and 19:30 London local
time. Figure 4.1 shows settlement prices and returns for the ICE Brent Crude front
month contract for the period 1/1/2005 to 31/1/2012.

Table 4.1 Panel A-E shows the descriptive statistics of daily intraday returns where
each Panel refers to the frequency of intraday returns. The mean for the total sam-
ple in Panel A-E is not significantly different from zero. The min and max ranges
from −4.5 to 3.3 for the total sample in all the Panels. Overall the biggest returns
are recorded in Panel E where the 30 minute returns are given. The standard
deviation increases together with the frequency off observations. The skewness for
all the total samples are significantly above zero and the kurtosis is high and in-
creasing together with the observation frequency. This shows that the distribution
of the intraday returns is leptokurtic.
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Figure 4.2: The figure shows distributions for 3, 5, 10, 15 and 30 minute returns based
on the ICE Brent Crude Oil Future front month contract. The observation frequencies
has 421, 253, 127, 85 and 43 intraday returns respectively. The data is taken from the
period 1/1/2005 to 31/1/2012.

The Jarque-Bera (JB) statistic which incorporates both the skewness and the kur-
tosis rejects the null hypothesis of normality at the 1% significance level for all
samples. Figure 4.2 shows distributions for 3, 5, 10, 15 and 30 minute returns.
The figure indicate that there is a high amount of zero returns for all the total
samples, but the densities suggests that there is a high reduction in zero returns
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from 3 to 30 minute returns. Hence, the assumption of normal distributed intra-
day returns are rejected. The Ljung-Box statistic, Q(10) and Q2(10), tests the null
hypothesis that there is no correlation up to lag 10. This test was done for regular
returns, Q(10), and squared returns, Q2(10). The Ljung-Box statistic rejects the
null hypothesis for all the total series at the 1 % significance level both for regu-
lar returns and squared returns. The time of day series shows some correlation for
the different observation frequencies, but does not behave in any particular pattern.

Figure 4.3 gives a visual representation of the correlation in the total sample series
for the different frequencies. The regular returns shows low correlation for all the
total samples. Persistence in volatility is shown in the auto correlation of squared
returns. Indicating that the correlation for squared returns are significantly higher
then for regular returns.
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Figure 4.3: The Figure shows auto correlation for 3, 5, 10, 15 and 30 minute returns
and squared returns from the ICE Brent Crude Oil Future front month contract. The
correlation is calculated using the full sample sizes.
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Panel A: Descriptive Statistics for 3 minute returns

#obs Mean Min Max St.Dev. Skew Kurt JB3 Q(10) Q2(10)

Total1 760k2 0.00 -4.5 3.3 0.04 1.97 91.98 1.9e8 646.0∗∗∗ 13241∗∗∗

02:30 1804 0.00 -0.75 1.22 0.05 6.01 216.2 3.4e6 3.58 0.139
06:30 1804 0.00 -0.62 0.57 0.05 -0.16 28.05 4.7e4 27.11∗∗∗ 45.31∗∗∗

10:30 1804 0.00 -0.7 1.08 0.08 0.81 33.65 7.1e4 11.61 2.02
14:30 1804 0.01 -0.61 0.78 0.12 0.40 7.916 1.8e3 25.46∗∗∗ 137.7∗∗∗

20:30 1804 0.00 -0.46 0.38 0.05 -1.01 22.83 2.9e5 16.94∗ 24.4∗∗∗

Panel B: Descriptive Statistics for 5 minute returns

#obs Mean Min Max St.Dev. Skew Kurt JB3 Q(10) Q2(10)

Total1 456k2 0.00 -4.5 3.3 0.05 3.42 89.21 5.5e7 378.3∗∗∗ 12628∗∗∗

02:30 1804 0.00 -0.75 1.22 0.06 3.86 110.9 8.8e5 17.7∗ 4.02
06:30 1804 0.00 -0.98 0.49 0.07 -1.63 32.78 6.7e4 19.34∗∗ 17.3∗

10:30 1804 0.00 -1.49 1.37 0.10 -0.78 48.66 1.6e5 11.46 5.45
14:30 1804 0.01 -0.68 0.86 0.15 0.61 7.427 1.5e3 11.35 122∗∗∗

20:30 1804 0.00 -1.2 0.48 0.07 -3.55 64.76 2.9e5 19.31∗∗ 1.24

Panel C: Descriptive Statistics for 10 minute returns

#obs Mean Min Max St.Dev. Skew Kurt JB3 Q(10) Q2(10)

Total1 229k2 0.00 -4.5 3.3 0.06 1.06 45.64 1.2e7 160.8∗∗∗ 8492∗∗∗

02:30 1804 0.00 -0.75 1.22 0.08 1.62 47.69 1.5e5 17.8∗ 8.02
06:30 1804 0.00 -1.24 0.57 0.09 -1.49 28.66 5.0e4 25.8∗∗∗ 27.12∗∗∗

10:30 1804 0.01 -0.76 1.08 0.13 0.145 10.71 4.5e3 25.1∗∗∗ 48.93∗∗∗

14:30 1804 -0.01 -3.09 1.85 0.29 -1.59 29.98 5.5e4 26.8∗∗∗ 39.36∗∗∗

20:30 1804 0.00 -1.32 0.6 0.09 -2.31 47.42 1.5e5 9.98 4.78

Panel D: Descriptive Statistics for 15 minute returns

#obs Mean Min Max St.Dev. Skew Kurt JB3 Q(10) Q2(10)

Total1 153k2 0.00 -4.5 3.3 0.07 2.88 40.77 4.8e6 108.6∗∗∗ 6756∗∗∗

02:30 1804 0.00 -0.75 1.22 0.10 0.68 27.82 4.6e4 20.9∗∗ 5.83
06:30 1804 0.01 -1.21 0.84 0.11 -1.22 24.39 3.4e4 35.5∗∗∗ 76.54∗∗∗

10:30 1804 0.01 -1.28 0.9 0.15 -0.07 9.81 3.4e3 12.4 67.49∗∗∗

14:30 1804 0.01 -1.34 1.64 0.25 0.17 6.864 1.1e3 10.9 123∗∗∗

20:30 1804 0.00 -1.35 1.02 0.11 -0.76 35.35 7.4e4 15.7 27.2∗∗∗

Panel E: Descriptive Statistics for 30 minute returns

#obs Mean Min Max St.Dev. Skew Kurt JB3 Q(10) Q2(10)

Total1 77k2 0.00 -4.5 3.3 0.10 1.69 12.63 1.1e6 50.2∗∗∗ 4280∗∗∗

02:30 1804 0.00 -1.43 1.22 0.15 -0.69 19.40 2.0e4 11.7 46.1∗∗∗

06:30 1804 0.01 -1.46 0.94 0.15 -0.93 15.63 1.2e4 17.8∗ 165∗∗∗

10:30 1804 0.02 -1.72 1.41 0.23 -0.24 9.819 3.4e3 57.2∗∗∗ 174∗∗∗

14:30 1804 0.01 -2.08 1.77 0.36 -0.17 6.295 8.2e2 20.12∗∗ 321.8∗∗∗

20:30 1804 0.00 -1.38 0.96 0.13 -0.30 18.25 1.7e4 34.1∗∗∗ 31.46∗∗∗

1 Total sample of observation. 2 k is equal to thousand. 3 Jarque-Bera test statistic.

Table 4.1: Descriptive statistics for the ICE Brent Crude future contracts with 3,5,10,15
and 30 minute intraday returns. The table shows number of observations, mean, min,
max, standard deviation, skewness, kurtosis, JB is the Jarque-Bera statistic to test the null
hypothesis of normality, Q(10) is the Ljung-Box statistic adjusted for heteroskedasticity
following (Diebold 1988) to test the null hypothesis of no autocorrelations up to 10 lags
and Q2(10) is the same test, but used for squared returns. The tests are done for the total
sample and all returns recorded at 02:30, 06:30, 10:30, 14:30 and 20:30 for each day. ***
Rejected at the 1 % significance level. ** Rejected at the 5 % significance level. * Rejected
at the 10 % significance level.
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4.2 Stylized Facts For Intraday Returns

It has been shown that high-frequency prices and returns can improve volatility
estimates and forecasts. In this section we discuss some stylized facts related to
intraday returns. These facts are discussed in more detail by (Taylor 2007). With
the inclusion of high-frequency data, prices can be analyzed down to every trade
and/or quotation. This involves some difficulty since the buy and sell quotes differ,
the time between tick observations varies and there are enormous amounts of data.
Because of these restrictions the prices has to be observed at some intermediate
frequency. This is typically every five minutes, but varies based on frequency of
trading. Figure 4.4 shows a typical day where each dot refers to a specific price,
recorded each 3 minutes. On this specific day there was five trade, on average,
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Figure 4.4: ICE Berent Crude Futures trades where prices are recorded each 3 minutes.
Prices are recorded from opening hour, 01:00, until close at 22:00 GMT.

every second. The returns obtained from each price observation have a fat-tailed
distribution which again corresponds to a high kurtosis. (Taylor 2007) gives a list
of some stylized facts that was found to be correct for the intraday returns obtained
from the ICE Brent Crude Futures contracts.

• Returns obtained from intraday observations have a fat-tailed distribution,
with increasing kurtosis for higher observation frequency.

• Returns from intraday observations are almost uncorrelated. Any important
dependence is usually negative and between consecutive returns.

• There is substantial positive dependence among intraday absolute returns. It
occurs at many low lags.

• The level of volatility on average depends on time of day, with a significant
intraday variation.
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The last point refers to volatility patterns that depend on time during the day,
the day of week and macroeconomic news announcements. Figure 4.5 summerises
the intraday pattern for the ICE Brent Crude Future market across all days of the
week, from 1/1/2005 to 31/1/2012. The returns are based on three-minutes returns
from open, 01:00 to close at 22:00 GMT. It’s important to note that a circular is
issued when the UK switches from GMT to BST and also when the US switches
from DST which will affect the closing times. This is also shown in Figure 4.5,
indicating that the two last spikes refers both to contract changes. In section 2 we
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Figure 4.5: Three-minute fitted open-market average returns for the ICE Brent Crude
Future contracts, using all days of the week, for the period 1/1/2005 to 31/1/2012.

introduced a fairly accurate measure of volatility, known as realized volatility. In
this paper we operate with five different frequencies for realized volatility, defined
by

RVt =

√√√√ N∑
j=1

r2t,j

where N is dependent on which observation frequency is used. Realized volatility
also exhibits some stylized facts which is found true for many markets (Taylor 2007).

• The distribution, trough time, of RVt is approximately log normal. See Figure
4.6 a), where the dotted cure is the theoretical log normal distribution.

• The distribution of daily returns divided by realized volatility, i.e of rt/RVt,
is approximately normal, unlike the distribution of returns. See Figure 4.6
b), where the dotted curve is the theoretical normal distribution.

• The autocorrelation of realized volatility (and its logarithm) decay slowly and
resembles those of a ”long memory” process. See Figure 4.6 c).
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Figure 4.6: a) The distribution of realized volatility for the ICE Brent Crude Future
contracts. b) The distribution of the daily standardized returns for ICE Brent Crude Future
contracts. c) Autocorrelations for the logarithm of realized volatility for the ICE Brent
Crude Future contracts. All three figure are based on data from 1/1/2005 to 31/1/2012.

4.3 Realized measures

The realized measures introduced in the quadratic variation theory include real-
ized variance, jump variation, realized bipower variation and continuous variation.
These measures are designed to split the volatility into different categories, which
is easier to interpret. The jump- and continuous variation are measures related to
the realized variance. Figure 4.7 shows realized volatility computed for the total
sample period with 3, 5, 10, 15 and 30 minutes returns. The realized volatility is
calculated using data from open (01:00, London local time) to close (22:00, London
local time) while taking into account the shift from GMT to BST. We also adopted
the realized kernel as our realized measure. This estimator is similar to the realized
variance, but more robust to differences obtained from bid/ask spread and various
noise. The implementation follows a simplified version of the kernel introduced by
(Barndorff-Nielsen, Hansen, Lunde & Shephard 2008).

Since the microstructure noise would effect the lowest resolution of data, the re-
alized kernel was only implemented for our 3 minute returns. This gave no sig-
nificant improvement, indicating that the effect of microstructure noise on our 3
minute returns are quite low. Table 4.2 shows descriptive statistics for the realized
variance based on all observation frequencies. The mean, min and max show a
clear increase for lower observation frequencies. This suggests that there are more
variation included in lower frequencies then for higher. The standard deviation
are more similar but does also show the same pattern. The skewness and kurtosis
suggest that the data is leptokurtic. The increase for higher frequencies are a result
related to the sample sizes. The hypothesis for normality in the Jarque-Bera statis-
tic is rejected at the 1% significance level. The Ljung-Box statistic which tests if
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Descriptive Statistics for Realized Volatility

Mean Min Max St.Dev. Kurt Skew JB Q(10) ADF ρ1 ρ10

RV3min 3.090 0.253 42.54 3.42 25.02 3.69 40643 6804.4 −4.01 0.711 0.588

RV5min 3.004 0.205 43.02 3.42 26.67 3.86 46587 6489.0 −4.07 0.695 0.577

RV10min 2.929 0.180 41.01 3.37 26.15 3.86 44771 6379.8 −3.82 0.696 0.561

RV15min 2.886 0.186 41.73 3.41 26.53 3.92 46257 5982.2 −3.99 0.668 0.564

RV30min 2.812 0.162 41.72 3.39 27.11 3.95 48375 5397.5 −4.23 0.629 0.530

Table 4.2: Descriptive statistics for the ICE Brent Crude future contracts with 3,5,10,15
and 30 minute realized variance. The table shows mean, min, max, standard deviation,
kurtosis, skewness, JB is the Jarque-Bera statistic to test the null hypothesis of normality,
Q(10) is the Ljung-Box statistic adjusted for heteroskedasticity following (Diebold 1988)
to test the null hypothesis of no autocorrelations up to 10 lags, ADF is the Augmented
Dickey-Fuller test for the null hypothesis that the series have a unit root and ρ1, ρ10 is
autocorrelation at lag 1 and 10 respectively.

the data is independently distributed (no correlation) are also rejected at the 1%
significance level. This result is consistent with the well known phenomenon of
volatility clustering. This is also shown by ρ1 and ρ10 which shows autocorrelation
at lag 1 and 10 respectively. Figure 4.8 shows the auto correlation function for 3,
5, 10, 15 and 30 minute returns. There is high persistence in correlation, indicating
that all the samples can be compared to a long memory process. The Augmented
Dickey-Fuller test also rejects the null hypothesis that the series have a unit root
at the 1% significance level. In the quadratic variation theory section we intro-
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Figure 4.7: The figure shows realized variance for the ICE Brent Crude Oil futures front
month contract with observation frequency 3, 5, 10,15 and 30 minutes respectively. All
figures are based on intraday data from 1/1/2005 to 31/1/2012.
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Figure 4.8: The Figure shows realized variance based on 3, 5, 10, 15 and 30 minute
returns. The figures are based on intraday data from 1/1/2005 to 31/1/2012.

duced the notion of splitting the realized volatility into a continuous and a jump
component. Jumps in returns are highly responsible for the asymmetries which
is observed in the leverage function. The jumps often represents shocks in return
which again effects volatility. (Hamilton 2011) found that events in the oil market
are important for policy makers since shocks in price is often followed by economic
downturn. Table 4.3 shows descriptive statistics for continuous and jump volatil-
ity. Since these measures are components of the realized volatility they exhibit the
same properties as we found for the realized volatility. The jump percentage 3 is
similar between observation frequencies indicating that the Z-test statistic is biased.

Table 4.4 shows detailed descriptive statistics for jump volatility based on 3 minute
intraday returns. The jump percentage is similar across different years, but in-
creased between 2007-2009. Hence, we would assume that the jump volatility
would increase in the financial crisis period. This is only an assumption, with not
enough significant evidence to back it up. The daily average jump intensity is sim-
ilar for all years. Figure 4.9 shows continuous volatility and jump volatility for 3
minute and 30 minute returns. The jump volatility is constructed using a indicator
function where the value is zero for non jump days and the JV value for jump days.

3The jump percentage is calculated by counting the number of days with return jumps and
dividing it with the total sample size.
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Descriptive Statistics for Continuous Volatility and Jump Volatility

Mean Min Max St.Dev. Kurt Skew Jump %

CV3min 2.5609 0.065 24.69 2.76 16.4 3.11 -

JV3min 0.5295 0 30.15 1.25 194 10.5 49 %

CV5min 2.6025 0.059 33.38 2.91 23.8 3.62 -

JV5min 0.4017 0 33.04 1.29 252 12.3 43 %

CV10min 2.5704 0.063 28.48 2.81 19.3 3.31 -

JV10min 0.3591 0 34.41 1.35 251 12.4 39 %

CV15min 2.5372 0.042 32.84 2.87 25.6 3.79 -

JV15min 0.3489 0 32.52 1.38 190 10.8 44 %

CV30min 2.4912 0.049 32.13 3.01 25.9 3.92 -

JV30min 0.3210 0 33.04 1.34 226 11.8 36 %

Table 4.3: Descriptive statistics for the ICE Brent Crude future contracts with 3,5,10,15
and 30 minute continuous and Jump Volatility. The table shows mean, min, max, standard
deviation, kurtosis, skewness and jump percentage based on the intraday Z-test statistic.

Jump Descriptive Statistics

Year % Days
with Return
jumps

N. days with
Return Jumps

Average Jump
intensity
(Day)

Max Jump in-
tensity (Day)

2005 40.40 101 1.49 14
2006 37.11 95 1.92 17
2007 57.97 147 1.82 11
2008 59.13 149 1.72 12
2009 53.15 135 1.59 13
2010 43.57 112 1.47 9
2011 46.24 119 1.42 8
2012∗ 14.20 3 0.58 2

Table 4.4: Descriptive statistics for jump volatility based on 3 minute intraday returns.
The table shows percentage of days with return jumps, number of days with return jumps,
average intensity and maximum jump intensity. The intraday Z-test statistic has been
used to estimate the values. * The data only shows the first month of the year.
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Figure 4.9: The figure shows 3 and 5 minute continuous and jump volatility. All figures
are based on data from 1/1/2005 to 31/1/2012.
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4.4 Empirical Results for the Log-Linear Realized
GARCH model

In this section we present results for the Realized GARCH model with a log-linear
specification. We use RG(p, q) to denote the log-linear Realized GARCH model
with p lags of ht and q lags of xt. The model will be estimated with the parameters
p = 1 and q = 2. The model will be estimated for five different observation
frequencies and for the sake of comparison we use the logarithmic GARCH(1,1)
model. Results will be reported for the total sample and a rolling window for the
out of sample comparison. Distributions will be included for the standardized error
term zt in Eq (3.1) and the conditional correlations, ρ− and ρ+ will be represented
together with the news impact curve.

4.4.1 Log-Linear Realized GARCH for total sample (Table
4.5)

Table 4.5 shows parameter estimates for the log-linear realized GARCH(1,2) model
for the total sample series. The empirical results are based on realized volatility
included in the measurement equation with observation frequencies 3, 5, 10, 15 and
30 minutes. The robust standard errors (in bracers) together with the t-statistics
suggests that all parameters are significant. The estimate of φ in the measurement
equation is close to one, φ̂ ' 1, for all observation frequencies, but decreases when
the frequency increases. This suggests that the realized measure, xt, which is in our
case the realized volatility, is proportional to the conditional variance for all the
observation frequencies. The decrease in this parameter suggests that the lower
observation frequencies is a better explanatory measure then higher frequencies.
The parameter ξ in the measurement equation is close to zero for all the frequen-
cies, suggesting that the realized measure is computed over a very similar period.
The model seems to distinguish between the different frequencies even though the
realized measure are calculated based on the same period.

The β parameter in the GARCH equation is also given more weight when the
observation frequency increases. This suggest that the measurement equation is
more significant for lower observation frequencies, giving more weight to the real-
ized measures. This is also consistent with the decrease for the error term in the
measurement equation. The parameter σu shows a clear increase for increasing ob-
servation frequencies. In terms of the log-likelihood function, l(x, r), the 3 minute
observation frequencies leads to a much better empirical fit then the 5 minute fre-
quency. The drop from −4118.0 to −4021.1 is quite significant without the need
of further statistical testing. The gap between the other frequencies is also signifi-
cant, leading to a approximately linear improvement in the log-likelihood function.
The numerical optimization algorithm resulted in strong convergence for all the
observation frequencies.
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Total Sample
Point Estimates and Log-Likelihood

Model RG3 min RG5 min RG10 min RG15 min RG30 min

ω -0.01 -0.00 0.00 0.01 0.01
(0.01) (0.01) (0.00) (0.01) (0.01)

α

β 0.82 0.84 0.83 0.85 0.86
(0.03) (0.02) (0.03) (0.02) (0.02)

γ1 0.34 0.34 0.30 0.29 0.24
(0.03) (0.03) (0.03) (0.03) (0.03)

γ2 -0.17 -0.18 -0.13 -0.14 -0.09
(0.04) (0.04) (0.04) (0.03) (0.03)

ξ 0.09 0.06 0.03 0.00 -0.04
(0.04) (0.04) (0.04) (0.04) (0.04)

φ 0.98 0.97 0.97 0.97 0.96
(0.04) (0.05) (0.04) (0.04) (0.04)

σu 0.39 0.41 0.43 0.45 0.51
(0.00) (0.01) (0.01) (0.01) (0.01)

τ1 -0.04 -0.04 -0.04 -0.05 -0.05
(0.01) (0.01) (0.01) (0.01) (0.01)

τ2 0.05 0.05 0.06 0.06 0.08
(0.01) (0.01) (0.01) (0.01) (0.01)

l(r, x) -4021.1 -4118.0 -4215.9 -4314.6 -4516.4
l(r) -3180.6 -3180.9 -3176.9 -3181.5 -3181.6
π 0.993 0.993 0.992 0.993 0.993

Table 4.5: Results with the log-linear specification for ICE Brent Crude Oil front month
contract: RG donates the realized GARCH model with parameters p = 1 and q = 2. The
subscripts donates 3,5,10,15 and 30 minute realized variance. The standard errors (in
brackets) are robust standard errors. l(r, x) and l(r) represents the total log-likelihood
function and the log-likelihood function for the GARCH equation respectively.
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4.4.2 Log-Linear Realized GARCH for out of sample (Table
4.7)

Table 4.6 shows log-likelihood estimates for the log-linear realized GARCH(1,2)
model with a rolling window series. The rolling window is constructed by taking
the average over the total amount of simulations. The table show 1000, 1200, 1400
and 1600 observation series for the five different realized measure frequencies. The
results are similar to the total sample estimates. All the rolling windows show the
same approximately linear increase in the log-likelihood function. This indicates
that the 3 minute realized variance is a significantly better estimate then for re-
alized variance constructed from higher observation frequencies. Table 4.7 shows

Out of Sample Log-Likelihood

Window RG3 min RG5 min RG10 min RG15 min RG30 min

w = 1000 -2950.4 -3012.4 -3092.5 -3198.2 -3302.6

w = 1200 -3202.1 -3264.6 -3340.4 -3470.5 -3590.2

w = 1400 -3516.5 -3569.8 -3664.5 -3772.4 -3945.1

w = 1600 -3845.1 -3901.2 -3998.2 -4130.1 -4234.2

Table 4.6: Results for the log-linear realized GARCH(1,2) model for the ICE Brent
Crude future front month contract. w donates the sample size for the rolling window esti-
mates. RG donates the realized GARCH(1,2) model with different observation frequencies
for the realized measure.

both the log-likelihood and point estimates for the rolling window with a sample
size of 1400. The estimate of φ is closer to unity for the out of sample forecasts
indicating that the realized measures are given more weight.

All the parameters are exhibiting the same properties we found for the total sample
estimates. Taking into account the sample size, the gap between 3 minute and 5
minute realized volatility is still significant, but less then what we found for the to-
tal sample. The likelihood estimate for the GARCH equation, l(r), should remain
constant, since the realized measures only effects the estimates for the measure-
ment equation. The leverage parameters τ1 and τ2 also changes in magnitude for
the out of sample forecast, which we will discuss in the preceeding sections.
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Out of Sample
Point Estimates and Log-Likelihood

Model RG3 min RG5 min RG10 min RG15 min RG30 min

ω -0.01 0.00 0.00 0.01 0.02
(0.01) (0.01) (0.01) (0.01) (0.01)

α

β 0.83 0.84 0.83 0.85 0.84
(0.03) (0.03) (0.03) (0.02) (0.02)

γ1 0.39 0.38 0.35 0.32 0.25
(0.03) (0.03) (0.03) (0.03) (0.03)

γ2 -0.22 -0.23 -0.19 -0.17 -0.09
(0.04) (0.04) (0.04) (0.04) (0.04)

ξ 0.08 0.04 0.01 -0.02 -0.07
(0.06) (0.06) (0.05) (0.05) (0.05)

φ 0.99 0.99 0.99 0.99 0.98
(0.05) (0.05) (0.05) (0.05) (0.05)

σu 0.38 0.39 0.42 0.44 0.50
(0.00) (0.01) (0.01) (0.01) (0.01)

τ1 -0.04 -0.04 -0.05 -0.05 -0.05
(0.01) (0.01) (0.01) (0.01) (0.01)

τ2 0.05 0.05 0.06 0.06 0.07
(0.01) (0.01) (0.01) (0.01) (0.01)

l(r, x) -3516.5 -3569.8 -3664.5 -3772.4 -3945.1
l(r) -2830.2 -2829.7 -2825.2 -2830.2 -2830.2
π 0.993 0.993 0.992 0.993 0.993

Table 4.7: Results with the log-linear specification for ICE Brent Crude Oil front month
contract: RG donates the realized GARCH model with parameters p = 1 and q = 2. The
subscripts donates 3,5,10,15 and 30 minute realized variance. The standard errors (in
brackets) are robust standard errors. l(r, x) and l(r) represents the total log-likelihood
function and the log-likelihood function for the GARCH equation respectively. The results
are based on a rolling window with w = 1400 observations.
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4.4.3 Log-Linear Realized GARCH model with distributions
related to the standard GARCH model (Table 4.8)

Table 4.8 shows the Log-linear realized GARCH(1,2) model based on 3 minute re-
alized volatility. The table also includes results for the logarithmic GARCH(1,1)
model and the realized GARCH model with the normal, student’s t and skewed stu-
dent’s t distribution. The log-likelihood function, l(r), clearly shows a significant
improvement compared to the LGARCH(1,1) model. Technically, the logarithmic
GARCH(1,1) model leads to a worse fit then the GARCH(1,1) model, but the dif-
ference is not significant in this context. Judging from the estimated values of the
log-likelihood, the skewed student’s t distribution leads to the best fit. The log-
likelihood ratio statistic only gave weak evidence for the inclusion of the skewed
student’s t distribution.

The skew parameter, ε, suggests that the standardized error term, zt, has a negative
skewness. Although, the degree of freedom for the student’s t distributed indicates
a strong resemblance to the normal distribution, but with heavier tails. Figure
4.10 shows the different distributions with their respective estimated values. The
persistence in volatility, which can be measured by the estimate β+ γφ, is close to
0.99 for each distribution. This shows that there is a high persistence in volatility
which is common in many financial markets.
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Figure 4.10: The figure shows estimated values for the normal, student’s t and skewed
student’s t distributions. The distributions are fitted to the standardized error term, zt,
in the return equation.
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Total Sample
Point Estimates and Log-Likelihood

Model LG(1, 1) RGNormal RGStudent′s t RGSkewd Stud t

ω 0.03 -0.01 -0.03 -0.02
(0.00) (0.01) (0.01) (0.01)

α 0.04
(0.00)

β 0.92 0.82 0.83 0.81
(0.00) (0.03) (0.03) (0.03)

γ1 0.34 0.34 0.35
(0.03) (0.03) (0.03)

γ2 -0.17 -0.17 -0.18
(0.04) (0.04) (0.04)

ξ 0.09 0.20 0.17
(0.04) (0.05) (0.04)

φ 0.98 1.01 1.00
(0.04) (0.05) (0.04)

σu 0.39 0.39 0.38
(0.00) (0.01) (0.01)

τ1 -0.04 -0.04 -0.04
(0.01) (0.01) (0.01)

τ2 0.05 0.05 0.06
(0.01) (0.01) (0.01)

ν - - 17.28 19.32
(3.71) (4.21)

ε - - - 0.953
(0.09)

l(r, x) - -4021.1 -4012.2 -4001.9
l(r) -3293.5 -3180.6 -3168.6 -3159.9
π 0.995 0.993 0.993 0.992

Table 4.8: Results with the log-linear specification for ICE Brent Crude Oil front month
contract: RG donates the realized GARCH model with parameters p = 1 and q = 2.
LG(p,q) donates the logarithmic GARCH model with parameters p = 1 and q = 1. The
subscripts donates the normal, student’s t and skewed student’s t distributions. The stan-
dard errors (in brackets) are robust standard errors. l(r, x) and l(r) represents the total
log-likelihood function and the log-likelihood function for the GARCH equation respectively.
The results are based on a rolling window with w = 1400 observations.
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4.5 News impact curve

The inclusion of high frequency data enable us to make a more detailed prediction
about the news impact curve then for daily/weekly returns. We have estimated
the log-linear realized GARCH(1,2) model based on the hermite polynomial. This
polynomial, also called the leverage function, estimates the asymmetry in volatility
caused by a shock in the price. Table 4.9 shows both total sample and out of sam-
ple estimation of negative and positive asymmetry between return and volatility.
The asymmetry is negatively weighted for all the frequencies of realized volatil-
ity. Out of sample estimation emphasizes this result, showing that there is a clear
negative correlation between price shocks and volatility. Figure 4.11 gives a visual

Total Sample Correlation
Window RG3 min RG5 min RG10 min RG15 min RG30 min

ρ− -0.136 -0.139 -0.118 -0.176 -0.216

ρ+ 0.108 0.107 0.091 0.133 0.172

Out of Sample Correlation
Window RG3 min RG5 min RG10 min RG15 min RG30 min

ρ− -0.150 -0.148 -0.159 -0.188 -0.231

ρ+ 0.091 0.087 0.101 0.118 0.152

Table 4.9: Results for the log-linear realized GARCH(1,2) leverage function. ρ− and ρ+

are negative and positive asymmetry respectively. RG donates the realized GARCH model
with subscript related to the observation frequency. The out of sample estimation is based
on a rolling window with w = 1400 observations.

representation of the result. The news impact curve is calculated based on 3, 5,
10 ,15 and 30 minute realized volatility, where the horizontal axis is zt−1 and the
vertical axis is σt. Even though the estimates in Table 4.9 are greater in magni-
tude for higher observation frequencies they represent the same effect. Figure 4.11
shows small differences in the estimated news impact curve for the different fre-
quencies. The result are as expected, since the estimates for different observation
frequencies should indicate the same asymmetries. Figure 4.12 shows the 3 minute
estimated asymmetry together with the news impact curve for Chevron Corpora-
tion and Exxon Mobil Corporation, two of the biggest oil companies in the world.
The stock spot price for the two oil companies shows the same asymmetry, but
they differ in magnitude.
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News Impact Curve
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Figure 4.11: The figure shows the news impact curve based on the log-linear realized
GARCH estimates. The curves are based on 3,5,10,15 and 30 minute realized measures.
The horizontal axis is zt−1 and the vertical axis is σt.
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Figure 4.12: The figure shows the news impact curve based on the log-linear realized
GARCH estimates. The curves are based on 3 minute realized measure, Chevron Corpo-
ration and Exxon Mobil Corporation (Hansen at.all. 2011). The horizontal axis is zt−1

and the vertical axis is σt.
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Chapter 5

Conclusion

In this paper we described and suggested the use of a realized GARCH model to
analyze the ICE Brent Crude oil front month contracts using high frequency data
to construct realized measures. This is the first paper, as far as we know, that uses
the realized GARCH model to analyze the forward ICE Brent Crude oil future
market. The descriptive statistics suggest a positive skewness and kurtosis greater
then three for the realized volatility. Moreover, as for realized volatility, continuous
and jump volatility show similar skewness and kurtosis characteristics. The clas-
sical and the realized GARCH model, seem to be well specified and show strong
convergence for all estimations. The realized GARCH model shows an improved
log-likelihood relative to the standard GARCH model. The results suggests that
use of high frequency data improve the modeling of conditional volatility. The real-
ized measures might therefore incorporate more relevant information. The results
also give weak evidence for the skewed student’s t distribution in the standardized
error term, zt.

There is a clear negative asymmetry between return and conditional volatility. The
results are also similar across different observation frequencies. The residuals show
low, to no data dependence, and indicate that the model are appropriate for the
data series. Finally, the significance of the realized GARCH coefficients clearly indi-
cate a need for more information in the conditional volatility. For future research it
will be interesting to look at model assessment, and to test model residuals. Tests
for the optimal amount of latent volatility factors for different models, (MEM),
(HEAVY) and Realized GARCH. Predictions of future volatility of realized versus
classical GARCH using forecast evaluation statistics. Extensions to multivariate
GARCH models, extreme value theory, risk management (VaR/CVaR) and asset
allocation measures (Greek letters).
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