
CubeDMA - Optimizing Three-Dimensional DMA
transfers for Hyperspectral Imaging Applications

Johan Fjeldtvedt, Milica Orlandić∗

Department of Electronic Systems
Norwegian University of Science and Technology - NTNU

Trondheim, Norway

Abstract

Onboard computing is one of the principal needs in space-related technology in

the recent years. In particular, onboard hyperspectral imaging (HSI) processing

has advanced significantly. Due to advances in sensor technology, onboard HSI

processing continuously meets new challenges related to increasing dataset size,

limited processing time and limited communication links. High throughput and

data reduction are crucial for satisfying real-time constraint and for preserving

transmission bandwidth. For systems capable of accommodating a wide range of

processing algorithms, there is a need for a flexible communication infrastructure

that can provide fast access to/from memory in different access patterns. In this

paper, existing FPGA-related Direct Memory Access (DMA) solutions have

been evaluated, and a new DMA solution tailored for hyperspectral images has

been proposed. Results show that the proposed DMA core, CubeDMA, handles

targeted memory access patterns in more efficient manner than existing solutions

while being resource efficient.

Keywords: Direct Memory Access, DMA, Hyperspectral imaging, HSI cube,

on-board processing

∗Corresponding author
Email address: milica.orlandic@ntnu.no (Milica Orlandić)

Preprint submitted to Microprocessors and Microsystems Journal November 11, 2018

1. Introduction

Hyperspectral sensors for satellite application are capable of generating high-

dimensional imagery with detailed information about the sensed scene. A push-

broom scanner is widely used for obtaining these images by simultaneously

collecting spectral information in a line-by-line fashion. Hyperspectral images5

(HSI) or HSI cubes are characterized by three dimensions (Nx, Ny, Nz) - spa-

tial resolution (number of pixels), temporal-spatial resolution (frame rate) and

spectral resolution (number of bands) as presented in Fig. 1. A component in

the HSI cube is specified by coordinates (x, y, z). An HSI pixel with fixed (x, y)

coordinates consists typically of hundreds of components in spectral domain,10

whereas an HSI frame is defined by a set of samples for one y coordinate. Sam-

ple ordering is a mapping of the cube components to a unique one-dimensional

index from three-dimensional coordinates. The most common sample orderings

are Band Interleaved by Pixel (BIP), Band Interleaved by Line (BIL) and Band

Sequential (BSQ) presented in Fig. 2. In BIP ordering, each full pixel is accessed15

sequentially, starting at the upper left pixel and traversing the cube line by line

towards the lower right pixel. In BIL ordering, traversing is performed frame

by frame in (z, x) order. In BSQ ordering, the components are traversed band

by band corresponding to (z, y, x) mapping order.

Satellite onboard processing systems have emerged as an attractive solution20

to deal with high computational requirements and to ensure fulfillment of real-

time constraints in the processes of data acquisition, data interpretation and

decision making. A current trend for onboard systems is the use of hybrid pro-

cessing systems - System-on-a-Chip (SoC) platforms. These SoC devices adapt

and combine computing architectures such as CPUs, GPUs, FPGAs and DSPs,25

where the advantages of each technology are used in partitioning process of

the algorithms. In particular, the SoC systems with reconfigurable hardware

have become the standard choice for onboard remote sensing applications and

compression due to small size, weight, power consumption and resistance to

damages and malfunctions caused by ionization radiation [1]. An important as-30

2

Pixel

Line of Pixels

N
u

m
b

er
 o

f
B

an
d

s
(S

p
e

ct
ra

l D
im

en
si

o
n

)

Pixel/Line
(Spatial Dimension)

Frame

Figure 1: Hyperspectral cube acquisition process

...

...

...

...
...

...

...

...

...

BIL orderBIP order BSQ order

y

z

x

Figure 2: Sample orderings of HSI cube

3

pect in SoC development is to establish fast communication and high data rates

between different portions of hardware, which is often the main bottleneck of

a system processing large data sets. One of the most efficient ways for stream-

ing data from the memory is by establishing direct communication between the

memory and the processing core on the FPGA and by excluding the Central35

Processing Unit (CPU) from this critical path. This is achieved by using Direct

Memory Access (DMA) cores.

In satellite applications, HSI data cubes fetched by push-broom scanners

are usually arranged in the memory in BIP ordering. Due to this fixed memory

data arrangement, it is required from the system to support in an efficient40

manner other data access patterns used by the onboard processing algorithms.

The HSI-related algorithms can be divided into two distinct categories: pure

HSI compression systems and HSI custom-application processing such as target

detection, classification or anomaly detection. Some of these algorithms process

a whole cube, while others work on smaller sub-cubes (blocks) in spatio-temporal45

(x, y) or spatio-spectral (x, z) planes. The existing processing cores of algorithms

from both categories are often built within larger systems with standardized

communication protocols. These systems are explored to detect input access

patterns of interest and streaming capabilities in terms of throughput. In that

context, a recent hardware implementation of PCA dimensionality reduction for50

hyperspectral images [2] proposes supporting communication system based on

PLB bus and PLB DMA [3]. An FPGA-based hardware implementation of the

CCSDS-123 compression algorithm with BSQ ordering is proposed in [4], where

a supporting system based on DMA communication is also described. The need

for fast block-based data streaming arises in widely used compression standards55

such as JPEG2000 and JPEG. The JPEG2000 standard employs the discrete

wavelet transform (DWT) and defines tiles (blocks) with sizes which vary up

to a complete image, whereas the JPEG standard performs DCT transform on

fixed 8× 8 blocks.

For other onboard HSI remote sensing applications, the custom product,60

such as the map of pixels indicating the spectral signature of interest in target

4

detection, is downlinked. An FPGA implementation of the HySime algorithm

[5] for the determination of the number of endmembers in a given scene de-

scribes the communication with the memory achieved through PLB DMA on

a PLB bus where the IO overhead is reduced by FIFOs for ensuring correct65

data reading/writing. An FPGA implementation of the CEM algorithm and

RX anomaly detector [6] implements streaming background statistics (SBS) in-

put FIFOs for streaming HSI data from the memory and uses a DMA core

in combination with a PCIe bus to send data to PCI peripheral for reading.

An Automatic target detection algorithm (ATPG) implementation [7] uses a70

DMA core in two-directional communication with memory where a structure

with FIFOs is used for data prefetching of the pixel input stream.

In the context of these applications, the communication system of an onboard

HSI processing system is required to support:

• Capability of streaming a HSI image in BIP or BSQ ordering,75

• Capability of streaming a HSI image in block-wise BIP and BSQ ordering,

• Support for component size other than byte multiples.

Thus, in this paper, available DMA cores are studied with respect to these

requirements. Existing DMA solutions are found not to be suitable for a number

of scenarios. In particular, the limitations are found in the scenarios with the80

large HSI data set characterized by pixel bit-widths which are not byte multiples

and with limited on-board memory which requires the data to be stored as

compactly as possible. In order to overcome these limitations, an efficient and

fast on-chip communication core CubeDMA suitable for HSI data access patterns

of interest is proposed.85

The paper is structured as follows: existing FPGA-related DMA cores, their

interfaces and building blocks are presented in Section 2. The proposed high-

throughput DMA implementation is described in Section 3. Results are sum-

marized in Section 4. Finally, the conclusions are given in Section 5.

5

2. Direct Memory Access90

Data streamed from sensors and variables required for data processing are

usually stored in the memory. High-speed memory access is a critical feature

for a number of systems which process large data sets due to the increase of

memory-bound applications. DMA cores are commonly used to perform data

exchange in a shared memory system without involving the CPU so that the95

CPU is allowed to perform other tasks during the data transfer.

2.1. State of the Art

A conventional Direct Memory Access (DMA) controller performs a transfer

of contiguous memory locations supporting only simple data access patterns.

However, this technique is not efficient for accessing non-contiguous memory100

locations (complex memory patterns) as it introduces substantial delays and

lowers the throughput of the complete system.

Most of the recent works with respect to direct communication with memory

propose complex descriptor-based DMA architectures with scratchpad memory

to support both regular and irregular data patterns such as streaming, linked105

list, and tree-based data transfers for image/video applications. However, none

of the researches concretely focuses on HSI-related streaming and requirements

imposed by HSI applications.

The Xilinx AXI DMA [8] is highly configurable core by tuning a large number

of parameters. The core works in two modes - a slimmed-down basic mode and a110

descriptor-based scatter-gather mode. This core is used often as a building block

of a more complex DMA engines on Xilinx SoCs. The AXI Video Direct Mem-

ory Access (AXI Video DMA) [9] core is a specialized soft core that provides

high-bandwidth direct memory access between memory and video-related pe-

ripherals. Programmable Pattern-based Memory Controller (PPMC) [10] sup-115

ports data intensive applications having regular access patterns (vector and tiled

access patterns) by the use of multiple descriptor blocks. Advanced Pattern

based Memory Controller (APMC) [11] includes a specialized descriptor-based

6

DMA engine supporting both regular and irregular memory access patterns

(load-store, streaming, array, linked list, and tree based data transfers) target-120

ing applications such as 3-D stencil algorithms, linked list buffer or binary tree

based Huffman coding. The data rearrangement engine (DRE) [12] performs

in memory data restructuring to accelerate irregular, data-intensive applica-

tions. The DRE core consists of a programmable DMA unit (a load/store unit)

along with a microcontroller which executes a simple set of application directed125

commands. Finally, CoRAM++ [13] is a programming environment for FPGA

computing supporting complex data structures such as multidimensional arrays

and linked lists. It is based on a set of memory interfaces for each supported

data structure and provides a specialized soft-logic implementation of the data-

path to memory. In the context of HSI processing, particular interest is found in130

multidimensional array structures, where array traversal order and data layout

can be selected at run time. Supported data layouts in memory are common

row-major order (BIP ordering) or tiled order (block-wise ordering). For data

stored in row-major order, strided data accesses during column (BSQ ordering)

traversal has been shown inefficient.135

2.2. AXI DMA cores and HSI data streaming

In this section, the available Xilinx DMA cores, AXI DMA and AXI Video

DMA, are described and analyzed in the context of 3-D HSI data access patterns.

Recent Xilinx SoCs use a set of open bus standards, Advanced eXstensible

Interface (AXI) [14] for connecting master and slave components within large140

systems. The protocol is based on a common handshake mechanism for data

transfer controlled by two signals. The first signal indicates presence of valid

data on the data lines and the second signal is asserted by the recipient when

it is ready to receive the data. The transfer is acknowledged when both signals

are asserted in the same clock cycle, a beat. The beat is the fundamental unit of145

data transfers and one transaction can consist of several data beats. Instead of

initiating a new transaction for every unit of data, a burst transfer is introduced

defining a burst size and burst length in addition to the address. The burst size

7

indicates the number of bytes to be transferred in one beat, whereas the burst

length provides a number of beats per transaction.150

The AXI DMA core is configured directly by dedicated registers accessible

through the CPU’s memory map. The CPU sets a start address and a length of

contiguous memory locations and controls transfer completion either by polling

or by the use of interrupts. However, many applications require to gather data

from separate locations. The AXI DMA core performs this operation in scatter-155

gather mode defining the DMA configuration which relies on a chain of block

descriptors (BDs) for the transfer description. Each BD contains a start address,

a length and several flags (e.g. whether the block is the last one). Fig. 3 shows

a transfer of several scattered blocks by the use of block descriptors. The use

of a DMA without scatter-gather mode in such scenarios requires the CPU to160

set up the transfer of each contiguous block introducing delays and limiting the

efficiency of system partitioning.

Start

Length

Next

Start

Length

Next

Start

Length

Next

Output stream

Memory

Block descriptors

Figure 3: Scatter-gather transfer using a chain of block descriptors

The AXI DMA performs a transfer of a complete HSI cube in sequential

BIP ordering by creating a BD chain as shown in Fig. 4a. In the BD chain, all

but the last block descriptors have a maximized length field which depends on165

configuration/generics of the AXI DMA, and the last block descriptor contains a

length field set to the remaining number of bytes. A transfer in BSQ ordering is

required to be performed by using only one block descriptor per pixel component

8

(Fig. 4b). In this manner, a BD chain with length equal to the number of

components of the whole HSI cube introduces unacceptable overhead and delay170

related to operation of fetching block descriptors. Some applications require

data to be fetched from scattered locations with a constant access pattern such

as rectangular sub-blocks. In this context, block-wise BIP ordering requires one

BD per block row as presented in Fig. 4c.

BD1 BD2 BD3

(a) BIP ordering

BD1 BD2 BD3 BD4

(b) BSQ ordering

BD1 BD2 BD3 BD4 BD5 BD6

(c) Block-wise BIP ordering

Figure 4: Creation of BD chain for different sample orderings

The configuration of AXI DMA for operating in 2D mode has the BD length175

field replaced with fields of a vertical size (V SIZE), a horizontal size (HSIZE)

and a stride. The horizontal size equals the number of bands to transfer in

parallel, whereas stride field contains information about the number of bands

to skip/jump. The vertical size is the number of contiguous memory transfers

to perform. For example, to transfer first four bands in BSQ ordering, the start180

address of the transfer is set to the start address of the cube and field values

are set as HSIZE = 4, Stride = Nz and V SIZE = Nx × Ny. AXI DMA in

9

2D mode, however, does not support unaligned transfers i.e. the transfers are

required to start at an address that is divisible by the native word length used

for memory access.185

The AXI Video DMA [9] is designed for video streaming, where a video con-

sists of a sequence of still-images. The video frames, in this case, are defined

as contiguous areas in memory which contain the pixels of a particular still-

image. The AXI Video DMA contains registers available to configure transfers

of up to 32 frame buffers. The frame buffers are pointed to with an address.190

Horizontal size, vertical size and stride parameters are supplied for each frame

buffer, where the horizontal size and stride parameter fields have 16-bit limita-

tion. This limitation can affect storing of HSI images by breaking HSI frames

into different frame buffers. In BIP ordering, Video DMA frames are defined as

areas of the size Nx×Nz. For BSQ transfers, a Video DMA frame contains only195

one component and the V SIZE field must be then set to Nx × Ny which can

easily exceed field range for large cubes. This implies several separate transfers

and CPU interventions for the transfer of complete cube.

A short summary of the transfer modes for existing DMA cores and their

limitations for data patterns of interest is presented in Table 1.200

The described Xilinx DMA cores use the AXI DataMover [15] to perform the

actual data movement from/to memory. The DataMover is not a standalone

block and it requires a register interface for CPU control and external logic to

combine several DataMover transfers to cover the whole HSI cube. A block205

diagram of DataMover is presented in Fig. 5. The DataMover core accepts

simple commands to indicate data source and amount of data for transfer and

to perform the transfer. After processing a command, a status word is sent as a

response. Command and status words are buffered in a FIFO to ensure minimal

delay between their execution.210

10

Table 1: Existing Direct Memory Access Modes

AXI DMA - Scatter-Gather Mode

BIP a BD chain of a length necessary to describe the whole transfer

Block-wise BIP a BD chain with one descriptor per row in the block.

BSQ a BD chain with one BD per component - Not usable for HSI processing

AXI DMA - 2D Mode

BIP

a chain of two BDs, the first BD with HSIZE = STRIDE = maximized and

VSIZE=(Nx ×Ny ×Nz)/HSIZE, and the second BD with leftovers from the

first transfer (Image start at 64-bit aligned address) - Not usable for HSI

processing

Block-wise BIP a chain of BD per row, with HSIZE = STRIDE = (block_width · Nz) and

VSIZE = 1. Block start at 64-bit aligned addresses - Not usable for HSI

processing

BSQ Each BD with a STRIDE=Nz , HSIZE which indicates the number of bands

to extract and VSIZE=Nx ×Ny - Not usable for HSI processing

AXI DMA - Video Mode

BIP 16-bit limitation of HSIZE and STRIDE fields, 32-frame buffer - Not usable

for HSI processing

Block-wise BIP 16-bit limitation of HSIZE and STRIDE fields, 32-frame buffer - Not usable

for HSI processing

BSQ One-component video frames, limited to 32-frame buffer - Not usable for HSI

processing

3. CubeDMA Implementation

Among the available DMA solutions for SoCs with FPGAs, none of the cores

fulfills given transfer requirements for 3D HSI data at the sufficient level. The

AXI DMA can perform data transfers in BIP and block-wise BIP orderings, but

challenges arise for BSQ transfers. The efficiency of AXI DMA in 2D mode is215

limited by the requirement of 64-bit address alignment, whereas the Video DMA

11

Figure 5: Overview of the DataMover core [15]

is not flexible enough to be used for HSI images. For these reasons, a custom

DMA core, CubeDMA, specialized for hyperspectral image streaming patterns

with various bit-widths is implemented. The dimensions (width, height, depth)

corresponding to (Nx, Ny, Nz) of the HSI cube, as well as the block dimensions220

(block_width, block_height) for the chosen HSI data processing algorithm are

set before the processing starts. In the implementation, there are no restrictions

for the HSI cube size - the cube width Nx and height Ny do not need to be divis-

ible by the block_width or block_height. This implies that the last block in each

block row can have a width less than the block_width, and the last row of the225

blocks can contain blocks of a height that is lower than block_height. However,

the block dimensions are restricted to power of 2 as it is well-aligned with the

requirements of the most block- and tile-based algorithms. The introduction

of block dimension constraint allows a number of computations to be simpli-

fied, so multiplication and division by the block dimensions become shifting,230

whereas residual computation (modulo operation) becomes least significant bits

assignment. Regardless of BSQ or BIP ordering, the CubeDMA can order the

pixels in sequential or block-wise manner. The sequential transfer starts at the

first pixel (upper left) and proceed through the cube line by line until the last

pixel (lower right). In a block-wise transfer, the cube is divided into blocks with235

12

block_height and block_width. The transfer orderings of pixels within a block

and blocks within a cube are shown in Fig. 6. The red arrows indicate the pro-

Figure 6: Processing order for a block-wise transfer in the CubeDMA

cessing order of the pixel components within the blocks, whereas the numbers

indicate the processing order of blocks within the cube. The band coordinate z

which block transfer starts at is assigned to parameter offset, whereas the length240

per transaction is the number of contiguous bands to transfer. The CubeDMA

core consists of two streaming data channels, Memory Map to Stream (MM2S)

and Stream to Memory Map (S2MM), and the focus of the paper is to describe

the MM2S channel for data streaming from the memory to the processing core.

An overview of an MM2S channel with its building units Register interface,245

DataMover, Controller and Component unpacker is given Fig. 7.

3.1. DataMover

The DataMover IP [15] performs the transfer from/to the memory by AXI

transactions starting at a given address and with a given length as the basic

unit of data transfer. Depending on the cube dimension and component bit-250

width, the DataMover transfers a set of components (parts of a pixel), whole

13

Component
unpackerDataMover
config_dataconfig_wrsts

Controller

Register interfaceAXI4-Lite
(Register
Access)

AXI Read
channels
(From memory)

IRQ

AXI4-Stream
(To accelerator)cmd

error

reset config_ready

Figure 7: Architecture of the CubeDMA MM2S channel

pixels or rows of pixels. Transfer progress is controlled by the Completion tally

module, a counter which keeps a tally of the number of issued commands and

received status words. The counter is incremented/decremented each time a

command/status is handshaked.255

3.2. Register Interface

The Register interface exposes control and status registers to the CPU’s

memory map in order to configure the core. The register layout is detailed in

Table 2 and a number of the register parameters are illustrated in Fig. 8. The

parameters such as the size of one row in number of components, number of260

band transfers per pixel and number of components per row in the last block

are used for address computation.

3.3. Controller

The Controller issues commands to the DataMover for the traversal of the265

HSI cube in the manner defined by the parameters in the registers. Each time

the DataMover is ready to accept a new transaction, the Controller computes

the byte address of the first component and the number of bytes to transfer

14

Table 2: Register layout for the CubeDMA

Field [Unit] Description Bits

Control and length register (0x00)

Start Transfer starts on bit transitions from 0 to 1 0

Block-wise mode Cube is read in blocks of specified size 2

BSQ mode Cube is read in BSQ mode + Number of bands in

parallel

3

Error IRQ Enable IRQ is triggered when error condition arises 4

Completion IRQ Enable IRQ is triggered when transfer is completed 5

Length [comp] Number of bands to transfer 15-8

Start offset [comp] Band number transfer starts from 23-16

Status register (0x04)

Transfer done Indicates whether the transfer is completed 0

Error mask Indicates which errors occurred 3 - 1

Error IRQ flag Indicates when IRQ is triggered due to error 4

Completion IRQ flag Indicates when IRQ is triggered due to completion 5

Base address register (0x08)

Base address The address of the first component in the first pixel 31 - 0

Dimension register 1 (0x0C)

Width [pixels] The width of the HSI cube 11 - 0

Height [pixels] The height of the HSI cube 23- 12

Depth [comp] Lower 8 bits of the depth of the HSI cube 31- 24

Dimension register 2 (0x10)

Block width log2 of the width of each block 3-0

Block height log2 of the height of each block 7-4

Depth [comp] Upper 4 bits of the depth of the HSI cube 11-8

Last block row size [comp] Number of components within each row in the last

block

31 - 12

Row size register (0x14)

Row size [comp] Number of components in one row of the cube 19-0

15

Row size

Last block
row size

Base
address

Depth

Width

Height

Figure 8: Register parameters

in that transaction. The architecture of the Controller module is illustrated in

Fig. 9. The Controller performs the following operations:270

• control of the operation sequencing - (State machine unit),

• generation of the component addresses and conversion of the HSI cube

components to byte units - (Address generator unit),

• control of the command/status operations.

Operation sequencing is controlled by the state machine consisting of six275

states as presented in Fig. 10. In the running state commands are issued to

the DataMover, whereas in the wait_complete state the controller awaits for

the last command to be processed. In the hard_error state, the DataMover

signals an internal error which requires reset by moving to the reset state. The

DataMover reports a status word with an error bit set in sts_error state.280

The address generation logic consists of a set of counters used for compu-

tation of component addresses. The logic driving these counters is computed

based on parameters:

• num_blocks_x, num_blocks_y - number of blocks in total in x and y di-

mension respectively,285

16

Base address, cube
dimension, block

dimension, and row
size registers

DataMover
command
interface

Unpacker interface

State machine

IRQ generation

DataMover
status interface

Completion tally
Control register

Status register

DataMover
reset reset

irq

status

command

config

Address
generation

Figure 9: Architecture of the CubeDMA Controller module

wait_
complete

hard_errorsts_error

reset_chnrunningidle

Last status word received

Reset complete

Status word with
error received

Hard error asserted
Status word with
error received

Pending status
words received

Start triggered
All commands
issued

Figure 10: The state transition diagram for the State machine unit in the Controller

17

• curr_blocks_x and curr_blocks_y - the currently processed blocks in x

and y dimension respectively,

• h, w, block_h, block_w, rsize and offset related to the fields height,

width, block_height, block_width, row_size and offset of the registers

in the Register interface.290

The pseudo-code for address generation is presented in Listing 1. The position of

the current block within the cube (curr_blocks_x and curr_blocks_y) and the

offset are updated for each band and block. The block address (block_addr),

the address of the complete row (row_addr), the start address of each row of the

block (block_r_addr) and the component addresses (comp_addr) are computed295

for each block.

for num_plane_transfers -1 to 0:

block_addr , row_addr , block_r_addr , comp_addr = offset

for block_y in num_blocks_y -1 to 0:300

for block_x in num_blocks_x -1 to 0:

for y in curr_block_h -1 to 0:

for x in curr_block_w -1 to 0:

if mode_block:

if block_x = 0:305

curr_block_w = w mod 2** block_w

length = last_block_row_size

else:

curr_block_w = 2** block_w

length = 2** block_w * depth310

if block_y = 0: curr_block_h = h mod 2** block_h

else: curr_block_h = 2** block_h

issue command(comp_addr , length)

if x = 0 and y = 0:

if block_x != 0: block_addr += w mod 2** block_w315

else:

18

block_r_addr += 2** block_h*rsize

block_addr += block_row_addr

if x != 0: comp_addr + = depth

else:320

if y != 0: row_addr += w

else: row_addr = block_addr

comp_addr = row_addr

wait for tick from state machine

offset = offset + comp_per_cycle325

Listing 1: Pseudo-code of address generation process

The controller operates internally with components as the fundamental units.

Since the component size is not necessarily a multiple of a byte, it is required

to perform translation from component addresses into byte addresses. The

translation of a component address into a byte address and an offset for 10- and

12-bit components is illustrated in Fig. 11. The byte address is computed by

multiplying the component address and the number of bits per component BPC

followed by byte-division as follows:

byte address =
BPC · component address

8
, (1)

whereas the offset is given as:

offset = (BPC · component address) mod 8. (2)

Figure 11: Component address, byte address and offset

19

Conversion from number of components to a number of bytes Nbytes is also

required. For a given BPC, the number of bytes to represent n components is

given by:

Nbytes =
n · BPC

8
. (3)

The number of bytesNbytes depends also on the offset of the starting component.

Fig. 12 shows that in the first two scenarios four bytes are required for the

transfer of three 10-bit components, whereas in the third example the most

significant bits of the last component are shifted across a byte boundary by the

offset requiring an extra byte to be transferred. For this reason, the offset is

included in the computation of Nbytes as follows:

Nbytes =

⌈
offset+ n · BPC

8

⌉
. (4)

Figure 12: Number of bytes required to transfer three 10-bit components starting at various

offsets

3.4. Component Unpacker

When the HSI cube is packed in the memory with component sizes that are

not byte-multiples, components can be split across two (or more) bytes with

their LSB bit at an offset within a byte. The component unpacker alters the330

data stream from memory so that user-defined number of complete components

20

Ncomp are input to the processing core. An example of component unpacking

process is presented in Fig. 13 with selected parameters - BPC = 12 bits,

Ncomp = 4 and length of input word N = 64 bits.

0123

4567

891011

12131415

Unpacked stream Beat

01234

56789

101112131415

10

Packed stream from memory

15

Offset

Figure 13: An example of packed data stream coming from memory and the resulting unpacked

data stream

The structure of Component unpacker module is presented in Fig. 14 where335

each stage requires configuration data associated with the incoming packet. The

configuration data consist of a number of parameters useful for the unpacking

process such as the number of bits to shift the incoming word from memory

in the offset shifter and the number of valid components in the last packet

from memory. The start of a new packet is detected in packet detector stage340

simultaneously with configuration data sent into a FIFO from the controller

module.

The offset shifter performs a shifting operation of the N -bit incoming data

packet to remove the offset computed by Eq. 2. If the first component in a

transfer starts at a non-zero offset noffset in memory, the incoming data is shifted345

noffset positions and the most significant bits are filled with the noffset least sig-

nificant bits from the next data packet. The shifting, which propagates through

the subsequent data packets in the transfer as presented in Fig. 15, is imple-

mented in hardware by storing each incoming data word in a register. The

(N −noffset) most significant bits in the register are used as the least significant350

21

Config
FIFO

Packet
detection

fifo_rd

Offset
shifter Restructurer Buffer

offset num_last last

config_wr
config_data

From
DataMover

To
acceleratortrunc_last

config_ready

From/to
Controller

Figure 14: The Component unpacker module

bits of the output, and the least significant noffset bits of the current data are

used as the most significant noffset bits of the output.

Last

0x

Input Output
Beat

Not valid

LSB MSB

lsb msb

lsblsb lsb msb msb

 msb lsblsb

 msb

Figure 15: Behavior of the offset shifter

The component restructurer reorganizes N -bit input data packet into a max-

imum number of components Nmax and a set of leftover bits of a component,

where the maximum number of components is computed as:

Nmax =

⌈
N

BPC

⌉
. (5)

The complete components are forwarded, whereas the leftover bits are stored in a

register to be combined with the components in the next data word. To maintain

22

the throughput from the DataMover, the Component restructurer outputs in

average a number of bits equal to the the incoming number of bits. Since the

constraint is to output complete components, the restructurer outputs data

widths of Nmax+1 components. For instance, for 10-bit components and 64-bit

input data stream, the number of components contained in the input stream is

Nmax = 6. This introduces a requirement for the output data stream to have a

width of 7 components. The example is illustrated in Fig. 16. The number of

Figure 16: Example of a five-cycle restructuring process for 10-bit components and 64-bit

input stream

components to output and the number of leftover bits to put into the register

are different in each step. However, there is a repeating pattern and in the

example of 10-bit components and 64-bit input stream, the pattern contains 5

different steps. The number of steps in a pattern is the lowest number of N -bit

words required to get a multiple of the component width:

steps =
lcm(N,BPC)

N
, (6)

where lcm is least common multiple operator. The implementation uses a

counter to keep track of the current step. Based on the step count, a set of

multiplexers determines arrangement of the output data from the leftovers and355

23

input data, and decides the next value for the leftover register.

Finally, the buffer collects the components from the restructurer and outputs

Ncomp components in parallel to the processing core. The buffer is implemented

as a FIFO of the depth of Nbuff = Nmax + Ncomp − 1, where the number of

components Ncomp varies in the range [0, Nmax]. For instance, for values of360

user-defined parameters N = 64, BPC = 10 and Ncomp = 4, the depth of the

buffer Nbuffer is 10 components. The buffer accepts data as long as it is not full

or in the case a read operation is accepted and the free buffer space after that

read operation is sufficient.

In the block-wise ordering, additional challenge arises when the output com-365

ponents from the Component unpacker originate from different blocks in the

HSI cube. In that case, it is required to identify relations between components

and blocks. In order to track the components from different blocks and to en-

sure synchronous transfer of control and data signals, a set of two control signals

per component are concatenated to the components in the component buffer.370

These control signals indicate whether the component is part of the last pixel

in a block in the last column of blocks and whether the component is part of a

block in the last row of blocks.

4. Results

The majority of HSI algorithms in satellite applications process HSI cubes in375

a variety of data access patterns such as BIP, BSQ, block-wise BIP and block-

wise BSQ ordering, whereas the cube data streamed from a HSI sensor in a

push-broom imager are usually packed in a sequential manner (BIP) in memory.

To achieve high throughput when streaming HSI cube data from/to memory, a

specialized DMA controller, CubeDMA, is implemented. In this manner, a fast380

and simple communication layer between HSI processing cores on FPGA logic

and memory is established. The custom design of the CubeDMA core allows,

unlike in the AXI 2D DMA or AXI Video DMA, the register fields to be large

enough to perform the transfer without errors or convoluted workarounds.

24

The proposed architecture of the CubeDMA core is described by the VHDL385

language. The Xilinx Vivado tool is used for synthesis, implementation, power

estimation and verification of the proposed architecture on a Zedboard devel-

opment board which combines ARM processor cores with a Zynq-7020 FPGA.

The estimated maximal operating frequency of CubeDMA core is approximately

132 MHz and the critical path is in the address computation logic. The system390

presented in Fig. 17 containing CPU, DDR memory, CubeDMA and process-

ing cores is used in the verification phase. The operating frequency foper of

the proposed system is constrained to 100 MHz in the verification process and

the following performance analysis. The data streaming through CubeDMA

Cube DMA
DDR memory

Central
Interconnect

Debug interface

PL to Memory
Interconnect

Processing System

Programmable Logic

Control/status
Registers

GP

PC with XSDB tool
JTAG

HP

Zynq 7000 SoC

CPU

Integrated Logic
Analyzer core

Processing
Core

Figure 17: Overview of Zynq-7000 system for testing CubeDMA

is functionally tested in the presented system by establishing communication395

between memory and a custom processing core. The choice of processing core

has no impact on performance of the CubeDMA and this is initially verified

by setting as the processing core a FIFO module which is always ready to

accept new data each clock cycle. In the later stage, an HSI-related CCSDS-

123 compression core [16] is set instead of the FIFO module. The system has400

been tested by streaming a real HSI image of a size 512 × 2000 × 128 col-

25

lected by HICO imager [17] for a variety of generic parameter values such as

[Ncomp, BPC] = {[1, 16], [4, 16], [5, 12], [6, 10]} and N = 64 bits. The result-

ing bitstreams for each [Ncomp, BPC] pair streamed by the CubeDMA from

CCSDS-123 core back to the memory have been successfully compared to the405

compressed bitstreams generated by the CCSDS-123 reference software Em-

porda [18].

The proposed CubeDMA is a core with the following generic parameters -

input data width N , component bit-width BPC and number of parallel out-

put components Ncomp. Re-synthesis of the design is required if any of these410

parameters is modified. On the other side, HSI image resizing and choice of

transfer mode do not affect the design since the image dimension and transfer

mode parameters are modified through the register interface. Fig. 18 and Fig. 19

show how the configuration of the generic parameters impacts area utilization

of CubeDMA in terms of the LUTs and registers, respectively. It is observed415

that the number of LUTs depends on the number of steps given by Eq. 6 in

Component restructuring unit. For selected number of components per beat (8,

10, 12, 16 and 18), there are (1, 5, 3, 1, 9) number of steps respectively imply-

ing that design with 10 components uses more LUTs than with 12 components.

The register utilization scales linearly with BPC. The estimated power is 0.143420

W and 0.15 W for parameters [Ncomp, BPC] set to [4, 16] and [5, 12] respec-

tively and the increase is due to the unpacking operation of non byte-multiple

components.

In more details, the area utilization is examined for four modules - the Data-

Mover, Register interface, Controller and Unpacker. The area utilization for425

DataMover and Register interface remains fixed regardless of configuration of

the core. The resources for these two modules are presented in Table 3.

Table 4 shows the logic utilization of the Controller and Unpacker units

instantiated with different component widths BPC and number of output com-

ponents Ncomp. The results show that the resources in terms of LUTs and430

registers for the Controller vary slightly. There is an increase when component

width is not a byte-multiple due to the extra logic for the offset computation

26

1 2 3 4 5 6 7 8
0

200

400

600

800

1,000

Components per beat

LU
T
s

BPC=8
BPC=10
BPC=12
BPC=16
BPC=18

Figure 18: LUT usage for different BPC as a function of Ncomp

1 2 3 4 5 6 7 8
400

500

600

Components per beat

R
eg
is
te
rs

BPC=8
BPC=10
BPC=12
BPC=16
BPC=18

Figure 19: Register usage for different BPC as a function of Ncomp

Table 3: Area utilization of modules and IPs whose area is independent of generic parameters

Module LUTs Registers

DataMover IP 922 783

Register Interface 696 465

Unpacker FIFO 78 74

27

Table 4: Area utilization in terms of component widths and number of components per beat

BPC Ncomp
Controller Unpacker Total

LUTs Regs LUTs Regs LUTs Regs

8 1 333 248 133 226 466 474

8 2 331 248 169 236 500 484

8 3 333 248 219 246 552 494

8 4 351 248 242 256 593 504

8 5 334 248 285 266 619 514

8 6 331 248 308 276 639 524

8 7 334 248 361 286 695 534

8 8 326 248 388 296 714 544

10 1 435 250 348 317 783 567

10 2 431 250 442 330 873 580

10 3 435 250 448 342 883 592

10 4 454 250 485 354 939 604

10 5 436 250 522 366 958 616

10 6 436 250 554 378 990 628

10 7 436 250 597 390 1033 640

12 1 432 249 274 315 706 564

12 2 416 249 320 329 736 578

12 3 432 249 376 344 808 593

12 4 430 249 417 358 847 607

12 5 431 249 448 372 879 621

12 6 416 249 485 386 901 635

16 1 321 243 119 217 440 460

16 2 346 243 152 235 498 478

16 3 320 243 195 253 515 496

16 4 322 243 218 271 540 514

18 1 386 233 563 326 908 559

18 2 383 233 657 343 1040 576

18 3 386 233 617 362 1003 595

18 4 388 233 627 382 1015 615

28

and the byte length conversion. However, the largest variations are in the Un-

packer module. The Component restructurer and the component buffer are the

two largest contributors, and their area utilization varies considerably depend-435

ing on the configuration. The size of the restructurer is affected by the number

of steps determined by the least common multiple between input word width

N and the component bit-width BPC. The size of the buffer both in terms

of registers and LUTs is primarily determined by Nbuffer which scales linearly

with the number of output components Ncomp. The Component restructurer is440

only included when component width is not byte-multiple, whereas the buffer

is always included.

With respect to on-chip memory, the CubeDMA core uses 3.5 of available

140 block RAM tiles on Zynq-7020 FPGA regardless of generic parameter. The

design blocks using on-chip memory are the DataMover and the configuration445

FIFO. For the channel configuration, 1.5 block RAM tiles are used per Data-

Mover instance, whereas the configuration FIFO with its depth set to 128 con-

figuration words of 12 bits requires 0.5 block RAM tiles.

The DSP utilization depends on the parameters BPC and N . For larger

BPC values, such as BPC = 18, the synthesis tool infers a DSP to compute450

the product BPC · component_address in Eq. 1, whereas for configurations

with BPC = [8, 10, 12, 16] the DSP blocks are not used.

The analysis of the existing DMA cores, AXI DMA, AXI DMA 2D and AXI

Video DMA, shows that the AXI DMA is the most flexible core for HSI stream-

ing orderings and further performance testing of AXI DMA and CubeDMA is455

performed. The cube dimensions used for testing are 500× 2000× 100 of 8-bit

components stored in BIP ordering in the memory, where the component bit-

width is chosen based on AXI DMA byte-multiple limitation. The parameters in

AXI DMA and CubeDMA used for this comparison are set as shown in Table 5,

whereas the performance results of the AXI DMA and CubeDMA for HSI data460

cube streaming are shown in Table 6. The theoretical throughput is computed

as the product N · foper, and for input word length N = 64 from Table 5, both

AXI DMA and CubeDMA can achieve the theoretical throughput of 800 MB/s

29

in the case of BIP ordering. A speed-up of 2.3 is reported for the CubeDMA

compared to the AXI DMA for block-wise BIP ordering with block size of 8×8.465

The overhead in AXI DMA transfers for block-wise ordering is due to the fact

that the AXI DMA fetches a new block descriptor for each row in the block

from memory (Fig. 4c). The CubeDMA has no overhead, but there are still

reported delays related to the DDR memory controller when starting a transfer

of a new row in the block.470

For a transfer of the band z in BSQ ordering and given parameter values,

the maximum theoretical throughput is 100 MB/s, computed as BPC · foper,

since only BPC bits of the N -bit input word, corresponding to a component

in band z, are sent further to the processing core. The throughput achieved by

CubeDMA in BSQ ordering is 14.1 MB/s limited by the DataMover’s idle state475

of seven cycles between requests. The AXI DMA uses one block descriptor per

component in the BSQ ordering, requiring a BD chain with the length equal to

the number of components in the cube. This causes large overhead and delay

related to fetching operation of block descriptors and the testing of AXI DMA

for BSQ ordering has not been performed.480

Results show that CubeDMA outperforms existing AXI DMA cores for

streaming HSI data cubes. However, further improvements in CubeDMA per-

formance can be introduced, in particular for BSQ ordering, by replacing Data-

Mover module with a more efficient module.

5. Conclusion485

The proposed CubeDMA core is a promising approach for streaming HSI

data sets in a number of access patterns when the memory representation of the

HSI cube is fixed. The optimization introduced in CubeDMA involves elimina-

tion of block descriptors for transfer description of HSI cubes and thus removal

of delay overheads and simplification of the transfer setup. The flexibility of490

the proposed CubeDMA core is introduced through generic parameters of input

data width, component bit-width and number of parallel output components.

30

Table 5: AXI DMA and CubeDMA parameters used in performance comparison

Cube parameters

Width 500

Height 2000

Bands 100

Component bit-width (BPC) 8

Stored order BIP

Block size 8 × 8

AXI DMA

Scatter-Gather Yes

Burst size 16

Stream width 64

Dynamic Realignment Engine Yes

Length reg. size Maximum (23 bit)

CubeDMA

Input word width (N) 64

Components per beat (Ncomp) 8

Component bit-width (BPC) 8

Burst size 16

Table 6: Performance comparison of AXI DMA and CubeDMA for different 3-D HSI cube

transfer types

BIP Block-wise BIP BSQ

Time Throughput Time Throughput Time Throughput

[s] [MB/s] [s] [MB/s] [s] [MB/s]

Theoretical 0.125 800 0.125 800 1 100

AXI DMA 0.125 800 0.294 340 - -

CubeDMA 0.125 800 0.129 775 7.10 14.1

31

The core has been extensively tested on HSI images in simulations and on a real

hardware. Creating testbench infrastructure to do automated verification, inclu-

sion of new data access patterns and further optimization towards throughput495

improvements are set as future work.

Acknowledgement

This work was supported by the Research Council of Norway (RCN) through

MASSIVE project, grant number 270959, as well as by the Norwegian Space

Center.500

References

[1] S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos, A. Plaza, The

promise of reconfigurable computing for hyperspectral imaging onboard

systems: A review and trends, Proceedings of the IEEE 101 (3) (2013)

698–722.505

[2] D. Fernandez, C. Gonzalez, D. Mozos, S. Lopez, FPGA implementation of

the principal component analysis algorithm for dimensionality reduction of

hyperspectral images, Journal of Real-Time Image Processing (2016) 1–12.

[3] IBM Inc., 128-bit processor local bus architecture specifications, Tech. rep.

(2007).510

[4] L. Santos, L. Berrojo, J. Moreno, J. F. López, R. Sarmiento, Multispectral

and hyperspectral lossless compressor for space applications (HyLoC): A

low-complexity FPGA implementation of the CCSDS 123 standard, IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sens-

ing 9 (2) (2016) 757–770.515

[5] C. Gonzalez, S. Lopez, D. Mozos, R. Sarmiento, FPGA implementation of

the HySime algorithm for the determination of the number of endmembers

in hyperspectral data, IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing 8 (6) (2015) 2870–2883.

32

[6] B. Yang, M. Yang, A. Plaza, L. Gao, B. Zhang, Dual-mode FPGA im-520

plementation of target and anomaly detection algorithms for real-time hy-

perspectral imaging, IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing 8 (6) (2015) 2950–2961.

[7] C. González, S. Bernabé, D. Mozos, A. Plaza, FPGA implementation of an

algorithm for automatically detecting targets in remotely sensed hyperspec-525

tral images, IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing 9 (9) (2016) 4334–4343.

[8] Xilinx, LogiCORE IP Product Guide, AXI DMA v7.1, Tech. rep. (2017).

[9] Xilinx, LogiCORE IP Product Guide, AXI Video Direct Memory Access

v6.2, Tech. rep. (2016).530

[10] T. Hussain, M. Shafiq, M. Pericàs, N. Navarro, E. Ayguadé, Ppmc: A

programmable pattern based memory controller, in: ARC, 2012.

[11] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. Ayguadé, M. Valero,

Advanced pattern based memory controller for fpga based hpc applications,

in: High Performance Computing & Simulation (HPCS), 2014 International535

Conference on, IEEE, 2014, pp. 287–294.

[12] S. Lloyd, M. Gokhale, In-memory data rearrangement for irregular, data-

intensive computing, Computer 48 (8) (2015) 18–25.

[13] G. Weisz, J. C. Hoe, Coram++: Supporting data-structure-specific mem-

ory interfaces for fpga computing, in: Field Programmable Logic and Ap-540

plications (FPL), 2015 25th International Conference on, IEEE, 2015, pp.

1–8.

[14] ARM, AMBA AXI and ACE Protocol Specification, Tech. rep. (2011).

[15] Xilinx, LogiCORE IP Product Guide, AXI DataMover v5.1, Tech. rep.

(2017).545

33

[16] J. Fjeldtvedt, M. Orlandić, T. A. Johansen, An Efficient Real-Time FPGA

Implementation of the CCSDS-123 Compression Standard for Hyperspec-

tral Images, IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing 11 (10) (2018) 3841–3852.

[17] Naval Research Laboratory, Hyperspectral Imager for the Coastal Ocean550

(HICO).

URL http://hico.coas.oregonstate.edu/

[18] GICI group, Universitat Autonoma de Barcelona, Emporda software

(2011).

URL http://www.gici.uab.es555

34

http://hico.coas.oregonstate.edu/
http://hico.coas.oregonstate.edu/
http://hico.coas.oregonstate.edu/
http://hico.coas.oregonstate.edu/
http://www.gici.uab.es
http://www.gici.uab.es

	Introduction
	Direct Memory Access
	State of the Art
	AXI DMA cores and HSI data streaming

	CubeDMA Implementation
	DataMover
	Register Interface
	Controller
	Component Unpacker

	Results
	Conclusion

