
CubeDMA - Optimizing Three-Dimensional DMA
transfers for Hyperspectral Imaging Applications

Johan Fjeldtvedt, Milica Orlandić∗

Department of Electronic Systems
Norwegian University of Science and Technology - NTNU

Trondheim, Norway

Abstract

Onboard computing is one of the principal needs in space-related technology in

the recent years. In particular, onboard hyperspectral imaging (HSI) processing

has advanced significantly. Due to advances in sensor technology, onboard HSI

processing continuously meets new challenges related to increasing dataset size,

limited processing time and limited communication links. High throughput and

data reduction are crucial for satisfying real-time constraint and for preserving

transmission bandwidth. For systems capable of accommodating a wide range of

processing algorithms, there is a need for a flexible communication infrastructure

that can provide fast access to/from memory in different access patterns. In this

paper, existing FPGA-related Direct Memory Access (DMA) solutions have

been evaluated, and a new DMA solution tailored for hyperspectral images has

been proposed. Results show that the proposed DMA core, CubeDMA, handles

targeted memory access patterns in more efficient manner than existing solutions

while being resource efficient.

Keywords: Direct Memory Access, DMA, Hyperspectral imaging, HSI cube,

on-board processing

∗Corresponding author
Email address: milica.orlandic@ntnu.no (Milica Orlandić)

Preprint submitted to Microprocessors and Microsystems Journal November 11, 2018

1. Introduction

Hyperspectral sensors for satellite application are capable of generating high-

dimensional imagery with detailed information about the sensed scene. A push-

broom scanner is widely used for obtaining these images by simultaneously

collecting spectral information in a line-by-line fashion. Hyperspectral images5

(HSI) or HSI cubes are characterized by three dimensions (Nx, Ny, Nz) - spa-

tial resolution (number of pixels), temporal-spatial resolution (frame rate) and

spectral resolution (number of bands) as presented in Fig. 1. A component in

the HSI cube is specified by coordinates (x; y; z). An HSI pixel with fixed (x; y)

coordinates consists typically of hundreds of components in spectral domain,10

whereas an HSI frame is defined by a set of samples for one y coordinate. Sam-

ple ordering is a mapping of the cube components to a unique one-dimensional

index from three-dimensional coordinates. The most common sample orderings

are Band Interleaved by Pixel (BIP), Band Interleaved by Line (BIL) and Band

Sequential (BSQ) presented in Fig. 2. In BIP ordering, each full pixel is accessed15

sequentially, starting at the upper left pixel and traversing the cube line by line

towards the lower right pixel. In BIL ordering, traversing is performed frame

by frame in (z; x) order. In BSQ ordering, the components are traversed band

by band corresponding to (z; y; x) mapping order.

Satellite onboard processing systems have emerged as an attractive solution20

to deal with high computational requirements and to ensure fulfillment of real-

time constraints in the processes of data acquisition, data interpretation and

decision making. A current trend for onboard systems is the use of hybrid pro-

cessing systems - System-on-a-Chip (SoC) platforms. These SoC devices adapt

and combine computing architectures such as CPUs, GPUs, FPGAs and DSPs,25

where the advantages of each technology are used in partitioning process of

the algorithms. In particular, the SoC systems with reconfigurable hardware

have become the standard choice for onboard remote sensing applications and

compression due to small size, weight, power consumption and resistance to

damages and malfunctions caused by ionization radiation [1]. An important as-30

2

Pixel

Line of Pixels

N
u

m
b

er
 o

f
B

an
d

s
(S

p
e

ct
ra

l D
im

en
si

o
n

)

Pixel/Line
(Spatial Dimension)

Frame

Figure 1: Hyperspectral cube acquisition process

...

...

...

...
...

...

...

...

...

BIL orderBIP order BSQ order

y

z

x

Figure 2: Sample orderings of HSI cube

3

pect in SoC development is to establish fast communication and high data rates

between different portions of hardware, which is often the main bottleneck of

a system processing large data sets. One of the most efficient ways for stream-

ing data from the memory is by establishing direct communication between the

memory and the processing core on the FPGA and by excluding the Central35

Processing Unit (CPU) from this critical path. This is achieved by using Direct

Memory Access (DMA) cores.

In satellite applications, HSI data cubes fetched by push-broom scanners

are usually arranged in the memory in BIP ordering. Due to this fixed memory

data arrangement, it is required from the system to support in an efficient40

manner other data access patterns used by the onboard processing algorithms.

The HSI-related algorithms can be divided into two distinct categories: pure

HSI compression systems and HSI custom-application processing such as target

detection, classification or anomaly detection. Some of these algorithms process

a whole cube, while others work on smaller sub-cubes (blocks) in spatio-temporal45

(x; y) or spatio-spectral (x; z) planes. The existing processing cores of algorithms

from both categories are often built within larger systems with standardized

communication protocols. These systems are explored to detect input access

patterns of interest and streaming capabilities in terms of throughput. In that

context, a recent hardware implementation of PCA dimensionality reduction for50

hyperspectral images [2] proposes supporting communication system based on

PLB bus and PLB DMA [3]. An FPGA-based hardware implementation of the

CCSDS-123 compression algorithm with BSQ ordering is proposed in [4], where

a supporting system based on DMA communication is also described. The need

for fast block-based data streaming arises in widely used compression standards55

such as JPEG2000 and JPEG. The JPEG2000 standard employs the discrete

wavelet transform (DWT) and defines tiles (blocks) with sizes which vary up

to a complete image, whereas the JPEG standard performs DCT transform on

fixed 8� 8 blocks.

For other onboard HSI remote sensing applications, the custom product,60

such as the map of pixels indicating the spectral signature of interest in target

4

detection, is downlinked. An FPGA implementation of the HySime algorithm

[5] for the determination of the number of endmembers in a given scene de-

scribes the communication with the memory achieved through PLB DMA on

a PLB bus where the IO overhead is reduced by FIFOs for ensuring correct65

data reading/writing. An FPGA implementation of the CEM algorithm and

RX anomaly detector [6] implements streaming background statistics (SBS) in-

put FIFOs for streaming HSI data from the memory and uses a DMA core

in combination with a PCIe bus to send data to PCI peripheral for reading.

An Automatic target detection algorithm (ATPG) implementation [7] uses a70

DMA core in two-directional communication with memory where a structure

with FIFOs is used for data prefetching of the pixel input stream.

In the context of these applications, the communication system of an onboard

HSI processing system is required to support:

� Capability of streaming a HSI image in BIP or BSQ ordering,75

� Capability of streaming a HSI image in block-wise BIP and BSQ ordering,

� Support for component size other than byte multiples.

Thus, in this paper, available DMA cores are studied with respect to these

requirements. Existing DMA solutions are found not to be suitable for a number

of scenarios. In particular, the limitations are found in the scenarios with the80

large HSI data set characterized by pixel bit-widths which are not byte multiples

and with limited on-board memory which requires the data to be stored as

compactly as possible. In order to overcome these limitations, an efficient and

fast on-chip communication core CubeDMA suitable for HSI data access patterns

of interest is proposed.85

The paper is structured as follows: existing FPGA-related DMA cores, their

interfaces and building blocks are presented in Section 2. The proposed high-

throughput DMA implementation is described in Section 3. Results are sum-

marized in Section 4. Finally, the conclusions are given in Section 5.

5

2. Direct Memory Access90

Data streamed from sensors and variables required for data processing are

usually stored in the memory. High-speed memory access is a critical feature

for a number of systems which process large data sets due to the increase of

memory-bound applications. DMA cores are commonly used to perform data

exchange in a shared memory system without involving the CPU so that the95

CPU is allowed to perform other tasks during the data transfer.

2.1. State of the Art

A conventional Direct Memory Access (DMA) controller performs a transfer

of contiguous memory locations supporting only simple data access patterns.

However, this technique is not efficient for accessing non-contiguous memory100

locations (complex memory patterns) as it introduces substantial delays and

lowers the throughput of the complete system.

Most of the recent works with respect to direct communication with memory

propose complex descriptor-based DMA architectures with scratchpad memory

to support both regular and irregular data patterns such as streaming, linked105

list, and tree-based data transfers for image/video applications. However, none

of the researches concretely focuses on HSI-related streaming and requirements

imposed by HSI applications.

The Xilinx AXI DMA [8] is highly configurable core by tuning a large number

of parameters. The core works in two modes - a slimmed-down basic mode and a110

descriptor-based scatter-gather mode. This core is used often as a building block

of a more complex DMA engines on Xilinx SoCs. The AXI Video Direct Mem-

ory Access (AXI Video DMA) [9] core is a specialized soft core that provides

high-bandwidth direct memory access between memory and video-related pe-

ripherals. Programmable Pattern-based Memory Controller (PPMC) [10] sup-115

ports data intensive applications having regular access patterns (vector and tiled

access patterns) by the use of multiple descriptor blocks. Advanced Pattern

based Memory Controller (APMC) [11] includes a specialized descriptor-based

6

DMA engine supporting both regular and irregular memory access patterns

(load-store, streaming, array, linked list, and tree based data transfers) target-120

ing applications such as 3-D stencil algorithms, linked list buffer or binary tree

based Huffman coding. The data rearrangement engine (DRE) [12] performs

in memory data restructuring to accelerate irregular, data-intensive applica-

tions. The DRE core consists of a programmable DMA unit (a load/store unit)

along with a microcontroller which executes a simple set of application directed125

commands. Finally, CoRAM++ [13] is a programming environment for FPGA

computing supporting complex data structures such as multidimensional arrays

and linked lists. It is based on a set of memory interfaces for each supported

data structure and provides a specialized soft-logic implementation of the data-

path to memory. In the context of HSI processing, particular interest is found in130

multidimensional array structures, where array traversal order and data layout

can be selected at run time. Supported data layouts in memory are common

row-major order (BIP ordering) or tiled order (block-wise ordering). For data

stored in row-major order, strided data accesses during column (BSQ ordering)

traversal has been shown inefficient.135

2.2. AXI DMA cores and HSI data streaming

In this section, the available Xilinx DMA cores, AXI DMA and AXI Video

DMA, are described and analyzed in the context of 3-D HSI data access patterns.

Recent Xilinx SoCs use a set of open bus standards, Advanced eXstensible

Interface (AXI) [14] for connecting master and slave components within large140

systems. The protocol is based on a common handshake mechanism for data

transfer controlled by two signals. The first signal indicates presence of valid

data on the data lines and the second signal is asserted by the recipient when

it is ready to receive the data. The transfer is acknowledged when both signals

are asserted in the same clock cycle, a beat. The beat is the fundamental unit of145

data transfers and one transaction can consist of several data beats. Instead of

initiating a new transaction for every unit of data, a burst transfer is introduced

defining a burst size and burst length in addition to the address. The burst size

7

indicates the number of bytes to be transferred in one beat, whereas the burst

length provides a number of beats per transaction.150

The AXI DMA core is con�gured directly by dedicated registers accessible

through the CPU's memory map. The CPU sets a start address and a length of

contiguous memory locations and controls transfer completion either by polling

or by the use of interrupts. However, many applications require to gather data

from separate locations. The AXI DMA core performs this operation in scatter-155

gather mode de�ning the DMA con�guration which relies on a chain of block

descriptors (BDs) for the transfer description. Each BD contains a start address,

a length and several �ags (e.g. whether the block is the last one). Fig. 3 shows

a transfer of several scattered blocks by the use of block descriptors. The use

of a DMA without scatter-gather mode in such scenarios requires the CPU to160

set up the transfer of each contiguous block introducing delays and limiting the

e�ciency of system partitioning.

Figure 3: Scatter-gather transfer using a chain of block descriptors

The AXI DMA performs a transfer of a complete HSI cube in sequential

BIP ordering by creating a BD chain as shown in Fig. 4a. In the BD chain, all

but the last block descriptors have a maximized length �eld which depends on165

con�guration/generics of the AXI DMA, and the last block descriptor contains a

length �eld set to the remaining number of bytes. A transfer in BSQ ordering is

required to be performed by using only one block descriptor per pixel component

8

(Fig. 4b). In this manner, a BD chain with length equal to the number of

components of the whole HSI cube introduces unacceptable overhead and delay170

related to operation of fetching block descriptors. Some applications require

data to be fetched from scattered locations with a constant access pattern such

as rectangular sub-blocks. In this context, block-wise BIP ordering requires one

BD per block row as presented in Fig. 4c.

(a) BIP ordering (b) BSQ ordering

(c) Block-wise BIP ordering

Figure 4: Creation of BD chain for di�erent sample orderings

The con�guration of AXI DMA for operating in 2D mode has the BD length175

�eld replaced with �elds of a vertical size (V SIZE), a horizontal size (HSIZE)

and a stride. The horizontal size equals the number of bands to transfer in

parallel, whereas stride �eld contains information about the number of bands

to skip/jump. The vertical size is the number of contiguous memory transfers

to perform. For example, to transfer �rst four bands in BSQ ordering, the start180

address of the transfer is set to the start address of the cube and �eld values

are set asHSIZE = 4 , Stride = Nz and V SIZE = Nx � Ny . AXI DMA in

9

2D mode, however, does not support unaligned transfers i.e. the transfers are

required to start at an address that is divisible by the native word length used

for memory access.185

The AXI Video DMA [9] is designed for video streaming, where a video con-

sists of a sequence of still-images. The video frames, in this case, are de�ned

as contiguous areas in memory which contain the pixels of a particular still-

image. The AXI Video DMA contains registers available to con�gure transfers

of up to 32 frame bu�ers. The frame bu�ers are pointed to with an address.190

Horizontal size, vertical size and stride parameters are supplied for each frame

bu�er, where the horizontal size and stride parameter �elds have 16-bit limita-

tion. This limitation can a�ect storing of HSI images by breaking HSI frames

into di�erent frame bu�ers. In BIP ordering, Video DMA frames are de�ned as

areas of the sizeNx � Nz . For BSQ transfers, a Video DMA frame contains only195

one component and theV SIZE �eld must be then set to Nx � Ny which can

easily exceed �eld range for large cubes. This implies several separate transfers

and CPU interventions for the transfer of complete cube.

A short summary of the transfer modes for existing DMA cores and their

limitations for data patterns of interest is presented in Table 1.200

The described Xilinx DMA cores use the AXI DataMover [15] to perform the

actual data movement from/to memory. The DataMover is not a standalone

block and it requires a register interface for CPU control and external logic to

combine several DataMover transfers to cover the whole HSI cube. A block205

diagram of DataMover is presented in Fig. 5. The DataMover core accepts

simple commands to indicate data source and amount of data for transfer and

to perform the transfer. After processing a command, a status word is sent as a

response. Command and status words are bu�ered in a FIFO to ensure minimal

delay between their execution.210

10

Table 1: Existing Direct Memory Access Modes

AXI DMA - Scatter-Gather Mode

BIP a BD chain of a length necessary to describe the whole transfer

Block-wise BIP a BD chain with one descriptor per row in the block.

BSQ a BD chain with one BD per component - Not usable for HSI processing

AXI DMA - 2D Mode

BIP

a chain of two BDs, the �rst BD with HSIZE = STRIDE = maximized and

VSIZE= (N x � N y � N z)=HSIZE, and the second BD with leftovers from the

�rst transfer (Image start at 64-bit aligned address) - Not usable for HSI

processing

Block-wise BIP a chain of BD per row, with HSIZE = STRIDE = (block_ width � N z) and

VSIZE = 1. Block start at 64-bit aligned addresses - Not usable for HSI

processing

BSQ Each BD with a STRIDE= N z , HSIZE which indicates the number of bands

to extract and VSIZE= N x � N y - Not usable for HSI processing

AXI DMA - Video Mode

BIP 16-bit limitation of HSIZE and STRIDE �elds, 32-frame bu�er - Not usable

for HSI processing

Block-wise BIP 16-bit limitation of HSIZE and STRIDE �elds, 32-frame bu�er - Not usable

for HSI processing

BSQ One-component video frames, limited to 32-frame bu�er - Not usable for HSI

processing

3. CubeDMA Implementation

Among the available DMA solutions for SoCs with FPGAs, none of the cores

ful�lls given transfer requirements for 3D HSI data at the su�cient level. The

AXI DMA can perform data transfers in BIP and block-wise BIP orderings, but

challenges arise for BSQ transfers. The e�ciency of AXI DMA in 2D mode is215

limited by the requirement of 64-bit address alignment, whereas the Video DMA

11

Figure 5: Overview of the DataMover core [15]

is not �exible enough to be used for HSI images. For these reasons, a custom

DMA core, CubeDMA, specialized for hyperspectral image streaming patterns

with various bit-widths is implemented. The dimensions (width, height, depth)

corresponding to (Nx , Ny , Nz) of the HSI cube, as well as the block dimensions220

(block_width, block_height) for the chosen HSI data processing algorithm are

set before the processing starts. In the implementation, there are no restrictions

for the HSI cube size - the cube widthNx and height Ny do not need to be divis-

ible by the block_width or block_height. This implies that the last block in each

block row can have a width less than theblock_width, and the last row of the225

blocks can contain blocks of a height that is lower thanblock_height. However,

the block dimensions are restricted to power of 2 as it is well-aligned with the

requirements of the most block- and tile-based algorithms. The introduction

of block dimension constraint allows a number of computations to be simpli-

�ed, so multiplication and division by the block dimensions become shifting,230

whereas residual computation (modulo operation) becomes least signi�cant bits

assignment. Regardless of BSQ or BIP ordering, the CubeDMA can order the

pixels in sequential or block-wise manner. The sequential transfer starts at the

�rst pixel (upper left) and proceed through the cube line by line until the last

pixel (lower right). In a block-wise transfer, the cube is divided into blocks with235

12

block_height and block_width. The transfer orderings of pixels within a block

and blocks within a cube are shown in Fig. 6. The red arrows indicate the pro-

Figure 6: Processing order for a block-wise transfer in the CubeDMA

cessing order of the pixel components within the blocks, whereas the numbers

indicate the processing order of blocks within the cube. The band coordinatez

which block transfer starts at is assigned to parametero�set , whereas thelength240

per transaction is the number of contiguous bands to transfer. The CubeDMA

core consists of two streaming data channels, Memory Map to Stream (MM2S)

and Stream to Memory Map (S2MM), and the focus of the paper is to describe

the MM2S channel for data streaming from the memory to the processing core.

An overview of an MM2S channel with its building units Register interface,245

DataMover, Controller and Component unpacker is given Fig. 7.

3.1. DataMover

The DataMover IP [15] performs the transfer from/to the memory by AXI

transactions starting at a given address and with a given length as the basic

unit of data transfer. Depending on the cube dimension and component bit-250

width, the DataMover transfers a set of components (parts of a pixel), whole

13

Figure 7: Architecture of the CubeDMA MM2S channel

pixels or rows of pixels. Transfer progress is controlled by theCompletion tally

module, a counter which keeps a tally of the number of issued commands and

received status words. The counter is incremented/decremented each time a

command/status is handshaked.255

3.2. Register Interface

The Register interface exposes control and status registers to the CPU's

memory map in order to con�gure the core. The register layout is detailed in

Table 2 and a number of the register parameters are illustrated in Fig. 8. The

parameters such as the size of one row in number of components, number of260

band transfers per pixel and number of components per row in the last block

are used for address computation.

3.3. Controller

The Controller issues commands to the DataMover for the traversal of the265

HSI cube in the manner de�ned by the parameters in the registers. Each time

the DataMover is ready to accept a new transaction, the Controller computes

the byte address of the �rst component and the number of bytes to transfer

14

Table 2: Register layout for the CubeDMA

Field [Unit] Description Bits

Control and length register (0x00)

Start Transfer starts on bit transitions from 0 to 1 0

Block-wise mode Cube is read in blocks of speci�ed size 2

BSQ mode Cube is read in BSQ mode + Number of bands in

parallel

3

Error IRQ Enable IRQ is triggered when error condition arises 4

Completion IRQ Enable IRQ is triggered when transfer is completed 5

Length [comp] Number of bands to transfer 15-8

Start o�set [comp] Band number transfer starts from 23-16

Status register (0x04)

Transfer done Indicates whether the transfer is completed 0

Error mask Indicates which errors occurred 3 - 1

Error IRQ �ag Indicates when IRQ is triggered due to error 4

Completion IRQ �ag Indicates when IRQ is triggered due to completion 5

Base address register (0x08)

Base address The address of the �rst component in the �rst pixel 31 - 0

Dimension register 1 (0x0C)

Width [pixels] The width of the HSI cube 11 - 0

Height [pixels] The height of the HSI cube 23- 12

Depth [comp] Lower 8 bits of the depth of the HSI cube 31- 24

Dimension register 2 (0x10)

Block width log2 of the width of each block 3-0

Block height log2 of the height of each block 7-4

Depth [comp] Upper 4 bits of the depth of the HSI cube 11-8

Last block row size [comp] Number of components within each row in the last

block

31 - 12

Row size register (0x14)

Row size [comp] Number of components in one row of the cube 19-0

15

Figure 8: Register parameters

in that transaction. The architecture of the Controller module is illustrated in

Fig. 9. The Controller performs the following operations:270

� control of the operation sequencing - (State machine unit),

� generation of the component addresses and conversion of the HSI cube

components to byte units - (Address generator unit),

� control of the command/status operations.

Operation sequencing is controlled by the state machine consisting of six275

states as presented in Fig. 10. In therunning state commands are issued to

the DataMover, whereas in the wait_complete state the controller awaits for

the last command to be processed. In thehard_error state, the DataMover

signals an internal error which requires reset by moving to thereset state. The

DataMover reports a status word with an error bit set in sts_error state.280

The address generation logic consists of a set of counters used for compu-

tation of component addresses. The logic driving these counters is computed

based on parameters:

� num_blocks_x, num_blocks_y - number of blocks in total in x and y di-

mension respectively,285

16

Figure 9: Architecture of the CubeDMA Controller module

Figure 10: The state transition diagram for the State machine unit in the Controller

17

� curr_blocks_x and curr_blocks_y - the currently processed blocks inx

and y dimension respectively,

� h, w, block_h , block_w, rsize and offset related to the �elds height,

width , block_ height, block_ width , row_ size and of fset of the registers

in the Register interface.290

The pseudo-code for address generation is presented in Listing 1. The position of

the current block within the cube (curr_blocks_x and curr_blocks_y) and the

offset are updated for each band and block. The block address (block_addr),

the address of the complete row (row_addr), the start address of each row of the

block (block_r_addr) and the component addresses (comp_addr) are computed295

for each block.

for num_plane_transfers -1 to 0:

block_addr , row_addr , block_r_addr , comp_addr = offset

for block_y in num_blocks_y -1 to 0:300

for block_x in num_blocks_x -1 to 0:

for y in curr_block_h -1 to 0:

for x in curr_block_w -1 to 0:

if mode_block :

if block_x = 0:305

curr_block_w = w mod 2** block_w

length = last_block_row_size

else :

curr_block_w = 2** block_w

length = 2** block_w * depth310

if block_y = 0: curr_block_h = h mod 2** block_h

else : curr_block_h = 2** block_h

issue command (comp_addr , length)

if x = 0 and y = 0:

if block_x != 0: block_addr += w mod 2** block_w315

else :

18

block_r_addr += 2** block_h * rsize

block_addr += block_row_addr

if x != 0: comp_addr + = depth

else :320

if y != 0: row_addr += w

else : row_addr = block_addr

comp_addr = row_addr

wait for t ick from state machine

offset = offset + comp_per_cycle325

Listing 1: Pseudo-code of address generation process

The controller operates internally with components as the fundamental units.

Since the component size is not necessarily a multiple of a byte, it is required

to perform translation from component addresses into byte addresses. The

translation of a component address into abyte addressand an o�set for 10- and

12-bit components is illustrated in Fig. 11. The byte addressis computed by

multiplying the component address and the number of bits per componentBPC

followed by byte-division as follows:

byte address=
BPC � component address

8
; (1)

whereas theo�set is given as:

o�set = (BPC � component address) mod 8: (2)

Figure 11: Component address, byte address and o�set

19

Conversion from number of components to a number of bytesNbytes is also

required. For a given BPC, the number of bytes to representn components is

given by:

Nbytes =
n � BPC

8
: (3)

The number of bytesNbytes depends also on theo�set of the starting component.

Fig. 12 shows that in the �rst two scenarios four bytes are required for the

transfer of three 10-bit components, whereas in the third example the most

signi�cant bits of the last component are shifted across a byte boundary by the

o�set requiring an extra byte to be transferred. For this reason, the o�set is

included in the computation of Nbytes as follows:

Nbytes =
�

o�set + n � BPC
8

�
: (4)

Figure 12: Number of bytes required to transfer three 10-bit components starting at various

o�sets

3.4. Component Unpacker

When the HSI cube is packed in the memory with component sizes that are

not byte-multiples, components can be split across two (or more) bytes with

their LSB bit at an o�set within a byte. The component unpacker alters the330

data stream from memory so that user-de�ned number of complete components

20

Ncomp are input to the processing core. An example of component unpacking

process is presented in Fig. 13 with selected parameters -BPC = 12 bits,

Ncomp = 4 and length of input word N = 64 bits.

Figure 13: An example of packed data stream coming from memory and the resulting unpacked

data stream

The structure of Component unpacker module is presented in Fig. 14 where335

each stage requires con�guration data associated with the incoming packet. The

con�guration data consist of a number of parameters useful for the unpacking

process such as the number of bits to shift the incoming word from memory

in the o�set shifter and the number of valid components in the last packet

from memory. The start of a new packet is detected in packet detector stage340

simultaneously with con�guration data sent into a FIFO from the controller

module.

The o�set shifter performs a shifting operation of the N -bit incoming data

packet to remove the o�set computed by Eq. 2. If the �rst component in a

transfer starts at a non-zero o�set no�set in memory, the incoming data is shifted345

no�set positions and the most signi�cant bits are �lled with the no�set least sig-

ni�cant bits from the next data packet. The shifting, which propagates through

the subsequent data packets in the transfer as presented in Fig. 15, is imple-

mented in hardware by storing each incoming data word in a register. The

(N � no�set) most signi�cant bits in the register are used as the least signi�cant350

21

Figure 14: The Component unpacker module

bits of the output, and the least signi�cant no�set bits of the current data are

used as the most signi�cant no�set bits of the output.

Figure 15: Behavior of the o�set shifter

The component restructurer reorganizesN -bit input data packet into a max-

imum number of componentsNmax and a set of leftover bits of a component,

where the maximum number of components is computed as:

Nmax =
�

N
BPC

�
: (5)

The complete components are forwarded, whereas the leftover bits are stored in a

register to be combined with the components in the next data word. To maintain

22

	Introduction
	Direct Memory Access
	State of the Art
	AXI DMA cores and HSI data streaming

	CubeDMA Implementation
	DataMover
	Register Interface
	Controller
	Component Unpacker

	Results
	Conclusion

