
Applying hybrid methods to reduce 
nonphysical cycles in the flux field

Christine Marie Øvrebø Haugland

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Knut-Andreas Lie, SINTEF ICT, Applied Mathematics

Stein Krogstad, SINTEF ICT, Applied Mathematics

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology





Abstract

In this thesis we present the theoretical background for the two-point flux-approximation
method; (TPFA), mimetic discretisation methods, and the multipoint flux approxima-
tion method; (MPFA). Theoretical arguments concerning monotonicity and the fact
that loss of monotonicity may lead to oscillations and nonphysical cycles in the flux
field are also discussed. TPFA is only consistent for K-orthogonal grids. Multipoint
flux approximation methods and mimetic discretisation methods are consistent, even
for grids that are not K-orthogonal, but sometimes they lead to solutions containing
cycles in the flux field. These cycles may cause problems for some transport solvers
and diminish the efficiency of others, and to try to cure this problem, we present two
hybrid methods. The first is a hybrid mimetic method applying TPFA in the vertical
direction and mimetic discretisation in the plane. The second hybrid method is the
hybrid MPFA method applying TPFA in the vertical direction and MPFA in the plane.
We present results comparing the accuracy of the methods and the number of cycles
obtained by the different methods. The results obtained shows that the hybrid meth-
ods are more accurate than TPFA, and for specific cases they have less cycles than the
original full methods.



Sammendrag

I denne oppgaven presenteres den teoretiske bakgrunnen for topunkts fluksapprok-
simasjon; (TPFA), mimetiske diskretiseringsmetoder og flerpunkts fluksapproksima-
sjon; (MPFA). Teoretiske argumenter rundt monotoni og det faktum at tap av mono-
toni kan føre til svingninger og sykler i fluksfeltet, som ikke er fysisk mulige, blir
også diskutert. Topunkts fluksapproksimasjon er bare konsistent for gitre som er K-
ortogonale. Flerpunkts fluksapproksimasjoner og mimetiske diskretiseringsmetoder
er konsistente, selv for gitre som ikke er K-ortogonale, men de fører noen ganger til løs-
ninger som inneholder sykler i fluksfeltet. Syklene kan forårsake problemer for noen
tranportløsere og minke effektiviteten av andre, i forsøk på å finne en løsning på det-
te problemet vil vi presenterer to hybride metoder. Den første er en hybrid mimetisk
metode som bruker TPFA i vertikal retning og mimetisk diskretisering i planet. Den
andre hybride metoden er hybrid MPFA som bruker TPFA i vertikal retning og MPFA
i planet. Vi presenterer resultater der vi sammenligner nøyaktigheten av metodene og
antall sykler som fremkommer ved bruk av de ulike metodene. Resultatene viser at de
hybride metodene er mer eksakte enn TPFA og ved noen tilfeller har de færre sykler
enn mimetiske metoder og MPFA.
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Chapter 1

Introduction

Reservoir simulation is an important area within oil reservoir management. The sim-
ulations can provide a better understanding of the flow patterns in the reservoir, and
simulations can be helpful in determining the placement of wells in order to obtain
the most optimal oil and gas recovery. Getting an accurate prediction of the flow in
a reservoir is difficult because numerous factors may impact the flow. It is not possi-
ble to model all rock properties in the entire reservoir accurately, and even if it was,
it would result in too much information to process. Hence, we have to make certain
approximations in which the rock properties are constant within one grid block.

Furthermore, we cannot include all of the properties of the reservoir at the same time.
The domain that represent the reservoir must be divided into grid blocks. Results are
calculated for all the grid blocks in the reservoir and then added together. It is possible
to develop geological models down to a meter scale [1], but such models result in too
many grid blocks making the simulation too computationally costly. Instead we have
to make the grid blocks larger and upscale the geophysical parameters.

Developing numerical methods to approximate complex physical properties is an im-
portant part of applied mathematics, and research has been concerned with flow mod-
elling in porous media. This thesis will focus on oil flowing through a porous media;
the reservoir. However, the methods presented may also be used in simulations of
other fluids. Several different numerical discretisation methods exist, and selecting
the best one depends on the specific problem to be solved. The most common dis-
cretisation method used in reservoir simulation is the two-point flux-approximation
method (TPFA, see e.g., [1, 2, 3]). TPFA result in a cell-centred system. This method
is computationally efficient, but is only consistent for K-orthogonal grids. Generally,
the grid blocks used in reservoir simulation are larger in the x y-plane than in the z-
direction. In addition, the permeability in the z-direction is usually small compared
to the permeability in the plane, therefore most of the flow is along the layers. Conse-
quently it is likely to believe that most of the errors by using TPFA occur in the plane.

In recent years research concerning the monotonicity of discretisation methods shows
that TPFA is always monotone. Loss of monotonicity may be caused by oscillations in
the pressure and an effect of this may be that artificial gas is liberated which leads to a
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strongly diverging solution [4]. When a method is not monotone, nonphysical cycles
in the flux field may occur. Cycles in the flux field may lead to longer computational
time.

Other discretisation methods well suited for the oil industry exist as well. One of
these methods is the group of mimetic methods, [5], which are defined in terms of a
transmissibility matrix, T, which is an inverse inner product. The mimetic methods
are designed in such a way that they are exact for linear pressure fields, and hence are
consistent. However, the mimetic methods tend to be non-monotone for grids where
the grid blocks are skew, and these methods require more computation than TPFA.
The mimetic methods result in an edge-centred system of unknown pressures.

Another group of methods which has received much attention in resent research is the
multipoint flux approximation methods; (MPFA, [3, 6]). MPFA-methods are consistent
for grids which are not K-orthogonal, but these methods are not always monotone
and they require more computation than TPFA. As TPFA, MPFA lead to a cell-centred
system.

This thesis will present the theoretical background for TPFA, mimetic methods and
MPFA. Regarding the mimetic methods, we will focus on an inner-product called
ip_simple in MRST, while we for the MPFA will present the theory for the MPFA-O
method and a local-flux mimetic formulation of MPFA-O, [7, 8].

The goal of this thesis is to develop methods using TPFA in the vertical direction and a con-
sistent method in the plane. The motivation for doing this is to obtain methods which are
more consistent than TPFA and results in fewer cycles in the flux field compared to using the
consistent methods in the entire domain.

We seek to explore the accuracy of a method using TPFA in the z-direction and a
more consistent method in the x y-plane, and if the number of cycles decreases com-
pared to the consistent method. We call these new methods hybrid methods. We will
present two hybrid methods. The first builds on TPFA and the mimetic method using
ip_simple as inner product. The second builds on TPFA and the local-flux mimetic
formulation of the MPFA-O method, see e.g., [9].

The two hybrid methods are implemented in MATLAB by using Matlab Reservoir
Simulation Toolbox; (MRST). MRST, is an open-source MATLAB toolkit developed by
SINTEF [10]. Using MRST, we have performed simulations on different types of grids
and compared the results of the two hybrid methods to TPFA and their respective
consistent methods. The hybrid methods and some of the test examples can be found
in the MRST add-on module HybridMethods.
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Chapter 2

Discretisation models

2.1 Introduction to reservoir simulation

Reservoir simulation is an important part of oil-reservoir management. Simulations
are used to help the oil companies estimate production characteristics, calibrate reser-
voir parameters, visualise the flow patterns in the reservoir, etc [1]. The challenges in
predicting reservoir behaviour depend both on obtaining the most accurate geological
parameters, and using these parameters in numerical calculations. In this thesis we
will concentrate on solving for the pressure in the reservoir. Oil reservoirs are char-
acterised by complex geometry and rapid changes in rock properties. This requires
numerical methods which can be used on complex grids, and the methods need to
handle discontinuities in the parameters.

2.1.1 Rock properties

The rock properties are the properties of the rock in the reservoir affecting the flow
pattern of the oil. This includes the geophysical properties of the rock, for example
permeability and porosity, and the dimensional properties.

The permeability K is a property of the rock, i.e., it gives a measure of the rock’s ability
to transmit fluids. The permeability is a property of the reservoir and not the oil in the
reservoir. K is a tensor of size d ×d where d is the spatial dimension. The permeability
tensor is symmetric and positive definite, and the elements in the matrix can be written
as:

K =
 ki i ki j ki k

k j i k j j k j k

kki kk j kkk

 . (2.1)

The SI unit for permeability is m2, but it is more common to use the unit Darcy, 1D
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≈ 0.987 ·10−12m2. In oil reservoirs, a permeability of 1D is a relatively high permeabil-
ity. There are many different rock formations with different permeabilities in one oil
field, and hence, the permeability may vary over several orders of magnitude. It is
not unusual to have variations in the range of 1 mD to 10 D [1]. If the permeability
is homogeneous, it means that the permeability is the same for all the grid blocks in
the reservoir, while heterogeneous permeability means that all the grid blocks in the
reservoir have strongly varying permeability. It is also common to talk about isotropic
and anisotropic permeability. Isotropic permeability means that the permeability is
the same in all directions while anisotropic permeability means that it is not the same
in all directions.

The porosity, φ, is also a property of the rock, and it is the void fraction of the volume
of the rock, hence 0 ≤φ< 1. The rock is compressible, and hence the porosity depends
on the pressure. The rock compressibility is

cr = 1

φ

dφ

d p
, (2.2)

where p is the pressure in the reservoir. For reservoirs in the North Sea, the value of φ
is normally 0.1−0.3 [1].

In this thesis we will only consider single-phase flow. However, when considering
reservoir simulation, it is common to talk about multiphase flow. Therefore, we will
briefly introduce a few properties that are being used when multiphase flow is consid-
ered.

In reservoir simulations we usually consider the void of the porous media to consist of
three different phases. These phases are: aqueous (w), oleic (o) and gaseous (g ). The
fraction of the volume occupied by one phase is the saturation of that phase, (s).

∑
i=(o,g ,w)

si = 1. (2.3)

Each phase consists of one or more components. Here, a component is a hydrocarbon
e.g., methane ethane, propane etc. And the sum of the mass fractions of each compo-
nent in a phase should add up to 1, hence if mi j is the mass fraction of component i in
phase j we have:

N∑
i=1

mi g =
N∑

i=1
mi o =

N∑
i=1

mi w = 1, (2.4)

where N is the number of components, [1].

The different phases also have different pressures because of interfacial tensions. We
therefore introduce the capillary pressure which is:
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pci j = pi −p j , (2.5)

where i , j = g ,o, w .

Oil reservoirs are characterized by complex geometry. The reservoir cannot be mod-
elled exactly, and we therefore need to divide it into grid blocks where the physical
parameters within one grid block are consistent. The technology today makes it pos-
sible to model the reservoir by grid blocks down to the meter scale, and these models
consist of multi-million cells. Even very advanced computers will face problems in
handling such a high number of cells. Therefore we need to upscale the geophysical
parameters and use a coarse model with grid blocks which are ten to hundred times
larger than the original grid blocks.

2.1.2 Mathematical model

The simplest mathematical model for an oil reservoir is the single-phase flow model.
In this thesis it is assumed that we have one phase, i.e., only oil which we consider to
be homogeneous, i.e., one can consider the phase as one component. The first equation
which is used to model the flow through the reservoir is the continuity equation which
states that mass is conserved [1],

∂(φρ)

∂t
+∇ · (ρ~v) = q. (2.6)

Here φ is the porosity, ρ is the density and q is the source/sink term. This means that
for a volume Ω, the mass that is being produced by the source, q , in Ω equals the mass
that stays in Ω plus the mass flowing out of Ω.

The velocity, ~v in Equation (2.6) is given by Darcy’s law:

~v =−K

µ
(∇p +ρg∇z), (2.7)

where K is the permeability, µ the viscosity and p is the pressure. The velocity ~v is
very small, a typical value is approximately 1 Km per year [2].

If one assumes that the porosity is constant in time and if we have an incompressible
fluid, i.e., the density is constant, Equation (2.6) becomes ∇ ·~v = q

ρ . Combining this
with Equation (2.7) gives us the following:

∇ ·~v =−∇ ·λ∇u = q

ρ
, (2.8)
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where λ = K
µ and is called the mobility, u = (p +ρg z) is the flow potential which is a

function of the pressure. Equation 2.8 is an elliptic equation.

In this thesis we will consider finitely domains and we will not have any flow across
the boundary. Hence, on the boundary ∂Ω, we have ~v ·~n = 0, ~n is the normal vector
pointing out of ∂Ω. When this is imposed on our domain we will have a system where
no oil can enter or exit the reservoir.

2.1.3 Numerical methods

In order for the model to produce any output, for example, run a simulation of what
happens in the reservoir, one need to solve a set of equations. We usually make an
approximation of the flux, f, through an interface γ:

f =−
∫
γ

K

µ
∇u ·~ndν. (2.9)

In discrete form one can write:

fi = Ti (ei ui −πi ), ei = (1, ...,1)T , (2.10)

where ui is the pressure at the cell centre,πi is the face potential and Ti is the transmis-
sibility matrix for cell i . The transmissibility matrix will be discussed often throughout
this thesis.

For numerical schemes which can be written in hybridised mixed form; by augment-
ing Equation (2.10) with continuity of flux and pressure across cell faces we, according
to [5], get:

 B C D
CT 0 0
DT 0 0

 f
−u
π

=
0

q
0

 , (2.11)

where B is block-diagonal and the i ’th block is T−1
i . The matrix C is also block-diagonal

and the i ’th block corresponds to cell i . The columns in D correspond to a unique face
and it has unit entries corresponding to the index of the face in the cell-wise ordering.
It has one entry for boundary faces and two entries for interior faces. If we consider a
face that is connected to cell i and cell j , but it is considered according to cell i , we call
it a half face.

There are numerous different numerical schemes which can be used to discretise the
equations and they all have their pros and cons. Some are fast, but may be inconsistent,
while others are accurate, but very time-consuming. In this thesis, we will pay special
attention to the numerical aspects of reservoir simulation. Equation (2.9) is a simple
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version of the pressure equations and this has to be solved in order to run reservoir
simulations.

2.2 Two-point flux approximation

The most common discretisation scheme used for reservoir simulation in the oil in-
dustry is the two-point flux-approximation; (TPFA) scheme. TPFA is a finite volume
method, and finite volume methods are derived from conservation of physical quan-
tities over cell volumes, for instance, mass. In this section we want to derive the two-
point flux approximation, and the calculations in this section will follow [1]. Consider
the following equation:

−∇ ·λ∇u = q

ρ
. (2.12)

i-1 i i+1

γi ,i+1

∆xi−1 ∆xi ∆xi+1

Figure 2.1: Grid.

Figure 2.1 shows a simple cell-centred grid. This grid can be used as an illustration
to explain one dimensional horizontal flow. The cells are assigned indices, and these
indices refer to the mid-point of each cell [2]. The interface, γi ,i+1, is the common
interface between cell i and cell i +1, and we can say that this interface goes through
the point i+1/2, but we do not know anything about it except that it is on the boundary
between cell i and cell i +1.

We want to approximate the flux, fi ,i+1 between two cells, cell i and cell i +1,

fi ,i+1 =−
∫
γi ,i+1

(
K

µ
∇u) ·~ndν. (2.13)

Two points are used, the mid-points of cell i and i +1 and the potentials at these points
are said to be ui and ui+1. These potentials are cell averages. Assume that the gridlines
are aligned with the principal coordinate axes and cell i and i +1 are two cells with a
common face, γi ,i+1 which lies in the yz-plane. The flow is in the x-direction, it flows
from cell i to cell i +1. By using Taylor expansion one can find an expression for ∇u:

Proposition 2.2.1. For one-dimensional flow one can approximate ∇u by Taylor expansion
leading to:

∇u ≈ 2(ui+1 −ui )

∆xi+1 +∆xi
. (2.14)
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Proof.

ui = ui+1/2 − ∆xi

2

∂ui+1/2

∂x
+O(∆x2

i ),

ui+1 = ui+1/2 + ∆xi+1

2

∂ui+1/2

∂x
+O(∆x2

i+1),

∂ui+1/2

∂x
≈ 2(ui+1 −ui )

∆xi+1 +∆xi
. (2.15)

The dimension in the x-direction of cell i is ∆xi .

Inserting Equation (2.14) into the expression for the flux gives the following equation:

fi ,i+1 =−2(ui+1 −ui )

∆xi+1 +∆xi

∫
γi ,i+1

K

µ
·~ndν. (2.16)

We let ~ω = K~n, hence ~ωi = Ki~ni and ~ωi+1 = Ki+1~ni+1. The potential-difference used in
Equation (2.15) is a good approximation if the line between xi and xi+1/2 is parallel to
~ωi and the line between xi+1/2 and xi+1 is parallel to ~ωi+1. When this is true, our grid is
K-orthogonal, and hence, the following TPFA is only consistent for K-orthogonal grids
[3].

~ni k

~ni j

Figure 2.2: Cell with unit normal vectors.

Definition 2.2.1. K-orthogonality
A grid is K-orthogonal if, for all cells, the following is fulfilled:

~ni j ·K~ni k = 0, ∀Ωi ∈Ω, j 6= k,

~ni j ·~ωi k = 0. (2.17)

It is assumed that the mass is conserved and hence fi ,i+1 must be constant across the
interface γi ,i+1. If we consider three dimensions we say that |γi ,i+1| is the area of γi ,i+1

while it is the length in two dimension.

We now want to find an approximation for the permeability K. There are many differ-
ent averaging methods that can be used, but the harmonic average is used in TPFA.
This stems from the following proposition.

Proposition 2.2.2. Harmonic average
For one-dimensional flow the results in Equation (2.16) becomes exact if the harmonic average:

Ki+1/2 = (∆xi+1 +∆xi )

(
∆xi+1

Ki+1
+ ∆xi

Ki

)−1

, (2.18)

is being used to approximate the permeability.
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ui ui+1

∆xi ∆xi+1

ui+1/2

Ki Ki+1

γi ,i+1

Figure 2.3: Approximation of the permeability.

Proof. For the domain above we have three different expressions for the flux through
the interface γi ,i+1:

f1
i ,i+1 = −2(ui+1/2 −ui )

∆xi

∫
γi ,i+1

Ki

µ
·~ndν,

f2
i ,i+1 = −2(ui+1 −ui+1/2)

∆xi+1

∫
γi ,i+1

Ki+1

µ
·~ndν,

f3
i ,i+1 = −2(ui+1 −ui )

∆xi+1 +∆xi

∫
γi ,i+1

Ki+1/2

µ
·~ndν.

The permeabilities are now constant within its region, and we can write:

f1
i ,i+1 = −2(ui+1/2 −ui )

∆xi
·
|γi ,i+1|Ki

µ
,

f2
i ,i+1 = −2(ui+1 −ui+1/2)

∆xi+1
·
|γi ,i+1|Ki+1

µ
,

f3
i ,i+1 = −2(ui+1 −ui )

∆xi+1 +∆xi
·
|γi ,i+1|Ki+1/2

µ
.

If we have one-dimensional flow we have f1
i ,i+1 = f2

i ,i+1 = f3
i ,i+1 = fi ,i+1 and hence we get:

fi .i+1∆xi

|γi ,i+1|Ki
µ

+ fi .i+1∆xi+1

|γi ,i+1|Ki+1
µ

=−2(ui+1 −ui ) = fi ,i+1 (∆xi+1 +∆xi )

|γi ,i+1|Ki+1/2
µ

.

This leads to:

∆xi

Ki
+ ∆xi+1

Ki+1
= ∆xi+1 +∆xi

Ki+1/2
,

Ki+1/2 = (∆xi+1 +∆xi )

(
∆xi+1

Ki+1
+ ∆xi

Ki

)−1

,

which is the harmonic average.
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The mobility, λi+1/2, is defined as Ki+1/2
µ which becomes:

λi+1/2 = (∆xi+1 +∆xi )

(
µ∆xi+1

Ki+1
+ µ∆xi

Ki

)−1

= (∆xi+1 +∆xi )

(
∆xi+1

λi+1
+ ∆xi

λi

)−1

.

Using this and inserting it into Equation (2.16) yields the definition of the two-point
flux-approximation.

Definition 2.2.2. Two-point flux-approximation
The flux fi ,i+1 between cell i and cell i +1 can be approximated by:

fi ,i+1 = 2|γi ,i+1|
(
∆xi+1

λi+1
+ ∆xi

λi

)−1

(ui −ui+1). (2.19)

The term without the cell potentials, (ui −ui+1), is called the transmissibility, which in
general can be written

Ti , j = 2|γi , j |
(
∆xi

λi
+ ∆x j

λ j

)−1

. (2.20)

TPFA tries to find a u which is cell-wise constant and solves the following set of equa-
tions.

∑
j

Ti , j (ui −u j ) =
∫
Ωi

q

ρ
d x,

for all cells Ωi ∈Ω. (2.21)

The transmissibility matrix, T is diagonal for TPFA. This method is, however, only
convergent for cells where the grid is K-orthogonal.

In the next sections, we will consider some different approximation methods, and we
will find another expression for the transmissibility for TPFA, expressed in terms of
half-transmissibilities, in order to better compare these methods.

We consider two cells, cell i and cell j , and they share a face, face k. If we have a
regular cartesian grid in three dimensions, our system will have 11 unique faces. If we
look at cell i , six faces make up this cell, and six faces make up cell j . If we consider
one cell, we will call the faces belonging to this cell half-faces, and thus, our system
have 12 half-faces where two of them represent face k, but one holds the properties
of cell i and the other one the properties of cell j . A half-transmissibility is thus the
transmissibility corresponding to a half-face.
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If we only consider cell i , we can look at the expression for the flux f1
i ,i+1:

f1
i ,i+1 = −2|γi ,i+1| (ui+1/2 −ui )

∆xi

Ki

µ
,

f1
i ,i+1 = Ti (i +1)(ui −ui+1/2),

Ti (i +1) = 2|γi ,i+1|
(
∆xi

λi

)−1

. (2.22)

This is the flux through the interface between cell i and cell i +1, but seen from cell i .
As one can see the transmissibility only involves properties of cell i . This transmissi-
bility is a half-transmissibility, and when considering TPFA, one cell has as many half
transmissibilities as it has faces, and Ti (i + 1) represents the half-transmissibility for
cell i coming from the face which cell i shares with cell i +1. Hence, one can write as
in [5],

fi = Ti (~ei ui −πi ). (2.23)

Where Ti is a vector consisting of the half-transmissibilities connected to cell i , πi is a
vector representing the potentials at the face centroids of cell i , and ui is the potential
at the cell centroid of cell i .

We now need the following proposition to be true:

Proposition 2.2.3. Writing TPFA in terms of half-transmissibilities as done in Equation
(2.23) is consistent with the regular cell-centred formulation, which is a harmonic average
of two half-transmissibilities.

Proof. To see that Equation (2.23) is consistent with (2.19), we have that fi (i +1) is the
(i +1)’th element of the vector fi , i.e., the contribution of the flux through the interface
γi ,i+1 from cell i , and fi+1(i ) is the i ’th element of the vector fi+1, i.e., the contribution
of the flux through the interface γi ,i+1 from cell i +1:

fi (i +1) = 2|γi ,i+1| λi

∆xi
(ui −πi (i +1)),

fi+1(i ) = 2|γi ,i+1| λi+1

∆xi+1
(ui+1 −πi+1(i )).

Here, πi (i +1) =πi+1(i ) and in the following we will call it π,

fi (i +1) = −fi+1(i ),
λi

∆xi
(ui −π) = λi+1

∆xi+1
(π−ui+1),

π

(
∆xi+1

λi+1
+ ∆xi

λi

)
= ∆xi

λi
ui+1 + λi+1

∆xi+1
ui .

11



Inserting π=
(
∆xi
λi

ui+1 + λi+1
∆xi+1

ui

)(
∆xi+1
λi+1

+ ∆xi
λi

)−1
into fi (i +1) we get:

fi (i +1) = 2|γi ,i+1|
(
λi

∆xi
ui − λi

∆xi

(
∆xi

λi
ui+1 + λi+1

∆xi+1
ui

)(
∆xi+1

λi+1
+ ∆xi

λi

)−1)
= 2|γi ,i+1|

(
∆xi+1

λi+1

λi

∆xi
ui +ui −ui+1 − ∆xi+1

λi+1

λi

∆xi
ui

)(
∆xi+1

λi+1
+ ∆xi

λi

)−1

= 2|γi ,i+1| (ui −ui+1)

(
∆xi+1

λi+1
+ ∆xi

λi

)−1

. (2.24)

We note that this is the same as (2.19). However, to solve the system in Equation (2.23)
is more computationally costly than to solve (2.21) since we now have an edge centred
system instead of a cell centred.

2.3 Mimetic discretisation methods

In this section, we will present the mimetic method. The mimetic method is a finite
difference method, i.e., mimetic finite difference method; (MFD). We will first present
the method based on [11], and thereafter we will show how the inner product matrices,
M, are made based on [5].

As before, we have Darcy’s law, Equation (2.7), which in simplified form can be written
as:

~f =−K∇u,

∇ ·~f = q

ρ
. (2.25)

where ~f is the flux and u is the potential.

If we have Dirichlet boundary conditions, i.e., ~f ·~n = 0 on ∂Ω, then Green’s formula
will give us the following:

∫
Ω

u∇ ·~f d x +
∫
Ω

~f ·K−1(K∇u) = 0. (2.26)

We want to discretise Green’s formula, and we will define scalar products in the dis-
crete spaces which we will use. We will consider the space Qh which is a space con-
sisting of discrete potentials that are constant on each element E , and for every q ∈Qh

we say that qE is its value on element E . The space X h is a space of discrete velocities,
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~ne
E1

πe

uE1
~ce

E1

~ce
E2

πe

uE2
~ne

E2

Figure 2.4: Pictorial explanation of quantities used to define the mimetic inner product for cell
E1 on the top and E2 on the bottom.

and for every face e of element E we associate the vector field f e
E~n

e
E . The vector ~ne

E is
the unit outward normal to face e of element E , see Figure 2.4. Hence for a face e that
is shared by element E1 and E2 we according to [11] get:

f e
E1

=− f e
E2

. (2.27)

We will now state the discrete scalar products in the spaces Qh and X h . For elements
in the space Qh we, according to [7], have the following definition:

Definition 2.3.1. For any q ∈ L1(Ω) we define q I ∈Qh such that:

(q I )E = 1

|E |
∫

E
q(x)d x ∀E ∈Ωh . (2.28)

Where |E | is the volume of element E in three dimensions and the area of element E if we are in
two dimensions.

Hence we define the following scalar product:

Definition 2.3.2. For u = u I ,q = q I ∈Qh we have the the following scalar product:[
u,q

]
Qh = ∑

E∈Ωh

|E |uE qE . (2.29)

We have the following definition for elements in the space X h :
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Definition 2.3.3. For any ~v ∈ {~v :~v ∈ (Ls(Ω))d , s > 2,∇ ·~v ∈ L2(Ω)} we define ~v I ∈ X h :

(~v I )e
E = 1

|e|
∫

e
~v ·~ne

E ds, ∀E ∈Ωh , ∀e ∈ ∂E . (2.30)

This leads to the following scalar product in X h :

Definition 2.3.4. For f = ~f I ,v =~v I ∈ X h we have:

[f,v]X h = ∑
E∈Ωh

[f,v]E , (2.31)

where

[f,v]E =
kE∑

s,r=1
ME ,s,r f es

E ver
E , (2.32)

where kE is the number of faces belonging to element E . The matrix ME is an inner product
matrix for element E . This means that ME is symmetric and positive-definite.

We also need to discretise the divergence operator. We let H f =∇ ·~f :

Definition 2.3.5. If we have an element v ∈ X h and take the divergence we get an element
Hv ∈Qh . We define this for each E as:

(Hv)E := 1

|E |
kE∑

i=1
|ei |vei

E , (2.33)

where |ei | is the area of the i ’th face of element E in three dimension and the length in two
dimensions.

We will use this to prove the following proposition:

Proposition 2.3.1. The approximation of Equation (2.26) can be written in discretised form
as: ∑

E∈Ωh

|E |uE (Hf)E + ∑
E∈Ωh

kE∑
s,r=1

ME ,s,r f es
E (Gu)er

E = 0. (2.34)

Proof. We approximate the first integral in Equation (2.26) by the scalar product in Qh ,
and we get:

∫
Ω

u∇ ·~f d x ≈ [u,Hf]Qh = ∑
E∈Ωh

|E |uE (Hf)E . (2.35)

We let Gu = K∇u and then we approximate the second integral in Equation 2.26 by the
scalar product in X h :

∫
Ω

~f ·K−1(K∇u) ≈ [f,Gu]X h = ∑
E∈Ωh

kE∑
s,r=1

ME ,s,r f es
E (Gu)er

E , (2.36)

14



In discretised form we can write Equation (2.25) as:

f =−Gu,

Hf = q

ρ
. (2.37)

We now want to find the inner product matrix M and the transmissibility matrix T
which is the inverse of M. The properties of M are that the matrix is symmetric positive-
definite, and it is constructed in such a way that the mimetic method is exact for linear
pressure fields. According to [5] we want to have a solution on the form:

fE = TE (~eE uE −πE ). (2.38)

This can also be written as
ME fE = ~eE uE −πE . (2.39)

The mass flux is the rate of mass flowing through a unit area, and hence one can write:

f e
E = −~ne

E (Gu)e
E

= −~ne
E (K∇u)e

E . (2.40)

From [11] we get the following identity:

∫
∂E

(K∇xi ) ·~nx j ds =
∫

E
K∇xi ·∇x j dV = |E |Ki j , (2.41)

where (xi , ..., xd ) are the cartesian coordinates in d dimensions and the origin is set to
be at the center of mass of E . We then let:

Cs,i =
∫

es

xi ds, and Ns,i = (∇xi ) ·~nes
E . (2.42)

This means that the vector pointing from the cell centroid to the face centroid is ~ce
E .

For each cell these vectors are placed in a matrix C, where cs is the s’th row of C and
this is (~ces

E )T . We also find the area weighted normal vectors of each face and then we
multiply by 1 or −1 such that the direction of the vectors are pointing outwards of the
respective cell. Hence for a face that belongs to two different cells, say cell Ek and cell
E j the sign of ~ne

Ek
is different from ~ne

E j
. These are placed in the matrix N in the same

manner as the vectors were placed in C. The relationship between N and C is explained
in [11] as:

CTN = I(|Ei |), (2.43)

where I is the identity matrix. This follows from Equation (2.41).
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We now assume a linear pressure field and then the drop in the potential is:

uE −πE (e) =~ce
E ·∇u, (2.44)

where uE is the potential at the cell centroid of cell E , and πE (e) is the potential at the
face centroid of face e.

We need an inner product matrix M that fulfills Equations (2.39), hence we state the
following proposition:

Proposition 2.3.2. The inner product matrix M:

M = 1

|Ei |
CK−1CT +M2, (2.45)

fulfills the solution stated in Equation (2.39), where M2N = 0.

Proof. Combining Equations (2.39)-(2.44) we get:

Mf = MNK∇u = u−π= C ·∇u,

MNK = C. (2.46)

Inserting the results into Equation (2.40) gives us:

F = NK∇u = T(u−π) = TC∇u,

NK = TC. (2.47)

For one d-dimensional cell with n faces, C and N will be n ×d matrices.

Multiplying Equation (2.46) with K−1CTN = K−1I(|Ei |) gives the following:

MNKK−1(|Ei |) = CK−1CTN,

MN = 1

|Ei |
CK−1CTN. (2.48)

There is not only one unique M satisfying Equation (2.48), but they all have the form

M = 1

|Ei |
CK−1CT +M2, (2.49)

where M2N = 0.

Generally, according to [5] we can write

M2 = Q⊥
NSMQ⊥T

N , (2.50)

where Q⊥T

N is an orthonormal basis for the nullspace of N, and SM needs to be a symmet-
ric positive-definite matrix such that M2 is a symmetric positive-definite matrix.

16



The matrix M is symmetric and positive-definite. We also need to find the transmissi-
bility matrix T

Proposition 2.3.3. The transmissibility matrix T,

T = 1

|Ei |
NKNT +T2, (2.51)

fulfills the solution stated in Equation (2.38), where T2C = 0.

Proof. The matrix CTN = I(|Ei |) is a symmetric matrix, hence

CTN = NTC = I(|Ei |). (2.52)

Hence, multiplying Equation (2.47) with NTC gives:

TC(|Ei |) = NKNTC,

TC = 1

|Ei |
NKNTC. (2.53)

Again, there is not one unique T, but all the alternatives have the form:

T = 1

|Ei |
NKNT +T2, (2.54)

where T2C = 0.

Generally one can write:

T = 1

|Ei |
NKNT +Q⊥

C STQ⊥T

C , (2.55)

where Q⊥T

C is an orthonormal basis for the nullspace of C, and ST is a symmetric
positive-definite matrix.

The default mimetic inner product in MRST is ip_simple:

Q = orth(A−1N),

M = 1

|Ei |
CK−1CT + I(|Ei |)

6tr (K)
A−1(I−QQT)A−1, (2.56)

where A is a diagonal matrix and ai i is the area of the i ’th face.

The corresponding inverse, the transmissibility matrix that beholds the same qualities
as the inverse of M is:
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Q = orth(AC),

T = 1

|Ei |
(
NKNT +6tr (K)A(I−QQT)A

)
. (2.57)

2.4 Multipoint flux approximation methods

It is hardly ever possible to construct K-orthogonal grids. We need more points to
develop a consistent flux approximation for grids that are not K-orthogonal. We have
already presented the theory behind the mimetic discretisation methods, but there
are also another group of approximations which are consistent for grids that are not
K-orthogonal. These are called multipoint flux approximations; (MPFA). The main
difference between mimetic discretisation and MPFA is that MPFA can be reduced
to a system for grid block pressures rather than the grid block interface pressures as
in the mimetic method. I.e., the fluxes are calculated in terms of grid block pressure
differences for MPFA. The mimetic inner product for one cell is calculated by using
properties associated with this cell while the MPFA inner product is calculated by
considering corners and the faces associated with this corner, and the faces may thus
belong to different cells. MPFA may also be reduced to a cell-centred system while the
mimetic methods are edge-centred.

We will present the MPFA-O method. The calculations and notations are based on [3]
and [6]

We still assume that the flux through a surface γi ,i+1 between cell i and cell i+1 equals:

fi ,i+1 =−
∫
γi ,i+1

(
K

µ
∇~u) ·~ndν. (2.58)

x4

x̄4

x̄3

x̄2

x̄1

x3

x1 x2

Figure 2.5: Quadrilateral grid.

Consider the two-dimensional grid in Figure 2.5. The grid consists of four cells with
mid-points x1, x2, x3, x4. We draw lines between the mid-points of the cells and the
mid-points of the edges marked as x̄1, x̄2, x̄3, x̄4. Consider the polygon with corners
x1x̄1x2x̄2x3x̄3x4x̄4, this is referred to as an interaction region. Inside the polygon there
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are four half-edges and we want to find the flux over these half-edges. When this is
done for one corner one can proceed and find the fluxes over the other half-edges in
the grid.

For one cell in two dimensions we can consider Figure 2.6.

x0 x̄1

x̄2

~ν2

~ν1

~ν0

Figure 2.6: One cell in 2D.

There is a normal-vector perpendicular to the line x0x̄1 and this is called ~ν2. There is
also a normal-vector perpendicular to the line x0x̄2, and this is called ~ν1, and a normal-
vector perpendicular to the line x̄2x̄1 and this is called ~ν0. The sum of the normal-
vectors is 0, and hence ~ν0 =−(~ν1 + ~ν2)

The triangle will in three dimensions be a tetrahedron, and we will also have an extra
point, x̄3. We now have four normal-vectors and these are defined as:

~ν1 = (x̄2 −x0)× (x̄3 −x0),

~ν2 = (x̄1 −x0)× (x̄3 −x0), (2.59)
~ν3 = (x̄1 −x0)× (x̄2 −x0),

~ν0 = −(~ν1 +~ν2 +~ν3).

Lemma 2.4.1. For a tetrahedron with corners x0, x̄1, x̄2, x̄3, any linear function can be written
as:

u(x) =
3∑

i=0
ūiφi (x), (2.60)

where φi (x) is the linear basis function, φi (x j ) = δi , j .

In our case, u, is the potential for the cell and we consider it to be linear within this
cell. The value of u at corner x̄i is ūi where x̄0 = x0 and hence ū0 = u0.

From [3] it is known that:

∇φi = 1

V
νi , (2.61)

and V = (x̄1 −x0)(x̄2 −x0)(x̄3 −x0), where V is 6 times the volume of the tetrahedron.

We now want to find the flux through one subinterface and we will derive the follow-
ing proposition:
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Proposition 2.4.1. If we have a linear drop in the pressure, the flux through a subinterface k
belonging to halfface i of cell j can be written as:

fk =− 1

µV j k

3∑
i=1

K j~ν j i (ū j i −u j ) ·~nk . (2.62)

Proof. We begin by taking the divergence of u which gives us:

∇u = 1

V

3∑
i=0

ūi ~νi

= 1

V
[−u0(~ν1 +~ν2 +~ν3)+ ū1~ν1 + ū2~ν2 + ū3~ν3]

= 1

V
[~ν1(ū1 −u0)+~ν2(ū2 −u0)+~ν3(ū3 −u0)]

= 1

V

3∑
i=1
~νi (ūi −u0). (2.63)

This expression explains in three dimension only ∇u for one quarter of the surface
γi ,i+1 and this is subsurface k. By inserting (2.63) into Equation (2.58), we get:

fk =− 1

µV j k

3∑
i=1

K j~ν j i (ū j i −u j ) ·~nk . (2.64)

The cell is j , the subinterface, is k, and the local cell surface is i , and this is what
we proposed. The volume V j k is 6 times the volume of the tetrahedron made for
subinterface k in cell j :

For simplicity we can write Equation (2.62) as:

fk =
d∑

i=1
ωk j i (ū j i −u j ), (2.65)

where d is the dimension, and

ωk j i =−nT
k Kj ~ν j i

µV j k
. (2.66)

We will now consider a system of eight cells that all have one mutual corner, and we
want to find an expression in matrix form collecting all of the different fk , so that we
can write our system of equations for the interaction region around the corner on the
form f = Tu.

Consider Figure 2.7, and note the centre of the figure, i.e., the point that is shared by
all of the eight cells O. There are 12 interfaces meeting at this point. Each cell has
a midpoint which is called x j for cell j , j = 1, ...,8, the potential at these points are
denoted u j . Each cell has three faces that contributes to the flux through O, and each
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Figure 2.7: Three dimensional cartesian grid.

of these faces has a centre point. For cell j these points are called x̄ j i , i = 1,2,3 and
has potentials ū j i . We can consider i as being 3 in the xy-plane, 2 in the xz-plane
and 1 in the yz-plane. To get a better illustration of the interfaces, we will look at the
cross-sections of the domain.

O

A B

C D

A’

B’C’

D’

O

E F

G H

E’

F’G’

H’

O

I J

K L

I’

J’K’

L’

Figure 2.8: Cross-sections, xy-plane, xz-plane, yz-plane.

A = x̄13 = x̄53, B = x̄23 = x̄63, C = x̄33 = x̄73, D = x̄43 = x̄83.

E = x̄12 = x̄32, F = x̄22 = x̄42, G = x̄52 = x̄72, H = x̄62 = x̄82.

I = x̄31 = x̄41, J = x̄11 = x̄21, K = x̄71 = x̄81, L = x̄51 = x̄61.

The respective potentials have the same indices, but since some are equal we can say
that:

ūA = ū1, ūB = ū2, ūC = ū3, ūD = ū4,
ūE = ū5, ūF = ū6, ūG = ū7, ūH = ū8,
ūI = ū9, ū J = ū10, ūK = ū11, ūL = ū12.

(2.67)

The flux through the subinterface O A′, equals the sum of the fluxes through the inter-
faces x1 A, x1E and x1 J . This is the same as the sum of fluxes through the interfaces
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x2B , x2F and x2 J . We call subinterface O A′ subinterface 1, i.e., k = 1 in Equation (2.66).
Hence, we can write:

ω113(ū1 −u1)+ω112(ū5 −u1)+ω111(ū10 −u1) =ω123(ū2 −u2)+ω122(ū6 −u2)+ω121(ū10 −u2).
(2.68)

We have 11 similar expressions for the other subinterfaces.

The matrix form of Equation (2.65) can be written as:

f = Cv−Du, (2.69)

where v = [ū1, . . . , ū12] and u = [u1, . . . ,u8]. The system of equations can be written as

Av = Bu. (2.70)

Inserting Equation (2.70) into Equation (2.69) we get:

f = (
CA−1B−D

)
u,

f = Tu, (2.71)
T = CA−1B−D. (2.72)

Here, T is the transmissibility matrix for one interaction region. If we find solutions
for the four interaction regions containing parts of a specific interface and add the
fluxes of the subinterfaces, we find the transmissibility coefficients for this interface.
Repeating this for all interfaces gives the transmissibility matrix T for the entire grid.

2.4.1 Local flux mimetic multipoint flux approximation

In MRST, the MPFA method is not implemented by using the original MPFA-O for-
mulation, but by using a local-flux mimetic formulation. The following is based on
[5, 7, 8, 11]. The inner product matrix M from the mimetic methods explained in Sec-
tion 2.3 are symmetric and positive-definite. The inner product matrix M from this
local flux mimetic multipoint flux approximation is block diagonal, but it is not sym-
metric [5].

We still have our problem:

~f =−K∇u,

∇ ·~f = q

ρ
. (2.73)
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If we have Dirichlet boundary conditions where u = 0 on ∂Ω, then, according to Greens
formula, we have:

∫
Ω

u(∇ ·~f )d x +
∫
Ω
∇u ·~f d x = 0,∫

Ω
u(∇ ·~f )d x +

∫
Ω

(−K−1~f ) · (−K∇u)d x = 0,∫
Ω

u(∇ ·~f )d x +
∫
Ω

K−1~f · (K∇u)d x = 0. (2.74)

The difference between the local-flux mimetic multipoint flux approximation method;
(LFMPFA) and the mimetic finite difference method is that for LFMPFA we divide
each face into subfaces and then reduce the face centred system to a cell centred system
in order to be equivalent to an MPFA method. The elements are as explained in Section
2.3, but now we divide each face e into subfaces ẽ. We now want to discretise Equation
(2.74).

We have the following scalar products.

Definition 2.4.1. For u = u I ,q = q I ∈Qh :[
u,q

]
Qh = ∑

E∈Ωh

|E |uE qE . (2.75)

Definition 2.4.2. For f = ~f I ,v =~v I ∈ X h we get:

[f,v]X h = ∑
E∈Ωh

∑
c∈E

kc∑
s,r=1

(Mc )s,r f ẽs
E v ẽr

E , (2.76)

where c is a corner that is shared by different subfaces ẽ of face e of cell E .

The scalar product defined in Definition 2.4.2 can also be written as:

[f,v]X h = ∑
E∈Ωh

[f,v]X h ,E = ∑
E∈Ωh

∑
c∈E

[f,v]X h ,E ,c , (2.77)

where:

[f,v]X h ,E ,c = Mc fc ·vc . (2.78)

Hence we also have:

[f,v]X h = ∑
E∈Ωh

∑
c∈E

vT
c Mc fc ,

= ∑
E∈Ωh

vT
E ME fE . (2.79)
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We want to approximate Equation (2.74) and we will use the definitions above to show
the following proposition.

Proposition 2.4.2. The approximation of Equation (2.74) can be written in discretised form
as: ∑

E∈Ωh

|E |uE (H f )E + ∑
E∈Ωh

∑
c∈E

kc∑
s,r=1

(Mc )s,r f ẽs
E (Gu)ẽr

E = 0. (2.80)

Proof. We let ∇ ·~f = H f , and we can now approximate the first integral of Equation
(2.74):

∫
Ω

u(∇ ·~f )dΩ≈ [u,Hf]Qh = ∑
E∈Ωh

|E |uE (H f )E . (2.81)

Setting Gu = K∇u the second integral of Equation (2.74) can be approximated by:

∫
Ω

K−1~f · (Gu)d x ≈ [f,Gu]xh = ∑
E∈Ωh

∑
c∈E

kc∑
s,r=1

(Mc )s,r f ẽs
E (Gu)ẽr

E . (2.82)

Adding these together we get:

∑
E∈Ωh

|E |uE (H f )E + ∑
E∈Ωh

∑
c∈E

kc∑
s,r=1

(Mc )s,r f ẽs
E (Gu)ẽr

E = 0, (2.83)

which is what we wanted to prove.

As in Section 2.3 we have a similar expression for the flux:

f ẽ
E = −~n ẽ

E (Gu)ẽ
E ,

= −~n ẽ
E (K∇u)ẽ

E . (2.84)

Similarly to the calculations done in Section 2.3 we get:

Mc f = Mc Nc K∇u = u−π= C ·∇u,

Mc Nc K = C. (2.85)

And hence we get that:

MEc = C(NEc KE )−1 +MEc2,

where MEc2NEc = 0. (2.86)
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The matrix NEc is consisting of the area-weighted subface normals of the subfaces of
cell E connected to a corner c. In MRST these subface normals are found by taking the
original area-weighted face normals divided by the number of nodes connected to the
face, each subface of the face then has this as its normal vector. The permeability tensor
KE is the permeability for cell E . This local-flux mimetic formulation will give the same
answer as the MPFA-O method and hence C contains the original face centroids, not
the subface centroids. Note that the matrix MEc is computed cell-wise as we consider
a cell E and the subfaces of this cell which are connected to corner c.

Each cell E has a matrix ME which is a block diagonal matrix with as many blocks as
there are corners in E , i.e., the MEc matrices are these blocks. This is done for each
cell E and subsequently assembled into the matrix Mc in such a way that Mc is a block
diagonal matrix having one block for each corner in the entire domain. The size of
each block is ni ×ni , where ni is the number of subfaces sharing that corner. We then
invert this matrix and compute the transmissibility matrix. The transmissibility matrix
is reduced by adding the contribution from each subface for all faces.

Note that in computeMultiPointTrans.m in MRST, which is the function used to
compute the multipoint transmissibilities, the transmissibility matrix T consists of two
parts, these are T.T and T.Tg. The matrix T.Tg is required in order to treat gravity
correctly.
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Chapter 3

Monotonicity and cycles

3.1 Monotonicity

Different equations satisfy different properties, and when we discretise equations it is
often important that these properties are conserved. Elliptic equations satisfy a prop-
erty called monotonicity, this follows from the maximum principle. Hence, mono-
tonicity is a property which should be conserved when discretising the elliptic equa-
tion in Equation (3.1). If this property is not conserved it may lead to extrema in the in-
terior and it may also lead to oscillations [12]. Some discretisation methods i.e., MPFA
and MFD violate the monotonicity principle for some cases while TPFA always main-
tain this property. Whether a method is monotone or not depends on the grid and the
properties of the rock [12]. We will in this chapter present the theoretical background
for monotonicity.

We have the following elliptic equation for an incompressible fluid:

−∇ ·λ∇u = q

ρ
, (3.1)

where λ= K
µ

and u = (p +ρg z).

Let Ω be our domain, then the solution of Equation (3.1) satisfies the strong maximum
principle stated in [13] and [12]:

Theorem 3.1.1. (Strong maximum principle) Assume the permeability tensor K is contin-
uously differentiable and the domain Ω is connected, open and bounded. If q ≥ 0 in Ω and u
attains its minimum over Ω at an interior point, then u is constant within Ω.

Here, Ω is the domain including Ω and ∂Ω.

The strong maximum principle depends on Hopf’s lemma which according to [12]
says that:
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Lemma 3.1.1. (Hopf’s lemma) Assume that K is continuously differentiable and that the
boundary is sufficiently smooth. If q ≥ 0 in Ω, then the solution u of (3.1) has no local minima
in Ω. I.e., there is no point x0 ∈Ω such that u(x0) < u(x) for all other x in a neighborhood of x0.

The above properties hold for the elliptic equation. We now want to find the corre-
sponding discrete properties that need to be fulfilled in order for the discretisation
methods to conserve the monotonicity property. Hence we consider Equation (3.1). If
we in addition have Dirichlet boundary conditions, u = 0 on the boundary ∂Ω, we can
write our problem as follows:

{
−∇ ·λ∇u = q

ρ , in Ω,

u = 0, on ∂Ω.
(3.2)

As stated in [12] we can use Green’s function, G(~ξ,~x), to express a solution of (3.2).

For a domain ω⊂Ω

u(~x) =
∫
ω

Gω(~ξ,~x)q(~ξ)dτξ. (3.3)

The minimum value of u = 0, and q ≥ 0, hence Gω must be non-negative everywhere,
i.e.,

Gω ≥ 0. (3.4)

This must be true for all ω ⊂ Ω in order to guarantee that the solution has no local
minima inside Ω.

Generally, a discretisation method will give a set of linear equations:

Au = q, (3.5)

with the solution

u = A−1q. (3.6)

Where A is the discretised operator, u is the collection of the potential solutions and
q contains the sink/source terms. Now A−1 can be considered as a discrete Green’s
function and hence we must have:

A−1 ≥ 0. (3.7)

When this is fulfilled, we say that A−1 is monotone, the matrix A is inverse monotone.
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Equation (3.7) excludes negative solutions when we have homogeneous Dirichlet bound-
ary conditions and q ≥ 0, but in order to guarantee that the solution has no local min-
ima in Ω, it is required that Equation (3.7) holds for any subset of the grid points that
A is constructed for. This follows directly from the fact that it is a requirement for
Green’s function [12]. This leads to the discrete maximum principle, [12]:

Theorem 3.1.2. (Discrete maximum principle) For any subgrid ω ∈Ω with homogeneous
Dirichlet boundary conditions which is bounded by a closed Jordan curve, the discretisation
must yield a system matrix, A, with a corresponding inverse, A−1, containing no negative
elements.

A Jordan curve, C , is a simple closed curve in the plane. The curve C decomposes the
plane into two disjoint open connected sets. The common boundary of the sets is the
curve C [4].

M-matrices are a special class of inverse monotone matrices. An M-matrix, A, is a
nonsingular matrix defined by the following [4]:

ai , j ≤ 0, for i 6= j ,

A−1 ≥ 0.

The system matrices obtained by TPFA are M-matrices [12].

In reservoir simulation we have that f = Tu. We want to discretise Equation (3.2) and
here we have that −∇ ·λ∇u = q

ρ which on matrix form can be written as: Hf = q and
then we get:

HTu = q,

u = (HT)−1q, (3.8)

it further follows that HT is our matrix A.

3.2 Cycles in the velocity field

Securing that a specific method is monotone has been an important field of research the
last years. Equation (3.1) is a monotonic equation and this is used as a motivation for
having discretisation methods preserving this property. When performing reservoir
simulations, the system matrix A becomes very large, and it is therefore not always
possible to obtain A−1 to check if the method is monotone. It is difficult to obtain
monotone pressure solutions for consistent discretisation methods, and requiring that
a method is monotone may sometimes affect the consistency of the method. If we
consider a flow consisting of one phase, it is guaranteed that we do not have any
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cycles in the flux field [14] if we apply a monotone method. This is one of the most
important and beneficial properties of a monotone method.

As before we have our system of equations which consist of:

~f =−K∇u,

∇ ·~f = q

ρ
, (3.9)

and a transport equation:

∂(φρ)

∂t
+∇ · (ρ~f ) = q. (3.10)

If a method is not monotone, we may experience false oscillations which can lead to
wrong directions of the fluxes resulting in the cycles [12]. A situation with multiphase
flow where the pressure solution oscillates, may result in cases where the computed
pressure lies below the bubble point pressure while the actual pressure lies above it. If
this happens, artificial gas may be liberated resulting in a strongly diverging solution.
The flux is a function of the pressure, and oscillations in the pressure may lead to
circulations in the flux field, [4]. This is the most important motivation for considering
non-physical cycles in the flux field.

The time spent on simulations is an important issue for developing efficient reservoir
simulation methods. If we have cycles in the flux, different components are mutually
dependent on each other. If we for instance are using an implicit volume method with
an upwind discretisation scheme, cycles result in cells being coupled together unnec-
essarily in the nonlinear system, see e.g., [15]. This will result in matrices with large
blocks and the time used to solve the system can be very long. Streamlines can be used
to simulate the transport, cycles will, as a worst case scenario, result in streamlines go-
ing around in circles, this result in a system that is hard to solve. Therefore, reducing
the number and the sizes of the cycles can reduce the running time.

If we consider the graph of directed fluxes, i.e., the cells are vertices and the flux from
cell i to cell j is denoted by a directed edge, and if the method is monotone, the result-
ing graph will be a directed acyclic graph, DAG, since a monotone method results in
a field of fluxes containing no cycles. If we have a DAG we can perform a topological
sort, see e.g., [16], and reorder our system as explained in [15] resulting in a system
where the state of cell i only depends on the state of the previous cells 1, . . . , i −1. This
will further result in a lower (or upper) triangular system which can be solved much
more efficiently than the original system. If we, however, do not have a DAG, we can
still group together elements belonging to the same cycles to blocks and solve the sys-
tem block by block. How fast the system is solved will here depend on the size the
largest blocks, i.e., the largest cycles.

A cycle is a class of vertices where all the vertices in the particular class can reach each
other [16]. This is also called a strongly connected component.
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e f g h

a b c d

Figure 3.1: Graph with cycles.

Figure 3.1 shows a directed graph with cycles where the strongly connected compo-
nents are a −b − e, c −d , f − g and h, while Figure 3.2 shows a directed acyclic graph,
DAG.

c d

a b

Figure 3.2: Directed acyclic graph.

Consider Figure 3.3 which is a system consisting of four cells. The arrows represent
the direction of the fluxes between the cells, i.e., we have drawn the positive fluxes.
We note that we have a cycle.

1 2

43

Figure 3.3: Cycle in the velocity field.

A fluid will flow from high pressure to low pressure, and for the fluxes to have the
direction shown in Figure 3.3 we must have that:

u1 > u2,

u2 > u4,

u4 > u3,

u3 > u1.

By inserting the second and third equation into the first one, we get that u1 > u3 which
is a violation of the fourth equation which says that u3 > u1. Having a cycle in the ve-
locity field is therefore not physically correct, for single-phase flow, for models where
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the grid cells are quite regular and ∇u is the gradient pointing from the cell face to the
centre of the face. Mathematically this comes from the fact that:

~f = −K∇u,

∇u ·~f = −∇u · (K∇u). (3.11)

K is positive definite and hence ∇u · (K∇u) > 0 and this implies that:

∇u ·~f < 0 ⇒ θ > 90◦. (3.12)

The results obtained by TPFA will always have the property that the flux goes from
the cell with the highest pressure to the cell with the lowest pressure.

∇u
~fθ

Figure 3.4: Pressure difference and flux direction.

We have implemented a function which finds out if there are cycles in the flux field,
the number of cycles and the size of the cycles. In MRST the fluxes are given in a vector
where each row represents a face belonging to two cells, cell i and cell j . The function
takes as input the grid and the fluxes. The fluxes are then ordered in such a way that if
the flux for the face belonging to cell i and j is positive, the value of the flux is placed
in a matrix, B on row i , column j , and if the flux is negative, it is placed in B on row j ,
column i . We then place ones on the diagonal, and then we use the built-in function
in MATLAB, dmperm.

[p , q , r ] = dmperm(B ) ;

This is the same as saying that every cell is in a cycle with itself, but we want the
cycles to consist of only one cell. This occurs only during the test as we need to use the
function dmperm correctly. The matrix is then interpreted as a directed graph where a
non-zero element in Bi , j means that the edge is from vertex i to vertex j . The function
identifies the strongly connected components. For the graph to be acyclic in reality,
i.e., not the modified graph, the number of strongly connected components must be
the same as the number of cells, i.e., we want each strongly connected component to
only contain one cell.
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If we do not have any cycles in the flux field, the length of r should be n+1 where n is
the number of cells. If we have cycles, the length of r is shorter, and then the number
of cycles is n −1− length(r ).
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Chapter 4

Hybrid methods

Different discretisation methods have different advantages and disadvantages. Some-
times it may be beneficial to combine two methods by drawing on the strengths of each
method. In the previous chapter we pointed out that TPFA always is monotone and
hence the resulting graph of the directed fluxes is always acyclic. We also stated that
MPFA and MFD violates the monotonicity principle for some cases and may result
in flux-matrices containing nonphysical cycles. We will therefore propose two hybrid
methods, the first using a mimetic method in the x y-plane and TPFA in the vertical di-
rection, and the second using MPFA in the x y-plane and TPFA in the vertical direction.
The motivation for doing this is that we believe that using TPFA in the vertical direc-
tion will result in hybrid methods with fewer cycles compared to the respective full
methods since TPFA contains no cycles. Rather than checking if the hybrid methods
presented here are monotone or not, we want to check if the flux field contains cycles
or not, and if it contains cycles, we seek to identify the number and sizes of the cycles
and compare the results with the respective full methods. The full methods, MPFA
and MFD are computationally more costly than TPFA, but in reservoir simulations
the grid is constructed in such a way that it coincides with the physical layers in the
reservoir. The gridspacing used in reservoir simulations is typically very small in the
z-direction compared to the x- and y-direction, [9]. The permeability in the z-direction
is normally very small compared to the permeability in the x- and y-direction, and
hence most of the flow is along the horisontal layers. It is reasonable to believe that
by reducing the number of computations in the z-direction and thereby save time we
will not reduce the accuracy of the methods too much.

4.1 A hybrid mimetic method

We will in this section develop a method applying TPFA in the z-direction and a
mimetic discretisation in the x y-plane.

For each cell in the model we find C and N as explained in Section 2.3. Furthermore we
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need to identify the specific faces which are respectively top faces and bottom faces.
For each row in N we divide the elements by the area of the respective face. We then
identify the faces having the largest z-component and the smallest z-component, the
smallest z-component is negative, and this represent the bottom and the top faces of
the cell.

~nt

~n3

~n1

~n4

~nb

Figure 4.1: One cell with normal vectors.

We want to project those faces that are not top or bottom down to a plane. This is
done by projecting the elements of C and N belonging to these faces. The elements of
N for one cell are drawn in Figure 4.1. First, we find an average normal vector which
is defined as:

average_normal = G .faces .normals (top , : ) + G .faces .normals (bottom , : )

This is the notation used in MRST where G.faces.normals(top,:) is the area
weighted normal vector of the top face. These vectors differ from the corresponding
vectors in N because they are not forced to point out of the respective cell as explained
in Section 2.3. Thus, a face may be the top of one cell and the bottom of another cell,
but G.faces.normals for this face is the exactly the same for both cases while ~n is
not.

Second, we find the nullspace of the vector average_normal and transpose it,
U = null(average_normal)T . We project the normal vectors and face centroids of
the faces that are not top or bottom down to this.

If Ctmp consists of the face centroids that are not top or bottom, and Ntmp consists of the
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area weighted normal vectors for the faces that are not top or bottom, the projection is
performed as follows:

C∗ = Ctmp UT,

N∗ = Ntmp UT.

The plane and the projected normal vectors are shown in Figure 4.2:

~n∗
1

~n∗
4 ~n∗

3

~n∗
2

Figure 4.2: Normal vectors projected down to plane.

The permeability tensor for the xy-plane is: K∗ =
[

ki i ki j

k j i k j j

]
.

We use the projected normal vectors and face centroids to calculate the mimetic inner
product and its inverse in the plane for each cell in our grid:

M∗ = 1

|Ei |
C∗K∗C∗T +Q∗⊥

N SMQ∗⊥T
N ,

T∗ = 1

|Ei |
N∗K∗N∗T +Q∗⊥

C STQ∗⊥T
C , (4.1)

(4.2)

where |Ei | is the volume of cell Ei .

We apply TPFA in the vertical direction, i.e., on the top and bottom faces. The trans-
missibility matrix for the hybrid multipoint method has diagonal elements in the z-
direction, but not in the xy-direction.

We will now develop the actual inner-product and transmissibility being used. In the
plane, i.e., on the faces that are not top or bottom, we use the mimetic inner-product
in MRST named ip_simple, and the inner product will be given by:

Q∗ = orth(A∗−1C∗),

M∗ = 1

|Ei |
(

C∗K∗−1C∗T + diag|Ei |
6trK

A∗−1(I−Q∗Q∗T)A∗−1
)

. (4.3)
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And the transmissibility matrix is given by:

Q∗ = orth(A∗C∗),

T∗ = 1

|Ei |
(
N∗K∗N∗T +6tr (K∗)A∗(I−Q∗Q∗T)A∗)

, (4.4)

where A∗ is the area of the faces that are not top or bottom, and C∗, K∗ and N∗ are as
explained earlier.

In the vertical direction, i.e., on the top and bottom faces TPFA is used. We have used
the mimetic formulation of TPFA, i.e., the inner product ip_tpf is used:

T = NKC−1,

Tt ,t = ~nt ·K
~ct

|~ct |2
,

Tb,b = ~nb ·K
~cb

|~cb |2
,

Mt ,t = T−1
t ,t ,

Mb,b = T−1
b,b ,

where t = top and b = bottom.

The matrix is given by:

T =


T∗

Tt ,t

Tb,b

 . (4.5)

We apply the mimetic formulation of the TPFA method, and this method will be as
computationally costly as the mimetic method. We will, however, not pay attention
to the time consumed as we are only interested in the numerical values. MRST has a
function called computeMimeticIP.m, and this contains some mimetic inner prod-
ucts, two of them being ip_tpf and ip_simple. The hybrid mimetic inner prod-
uct is added to this function and this inner product will have the same data struc-
ture as ip_tpf and ip_simple. We can therefore use the function in MRST called
solveIncompFlow.m to solve our system of equations. If we instead had applied
the cell centred TPFA formulation, we would have to construct a solver taking into
account that part of the matrix needs to be considered as a mimetic system and the
other part representing the top and bottom faces of each cell as a system defined by
the cell centred TPFA.
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4.2 Hybrid multipoint method

We have also made a hybrid method using TPFA on the top and bottom faces, i.e., the
vertical direction, and MPFA on the other faces, i.e., the plane.

Figure 4.3: Grid with 27 cells.

Figure 4.3 shows a grid consisting of 27 cells. If we consider the cell in the middle of
the grid, Figure 4.4 shows the different planes around this cell, and the faces of this
this cell are colored yellow. The black dots are the corners and the dashed lines show
the interaction regions. We will use MPFA for the faces that are not top or bottom, and
TPFA for the top an bottom faces.

Figure 4.4: Grid in the yz-plane, xz-plane and xy-plane.

The hybrid MPFA is made by modifying the function in MRST named
computeMultiPointTrans.m.

Consider the matrix MEc as explained at the end of Section 2.4.1. We will also con-
sider the inner product computed by TPFA, Mt p f a , this is a diagonal matrix. For all
the cells in our domain we detect the subfaces belonging to the top face and the sub-
faces belonging to the bottom face. We compute Mt p f a for the top, Mt p f a(top) and
Mt p f a(bot tom) and divide them by the number of nodes making up the different faces,
for example:

t = Mt p f a(top)

Number of nodes on top face
. (4.6)
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For the subfaces belonging to this face, we in MEc place t on the block diagonal belong-
ing to each of the respective subfaces instead of using the inner product computed by
MPFA. For other subfaces not belonging to the top or the bottom face we keep the
inner product computed by MPFA. The rest is done in a similar way as for LFMPFA
explained in Setion 2.4.1.

Note that for the mimetic hybrid method in Section 4.1 we projected the faces that were
not top or bottom down to the x y-plane and calculated the mimetic inner product in
two dimension for these faces. For the hybrid MPFA method we have, as explained
above, replaced the entries of MEc belonging to top faces by t and similar for the bot-
tom faces. The entries of MEc not belonging to top or bottom faces are kept unchanged,
i.e., these are exactly the same as when MPFA is used in the whole domain. Ideally,
we should have done a projection of the faces that were not top or bottom down to the
x y-plane and use MPFA to calculate the M-matrix in two dimensions as we did for the
hybrid mimetic method. This would be a very time-consuming task which we did not
have the time to do, and hence we chose to implement it as explained earlier in this
section. However, this may affect the results for the hybrid MPFA method.
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Chapter 5

Results

We will in this chapter present the results from testing five different discretisation
methods on various cases. We want to compare the exactness of the methods, espe-
cially we want to check if the hybrid methods are more exact than TPFA and if they are
correct enough compared to the full consistent methods. We have tested the methods
by using MRST. We have included most of the test examples in the add-on module
HybridMethods. The methods we consider are:

1. The two-point flux approximation method, TPFA. In MRST one can use this method
as:

T = computeTrans (G , rock ) ;
xi = initResSol (G , 0 ) ;
Sol = incompTPFA (xi , G , T , fluid , ' bc ' , bc ) ;

2. The mimetic method applying the inner product ip_simple, this will be called the
mimetic method:

T = computeMimeticIP (G , rock , ' InnerProduct ' , ' ip_simple ' ) ;
xi = initResSol (G , 0 ) ;
Sol = solveIncompFlow (xi , G , T , fluid , ' bc ' , bc ) ;

3. The hybrid mimetic method applying TPFA in the vertical direction and a mimetic
method using the inner product ip_simple in the plane. We call this the hybrid
mimetic method. This is implemented as a new inner product in a function called
computeHybridMimeticIP.m, the function is added to the add-on module in MRST,
HybridMethods.

T = computeHybridMimeticIP (G , rock , ' InnerProduct ' , ' ip_hyb ' ) ;
xi = initResSol (G , 0 ) ;
Sol = solveIncompFlow (xi , G , T , fluid , ' bc ' , bc ) ;

4. The local-flux mimetic multipoint flux approximation which we from now on will
call MPFA since it gives the same answer as the MPFA-O formulation of the MPFA
method.
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T = computeMultiPointTrans (G , rock ) ;
xi = initResSol (G , 0 ) ;
Sol = incompMPFA (xi , G , T , fluid , ' bc ' , bc ) ;

5. The hybrid multipoint method applying TPFA in the vertical direction and MPFA
in the plane. We call this the hybrid MPFA. This method is implemented in a new
function, computeHybridMultiPointTrans.m, as explained in Section 4.2. The
function is added to the HybridMethods module.

T = computeHybridMultiPointTrans (G , rock ) ;
xi = initResSol (G , 0 ) ;
Sol = incompMPFA (xi , G , T , fluid , ' bc ' , bc ) ;

We will first consider some basic cases in order to test the accuracy of the hybrid meth-
ods. Thereafter we run some more advanced cases to check the nonphysical cycles in
the flux field for the different methods. If nothing else is stated, the error is measured
as the relative error in the L2 norm.

‖uh −u‖L2 =
(

1

V

∑
i

Vi (uh,i −ui )2

)1/2

, (5.1)

where uh is the pressure solution calculated by the respective method, and u is the
analytic solution. The relative error is:

er el =
‖uh −u‖

‖u‖ . (5.2)

When considering the cycles there are a couple of things we want to measure:

1. The number of cells that are in cycles, C, compared to the total number of cells, i.e.,

R = C
Number of cells

. (5.3)

2. The number of cycles, N.
3. The size of the largest cycle, nmax .

5.1 Regular cartesian grid

We will provide an example showing that for a cartesian grid with homogeneous
isotropic permeability K = diag(1,1,1) Darcy and linear flow, all five methods provide
an accurate answer.
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For a cartesian grid, the normal face vectors have the form ~ni = c1
[

1 0 0
]T , ~n j =

c2
[

0 1 0
]T and ~nk = c3

[
0 0 1

]T . When K = diag(1,1,1), and by inserting into
Equation (2.17) we get:

~ni ·K~n j = c1
[

1 0 0
] 1 0 0

0 1 0
0 0 1

c2

 0
1
0

= 0, (5.4)

and hence our grid is K-orthogonal.

The grid is a 10×10×5 grid and the pressure on the global left hand side is 0 while we
have imposed a pressure of 100 bar at the global right hand side, i.e., we have linear
flow. The pressure solution is shown in Figure 5.1.

Figure 5.1: Regular cartesian grid.

We calculated the L2 error, and all methods were exact, as expected. This is due to the
fact that all the methods are constructed in such a way that they are exact for linear
flow when the grid is K-orthogonal.

5.2 Triangle grid

A two-dimensional triangle grid is made and this is extruded to three dimensions. The
pillars are vertical. This is done in the following way:
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nx = 1 0 ; ny = 1 0 ; nz = 5 ;
[x ,y ] = ndgrid ( 0 :nx , 0 : ny ) ;
G = triangleGrid ( [x ( : ) y ( : ) ] ) ;
G = makeLayeredGrid (G , nz ) ;

We impose a pressure of 100 bar at the global right hand side of the domain, and
the pressure is zero on the left side. The permeability is homogeneous and isotropic,
K =diag(1,1,1) Darcy.

Figure 5.2: Triangle grid with straight vertical pillars.

Figure 5.2 shows the pressure solutions. The L2 norm of the errors were found and the
relative L2 error for TPFA is 0.068174. The other methods give the exact answer.

The mimetic method and MPFA are exact for linear flow even if the grid is not K-
orthogonal, and these methods therefore give the exact answer. The flow is in the x-
direction and the hybrid methods apply the full method in the plane and hence these
methods also provide the exact answer.

The cells have a triangular shaped top and bottom and each cell have five faces.
Typical normal vectors are on the form ~ni = c1

[
1 0 0

]T , ~n j = c2
[

0 1 0
]T , ~nk =

c3
[

0 0 1
]T and ~nl = c4

[
1 1 0

]T . Hence when K = diag(1,1,1), and by inserting
into Equation (2.17) we get:

~ni ·K~nl = c1
[

1 0 0
] 1 0 0

0 1 0
0 0 1

c4

 1
1
0

= 1, (5.5)
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which shows that the grid cells are not K-orthogonal. Due to this, TPFA is not exact.

5.3 Perpendicular bisector grid

A 2.5D perpendicular bisector (PEBI) grid is made. The construction of the grid is
explained in [17]. First we generate a set of points, and second we triangulate the
set of points by using the function triangleGrid, as explained in Section 5.2, and
thereafter we construct a PEBI grid using the function pebi. This is a two dimensional
grid and by vertical pillars in the z-direction we extrude it to three dimensions using
the function makeLayeredGrid.

A linear pressure field is made. The pressure is zero on the global left boundary, and
100 bar at the global right boundary. The permeability is set to be K =diag(1,1,1) in all
of the cells.

Figure 5.3: Pressure profile, linear flow for PEBI-grid.

Figure 5.3 shows the pressure profile using TPFA, the mimetic method, the hybrid
mimetic method, MPFA, hybrid MPFA and the analytical solution. All profiles look
the same, but the relative L2 error is calculated and it is 0.009347 for TPFA. The top and
bottom faces of each cell are parallel, they have the same size and they do not vary in
the z-direction, as for the triangular grid in Section 5.2. This is a type of grid where
the mimetic, MPFA and the hybrid methods should give exactly similar answers, and
these answers should be equal to the analytical solution. We find this to be correct.
This is caused by the fact that the top and bottom faces of each cell are parallel, and
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hence, it is sufficient to use TPFA in the vertical direction. In the x y-plane the cells are
not K-orthogonal, but the mimetic method and MPFA are exact for linear flow even if
the grid is not K-orthogonal. We note that TPFA gives a small error, as expected since
the grid is not K-orthogonal.

5.4 Twisted grid with increasing slope

We have a grid which is twisted in the x y-plane. The grid has 10× 5× 5 grid blocks
and the physical dimensions are 1000× 500× 20. The angle, θ, between the grid and
the principal x-axis is increased, but the top and bottom faces are always parallel.
The permeability is diagonal and anisotropic where the rate, r = permX

permZ and permX =
permY. The numbers presented in Tables 5.1, 5.2, 5.3, 5.4, 5.6 and 5.7 are the sum of
the absolute values of the flux on the boundary. We believe that the cycles occur if we
have grids with high anisotropic permeability and if the angle between the grid and
the x y-plane is relatively large. We seek to find if we can avoid nonphysical cycles in
the flux field if the hybrid methods are used instead of the full methods.

θ

Figure 5.4: The grid when θ = 0◦ and θ = 10◦.

Figure 5.4 shows the grid if there is no slope and if the slope is 10◦.

The original permeability is K =diag(1,1,1) Darcy, but the z-component of the perme-
ability is changed according to r . We have imposed a pressure of 100 bar at the right
hand side of the grid while we have zero pressure on the left hand side of the grid.

Table 5.1 shows the flux-values for the different cases when TPFA is used. We note
that the value of the flux is not affected by the anisotropic rate, but it changes slightly
according to the slope of the grid. None of the cases include cycles as expected since
TPFA is always monotone.

When using the hybrid mimetic method we ran the example twice with different ap-
proximations of the permeability in the plane.

The first time we used the hybrid mimetic method, we used a projection of the per-
meability, i.e., K∗ = KUKT , where U is as explained in Section 4.1. The result is shown
in Table 5.2. These flux values are similar to the TPFA flux values. We do not get
any cycles, this is as we hoped for. However, when θ ≥ 2 we can see that for a con-
stant θ, the total flux changes, this does not happen for TPFA. This comes from the
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Table 5.1: Flux values calculated by TPFA at the left boundary, where r = permX/permZ and
θ is the angle between the grid and the x y-plane.

r θ

0 1 2 5 10
1 0.0981 0.0980 0.0979 0.0973 0.0951
2 0.0981 0.0980 0.0979 0.0973 0.0951
5 0.0981 0.0980 0.0979 0.0973 0.0951

10 0.0981 0.0980 0.0979 0.0973 0.0951
100 0.0981 0.0980 0.0979 0.0973 0.0951

1000 0.0981 0.0980 0.0979 0.0973 0.0951
inf 0.0981 0.0980 0.0979 0.0973 0.0951

fact that we projected the permeability down to the x y-plane. When θ is increased the
z-component of the normal vector for the top and bottom faces is decreased while the
x-component is increased. Because of this, the x-component of U is decreased by a
factor εx , and the z-component of U is increased by a factor εz . When the permeability
is projected, the change in the permeability in the x-direction compared to the original
one will be εzpermZ−εxpermX. This is the reason why the flux values changes when
the permeability in the z-direction changes, even if the angle is kept constant. This can
clearly be seen when θ ≥ 5, when θ is smaller than this, εx and εz are quite small.

Table 5.2: Flux values calculated by the hybrid mimetic method at the left boundary, where
r = permX/permZ and θ is the angle between the grid and the x y-plane. The permeability in
the plane is made by a projection of the original permeability.

r θ

0 1 2 5 10
1 0.0982 0.0982 0.0981 0.0975 0.0953
2 0.0982 0.0982 0.0980 0.0971 0.0938
5 0.0982 0.0982 0.0980 0.0969 0.0930

10 0.0982 0.0982 0.0980 0.0968 0.0927
100 0.0982 0.0982 0.0980 0.0967 0.0924

1000 0.0982 0.0982 0.0980 0.0967 0.0924
inf 0.0982 0.0982 0.0980 0.0967 0.0924

The second time we used the hybrid mimetic method we chose the permeability to
be: K∗ = diag(1,1) Darcy, and hence the permeability in the plane will be the same
for all cases, and it will not be affected by the change of the permeability in the z-
direction. Because of this, the calculated flux will not be affected by the change of the
permeability in the z-direction, it will only be affected by the angle θ. This is shown in
Table 5.3. The values are similar to those obtained by TPFA, and, as TPFA, they do not
vary according to the anisotropic rate.

The red cells in Table 5.4 include the cases with cycles in the flux field. We can see
that this occurs for the first time when r = 1000 for the case when θ = 10◦. When
r = inf and θ > 0 we see that the flux values are very small, we can also see that the
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Table 5.3: Flux values calculated by the hybrid mimetic method at the left boundary, where
r = permX/permZ and θ is the angle between the grid and the x y-plane. The permeability in
the plane is set to be K∗ = diag(1,1) Darcy.

r θ

0 1 2 5 10
1 0.0982 0.0982 0.0981 0.0975 0.0953
2 0.0982 0.0982 0.0981 0.0975 0.0953
5 0.0982 0.0982 0.0981 0.0975 0.0953

10 0.0982 0.0982 0.0981 0.0975 0.0953
100 0.0982 0.0982 0.0981 0.0975 0.0953

1000 0.0982 0.0982 0.0981 0.0975 0.0953
inf 0.0982 0.0982 0.0981 0.0975 0.0953

flux values changes even if θ is constant. The reason for this is that the mimetic inner
product is designed in such a way that when the grid is not K-orthogonal, the flux in
one direction will be affected by the permeability in other directions, as explained for
the hybrid mimetic method when the projected permeability was used. This is done
such that the mimetic method is exact when we have linear flow, even if the grid is not
K-orthogonal, but as seen here, this can cause difficulties when the anisotropic rate is
very large.

Table 5.4: Flux values calculated by the mimetic method at the left boundary, where r =
permX/permZ and θ is the angle between the grid and the x y-plane. The red cells represent
the cases where we have cycles.

r θ

0 1 2 5 10
1 0.0982 0.0982 0.0981 0.0975 0.0953
2 0.0982 0.0982 0.0980 0.0968 0.0925
5 0.0982 0.0981 0.0976 0.0946 0.0851

10 0.0982 0.0979 0.0971 0.0914 0.0753
100 0.0982 0.0956 0.0884 0.0575 0.0249

1000 0.0982 0.0810 0.0513 0.0130 0.0035
inf 0.0982 2.1931 ·10−12 4.9755 ·10−13 3.7703 ·10−13 6.0588 ·10−13

Table 5.5 shows the ratio of cells in cycles, the number of cycles and the size of the
largest cycle for the cases with cycles for the mimetic method. We note that there are
few cycles, but they are quite large. When r = inf and θ = 10 there is only one cycle,
but the size of this cycle is 248, i.e., there are only two cells in the entire domain that
are not in this cycle.

For the hybrid MPFA method we have no cycles in the flux field. However, the val-
ues of the flux when r = inf and θ > 0 are very small. In Chapter 4 we explained
how the hybrid methods were implemented. The hybrid mimetic method is made
by projecting the faces that are not top or bottom to the x y-plane and applying the
mimetic inner product here. The hybrid MPFA method is made by calculating the
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Table 5.5: Dimensions of the cycles for the mimetic method, where r = permX/permZ and θ
is the angle between the grid and the x y-plane.

r θ R N nmax

1000 10 0.5920 2 74
inf 1 0.8240 1 206
inf 2 0.9000 1 225
inf 5 0.9360 2 231
inf 10 0.9920 1 248

MPFA transmissibilities and then replacing the entries that belongs to top or bottom
with the TPFA transmissibilities. Ideally we should have done a projection for the hy-
brid MPFA method as well. We believe that not doing this is affecting our results in
a bad way, and may part of the reason why we get very small flux values when the
anisotropic rate is high, and causing large differences in the flux-values even if θ is
constant.

Table 5.6: Flux values calculated by the hybrid MPFA method at the left boundary, where
r = permX/permZ and θ is the angle between the grid and the x y-plane.

r θ

0 1 2 5 10
1 0.0982 0.0982 0.0981 0.0975 0.0953
2 0.0982 0.0982 0.0980 0.0967 0.0925
5 0.0982 0.0981 0.0976 0.0946 0.0850

10 0.0982 0.0979 0.0970 0.0913 0.0750
100 0.0982 0.0953 0.0876 0.0557 0.0240
1000 0.0982 0.0754 0.0444 0.0114 0.0031
inf 0.0982 3.2315 ·10−13 8.0877 ·10−14 1.2790 ·10−14 2.9592 ·10−15

For MPFA we have cycles when r = inf and θ > 0, and for these cases we also have very
small flux-values. The values are shown in Table 5.7.

Table 5.7: Flux values calculated by MPFA at the left boundary, where r = permX/permZ and
θ is the angle between the grid and the x y-plane. The red cells represent the cases where we
had cycles.

r θ

0 1 2 5 10
1 0.0982 0.0982 0.0981 0.0975 0.0953
2 0.0982 0.0982 0.0980 0.0967 0.0925
5 0.0982 0.0981 0.0976 0.0946 0.0851

10 0.0982 0.0979 0.0970 0.0913 0.0752
100 0.0982 0.0955 0.0883 0.0572 0.0247

1000 0.0982 0.0806 0.0507 0.0131 0.0034
inf 0.0982 2.1045 ·10−12 1.5612 ·10−13 1.7577 ·10−14 1.7345 ·10−14
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In Table 5.8 we see that when cycles occur, there are many cells that are in cycles. As
for the mimetic method, we have few cycles, but they are very large. When r = inf and
θ = 5, θ = 10 there are only two and three cells that are not in a cycle.

Table 5.8: Dimensions of the cycles for MPFA, where r = permXpermZ and θ is the angle
between the grid and the x y-plane.

r θ R N nmax

inf 1 0.7920 2 99
inf 2 0.4720 2 59
inf 5 0.9920 1 248
inf 10 0.9880 1 247

The results obtained in this section has shown us that when we have a very large
anisotropic permeability rate and a grid with an angle between the grid and the prin-
cipal x y-plane that is larger than zero, then using a hybrid method instead of a full
consistent method will result in a flux field with no cycles. Note that the angle be-
tween the grid and the x y-plane does not need to be large before cycles in the flux
field occur if we have a very high anisotropic permeability, they occur already when
θ = 1◦. We can also see that there are no cycles when the grid is parallel to the x y-
plane, but for this case, the grid is actually K-orthogonal. It is also worth noting that
we need a very high anisotropic permeability before the cycles occur for the full con-
sistent methods. For the mimetic method, r must be inf, i.e., permZ ≈ 0 before we
experience any cycles, while for MPFA, r = 1000, but then we must have θ = 10◦. The
hybrid methods and TPFA provide results containing no cycles.

5.5 Grid with skew pillars

A grid with skew pillars is made. The skewed pillars have a slope of 10◦, 20◦, 35◦ and
45◦ respectively.

Figure 5.5: Skewed pillars.

The grid is a 5×1×5 grid where the physical dimensions are 50×1×25 to start with.
The angles are kept constant while the length in the x-direction is changed so that the
ratio Dx/Dz changes, Dx and Dz are the physical dimensions. The permeability is set
to be K =diag(1,1,1) Darcy and we have imposed a linear pressure field on the model.
The numbers presented in Table 5.9 are total flux values on the global right hand side.
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Table 5.9: Total flux calculated at the left boundary by the different methods, where Dx and
Dz is the physical dimensions in the x- and z-direction.

Method Dx/Dz
2 5 10 50 100

TPFA 0.1540 0.0598 0.0297 0.0059 0.0030
Hybrid mimetic 0.1546 0.0599 0.0297 0.0059 0.0030

Mimetic 0.1480 0.0592 0.0296 0.0059 0.0030
Hybrid MPFA 0.1536 0.0598 0.0297 0.0059 0.0030

MPFA 0.1480 0.0592 0.0296 0.0059 0.0030
Analytic solution 0.1480 0.0592 0.0296 0.0059 0.0030

The mimetic method and MPFA give the same answer as the analytic solution for
all ratios, this was as expected since we have linear flow. The hybrid methods and
TPFA provide the same answer as the analytic solution when Dx/Dz = 50, and almost
the same when Dx/Dz = 10. We note that when the ratio Dx/Dz is large enough, the
answer is reasonable accurate when we apply TPFA in the z-direction and the mimetic
method or MPFA in the x y-plane, in fact one actually get a good enough answer by
using TPFA in the entire domain. I.e., for grids where the faces are flat and the ratio
Dx/Dz is large enough, it is sufficient to use the hybrid methods, even if the pillars are
skew.

5.6 One-layered real-field model

We now consider one layer of a real-field model. This model is also discussed in [5]
where TPFA and the mimetic ip_qrt are compared. The model is provided by SIN-
TEF. The model is a synthetic model derived from the first layer of a 3D simulation
model of a Norwegian offshore reservoir. The layer is flattened and modified in such
a way that the corner-point pillars are vertical and the thickness is constant. There is
one perforation for each of the original wells. Each well has a rate qi and is situated at
(xi , yi ). The wells are modelled as logarithmic singularities along the vertical lines at
(xi , yi ). For an infinite domain with constant permeability, the analytic solution of the
pressure can, according to [5], be written as:

p(x, y, z) =
n∑

i=1

qi

2πK
ln

(√
(x −xi )2 + (y − yi )2

)
. (5.6)

We have used the five methods discussed earlier to calculate the solution, and the
results are shown in Figure 5.6.

As we can see, the solutions look quite similar. We have compared the solutions to
the analytical solution and plots of the errors for all the cells are shown in Figure 5.7.
TPFA provides a solution with a larger error than the other methods. Note that the
span of the colorbar is larger for TPFA compared to the other methods. For the other
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Figure 5.6: Solution of the pressure for a real-field model

methods the errors occur very close to the wells, while for TPFA the largest errors are
also situated close to the wells, but we have a much larger area where the solution is
not exactly correct.

The maximum error is then calculated. The pressure in the well cells are defined such
that the analytic solution in the well cells is infinite, and we therefore do not calculate
the errors in those cells. The maximum discrepancy between the analytic pressure
solution and the numerical solutions is calculated, and the discrepancy is then scaled
by the span of the analytic pressure solution. The results are shown in Table 5.10

Table 5.10: Maximum error for the different methods.

Method Error
TPFA 0.056021

Hybrid mimetic 0.009667
Mimetic 0.010209

Hybrid MPFA 0.015073
MPFA 0.015756

The maximum error for TPFA is approximately five times as large as the maximum
error for the other methods. The maximum errors for the other methods are quite
similar, but note that the errors for the hybrid methods are slightly smaller than the
errors for their respective full methods.
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Figure 5.7: Plot of the error. On the first row: TPFA, the mimetic method and the hybrid
mimetic method. On the second row: MPFA and the hybrid mimetic method.

The model is as explained earlier one layer of the real field model which is flattened
and modified such that the thickness of the layer is constant. These properties make
the grid ideal for the hybrid methods since these methods are consistent in the plane.
In the vertical direction the methods apply TPFA, but the top and bottom faces are
parallel, and in addition, the sizes of the grid blocks in the x- and y-direction are much
larger than in the z-direction. This case is thus ideal for the hybrid methods, and as
expected, the hybrid methods provide reasonable accurate answers.

5.7 Pebi grid containing a curved fault

We will in this section consider a 2.5D PEBI grid containing a curved fault. The grid
is the same as explained in Example 6 in [5]. We impose a pressure difference on the
grid, where the pressure is 250 bar on the global west side of the reservoir, and 100 on
the global east side. The grid is shown in Figure 5.8.

5.7.1 Homogeneous isotropic permeability

We begin with a permeability K = diag(1,1,1) Darcy in all of the cells and the porosity
φ= 0.3. We want to compare the different methods in relation to the number of cycles.
The methods considered are the mimetic method, the hybrid mimetic method, MPFA
and the hybrid MPFA.

We note that both hybrid methods provide solutions without cycles while the full
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Figure 5.8: 2.5D PEBI grid containing a curved fault.

Table 5.11: Results concerning cycles for the flux field with homogeneous isotropic permeabil-
ity. R is the ratio of cells in cycles, N is the number of cycles and nm ax is the size of the largest
cycle.

Method R N nmax

Hybrid mimetic 0 0 0
Mimetic 0.0003 1 7
Hybrid MPFA 0 0 0
MPFA 0.0054 2 119

methods have flux solutions with nonphysical cycles. We had isotropic permeabil-
ity and a linear pressure drop, and originally we believed that neither of the methods
would provide results with cycles in the flux field. In Section 5.4 we did not get cycles
for any of the methods when the permeability was isotropic even if the grid was not
parallel to the x y-plane. The reason for the cycles in the full consistent methods must
come from the fact that there is a curved fault in the grid. However the cycles are
few, only one for the mimetic case and two for MPFA. We also see that MPFA has a
larger maximum cycle and the number of cells in cycles is larger than for the mimetic
method.

5.7.2 Homogeneous anisotropic permeability

We will now consider the same grid, but the permeability is set to be K =diag(1,1,0.01)
Darcy in all of the grid cells.

Figure 5.9 shows the pressure solutions from the mimetic method, the hybrid mimetic
method, MPFA and the hybrid MPFA method. We see that they do not give exactly
similar answers. We have also compared the number of cycles in the flux field for the
different methods.

From Table 5.12 we note that the hybrid methods are still free of cycles even if we
have anisotropic permeability. The mimetic method and MPFA give large cycles, and
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Figure 5.9: Pressure solution with anisotropic permeability

Table 5.12: Results concerning cycles for the flux field with homogeneous anisotropic perme-
ability R is the ratio of cells in cycles, N is the number of cycles and nm ax is the size of the
largest cycle.

Method R N nmax

Hybrid using ip_simple 0 0 0
Mimetic 0.1090 69 611
Hybrid MPFA 0 0 0
MPFA 0.0864 45 567

they give more cycles than when the permeability was isotropic. We have permuted
the flux-matrices using dmperm. If the flux field is free of cycles we will get an upper
triangular matrix, but if it is not free of cycles we will get elements below the diagonal.
Figure 5.10 shows the permuted flux-matrices obtained by the mimetic method and
MPFA where the cycles are drawn. The sizes of the squares are the same sizes as the
cycles and we can see that the structures of the matrices are quite similar.

It is not easy to see that the matrices are not upper triangular and hence we have
plotted the elements that are under the diagonal in Figure 5.11.

We thought that the full consistent methods would have cycles since we have a grid
where the top and bottom faces are not parallel to the x y-plane and we have anisotropic
permeability with an anisotropic rate of 100. We believed that the hybrid methods
would turn out to be free of cycles since they use TPFA in the vertical direction hence
this was as expected.
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Figure 5.10: The perturbed flux-matrix with cycles for the mimetic method to the left and for
MPFA to the right.

Figure 5.11: The elements under the diagonal for mimetic to the left and MPFA to the right.

5.8 Considering cycles of a real field model

We will in this section discuss the results in relation to cycles by using TPFA, the
mimetic method and the hybrid mimetic method on a real field model. We do not
consider MPFA and the hybrid MPFA as these are not fully applicable to this model.
The model is shown in Figure 5.12.

The dimension of the cells in the model is typical for a model used in reservoir sim-
ulation. The cells have a much larger extent in the x- and y-direction compared to
the extent in the vertical direction. We place six wells in the model, three are injec-
tion wells and three are production wells. The wells are controlled by a bottom hole
pressure of 300 bar for the injection wells and 100 bar for the production wells. The
placement of the wells are shown in Figure 5.13.
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Figure 5.12: The real field model.

Figure 5.13: Model with wells.

We want to compare the number of cycles for the hybrid mimetic method and the
mimetic method. We will consider two different cases concerning the permeability.
The first case will have a homogeneous isotropic permeability of K =diag(1,1,1) Darcy.
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The second case will have a heterogeneous anisotropic permeability which is the esti-
mated permeability of the respective reservoir. This permeability is very layered, i.e.,
we have layers where the permeability in this layer of the reservoir can be considered
homogeneous.

We will for the two cases consider the number of cycles in the flux field, i.e., the cycles
in the flux-matrix. We have chosen a tolerance of tol = | f |max ·10−13 which means that
all the fluxes that have an absolute value smaller than the tolerance is set to 0. This
is done as we do not want to consider cycles caused by very small fluxes as we can
neglect such fluxes.

5.8.1 Homogenous isotropic permeability

We will now consider the case where we have homogeneous isotropic permeability,
K =diag(1,1,1).

The pressure solutions obtained by TPFA, the mimetic method using the inner product
ip_simple and the hybrid mimetic method are shown in Figure 5.14. We see that the
three methods give quite similar solutions. We cannot compare these solutions to any
analytic answer.

Table 5.13 shows R, the ratio of cells in cycles, N, the number of cycles and nmax , the
size of the largest cycle for the mimetic and the hybrid mimetic method. The difference
in R is not extremely large, but we find a difference, and the hybrid mimetic method
has more cells in cycles and more cycles in total than the mimetic method. This is in
fact a surprising result since we expected that the hybrid method would have fewer
cycles than the full method since it uses TPFA in the vertical direction.

Table 5.13: Results concerning cycles for the flux field with homogeneous isotropic permeabil-
ity. R is ratio of cells in cycles, N is the number of cycles and nmax is the size of the largest
cycle.

Method R N nmax

Hybrid mimetic 0.1110 279 215
Mimetic 0.0693 218 242

We have in Figure 5.15 plotted the flux-matrix and the red blocks represent the cycles.
We can see that the hybrid mimetic method have more cycles than the mimetic method
when the permeability is homogeneous and isotropic. Note that the blocks are drawn
ten times larger than the cycles actually are in order to see them better, i.e., the length
of each side of the square is ten times the length of the cycle.

5.8.2 Heterogeneous anisotropic permeability

We now consider the field with a heterogeneous anisotropic permeability. This is the
estimated permeability for the actual reservoir and the permeability in the x y-direction
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Figure 5.14: Pressure solution. TPFA on the top left, mimetic on the top right and the hybrid
mimetic on the bottom.

is larger than in the z-direction, and the permeability varies through the different lay-
ers. The pressure solution for this case looks similar to the case above, and we therefore
do not show the plot.

Table 5.14 shows C, N and nmax for the mimetic hybrid method and the mimetic
method using ip_simple. As for the previous case we have set tol= | f |max ·10−13.

Table 5.14: Results concerning cycles for the flux field with heterogeneous anisotropic perme-
ability. R is ratio of cells in cycles, N is the number of cycles and nmax is the size of the largest
cycle.

Method R N nmax

Hybrid mimetic 0.0592 359 324
Mimetic 0.1445 528 648

The mimetic method results in more cycles in the flux field than the hybrid method,
and R is almost three times larger for the mimetic method than the hybrid mimetic
method. The hybrid mimetic method has fewer cycles now, when the permeability
is anisotropic than when the permeability was isotropic. For this case the mimetic
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Figure 5.15: Homogeneous isotropic permeability: The flux-matrices with cycles, the mimetic
on top and the hybrid mimetic on the bottom.

method has more cycles than the hybrid mimetic method, and this was what we ex-
pected.

We have visualised the cycles in Figure 5.16. Note that here, as in Section 5.8.1, the red
blocks are drawn 10 times as large as the cycles are.

We want to check if the tolerance tol = | f |max ·10−13 is too strict, and hence we will
check the number of cycles if we instead set the tolerance to: tol= | f |max ·10−9, | f |max ·10−6

and | f |max ·10−3.

We have also plotted the matrices and the cycles for the different tolerances in Figure
5.17, Figure 5.18 and Figure 5.19. The plots to the left is when the mimetic method is
used, and the plot to the right is when the hybrid mimetic method is used.

By comparing Table 5.15 and Table 5.16 to Table 5.14, we note that by choosing the
tolerance to be | f |max ·10−9 or | f |max ·10−6 gives answers which are quite similar to a

58



Figure 5.16: Heterogeneous anisotropic permeability: The flux-matrix with cycles the mimetic
on top and the hybrid mimetic bottom

Table 5.15: Setting different tolerances for the hybrid mimetic method. R is ratio of cells in
cycles, N is the number of cycles and nmax is the size of the largest cycle.

Tolerance R N nmax

| f |max ·10−9 0.0589 359 324
| f |max ·10−6 0.0533 337 323
| f |max ·10−3 0.0015 15 10

tolerance of | f |max ·10−13. If the tolerance is set to | f |max ·10−3 we have few and small
cycles. However, we assume that this tolerance is too high and when choosing this
tolerance we exclude some important flux values. We can say that the tolerance of
| f |max ·10−13 is not too strict since choosing a somewhat higher tolerance does not re-
sult in a too different answer.

As explained in Section 3.2 it is of interest to consider the number of times when
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Table 5.16: Setting different tolerances for the mimetic method. R is ratio of cells in cycles, N
is the number of cycles and nmax is the size of the largest cycle.

Tolerance R N nmax

| f |max ·10−9 0.1439 528 648
| f |max ·10−6 0.1330 511 638
| f |max ·10−3 0.0134 67 58

u(n1) ≥ u(n2), but the flux from cell 1 to cell 2, f1,2 ≤ 0.

Table 5.17: The number of times when f1,2 ≤ 0 while u(n1) ≥ u(n2) for the different methods.

Method f1,2 ≤ 0 Ratio
Hybrid mimetic 1888 0.0425
Mimetic 10011 0.2254

From Table 5.17 we see that there is a large difference between the number of times
this happens for the mimetic method and the hybrid mimetic method. The hybrid
mimetic method uses TPFA for two half-faces for each cell, and for a cell with six
faces the mimetic part of the hybrid method is performed on 2

3 of the cell, and thus
we have already neglected those faces concerning the direction of the flux compared
to the pressure drop. From Table 5.17 we see that this occurs five times more for the
mimetic method than for the hybrid mimetic method. This may be caused by the fact
that if we first have one case where this happens this will effect the other calculated
fluxes.

We have considered a real field model where the grid cells have a larger extent in
the plane than in the vertical direction. The permeability is anisotropic where the
permeability in the z-direction is smaller than in the plane and the permeability is
layered, i.e., we have layers where the permeability is almost constant. For this grid
we see that the results obtained by the hybrid mimetic method contains fewer cycles
in the flux field than the mimetic method. The number of cells in cycles is almost three
times higher for the mimetic method than for the hybrid mimetic method. The number
of times that u(n1) ≥ u(n2), and the flux from cell 1 to cell 2, f1,2 ≤ 0 is five times higher
for the mimetic method compared to the hybrid method. Using the hybrid mimetic
method applying the mimetic method in the plane and TPFA in the vertical direction
instead of using the mimetic method in the entire domain result in a reduction of cycles
for this case.

In this chapter we have presented the results from testing five different discretisation
methods on various cases. We have shown that the hybrid methods are exact when we
have linear flow. We have also shown that by using hybrid methods applying TPFA
in the vertical direction we reduce the number of nonphysical cycles for special cases.
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Figure 5.17: Tolerance = | f |max ·10−9 for the mimetic method to the left, and the hybrid
mimetic method to the right.

Figure 5.18: Tolerance = | f |max ·10−6 for the mimetic method to the left, and the hybrid
mimetic method to the right.

Figure 5.19: Tolerance = | f |max ·10−3 for the mimetic method to the left, and the hybrid
mimetic method to the right.
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Chapter 6

Discussion, conclusion and further
work

The goal of this thesis was to develop a method using TPFA in the vertical direction
and a consistent method in the plane. The motivation for doing this was to obtain
a method which is more consistent than TPFA and results in fewer cycles in the flux
field compared to using the consistent method in the entire domain.

We have presented the theoretical background for TPFA which is the most common
method used within reservoir simulations. We have also provided the theoretical
background for the consistent mimetic discretisation methods and MPFA. We have
explained how the loss of monotonicity may result in nonphysical cycles in the flux
field and why this should be avoided. Two hybrid methods were developed, the first
applies TPFA and a mimetic method, and the second applies TPFA and MPFA. We
have tested the five methods on various cases and compared the results in relation to
accuracy and cycles.

6.1 Discussion

In Sections 5.1-5.3 we noted that the hybrid methods gave the exact answers in sit-
uations with linear flow, and where the top an bottom faces were aligned with the
x y-plane. TPFA provides the exact answer when we have linear flow and the grid
is K-orthogonal. However, if the grid is not K-orthogonal errors occur. This was the
situation for a grid where the cells were triangular in the plane, and for a pebi grid
where the top and bottom faces were parallel. For these cases, both hybrid methods
provided the correct answer, and the hybrid methods are thus consistent on grids that
are not K-orthogonal, but with parallel top and bottom faces in the x y-plane. Results
for a one-layered real field model that was flattened, i.e., the top and bottom faces
were parallel also showed that the hybrid methods were more consistent than TPFA.

We also compared the results if we had a grid with an increasing angle between the
grid and the x y-plane and if the anisotropic rate permX

permZ increased, note that permY =
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permX. The results showed that the hybrid methods did not include any cycles for
any of the cases, but the consistent methods had cycles if the anisotropic rate was
very large. Another important finding was that for grids with very skew pillars, but
the ratio Dx/Dz was large enough, the hybrid methods provided answers with high
degree of accuracy. However, concerning the specific case presented, TPFA also gave
answers with high degrees of accuracy, and it is therefore as expected that the hybrid
methods gave satisfying answers.

For the large pebi grid explained in Section 5.7 we found that the answers provided
by the hybrid methods contained no cycles in the flux field even if we had anisotropic
permeability. The results provided by the full consistent methods contained cycles,
but only a few. This may result from the fact that this case had a close to linear flow,
and the grid cells were quite regular and only limitedly skew and cycles seldom occur
in such cases.

We also considered a real field model, but here we only considered the mimetic method
and the hybrid mimetic method. A surprising result was that for homogeneous isotropic
permeability, the mimetic method had fewer cycles than the hybrid method. We be-
lieved at the outset that that the hybrid mimetic method would never contain more
cycles than the mimetic method since this method applies the mimetic method in the
plane and TPFA in the vertical direction and TPFA never results in cycles. When a
layered heterogeneous anisotropic permeability was considered, we found that the
hybrid mimetic method resulted in fewer cycles than the mimetic method. We found
more cells in cycles, more cycles and the largest cycle was larger for the mimetic
method than the hybrid mimetic method.

6.2 Conclusion

Based on the results from this thesis, we can conclude that the hybrid methods are
more accurate than TPFA. The hybrid methods are especially well suited for cases
where the grid is not K-orthogonal, the top and bottom faces are approximately paral-
lel and when the extent of the x- and y-direction are large compared to the z-direction.

We observed concerning cycles that the hybrid methods gives the largest reduction in
cycles if we have grids with very skew vertical pillars and the anisotropic permeability
rate is high. If in addition the anisotropic permeability is constant within layers we get
good results when the hybrid methods are used. The results were not as distinct as we
had expected at the outset, but we note a difference in favor of the hybrid methods
when concerning cycles.

6.3 Further work

The implementation of the hybrid methods has not been done in the most optimal way
in this thesis. In further developing of these methods, they should be implemented
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in a less time consuming way. It should be important and interesting to explore the
time aspect of the hybrid methods since they for some cases are as accurate as the
full methods, but less time consuming if they are implemented correctly. In addition,
as explained in Section 4.2, we should have implemented the hybrid MPFA method
in a better way, even if we do not consider the time aspect. Therefore, it should be
important to modify the hybrid MPFA function by projecting the faces that are not top
or bottom down to the x y-plane and apply the two-dimensional MPFA here and TPFA
in the vertical direction.

It can also be of interest to further investigate if it is possible to develop hybrid meth-
ods based on other consistent methods than the mimetic method and MPFA leading
to better results in relation to cycles in the flux field.
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