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Problem Description

The student should give a description of the following topics:

• abstract triangulated categories

• localisation with respect to arbitrary sets of morphisms

• localisation as used in the construction of derived categories of module categories

Moreover, the student should give detailed examples of derived categories for finite
dimensional algebras and other concrete triangulated categories.
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Abstract

We study Gabriel-Zisman localization, localization by a multiplicative system
and by a null system. We define the triangulated category and the derived category.
Finally we describe a scheme for localization from a triangulated category to a
module category.
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1 Introduction

This thesis will consider a concept in category theory called localization. We will take a
category C and a class of morphisms S in the category, and construct a new category CS
in which the morphisms of S have become isomorphisms. Moreover, we equip CS with a
suitable universal property, so that we are able to call it unique.

After an introductory study of the Ore condition in ring theory we will consider
the very general Gabriel-Zisman localization. We will define a multiplicative system,
a triangulated category and a null system. All this will set the stage for defining the
derived category. The construction of the derived category moves us from an abelian
category to a triangulated category. As the final part of the thesis, we will study a recent
article by Aslak Bakke Buan and Robert J. Marsh [3], in which a triangulated category
is turned into an abelian category through the process of localization.

In some ways localization is an old idea. The concept is used in a different guise
in set theory when constructing the integers Z; take the set of natural numbers N, and
consider the set of functions fn, where fn(m) = m + n. When all these functions are
turned into isomorphisms, that is when N is localized with respect to the set {fn|n ∈ N},
we can identify n = fn(0) and −n = f−1

n (0), and thus we have defined Z. Similarly,
the construction of the rational numbers from the integers can also be described as a
localization. We will study the latter in an example in the following subsection.

1.1 The Ore condition

We first consider a form of localization that is accomplished without the use of category
theory. This section follows [2, ch. 12.2].

We want to take a possibly non-commutative domain R (a ring with no zero divisors),
and show it to be embedded in a division ring Q. For this to be feasible, we need R to
fulfill the following condition, called the Ore condition.

Definition 1.1. Let R be a domain. We call R a right Ore domain if for any non-zero
a, b ∈ R there exist nonzero x, y ∈ R so that ax = by.

Note that we only consider rings with multiplicative identity. An equivalent definition
is given by the following lemma; we will need both definitions.

Lemma 1.2. A domain R is a right Ore domain if and only if the intersection of any
two nonzero right ideals is nonzero.

Proof. Suppose R is a right Ore domain and let I and J be two nonzero right ideals in
R. Let a ∈ I and b ∈ J be nonzero; then we know that there exist nonzero x, y ∈ R
so that ax = by. As R is a domain, we know that ax 6= 0. However, as I and J are
right ideals, it follows that ax ∈ I and by ∈ J , and thus ax = by ∈ I ∩ J , which must be
nonzero.

Conversely, suppose that the domain R is such that no two nonzero right ideals have
a zero intersection. Let a, b ∈ R be nonzero. There exist nonzero ideals aR and bR 1.

1aR = {ar|r ∈ R}
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Their intersection must be nonzero, so there are elements x, y ∈ R such that ax = by.

For the remainder of this section, suppose R is a right Ore domain. Let C be the set
of nonzero right ideals in R; by the above lemma C is closed under intersections.

A map f defined on a right ideal R′ of R is called R-linear if f(ab) = f(a)b and
f(a + b) = f(a) + f(b) for all a, b ∈ R′. Suppose that I ∈ C, that f : I → R is an
R-linear mapping and let X ∈ C. We take note of some facts about f :

• f−1(X) is a nonempty set as f(0) = 0 ∈ X.

• If a, b ∈ f−1(X), then f(a− b) = f(a)− f(b) ∈ X, so a− b ∈ f−1(X).

• If x ∈ f−1(X) and r ∈ R, then f(rx) = rf(x) ∈ X, so rx ∈ f−1(X).

• By the above f−1(X) is an ideal. If f(I) = {0} for some ideal I; then f(I) ⊂ X,
so I ∈ f−1(X), which is non-zero and thus an element of C.

On the other hand, suppose f(I) 6= {0}. As f(I) must be a nonzero right ideal, we
know that f(I)∩X is nonzero; thus there is some non-zero x ∈ I so that f(x) ∈ X.
It follows that x ∈ f−1(X), which then must be nonzero and f−1(X) ∈ C.

For two ideals I and J we define HomR(I, J) to be the set of all R-linear maps
between I and J . Define the set H =

⋃
I∈C HomR(I,R), and define a relation ∼ on H

by setting f ∼ g if and only if f = g when restricted to some ideal I ∈ C. The relation
is clearly reflexive and symmetric. If f = g on the right ideal I and g = h on the right
ideal J , then f = h on the ideal I ∩ J ∈ C and so the relation is transitive. Thus
∼ is an equivalence relation on H and we can form the set Q = H/ ∼ with elements
[f ] = {g ∈ H|g ∼ f}.

Define an addition operation on Q by setting [f ] + [g] = [f + g]. It can be checked
that this operation is well-defined, and that (Q,+) is an abelian group. Next, define
multiplication by setting [f ] [g] = [fg]. That it is well-defined follows from the properties
of C. It is not hard to see that with these operations Q becomes a ring. Finally we check
that Q is a division ring by showing that every nonzero element of Q has an inverse.

Let [f ] ∈ Q be non-zero. As f = 0 when restricted to Ker(f), we must have
Ker(f) /∈ C. Thus Ker(f) = {0} and f is one-to-one. Let g : Im(f) → R be defined
by g(f(x)) = x, this is well-defined because f is one-to-one, and is also R-linear. On
the domain of f it holds that gf = 1, and so [gf ] = [1]. Similarly fg = 1 on Im(f), so
[f ]−1 = [g]. Thus Q is a division ring.

Theorem 1.3. A domain R is a right Ore domain if and only if there exists a division
ring Q such that:

(i) R is a subring of Q.

(ii) All objects in Q are of the form ab−1 for a, b ∈ R.

Proof. Suppose R is a right Ore domain, and let Q be defined as above.
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(i) Consider the map φ : R → Q defined by setting φ(a) = [fa], where fa(x) = ax.
Note that fa is R-linear. We check that φ is a ring homomorphism:

• From φ(1R) = idR we see that φ maps the unity in R to the unity in Q.

• We see that fa+b(x) = (a + b)x = ax + bx = fa(x) + fb(x), thus φ(a + b) =
φ(a) + φ(b).

• Similarly, as fab(x) = (ab)x = a(bx) = fafb(x) we get that φ(ab) = φ(a)φ(b).

Since φ is a ring homomorphism, Im(φ) is a subring of Q. Of course, φ is onto its
image; to see that it is one-to-one, suppose φ(a) = 0. This means that for some
nonzero ideal I, we have aI = 0. Thus, there is some nonzero x ∈ I so that ax = 0;
since R is a domain this means that a = 0. Thus R is isomorphic to a subring of
Q, and can itself be considered a subring of Q. Due to this identification we will
denote fa simply as a when there is no risk of confusion.

(ii) We note that if q ∈ Q, where q : I → R, then for a, b ∈ R it holds that (qa)(b) =
(qfa)(b) = q(ab) = q(a)b, so we see that q(a) = qa in Q. Now assume q : I → R is
in Q, that b ∈ I is non-zero, and set a = q(b). Then qb = a and as Q is a division
ring, q = ab−1.

To see the reverse implication, suppose both (i) and (ii) hold and let a, b ∈ R. Then
b−1a ∈ Q, and so there exist x, y ∈ R so that b−1a = xy−1. However, this implies that
ax = by. Thus R is a right Ore domain.

Example 1.4. Consider the set of integers, Z. This is a commutative domain; it is easy
to see that it satisfies the Ore condition. Then by theorem 1.3 we know that there exists
a division ring Q where every element can be written on the form xy−1, where x, y ∈ Z
and y 6= 0. Moreover, for any two x, y ∈ Z, with y 6= 0, we have xy−1 ∈ Q. It is by now
obvious that Q = Q, the field of rational numbers.

2 Localization of a general category

Let C be a category and let S be a class of morphisms in C. The goal of localization is
to construct a category CS where the morphisms in S have inverses. We formalize this
idea as follows:

Definition 2.1. The localization of the category C by a class S of morphisms in C is a
category CS with a functor F : C → CS so that:

• For any morphism s ∈ S, the image F (s) is an isomorphism.

• The functor F : C → CS is universal; if there exists another category D with a
functor G : C → D taking elements of S to isomorphisms in D, then there exists a
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unique functor H : CS → D so that the following diagram commutes.

C G //

F
��

D

CS
H

>>

2.1 A simple proof of existence

We start by showing the existence of localization in one type of categories, known as
Gabriel-Zisman localization. This section follows [5, ch. III.2.2].

Suppose that C is a small category, that is to say that Ob(C) is a set. Then

Mor(C) =
⋃
{HomC(X,Y )|X,Y ∈ Ob(C)}

is a set, and so is any class S of morphisms in C. To find the localization of C by S
we start by constructing a graph Γ. The vertices of Γ are the objects of C. For all
X,Y ∈ Ob(C), let there be an edge from X to Y in the graph Γ for each morphism in
HomC(X,Y ). Moreover, for each morphism X

s−→ Y ∈ S, add an arrow Y
xs−→ X. This

arrow is called the formal inverse of s.
A path in Γ is a finite sequence of arrows such that each arrow starts in the vertex

where the previous arrow in the sequence ended. Let two paths be equivalent if one can
be transformed into the other by applying the following elementary equivalences a finite
number of times:

• If f ∈ HomC(X,Y ) and g ∈ HomC(Y, Z), then the path X
f−→ Y

g−→ Z is equivalent

to (can be replaced by) X
gf−→ Z.

• If X
s−→ Y ∈ S, then X

s−→ Y
xs−→ X is equivalent to X

idX−−→ X and Y
xs−→ X

s−→ Y

is equivalent to Y
idY−−→ Y .

This relation is clearly reflexive, symmetric and transitive; thus it is an equivalence
relation.

The category CS is defined by setting Ob(CS) = Ob(C) and for X,Y ∈ Ob(C) setting
HomC(X,Y ) to be the set of equivalence classes of paths from X to Y . Composition of
morphisms follows from the joining of paths; this can be shown to be independent of the
choices of representatives of the equivalence classes of paths.

The functor F : C → CS is defined by setting F (X) = X for X ∈ Ob(C) and letting

F (f) be the equivalence class of the path X
f−→ Y for f ∈ HomC(X,Y ). We see that if

s ∈ S, then F (s) = X
s−→ Y has an inverse, namely its formal inverse Y

xs−→ X.
To show the universality of CS , we assume the existence of a category D with a

functor G : C → D so that G(s) has an inverse for any s ∈ S. We construct the required
functor H : CS → D as follows:

• For X ∈ Ob(CS), set H(X) = G(X) (remember that Ob(CS) = Ob(C)).



2.2 Skeletally small categories 5

• For any f ∈ Mor(C), set H(X
f−→ Y ) = G(X).

• For any s ∈ S, set H(Y
xs−→ X) = G(s)−1.

• For any other path φ, the composition requirement in the definition of a functor
gives H(φ):

Suppose φ = φ1 . . . φn, where each φi denotes an arrow in Γ. Then H(φ) =
H(φ1) . . . H(φn).

To check that H is well-defined, consider two equivalent paths α = (X
a0−→ A1 → . . .→

An
an−→ Y ) and β = (X

b0−→ B1 → . . .→ Bm
bm−−→ Y ). The functor H will map these paths

to respectively H(α) = H(an)H(an−1) . . . H(a0) and H(β) = H(bm)H(bm−1) . . . H(b0).
We know that by a finite number of elementary operations we can turn α into β. However,
each of these elementary operations can be translated to an equality in D. When

X
f−→ Y

g−→ Z = X
gf−→ Z

in CS it also holds that
F (g)F (f) = F (gf)

in D, and similarly when

X
s−→ Y

xs−→ X = X
idX−−→ X

it also holds that

H(xsx) = F (x)−1F (x) = idF (x) = F (idX) = H(idX).

For each step of the process of turning α into β by the elementary equivalences we
can find an equality in D, so H(α) = H(β). Thus H is well-defined. Moreover as any
other functor H ′ satisfying H ′F = G must satisfy the very requirements set forth in the
definition of H we have that H ′ = H and H is unique.

2.2 Skeletally small categories

The proof of existence in the above section works only for small categories. In general
the categories we encounter are not small; examples of non-small categories include the
category of sets, of rings and of modules over a ring. Luckily we can extend the proof
to be valid for a wider range of categories. We start with a definition.

Definition 2.2. A category C is skeletally small if the family of isomorphism classes of
Ob C is a set.

An important example of a skeletally small category is the category of modules over
a ring.

Suppose that C is skeletally small, and that S is a class of morphisms in C. For each
equivalence class, use the strong axiom of choice to pick an object X to represent it. We
denote the set of representing objects R. For each object X ∈ C, choose an isomorphism
cX : X → X ′, where X ′ is the representing object of the isomorphism class containing
X. If X = X ′, set cX = idX . We construct the graph Γ as follows:
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• The vertices of Γ are the objects in R.

• For each f ∈ HomC(X,Y ) where X,Y ∈ R, add an arrow X
f−→ Y .

• For each s : X → Y ∈ S, add an arrow Y ′
(c−1
Y scX)S−−−−−−→ X ′.

We define the equivalence classes of paths as before, and are ready to define the category
CS . We set Ob(CS) = Ob(C). For two objects X,Y ∈ Ob(CS), we set

HomCS (X,Y ) = {X cX−−→ X ′
φ−→ Y ′

c−1
Y−−→ Y | φ is an equivalence class of paths X ′ → Y ′}.

The composition rules defined on the paths is used in CS as well.
The functor F : C → CS is defined as follows:

• F (X) = X for X ∈ Ob(C).

• F (f) = X
cX−−→ X ′

cY fc
−1
X−−−−−→ Y ′

c−1
Y−−→ Y for f ∈ HomC(X,Y ).

For s ∈ S, the inverse of F (s) = X
cX−−→ X ′

cY sc
−1
X−−−−→ Y ′

c−1
Y−−→ Y is the morphism

Y
cY−→ Y ′

(cY sc
−1
X )S−−−−−−→ X ′

c−1
X−−→ X.

It remains to prove universality for the category CS . Suppose that D is a category
with a functor G : C → D, so that G(s) has an inverse for each s ∈ S. Construct the
functor H as follows:

• H(X) = G(X) for X ∈ Ob(CS) = Ob(C).

• H(G(f)) = F (f) for f ∈ Mor(C).

• H(G(x)−1) = F (x)−1.

By a proof analogous to that in the previous section, this makes H well-defined and
unique.

2.3 Multiplicative systems and roofs

The two previous sections have shown procedures of localization that are restricted by
the type of category they work in. We now give a method of localization where the
restriction is put on the class of morphisms S and not on the category C. The conditions
on the morphisms will turn out to be highly similar to the Ore condition, and so will
the description of the elements in the localization. Multiplicative systems are widely
described, for example in [5], [9] and [10].

Definition 2.3. A multiplicative system in a category C is a class S of morphisms
satisfying the following restrictions:

S1 idX ∈ S for any X ∈ Ob(C).
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S2 For any pair of morphisms f, g ∈ S such that the composition fg exists, we have
fg ∈ S.

S3 For Y
f−→ Z and X

s−→ Z ∈ S, there exist morphisms U
t−→ Y ∈ S and U

u−→ X so
that the following diagram commutes:

U
t //

u
��

Y

f
��

X
s // Z

The same holds when all arrows are reversed.

S4 Suppose f, g ∈ HomC(X,Y ). The following are equivalent:

• There exist t : Y → Y ′ ∈ S such that tf = tg.

• There exist s : X ′ → X ∈ S such that fs = gs.

We note that the first two axioms have little effect on localization; as idX is an
isomorphism, it will automatically have an inverse in the localized category CS , so adding
it to S makes no difference to the localization. Similarly, if f and g are in S they will
have inverses f−1 and g−1 in CS . Then g−1f−1 will be an inverse to fg, so we might as
well add fg to S. The third axiom is practically the same as the Ore condition. Along
the same lines, in a domain R with s, a, b ∈ R non-zero it holds that sa = sb 6= 0 if and
only if a = b, and in this case any r ∈ R makes ar = br. The last axiom thus makes the
morphisms of S act like elements of a domain (to some extent; after all categories are
not assumed to be additive).

As we saw above, a morphism in the category CS is given by a chain

X1
α1−→ X2

α2−→ · · · αn−1−−−→ Xn (2.1)

where αi ∈ HomC(Xi, Xi+1) or αi = xs with s ∈ S ∩HomC(Xi+1, Xi). If S is multiplica-
tive, it simplifies the description of morphisms a great deal:

• Let s : X → Y and t : Y → Z be morphisms so that s, t ∈ S; then we know
that ts ∈ S as well. We get that xtsts = idZ and consequently xts = xsxt. Thus
multiplicative systems allow us to compose the formal inverses in CS just as we
compose the morphisms directly from C.

• Suppose we have a morphism (path) in CS given by X1
f−→ X2

xs−→ X3. We know
that there exist morphisms g and t in C with t ∈ S such that the following square
commutes:

X ′2
t //

g

��

X1

f

��
X3

s // X2
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As ft = sg we get, by multiplying with the formal inverses of s and t, that
xsf = gxt.

With these properties, and remembering that a morphism X1
f−→ X2 = X1

idX1−−−→ X1
f−→

X2, we see that the general morphism in (2.1) is equivalent to a short chain X1
xs−→ Y

f−→
Xn where s ∈ S. This short chain is also known as a left fraction2. We will use this to
give a third definition of CS .

Example 2.4. Let R be a domain, and define the category R as the category consisting
of a single object •, morphisms given by HomR(•, •) = R with the composition in
being multiplication in R. There is also an additive structure on R, following from the
addition of elements in R. Note that R is a small category, so we can use Gabriel-Zisman
localization on it.

Define S as the set of morphisms not equal to 0. We consider the axioms of the mul-
tiplicative system, and see that S1 is fulfilled, as we only consider rings with identities.
S2 is fulfilled because R is a domain, and so is S4: if s ∈ S, then since sa = sb implies
that s(a− b) and s is not equal to zero, it must hold that a = b. Finally, we see that S3
is fulfilled if R is a right and left Ore domain, so suppose R is an Ore domain

We know that there exists a category RS and a functor F : R → RS so that every
non-zero element in S is turned into an isomorphism by F . Moreover, we know that
any morphism in RS is of the form rs−1 with s ∈ S and r ∈ R (and any element of
this form is a morphism in RS). We can add any two elements as−1 and bt−1 by first
using the fact that we can find two elements p, q ∈ S so that sp = tq. We then define
as−1 + bt−1 = app−1s−1 + bqq−1t−1 = (ap + bq)(sp)−1; we can check that with this as
the addition operation, HomRS (•, •) becomes a division ring. In other words we have
shown the same thing as we did in theorem 1.3.

Note that while Gabriel-Zisman localization required C to be a small category, the
below localization sets no such restriction.

Definition 2.5. Let C be a category and S a multiplicative system of morphisms in C.
The localization CS of C by s is defined as follows:

• Ob(CS) = Ob(C).

• The morphisms of φ ∈ HomCS (X,Y ) are equivalence classes of triples φ = (Z, s, f),
where Z ∈ Ob(CS), s : X ′ → X, f : X ′ → Y and s ∈ S, usually drawn as a ”roof”:

Z
s

~~

f

��
X Y

Two morphisms φ = (Z, s, f) and φ′ = (Z ′, s′, f ′) between X and Y are set equiv-
alent if there exists a commutative diagram.

2It is also equivalent to a short chain X1
g−→ Y

xt−→ Xn with t ∈ S, known as a right fraction.
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Z ′′

t

~~

g

  
Z

s

��

f

**

Z ′

s′

tt

f ′

  
X Y

(2.2)

We require that (Z ′′, t, g) ∈ HomCS (Z,Z ′). We will denote this relation as

(Z, s, f) ∼ (Z ′, s′, f ′).

Composition of a pair of morphisms (U, s, f) ∈ HomCS (X,Y ) and (V, t, g) ∈
HomCS (Y,Z) is defined to be a morphism (W, sr, gh), given by the following com-
mutative diagram:

W
r

~~

h

  
U

s

~~

f

  

V
t

~~

g

��
X Y Z

We obtain W , r and h by the completion property (S3) of multiplicative systems.

We will show that CS is a well-defined category, and then show that it gives a local-
ization of C by S.

Lemma 2.6. The relation ∼ is an equivalence relation.

Proof. The relation is obviously reflexive. To see that it is symmetric, suppose that
(Z, s, f) ∼ (Z ′, s′, f ′) as shown in diagram (2.2). There exists a completion of

Z ′

s′

��
Z ′′

st // X

into the commutative diagram W
u //

r
��

Z ′

s′

��
Z ′′

st // X

with u ∈ S.

We see that s′u = str = s′gr, so by S4 there exists a morphism x : W ′ → W so that
x ∈ S and ux = grx. Then we know that the following diagram commutes:

W ′

ux

}}

trx

  
Z ′

s′

~~ f ′

**

Z

s

tt

f

��
X Y
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As ux ∈ S, we know that (W ′, ux, trx) is a morphism, so (Z ′, s′, f ′) ∼ (Z, s, f).

Finally, suppose (Z, s, f) ∼ (Z ′, s′, f ′) and (Z ′, s′, f ′) ∼ (Z ′′, s′′, f ′′); in other words
that the following diagram commutes (with r, p ∈ S):

W
r

~~

h

  

W ′

p

}}

i

!!
Z

s
��

f

++

Z ′

s′

vv

f ′

((

Z ′′s′′

ss

f ′′

��
X Y

We are aiming to prove that (Z, s, f) ∼ (Z ′′, s′′, f ′′) in order to show that the relation is
transitive. Consider the completion of the diagram

W ′

s′p
��

into

U
k //

u
��

W ′

s′p
��

W
sr // X W

sr // X

We know that s′hu = sru = s′pk, and so there must exist a morphism x : U ′ → U
such that x ∈ S and hux = pkx. Setting t = rux and g = ikx we see that

st = srux = s′pkx = s′′ikx = s′′g

and ft = frux = f ′hux = f ′pkx = f ′′ikx = f ′′g.

This means that the following diagram commutes

U ′

t

~~

g

!!
Z

s

�� f
**

Z ′′

s′′
tt

f ′′

  
X Y

and (Z, s, f) ∼ (Z ′′, s′′, f ′′).

Lemma 2.7. The composition of morphisms in CS is well-defined with respect to the
equivalence relation ∼.

Proof. We divide this proof into two parts. First we show that two different compositions
of the same two morphisms must be equivalent. Then we show that if the factors of two
compositions are different but pairwise equivalent, then the compositions are equivalent
as well.
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First, suppose that we have two morphisms

U
s

~~

f

  

V
t

~~

g

��
X Y Y Z

Furthermore, suppose that the two following are both valid compositions of the
morphisms:

W
r

~~

h

  

W ′

r′

~~

h′

  
U

s

~~

f

  

V
t

~~

g

��

U
s

~~

f

!!

V
t

}}

g

��
X Y Z X Y Z

We know that there exists an object T and morphisms x, y so that the following
diagram commutes

T
y //

x
��

W ′

r′

��
W

r // V

Both r and r′ are in S, so we can select either x ∈ S or y ∈ S. We choose the former.
Since rx = r′y we have that thx = frx = fr′y = th′y. Using axiom S4 we see that there
exists a morphism w : T → T ′, w ∈ S so that hxw = h′yw. Setting u = xw and v = yw
we see that u ∈ S and that the following diagram commutes.

T ′

u

~~

v

!!
W

sr

~~ gh
**

W ′

sr′
tt

gh′

  
X Z

Therefore the two compositions are equivalent.

Next we want to show that if

U
s

~~

f

��
∼

U ′

s′

~~

f ′

  
X Y X Y
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and
V

t

��

g

��
∼

V ′

t′

~~

g′

  
Y Z Y Z

then it holds that

(V, t, g)(U, s, f) = (W, sr, gh) ∼ (W ′, s′r′, g′h′) = (V ′, t′, g′)(U ′, s′, f ′).

To simplify this task we look at one factor of the composition at a time. Assume
V = V ′, t = t′ and g = g′. By (U, s, f) ∼ (U ′, s′, f ′) we know that there must exist a
morphism (A, a, a′) so that the following diagram commutes:

A
a

��

a′

  
U

s

~~ f
**

U ′

s′
tt

f ′

  
X Y

Using axiom S3 several times we arrive at the following commutative diagram:

B
x∈S //

b

��

W
r

}}

h

!!
U

s
��

f

!!

V

t}}

g

��
C

y∈S

GG

y′

��

A

a∈S >>

a′   

X Y Z

U ′

s′

OO

f ′

==

V

t

``

g

??

B

b′∈S

OO

x′
//W ′

r′

aa

h′

>>

Chasing the arrows, we get that srxy = s′r′x′y′ and ghxy = gh′x′y′. Thus we have
confirmed the equivalence (W, sr, gh) ∼ (W ′, s′r′, gh′).

Next suppose instead that U = U ′, s = s′ and f = f ′. By (V, t, g) ∼ (V ′, t′, g′), we
know that there exists a morphism (A, a, a′) so that the following diagram commutes:

A
a

��

a′

  
V

t

~~ g

**

V ′

t′
tt

g′

  
X Y
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As t′a′ = ta ∈ S, we know that there must exist an object B′′ with morphisms so
that the following diagram commutes:

B′′
u //

v
��

A

t′a′

��
W ′

t′h′ // Y

Note that v ∈ S. As t′a′u = t′h′v and t ∈ S, we can find a morphism B′
w−→ B′′ in S so

that a′uw = h′vw. For the sake of clarity we set x′ = vw and b′ = uw. Let B be the
completion

B
b //

x
��

A

a
��

W ′
h // Y

where x ∈ S because a ∈ S. Let C ′ be the completion

C ′
u //

u′

��

B

rx
��

B′
r′x′ // U

We see that
tabu = thxu = frxu = fr′x′u′ = th′x′u = t′a′b′u′.

Again, as t′a′ = ta ∈ S we get that there exists a morphism C
v−→ C ′ ∈ S so that

buv = b′u′v. Setting y = uv and y′ = u′v′ we get the following commutative diagram:

W
r

}}

h

!!

B
x∈Soo

b

��

U
s

~~

f

!!

V
t

}}
g

��
X Y Z A

a∈S
aa

a′

~~

C

y∈S

XX

y′

��

U

s

``

f

>>

V ′
t′

aa

g′

OO

W ′
r′

``

h′

==

B′
x′

oo

b′

OO

We see that srxy = s′r′x′y′, and also ghxy = g′h′x′y′. Thus (W, sr, gh) ∼ (W, sr′, g′h′).
Thus it follows that for two pairs of equivalent (and compatible) morphisms so that

(U, s, f) ∼ (U ′, s′, f ′) and (V, t, g) ∼ (V ′, t′, g′) it holds that

(W, sr, gh) = (V, t, g)(U, s, f) ∼(V, t, g)(U ′, s′, f ′)

∼(V ′, t′, g′)(U ′, s′, f ′) = (W ′, s′r′, g′h′).
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Thus the composition of two roofs is well-defined with respect to the equivalence relation
on CS .

Theorem 2.8. In definition 2.5, the given CS is a category, and there exists a functor
C → CS so that the two form a localization of C with respect to S.

Proof. To see that CS is a category, we really only need to check the axioms on the
morphisms. That identities exist in CS is obvious; for X ∈ Ob(CS) the morphism
(X, idX , idX) is the identity.

Next we consider associativity. Suppose that we have three morphisms (U, r, f) :
X → Y , (V, s, g) : Y → Z and (W, t, h) : Z → Z ′. We need to show that

((W, t, h)(V, s, g))(U, r, f) = (W, t, h)((V, s, g)(U, r, f)),

which means that for the two diagrams

B
b

~~ b′

  

A
a

~~

a′

  
U

r

~~

f

��

V
s

�� g
��

W
t

~~

h

  
X Y Z Z ′

and

D

d

~~

d′

  
C

c

~~

c′

  
U

r

~~

f

��

V
s

�� g
��

W
t

~~

h

  
X Y Z Z ′

which give the two possible compositions of the morphisms, it holds that

(B, rab, hb′) ∼ (D, rd, hc′d′).

As both (D, rd, gcd′) and (A, ra, ga′) are compositions of (U, r, f) and (V, s, g), we see
that (D, rd, gcd′) ∼ (A, ra, ga′). Thus there must exist a morphism (E, e, e′) : A→ D so

that ga′e = gcd′e′ = tc′d′e′. Using axiom S3 on the morphisms B
ab−→ U and D

d−→ U , we



2.3 Multiplicative systems and roofs 15

see that there exists an object X and morphisms u and u′ so that the following diagram
commutes:

X

u
��

u′ // D

d
��

B
ab
// U

We choose u ∈ S (as both ab and d are in S, we are free to chose). We see that

abu = du′

fabu = fdu′

sa′bu = scd′u′

a′bv = cdv′

ga′bv = gcdv

tb′v = tc′d′v′

b′w = c′d′w′.

The morphisms v, v′, w and w′ are defined using axiom S4. We see that rabw = rdw′

and hb′w = hc′d′w′. Thus the morphisms (B, rab, hb′) and (D, rd, hc′d′) are equivalent,
composition of morphisms is an associative operation and CS is a category.

We define the functor F : C → CS on objects by letting F (X) = X for X ∈ Ob(C).
For a morphism f ∈ HomC(X,Y ) we set F (f) = (X, idX , f). Then

F (idX) = (X, idX , idX),

which is the identity on F (X) and for two morphisms f : X → Y and g : Y → Z it
holds that

F (gf) = (X, idX , fg) = (Y, idX , g)(X, idX , f) = F (g)F (f).

Thus F is a functor.
Finally, we need to verify that CS and F is a localization of C with respect to S. If

X
s−→ Y ∈ S, then the morphism (X, s, idX) is a two-sided inverse of F (s) = (X, idX , s),

so F (s) is an isomorphism. It remains to check that F is universal.
Suppose that G : C → D is a functor so that G(s) is an isomorphism for any s ∈ S.

We need a functor H : CS → D so that G = HF , and we define it by looking at the
requirements set for it.

• For X ∈ Ob(C) we must have G(X) = HF (X) = H(X), as F (X) = X.

• For (Z, s, f) ∈ HomCS (X,Y ), we have that

(Z, s, f)(Z, idZ , s) = (Z, idZ , f)

H((Z, s, f)(Z, idZ , s)) = H(Z, idZ , f)

H(Z, s, f)G(s) = H(Z, s, f)HF (s) = HF (f) = G(f)

We see that we must have H(Z, s, f) = G(f)G(s)−1.
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The given H is a well-defined functor from CS to D, and we also see that it is unique
(the definition of H follows from the requirements on any such functor). It remains to
check that H is a functor. That H maps identities to identities is easy to see. Letting
(Y, t, g)(X, s, f) = (Z, sr, gh) be a composition of morphism in CS , we see that

H((Y, t, g)(X, s, f)) = H(Z, sr, gh)

= G(gh)G(sr)−1

= G(g)G(h)G(r)−1G(s)−1

= G(g)G(t)−1G(t)G(h)G(r)−1G(s)−1

= G(g)G(t)−1G(f)G(r)G(r)−1G(s)−1

= G(g)G(t)−1G(f)G(s)−1

= H(Y, t, g)H(X, s, f).

Thus H respects composition, and is a functor.

We show that this localization by multiplicative systems preserves addition. This is
an important property of localization by a multiplicative systems; in contrast to Gabriel-
Zisman localization which generally does not preserve addition.

Theorem 2.9. [5, ch. III.4.5] Let C be an additive category and let S be a multiplicative
system. Then CS is additive, and the localization functor F : C → CS is an additive
functor3.

Proof. We prove the theorem by construction; we will first infer a reasonable definition
of the addition operation on CS and then prove that this operation makes CS additive
and F an additive functor

Since we want F to be additive, we start by noting that for two morphisms f, g ∈
HomC(X,Y ) we need

(X, idX , f) + (X, idX , g) = F (f) + F (g) = F (f + g) = (X, idX , f + g).

We extend this for two morphisms (U, s, f), (U, s, g) ∈ HomCS (X,Y ) by defining
(U, s, f) + (U, s, g) = (U, s, f + g). To see that this is well-defined, suppose (U, s, f) ∼
(V, t, f ′) by the roof (W,u, u′) and (U, s, g) ∼ (V, t, g′) by the roof (Z, v, v′). We can find
the following square completions

T
w′ //

w
��

Z

v
��

W
u // U

S
x′ //

x
��

Z

v′

��
W

u′ // U

R
y′ //

y

��

S

x
��

T
w //W

3A functor that acts as a group homomorphism on the Hom-sets; see definition 3.2
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where w, x, y ∈ S. Obviously,

suwy = tu′wy = tu′xy′ = tv′x′y′

and moreover,

(f + g)uwy = (f + g)uxy′ = f ′u′xy′ + gvx′y = (f ′ + g′)v′x′y′.

Thus (U, s, f + g) ∼ (V, t, f ′ + g′) and addition is well-defined.
Suppose we have (U, s, f), (V, r, g) ∈ HomCS (X,Y ), and let (W,p, q) be the roof

defined by the following completion:

W
q //

p

��

V

t
��

U
s // X

Define r = sp = tq; then r ∈ S. Moreover, define f ′ = fp and g′ = gq. It follows that
(U, s, f) ∼ (W, r, f ′) and (V, t, g) ∼ (W, r, g′), so we can define

(U, s, f) + (V, t, g) = (W, r, f ′) + (W, r, g′) = (W, r, f ′ + g′).

For CS to be additive under this operation, we need to show that HomCS (X,Y ) is an
abelian group. We start by showing that addition is associative:

((U, s, f) + (V, t, g)) + (W, r, h) = ((R, x, f ′) + (R, x, g′)) + (R, x, h′)

= (R, x, (f ′ + g′) + h′) = (R, x, f ′ + (g′ + h′))

= (U, s, f) + ((V, t, g) + (W, r, h))

We see that (X, idX , 0) is the zero element for the operation, and that (U, s, f) ∈
HomCS (X,Y ) has an inverse (U, s,−f) ∈ HomCS (X,Y ). Commutativity follows from
commutativity of + in C. Thus HomCS (X,Y ) is an abelian group.

That composition is bilinear and that finite direct sums exist follows from the addi-
tivity of C in a similar manner. Thus CS is an additive category. Moreover, the function
F : HomC(X,Y ) → HomCS (X,Y ), obtained from the localization functor F is a group
homomorphism, so the localization functor is an additive functor.

3 Localization of a triangulated category

Many convenient structures arise when a category is abelian; the most important is
perhaps the exact sequence. Sometimes when we are working in an additive category,
we can mimic the exact sequence even if our category is not abelian; namely by defining
distinguished triangles. We will use it in section 4 when studying the homotopy category
in order to find the derived category. More specifically we will use the fact, shown in
section 3.2, that the structure of distinguished triangles makes it possible to define
a multiplicative system from a collection of objects. More literature on triangulated
categories can be found in [9] and [10].
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3.1 Triangulated categories

Let C be a category, and let Σ be a functor C Σ−→ C which is an equivalence of categories
(or simply an ”equivalence”). A triangle in C is defined as a sequence of maps

X
α−→ Y

β−→ Z
γ−→ Σ(X).

A morphism between two triangles X
α−→ Y

β−→ Z
γ−→ Σ(X) and X ′

α′−→ Y ′
β′−→ Z ′

γ′−→
Σ(X ′) is a triple of maps (φX , φY , φZ) so that the following diagram commutes:

X
α //

φX
��

Y
β //

φY
��

Z
γ //

φZ
��

Σ(X)

ΣφX
��

X ′
α′ // Y ′

β′ // Z ′
γ′ // Σ(X ′)

If all three morphisms φX , φY and φZ are isomorphisms, this is known as an isomorphism
of triangles.

We are now ready to give the definition of a triangulated category.

Definition 3.1. Let C be an additive category, and let Σ be an equivalence C Σ−→ C.
Then C is know as a triangulated category if there exists a family of triangles, called
distinguished triangles, satisfying the following conditions:

T1 Any triangle isomorphic to a distinguished triangle is distinguished.

T2 For any X ∈ Ob(C), the triangle X
idX−−→ X → 0→ Σ(X) is distinguished.

T3 For any X,Y ∈ Ob(C) and any morphism f ∈ Hom(X,Y ), there exists a distin-

guished triangle X
f−→ Y → Z → Σ(X).

T4 The triangle X
α−→ Y

β−→ Z
γ−→ Σ(X) is distinguished if and only if Y

β−→ Z
γ−→

Σ(X)
−Σα−−−→ Σ(Y ) is distinguished.

T5 A commutative diagram

X
f //

u
��

Y

v
��

X ′
f ′ // Y ′

can be embedded in a morphism of distinguished triangles as follows4:

X
f //

u

��

Y

v

��

// Z //

��

Σ(X)

Σ(u)
��

X ′
f ′ // Y ′ // Z ′ // Σ(X ′)

4The existence of the distinguished triangles themselves is given by axiom T3
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T6 Given the following distinguished triangles:

X
f // Y // Z ′ // Σ(X)

Y
g // Z // X ′ // Σ(Y )

X
gf // Z // Y ′ // Σ(X)

there exists a distinguished triangle Z ′ → Y ′ → X ′ → Σ(Z ′) so that the following
diagram commutes:

X
f //

idX
��

Y //

g

��

Z ′ //

��

Σ(X)

idΣ(X)

��
X

gf //

f

��

Z //

idZ
��

Y ′ //

��

Σ(X)

Σf

��
Y

g //

��

Z //

��

X ′ //

idX′
��

Σ(Y )

��
Z ′ // Y ′ // X ′ // Σ(Z ′)

In a triangulated category, the functor Σ is often called the translation or suspension
functor.

In the following discussion, we will need some restrictions on the functors we use.
The first one is to preserve additivity.

Definition 3.2. A functor between additive categories, F : C → C′ is called additive if
it acts as a group homomorphism from HomC(X,Y ) to HomC′(F (X), F (Y )).

One example of an additive functor is the covariant hom-functor HomC(X,−) (the
contravariant Hom-functor, HomC(−, X), is additive as well).

Note that if the functor F is additive, then F (X ⊕ Y ) = F (X)⊕ F (Y ).
The second type of functors we define preserves distinguished triangles.

Definition 3.3. Let C and C′ be two triangulated categories with Σ and Σ′ their re-
spective equivalences. An additive functor F : C → C′ is called a functor of triangulated
categories if FΣ = Σ′F and F maps distinguished triangles to distinguished triangles.

The last type of functors does not preserve triangles, but transforms them into exact
sequences. However, as it can be argued that the distinguished triangles in a triangulated
category serve a function analogous to that of exact sequences in abelian categories, we
could see these functors as preserving this role.
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Definition 3.4. Let C be a triangulated category, and let A be an abelian category. A
functor F : C → A is called a cohomological functor if for any distinguished triangle

X
f−→ Y

g−→ Z → Σ(X)

in C, the sequence

F (X)
F (f)−−−→ F (Y )

F (g)−−−→ F (Z)

is exact in A.

Note that due to T4, we actually get a long exact sequence

· · · → F (Z[−1])→ F (X)→ F (Y )→ F (Z)→ F (X[1])→ · · ·

We now give a classic example of a cohomological functor, which leads to a rather useful
theorem.

Example 3.5. Let C be a triangulated category, letW ∈ Ob(C), and consider the functor
HomC(W,−). As C is triangulated, it is also additive, so its Hom-sets are abelian groups.
Thus HomC(W,−) is a functor into the category of abelian groups, Ab, which is certainly
an abelian category.

Let X
f−→ Y

g−→ Z → Σ(X) be a distinguished triangle in C. We need to study the
following sequence:

HomC(W,X)
HomC(W,f)−−−−−−−→ HomC(W,Y )

HomC(W,g)−−−−−−−→ HomC(W,Z)

As the square

X
idX //

idX
��

X

f
��

X
f // Y

commutes, it can be embedded in a morphism of triangles as follows:

X
idX //

idX
��

X //

f

��

0 //

��

Σ(X)

idΣ(X)

��
X

f // Y
g // Z // Σ(X)

Thus gf = 0, and also HomC(W, g) HomC(W, f) = 0, so

Im(HomC(W, f)) ⊆ Ker(HomC(W, g)).

Since we are working in Ab, we can prove the reverse inclusion just by looking at
elements. Let φ ∈ Ker(HomC(W, g)) ⊆ HomC(W,Y ); then gφ = 0. Since the following
square commutes,

W //

φ
��

0

��
Y

g // X



3.1 Triangulated categories 21

it can be embedded in a morphism of triangles as follows:

W
idW //

ψ

��

W //

φ

��

0 //

��

Σ(W )

Σ(ψ)

��
X

f // Y
g // Z // Σ(X)

As φ = fψ ∈ Im(HomC(W, f)), it follows that Ker(HomC(W, g)) ⊆ Im(HomC(W, f)),
and HomC(W,−) is a cohomological functor.

It can be shown that HomC(−,W ) is a cohomological functor as well.

The following theorem turns our attention back to the internal workings of the tri-
angulated category.

Theorem 3.6. Let

X //

φ
��

Y //

ψ
��

Z //

θ
��

Σ(X)

Σ(φ)
��

X ′ // Y ′ // Z ′ // Σ(X ′)

be a morphism of triangles in a triangulated category C. If φ and ψ are isomorphisms,
then so is θ.

Proof. As we know that Hom(Z,−) is cohomological, we also know that the following
commutative diagram has exact rows:

Hom(Z ′, X) //

Hom(Z′,φ)
��

Hom(Z ′, Y ) //

Hom(Z′,ψ)
��

Hom(Z ′, Z) //

Hom(Z′,θ)
��

Hom(Z ′,Σ(X)) //

Hom(Z′,Σ(φ))
��

Hom(Z ′,Σ(Y ))

Hom(Z′,Σ(ψ))
��

Hom(Z ′, X ′) // Hom(Z ′, Y ′) // Hom(Z ′, Z ′) // Hom(Z ′,Σ(X ′)) // Hom(Z ′,Σ(Y ))

By the five lemma (lemma A.1), the fact that Hom(Z ′, φ), Hom(Z ′, ψ), Hom(Z ′,Σ(φ))
and Hom(Z ′,Σ(ψ)) are isomorphisms implies that Hom(Z ′, θ) is an isomorphism. Par-
ticularly, is is surjective (and HomC(X,Y ) is a set), so there exists a morphism u ∈
Hom(Z ′, Z) so that θu = idZ′ ∈ Hom(Z ′, Z ′). Unfortunately, so far we only know that u
is a right inverse of θ. However, if we redo the above proof with the following morphism
of triangles

X ′ //

φ−1

��

Y ′ //

ψ−1

��

Z ′ //

u

��

Σ(X ′)

Σ(φ)−1

��
X // Y // Z // Σ(X)

we see that u has a right inverse v so that uv = idZ . Since θ is a left inverse of u it follows
that u is an isomorphism, which means that v = θ, and so θ is an isomorphism.
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It may seem cumbersome to use cohomological functors to prove a property that is
intrinsic to triangulated categories, but the only thing it is used for is to show a sequence
of homomorphism groups to be exact. We could have shown the result without using
the cohomological property but the proof would not have been as elegant.

3.2 Localization by a null system

So far, when we have studied localization it has been done by a class of morphisms
(typically called S). However, we might prefer to consider a class of objects instead, and
by the process of localization set the objects isomorphic to the zero object. The name
for such a class is a null system.

Definition 3.7. Let C be a category triangulated with respect to the equivalence Σ :
C → C. A subclass N of Ob(C) is called a null system if:

N1 0 ∈ N .

N2 X ∈ N if and only if Σ(X) ∈ N .

N3 If X,Y ∈ N and X → Y → Z → Σ(X) is a distinguished triangle, then Z ∈ N .

Having a null system, we can define a multiplicative system.

Theorem 3.8. Let N be a null system in the triangulated category C. Define the class
of morphisms S(N) by

S(N) = {f : X → Y | ∃ a distinguished triangle X
f−→ Y → Z → Σ(X) with Z ∈ S}.

Then S(N) is a multiplicative system.

Proof. We will prove the theorem by checking the conditions of definition 2.3 in order.

S1 For any X ∈ Ob C we know that idX can be embedded in a distinguished triangle

X
idX−−→ X → 0→ Σ(X). As 0 ∈ N , it follows that idX ∈ S(N)

S2 Suppose f : X → Y and g : Y → Z are both elements in S(N), in other words
that there exists distinguished triangles

X
f−→ Y → Z ′ → Σ(X) and Y

g−→ Z → X ′ → Σ(Y )

with X ′, Z ′ ∈ N . From axiom T3 of triangulated categories we know that there

exists a distinguished triangle X
gf−→ Z → Y ′ → Σ(X). Then by T6 there must

exist a distinguished triangle Z ′ → Y ′ → X ′ → Σ(Z ′). Applying T4 twice we see
that the triangle X ′ → Σ(Z ′) → Σ(Y ′) → Σ(X ′) is distinguished. Then we know
that Σ(Y ′) ∈ N and thus we have Y ′ ∈ N . It follows that gf ∈ S(N).
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S3 Suppose there exist morphisms f : X → Y and x : Z → Y with f ∈ S(N). Then

we know that there exists a distinguished triangle X
f−→ Y

k−→ Z ′ → Σ(X), with
Z ′ ∈ N . From T3 and T4 it follows that there exists a distinguished triangle

W
g−→ Z

kx−→ Z ′ → Σ(W ). As the following diagram is commutative

Z
kx //

x
��

Z ′

idZ′
��

Y
k // Z ′

it can be embedded in a morphism of distinguished triangles in the following man-
ner:

Z
kx //

x

��

Z ′ //

idZ′
��

Σ(W )
Σ(g) //

Σ(y)

��

Σ(Z)

Σ(x)

��
Y

k // Z ′ // Σ(X)
Σ(f) // Σ(Y )

Using axiom T4 to shift the diagram, we see that this ensures that the following
is a morphism of distinguished triangles:

W
g //

y

��

Z
kx //

x

��

Z ′ //

��

Σ(W )

��
X

f // Y
k // Z ′ // Σ(X)

Since Z ′ ∈ N we have that g ∈ S(N), and the axiom is satisfied.

S4 First note that in an additive category this axiom is equivalent to saying that if
sf = 0 with s ∈ S, then there exists t ∈ S such that ft = 0 (and vice versa).

Therefore we suppose that for a morphism f : Y → Z there exists an s ∈ S(N) such
that sf = 0. Then, by the definition of S(N) and T4 there exists a distinguished

triangle Z
g−→ Y

s−→ Y ′ → Σ(Z), where Z ∈ N . As the diagram

X //

f
��

0

��
Y

s // Y ′

commutes, it can be embedded in a morphism of distinguished triangles as follows:

X
idX //

h

��

X

f

��

// 0 //

��

Σ(X)

��
Z

g // Y
s // Y ′ // Σ(Z)
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By T3 and T4, there exists a distinguished triangle W
t−→ X

h−→ Z → Σ(W ). Note
that since Z ∈ N we must have t ∈ S(N). Knowing that the diagram

X
h //

f
��

Z

g

��
Y

idY // Y

commutes, we embed it in the following morphism of triangles:

W
t //

��

X
h //

f
��

Z //

g

��

Σ(U)

��
0 // Y

idY // Y // 0

It follows that ft = 0. The reverse implication is proved in a highly similar manner.

To know that we can define a multiplicative system S(N) from the null system N
is not as interesting as to know that we have found the right one; in other words that
localization by S(N) preserves triangulation (since C is triangulated) and takes elements
of N to zero. Perhaps most importantly, we want to check that the localization is
universal.

Theorem 3.9. Let C be a triangulated category and N a null system in C. Then we
know that

(i) The localization of C by S(N), written C/N , is triangulated. Moreover the local-
ization functor F : C → C/N is a functor between triangulated categories.

(ii) F (X) ∼= 0 for any X ∈ N .

(iii) The localization functor is universal among triangulated functors that have the
above property.

Proof. (i) Suppose C is triangulated with respect to the equivalence functor Σ. By
theorem 2.9, the category C/N must be additive. We define the functor ΣC/N :
C/N → C/N by setting ΣC/N (X) = Σ(X) for an object X ∈ Ob(C/N) = Ob(C),
and setting ΣC/N (X, s, f) = (Σ(X),Σ(s),Σ(f)) for a morphism (X, s, f) : Y → Z.
To show that the latter is well-defined note first that since Σ is a functor we know
that ΣC/N (X, s, f) is a morphism ΣC/N (Y ) → ΣC/N (Z). It remains to check that
ΣC/N will map two equivalent morphisms to the same equivalence class. Since Σ
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is a functor, if this diagram commutes

U
u

~~

v

  
X

f

~~

s

**

X ′

t

tt

g

  
Y Z

then so does this:

Σ(U)
Σ(u)

{{

Σ(v)

$$
Σ(X)

Σ(f)

{{

Σ(s)

++

Σ(X ′)
Σ(t)

ss

Σ(g)

##
Σ(Y ) Σ(Z)

The latter gives an equivalence between the image of two equivalent morphisms.
Thus ΣC/N is well-defined as a map. That it is a functor and furthermore an
equivalence of categories follows directly from the that fact Σ is. Moreover we see
that FΣ = ΣC/NF . We will denote ΣC/N as simply Σ when there is no risk of
confusion.

Let a triangle in C/N be distinguished if and only if it is isomorphic to the image
of a distinguished triangle in C. We check that the triangle axioms are satisfied:

T1 Follows from the definition of distinguished triangles in C/N .

T2 Suppose X ∈ Ob(C/N) = Ob(C). The triangle X
(X,idX ,idX)−−−−−−−→ X → 0→ Σ(X)

is isomorphic (by the identity isomorphism) to F (X)
F (idX)−−−−→ F (X) → 0 →

Σ(X) and is thus distinguished.

T3 Suppose (U, s, f) : X → Y is a morphism in C/N . We know that (U, s, idU )
is an isomorphism (because (U, idU , s) is its inverse). Consider the following
morphism of triangles:

X
(U,s,f)//

(U,s,idU )

��

Y //

idY
��

Z //

idZ
��

Σ(X)

Σ(U,s,idU )

��
U

(U,idU ,f)
// Y // Z // Σ(U)

As the diagram shows an isomorphism of triangles, and the lower triangle is
the image of a distinguished triangle (the embedding of f in a triangle), the
upper triangle is distinguished as well.
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T4 Suppose X
φ−→ Y

ψ−→ Z
θ−→ Σ(X) is a distinguished triangle in C/N . This is

true if and only if it is isomorphic to the image of a distinguished triangle

X ′
φ′−→ Y ′

ψ′−→ Z ′
θ′−→ Σ(X ′) in C. This triangle is distinguished if and only

if Y ′
ψ′−→ Z ′

θ′−→ Σ(X ′)
Σ(φ′)−−−→ Σ(Y ′) is distinguished. However, the image of

this triangle is isomorphic to Y
ψ−→ Z

θ−→ Σ(X)
Σ(φ)−−−→ Σ(Y ), which must be

distinguished.

T5 and T6 follows from image chasing proofs similar to the one for T4.

We have already seen that FΣ = ΣC/NF , and the image of a distinguished triangle
in C is obviously distinguished, so F is a functor between triangulated categories.

(ii) Consider X ∈ N . The triangle X
idX−−→ X → 0 → Σ(X) is distinguished in C. So

must X → 0 → Σ(X) → Σ(X) be. Thus the morphism X → 0 is in S(N). Its
image will be an isomorphism in C/N and thus F (X) ∼= 0.

(iii) Suppose G : C → C′ is a functor between triangulated categories so that G(X) ∼= 0
for all X ∈ N . Suppose f ∈ S(N), then there exists a distinguished triangle

X
f−→ Y → Z → Σ(X) in C where Z ∈ N . The functor G maps this to the

distinguished triangle G(X)
G(f)−−−→ G(Y ) → 0 → Σ(G(X)) (we have used the fact

that G(Z) ∼= 0 and GΣ = Σ′G).

It is trivial to see that the following square commutes:

G(Y ) //

idG(Y )

��

0

��
G(Y ) // 0

Furthermore we can embed it in a morphism of distinguished triangles in C′ as
follows:

G(Y )
idG(Y ) //

f∗

��

G(Y ) //

idG(Y )

��

0 //

��

Σ′G(Y )

��
G(X)

G(f) // G(Y ) // 0 // Σ′G(X)

G(f)f∗ = idY , so f∗ is a left-sided inverse of G(f). Symmetrically we can find the
following morphism of distinguished triangles:

G(X)
G(f) //

idG(X)

��

G(Y ) //

f∗∗

��

0 //

��

Σ′G(X)

��
G(X)

idG(X)// G(X) // 0 // Σ′G(Y )

which gives f∗∗, a right sided inverse of G(f). Thus G(f) is an isomorphism.
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Since we have shown that G takes elements of S(N) to isomorphisms we know, by
the universality of F , that there exists a functor H : C/N → C′ so that G = HF .

4 Derived categories

In [8], we started out studying abelian categories, and moved on to categories of com-
plexes and the homotopy category. This was done in order to define the derived category,
which we will do in this section. The plan for this construction can be summarized as
follows:

C → C(C)→ K(C)→ D(C)

We start in an abelian category C, and form the category of complexes, C(C), where the
objects are long sequences of the form

X : · · · → Xn−1 dn−1
X−−−→ Xn dnX−−→ Xn+1 → · · ·

with dnXd
n−1
X = 0 for all n. We constructed the homotopy category K(C) by creating

an equivalence relation on the Hom-sets of C(C) where f ∼ g if and only if f was
homotopic to g. Finally, we studied the homotopy functor Hn : K(C) → C, defined by
setting Hn(X) = Ker(dnX)/ Im(dnX).

Now we will pick up this thread and use Hn to define a multiplicative system in
K(C). Localizing by this system will give us D(C). However, we would like to use a null
system for this purpose, so we have to start by showing the homotopy category to be
triangulated.

4.1 Triangulation of K(C)

Let C be an abelian category. We will now show that the homotopy category K(C)
(which is additive) is triangulated.

Let Σ : K(C)→ K(C) be the map taking the complex X ∈ K(C) to the complex Σ(X)
where Σ(X)n = Xn−1 and dnΣ(X) = −dn−1

X . The map works on morphisms of complexes

by shifting their respective elements in the same manner; if φ ∈ HomK(C)(X,Y ) then we
set

{Σ(X)n
Σ(φ)n−−−−→ Σ(Y )n} = {Xn+1 Σ(φ)n−−−−→ Y n+1} = {Xn+1 φn+1

−−−→ Y n+1}.

To check that this is well-defined in the homotopy category, it is enough to check
that if a map φ : X → Y is homotopic to zero, say by the collection (pn)n∈Z, then Σ(φ)
is homotopic to zero as well. This is shown by the fact that

Σ(φ)n = φn+1 = dnY p
n+1 + pn+2dn+1

X = dn−1
Σ(Y )q

n + qn+1dnΣ(X),

where qn = pn+1. It is easy to see that Σ is a functor and an equivalence of categories.
We call this functor the shift functor, and typically write Σ(X) as X[1]. Extending the
notation, we set X[n] = Σn[X] for a natural number n.
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This gives us the required suspension functor on K(C), but to proceed with defining
its triangles we also need the notion of a mapping cone. Let φ : X → Y be a morphism
of complexes; its mapping cone is the complex M(X) where M(X)n = Xn+1 ⊕ Y n and

dnM(X) =
(
−dn+1

X 0

φn+1 dnY

)
. As

dn+1
Z dnZ =

(
−dn+2

X 0

φn+2 dn+1
Y

)
·
(
−dn+1

X 0
φn+1 dnY

)
=

(
dn+2
X dn+1

X 0

−φn+2dn+1
X + dn+1

Y φn+1 dn+1
Y dnY

)
=

(
0 0
0 0

)
,

the mapping cone M(X) is a complex. We define maps Y
αf−→M(f) and M(f)

βf−→ X[1]
by setting αnf =

(
0

idY n

)
and βnf = ( idXn+1 0 ). These maps are well-defined in K(C). If g

is homotopic to f , it has the same domain and range as f , so M(g) = M(f), αg = αf
and βg = βf .

Theorem 4.1. [9, 1.4.4] Let the distinguished triangles of K(C) be the triangles isomor-
phic to a triangle

X
f−→ Y

αf−→M(X)
βf−→ X[1]

for some X,Y ∈ Ob(K(C)) and some f ∈ HomK(C)(X,Y ). The category K(C) is trian-
gulated with respect to this family of distinguished triangles.

Proof. We consider the conditions of definition 3.1, but out of order.

T1 Follows from the definition of the distinguished triangles in K(C).

T3 Follows from the definition of the distinguished triangles in K(C).

T4 We will only show one direction. Suppose that the triangle X
f−→ Y

g−→ Z
h−→ X[1]

is distinguished. We want to show that the triangle Y
g−→ Z

h−→ X[1]
−f [1]−−−→ Y [1]

is distinguished as well. We can assume that Zn = Mn(f) as the triangle is
isomorphic to a triangle where this is true.

We know that there exists a distinguished triangle Y
g−→ Z

αg−→ M(g)
βg−→ Y [1],

and that by definition M(g)n = Y n+1 ⊕ Zn = Y n+1 ⊕Xn+1 ⊕ Y n. We define the

map φ : X[1] → M(g) by φn =

(
−fn+1

idn+1
X
0

)
, and the map ψ : M(g) → X[1] by

ψn = ( 0 idn+1
X 0 ). It can be checked that φ and ψ are morphisms of complexes. We

see that

ψnφn =
(
0 idn+1

X 0
)−fn+1

idn+1
X

0

 = idn+1
X ,

so the morphisms ψ and φ are at the very least one-sided inverses of each other,
but

φnψn =

−fn+1

idn+1
X

0

(0 idn+1
X 0

)
=

0 −fn+1 0

0 idn+1
X 0

0 0 0


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tells us that we have got to do work to in order to show that they are two-sided
inverses. We know that

idnM(g) =

idn+1
Y 0 0

0 idn+1
X 0

0 0 idnY

 .

Setting sn =
(

0 0 idnY
0 0 0
0 0 0

)
, we get

sn+1dnM(g) + dn−1
M(g)s

n =

=

0 0 idn+1
Y

0 0 0
0 0 0

−dn+1
Y 0 0

0 −dn+1
X 0

idn+1
Y fn+1 dnY

+

−dnY 0 0
0 −dnX 0

idnY fn dn−1
Y

0 0 idnY
0 0 0
0 0 0


=

idn+1
Y fn+1 dnY
0 0 0
0 0 0

0 0 −dnY
0 0 0
0 0 idnY


=

idn+1
Y fn+1 0
0 0 0
0 0 idnY


= idnM(g)−φ

nψn,

which means that φψ is homotopic to idM(g), and so φψ = idM(g) in K(C). This
means that φ is an isomorphism (and so is ψ). Consider the following diagram:

Y
g //

idY
��

Z
h //

idZ
��

X[1]
−f [1] //

φ
��

Y [1]

idY [1]

��
Y g

// Z αg
//M(g)

βg
// Y [1]

It can be checked that the diagram commutes. As each of the downward maps
is an isomorphism we see that (idY , idZ , φ) is an isomorphism of triangles, and so

Y
g−→ Z

h−→ X[1]
−f [1]−−−→ Y [1] is distinguished.

T2 For X ∈ K(C), there exists a map 0
0−→ X. Given that M(0)=X, the triangle

0 → X
idX−−→ X → 0 is distinguished, and then by T4 the triangle X

idX−−→ X →
0→ X[1] is distinguished.

T5 As all distinguished triangles are isomorphic to one of the form X
f−→ Y

αf−→
M(f)

βf−→ X[1], we will assume that we are dealing with two such triangles, namely

X
f−→ Y

αf−→M(f)
βf−→ X[1] and X̄

f̄−→ Ȳ
αf̄−→M(f̄)

βf̄−→ X̄[1]. We also assume that
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there exists morphisms u : X → X̄ and v : Y → Ȳ so that the following diagram
commutes:

X
f //

u
��

Y

v
��

X̄
f̄ // Ȳ

As we are working in K(C), this means that there exist maps sn : Xn → Ȳ n−1

so that vnfn − f̄nun = sn+1dnX + dn−1
Ȳ

sn. Define w : M(f) → M(f̄) by letting

wn =
(
un+1 0
sn+1 vn

)
(remember that M(f) = Xn+1 ⊕ Y n). We see that

dnM(f̄)w
n =

(
−dn+1

X̄
0

f̄n+1 dn
Ȳ

)(
un+1 0
sn+1 vn

)
=

(
−dn+1

X̄
un+1 0

f̄n+1un+1 + dn
Ȳ
sn+1 dn

Ȳ
vn

)
=

(
−un+2dn+1

X 0

−sn+2dn+1
X + vn+1fn+1 vn+1dnY

)
=

(
un+2 0
sn+2 vn+1

)(
−dn+1

X 0
fn+1 dnY

)
= wn+1dnM(f),

so w is a morphism of complexes. Moreover,

wnαnf =

(
un+1 0
sn+1 vn

)(
0

idnY

)
=

(
0
vn

)
=

(
0

idnȲ

)
vn = αnf̄ v

n

and

βnf̄w
n =

(
idn+1
X̄

0
)(un+1 0

sn+1 vn

)
=
(
un+1 0

)
= un+1

(
idn+1
X 0

)
= unβnf .

Thus the following diagram commutes

X
f //

u
��

Y

v
��

αf //M(f)
βf //

w
��

X[1]

��
X̄

f̄ // Ȳ
αf̄ //M(f̄)

βf̄ // X[1]

which is what the definition requires.

T6 We assume that there exist distinguished triangles

X
f // Y

αf // Z̄
βf // X[1]

Y
g // Z

αg // X̄
βg // Y [1]

X
gf // Z

αgf // Ȳ
βgf // X[1]
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and that these triangles are so that Z̄ = M(f) = X[1]⊕ Y , X̄ = M(g) = Y [1]⊕Z
and Ȳ = M(gf) = X[1]⊕ Z 5.

Let u : Z̄ → Ȳ be defined by un =
(

idn+1
X 0
0 gn

)
, let v : X̄ → Ȳ be defined by

vn =
(
fn+1 0

0 idZn

)
and let w = αf [1]βg =

(
0 0

idn+1
Y 0

)
. Then the following diagram

commutes:

X
f //

idX
��

Y
αf //

g

��

Z̄
βf //

u
��

X[1]

idX[1]

��
X

gf //

f

��

Z
αgf //

idZ
��

Ȳ
βgf //

v
��

X[1]

f [1]

��
Y

g //

αf
��

Z
αg //

αgf
��

X̄
βg //

idX̄
��

Y [1]

αf [1]
��

Z̄
u // Ȳ

v // X̄
w // Z̄[1]

Thus we only need to show that Z̄
u−→ Ȳ

v−→ X̄
w−→ Z̄[1] is distinguished. We will do

this by finding an isomorphism φ : M(u)→ X̄, because then the following diagram
will commute,

Z̄
u //

idZ̄
��

Ȳ
αu //

idȲ
��

M(u)
βu //

φ
��

Z̄[1]

idZ̄[1]

��
Z̄

u // Ȳ
v // X̄

w // Z̄[1]

(idZ̄ , idȲ , φ) will be an isomorphism of triangles and Z̄
u−→ Ȳ

v−→ X̄
w−→ Z̄[1] is

isomorphic to a distinguished triangle.

We start by noticing that that X̄n = Y n+1 ⊕ Zn and M(u)n = Z̄n+1 ⊕ Ȳ n =
Xn+2 ⊕ Y n+1 ⊕Xn+1 ⊕ Zn, and define φ by setting

φn =

(
0 idn+1

Y fn+1 0
0 0 0 idnZ

)

We check that φ is a morphism of complexes:

5This can once again be assumed without loss of generality because any distinguished triangle is
isomorphic to a triangle of the mapping cone sort.
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φn+1dnM(u) =

(
0 idn+2

Y fn+2 0

0 0 0 idn+1
Z

)
dn+2
X 0 0 0

−fn+2 −dn+1
Y 0 0

idn+2
X 0 −dn+1

X 0
0 gn+1 (fg)n+1 dnZ


=

(
0 −dn+1

Y −fn+2dn+1
X 0

0 gn+1 (fg)n+1 dnZ

)
=

(
0 −dn+1

Y −dn+1
Y fn+1 0

0 gn+1 (fg)n+1 dnZ

)
=

(
−dn+1

Y 0
gn+1 dnZ

)(
0 idn+1

Y fn+1 0
0 0 0 idnZ

)
= dnX̄φ

n

To show that it is an isomorphism as well, we define the map ψ by

ψn =


0 0

idn+1
Y 0
0 0
0 idnZ

 .

That ψ is a morphism of complexes is verified by

ψn+1dnX̄ =


0 0

idn+2
Y 0
0 0

0 idn+1
Z

(−dn+1
Y 0

gn+1 dnZ

)
=


0 0

−dn+1
Y 0
0 0

gn+1 dnZ



=


dn+2
X 0 0 0

−fn+2 −dn+1
Y 0 0

idn+2
X 0 −dn+1

X 0
0 gn+1 (fg)n+1 dnZ




0 0

idn+1
Y 0
0 0
0 idnZ

 = dnM(u)ψ
n.

We observe that

φnψn =

(
0 idn+1

Y fn+1 0
0 0 0 idnZ

)
0 0

idn+1
Y 0
0 0
0 idnZ

 =

(
idn+1
Y 0
0 idnZ

)
= idnX̄

so ψ is a right-handed inverse of φ. Next, we check that

ψnφn =


0 0

idn+1
Y 0
0 0
0 idnZ

(0 idn+1
Y fn+1 0

0 0 0 idnZ

)
=


0 0 0 0

0 idn+1
Y fn+1 0

0 0 0 0
0 0 0 idnZ


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which is not obviously equal to idnM(u) =

 idn+2
X 0 0 0

0 idn+1
Y 0 0

0 0 idn+1
X 0

0 0 0 idnZ

. However, setting

sn =

(
0 0 idn+1

X 0
0 0 0 0
0 0 0 0
0 0 0 0

)
, we get that

sn+1dnM(u) + dn−1
M(u)s

n =


0 0 idn+2

X 0
0 0 0 0
0 0 0 0
0 0 0 0



dn+2
X 0 0 0

−fn+2 −dn+1
Y 0 0

idn+2
X 0 −dn+1

X 0
0 gn+1 (fg)n+1 dnZ



+


dn+1
X 0 0 0
−fn+1 −dnY 0 0

idn+1
X 0 −dnX 0

0 gn (fg)n dn−1
Z




0 0 idn+1
X 0

0 0 0 0
0 0 0 0
0 0 0 0



=


idn+2
X 0 0 0
0 0 −fn+1 0

0 0 idn+1
X 0

0 0 0 0

 = idnM(u)−ψ
nφn

Thus ψnφn is homotopic to idnM(u) and they are equal in the category K(C), which

means that φ is an isomorphism fromM(u) to X̄, as we set out to prove. Finally, we
need to show that the diagram gives an isomorphism of triangles, so we calculate:

φnαnu =

(
0 idn+1

Y fn+1 0
0 0 0 idnZ

)
0 0
0 0

idn+1
X 0
0 idnZ

 =

(
fn+1 0

0 idnZ

)
= vn

and

βnuψ
n =

(
idn+1
X 0 0 0

0 idn+1
Y 0 0

)
0 0

idn+1
Y 0
0 0
0 idnZ

 =

(
0 0

idn+1
Y 0

)
= wn

Thus the two triangles are isomorphic, and Z̄
u−→ Ȳ

v−→ X̄
w−→ Z̄[1] is distinguished.

4.2 Derived categories

Since the homotopy category is triangulated, localization by a null system can be applied
to it. The goal of this section is to use that to construct the derived category D(C) where
C is an abelian category. To get there we need the homology functor, which will be used
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to define our null system. Note that throughout this section, C is assumed to be an
abelian category. The material presented in this section is well covered in [9], which has
been our main source for the presentation.

Definition 4.2. The homology functor Hn : K(C)→ C is defined by

Hn(X) = Ker(dnX)/ Im(dn−1
X )

for an object X ∈ Ob(K(C)) and n ∈ Z.

For a proof that this is well-defined, see [8]. For a morphism f : X → Y we set Hn(f)
to be the morphism from Hn(X) → Hn(Y ) induced by f . A morphism f is called a
quasi-isomorphism if Hn(f) is an isomorphism for all n ∈ Z.

We are going to need some important properties of the homology functor.

Theorem 4.3. Let 0 → X → Y → Z → 0 be a short exact sequence in C(C).6 Then
there exists a long exact sequence in C

· · · → Hn(X)→ Hn(Y )→ Hn(Z)→ Hn+1(X)→ Hn+1(Y )→ Hn+1(Z)→ · · ·

Proof. We have a commutative diagram with exact rows in C:

Im(dn−1
X ) //

u

��

Xn // Cok(dn−1)

v

��

// 0

0 // Ker(dnX) // Xn // Im(dnX)

By the snake lemma (lemma A.2), the following sequence exists and is exact: 0 →
Ker(v)

φ−→ Cok(u) → 0, so φ must be an isomorphism. However Hn(X) = Cok(u), so
there exists a monomorphism w : Hn(X)→ Cok(dn−1

X ) defined by w = ivφ
−1, where iv

is the kernel monomorphism of v. As v is an epimorphism (because Xn → Cok(dn−1)
v−→

Im(dn) = Xn → Im(dn), and the latter is an epimorphism), we know the following
sequence to be exact:

0→ Hn(X)→ Cok(dn−1
X )→ Im(dnX)→ 0

We glue this together with the exact sequence

0→ Im(dnX)→ Ker(dn+1
X )→ Hn+1(X)→ 0

to form the exact sequence

0→ Hn(X)→ Cok(dn−1
X )→ Ker(dn+1

X )→ Hn+1(X)→ 0 (4.1)

6A short exact sequence in C(C) is defined to be a sequence of complexes 0 → X → Y → Z → 0 so
that for each n ∈ Z, the sequence 0→ Xn → Y n → Zn → 0 is short exact.
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Studying the following diagram with exact middle rows

Ker(dnX)

��

Ker(dnY )

��

Ker(dnZ)

��
0 // Xn−1 //

dnX
��

Y n−1 //

dnY
��

Zn−1

dnZ
��

// 0

0 // Xn //

��

Y n //

��

Zn

��

// 0

Cok(dnX) Cok(dnY ) Cok(dnZ)

we see that by the snake lemma there must exist exact sequences 0 → Ker(dnX) →
Ker(dnX)→ Ker(dnX) and Cok(dnX)→ Cok(dnY )→ Cok(dnZ)→ 0.

Using the exact sequence (4.1), we see that the following diagram is commutative
with exact middle rows and exact columns:

Hn(X)

��

Hn(Y )

��

Hn(Z)

��
Cok(dn−1

X ) //

��

Cok(dn−1
Y ) //

��

Cok(dn−1
Z ) //

��

0

0 // Ker(dnX) //

��

Ker(dnY ) //

��

Ker(dnZ)

��
Hn+1(X) Hn+1(Y ) Hn+1(Z)

Using the snake lemma one final time we get the long exact sequence

· · · → Hn(X)→ Hn(Y )→ Hn(Z)→ Hn+1(X)→ Hn+1(Y )→ Hn+1(Z)→ · · ·

The long exact sequence of the above theorem is important in homological algebra.
We use it to prove the following theorem.

Theorem 4.4. H0 : K(C)→ C is a cohomological functor.

Proof. K(C) is triangulated, C is abelian and H0 is an additive functor, so it remains
to show that H0 maps distinguished triangles to exact sequences. Consider the distin-
guished triangle

X
f−→ Y

g−→ Z
h−→ X[1].

We know that also

Z[−1]
h[−1]−−−→ X

f−→ Y
g−→ Z
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is distinguished. The square

Z[−1]
h[−1] //

idZ[1]

��

X

idX
��

Z[−1]
h[−1] // X

can be embedded in a morphism of triangles:

Z[−1]
h[−1] //

idZ[−1]

��

X

idX
��

f // Y
g //

φ
��

Z

idZ
��

Z[−1]
h[−1] // X

(
0

idX

)
//M(h[−1])

(idZ 0)// Z

Since idZ[−1] and idX are isomorphisms, so is φ by Theorem 3.6. Thus the following is
an isomorphism of triangles:

X

idX
��

f // Y
g //

φ
��

Z

idZ
��

h // X[1]

idX[1]

��
X

(
0

idX

)
//M(h[−1])

(idZ 0)// Z
h // X[1]

Since functors preserve isomorphisms, the sequences H0(X) → H0(Y ) → H0(Z) and
H0(X)→ H0(M(h[−1]))→ H0(Z) are isomorphic. The sequence

0→ X

(
0

idX

)
−−−−→M(h[−1])

(idZ 0)−−−−→ Z → 0

is split exact and thus short exact, so H0(X)→ H0(M(h[−1]))→ H0(Z) is exact, and
so is H0(X)→ H0(Y )→ H0(Z).

The following corollary is more useful.

Corollary 4.5. Hn is cohomological for any n ∈ Z.

Proof. This follows from the fact that Hn(X) = H0(X[n]).

Since we now know that Hn is a rather well-behaved functor, we are ready to define
a null system in K(C):

Theorem 4.6. The set of morphisms

N = {X ∈ Ob(K(C))|Hn(X) = 0 ∀ n ∈ Z}

is a null system.

Proof. We check the conditions of definition 3.7 in order.
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N1 As Hn(0) = 0, we have 0 ∈ N .

N2 As Hn(X) = Hn−1(X[1]), it follows that X ∈ N if and only if X[1] ∈ N .

N3 Consider a triangle X → Y → Z → X[1], where X,Y ∈ N . We know that
Y → Z → X[1] → Y [1] is distinguished as well. As Hn is a cohomological
functor, we then know that Hn(Y ) → Hn(Z) → Hn(X[1]) is exact. However
Hn(Y ) = 0 = Hn+1(X) = Hn(X[1]), so the sequence 0 → Hn(Z) → 0 is exact
and Hn(Z) = 0, so Z ∈ N .

The corresponding multiplicative system, as defined in theorem 3.8, is interesting:

Lemma 4.7. Let N be defined as in the above theorem. Then S(N) is the collection of
quasi-isomorphisms in K(C).

Proof. By definition, the elements of S(N) are the morphisms f : X → Y that can be

embedded as the first morphism of a distinguished triangle X
f−→ Y → Z → X[1] where

Z ∈ N (which in this case means that Hn(Z) = 0 for all n).

Suppose f : X → Y is a quasi-isomorphism. The triangle X
f−→ Y → M(f) → X[1]

is distinguished. As Hn is a cohomological functor, we know that

Hn(X)
Hn(f)−−−−→ Hn(Y )→ Hn(M(f))→ Hn(X[1])

Hn(f [1])−−−−−→ Hn(Y [1])

is exact. As Hn(f) is an isomorphism, it follows that Hn(M(f)) = 0, and f ∈ S(N).

Conversely, suppose f ∈ S(N), and let X
f−→ Y → Z → X[1] be the embedding of f

in a distinguished triangle with Hn(Z) = 0. We know that there exists an isomorphism
of triangles

X
f //

idX
��

Y //

idY
��

Z //

φ

��

X[1]

idX[1]

��
X

f // Y //M(f) // X[1]

It follows that Hn(M(f)) = 0. As the triangles X
f−→ Y → M(f) → X[1] and

M(f)[−1] → X
f−→ Y → M(f) are distinguished, and Hn is cohomological, the se-

quences Hn(X)
Hn(f)−−−−→ Hn(Y ) → Hn(M(f)) and Hn(M(f)[−1]) → Hn(X)

f−→ Hn(Y )

are exact. Gluing these two sequences together we get an exact sequence 0→ Hn(X)
f−→

Hn(Y )→ 0, and thus Hn(f) is an isomorphism and f is a quasi-isomorphism.

We can now define the derived category, as promised.

Definition 4.8. The derived category is D(C) = K(C)/N .

From theorem 3.9 we know that D(C) is triangulated. For a module category mod(Λ)
we will write the derived category D(Λ).
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4.3 Localization of subcategories

We call a complex bounded below if there exists an integer N so that Xn = 0 for n < N .
Similarly it is called bounded above if Xn = 0 for n > N . If a complex is bounded above
and below, it is called a bounded complex.

We see that the class of bounded below complexes form a full subcategory of C(C); we
call this subcategory C−(C). Similarly, we define C+(C) as the subcategory of complexes
bounded above and Cb(C) as the subcategory of bounded complexes.

If we restrict the canonical functor F : C(C) → K(C) to C−(C), we denote the
image K−(C). Similar notation is used for category of complexes bounded above and the
category of bounded complexes.

To see that we can go just as easily from K∗(C) (where ∗ stands for −, + or b) to
D∗(C), we use the following theorem, which is a combination of [9, 1.6.5] and [9, 1.7.7]:

Theorem 4.9. Let C′ be a full subcategory of the category C. Then the following holds:

(i) Let S be a multiplicative system in C and let S′ be the morphisms in S that also
are in C′. Suppose the following, or its dual, holds: for any f : X → Y with f ∈ S
and Y ∈ Ob(C), there exists g : Z → X, with Z ∈ Ob(C′), so that fg ∈ S (and
thus fg ∈ S′). If S′ is a multiplicative system then C′S′ is a full subcategory of CS.

(ii) Suppose C and C′ moreover are triangulated so that any distinguished triangle X →
Y → Z → ΣX in C with X,Y ∈ Ob(C′) is distinguished in C′.
Let N be a null system in C and let N ′ = N∩C′. Suppose any morphism f : X → Y
with X ∈ Ob(C′) and Y ∈ N factorizes through an object of N ′. Then C′/N ′ is a
full subcategory of C/N .

Proof. (i) We see that Ob C′S′ = Ob C′ ⊆ Ob C = Ob CS , so C′S′ is a subcategory of CS .
It remains to show that it is full.

Suppose the property mentioned in the theorem is fulfilled. Let X,Y ∈ Ob C′
and let (U, s, f) ∈ HomCS (X,Y ). If U /∈ Ob C′S′ , then there exists some morphism

V
t−→ U so that V ∈ Ob C′S′ and st ∈ S′. Moreover, (V, st, ft) ∼ (U, s, f); thus

HomCS (X,Y ) = HomC′
S′

(X,Y ).

To see that the theorem also holds if the dual property is fulfilled, we use the fact
that while we have considered the morphisms in CS as being left fractions fs−1 we
may just as well write them as right fractions s−1g. The proof then follows dually.

(ii) That N ′ is a null system is easy to see by checking the requirements of null sys-
tems. Hence we can form the multiplicative system S(N ′), and if this satisfies the
condition from part (i), we are done.

Suppose f : X → Y is such that f ∈ S(N), Y ∈ Ob(C′); this means that there

exists a triangle X
f−→ Y

g−→ Z → X[1] with Z ∈ N . By the conditions of the

theorem, we know that Y
g−→ Z = Y

g′−→ U
g′′−→ Z with U ∈ N ′. Using axiom
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TR6, we find the following commutative diagram where the rows are distinguished
triangles:

Y
g′ // U //

g′′

��

V
h //

h′

��

ΣY

Y
g //

g′

��

Z // ΣX
Σf //

��

ΣY

��
U

g′′ //

��

Z //

��

W // ΣU

��
V // ΣX //W // ΣY

We see that h = (Σf)h′, and so Σ−1h = f(Σ−1h′). Moreover, Σ−1h can be

embedded in a distinguished triangle Σ−1V
Σ−1h−−−→ Y → U → V ; and since U ∈ N ′,

it follows that Σ−1h ∈ S(N ′). Thus C′/N ′ = C′S(N ′) is a full subcategory of C/N .

We would like to use this theorem for K−(C). Consider a distinguished triangle

X
f−→ Y → Z → X[1] in K(C); since Z ∼= M(f) we can assume Z ∈ K−(C) , and thus the

triangle is distinguished in K−(C) as well. Since K−(C)/N ′ (where N ′ are the objects of
the null system N that are bounded below) is the full subcategory of K(C)/N = D(C)
containing all objects that are bounded above, it follows that K−(C)/N ′ = D−(C). The
same holds for K+(C) and Kb(C).

4.4 Projective resolutions

In this section, we will see that if the category C fulfills certain requirements, the category
D−(C) has a simpler description; namely we get an equivalence of categories D−(C) ∼=
K−(P), where P is the subcategory of C consisting of projective objects. The material
presented here appears in [9] and [10] as well, but these books consider injective objects,
the dual of projective objects.

Obviously, we need to start by defining a projective object.

Definition 4.10. An object P in a category C is projective if the functor HomC(P,−)
is exact.

We need the following equivalent definitions of a projective object (here given without
proof):

• An object P is projective if and only if for any morphism P → Y and any epi-
morphism X → Y there exists a morphism P → Y so that the following diagram
commutes:

P

��~~
X // Y
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• P is projective if and only if any epimorphism into P splits.

It can be shown that a summand of a projective object and a direct sum of projective
objects are projective as well.

We will also need the following lemma:

Lemma 4.11. Let 0 → X → Y → P → 0 be an exact sequence and P a projective
object. Then X is projective if and only if Y is projective.

Proof. Since Y → P is an epimorphism, it splits, and so the sequence splits and conse-
quently Y ∼= X ⊕ P . If X is projective then Y is the sum of two projective objects and
projective itself. If Y is projective then X is a summand of a projective object and is
thus projective.

We say that a category has enough projectives if for any object X there exists a
projective object P and an epimorphism P → X.

We are now ready to give our big theorem:

Theorem 4.12. Let C be an abelian category with enough projectives. Then D−(C) ∼=
K−(P)

Proof. We first note that P forms a full, additive subcategory of C, and also that K−(P)
is a full subcategory of K−(C). Let N be the null system in K−(C) consisting of objects
mapped to zero by the homology functor. Consider N ′ = N ∩Ob(K−(P)), the class of
complexes P of projectives with a lower bound so that Hn(P ) = 0 for all n. This means
that for any n we have that Cok(dnP ) ∼= Ker(dn+1

P ). Accordingly, the sequence

0→ Ker(dnP )
in−→ Pn

pn−→ Ker(dn+1
P )→ 0

is exact. For some integer M we must have Pn = 0 for all n > M and so also Ker(dn+1
P ) =

0. By induction using lemma 4.11, we see that this holds for any n. The sequence splits,
so there must exist morphisms jn and qn as below

0 // Ker(dnP )
in //

Pn
pn //

jn
oo Ker(dn+1

P ) //
qn
oo 0

so that:

jnin = idKer(dnP ) pnqn = idKer(dn+1
P )

jnqn = 0 injn + qnpn = idPn

Note also that dnP = in+1pn.
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Let sn = qn−1jn. By considering the following diagram:

· · · // Pn

idnP

��

dnP //

jn{{

pn

$$

Pn+1 //

jn+1yy

· · ·

Ker(dnP )

qn−1zz

in

##

Ker(dn+1
P )

qnzz

in+1

99

· · · // Pn−1
dn−1
P //

pn−1
::

Pn // · · ·

we find that

dn−1
P sn + sn+1dnP =inpn−1qn−1jn + qnjn+1in+1pn

=injn + qnpn

= idP .

Thus idP is homotopic to 0 and P ∼= 0 in K−(C). It follows that N ′ = {0}. From this
and theorem 4.9 we know that D−(P) = K−(P)/N ′ ∼= K−(P).

We now need to show that D−(C) ∼= D−(P). The embedding functor D−(P) →
D−(C) is full and faithful, so we only need it to be dense.

Suppose X ∈ Ob(K−(C)); we will construct a complex P ∈ Ob(K−(P)) with a
quasi-isomorphism P → X. Assume, without loss of generality, that Xn = 0 for n > 0;
in other words

X = · · · → X−2 → X−1 → X0 → 0→ · · ·

Start constructing the complex P by setting Pn = 0 for n > 0 and choose P 0 ∈ P so
that there exists an epimorphism f0 : P 0 → X0.

Suppose n < 0 and that we have chosen P i for i > n (and that these P i are so that
diPd

i−1
P = 0), in other words that we have the following situation:

Pn+1
dn+1
P //

fn+1

��

· · ·

Xn
dnX // Xn+1

dn+1
X // · · ·

Let Qn be the pullback completion of Xn dnX−−→ Xn+1 → Ker(dn+1
X ) and the morphism

Ker(dn+1
P ) → Pn+1 → Xn+1 → Ker(dn+1

X ), and let Pn be a projective object with an
epimorphism into Qn. Define fn as the composition Pn → Qn → Xn and dnP as the
composition Pn → Qn → Xn. Then dn+1

P dnP = 0, as dnP factors through the kernel of
dn+1
P .

Note that this construction agrees with what we did in degree 0, as since P 1 = 0, we
had Q0 = X0. We have now constructed a complex P ∈ Ob(K−(P)); we need to show
that it is quasi-isomorphic to X.
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For i > 1, we have Xi = 0 = P i and thus H i(f) is an isomorphism. Suppose f i is a
quasi-isomorphism for all i > n, and consider fn; specifically the following commutative
diagram with exact rows:

Pn−1 //

fn−1

��

Ker(dn−1
P ) //

��

Hn(P ) //

Hn(f)

��

0

Xn−1 // Ker(dn−1
X ) // Hn(X) // 0

Since there exists an epimorphism from Pn−1 into Qn−1, it follows by lemma A.4 that
Hn(f) is an epimorphism. To see that it is a monomorphism, consider the following
commutative diagram:

Pn−1

��

Ker(Hn(f))

��
Qn−1 //

��

Ker(dnP ) //

��

Hn(P )

Hn(f)

��
Xn−1 // Ker(dnP ) // Hn(X)

Let U be the pullback completion of Ker(Hn(f))→ Hn(P ) and Ker(dnP )→ Hn(P ).
Since

U → Ker(dnP )→ Ker(dnX)→ Hn(X) = U → Ker(Hn(f))→ Hn(P )→ Hn(X) = 0,

there exists a morphism U → Im(dXi− 1).
Let V be the pullback completion

V //

��

U

��
Xn−1 // Im(di−1

X )

There exists a morphism V → Qn−1 because the following square commutes.

V //

��

Ker(dnP )

��
Xn−1 // Ker(dnX)

Finally, let W be the pullback completion

W //

��

Pn−1

��
V // Qn−1
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We sum up the situation in the following diagram:

W //

��

Pn−1

��

U //

��

Ker(Hn(f))

��
V //

!!

55

Qn−1 //

��

Ker(dnP ) //

��

Hn(P )

Hn(f)

��
Xn−1 // Ker(dnP ) // Hn(X)

We note that U → Ker(Hn(F )), V → U and W → V must be epimorphisms. This
means that since

W → V → U → Ker(Hn(f))→ Hn(P ) =

=W → Pn−1 → Im(di−1
P )→ Ker(dnP )→ Hn(P ) = 0,

we must have the kernel monomorphism Ker(Hn(f)) → Hn(P ) = 0 and thus Hn(f) is
also a monomorphism and f is a quasi-isomorphism.

Thus the inclusion functorD−(P)→ D−(C) is dense and an equivalence of categories.

A consequence of the above is that in the derived bounded category an object (com-
plex) which is non-zero in all but one term (i. e. of the form · · · → 0→ X → 0→ · · · )
will be isomorphic to the complex containing the projective resolution of its non-zero
term.

4.5 Example: Derived module category of a hereditary algebra

In this section we will consider one specific abelian category, and describe its derived
category. We will start with a module category, namely the finitely generated modules
over the quiver algebra kΓ, where Γ is the quiver 1→ 2→ 3.

As Γ is a quiver without oriented cycles, kΓ is a hereditary algebra [1], so the global
dimension of mod(kΓ) is 1 (in other words the maximal length of a minimal projective
resolution of a kΓ-module is 1). Moreover, in a category that has global dimension 1,
any subobject of a projective object is projective, which gives the objects of its derived
category an unusually nice structure.

Lemma 4.13. Let C be an abelian category with enough projectives and global dimension
1. Then any indecomposable object in Db(C) is of the form · · · → 0 → X → 0 → · · ·
where X is an indecomposable object.

Proof. Given an indecomposable object in Db(C), we already know that it is isomorphic
to one in Db(P), and if one is indecomposable then so is the other. Thus we consider
an object P ∈ Db(P) and assume it to be indecomposable. We know that there can be
no two non-zero terms in P separated by a zero term, since in that case the complex
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would be decomposable. Suppose the length (number of non-zero terms) of P is larger
than two, and assume without loss of generality that the highest non-zero term in P is
situated in the zeroth position. The first few terms of P then become:

· · · → P−2 d−2
P−−→ P−1 d−1

P−−→ P 0 → 0→ · · ·

We assume P 0 to be non-zero.
We can factorize d−1

P into P−1 π−→ Im(d−1
P )

ι−→ P 0, where π is projective and i is
injective. Since Im(d−1

P ) is a subobject of P 0 it is projective, and thus π splits, and
P−1 ∼= Q⊕ Im(d−1

P ) with Q some object of C, necessarily projective. Thus we can write
P as

· · · → P−2

(
d−2
P
0

)
−−−−−→ Q⊕ Im(d−1

P )
( 0 ι )−−−→ P 0 → 0→ · · ·

Thus P decomposes if its length is larger than two. However, if it does have length
two (or less), it is the complex of the projective resolution of X = P 0/P 1 and is thus
isomorphic to the complex having X in its zeroth degree and zero elsewhere. Since P is
indecomposable, X must be indecomposable.

For our example category mod(kΓ), we know the indecomposable objects, here given
by their corresponding quiver representations, to be as follows:

S1 : k → 0→ 0 P1 : k
1−→ k

1−→ k

S2 : 0→ k → 0 P2 : k
1−→ k → 0

S3 = P3 : 0→ 0→ k M : 0→ k
1−→ k

An Auslander-Reiten quiver (or AR-quiver) is a diagrammatical way of showing the
structure of a category. Each node in the quiver represents an isomorphism class of
indecomposable objects. We call a morphism f irreducible if it is not an isomorphism,
and for any factorization f = gh through an indecomposable object g or h (or both) will
be an isomorphism. Each arrow in the graph represents an indecomposable morphism
(up to isomorphism).

When the category is of finite representation type (the AR-quiver has finitely many
vertices), all morphisms are linear combinations of compositions of irreducible maps and
isomorphisms [10], and thus the AR-quiver contains all information about the category.

A morphism f : X → Y is called right almost split if it is not a split epimorphism,
and any morphism g : Z → Y that is not a split epimorphism factors through g. The
morphism f is called right minimal if for any g such that fg = f we must have that g is
an isomorphism. If f is both right almost split and right minimal, it is called minimal
right almost split. The definition of a left almost split, left minimal and a minimal left
almost split morphism is dual.

An almost split sequence is an exact sequence 0 → X
f−→ Y

g−→ Z → 0 so that either
of the following equivalent conditions hold[1]:
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• f is left almost split and g is right almost split.

• f is minimal left almost split.

• g is minimal right almost split.

• Z is indecomposable and f is left almost split.

• X is indecomposable and g is right almost split.

It is known that if X is an indecomposable object then f : X → Y is an irreducible

morphism if and only if there exists a morphism f ′ : X → Y ′ so that
(
f
f ′

)
: X → Y ⊕Y ′

is a minimal right almost split morphism. But then the sequence

0→ A

(
f
f ′

)
−−−−→ Y ⊕ Y ′ → Cok

(
f
f ′

)
→ 0

is an almost split sequence. Thus we can find all the irreducible morphisms from an
indecomposable object by looking at almost split sequences; and dually we can find all
irreducible morphisms to an indecomposable object the same way[1].

There exists a functor τ : C → C which for each indecomposable non-projective
object X associates an indecomposable non-injective object τ(X); moreover there exists
an almost split sequence 0→ τ(X)→ Y → X → 0. There also exists a dual functor τ−

which will take indecomposable non-injective objects to indecomposable non-projective
objects; for X indecomposable and non-projective τ−τ(X) = X; see [7]. The functor τ
is also known as the Auslander-Reiten translation (or AR-translation). If the sequence
0 → X → Y → Z → 0 is almost split, then X ∼= τ(Z) and Z ∼= τ−(X); see [1], and we
often draw the AR-translation as well when drawing the AR-quiver.

In the case of mod(kΓ) the almost split sequences are

0→ P3 →P2 → S2 → 0

0→ P2 → P1 ⊕ S2 →M → 0

0→ S2 →M → S3 → 0

and the AR-quiver is

P1

  
P2

  

>>

M

  

oo

P3

>>

S2

>>

oo S1
oo

(4.2)

The dashed arrows show the AR-translation τ .
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When we have drawn the AR-translation on the quiver, we can read the almost split
sequences directly from the AR-quiver. An almost split sequence will occur when there
is an AR-translation between two objects. The end terms will be the two objects, and
the middle term will be the sum of all objects that are the middle term of a path of
length two between the objects.

An analogue concept of the almost split sequence in an abelian category is the almost

split triangle in a triangulated category. The distinguished triangle X
f−→ Y

g−→ Z →
Σ(X) is called almost split if f and g satisfy the same conditions as listed in the definition
of an exact triangle. It can be shown that for a finite dimensional k-algebra Λ, the
bounded derived category of the module category Db(Λ) has almost split triangles if and
only if Λ has finite global dimension[6]. In this case there also exists an AR-quiver. Note
that in the derived category D(C), the AR-translation τ is defined for all indecomposable
objects in D(C), included the non-projective.

In particular, kΓ has finite global dimension, and we study D(kΓ). We will again
draw dashed arrows equivalent to the ones for τ in the previous quiver, but this time
they will help us find the almost split triangles.

We know the structure of the indecomposable objects from lemma 4.13, so for each
n ∈ Z there exists a subquiver with the same structure as (4.2) with the nodes being
the chain complexes with an indecomposable object from mod(kΓ) in degree n.

Abusing notation, we let X denote the complex with the object X in degree 0 and
zero elsewhere. As before X[n] is the complex X shifted n times to to the right, so it
has the object X in position −n, and so forth.

Are there any non-zero morphisms from (for example) S1[−1] to P2? At first glance,
it seems unlikely, but remembering that we have identified complexes concentrated in
one degree with the projective resolution of their non-zero object, we find the following
morphism:

S1[−1] : · · · // 0 //

��

P2
//

idP2

��

P1
//

��

0 //

��

· · ·

P2 : · · · // 0 // P2
// 0 // 0 // · · ·

We find that the AR-quiver of D(kΓ) will look like this:

· · ·

��

S1[−1]

��

P1

��

oo P3[1]

��

oo S2[1]oo

��

S3[1]

��

oo

M [−1]

��

??

P2

��

??

oo M

??

��

oo P2[1]

??

��

oo M [1]

��

??

oo · · ·

· · ·

??

P3

??

S2

??

oo S1

??

oo P1[1]

??

oo · · ·

The dotted arrows represent the morphisms between different copies of the original
AR-quiver. The dashed arrows help us read almost split triangles from the graph. For
example S1[−1]→ P2 → P1 → S1 is an almost split triangle, and so is M → S1⊕P3[1]→
P2[1]→M [1].



47

5 Localization to a module category

Let C be an additive category, T ∈ Ob(C), and consider the functor H = HomC(T,−).
Its domain is clearly the category C, and so far we have used the category of abelian
groups as its range. Now consider the ring Λ = EndC(T ) = HomC(T, T ). Its elements
are the endomorphisms on T , and clearly these can act on any group HomC(T,X). We
can even check that this makes HomC(T,X) a right Λ-module, or equivalently a left
Λop-module. Thus we may take the range of H to be mod(EndC(T )op).

In this section we will study the localization described by Buan and Marsh in [3],
where we find that for a restricted class of categories, there exists a localization equivalent
to mod(EndC(T )op). Specifically, we will take a rigid object T in a Hom-finite Krull-
Schmidt triangulated category C over a field k and specify a suitable class of morphisms
by which C localizes to a category equivalent to mod EndC(T )op.

Obviously, we need to start by giving some definitions.

Definition 5.1. A category C is Hom-finite over a field k if for all X,Y ∈ Ob(C) the
set HomC(X,Y ) are finite-dimensional vector spaces over k.

Definition 5.2. A Krull-Schmidt category C is a category where the Krull-Schmidt
theorem holds; that is to say that any X ∈ Ob(C) can be written as a finite, direct sum
of indecomposable objects, unique up to permutation of factors.

Definition 5.3. An object T in a triangulated category C is rigid if ExtC(T, T ) = 0.

Note that when C is triangulated, we define ExtC(X,Y ) = HomC(X,ΣY ), where Σ is
the suspension functor of C. We note that the requirements for the category and object
in question are rather strong, but the requirements for the category will hold in the case
of Db(Λ) where Λ is a finite dimensional algebra of finite global dimension.

Having set the stage, we will define the class of morphisms shortly. Let X be a
full subcategory of C; then we set X⊥ = {C ∈ C|ExtC(X,C) = 0 ∀ X ∈ X}. For an
object X we set X⊥ = Add(X)⊥ (here, Add(X) is the smallest additive subcategory of
C containing X). Now, fix a rigid object T in C and let

S̃ = {f : X → Y | for Σ−1Z
h−→ X

f−→Y g−→ Z distinguished,

g and h factorize through ΣT⊥}

S = {f : X → Y | for Σ−1Z
h−→ X

f−→Y g−→ Z distinguished,

g factorizes through ΣT⊥ and Σ−1Z ∈ ΣT⊥}

We see that for these classes, which can be shown to be well-defined7, it holds that
S ⊆ S̃. Denoting the localization of C by a class of morphisms M as CM , with the
localization functor denoted LM , we see that since S ⊆ S̃, and LS̃ makes every element

7the proof boils down to showing that there is an isomorphism between any two triangles where f is
the middle morphism
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of S̃ invertible, then by universality, there must exist a functor J : CS → CS̃ , such that
LS̃ = JLS .

It turns out that there is a different description of S̃. Let f ∈ S̃, and choose a

distinguished triangle Σ−1Z
h−→ X

f−→ Y
g−→ Z. Applying the functor HomC(T,−) and

using the fact that it is homological, we see that the following sequence is exact:

Hom(T,Σ−1Z)
HomC(T,h)−−−−−−−→ HomC(T,X)

HomC(T,f)−−−−−−−→ HomC(T, Y )
HomC(T,g)−−−−−−−→ HomC(T,Z)

However, since g and h factorize through ΣT⊥, if follows that HomC(T, g) = 0 =
HomC(T, h). Since the sequence is exact it follows that HomC(T, f) is an isomorphism.
Conversely, if a morphism f : X → Y is such that HomC(T, f) is an isomorphism, then
we have HomC(T,Z) ∼= 0, thus Z ∈ ΣT⊥ and f ∈ S̃. This means that S̃ is exactly the
collection of morphisms f for which HomC(T, f) is an isomorphism.

We now know that the functor H = HomC(T,−) : C → mod End(T )op turns elements
of S̃ into isomorphisms; then by universality there must exist a functor G : CS̃ →
mod End(T )op, such that H = GLS̃ . Since S ⊆ S̃, there must also exist F : CS →
mod End(T )op with H = FLS . The situation is summed up in the following commutative
diagram:

C H //

LS

��
LS̃

��

mod(EndC(T )op)

CS

F
77

J
��
CS̃

G

@@

We will show that F is an equivalence of categories, and that J is an isomorphism
of categories. Thus it will follow that CS̃ ∼= mod(EndC(T )op).

Lemma 5.4. F : CS → mod(EndC(T )op) is an equivalence of categories

Proof. By definition, F is an equivalence of categories if and only if it is full, faithful
and dense.

We will show these in turn:

Dense First, we state that the following lemma can be proven by translating the proof
given for proposition II.2.1 in [1] to category theory:

Lemma 5.5. Let C be an additive Krull-Schmidt category with enough projectives,
let X ∈ Ob(C) and let eX = HomC(X,−) : C → mod(EndC(X)op). Then it holds
that

(i) eX acts as an isomorphism on the Hom-sets of C.

(ii) If Y ∈ Add(X) then eX(Y ) is a projective module.
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(iii) eX is an equivalence of categories between Add(X) and P(EndC(X)op), the
projective modules over EndC(X)op.

This implies that H is dense; consider any object M ∈ mod(EndC(T )op), let P1
f−→

P0 → M be its minimal projective presentation (which exists since EndC(T ) is
finite dimensional as a k-vector space and thus a finite dimensional k-algebra). By
the above lemma, H is an equivalence between P(EndC(T )op) and Add(T ), so there

must exist a morphism T1
g−→ T0 so that H(T1) = P1, H(T2) = P2 and H(g) = f .

We can complete g to a triangle T1 → T0 → X → ΣT1. If we the use the fact that
H is a cohomological functor, we get the following commutative diagram:

Hom(T, T1) // Hom(T, T0) // Hom(T,X)

��

// Hom(T,ΣT1)

P1
// P0

//M // 0

Using the five lemma (lemma A.1), we get that Hom(T,X) → M is an isomor-
phism; thus H is dense. Since H = FLS , this means that F is dense as well.

Full Let C(T ) be the class of X ∈ Ob(C) so that X can be embedded in a distinguished
triangle T1 → T0 → X → ΣT1 with T1, T0 ∈ Add(T ).

It is shown in [3] that H induces an equivalence between the categories C(T )/ΣT⊥

and mod(EndC(T )op). In the same article it is also shown that for any Y ∈ Ob C
there exists a morphism f : X → Y where X ∈ C(T ) and f ∈ S.

Suppose α : F (X) → F (Y ) is a morphism in mod(EndC(T )op) (we can make
these assumptions on its domain and range without loss of generality because F is
dense). There must exist morphisms X ′

u−→ X and Y ′
v−→ Y so that X ′, Y ′ ∈ C(T )

and u, v ∈ S. We define α′ = H(v)−1αH(u). Thus the following diagram is
commutative and the vertical morphisms are invertible.

F (X ′)
α′ //

H(u)

��

F (Y ′)

H(v)

��
F (X)

α // F (Y )

As α′ is a morphism of images of objects in C(T ) and H is a full functor when
restricted to C(T ), there must exist f ′ : X ′ → Y ′ so that H(f ′) = α′. But then
F (LS(v)LS(f ′)LS(u)−1) = H(v)H(f ′)H(u)−1 = α. Thus F is full.

Faithful Let X,Y ∈ Ob(C) and suppose f, g : LS(X) → LS(Y ) are such that F (f) =
F (g). Let X ′, Y ′, u and v be as above; it can then be shown that there exist
morphisms f ′, g′ : X ′ → Y ′ (in C, as opposed to f and g, which are in CS) so that
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LS(f ′) = LS(v)−1fLS(u) and LS(g′) = LS(v)−1gLS(u). Then

H(f ′) = F (LS(f ′)) = F (LS(v)−1fLS(u)) = H(v)−1F (f)H(u)

= H(v)−1F (g)H(u) = H(g′)

Consequently H(g′ − f ′) = 0. Since H is an equivalence between C(T )/ΣT⊥

and mod(EndC(T )op), we must have that g′ − f ′ factorize through ΣT⊥. Thus
LS(f ′) = LS(f ′) + LS(g′) − LS(f ′) = LS(g′), and so f = LS(v)LS(f ′)LS(u)−1 =
LS(v)LS(g′)LS(u)−1 = g. Consequently, F is faithful.

Since F is full, faithful and dense, it is an equivalence of categories.

We now consider J :

Lemma 5.6. J : CS → CS̃ is an isomorphism of categories

Proof. We know that H = FLS , so since F is an equivalence of categories and H make
morphisms in S̃ invertible, the functor LS must do so as well. Thus there must exist a
functor I : CS̃ → CS with ILS̃ = LS . Since IJLS = ILS̃ = LS we have by universality
of LS that IJ = idCS . Similarly, since JILS̃ = LS̃ , we have JI = idCS̃ . Thus J is an
isomorphism of categories.

We have proven:

Theorem 5.7.
CS̃ ∼= mod(EndC(T )op)

Example 5.8. Once again we study the quiver Γ : 1→ 2→ 3 and the category Db(kΓ).
Let T = P3 ⊕ P1 ⊕ S1. We redraw the AR-quiver of Db(kΓ) and mark the summands of
T for reference

· · ·

��

S1[−1]

��

P1

��

oo P3[1]

��

oo S2[1]oo

��

S3[1]

��

oo

M [−1]

��

??

P2

��

??

oo M

??

��

oo P2[1]

??

��

oo M [1]

��

??

oo · · ·

· · ·

??

P3

??

S2

??

oo S1

??

oo P1[1]

??

oo · · ·

We see that the only composition of irreducible morphisms from the indecomposable
summands of T to the indecomposable summands of T [1] ∼= P3[1]⊕ P1[1]⊕ S1[1] factor
through almost split (and thus distinguished) triangles, and so must be zero. Conse-
quently, ExtDb(kΓ)(T, T [1]) = 0 and T is rigid. We thus know that if we perform the
localization described above with respect to the object T we will end up in the category
mod(EndDb(kΓ)(T )op).

What does Endop
Db(kΓ)

(T ) look like? Since T is a complex concentrated in (i. e is

non-zero only in) one term, we only need to look at the endomorphisms on the object
in that one term, namely the endomorphisms of the module P3 ⊕ P1 ⊕ S1. These are
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limited to the linear combination of the (non-zero) morphisms between the components;
and as we see from the AR-quiver 4.2, these are, up to isomorphism, the monomorphism
P3

ι−→ P1, the epimorphism P1
π−→ S1 and the identity morphisms. Also, πι = 0. We thus

see that EndDb(kΓ)(T )op ∼= kΓT / 〈ρT 〉 where (ΓT , ρT ) is the quiver with relations

1
α // 882

β // 3

The corresponding AR-quiver is

P2

  
S3

>>

S2

  

oo S1
oo

P1

>>

6 Summary

We have described two main ways of constructing a localization. Gabriel-Zisman local-
ization works for any skeletally small category, but give us very little structure to work
with in the localized category. Localization by a multiplicative system gives us a very
simple structure thanks to the Ore condition, but the restrictions on the class to be
localized are rather strong.

We have also studied two concrete examples where localization is used. The derived
category was constructed by using localization of a multiplicative system, while the
localization to a module category used Gabriel-Zisman localization. The former turned
an abelian category into a triangulated category, while the latter turned a triangulated
category into an abelian category.
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[7] Lidia Angeleri Hügel. An introduction to Auslander-Reiten theory. Lecture
notes retrieved 21.1.2012, http://www.math.jussieu.fr/~keller/ictp2006/

lecturenotes/angeleri.pdf.

[8] Karin Marie Jacobsen. Abelian categories, 2011. Student project in mathematics.

[9] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds. Berlin : Springer,
1990.

[10] Steffen König and Alexander Zimmermann. Derived equivalences for group rings.
Berlin : Springer, 1998.

A Diagram lemmas for abelian categories

The following are technical lemmas needed in the rest of the thesis. For the whole of
this appendix we assume that we are working in an abelian category. For other technical
lemmas used, see [4] or [8].

A.1 The five lemma

Lemma A.1. Suppose the following diagram in an abelian category is commutative with
exact rows:

X0
a //

f0

��

X1
b //

f1

��

X2
c //

f2

��

X3
d //

f3

��

X4

f4

��
Y0

a′ // Y1
b′ // Y2

c′ // Y3
d′ // Y4

(A.1)

(i) if f0 is an epimorphism and f1 and f3 are monomorphisms, then f2 is a monomor-
phism.

(ii) if f4 is a monomorphism and f1 and f3 are epimorphisms, then f2 is an epimor-
phism.

(iii) if f0 is an epimorphism, f4 is a monomorphism and f1 and f3 are isomorphisms,
then f2 is an isomorphism.

Proof. As statement (ii) is the dual of statement (i) and statement (iii) follows from
statement (i) and (ii), we will only prove statement (i).
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Suppose that f0 is an epimorphism and f1 and f2 are monomorphisms. Let if2 :
Ker(f2)→ X2 be the kernel monomorphism8. We see that

f3cif2 = c′f2if2 = 0

As f3 is a monomorphism, we must have cif2 = 0. Thus there exists a unique
morphism i : Ker(f2) → Ker(c) such that ici = if2 . Moreover, i is a monomorphism.
Using the fact that Ker(c) = Im(b) = Coim(b) = Cok(a) (by exactness of the upper
sequence of diagram A.1), we study the following pullback completion:

P
u //

u′

��

Ker(f2)

i
��

X1
pa // Im b

As pa is an epimorphism, so is u and as i is a monomorphism, so is u′. We see that

b′f1u
′ = f2bu

′ = f2icpau
′ = f2iciu = f2if2u = 0.

Thus there exists a unique morphism j : P → Ker(b′) so that ib′j = f1u
′. As f1u

′ is a
composition of monomorphisms, j is a monomorphism. We perform another pullback
completion (where we use that Ker(b′) = Im(a)).

Q
v //

v′

��

P

j

��
X0

pf0 // Im a

Again we observe that as pf0 is an epimorphism and j is a monomorphism, v is an
epimorphism and v′ is a monomorphism. We see that f1av

′ = a′f0v = f1u
′v. As

f1 is an monomorphism, it follows that av′ = u′v. But then we have that if2uv =
bu′v = bav′ = 0. As if2 is a monomorphism, we must have uv = 0. However uv is
a composition of epimorphisms and is thus itself an epimorphism onto Ker(f2), so it
follows that Ker(f2) = 0, and thus f2 is a monomorphism.

A.2 The snake lemma

The Snake Lemma is a classical lemma for abelian categories. There are two main
variants of the lemma; we will first show the weaker version, and then give the stronger
version as a corollary.

8for the remainder of this appendix we will, given a morphism f , denote the kernel monomorphism
if and the cokernel epimorphism pf



54 A DIAGRAM LEMMAS FOR ABELIAN CATEGORIES

Lemma A.2. Suppose that in an abelian category C the following is a commutative
diagram with exact rows:

X
f //

α
��

Y
g //

β
��

Z //

γ
��

0

0 // X ′
f ′ // Y ′

g′ // Z ′

Then there exists a unique exact sequence

Ker(α)→ Ker(β)→ Ker(γ)
φ−→ Cok(α)→ Cok(β)→ Cok(γ).

Proof. We will first show that the sequence Ker(α) → Ker(β) → Ker(γ) exists and is
exact. As βfiα = f ′αiα = 0, there must exist a unique morphism f̄ : Ker(α)→ Ker(β)
so that iβ f̄ = fiα. Similarly there must exist a unique morphism ḡ : Ker(β) → Ker(γ)
such that iγ ḡ = giβ.

We now need to show that Ker(ḡ) = Im(f̄). Note first that iγ ḡf̄ = gfiα = 0.
Since iγ is a monomorphism, this means that ḡf̄ = 0. Thus there exists a morphism
u : Ker(α)→ Ker(ḡ), so that iḡu = f̄ .

We see that giβiḡ = iγ ḡiḡ = 0, and that there therefore must exist a unique morphism
i : Ker(ḡ) → Ker(g), which is necessarily a monomorphism, so that igi = iβiḡ. Letting
p : X → Im(f) be the image mapping for f and using that Im(f) = Ker(g), we consider
the following diagram:

Ker(α)
u //

iα
��

Ker(ḡ)

i
��

X
p // Im(f)

We see that igpiα = fiα = iβ f̄ = iβiḡu = igiu. As ig is a monomorphism, it follows that
iu = piα, and the above diagram commutes. Suppose Q is an object with morphisms v
and v′ so the following diagram commutes:

Q
v //

v′

��

Ker(ḡ)

i
��

X
p // Im(f)

As f ′αv′ = βfv′ = βiβiḡv = 0 and f ′ is a monomorphism, it follows that v′α = 0. Thus
there must exist a unique morphism w : Q→ Ker(α), such that v′ = iαw. Furthermore,
iuw = piαw = pv′ = iv′. Given that i is a monomorphism, we get that uw = v′. Thus
the first square is actually a pullback square, and it follows that u is an epimorphism. As
the factorization f = iḡu, where u is an epimorphism and iḡ is a monomorphism exists,

it follows that Ker(ḡ) = Im(f̄), and the kernel sequence Ker(α)
f̄−→ Ker(β)

ḡ−→ Ker(γ)

is exact. It follows dually that the cokernel sequence Cok(α)
¯̄f−→ Cok(β)

¯̄g−→ Cok(γ) is
exact.
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The next step is to construct the morphism φ : Ker(γ) → Cok(α). Consider the
following commutative diagram with exact rows (where the dashed arrows will be shown
to exist):

0 // Ker(u)
iu // Ker(γg)

v
��

iγg
��

u // Ker(γ) //

iγ
��

0

X
f //

α
��

Y
g //

β
��

Z

v′
��

//

γ
��

0

0 // X ′
f ′ //

pα
��

Y ′
g′ //

pf ′α
��

Z ′

0 // Cok(α)
u′ // Cok(f ′α)

pu′ // Cok(u′) // 0

As γgiγ = 0, there must exist a morphism u : Ker(γg) → Ker(γ), so that iγu = giγg.
Consider any object U with morphisms so that the following diagram commutes:

U
x //

y

��

Ker(γ)

iγ
��

Y
g // Z

As γgy = γiγx = 0, there exists a map z : U → Ker(γg) so that iγgz = gy. Furthermore,
iγuz = giγgz = gy = iγx. As iγ is a monomorphism, this means uz = x. Thus Ker(γg)
is the pullback completion of the square. As g is an epimorphism, this means that
u is an epimorphism. Dually the morphism u′ : Cok(α) → Cok(f ′α) exists and is a
monomorphism.

We see that g′βiγg = γgiγg = 0. As X ′ = Ker(g′), with f ′ being the kernel monomor-
phism, this means that there exists a morphism v : Ker(γg) → X ′ so that f ′v = γiγg.
Dually there exists a morphism v′ : Z → Cok(f ′α) so that pf ′αβ = v′g.

Since pu′v
′iγu = pu′pαv = 0, and u is an epimorphism, pu′v

′iγ = 0. However, by
exactness, u′ is the kernel of pu′ . Thus there must exist a map φ : Ker(γ) → Cok(α),
such that u′φ = v′iγ . We have shown the existence of the sequence

Ker(α)
f̄−→ Ker(β)

ḡ−→ Ker(γ)
φ−→ Cok(α)

¯̄f−→ Cok(β)
¯̄g−→ Cok(γ).

It remains to show exactness. Consider the pullback diagram

A
a //

a′

��

Ker(φ)

iγ iφ
��

Y
g // Z

As g′βa′ = γga′ = γiγiφ = 0 andX is the kernel of g′, there exists a morphism b : A→ X ′

such that βa′ = f ′b. In addition, there exists a morphism c : A → Ker(γg) such that
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iγgc = a′. Furthermore, iγuc = giγgc = ga′ = iγiφa. As iγ is a monomorphism, it follows
that uc = iφa.

By definition u′φu = pf ′αβiγg, and we have that

0 = u′φiφa = u′φuc = pf ′αβiγgc = pf ′αβa
′ = pf ′αf

′b = u′pαb.

As u′ is a monomorphism, this means that pαb = 0. As Im(α) = Ker(pα), this means
that there exists a unique morphism d : A → Im(α) so that ipαd = b. We have that

pβf
′ipα = ¯̄fpαipα = 0, so there exists a unique morphism w : Im(α) → Im(β) so that

ipβw = f ′ipα . We have

ipβpiβa
′ = βa′ = f ′b = f ′iαd = ipβwd,

and since ipβ is a monomorphism, this means that piβa
′ = wd. We use this fact to see

that f ′ipαd = ipβwd = ipβpiβa
′ = βa′. Let B be the following pullback completion:

B
v //

v′

��

A

d
��

X
piα // Im(α)

As piα is an epimorphism, so is v. We summarize the work we have done so far in the
following diagram:

B
v //

v′

��

A

b

~~

c

��

a //

a′ ��

Ker(φ)

iφ
��

Ker(γg)

iγg��

u // Ker(γ)

iγ��

φ

//

X
f //

piα
��

α

��

Y
g //

��
β

��

Z

γ

��

Im(α)

��

// Im(β)

��
X ′

pα
��

f ′ // Y ′

pf ′α
��

g′ // Z ′

Cok(α)
u′ // Cok(f ′α)

We get that

βfv′ = f ′αv′ = f ′ipαpiαv
′ = f ′ipαdv = f ′bv = βav,

and thus β(fv′ − a′v) = 0, so there must exist a morphism e : B → Ker(β) so that
iβe = fv′ − a′v. As

iγ ḡe = giβe = ga′v = iγiφav
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and iγ is a monomorphism, we have ḡe = iφav. Since ḡφ = 0, there exists a morphism
x : Ker(β) → Ker(φ) so that iφx = ḡ. However, this means that iφxe = ḡe = iφav and
since iφ is injective, that means xd = av. Both a and v are epimorphisms, so x must be
an epimorphism. This means that we have constructed a factorization ḡ = iφx through
Ker(φ) where x is an epimorphism and iφ is a monomorphism. Thus Ker(φ) = Im(ḡ),
and the sequence is exact in Ker(γ). Dually it is exact in Cok(α).

Corollary A.3. Suppose the following is a commutative diagram with exact rows:

0 // X
f //

α
��

Y
g //

β
��

Z //

γ
��

0

0 // X ′
f ′ // Y ′

g′ // Z ′ // 0

then there exists a unique long exact sequence

0→ Ker(α)→ Ker(β)→ Ker(γ)
φ−→ Cok(α)→ Cok(β)→ Cok(γ)→ 0.

Proof. Using the terminology from the above proof, what we need to prove is that if f
is a monomorphism, so is f̄ (that ḡ is an epimorphism if g is, follows dually). However,
as iβ f̄ = fiα and fiα is a monomorphism, f̄ is a monomorphism.

A.3 Technical lemma for theorem 4.12

Finally, we give a rather technical lemma required in the proof of theorem 4.12. The
lemma is given as an exercise in [9].

Lemma A.4. Suppose the following square commutes:

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

The following are equivalent:

(i) If P is the pullback completion of f and g, then X ′ → P is an epimorphism.

(ii) If Q is the pushout completion of f ′ and g′, then Y → Q is a monomorphism.
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(iii) The following diagram is commutative with exact rows and columns:

0

��

0

��

0

��
0 // Ker(φ) //

��

Ker(g′) //

��

Ker(g) //

��

0

��
0 // Ker(f ′) //

φ

��

X ′
f ′ //

g′

��

X //

g

��

Cok(f ′)

ψ

��

// 0

0 // Ker(f) //

��

Y ′
f //

��

Y //

��

Cok(f)

��

// 0

0 // Cok(g′) //

��

Cok(g) //

��

Cok(ψ)

��

// 0

0 0 0

(A.2)

Proof. (i)⇔(ii) Let P and Q be defined as the respective pullback and pushout comple-
tion. We then have a commutative diagram with exact rows:

X ′ //

θ
��

X ⊕ Y ′ // P //

ξ

��

0

0 // Q // X ⊕ Y ′ // Y

By the snake lemma there exists an exact sequence 0 → Ker(ξ) → Cok(θ) → 0; thus
Ker(ξ) ∼= Cok(θ) and θ is an epimorphism if and only if ξ is a monomorphism.

(i)⇒(iii) We start by looking at the pullback square

P
f ′′ //

g′′

��

Y ′

g

��
X

f // Y

We let θ be the epimorphism X ′ → P and consider the following commutative
diagram, where the bottom row is exact:

Ker(f ′) //

��

X ′

θ

��

f ′

��
0

<<

// Ker(f ′′) // P
f ′′ // Y ′
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By a theorem proved in [8] we know that the square is pullback because 0 →
Ker(f ′) → X ′ → Y ′ is exact. Hence Ker(f ′) → Ker(f ′′) is an epimorphism. How-
ever, we have Ker(f ′′) ∼= Ker(f) (because P is pullback), and so Ker(f ′)→ Ker(f) is an
epimorphism.

By using the ”half version” of the nine lemma proved in [8], we find that the following
diagram is commutative and has exact rows and columns:

0

��

0

��

0

��
0 // Ker(φ) //

��

Ker(g′) //

��

Ker(g)

��
0 // Ker(f ′) //

φ

��

X ′
f ′ //

g′

��

X

0 // Ker(f) //

��

Y ′

0

Using the fact that (i)⇔(ii), the rest of diagram A.2 follows dually.
(iii)⇒(i) Suppose P is the pullback completion in the diagram

P
f ′′ //

g′′

��

Y ′

g

��
X

f // Y

The morphism X ′ → P exists by the universality of the pullback completion. We
consider the following commutative diagram with exact rows:

Ker(f ′)

��

// X ′

��

f ′ // Y ′ // Cok(f ′)

��
Ker(f ′′)

��

// P

��

f ′′ // Y ′

��

// Cok(f ′′)

��
Ker(f) // X

f // Y // Cok(f)

Since (iii) holds, we have that φ : Ker(f ′) → Ker(f) is an epimorphism and ψ :
Cok(f ′) → Cok(f) is a monomorphism. Furthermore Ker(f ′′) ∼= Ker(f), and hence
Ker(f ′) → Ker(f ′′) is an epimorphism and since Cok(f ′) → Cok(f ′′) → Cok(f) =
Cok(f ′) → Cok(f), we must have that Cok(f ′) → Cok(f ′′) is a monomorphism. Thus
we can use the five lemma on the two upper rows to show that X ′ → P is an epimor-
phism.
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