
Anonymity in Network Connections for
Mobile Communication

Ragne Elisabeth Henriksen

Master of Science in Physics and Mathematics

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

1

Preface

I would like to extend a thank you to my supervisor Kristian Gjøsteen. I could not
have written this thesis without your help and am grateful that you said yes to be
my supervisor. Thank you for helping me understand the theory on which this thesis
is built, for having patience and for keeping me motivated.

Abstract

This thesis summarizes an existing protocol, that we have chosen to call the Token Key

Agreement protocol. It then goes on to introduce two new protocols we have chosen
to name the Symmetric Key Agreement protocol and the Asymmetric Key Agreement

protocol. We are working within the UC framework, and as such introduce ideal
functionalities and protocol descriptions for the protocols. For the first protocol we
also introduce a simulated adversary. Further, the paper includes an overview of the
security offered by the three protocols.

Sammendrag

Denne oppgaven oppsummerer en eksisterende protokoll som vi har valgt å kalle Token

Nøkkelutvekslings protokollen. Den fortsetter deretter med å introdusere to nye proto-
koller vi har valgt å kalle Symmetrisk Nøkkelutvekslings protokollen og Asymmetrisk

Nøkkelutvekslings protokollen. Vi jobber innenfor UC rammeverket, og utleder således
ideelle funksjonaliteter for de to protokollene, protokollbeskrivelser og for den første
protokollen konstruerer vi også en simulert angriper. Videre inneholder oppgaven en
oversikt over sikkerheten som tilbys av de tre protokollene.

Contents

1 Introduction 3

1.1 Prerequisites . 4

1.2 Abbreviations and Terminology . 4

2 The Model 5

2.1 The Radio Link Functionality and the Secure Channel Functionality . 6

2.2 The Corruption Classes . 7

2.3 The Ideal Functionality . 8

2.4 Authenticated Encryption with Associated Data 9

3 The Symmetric Key Agreement Protocol 12

3.1 The Protocol . 12

3.2 The Simulator . 16

3.3 Security Analysis . 39

3.3.1 Class 1 . 40

3.3.2 Class 2 . 43

3.3.3 Class 3 . 46

3.3.4 Class 4 . 47

3.3.5 Class 5 . 51

3.3.6 Class 6 . 52

1

CONTENTS 2

3.3.7 Class 7 . 53

3.3.8 Class 8 . 54

4 The Asymmetric Key Agreement Protocol 56

4.1 The Protocol . 56

4.2 The Simulator . 60

4.3 Security Analysis . 60

4.3.1 Class 1 . 60

4.3.2 Class 2 . 62

4.3.3 Class 3 . 64

4.3.4 Class 4 . 65

4.3.5 Class 5 . 67

4.3.6 Class 6 . 67

4.3.7 Class 7 . 68

4.3.8 Class 8 . 68

5 The Token Key Agreement Protocol 70

5.1 The Protocol . 70

5.2 Security Analysis . 72

5.2.1 Class 1 . 72

5.2.2 Class 2 . 76

5.2.3 Class 3 . 78

5.2.4 Class 4 . 79

6 Conclusion 84

7 Bibliography 86

Chapter 1
Introduction

The word anonymity is derived from the Greek word anonymia meaning “nameless”.
Anonymity in its most general form means that a persons identity remains unknown.
In today’s society obtaining anonymity in the digital world has become a widely
discussed problem. The concept of anonymity comes into play in those cases in which
we want to keep secret the identity of the participants of a certain event. There are
several situations in which this property may be needed or desirable; for instance:
voting, web surfing, anonymous donations, and posting on bulletin boards. This
paper will talk about how to obtain anonymity in network connections in mobile
communication.

The paper will begin by introducing the model we will be working within. It then goes
on to introduce a protocol called the Symmetric Key Agreement protocol in Chapter
3. This protocol is the main work of the paper. The chapter starts by providing a
full protocol description in Section 3.1. It then goes on to provide a simulator for
the protocol in Section 3.2. Lastly, the chapter includes a security analysis of the
protocol.

Chapter 4 introduces a protocol we have named the Asymetric Key Agreement pro-
tocol. The chapter has the same buildup as the previous one. However, we do not
introduce a simulator for this protocol.

Lastly, in Chapter 5 we give a summarized version of the protocol suggested in the
article Secure and Anonymous Network Connection in Mobile Communications by
Gjøsteen, Petrides, and Steine [GPS12]. This is the protocol that the first two pro-
tocols are built on.

The three protocols will be shown to have varying security properties and efficiencies
and the paper concludes with a discussion of the advantages and disadvantages of the

3

CHAPTER 1. INTRODUCTION 4

three protocols.

1.1 Prerequisites

The reader is assumed to be familiar with the Universal Composability (UC) frame-
work. Due to space requirements information on the UC framework is not included in
this paper, but can be found in [Can00]. We will not be using Cannettis framework
with dummy variables when describing our protocols, but rather a similar frame-
work that can be found in the article, A Novel Framework for Protocol Analysis by
Gjøsteen, Petrides and Steine [GPS11]. This framework is an adaption of Cannetti’s
framework. The main difference between the two frameworks is that whilst Canetti
uses a dynamic setting, where ITMs come into existence only when they are needed,
the novel framework considers a fixed number of ITMs where communication is regu-
lated by a fixed communication graph. The new framework uses a message queue to
activate ITMs. This lets every ITM submit several messages into the message queue
for later activation. Thus, the new framework lets ITM’s send messages to themselves,
and it allows them to reactivate themselves when all the previously queued messages
have been processed. In Cannetti’s framework self activation is not possible. Using a
fixed system of ITMs also aids when depicting protocol machines handling multiple
sessions.

1.2 Abbreviations and Terminology

We will use IMSI to mean International Mobile Subscriber Identity and TMSI to
mean Temporary Mobile Subscriber Identity. The IMSI is integrated on the phone’s
simcard whilst the TMSI is generated by the MNO. Further, we will abbreviate the
Token Key Agreement protocol with TKA, the Symmetric Key Agreement protocol
with SKA and the Asymmetric Key Agreement protocol with AKA.

Chapter 2
The Model

We will now give a brief description of the model we will be working within. Although
this is not common practice we will assume that when utilizing a cellphone, a user, U
communicates with a mobile network operator, MNO, which in turn communicates
with U ’s service provider, SP , as shown in Figure 2.1. U and SP only ever commu-
nicate with each other through the MNO. This is a model where MNOs deal only
with maintaining the network infrastructure and SPs deal with user subscriptions for
network access.

MNO
pos1
• pos2

...
•posn

User

SP1

SP2

SPk

·
·
·

Figure 2.1: A graphical depiction of a mobile communication network with n base
stations and k service providers.

5

CHAPTER 2. THE MODEL 6

2.1 The Radio Link Functionality and the Secure

Channel Functionality

Users and the mobile network operator communicate through an insecure channel.
We have modeled this channel with a functionality called FRL, for radio link. The
functionality can be found in Figure 2.2. Service providers and the mobile network
operator on the other hand, communicate through a secure channel as modeled by
the functionality Fsec, for secure. This functionality can be found in Figure 2.3. Both
of these functionalities are taken from a draft of the paper Secure and Anonymous

Network Connection in Mobile Communications from January 11th of 2012.

On (Listen, pos) from A
1. Record pos as corrupted and hand over (Listening, pos) to A.

On (Enter, pos) from U
1. Record U as present at pos.

On (Leave, pos) from U
1. Remove the record of U ’s presence at pos.

On (Send, sid, m, pos, N) from U
1. Stop if U is not present at pos.
2. If pos is corrupted then hand over (Send, sid, m, pos, N) to A.
3. Else send (Recv, sid, m, pos) to N .

On (Send, sid, m, pos) from N
1. If pos is corrupted then hand over (Send, sid, m, N pos) to A.
2. Else send (Recv, sid, m, pos) to U , for all honest users U present

at pos.
On (Send, sid, m, pos, N) from A

1. Stop if pos is not corrupted, otherwise send (Recv, sid, m, pos)
to N .

On (Send, sid, m, pos) from A
1. Stop if pos is not corrupted, otherwise send (Recv, sid, m, pos)

to U , for all honest users U present at pos.

Figure 2.2: The radio link functionality FRL.

CHAPTER 2. THE MODEL 7

On (Send, sid, m, X1, X2) from A
1. Stop if X1 is honest or X2 is corrupted, otherwise send

(Recv, sid, m, X1) to X2.
On (Send, sid, m, X1) from honest X2

1. If X1 is honest then send (Recv, sid, m, X2) to X1.
2. Else hand over (Send, sid, m, X2, X1) to A.

Figure 2.3: The secure channel functionality Fsec.

2.2 The Corruption Classes

Since the radio link functionality is not secure an adversary A can listen in on the
channel at a given position. We have modeled this by letting the position, pos, be
corrupt whenever someone is listening or intercepting the radio link channel. An
execution of a protocol may start without anyone listening at pos only to have pos
become corrupted during the execution. This can easily be modeled through the
simulators for the three protocols, but should be kept in mind when reading the
security analysis for the different protocols.

Further, U , N and S may all be corrupt. Whenever either N or U is corrupt pos will
be corrupt as well. We have restricted ourselves to be operating with static corruption
of players to simplify the model. We have included a table of the 10 corruption classes
in Figure 2.4. One can easily check that these are in fact all the corruption classes.

C.C. pos U N S
0 Honest Honest Honest Honest
1 Corrupt Honest Honest Honest
2 Corrupt Honest Corrupt Honest
3 Honest Honest Honest Corrupt
4 Corrupt Honest Honest Corrupt
5 Corrupt Honest Corrupt Corrupt
6 Corrupt Corrupt Honest Honest
7 Corrupt Corrupt Corrupt Honest
8 Corrupt Corrupt Honest Corrupt
9 Corrupt Corrupt Corrupt Corrupt

Figure 2.4: The different corruption classes (C.C.).

CHAPTER 2. THE MODEL 8

2.3 The Ideal Functionality

In the chapters to come we will introduce three protocols whose goal it is to achieve
secure and anonymous mobile communication. These three protocols can a be realized
by the same ideal functionality, namely FKE. Two of the three protocols make use of
tokens. In these two protocols every user has a token that he has been given by his
service provider. He uses this token to make himself known to the service provider.
If a session fails before the user receives a new token he will have to reuse the token
he has the next time he tries to start a session. An adversary may then try to link
different attempts at starting a session in order to trace a user. We have modeled
this by allowing the simulators for these two protocols to send (Deny Linkable, id)
(or (Deny Unlinkable, id) in the cases where the token is updated but the protocol
aborts) to the ideal functionality. The third protocol does not make use of tokens, and
when an execution fails the simulator will send (Deny, id) to the ideal functionality.

We wish for the three ideal functionalities to be equal. This way it will be easy to
build on top of them if desirable. As such it will be possible to send (Deny Linkable,
id), (Deny Unlinkable, id) and (Deny, id) to the ideal functionality in all of the
protocols. However, the simulators specify what happens for each protocol, and
although it is possible for the ideal functionalities to receive all three the simulators
will only send either the two first, or the third message to the ideal functionality.

A protocol securely executes a given task if an adversary A can not gain anything
more from an attack on a real execution of the protocol than from an attack on an
ideal process where the parties simply hand their inputs to a trusted party, FKE, with
the appropriate functionality and obtain their outputs from it without any further
interaction [CLOS02]. Thus, it is not problematic to use the same ideal functionality
for all three protocols. The ideal functionality is described in Figures 2.5 and 2.6.

Further, the ideal functionality makes use of a function called the leak function. This
function leaks information to the adversary as specified by the ideal functionality. The
information it leaks depends on what corruption class we are in. The leak function
will be the same for all three protocols. Thus, we could have made it a part of the
ideal functionality. However, so that it will be possible to build other protocols on top
of the same functionality we have avoided doing this. The leak function is described
in Figure 2.7.

CHAPTER 2. THE MODEL 9

In our model a user, U tells the functionality FKE that he wishes to establish a key
with the MNO at a given position. A is informed about the attempt. A can the decide
what happens. In all corruption classes besides C.C.0 A is free to perform denial of
service (DoS) attacks. Thus, the adversary may allow the protocol to complete,
to partially complete or he may interfere in other ways. An adversary is hence also
allowed to change the order messages are received in for some of the corruption classes.
What A is able to do depends on what corruption class we are in, and how the users
previous attempt at key agreement ended. Every attempted protocol execution is
identified using a session identifier (sid). It should also be noted that U will never
run 2 instances of the protocol in parallel.

In the two protocols where we make use of tokens, tokens will be uncorrelated. How-
ever, and adversary may through DoS attacks or by interfering prevent a user from
receiving his new token. This would allow both the network and an adversary to trace
a user. However, the adversary would be tracing an anonymous user. Further, the
only way a service provider could find a particular users location if if he is listening
at pos.

2.4 Authenticated Encryption with Associated Data

In the two protocols we construct we use authenticated encryption with associated
data (AEAD). This is a method for authenticating data where some of the data, adata,
is authenticated whilst some of the data, cdata, is both encrypted and authenticated.
We write that

• c← E(k; adata; cdata).
• cdata/ ⊥← D(k; adata; c).

The scheme was formalized by Phillip Rogaway in 2002 in the article Authenticated-

Encryption with Associated-Data [Rog02].

CHAPTER 2. THE MODEL 10

On (Enter, pos, N) from honest U
1. Stop if a record (id, pos, U , N , S) exists. Else if no record (U , id)

exists, generate random identifier id, in either case record
(id, pos, U , N , S) where S is U ’s SP and send
(Enter, Leak(class, id, pos, U , N , S, k

′

)) to S
On (Leave, pos) from U

1. Stop if (id, pos, U , N , S) is not recorded, otherwise hand over
(Leave, id) to S and erase the record.

On (Deny linkable, id) or (Deny unlinkable, id) from S
1. Stop if (id, pos, U , N , S) is not recorded, otherwise remove it

and send (Est. failed linkable) or (Est. failed unlinkable) to U .
Additionally, if S is honest then record (U , id) or remove any such
record.

On (Deny, id) from S
1. Stop if (id, pos, U , N , S) is not recorded, otherwise remove it and

send (Est. failed) to U .
On (Listen, pos) from S

1. From every record containing pos that is in C.C.0 or 3,
collect (id, N , S) or (id, U , N), record pos as corrupted and hand
over the collected data together with pos and
Leak(class, id, pos, U , N , S, k

′

) to A.
On (Est. User, k, id) from S

1. Stop if (id, pos, U , N , S) is not recorded, otherwise:

(i) If in C.C.0, 3 or 4 then generate random key k̂, replace the record

by (id, pos, U , N , S, k̂) and send (Est., k̂, pos, N) to U
(ii)Else if in C.C.2 or 5 then send (Est., k, pos, N) to U and either

replace the record by (id, U , N , S) or remove it.
On (Est. SP, id) from S

1. Stop if neither (id, U , N , S) nor (id, pos, U , N , S, k) is not recorded.
Otherwise, either remove the record or replace it by (id, pos, N , S, k),
and send (Est., U , N) to S.

On (Est. SP, id, U , N , S) from S
1. Stop if not in C.C.6 or 7. Otherwise, in the first case record (id, N , S)

and in both cases send (Est., U , N) to S.

Figure 2.5: The ideal functionality FKE.

CHAPTER 2. THE MODEL 11

On (Est. MNO, k, id) from S

1. Stop if (id, pos, N , S, k̂) is not recorded, otherwise remove it and

send (Est., k̂, pos, S) to N .
On (Est. MNO, k, id, pos) or (Est. MNO, k, pos, N , S) from S

1. Stop unless (id, N , S) is recorded or pos and S are corrupted.
In the first case remove the record and in both cases send
(Est., k, pos, S) to N .

Figure 2.6: The ideal functionality FKE continued.

leak(class, id, pos, U,N, S) =























(id) if class = 0
(id, pos, S) if class = 1
(id, pos,N, S) if class = 2
(id, U,N, S) if class = 3
(id, pos, U,N, S) if class = 4, 5, 6, 7, 8 or 9

Figure 2.7: The leakage function for TKA, SKA and AKA.

Chapter 3
The Symmetric Key Agreement Protocol

The symmetric key agreement protocol is the main work of this thesis. The protocol
makes use of tokens and a symmetric encryption function. The user, U , and the service
provider, S, share a secret key kUS. This chapter starts of by describing the protocol in
Section 3.1. It then provides an ideal-process adversary, namely the simulator SSKA.
We wish to show that there exists a SSKA such that the environment Z can not tell
whether it is interacting with FKE and SSKA in the ideal process, or with πSKA in the
real-life model with non-negligible probability. This would normally be done through
a series of games. However, we have chosen to show that the protocol πSKA only has
n possible executions. We then show that we can simulate all n executions through
SSKA, thus concluding that the protocol realizes the ideal functionality. This is done
in Section 3.3 and concludes the chapter.

3.1 The Protocol

An overview of the protocol is provided in Figure 3.1. A full protocol description then
follows in Figures 3.2, 3.3 and 3.4. We would like to note e = (sid, pos, n1, n2, k, T ,
N , S, c, µ1), where µ1 = E(k; pos, c;). We have named the variable e for everything,
as the variables contained in e are everything that both U and N knows.

12

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 13

NU:kUS
S:kUS

sid, T , n1, S

sid, T , n1

sid, c, E(k; pos, c;)

sid, c = {sid n1, n2, k, T , T
′

, N }kUS
, k

sid, n2, E(k; e; k
′

)

sid, n2

sid, ok

Figure 3.1: Summary of the anonymous symmetric key establishment protocol πSKA.
Communication between users and MNOs is via FRL and between MNOs and SPs
via Fsec.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 14

Stored: S , kUS, T = Token, N , k
′

On (Enter, pos, N) from Z:
1. If nothing is recorded then generate random nonce n1 and session

identifier sid, record (sid, pos, N , T , n1) and send (Enter, pos)
and (Send, sid, (sid, T , n1, S), pos, N) to FRL.

On (Leave, pos) from Z:
1. Send (Leave, pos) to FRL.
2. If a record with pos exists remove it and output

(Est. failed unlinkable) if token was updated or
(Est. failed linkable) otherwise.

On (Recv, sid, m, pos) from FRL:
1. If m = (sid, c, µ1) where DeckUS

(c) = (sid, n1, n2, k, T , T
′

, N)
and (sid, pos, N , T , n1) is recorded, update T ← T

′

. If in addition
µ1 = E(k; pos, c;) replace the record with
(sid, pos, N , T , n1, n2, c, µ1), set µ2 ← E(k; e; k

′

),
output (Est., k

′

, pos, N) and send
(Send, sid, (sid, n2, µ2), pos, N) to FRL.

2. Else do as second point of (Leave, pos) above.

Figure 3.2: The anonymous key establishment protocol πSKA, Part 1: User.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 15

Stored:
On (Recv, sid, m, pos) from FRL:

1. If m = (sid, T , n1, S) and sid is not on any record, record
(sid, T , n1, pos, S) and send (Send, sid, (sid, T , n1), S) to Fsec.

2. Else if m = (sid, n2, µ2) and (sid, T , n1, pos, S, c, µ1, k) is
recorded and D(k; e; µ2) 6=⊥, set
k

′

← D(k; e; µ2), replace the previous record by
(sid, T , n1, pos, S, n2, c, µ1, µ2, k, k

′

) and send
(Send, sid, (sid, n2), S) to Fsec.

On (Recv, sid, m, pos) from Fsec:
1. If m = (sid, c, k) and there is a record (sid, T , n1, pos, S), set

µ1 ← E(k; pos; c), change the record to
(sid, T , n1, pos, S, c, µ1, k) and send (Send, sid, (sid, c, µ1), S)
to FRL.

2. Else if m = (sid, ok) and there is a record
(sid, T , n1, pos, S, n2, c, µ1, µ2, k, k

′

) then remove it and output
(Est., k

′

, pos, S).

Figure 3.3: The anonymous key establishment protocol πSKA, Part 2: MNO.

Stored: kT , {U ; kUS}
On (Recv, sid, m, N) from Fsec:

1. If m = (sid, T , n1) and sid is not on any record, record
(sid, T , n1, N) and DeckT (T) = U then generate random nonce n2

and token T1 = EnckT (U), set c← EnckUS
(sid, n1, n2, k, T, T1, N),

record (sid, T , n1, n2, U , N) and send (Send, sid, (sid, c, k), N)
to Fsec.

2. Else if m = (sid, n2) and (sid, T , n1, n2, U , N) is recorded then
remove it, send (Send, sid (sid, ok), N) to Fsec and output
(Est., U , N).

Figure 3.4: The anonymous key establishment protocol πSKA, Part 3: SP.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 16

3.2 The Simulator

This simulator is not based on the one that exists for the TAP protocol [GPS12].
Instead we have described what happens in each corruption class, and have modeled
the possible transitions between corruption classes towards the end of the simulator.
We will talk about the corruption classes as being classes. For instance, we will denote
something that is in C.C.0 as being in Class 0.

Within the simulator we will use FRL and Fsec to describe simulated functionalities
that are the same as FRL and Fsec described in Figure 2.2 and Figure 2.3.

Further, we will assume that a ciphertext is on the same form as random noise. We
know that εkUS

(0li) ∼ εkUS
(mi) where |mi| = li and εkUS

(mi) means the encryption
of message mi using key kUS. Thus, it would not be difficult producing noise that
looks like an encryption. For simplicity we will in the simulator SSKA use the term
generate random string X of ciphertext to describe this, thus assuming that {0, 1}li

∼ εkUS
(mi).

The simulator contains two storage tapes. The first one is called Sessions and it
keeps track of every session or attempted session. The next one is called Corrupt

and keeps track of which positions are corrupt.

In every new command of the simulator it should say, verify that there exists a record
containing sid on Sessions, else ignore. To save space we have omitted this, but it
should be noted that this is an implicit requirement.

The simulator follows on the next pages. We have included figures that summarize
the executions in the different classes. This should make it easier to understand the
simulator and visualize what happens. We have used i as a counter, and iL and iU to
keep track of when the protocol fails linkable and unlinkable.

Lastly, we would like to mention that when we write A/F we mean ’A through F .

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 17

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 0:

On (ENTER, id) from FKE:
1. Generate fresh session identifier sid and store

(id, sid, class, i, -, U , N , -, -, -, S, -, -, -, -, -, -, -, -, -), where
i = 0, and send (i, sid) to self.

On (i, sid) from self:
1. If i = 9

Generate random string of ciphertext k
′

, update
(id, sid, class, i, -, U , N , -, -, -, S, -, -, -, -, k

′

, -, -, -, -)
and send (Est. User, k

′

, id) to FKE.
2. Else if i = 14

Send (Est. SP, id) to FKE.
3. Else if i = 17

Send (Est. MNO, k, id) to FKE and stop.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 18

NU:kUS
S:kUS

0 1 2

78
9

1110

3 4

6 5

12 13
14

16 15

17

Figure 3.5: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 0.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 19

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 1:

On (ENTER, id, pos, S) from FKE:
1. Generate fresh session identifier sid and store

(id, sid, class, i, pos, U , N , -, -, -, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions and send (i, sid) to self.

On (i, sid) from self:
1. If i = 1

Generate random T of Token length, and nonce n1, store
(id, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, T , n1, S), pos, N) to FRL and
stop.

3. Else if i = 7
Generate random strings c and µ1 of cipher text, store
(id, sid, class, i, -, U , N , T , -, n1, S, c, -, µ1, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, c, µ1), pos) to FRL and stop.

4. Else if i = 9
(i) If iL = 9 send (Deny Linkable, id) to FKE and stop.
(ii) Else if iU = 9 send (Deny Unlinkable, id) to FKE and stop.
(iii) Else generate random string k

′

of ciphertext, store
(id, sid, class, i, -, U , N , T , -, n1, S, c, -, µ1, k

′

, -, -, iU , iL)
on Session and send (Est. User, k

′

, id) to FKE.
5. Else if i = 10

Generate random nonce n2 and string of ciphertext µ2, store
(id, sid, class, i, -, U , N , T , -, n1, S, c, k, µ1, k

′

, µ2, -, iU , iL) on
Sessions, send (Send, sid, (sid, n2, µ2), pos, N) to FRL and stop.

6. Else if i = 14
Send (Est. SP, id) to FKE.

7. Else if i = 17
Send (Est. MNO, k

′

, id) to FKE and stop.
8. Set i← i+ 1.
9. Send (i, sid) to self.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 20

While class = 1:
On (Recv, sid, (sid, T , n1, S), pos) from A/FRL:

1. Check that i = 2, else ignore.
2. Check that T is a valid token, else ignore.
3. If T is a valid token, but T , n1 or S do not match those on sid’s

record on Sessions update iL ← 9.
4. Else if no record containing sid exists, store

(-, sid, class, i, pos, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions.

5. Set i← i+ 1.
6. Send (i, sid) to self.

On (Recv, sid, (sid, c, µ1), pos) from A/FRL:
1. Check that i = 8, else ignore.
2. If a record

(-, sid, class, i, pos, U , N , T , -, n1, S, c, -, µ1, -, -, -, iU , iL)
exists (i.e. there is no value for id), ignore.

3. Check that c matches that on sid’s record on Sessions,
else set iL ← 9.

4. Check that µ1 matches that on sid’s record on Sessions,
else set iU ← 9.

5. Set i← i+ 1.
6. Send (i, sid) to self.

On (Recv, sid, (sid, n2, µ2), pos) from A/FRL:
1. Check that i = 11, else ignore.
2. Check that µ2 matches that on sid’s record on Sessions,

else ignore.
3. Check that n2 matches that on sid’s record on Sessions,

else ignore.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 21

NU:kUS
S:kUS

0 1
?

2

78
?

9

1110
?

3 4

6 5

12 13
14

16 15

17

Figure 3.6: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 1.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 22

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 2:

On (ENTER, id, pos, N , S) from FKE:
1. Generate fresh session identifier sid and store

(id, sid, class, i, pos, U , N , -, -, -, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions and send (i, sid) to self.

On (i, sid) from self:
1. If i = 1

Generate random T of Token length, and nonce n1, store
(id, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, T , n1, S), pos, N) to FRL and
stop.

2. Else if i = 3
Generate random string c of cipher text and key k, store
(id, sid, class, i, -, U , N , T , -, n1, S, c, k, -, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, c, k), N) to Fsec and stop.

3. Else if i = 5
(i) If iL = 5 send (Deny Linkable, id) to FKE and stop.
(ii) If iU = 5 send (Deny Unlinkable, id) to FKE and stop.
(iii) Else generate random key k

′

, store
(id, sid, class, i, -, U , N , T , -, n1, S, c, k, µ1, k

′

, -, -, iU , iL)
on Sessions and send (Est. User, k

′

, id) to FKE.
4. Else if i = 6

Let µ2 ← E(k; e; k
′

) and generate nonce n2, store
(id, sid, class, i, -, U , N , T , -, n1, S, c, k, µ1, k

′

, µ2, n2, iU , iL) on
Sessions, send (Send, sid, (sid, n2, µ2), pos, N) to FRL and stop.

5. Else if i = 8
Send (Est. SP, id) to FKE.

6. Else if i = 9
Send (Send, sid, (sid, ok), N) to Fsec and stop.

7. Set i← i+ 1.
8. Send (i, sid) to self.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 23

While class = 2:
On (Recv, sid (sid, T , n1), N) from A/Fsec:

1. Check that i = 2 else ignore.
2. Check that T is a valid token, else ignore.
3. If T is a valid token, but T or n1 do not match those on sid’s

record on Sessions update iL ← 5.
4. Else if no record containing sid exists, store

(-, sid, class, i, pos, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions.

5. Set i← i+ 1.
6. Send (i, sid) to self.

On (Recv, sid (sid, c, µ1), pos) from A/FRL:
1. Check that i = 4 else ignore.
2. If a record

(-, sid, class, i, pos, U , N , T , -, n1, S, c, -, µ1, -, -, -, iU , iL)
exists (i.e. there is no value for id), ignore.

3. Else if c does not match that on sid’s record on Sessions set
iL ← 5.

4. If µ1 6= E(k; pos, c;) set iU ← 5.
5. Store (id, sid, class, i, -, U , N , T , -, n1, S, c, k, µ1, -, -, -, iU , iL)

on Sessions.
6. Set i← i+ 1.
7. Send (i, sid) to self.

On (Recv, sid, (sid, n2), N) from A/Fsec:
1. Check that i = 7, else ignore.
2. Check that n2 matches that on sid’s record on Sessions, else

ignore.
3. Set i← i+ 1.
4. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 24

NU:kUS
S:kUS

0 1
?

4
?

5

6
?

2

3

7
8

9

?

?

?

?

Figure 3.7: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 2.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 25

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 3:

On (ENTER, id, U , N , S) from FKE:
1. Generate fresh session identifier sid and store

(id, sid, class, i, -, U , N , -, -, -, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions and send (i, sid) to self.

On (i, sid) from self:
1. If i = 3

Generate random T of Token length, and nonce n1, store
(id, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, T , n1), S) to Fsec and stop.

2. Else if i = 7
(i) If iL = 7 send (Deny Linkable, id) to FKE and stop.
(ii) Else generate random string of ciphertext k

′

, store k
′

on
Sessions and send (Est. User, k

′

, id) to FKE.
3. Else if i = 10

Send (Send, sid, (sid, n2), S) to Fsec and stop.
4. Else if i = 12

Send (Est. MNO, k
′

, id) to FKE and stop.
5. Set i← i+ 1.
6. Send (i, sid) to self.

On (Recv, sid, (sid, c, k), S) from A/Fsec:
1. Check that i = 4, else ignore.
2. Verify that deckUS

(c) = (sid, n1, n2, k, T , T
′

, N), and store
(id, sid, class, i, -, U , N , T , T

′

, n1, S, c, k, -, -, -, -, iU , iL) on
Sessions, else set iL ← 7.

3. Set i← i+ 1.
4. Send (i, sid) to self.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 26

While class = 3:
On (Recv, sid, (sid, ok), N) from A/Fsec:

1. Check that i = 11, else ignore.
2. Check that a record

(id, sid, class, i, -, U , N , T , T
′

, n1, S, c, k, -, k
′

, -, n2, iU , iL)
exists, else ignore.

3. Set i← i+ 1.
4. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

NU:kUS
S:kUS

0 1 2

56
7

98

3
?

4
?

10
?

11
?

12

Figure 3.8: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 3.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 27

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 4:

On (ENTER, id, pos, U , N , S) from FKE:
1. Generate fresh session identifier sid and store

(id, sid, class, i, -, U , N , -, -, -, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions and send (i, sid) to self.

On (i, sid) from self:
1. If i = 1

Generate random T of token length and nonce n1, store
(id, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, T , n1, S), pos, N) to FRL and
stop.

2. Else if i = 3
Send (Send, sid, (sid, T , n1), S) to Fsec and stop.

3. Else if i = 5
Let µ1 ← E(k; pos, c;) , store µ1 on Sessions, send
(Send, sid, (sid, c, µ1), pos) to FRL and stop.

4. Else if i = 7
(i) If iL = 7 send (Deny Linkable, id) to FKE and stop.
(ii) Else if iU = 7 send (Deny Unlinkable, id) to FKE and stop.
(iii) Else generate random key k

′

, store k
′

on Sessions and send
(Est. User, k

′

, id) to FKE.
5. Else if i = 8

Let µ2 ← E(k; e; k
′

), store µ2 on Sessions, send
(Send, sid, (sid, n2, µ2), pos, N) to FRL and stop.

6. Else if i = 10
Send (Send, sid, (sid, n2), S) to Fsec and stop.

7. Else if i = 12
Send (Est. MNO, k

′

, pos, N , S) and stop.
8. Set i← i+ 1.
9. Send (i, sid) to self.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 28

While class = 4:
On (Recv, sid, (sid, T , n1, S), pos) from A/FRL:

1. Verify that i = 2, else ignore.
2. Verify that T is a valid token, else ignore.
3. Verify that T , n1 and S match those on sid’s record on Sessions,

else set iL ← 7 and update T and n1 on sid’s record on Sessions.
4. Else if no record containing sid exists, store

(-, sid, class, i, pos, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions.

5. Set i← i+ 1.
6. Send (i, sid) to self.

On (Recv, sid, (sid, c, k), S) from A/Fsec:
1. Check that i = 4, else ignore.
2. If a record

(-, sid, class, i, pos, U , N , T , -, n1, S, c, -, µ1, -, -, -, iU , iL)
exists (i.e. there is no value for id), ignore.

3. Else verify that deckUS
(c) = (sid, n1, n2, k, T , T

′

, N) and store
(id, sid, class, i, -, U , N , T , T

′

, n1, S, c, k, -, -, -, n2, iU , iL) on
Sessions, else set iL ← 7.

4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, c, µ1), pos) from A/FRL:
1. Verify that i = 6, else ignore.
2. Verify that c matches that on sid’s record on Sessions else set

iL ← 7.
3. Verify that µ1 matches that on sid’s record on Sessions, else set

iU ← 7.
4. Set i← i+ 1.
5. Send (i, sid) to self.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 29

While class = 4:
On (Recv, sid, (sid, n2, µ2), pos) from A/FRL:

1. Verify that i = 9, else ignore.
2. Verify that µ2 and n2 match those on sid’s record on Sessions,

else ignore.
3. Set i← i+ 1.
4. Send (i, sid) to self.

On (Recv, sid, (sid, ok), S) from A/Fsec:
1. Check that i = 11, else ignore.
2. Set i← i+ 1.
3. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

NU:kUS
S:kUS

0 1 2

56
7

98

3
?

4
?

10
?

11
?

12

?

?

?

Figure 3.9: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 4.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 30

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 5:

On (ENTER, id, pos, U , N , S) from FKE:
1. Generate fresh session identifier sid and store

(id, sid, class, i, -, U , N , -, -, -, S, -, -, -, -, -, -, iU , iL), where
i = 0, iU = 0 and iL = 0 on Sessions and send (i, sid) to self.

On (i, sid) from self:
1. If i = 1

Generate random T of Token length, and nonce n1, store
(id, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -, iU , iL) on
Sessions, send (Send, sid, (sid, T , n1, S), pos, N) to FRL and
stop.

2. Else if i = 3
(i) If iL = 3 send (Deny Linkable, id) to FKE and stop.
(ii) Else if iU = 3 send (Deny Unlinkable, id) to FKE and stop.
(iii) Else generate random key k

′

, store k
′

and send
(Est. User, k

′

, id) to FKE.
3. Else if i = 4

Let µ2 ← E(k; e; k
′

), store
(id, sid, class, i, pos, U , N , T , T

′

, n1, S, c, k, µ1, k
′

, µ2, n2, iU ,
iL) on Sessions, send (Send, sid, (sid, n2, µ2), pos, N) to FRL

and stop.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, c, µ1), pos) from A/FRL:
1. Verify that i = 2, else ignore.
2. Verify that deckUS

(c) = (sid, n1, n2, k, T , T
′

, N), and store
(id, sid, class, i, pos, U , N , T , T

′

, n1, S, c, k, µ1, -, -, n2, iU , iL)
on Sessions, else set iL ← 3.

3. Verify that µ1 = E(k; pos, c;), else set iU ← 3.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 31

NU:kUS
S:kUS

0 1

2

4

3
?

?

?

Figure 3.10: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 5.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 32

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 6:

On (i, sid) from self:
1. If i = 5

Generate random T
′

of token length, nonce n2 and key k, set
c← enckUS

(sid, n1, n2, k, T , T
′

, N), let µ1 ← E(k; pos, c;),
store (id, sid, class, i, pos, U , N , T , T

′

, n1, S, c, k, µ1, -, -, n2)
on Sessions, send (Send, sid, (sid, c, µ1), pos) to FRL and stop.

2. Else if i = 9
Send (Est. SP, id, U , N , S) to FKE.

3. Else if i = 12
Send (Est. MNO, k

′

, id, pos) to FKE and stop.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, T , n1, S), pos) from A/FRL:
1. Verify that i = 0, else ignore.
2. Store (-, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -) where

i = 0 on Sessions.
3. Verify that T is a valid token, else ignore.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, n2, µ2), pos) from A/FRL:
1. Verify that i = 6, else ignore.
2. Verify that µ2 = E(k; e; k

′

) and store k
′

on sid’s
record on Sessions, else ignore.

3. Verify that n2 matches that on sid’s record on Session, else
ignore.

4. Set i← i+ 1.
5. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 33

NU:kUS
S:kUS

?
0

5
?

6
?

1 2

4 3

7 8
9

11 10

12

Figure 3.11: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 6.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 34

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 7:

On (i, sid) from self:
1. If i = 1

Generate random T
′

of token length, nonce n2 and key k,
set c← enckUS

(n1, n2, k, T, T
′

, N), store
(id, sid, class, i, -, U , N , T , T

′

, n1, S, c, k, -, -, -, n2) on
Sessions, send (Send, sid, (sid, c, k), N) to Fsec and stop.

2. Else if i = 3
Send (Est. SP, id, U , N , S) to FKE.

3. Else if i = 4
Send (Send, sid, (sid, ok), N) to Fsec and stop.

4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, T , n1), N) from A/Fsec:
1. Verify that i = 0, else ignore.
2. Store (-, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -) where

i = 0 on Sessions.
3. Verify that T is a valid token, else ignore.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, n2), N) from A/Fsec:
1. Verify that i = 2, else ignore.
2. Verify that n2 matches that on sid’s record on Session, else
ignore.
3. Set i← i+ 1.
4. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 35

NU:kUS
S:kUS

?

?

?

?

0

1

2

3
4

Figure 3.12: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 7.

Stored : U , N , S, FRL, Fsec, {kUS; U , S}.
While class = 8:

On (i, sid) from self:
1. If i = 1

Send (Send, sid, (sid, T , n1), S) to Fsec and stop.
2. Else if i = 3

Let µ1 ← E(k; pos, c;) , store µ1 on Sessions, send
(Send, sid, (sid, c, µ1), pos) to FRL and stop.

3. Else if i = 5
Send (Send, sid, (sid, n2), S) to Fsec and stop.

4. Else if i = 7
Send (Est. MNO, k

′

, pos, N , S) to FKE and stop.
5. Set i← i+ 1.
6. Send (i, sid) to self.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 36

While class = 8:
On (Recv, sid, (sid, T , n1, S), pos) from A/FRL:

1. Verify that i = 0, else ignore.
2. Verify that T is a valid token, else ignore.
3. Store (-, sid, class, i, -, U , N , T , -, n1, S, -, -, -, -, -, -) where

i = 0 on Sessions.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, c, k), S) from A/Fsec:
1. Check that i = 2, else ignore.
2. Store c and k on sid’s record on Sessions.
3. Set i← i+ 1.
4. Send (i, sid) to self.

On (Recv, sid, (sid, n2, µ2), pos) from A/FRL:
1. Verify that i = 4, else ignore.
2. Verify that µ2 = E(k; e; k

′

), else ignore.
3. Store k

′

, n2 and µ2 on sid’s record on Sessions.
4. Set i← i+ 1.
5. Send (i, sid) to self.

On (Recv, sid, (sid, ok), S) from A/Fsec:
1. Check that i = 6, else ignore.
2. Set i← i+ 1.
3. Send (i, sid) to self.

On any other input, ignore.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 37

NU:kUS
S:kUS

?
0

3
?

4
?

1
?

2
?

5
?

6
?

7

Figure 3.13: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 8.

NU:kUS
S:kUS

Figure 3.14: Summary of the anonymous symmetric key establishment protocol πSKA

for Class 9.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 38

For all classes:
On (LEAVE) from FKE:

1. Send (LEAVE) to self.

On (ENTER) or (LEAVE) from self:
1. Stop.

On (LEAVE, id) from FKE with (id, · · · , class, · · ·) recorded:
1. If

(id, sid, class, i, pos, U , N , T , T
′

, n1, S, c, k, µ1, sk, k
′

, µ2, n2,
iU , iL) is recorded then send (LEAVE) to self, remove the entry
and hand over (DENY, id) to FKE.

On (LISTEN, pos) from A/FRL:
1. Store (pos) on Corrupt and on FRL’s Corrupt, set

class← class+ 1, and hand over (LISTEN, pos) to FKE.

The simulator SSKA continued

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 39

3.3 Security Analysis

We will now show that the executions only can take on n possible forms. If we can
simulate all of the possible forms we have proved that the protocol realizes the ideal
functionality. We will do this class wise, starting with Class 1 as the reasoning for
Class 0 is trivial. Further, we will omit Class 9 as the adversary is free to do whatever
he wants in this class. We wish to find every possible fragment of the protocol
execution for all classes. Before we begin the security analysis we will introduce some
terms that will be used throughout the analysis. More detailed descriptions of these
terms along with proofs of reductions between the different notions can be found
in [BDPR98] (notions for public encryption) and [BDJR97] (notions for symmetric
encryption).

We will start by describing INT-CTXT security. Assume that an adversary A wants
to break an encryption scheme where enck(m) = c and deck(enck(m)) = deck(c) = m.
We let A be free to encrypt any plaintext m using the given encryption function. For
the encryption function to be INT-CTXT secure, an adversary should not from the
previous gain any advantage in being able to produce a cipher-text that is different
to the ones he has already encrypted. That is, A should not be able to produce a c
so that Dk(c) 6=⊥.

We will now go on to describe RoR-CCA (Real or Random) security. An adversary
A wants to decide if an encrypted message, c is an encryption of random noise, or
an encryption of a set of messages he chooses. A is allowed to see encryptions of any
plaintext message, and decryptions of any ciphertext besides the ones in question. If
the adversary is not able to distinguish Ek(m) from Ek(noise) for a given encryption
scheme, the scheme is RoR-CCA secure.

We are using a functionality called Fshared key enc. to encrypt data under kUS. This
functionality is described in [GPS12]. This means that only an honest U or an honest
S will be able to encrypt and decrypt data using kUS. We will assume this encryption
function as well as the AEAD function to be both IND-CCA and RoR-CCA secure.

When doing a security analysis one should base it on the given protocol. In all three
protocols described in this paper it is specified what record must be stored for a given
message to be accepted. If the correct record is not stored the received message will
simply be ignored. For instance, the protocol πSKA of Figure 3.2 requires (sid, T , n1,
n2, U , N) to be stored for (sid, n2) to be accepted. The record (sid, T , n1, n2, U ,
N) is stored when S receives (sid, T , n1) from N and creates a (c = {sid, n1, n2, k,
T , T

′

, N}kUS
) that it sends to N as a part of (sid, c, k). Thus, the two statements

• S received (sid, n2) from A for a record where (sid, T , n1, n2, U , N) is recorded

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 40

• S received (sid, n2) from A for a record where he already sent (sid, c, k) to N

are equivalent. With this in mind we will proceed with the security analysis.

3.3.1 Class 1

We will start with Class 1. There are two possible tracks that the protocol might
follow in this class. The first track is shown in Figure 3.15.

NU:kUS
S:kUS

0 1
?

2

78
?

9

1110
?

3 4

6 5

12 13
14

16 15

17

Figure 3.15: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 1.

If the protocol follows this track one possibility is that N accepts. Let us look at
what we know when N accepts.

N accepts:

• N received (sid, ok) from S for a record where he already sent (sid, n2) to S.
• Since S sent (sid, ok) to N , S must have accepted.

S accepts:

• S received (sid, n2) for a record where he already sent (sid, c, k) to N .
• N received (sid, n2, E(k; e; k

′

)) from pos. and N accepted it.
• Due to RoR-CCA only S and U know n2 which is encrypted using kUS as apart

of c.
• U sent n2.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 41

• U accepted.

U accepts:

• U received (sid, c, E(k; pos, c;)), where the decryption of c matches a record,
from A/pos for a record where he already sent (sid, T , n1, S) to A/pos.
• Only S and U know kUS, and hence due to INT-CTXT c is made by S.
• ∃ a session on S with sid, n1, n2, k, T, T

′

, N like those in c.
• At this point only U , N and S know k, and thus due to INT-CTXT N made
E(k; pos, c;).
• N received (sid, c, k) from S.
• S received (sid, T , n1) from N .
• N received (sid, T , n1, S) from A/pos.
• Since U accepted he agrees with S on wanting to start a session with the vari-

ables contained in c.
• Only U and N know k

′

.

All of this must have happened in this exact way if N accepts. Between S and N
accepting, nothing could have gone wrong, and thus, as long as S accepts, we also find
ourselves in Track 1. The protocol will for Class 1 only ever abort in Step 9 of Figure
3.15. It may output either (Est. Failed Linkable) or (Est. Failed Unlinkable).

U outputs Est. Failed Unlinkable in Step 9 in Figure 3.15:

• U received a (sid, c, E(k; pos, c;)) from A/pos, where c was correct but the
AEAD was wrong.
• Due to INT-CTXT, c is created by S.
• Since S created c, S must have received (sid, T , n1) from N . Also, S must have

sent (sid, c, k) to N .
• N sent (sid, c, E(k; pos, c1;)) to A/pos.
• Since N sent (sid, T , n1) to S, N must have received (sid, T , n1, S) from
A/pos.
• Since U accepted c, U must have tried to start a session with the same n1, and

thus sent (sid, T , n1, S) to A/pos.

All of this must have happened in this exact way if U outputs Est. Failed Unlinkable

in Step 9 of Figure 3.15. We then find ourselves in the top part of Track 1. Let us
look at what must have happened if U outputs Est. Failed Linkable in Step 9 of
Figure 3.15.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 42

U outputs Est. Failed Linkable in Step 9 in Figure 3.15:

• U received a (sid, c, E(k; pos, c;)) from A/pos, where the decryption of c using
kUS is not on the form {sid, n1, -, -, T , -, -}
• There are two things that might have happened here. Either A sent something

to N in Step 1 of Figure 3.15 or he sent (sid, c, E(k; pos, c;)) to U directly as
shown in Figure 3.16.
• Let us start by looking at what must have happened if he sent something to N :
• A must have sent (sid, T , any nonce, S) to N . If sid was not correct the

message would just have been ignored. If T or S was wrong the message would
have been ignored in Step 4 of the protocol.
• N received (sid, T , n1, S) and sent (sid, T , n1) to S.
• S sent (sid, c, k) to N .
• N sent (sid, c, E(k; pos, c;)) to A/pos.

When receiving (sid, T , n1, S) from U , A could chose to send (sid, random binary
string of appropriate length, random binary string of appropriate length) to U . The
way the protocol is written U decrypts c before even looking at the AEAD. Thus,
when c turned out to be wrong U would simply output Est. Failed Linkable. This is
consistent with the simulator and is depicted in Figure 3.16. However, A will at any
point during an execution that starts in Track 1 in Class 1 be able to send something
to U to make U output Est. Failed Linkable. This is still a part of Track 1 and
we have only included Figure 3.16 in order to be able to explain what happens in an
easier manner.

NU:kUS
S:kUS

0 1
?

8
?

9

Figure 3.16: A part of Track 1 of the anonymous symmetric key establishment pro-
tocol πSKA for Class 1.

These are the only things that could happen when U outputs Est. Failed Linkable.

The way the protocol is written it is possible for an adversary present at pos to send
(sid, T , n1, S) to N without having received it from U first. The only thing he has
to make sure of is that the sid he sends does not already exist on any record. This is
depicted in Figure 3.17 as Track 2.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 43

NU:kUS
S:kUS

?
2

7
?

3 4

6 5

Figure 3.17: Track 2 of the anonymous symmetric key establishment protocol πSKA

for Class 1.

A sends (sid, T , n1, S) to N as shown in Figure 3.17:

• N sends (sid, T , n1) to S.
• S receives it and sends (sid, c, k) to N .
• N sends (sid, c, E(k; pos, c;) to A.

Since sid does not exist on any of U ’s records, A will in this instance never be able
to send anything to U in step 8 of Figure 3.15 that U will accept. Thus, in this track
A will just send (sid, T , n1, S) to N and the receive (sid, c, E(k; pos, c;)) some time
after he sends the first message. This is all that ever will happen in Track 2.

A last possibility is that the protocol starts its execution in Track 1. At any point A
could send (sid, bit string, bit string) to U . The execution will then split up so that
part of it becomes equivalent with the part of Track 1 that is shown in Figure 3.16,
and the other part of it becomes equivalent to Track 2 shown in Figure 3.17.

We have now described all the scenario that might take place in Class 1. All of the
above scenarios can be simulated by SSKA, and hence, the protocol πSKA realizes the
ideal functionality FKE for Class 1.

3.3.2 Class 2

In Class 2 pos and N are corrupt. Let us start by looking at what guarantees we have
if S accepts:

S accepts:

• S sends (sid, ok) to A.
• S must have received (sid, n2) from A for a record where he already sent (sid,
c, k) to A.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 44

NU:kUS
S:kUS

0 1
?

4
?

5

6
?

2

3

7
8

9

?

?

?

?

Figure 3.18: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 2.

• A does not have access to kUS and thus can not decrypt c. Due to RoR-CCA
it can therefore not know n2.
• U must have accepted.

U accepts:

• U must have received a (sid, c, E(k; pos, c;)) from A for a record where he
already sent (sid, T , n1, S) to A.
• Due to INT-CTXT S must have created c.
• S and U agree on all the entries in c.
• S must have sent (sid, c, k) to A.
• S must have received (sid, T , n1) from A.

Everything must have happened exactly as described above if S accepts. It is easy to
see that this execution follows Track 1. For Class 2 the protocol will only ever abort
in Step 5 of Figure 3.18. Let us see what we know when the protocol outputs Est.
Failed Unlinkable or Est. Failed Linkable in Step 5 of Figure 3.18.

U outputs Est. Failed Unlinkable in Step 5 of Figure 3.18:

• U received a (sid, c, E(k; pos, c;)) for a record where he already sent (sid, T ,
n1, S) to A, where c was correct but the AEAD was wrong.
• Since c is correct sid, n1 and T must be contained in c.
• Due to INT-CTXT S created c.
• Since S created c, S received (sid, T , n1) from A.
• S sent (sid, c, k) to A.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 45

All of this must have happened if U outputs Est. Failed Unlinkable. This execution
is simply a part of Track 1 and as such, can be simulated.

U outputs Est. Failed Linkable in Step 5 of Figure 3.18:

• U received a (sid, c, E(k; pos, c;)) where c was wrong.
• U must have sent (sid, T , n1, S) to A or the message would have been ignored.

There are now two options. Either, A sent something to S, or not. Let us start by
looking at what must have happened if A sent something to S;

S must have received (sid, T , n1). T must be a valid token as S would have just
ignored the message otherwise. Further, S must have sent (sid, c, k) to A.

If this is the case we are again only operating in a smaller part of Track 1. Track 1
is covered by the simulator. Let us go on to look at what happens when A simply
sends (sid, bit string, bit string) to U without involving S. When c turns out to be
wrong U will simply output Est. Failed Linkable. This is depicted in Figure 3.19
and will simply be a part of Track 1. As we stated in Section 3.3.1, A will be free to
send a message to U at any point after Step 1 and before Step 4. This will cause U
to abort, and will split up the execution so that part of it follows the part of Track 1
that is shown in Figure 3.19, and the other part Track 2 which is depicted in Figure
3.20.

NU:kUS
S:kUS

0 1
?

4
?

5

Figure 3.19: Part of Track 1 of the anonymous symmetric key establishment protocol
πSKA for Class 2.

The protocol does not require for sid to be stored when S receives (sid, T , n1). As
such it would be possible for A to send (sid, T , n1) to S without U having attempted
to start a session. This is shown in Figure 3.20 and we have, as stated, named it
Track 2. S will have to send a valid T to S so that the message is not simply ignored.
This track can also be simulated by SSKA.

The two tracks described above are the only possible tracks for Class 2. Since they
are all consistent with the simulator SSKA, the protocol πSKA realizes the ideal func-
tionality FKE for Class 2.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 46

NU:kUS
S:kUS

2

3

?

?

Figure 3.20: Track 2 of the anonymous symmetric key establishment protocol πSKA

for Class 2.

3.3.3 Class 3

In Class 3 only S is corrupt. An adversary will never be able to send anything to N
for a given sid before it has received (sid, T , n1) for that sid from N . Thus, the only
track that exists for Class 3 is Track 1 described in Figure 3.21.

NU:kUS
S:kUS

0 1 2

56
7

98

3
?

4
?

10
?

11
?

12

Figure 3.21: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 3.

Let us look at what guarantees we have if N accepts.

N accepts:

• N must have received (sid, ok) from A for a record where he already sent (sid,
n2) to A.
• Since N sent (sid, n2) to A, he must have received (sid, n2, E(k; e; k

′

)) from
U .

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 47

• U accepted.
• N and U will output the same k

′

as no one will have been able to change it
between it leaving U and reaching N . They will also be the only ones who know
k

′

.

U accepts:

• U received a (sid, c, E(k; pos, c;)) from N that it accepted.
• U must have sent (sid, T , n1, S) to N or it would not have accepted.
• Since N sent (sid, c, E(k; pos, c;)) to U , N must have received (sid, c, k) from
A for a record where he already sent (sid, T , n1) to A.
• Since N sent (sid, T , n1) to A he must have received (sid, T , n1, S) from U .

Things must have happened exactly as described above when N accepts. We can
see that this is consistent with Track 1. Since Track 1 can be simulated by SSKA

everything is okay so far.

There is only one way the protocol can fail in Class 3, and that is if A sends the
wrong (sid, c, k) to N as all other input from A that does not lead to N accepting
is ignored. The message will then go on until U receives it in Step 7 of Figure 3.21.
U will then send (Deny Linkable, id) to FKE.

U outputs Est. Failed Linkable in Step 7 of Figure 3.21:

• U has received a (sid, c, E(k; pos, c;)) from N that is wrong. That is, the
decryption of c is not on the format (sid, n1, -, -, T , -, N).
• Since N sent (sid, c, E(k; pos, c;)) to U , N must have received (sid, c, k) from
A.
• Since N did not just ignore the message from A, N must have sent (sid, T , n1)

to A.
• Since N sent the above to A, N must have received (sid, T , n1, S) from U .

We can see that this is simply a part of Track 1, and thus it is consistent with the
simulator. Hence, the protocol πSKA realizes the ideal functionality FKE within Class
3.

3.3.4 Class 4

In Class 4 both S and pos are corrupt. This gives the adversary a definite advantage.
Clearly, the protocol may execute in a normal manner and follow the path depicted
in Figure 3.22. We have chosen to call this path Track 1.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 48

NU:kUS
S:kUS

0 1 2

56
7

98

3
?

4
?

10
?

11
?

12

?

?

?

Figure 3.22: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 4.

Let us go on to have a look at what might happen when N accepts.

N accepts:

• N received (sid, ok) from S for a sid where he had already sent (sid, n2) to A.
• N must have received (sid, n2, E(k; e; k

′

)) from A for a record where he already
sent (sid, c, E(k; pos, c;) to A. Since A has knows k, n2 and e he could have
created this message.
• N must have received (sid, c, k) from A for a record where he already sent (sid,
T , n1) to A.
• N must have received(sid, T , n1, S) from A.
• U has not necessarily been involved in this protocol at all.

We can see that only N and A needs to be present for N to accept. This is depicted
in Figure 3.23 and we have named the track the protocol follows Track 2.

Let us however assume that U has in fact been present.

N accepts with U present:

• N received (sid, ok) from A for a sid where he had already sent (sid, n2) to A.
• N must have received (sid, n2, E(k; e; k

′

)) from A.
• Since pos is collaborating with S they know k, and A/pos would have been able

to alter this AEAD, and so this AEAD is not necessarily the same one U sent
to A.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 49

NU:kUS
S:kUS

2

5

9

3
?

4
?

10
?

11
?

12

?

?

?

Figure 3.23: Track 2 of the anonymous symmetric key establishment protocol πSKA

for Class 4.

• N and U might not have the same value for k
′

.
• Neither N nor U will know that pos and S were dishonest.
• N and U will output different values for k

′

whilst thinking they agree on k
′

.

We will talk more about this security breach in the Chapter 6. As long as both N
and U are present during an execution, the execution will follow Track 1. Track 1
can be simulated by SSKA.

We will now go on to see what guarantees we have if U accepts.

U accepts:

• U received (sid, c, E(k; pos, c;)) from A where both c and the AEAD were
correct.
• U sent (sid, T , n1, S) to A, or else he would not have accepted.

This is all we know when U accepts. Thus, N does not need to be involved in order
for A to get U to accept. If this is the case the execution will follow the path shown
in Figure 3.24. This path is still a part of Track 1. As discussed for the other classes,
an adversary A can send a message to U at any point in between Steps 1 and 6. Thus
the path depicted in Figure 3.24 is a part of Track 1.

In Class 4 the protocol has 2 starting points, Step 0 and Step 2 of Figure 3.22. If it
starts in Step 0 it will follow Track 1. If it starts in Step 2 it will follow Track 2. As
we have talked about in the previous sections, an execution could just as well start

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 50

NU:kUS
S:kUS

0 1

6
7

8

?

?

?

Figure 3.24: Part of Track 1 of the anonymous symmetric key establishment protocol
πSKA for Class 4.

out following Track 1 and later on split so that part of the execution runs as shown
in Figure 3.23 and part of it as shown in Figure 3.24. This is not problematic. Both
tracks and the transition between them are consistent with the simulator SSKA.

Let us now go on to look at what happens when U outputs (Est. Failed Linkable)
or (Est. Failed Unlinkable) in Step 7 of Figure 3.22.

U outputs (Est. Failed Linkable) in Step 7 of Figure 3.22:

• U received a (sid, c, E(k; pos, c;)) from A where the decryption of c was not
on the form {sid, n1, -, -, T , -, N}.
• Since the above message was not ignored U must have sent (sid, T , n1, S) to
A.
• This is all we know. We can see that this execution is consistent with the part

of Track 1 that is depicted in Figure 3.24.

U outputs (Est. Failed Unlinkable) in Step 7 of Figure 3.22:

• U received a (sid, c, E(k; pos, c;)) from A where c was correct but the AEAD
was wrong. Thus, it can be simulated by SSKA.
• Since the above message was not ignored U must have sent (sid, T , n1, S) to
A.
• This is all we know. We can see that this execution is consistent with the part

of Track 1 that is depicted in Figure 3.24. Thus, it can be simulated by SSKA.

N might be involved in these executions. If that is the case the execution will be
consistent with Track 1 as shown in Figure 3.22. Also here the execution might
split up into one execution following Track 1 and one execution following Track 2.
As discussed this is not problematic. Thus, all possible executions leading to U

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 51

outputting (Est. Failed Linkable) or (Est. Failed Unlinkable) can be simulated
by SSKA.

As before, we can classify all the executions of the protocol for Class 4, and all
possibilities are covered by the simulator, SSKA. Hence, the protocol πSKA realizes
the ideal functionality FKE for Class 4.

3.3.5 Class 5

In Class 5 only U is honest. Thus, the only possible track is depicted in Figure 3.25.

NU:kUS
S:kUS

0 1

2

4

3
?

?

?

Figure 3.25: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 5.

Let us have a look at what happens when U accepts.

U accepts:

• U received a (sid, c, E(k; pos, c;)) from A that U accepted.
• U sent (sid, T , n1 S) to A or he would not have accepted.
• U will output a k

′

that N will be able to alter.
• U will send (sid, n2, E(k; e; k

′

)) to A.

This execution clearly follows Track 1 and is covered by the simulator. Let us now see
what happens if U outputs (Est. Failed Unlinkable) or (Est. Failed Linkable) in
Step 3 of Figure 3.25.

U outputs (Est. Failed Unlinkable) in Step 3 of Figure 3.25:

• U received (sid, c, E(k; pos, c;)) where c was correct, but the AEAD was
wrong.
• Since the message was not ignored U must have sent (sid, T , n1, S) to A.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 52

• This execution is covered by Track 1.

U outputs (Est. Failed Linkable) in Step 3 of Figure 3.25:

• U received (sid, c, E(k; pos, c;)) where c was wrong.
• Since the message was not ignored U must have sent (sid, T , n1, S) to A.
• This execution is covered by Track 1.

Again, we can simulate all executions that might occur, and the protocol πSKA realizes
the ideal functionality FKE for Class 5.

3.3.6 Class 6

In Class 6 only U is corrupt. We will show that the only exists one possible path an
execution may follow in Class 6. We have named this path Track 1 and it is depicted
in Figure 3.26. Let us start by having a look at what happens if N accepts.

NU:kUS
S:kUS

?
0

5
?

6
?

1 2

4 3

7 8
9

11 10

12

Figure 3.26: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 6.

N accepts:

• N received (sid, ok) from S for a record where he already sent (sid, n2) to S.
• S accepted.

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 53

S accepts:

• S received (sid, n2) from N for a record where he already sent (sid, c, k) to N .
• Since N sent (sid, n2) to S, N must have received (sid, n2, E(k; e; k

′

)) from A.
• N must have sent (sid, c, E(k; pos, c;)) to A or he would not have sent (sid,
n2) to S when he received (sid, n2, E(k; e; k

′

)) from A.
• N must have received (sid, c, k) from S.
• S must have received (sid, T , n1) from N .
• N must have received (sid, T , n1, S) from A.

This follows Track 1 and is consistent with the simulator. This class as mentioned
only has 1 track. A will never be able to send a wrong message to N that is not
ignored. He could chose to stop after he receives the message from N in Step 5 of
Figure 3.26. However, this would only give us a smaller portion of Track 1. Since U
is the corrupt party we do not have to simulate the protocol aborting. This will be
done by the adversary. Thus, the protocol πSKA realizes the ideal functionality FKE

also for Class 6.

3.3.7 Class 7

In Class 7 only S is honest.

NU:kUS
S:kUS

?

?

?

?

0

1

2

3
4

Figure 3.27: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 7.

Clearly, an adversary will not be able to start an execution in Step 2 of Figure 3.27.
An attempt at this would simply be ignored since the appropriate record containing
sid would not exist. Thus, there are only two possible executions that may take place
here. The adversary will have to send (sid, T , n1) to S in Step 0 of Figure 3.27. S

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 54

would then send back (sid, c, k). The adversary could chose to stop the execution
here, or he could send (sid, n2) to S. In the latter case S would accept and send (sid,
ok) to A. Both of these executions are covered by the simulator. We thus conclude
that the protocol πSKA realizes the ideal functionality FKE for Class 7.

3.3.8 Class 8

In Class 8 only N is honest.

NU:kUS
S:kUS

?
0

3
?

4
?

1
?

2
?

5
?

6
?

7

Figure 3.28: Track 1 of the anonymous symmetric key establishment protocol πSKA

for Class 8.

The only entry point in Class 8 is Step 0 of Figure 3.28. Let us look at what might
happen when A starts a session. A sends (sid, T , n1, S) to N . N will then send (sid,
T , n1) to A. A could now choose not to answer and the protocol would stop here.
However, if he answers the only response that will not be ignored is (sid, bit string,
key) upon which N would send (sid, bit string, E(key, pos, bit string) to A. Again,
A could chose to not answer and the protocol would stop. If he does answer the only
reply that will be accepted is (sid, nonce, E(key, e, new key)). Upon receiving this
N will store the new key and send (sid, nonce) to A. Also here A could chose to end
the execution. However, does he answer the only message that will not be ignored is
(sid, ok). When receiving this N will accept and output (Est., new key, pos, S).

All of the possibilities above are parts of the track shown in Figure 3.28, namely Track
1. Track 1 is consistent with the simulator. Hence, the protocol πSKA realizes the
ideal functionality FKE for Class 8 as well. We have now shown that the protocol

CHAPTER 3. THE SYMMETRIC KEY AGREEMENT PROTOCOL 55

πSKA realizes the ideal functionality FKE for all the classes. We thus conclude that
the protocol πSKA realizes the ideal functionality FKE.

Chapter 4
The Asymmetric Key Agreement Protocol

We will now go on to look at a similar protocol that uses an asymmetric encryption
function instead of tokens. The main difference between this protocol and the previous
one is that this protocol does not make it possible to link different attempts at starting
a session to one another. We will start by describing the protocol in Section 4.1. We
then perform a security analysis of the protocol in Section 4.3

4.1 The Protocol

When describing this protocol we will use ekS to represent the public encryption key
belonging to S, dkS to mean the decryption key belonging to S and as before, kUS

to mean a shared secret key between U and S. We would also like to note e = (sid,
pos, n2, c0, c1, k, N , S, µ1), where µ1 = E(k; pos, c1;).

56

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 57

NU:kUS
S:kUS

sid, c0 = {U , n1, sid}ekS , S

sid, c0

sid, c1, E(k; pos, c1;)

sid, c1 = {sid n1, n2, k, N }kUS
, k

sid, n2, E(k; e; k
′

)

sid, n2

sid, ok

Figure 4.1: Summary of the anonymous symmetric key establishment protocol πAKE.
Communication between users and MNOs is via FRL and between MNOs and SPs
via Fsec.

One drawback of this protocol is that since ekS is public an adversary is able to
construct c0. Public key decryption is a relatively expensive operation and it is not
optimal that the adversary is able to send any number of entries to S to decrypt.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 58

Stored: S, kUS, N , k
′

On (Enter, pos, N) from Z:
1. If nothing is recorded then generate random nonce n1 and session

identifier sid, let c0 ={U , n1, sid}ek(S) record (sid, pos, N , n1) and
send (Enter, pos) and (Send, sid, (sid, c0, S), pos, N) to FRL.

On (Leave, pos) from Z:
1. Send (Leave, pos) to FRL.
2. If a record with pos exists remove it and output (Est. failed).

On (Recv, sid, m, pos) from FRL:
1. If m = (sid, c, µ1) where DeckUS

(c1) = (sid, n1, n2, k, N),
µ1 = E(k; pos, c1;) and (sid, pos, N , n1) is recorded, replace it
by (sid, pos, N , n1, n2, c1, µ1), set µ2 ← E(k; e; k

′

),
output (Est., k

′

, pos, N) and send
(Send, sid, (sid, n2, µ2), pos, N) to FRL.

2. Else do as second point of (Leave, pos) above.

Figure 4.2: The anonymous key establishment protocol πAKE, Part 1: User.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 59

Stored:
On (Recv, sid, m, pos) from FRL:

1. If m = (sid, c0, S) and sid is not on any record, record
(sid, pos, S, c0) and send (Send, sid, (sid, c0), S) to Fsec.

2. Else if m = (sid, n2, µ2) and (sid, pos, S, c1, µ1, k) is
recorded check that D(k; e; µ2) 6=⊥, set
k

′

← D(k; e; µ2), replace the previous record by
(sid, c0, pos, S, n2, c1, µ1, µ2, k, k

′

) and send
(Send, sid, (sid, n2), S) to Fsec.

On (Recv, sid, m, pos) from Fsec:
1. If m = (sid, c1, k) and there is a record (sid, pos, S, c0), set

µ1 ← E(k; pos, c1;), change the record to
(sid, pos, S, c1, µ1, k) and send (Send, sid, (sid, c1, µ1), S)
to FRL.

2. Else if m = (sid, ok) and there is a record
(sid, c0, pos, S, n2, c1, µ1, µ2, k, k

′

) then remove it and output
(Est., k

′

, pos, S).

Figure 4.3: The anonymous key establishment protocol πAKE, Part 2: MNO.

Stored: {U, kUS}
On (Recv, sid, m, N) from Fsec:

1. If m = (sid, c0) and sid is not on any record, record (sid, c0, N),
then generate random nonce n2 and set
c1 ← EnckUS

(sid, n1, n2, k, N), record (sid, n2, U , N) and send
(Send, sid, (sid, c1, k), N) to FRL.

2. Else if m = (sid, n2) and (sid, n2, U , N) is recorded then remove it,
send (Send, sid (sid, ok), N) to Fsec and output (Est., U , N).

Figure 4.4: The anonymous key establishment protocol πAKE, Part 3: SP.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 60

4.2 The Simulator

The simulator for this protocol will be very similar to the one provided for the SKA
protocol. We have chosen not to construct this simulator. It will however be easy to
create if basing it on the diagrams accompanying the simulator described in Section
3.2. Hence, when performing the security analysis in Section 4.3 we simply state
whether an execution is possible to simulate.

4.3 Security Analysis

We will now have a look at the security properties of this protocol. We will do an
analysis that is equivalent to the one performed for the SKA protocol in Section 3.3.
We will again look at the classes (excluding 0 and 9) in ascending order. For each
class we will describe all possible executions, and state that these are possible to
simulate. Thus, showing that the protocol πAKA realizes the ideal functionality FKE.
The AKA protocol is very similar to the SKA protocol, and as such we have not
included diagrams showing the different tracks as we did for the SKA protocol. This
is as the diagrams will look the exact same as those provided in Section 3.3. Hence,
the reader will simply be referred to the diagrams in Section 3.3.

As opposed to what happens in πSKA, a message received together with a AEAD that
is wrong will simply be ignored by the recipient in this protocol. This should be kept
in mind when reading the security analysis.

4.3.1 Class 1

We will start with Class 1. There are two possible tracks that the protocol might
follow in this class. The first track is shown in Figure 3.15. If the protocol follows
this track one possibility is that N accepts. Let us look at what guarantees we have
when N accepts.

N accepts:

• N received (sid, ok) from S for a record where he already sent (sid, n2) to S.
• Since S sent (sid, ok) to N , S must have accepted.

S accepts:

• S received (sid, n2) from N for a record where he already sent (sid, c1, k) to
N .

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 61

• N received (sid, n2, E(k; e; k
′

)) from A/pos and N accepted it.
• Due to RoR-CCA only S and U know n2 which is encrypted using kUS as apart

of c1.
• U sent n2.
• U accepted.

U accepts:

• U received (sid, c1, E(k; pos, c1;)), where the decryption of c1 matches a record,
from A/pos for a record where he already sent (sid, c0, S) to A/pos.
• Only S and U know kUS, and hence due to INT-CTXT c1 is made by S.
• ∃ a session on S with sid, n1, n2, k, N like those in c1.
• At this point only U , N and S know k, and thus due to INT-CTXT N made
E(k; pos, c1;).
• N received (sid, c1, k) from S.
• S received (sid, c0) from N .
• N received (sid, c0, S) from A/pos.
• Since U accepted he agrees with S on wanting to start a session with the vari-

ables contained in c1.
• Only U and N know k

′

.

All of this must have happened in this exact way if N accepts. Between S and N
accepting, nothing could have gone wrong, and thus, as long as S accepts, we also
find ourselves in Track 1. The protocol will for Class 1 only ever abort in Step 9 of
Figure 3.15.

U aborts in Step 9 in Figure 3.15:

• U received a (sid, c1, E(k; pos, c1;)) from A/pos where the decryption of c1
using kUS is not on the form {sid, n1, -, -, N}
• There are two things that might have happened here. Either A sent something

to N in Step 1 of Figure 3.15 or he sent (sid, c1, E(k; pos, c1;)) to U directly
as shown in Figure 3.16.
• Let us start by looking at what happens if he sends something to N :
• A must have sent (sid, c0, S) to N where c0 = {U , n1, sid}ekS . Since ekS is

a public key anyone can make a c0. If sid was not correct the message would
just have been ignored. If c0 was wrong the message would have been ignored
in Step 4 of the protocol.
• N received (sid, c0, S) from A/pos and sent (sid, c0) to S.
• S sent (sid, c1, k) to N .
• N sent (sid, c1, E(k; pos, c1;)) to A/pos.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 62

When receiving (sid, c0, S) from U , A could chose to send (sid, bit string, bit string)
to U . The way the protocol is written U decrypts c1 before even looking at the AEAD.
Thus, when c1 turned out to be wrong U would simply output Est. Failed. This is
depicted in Figure 3.16. However, A will at any point during an execution that starts
in Track 1 in Class 1 be able to send something to U to make U abort. This will still
be a part of Track 1.

As for the SKA protocol, the way this protocol is written it is also possible for an
adversary present at pos to send (sid, c0, S) to N without having received it from U
first. The only thing he has to make sure of is that the sid he sends does not already
exist on any record. This is depicted in Figure 3.17 as Track 2.

A sends (sid, c0, S) to N as shown in Figure 3.17:

• N sends (sid, c0) to S.
• S receives it and sends (sid, c1, k) to N .
• N sends (sid, c1, E(k; pos, c1;)) to A.

Since sid does not exist on any of U ’s records, A will in this instance never be able
to send anything to U in step 8 of Figure 3.15 that U will accept. Thus, in this track
A will just send (sid, c0, S) to N and the receive (sid, c1, E(k; pos, c1;)) some time
after he sends the first message. This is all that ever will happen in Track 2.

Here as for the SKA protocol it is also a possibility that the protocol starts its
execution in Track 1 only to have U receive (sid, bit string, bit string) from A. The
execution will then split up so that part of it becomes equivalent with the part of
Track 1 that is shown in Figure 3.16, and the other part of it becomes equivalent to
Track 2 shown in Figure 3.17.

We have now described all the scenario that might take place in Class 1. All of the
above scenarios can be simulated, and hence, the protocol πAKA realizes the ideal
functionality FKE for Class 1.

4.3.2 Class 2

In Class 2 N and pos are corrupt. Let us start by looking at what guarantees we have
if S accepts:

S accepts:

• S sends (sid, ok) to A.
• S must have received (sid, n2) from A for a record where he already sent (sid,
c1, k) to A.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 63

• A does not have access to kUS and thus can not decrypt c. Due to RoR-CCA
it will therefore not know n2.
• U sent n2.
• U must have accepted.

U accepts:

• U must have received a (sid, c1, E(k; pos, c1;)) from A for a record where he
already sent (sid, c0, S) to A.
• Due to INT-CTXT S must have created c1. Further, n1 is decrypted under ekS

and only S can decrypt it. n1 must have been a part of c1. Due to RoR-CCA
N can not see n1 and thus, S must have received (sid, c0).
• S and U agree on all the entries in c1.
• S must have sent (sid, c1, k) to A.

Everything must have happened exactly as described above if S accepts. It is easy to
see that this execution follows Track 1. For Class 2 the protocol will only ever abort
in Step 5 of Figure 3.18. Let us see what we know when the protocol outputs Est.
Failed in Step 5 of Figure 3.18.

U aborts in Step 5 of Figure 3.18:

• U received a (sid, c1, E(k; pos, c1;)) where c1 was wrong.
• U must have sent (sid, c0, S) to A or the message would have been ignored.

There are now two options. Either, A sent something to S, or not. Let us start by
looking at what must have happened if A sent something to S;

S must have received (sid, c0). c0 must be on the form {U , n1, sid}ekS as S would
have just ignored the message otherwise. Further, S must have sent (sid, c1, k) to A.

If this is the case we are again only operating in a smaller part of Track 1. Track 1
can be simulated. As we stated in Section 3.3.1, A will be free to send a message to
U at any point after Step 1 and before Step 4. This will cause U to abort, and will
split up the execution so that part of it follows the part of Track 1 that is shown in
Figure 3.19, and the other part Track 2 which is introduced below.

The protocol does not require for sid to be stored when S receives (sid, c0). As such
it would be possible for A to send (sid, c0) to S without U having attempted to start
a session. This is shown in Figure 3.20 and we have named it Track 2. S will have to
send a c0 that is on the correct format to S so that the message is not simply ignored.
This instance can also be simulated.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 64

The two tracks described above are the only possible tracks for Class 2. Since both of
these can be simulated, the protocol πAKA realizes the ideal functionality FKE within
Class 2.

4.3.3 Class 3

In Class 3 only S is corrupt. The only track that exists for Class 3 is Track 1. Track
1 is depicted in Figure 3.21. Let us start by looking at what guarantees we have if N
accepts.

N accepts:

• N must have received (sid, ok) from A for a record where he already sent (sid,
n2) to A.
• Since N sent (sid, n2) to A, he must have received (sid, n2, E(k; e; k

′

)) from
U .
• U accepted.
• N and U will output the same k

′

as no one will have been able to change it
between it leaving U and reaching N . They will also be the only parties who
know k

′

.

U accepts:

• U received a (sid, c1, E(k; pos, c1;)) from N that it accepted.
• U must have sent (sid, c0, S) to N or it would not have accepted.
• Since N sent (sid, c1, E(k; pos, c1;)) to U , N must have received (sid, c1, k)

from A for a record where he already sent (sid, c0) to A.
• Since N sent (sid, c0) to A he must have received (sid, c0, S) from U .

Things must have happened exactly as described above when N accepts. We can see
that this is consistent with Track 1. It is possible to simulate Track 1 and everything
is okay so far.

The only way the protocol can fail in Class 3 is if A sends (sid, c1, k) where c1 is
wrong to N . Any other input from A that does not lead to N accepting is ignored.
The message will then go on until U receives it in Step 7 of Figure 3.21. U will then
send (Deny, id) to FKE.

U aborts in Step 7 of Figure 3.21:

• U has received a (sid, c1, E(k; pos, c1;)) from N that is wrong. That is, the
decryption of c1 is not on the format (sid, n1, -, -, N).

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 65

• Since N sent (sid, c1, E(k; pos, c1;)) to U , N must have received (sid, c1, k)
from A.
• Since N did not just ignore the message from A, N must have sent (sid, c0) to
A.
• Since N sent the above to A, N must have received (sid, c0, S) from U .

We can see that this as well is simply a part of Track 1, and hence can be simulated.
Thus, the protocol πAKA realizes the ideal functionality FKE also for Class 3.

4.3.4 Class 4

In Class 4 both S and pos are corrupt. This gives the adversary an advantage. Clearly,
the protocol may execute in a normal manner and follow the path depicted in Figure
3.22. We have chosen to call this path Track 1. Let us go on to have a look at what
might happen when N accepts.

N accepts:

• N received (sid, ok) from S for a sid where he had already sent (sid, n2) to A.
• N must have received (sid, n2, E(k; e; k

′

)) from A for a record where he already
sent (sid, c1, E(k; pos, c1;)) to A.
• N must have received (sid, c1, k) from A for a record where he already sent

(sid, c0) to A.
• N must have received(sid, c0, S) from A.
• U has not necessarily been involved in this execution at all.

We can easily see that only N and A need to be present for N to accept. This is
depicted in Figure 3.23 and we have named the track the protocol follows Track 2.
Let us however assume that U has in fact been present.

N accepts with U present:

• N received (sid, ok) from A for a sid where he had already sent (sid, n2) to A.
• N must have received (sid, n2, E(k; e; k

′

)) from A.
• Since pos is collaborating with S they know k, and A/pos would have been able

to alter this AEAD, and so this AEAD is not necessarily the same one U sent
to A/pos.
• N and U might not have the same value for k

′

.
• Neither N nor U will know that pos and S were dishonest.
• N and U will output different values for k

′

whilst thinking they agree on k
′

.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 66

As long as both N and U are present during an execution, the execution will follow
Track 1. It is possible to simulate Track 1.

We will now go on to see what guarantees we have if U accepts.

U accepts:

• U received (sid, c1, E(k; pos, c1;)) from A where both c1 and the AEAD were
correct.
• U sent (sid, c0, S) to A, or else he would not have accepted.

This is all we know when U accepts. Thus, N does not need to be involved in order
for A to get U to accept. If this is the case the execution will follow the path shown
in Figure 3.24. This path is as discussed earlier still a part of Track 1.

In Class 4 the protocol has 2 starting points, Step 0 and Step 2 of Figure 3.22. If it
starts in Step 0 it will follow Track 1. If it starts in Step 2 it will follow Track 2. As
we have talked about in the previous sections, an execution could just as well start
out following Track 1 and later on split so that part of the execution runs as shown
in Figure 3.23 and part of it as shown in Figure 3.24. This can be simulated.

Let us now go on to look at what happens when U outputs (Est. Failed) in Step 7
of Figure 3.22.

U aborts in Step 7 of Figure 3.22:

• U received a (sid, c, E(k; pos, c;)) from A where c or the AEAD was wrong.
• Since the above message was not ignored U must have sent (sid, c0, S) to A.
• This is all we know. We can see that this execution is consistent with the part

of Track 1 that is depicted in Figure 3.24. However, N might be involved in
these executions. If that is the case the execution will be consistent with Track
1 as shown in Figure 3.22. Also here the execution might split up into one
execution following Track 1 and one execution following Track 2. As discussed
this is not problematic. Thus, all possible executions leading to U aborting can
be simulated.

As before, we can classify all the executions of the protocol for Class 4, and all pos-
sibilities can be simulated. Hence, the protocol πAKA realizes the ideal functionality
FKE for Class 4.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 67

4.3.5 Class 5

In Class 5 only U is honest. Thus, the only possible track is depicted in Figure 3.25
and will be referred to as Track 1. Let us start by having a look at what happens
when U accepts.

U accepts:

• U received a (sid, c1, E(k; pos, c1;)) from A that U accepted.
• U sent (sid, c0, S) to A or he would not have accepted.
• U will output a k

′

that A will be able to alter.
• U will send (sid, n2, E(k; e; k

′

)) to A.

This execution clearly follows Track 1 and is covered by the simulator. Let us now
see what happens if U outputs (Est. Failed) in Step 3 of Figure 3.25.

U aborts in Step 3 of Figure 3.25:

• U received (sid, c1, E(k; pos, c1;)) where c1 was correct, but the AEAD was
wrong.
• Since the message was not ignored U must have sent (sid, c0, S) to A.
• This execution is covered by Track 1.

U outputs (Est. Failed Linkable) in Step 3 of Figure 3.25:

• U received (sid, c1, E(k; pos, c1;)) where c1 was wrong.
• Since the message was not ignored U must have sent (sid, c0, S) to A.
• This execution is covered by Track 1.

Track 1 can be simulated. Hence, we can simulate all executions that might occur,
and the protocol πAKA realizes the ideal functionality FKE in Class 5.

4.3.6 Class 6

In Class 6 only U is corrupt. We will show that the only exists one possible path an
execution may follow in Class 6. We have named this path Track 1 and it is depicted
in Figure 3.26. Let us start by having a look at what happens if N accepts.

N accepts:

• N received (sid, ok) from S for a record where he already sent (sid, n2) to S.

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 68

• S accepted.

S accepts:

• S received (sid, n2) from N for a record where he already sent (sid, c1, k) to
N .
• Since N sent (sid, n2) to S, N must have received (sid, n2, E(k; e; k

′

)) from A.
• N must have sent (sid, c1, E(k; pos, c1;)) to A or he would not have sent (sid,
n2) to S when he received (sid, n2, E(k; e; k

′

)) from A.
• N must have received (sid, c1, k) from S.
• S must have received (sid, c0) from N .
• N must have received (sid, c0, S) from A.

This execution follows Track 1 and as such can be simulated. A will never be able
to send a wrong message to N that is not ignored. He could chose to stop after he
receives the message from N in Step 5 of Figure 3.26. However, this simply leaves
us in the top part of Track 1. Thus this class as mentioned only has 1 track and the
protocol πAKA realizes the ideal functionality FKE also for Class 6.

4.3.7 Class 7

In Class 7 only S is honest. An adversary will not be able to start an execution in Step
2 of Figure 3.27. An attempt at this would simply be ignored since the appropriate
record containing sid would not exist. Thus, there are only two possible executions
that may take place here. The adversary will have to send (sid, c0) to S in Step 0 of
Figure 3.27 to start an execution. S would then send back (sid, c1, k). The adversary
could then choose to stop the execution by not sending anything to S. Alternatively
he could send (sid, n2) to S. In the latter case S would accept and send (sid, ok) to
A. Both of these executions can be simulated. We thus conclude that the protocol
πAKA realizes the ideal functionality FKE for Class 7.

4.3.8 Class 8

In Class 8 only N is honest. Thus, the only entry point in Class 8 is Step 0 of Figure
3.28. Let us look at what might happen when A starts a session. A sends (sid, c0,
S) to N . N will then send (sid, c0) to A. A could now choose not to answer and
the protocol would stop here. However, if he answers the only response that will not
be ignored is (sid, bit string, key) upon which N would send (sid, bit string, E(key,
pos, bit string) to A. Again, A could chose to not answer and the protocol would

CHAPTER 4. THE ASYMMETRIC KEY AGREEMENT PROTOCOL 69

stop. If he does answer the only reply that will be accepted is (sid, nonce, E(key, e,
new key)). Upon receiving this N will store the new key and send (sid, nonce) to A.
Also here A could chose to end the execution. If he answers the only message that
will not be ignored is (sid, ok). When receiving this N will accept and output (Est.,
new key, pos, S).

All of the possibilities above are parts of the track shown in Figure 3.28, namely Track
1. Track 1 can be simulated. Hence, the protocol πAKA realizes the ideal functionality
FKE for Class 8 as well. We have now concluded that the protocol πAKA realizes the
ideal functionality FKE for all the classes. We thus conclude that the protocol πAKA

realizes the ideal functionality FKE.

Chapter 5
Summary of the Token Key Agreement

Protocol

Today, most networks identify users using their IMSIs. Thus, a user does not remain
anonymous. It is suggested in [GPS12] that TMSIs, temporary identities generated
by the MNO, should be introduced in order to help a user obtain anonymity. This
chapter only provides a summary of the mentioned protocol in order to be able to
perform comparisons. A more detailed description of the protocol can be found in
[GPS12].

It should be mentioned that the simulator in the paper describing the full TAP
protocol looks very different to the simulator we have introduced for our Symmetric
Key Agreement protocol in Section 3.2. This is as we do not have a maximum
page limit, and thus, have attempted to create a systematic simulator whilst not
concerning ourselves with the simulators length. Furthermore, the work done in this
paper concerning the TAP protocol is based on a draft of the paper [GPS12] dating
from 11 of January 2012. The article has now been revised and adjustments made.
These adjustments are not included in this paper.

5.1 The Protocol

Figure 5.1 provides a summary of the anonymous key establishment protocol πKE.
The complete protocol can as mentioned be found in [GPS12] along with the origi-
nal ideal functionality and the simulator. We have as mentioned changed the ideal
functionality and described it in terms of a leak function (Figure 2.7). This is done

70

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 71

in order to easier be able to compare this protocol to the SKA and AKA protocols.
Our new ideal functionality is as mentioned described in Figure 2.5

NU:k S:k

Token, n1, g
x, S Token, n1, n2

{n1, n2, n3, Token
′

}k {n1, n2, n3, Token
′

}k

n2

n3

ok

gy, signature

n3, MACgxy

Figure 5.1: Summary of the anonymous key establishment protocol πKE. Communi-
cation between users and MNOs is via FRL and between MNOs and SPs via Fsec.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 72

5.2 Security Analysis

We have decided to try and perform a simple discussion of the security of this protocol
for some of its classes. We will go through the classes in ascending order. We only
perform the security analysis for the first four classes (excluding Class 0 as this is
trivially secure). The remaining classes will only have 1 track each and the security
analysis for these should be performed in the same manner as the rest. Due to a lack
of time they are left to the reader.

In the security analysis we will use the Decisional Diffie-Hellman assumption. We
will refer to it as DDH. The Diffie-Hellman assumption assumes the Decisional Diffie-
Hellman problem to be hard. The Diffie-Hellman problem is briefly described given

g, gx and gy, find gxy. In the problem g is a generator of some group, usually
a multiplicative group, a finite field or an elliptic curve group. x and y are random
integers. The easiest known way to solve this problem is to solve the discrete logarithm
problem (DLP), find x given gx. There is no proof that this is the easiest way to solve
the problem. However, there is also no proof that there is an easier way to solve it.
Common belief is that the DHP is as hard as the DLP.

We further assume that any interested party has access to group G, and thus, any
interested party is able to create a gy ǫ G for a random y ǫ Z. We could chose to keep
the group G secret, but information easily leaks, and there is not much point to this.

Before we proceed with the security analysis we will introduce some of the variables
we use:

• µ = MACgxy .
• c = {n1, n2, n3, T

′

}k where k is the secret key shared by U and S.
• σ = A signature created by N containing all the variable known by N such that

if σ is correct V ervkN ((sid, n1, n2, g
x, gy, T , c, pos, S), σ) = True.

• h ǫ G.

We would also like to point out that in the newer version of [GPS12] sid is sent with
every message of the protocol. We have not written this in the protocol summary of
Figure 5.1 or in the security analysis that follows. However, it is assumed that all
parties will know what sid a message belongs to.

5.2.1 Class 1

In Class 1 only pos is corrupt. There are two possible tracks that the protocol might
follow in this class. The first track is shown in Figure 5.2.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 73

NU:k S:k

0 1 2
?

3 4

8 7
?

56

9 10
?

12 11
?

13

14 15
?

16 17
18

20 19

21

Figure 5.2: Track 1 of the anonymous key establishment protocol πTAP for Class 1.

Let us start by looking at what happens when N accepts.

N accepts:

• N received (ok) from S for a record where he already sent (n3) to S.
• Since S sent (ok) to N , S accepted.

S accepts:

• S received (n3) from N for a record where he already sent c = {n1, n2, n3, T
′

}k
to N .
• N received (n3, µ) from A/pos for a record where he already sent (gy, σ) to
A/pos.
• n3 is a part of c and only S and U know k and are able to decrypt c. Thus, due

to RoR-CCA n3 came from U .
• U sent (n3, µ) to A/pos.
• U accepted.

U accepts:

• U received (gy, σ) from A/pos for a record where he already sent (n2) to A/pos.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 74

• Due to INT-CTXT σ must have been created by N and thus N sent (gy, σ) to
A/pos. Since gy is included in σ, A will not have been able to change gy.
• Since U sent (n2) to A/pos, U must have received c from A/pos.
• Due to INT-CTXT c must have been created by S.
• N received (c) from S and passed it on to A/pos.
• Since S sent (c) to N , S must have received (T , n1, n2) from N .
• N received (T , n1, g

x, S) from A/pos.
• Since U accepted, the entry above received by N must have been sent to A/pos

by U . If T was not the same S would not know who U was. If n1 was not the
same U would have aborted after receiving c in step 8 of Figure 5.2. If gx was
not the same N would have ignored the message he received in Step 15 of the
same figure. If S was not the same S, he would not know U .
• Only U and N know k

′

.

If N accepts all of this must have happened in this exact way. Between N and S
accepting the adversary is not involved and as long as S accepts everything will be
the same. This execution clearly follows Track 1 shown in Figure 5.2. This track can
be simulated by the simulator SKE found in [GPS12].

Let us go on to have a look at what happens if the protocol aborts in Steps 8 or 13 of
Figure 5.2. We will look for ways in which an adversary can gain an advantage from
making the protocol abort on purpose.

The protocol outputs Est. Failed Linkable in Step 8 of Figure 5.2:

• U received a (c) from A that did not decrypt to {n1, -, -, -}.
• Since U did not simply ignore (c) he must have sent (T , n1, g

x, S) to A.
• This is all we know when the protocol aborts in Step 8 of the protocol. Thus,

there are two possible scenarios. Either A sent something to N before he sent
the wrong c to U or he did not.
• If A sent something to N he must have sent (Token, nonce, h, S) or else the

message would simply be ignored in step 4 of Figure 5.2.
• If he did not send anything to N , but simply proceeded by sending a bit string

to U , only Steps 0, 1 and 8 would be parts of the execution.

Both of these scenarios are part of Track 1 and as such are consistent with the
simulator SKE. Another possibility is for the protocol to start of in Track 1 only to
have A send a message to U before the execution reaches Step 7. In such a case the
execution will simply split up into two tracks, namely Track 1 and Track 2 which is
shown in Figure 5.3. We will talk more about this track below.

Let us first look at what happens when the protocol aborts in Step 13 of Figure 5.2.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 75

NU:k S:k

2
?

3 4

7
?

56

Figure 5.3: Track 2 of the anonymous key establishment protocol πTAP for Class 1.

The protocol outputs Est. Failed Unlinkable in Step 13 of Figure 5.2:

• U received a (gy, σ) where either gy or σ is wrong.
• The protocol did not abort before this point so everything must have been okay

until we reached Step 12.
• N received (n2) from A where n2 matched the one he sent to S in Step 3 of

Figure 5.2.
• N sent (gy, σ) to A.
• Only U and S are able to decrypt c, and due to RoR-CCA A will not know n2

unless U sends it to him.
• U must have received and decrypted c.
• Due to INT-CTXT c has been created by S.
• N must have sent (c) to A/pos.
• N must have received (c) from S.
• S received (T , n1, n2) from N .
• N received (T , n1, g

x, S) from A.
• Since U accepted in Step 8, U sent (T , n1, g

x, S) to A. The only entry in this
message A could have altered is gx.

We can see that also this will be part of Track 1. Lastly, the way the protocol is
written it is possible for A to start a session without having received anything from
U . Let us look at how this will play out.

• A/pos sends (Token, nonce, h, S) to N .
• N sends (Token, nonce, n2) to S.
• S sends (c) to N .
• N sends (c) to A/pos.
• Any further messages sent to U by A/pos will simply be ignored by U since U

does not have any record containing the correct sid.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 76

This is what we earlier introduced as Track 2. It is easy to see that Track 2 never will
lead anywhere. Further, it is consistent with the simulator SKE. As such we conclude
that the protocol πKE described in [GPS12] realizes the ideal functionality FKE.

5.2.2 Class 2

In Class 2 pos and N are corrupt. Class 2 also has 2 possible execution tracks. The
first one is shown in Figure 5.4

NU:k S:k

0 1
?

?

?

?

?

?

?

?

?
2

4 3

5

6
7

8 9
10

11

Figure 5.4: Track 1 of the anonymous key establishment protocol πKE for Class 2.

Let us start by looking at what guarantees we have when S accepts.

S accepts:

• S received (n3) from A for a record where he already sent (c) to A.
• S will send (ok) to A.
• Since S accepted n3 he must have sent (c) to A.
• S must have received (T , n1, n2) from A where sid was not on any record.
• Only S and U know k and are able to decrypt c.
• Due to RoR-CCA U must have decrypted c and sent (n3, µ) to A.
• U accepted.

U accepts:

• U must have received (gy, σ) from A for a record where he already sent (n2) to
A.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 77

• Since U sent n2 to A he must have received (c) from A containing the same n1

as U sent to A in Step 1 of Figure 5.4.
• Due to INT-CTXT c must have been created by S.
• U must have sent (T , n1, g

y, S) to A.

Thus, as long as S accepts the execution follows Track 1. We can also see that as
long as U accepts, but not S, the execution would still have had to follow Track 1 as
S would have made c. All instances of Track 1 can be simulated by SKE. We will
now go on to look at what happens if the protocol fails in Steps 4 and 7.

The protocol outputs Est. Failed Linkable in Step 4 of Figure 5.4:

• U received a (c) from A that did not decrypt to {n1, -, -, -}.
• Since U did not ignore the message received in Step 4 he must have sent (T ,
n1, h, S) to A.
• This is all we know when the protocol aborts in Step 8 of the protocol.

However, as discussed in Section 3.3.1, this is still a part of Track 1.

The protocol outputs Est. Failed Unlinkable in Step 7 of Figure 5.4:

• U received a (gy, σ) from A for a record where he already sent (n2) to A, where
gy or σ was wrong.
• Since U sent n2 to A, U must have received a (c) from A that he accepted.
• Due to INT-CTXT c must have been created by S.
• S must have received (T , n1, n2) from A and sent c to A.
• Since U accepted c he must have sent (T , n1, g

x, S) to A.

Clearly this as well is a part of Track 1 and as such can be simulated.

We will now go on to look at a last possibility. It will be possible for A to start an
execution without receiving anything from U first. If this happens we find ourselves
in what we have named Track 2. Track 2 is portrayed in Figure 5.5.

When A sends (Token, nonce, nonce 2) to S, S will send back (c) as long as the
token he receives is valid. However, this (c) will never be accepted by U as U does
not have any record containing sid. Thus, the execution will stop in after Step 3 of
Figure 5.5. This instance is consistent with the simulator SKE. Before concluding
this section we wish to mention that an execution may start in Track 1 only to have A
send something to U before the execution finishes Step 3. This again will simply lead
to the execution splitting up so that one part follows Track 2 and one part follows
Track 1 as in Class 1.

We thus conclude that the protocol πKE realizes the ideal functionality FKE for Class
2 as well.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 78

NU:k S:k

?

?
2

3

Figure 5.5: Track 2 of the anonymous key establishment protocol πKE for Class 2.

5.2.3 Class 3

In Class 3 only S is corrupt. Thus, the executions in this class will only ever follow
one track. We have named this track Track 1 and it can be found in Figure 5.6

NU:k S:k

0 1 2
?

?

?

?

3

6 5 4

7 8

10 9
11

12 13 14

15

16

Figure 5.6: Track 1 of the anonymous key establishment protocol πKE for Class 3.

We will again start by looking at what guarantees we have when N accepts:

N accepts:

• N received (ok) from A for a record where he sent (n3) to A.
• Since N sent (n3) to A he must have received (n3, µ) from U .
• Since U sent (n3, µ) to N U must have accepted.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 79

U accepts:

• U received (gy, σ) from N for a record where he sent (n2) to N .
• N received (n2) from U where n2 matched the one N sent to A in Step 3 of

Figure 5.6.
• Since U sent n2 to N , U must have received (c) from N where the n1 contained

in c matched the one sent to N by U in Step 1 of Figure 5.6.
• N received (c) from A for a record where he sent (T , n1, n2) to A.
• U sent (T , n1, g

x, S) to N .

Clearly this execution is equivalent to Track 1, and as such can be simulated. We
will go on to look at what happens when the protocol aborts in Step 6 of Figure 5.6.

The protocol outputs Est. Failed Linkable in Step 6 of Figure 5.6:

• U received (c) from N , where c was wrong.
• N received this same (c) from A for a record where he already sent (T , n1, n2)

to A.
• Since N sent (T , n1, n2) to A, N must have received (T , n1, g

x, S) from U .

We are still operating in Track 1, and as such can simulate what happens.

The protocol will never abort in Step 11 for this class. If it does not abort in Step 6
that means that N received the correct n2. Between Step 6 and Step 11 the adversary
is not present, and since U , pos and N are all honest nothing will go wrong here.

These are all the possible executions of Class 3. A will never be able to send anything
to N when N is not expecting it as N will not have stored an appropriate record.
Thus, as described in the protocol πKE, he will simply ignore attempts at this. We
hence conclude that the protocol πKE realizes the ideal functionality FKE in Class 3.

5.2.4 Class 4

In Class 4 both S and pos are corrupt. This leaves us with two different tracks that
an execution may follow. The first track is shown in Figure 5.7.

An adversary may start a session without U having attempted to start one. An
attempt from A to start a session will follow what we have named Track 2 as shown
in Figure 5.8.

When A tries to start a session he will send (T , n1, g
x, S) to N . In such a case the

following will happen:

• N receives (T , n1, g
x, S) and as long as gx ǫ G, N will send (T , n1, n2) to A.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 80

NU:k S:k

0 1
?

?

?

?

?
2 3

6 5
?

4

7
?

8

10 9
?

11

12 13
?

14

15

16

Figure 5.7: Track 1 of the anonymous key establishment protocol πKE for Class 4.

• A could now choose to stop sending messages to N . However, if he does send a
message it has to be on the format (c) where c is a string of ciphertext.
• N will then receive (c) and send (c) to A.
• Again A could choose to stop sending messages to N . If he decides to send a

message the only message N will accept is (n2). n2 needs to be the same one
as N sent to A in Step 3.
• Upon receiving (n2), N will create a gy and a σ and send (gy, σ) to A.
• Also here A could choose to stop the execution by not replying. However, A

knows x as he is the one who created gx. Thus he is able to calculate gyx and
create µ. He could thus send (n3, µ) to N .
• N would then send (n3) to A.
• A could then simply reply (ok) and N would accept.

This execution is depicted in Figure 5.8 and is called Track 2.

Let us go on to look at what guarantees we have when U accepts.

U accepts:

• U received (gy, σ) from A for a record where he sent (n2) to A.
• Due to IND-CCA N created σ.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 81

NU:k S:k

?

?

?

?

?
2 3

5
?

4

?
8

9
?

13
?

14

15

16

Figure 5.8: Track 2 of the anonymous key establishment protocol πKE for Class 4.

• Since N created σ, N must have received (n2) from A for a record where he
already sent (c) to A. The n2 he received must have matched the one N sent
to A in Step 3 of Figure 5.7.
• U received (c) from A for a record where he already sent (T , n1, g

x, S) to A.
The n1 contained in c must have matched the one he sent to A by U in Step 1
of Figure 5.7.
• Since N did not simply ignore (c) when he received it from A, he must have

sent (T , n1, n2) to A earlier.
• Since U accepted he must have sent (T , n1, g

x, S) to A.
• Since N sent (T , n1, n2) to A he must have received received (T , n1, g

x, S)
from A.

We can see that this execution is equivalent to the top part of Track 1. As such it can
be simulated. We will now go on to See what might happen after U accepts. When
U accepts he will send (n3, µ) to A.

• If A wants to send a message to N , the only message that will be accepted is
(n3, µ).
• A knows gx and gy, but due to DDH will not be able to calculate gxy and hence

alter µ. He would be able to change n3, but this lacks motivation.
• N would then send (n3) to A.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 82

• Upon receiving (n3) the adversary could either stop or reply (ok).
• On receiving (ok), N will accept.
• U and N will have output the same keys as A will not be able to change this

(due to DDH). They will also be the only ones who know these keys.

We see that when N and U both accept for the same sid the execution necessarily
follows Track 1. All of the steps of Track 1 need to occur for N to accept given that
U has accepted. This can be simulated and we move on to what happens when the
protocol aborts in Steps 6 and 11 of Figure 5.7.

The protocol outputs Est. Failed Linkable in Step 6 of Figure 5.7:

• U received a (c) from A that was not on the format {n1, -, -, T
′

}k.
• Since U did not ignore the above message he must have sent (T , n1, g

x, S) to
A.
• This is all we know, and A needs not have involved N in this execution. We can

see that this is simply a part of Track 1, and as such is covered by the simulator
SKE.

The protocol outputs Est. Failed Unlinkable in Step 11 of Figure 5.7:

• U received a (gy, σ) from A where either gy or σ was wrong.
• Since U did not ignore (gy, σ) he must have received (c) at an earlier stage,

accepted c and sent (n2) to A.
• Since U did not ignore c he must have sent (T , n1, g

x, S) to A, and the c he
received must have contained n1.
• U must then have sent (n2) to A.
• N does not need to have been present at all during this execution.

All of this must have happened if the protocol outputs Est. Failed Unlinkable. It
could also be that N has been involved in the execution, but we do not know this for
sure. However, it does not matter whether N has been present or not. If N has not
been present during the execution, the protocol will follow the path shown in Figure
5.9. This is simply a part of Track 1. If N has been present the execution will simply
follow to top part of Track 1 from Figure 5.7.

We have now stated that it is possible to simulate all possible protocol executions
in Class 4. Thus, we conclude that the protocol πKE realizes the ideal functionality
FKE for Class 4.

CHAPTER 5. THE TOKEN KEY AGREEMENT PROTOCOL 83

NU:k S:k

0 1
?

6
?

7
?

10
?

11

Figure 5.9: Part of Track 1 of the anonymous key establishment protocol πKE for
Class 4.

Chapter 6
Conclusion

We have in this paper introduced two protocols, hoping to find a quick way to obtain
secure and anonymous communication in mobile connections. The two protocols are
inspired by an already existing protocol we have named the TAP protocol. The TAP
protocol is summarized in Chapter 5. This protocol boasts better security properties
than the two protocols we introduce. However, it also has a running time that is
higher than the symmetric key agreement protocol.

TAP SKA AKA

U 1 private decryption 1 private decryption 1 public encryption
1 signature verification 1 AEAD verification 1 private decryption
1 MAC creation 1 AEAD creation 1 AEAD creation

1 AEAD verification
N 1 signature creation 1 AEAD verification 1 AEAD verification

1 MAC verification 1 AEAD creation 1 AEAD creation
S 1 private decryption 1 private decryption, 1 public decryption

2 private encryptions 2 private encryptions 1 private encryption

Figure 6.1: Required Operations for the different protocols.

Figure 6.1 shows the operations that the different protocols require from the three
participants. It is easy to see that the symmetric key agreement protocol is the least
expensive one. However, this is also the least secure out of the three protocols. As
opposed to the TAP protocol it offers no security when operating within Class 4.
Further, it is less secure than the asymmetric key agreement protocol as it in some
instances reuses tokens, thus making it possible to link different attempts at starting

84

CHAPTER 6. CONCLUSION 85

a session to one another. This in turn makes it possible for an attacker to trace an
anonymous user around the network.

The asymmetric key agreement protocol has a running time that equals that of the
TAP protocol. Signature algorithms use public encryption, and as such the running
times for the two are equivalent. Further, both message authentication codes and
authenticated encryption with associated data use symmetric encryption and hence
has running times equivalent to those of symmetric encryption. Thus, both proto-
cols require two ’expensive’ operations and six ’inexpensive’ operations to have been
performed upon completion.

The TAP protocol is the only protocol out of the three that offers any security when
operating within Class 4. However, within the asymmetric key agreement protocol it
is not possible to link different attempts at starting sessions to one another.

In conclusion, we consider the TAP protocol to be the better amongst the three. We
consider it to be of high importance that the protocol be secure for Class 4. An-
other approach would be to construct a protocol with both of the desired properties.
However, this might require as many as 4 asymmetric encryptions, and could be to
expensive to be feasible.

Bibliography

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In FOCS, pages 394–403.
IEEE Computer Society, 1997.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Re-
lations among notions of security for public-key encryption schemes. In
Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Com-

puter Science, pages 26–45. Springer, 1998.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
http://eprint.iacr.org/.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
John H. Reif, editor, STOC, pages 494–503. ACM, 2002.

[GPS11] Kristian Gjøsteen, George Petrides, and Asgeir Steine. A novel framework
for protocol analysis. August 2011.

[GPS12] Kristian Gjøsteen, George Petrides, and Asgeir Steine. Secure and anony-
mous network connection in mobile communications. 2012.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Pro-

ceedings of the 9th ACM conference on Computer and communications

security, CCS ’02, pages 98–107, New York, NY, USA, 2002. ACM.

86

	Title Page
	Master.dvi

