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We describe the flow around a 6:1 prolate spheroid at 45◦ inclination angle and Reynolds

number 4000 based on the minor axis. Despite that the inflow is uniform and steady, the

resulting wake is highly asymmetric and unsteady. Two main vortical structures develop from

the shear layers of the spheroid, one being significantly stronger than the other. This asymmetry

results in a non-zero sideforce. The forces acting on the spheroid change dramatically from

earlier works at Reynolds number 3000. The pressure inside the vortex cores also changed with

this moderate increase in Reynolds number. This indicates that the flow is highly transitional.

We also document that close to the body, on the side of the weaker vortex, there is a region of

negative axial velocity. In this backflow region, the fluid enters from behind the spheroid and

travels forward against the inflow and then exits the backflow region through one of the main

vortical structures. This backflow has not been described before. We also observe and describe

a distinct Kelvin-Helmholtz shear layer instability close to this region.

Nomenclature
λ Aspect ratio λ = L : D

λ2 Vortex identification measure

ν Kinematic viscosity of fluid

ρ Density of fluid

ω Vorticity

Aref Reference area

CFi Force coefficient, i ∈ (x, y, z)

CMi Torque coefficient, i ∈ (x, y, z)

Cp Pressure coefficient

D Spheroid diameter

d Reference length d = 1.817D

Fi Force on spheroid, i ∈ (x, y, z)

f Frequency

L Spheroid length

Mi Torque on spheroid around the axis i, i ∈ (x, y, z)

p Instantaneous pressure

p Time-averaged pressure

ReD Reynolds number Re = DU∞/ν

u, v, w Instantaneous fluid velocity

U∞ Inlet (freestream) velocity

xax Spheroid major axis

x, y, z Cartesian coordinates
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I. Introduction
The 6:1 prolate spheroid serves as a model for various objects ranging from particles suspended in a fluid; underwater

vehicles or submarines in the ocean to aircraft, rockets and drones in the air. Different aspect ratios and attack angles,

give rise to a wide range of interesting flow features such as 3-D flow separation, wake asymmetry, etc. Therefore,

laboratory experiments and numerical simulations of the flow around a prolate spheroid and its wake have become an

appealing research topic for flow physicists and engineers. The intrinsic complexity of the flow physics in the wake also

makes it an interesting case for high-resolution flow simulations (Direct Numerical Simulations - DNS).

The prolate spheroid geometry has been used to study boundary layer separation, see e.g. Wang [1] and Geissler [2].

Flow separation experiments are reported by Wetzel et al. [3]. Later on, more complicated experiments with 3-D flow

measurements took place [4]. Due to the similarity with various vehicles, the prolate spheroid has also been used as

prototype in manoeuvring experiments (e.g. Rhee and Hino [5]). The full history on this topic is properly summarized

in Simpson [6] and Andersson et al. [7], therefore it will not be repeated here. Nevertheless, it is important to notice

that in early research works, emphasis was on the integral body forces and flow details close to the geometry (essentially

surface flow, boundary layers, separation, or in special cases the very near wake). Difficulties in measuring the complex

wake in an experiment, the use of simplified numerical methods, as well as limited computational power, have all been

constraints in earlier studies of the wake field behind a prolate spheroid. This is to a certain degree still the case.

DNS, however, is able to produce reliable and detailed results of the 3-D flow fields, and in-depth investigations of

the complex wake is possible from the simulation data. DNS studies of the prolate spheroid wake were carried out by

El Khoury et al. [8, 9], in which they described the detailed wake flow behind a 6:1 prolate spheroid in cross-flow,

and outlined the special flow features and the wake transition scenario for this configuration. The wake of the prolate

spheroid in cross-flow contains geometrical features similar to both finite-length cylinder wakes and wakes behind

spheres, but turns out to be different from both.

The wake behind a 6:1 prolate spheroid, but at angle of attack 45◦, were systematically investigated by Jiang et al.

[10–12]. A wide range of Reynolds numbers (ReD , defined based on the minor axis D) from 50 to 3000 were considered.

These studies reveal that the dominating structure of the laminar wake when ReD < 1000 is a pair of counter-rotating

vortices. These vortices originate from the shear layers separated from the two sides of the spheroid, starting at the tip

of the spheroid while growing larger downstream. This steady and fully symmetric laminar wake persists to a relatively

high ReD = 1000, at which the primary instability was observed, and the wake partly looses its symmetry (in the far

wake only). At Reynolds numbers higher than about 1000, the wake becomes unsteady and asymmetric, but no vortex

shedding or vortex filament flapping could be observed in the wake. As a result, the time-averaged flow field is also

heavily asymmetric, thus exerts a strong side force onto the geometry.

The asymmetric time-averaged flow fields, together with the strong side force, deliver an important message. People

have only considered this kind of asymmetric wake for sharp-nosed slender bodies such as a air-fighter forebody
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[13, 14], and assumed that this asymmetry would not occur with blunt-nosed bodies, because they are generally less

sensitive to asymmetric disturbances [15]. Coincidentally, a similar side force and asymmetric wake were observed in

an experimental study carried out by Ashok et al. [16], for a spheroid-like submarine hull at incidence. These results

revealed, beyond any doubt, that asymmetry is an intrinsic feature of similar wake flows. This conclusion may be

especially important for the marine and aerospace community because prolate spheroids can be an idealized prototype

for UUVs (Unmanned Underwater Vehicles), submarine bare hulls, and various aircraft, and the asymmetric wake may

have significant influence on the manoeuvring capabilities of these vehicles.

Jiang et al. [17] continued their investigations of the 45◦-inclined prolate spheroid wake, and conducted more

detailed explorations of the coherent structures in the wake, i.e. a concentrated helical vortex, at ReD = 3000. They

took advantage of the very detailed flow information from a DNS simulation, and reported several interesting features of

the coherent wake structure and complex vortex interactions in this specific wake problem.

Encouraged by the recent progress, we aim to further increase the Reynolds number of the 45◦-inclined 6:1 prolate

spheroid to ReD = 4000, and study the flow physics in the resulting near-wake. We have learned from previous studies

that the wake is transitional at ReD = 3000. Therefore, a modest increase in ReD has two advantages: firstly, the main

features of the wake should not change dramatically; secondly, since the wake is under transition, we might anticipate

new and interesting flow features. Although this range of Reynolds numbers is outside the operating conditions of

the type of vehicles mentioned earlier, this Reynolds number regime is ideal for simulations both in order to describe

and understand fundamental flow physics and to serve as computational benchmarks and validation for large eddy

simulations (LES), detached eddy simulations (DES) and Reynolds-averaged Navier-Stokes (RANS) simulations.

II. Problem and definitions
This paper presents the flow around a prolate spheroid with an aspect ratio of λ = L : D = 6 : 1, where L is the

length of the major axis and D is the length of the two minor axes. D is thus also the maximum diameter of the circular

cross-section that appears when the spheroid is sliced perpendicular to the major axis. The spheroid’s orientation in the

global coordinate system is found by first aligning the major axis of the spheroid xax with the global x-axis, and then

rotating it 45◦ around the global z-axis. The constant inflow velocity is uniform u = U∞ in the positive x-direction

with v = w = 0. The outlet is a fixed-pressure boundary condition with zero-gradient Neumann conditions for the

velocity. The four other side boundaries (perpendicular to the y and z-axes) of the domain are slip-walls in which the

wall-normal velocity component is prescribed to be zero, while the two other velocity components and the pressure have

a zero-gradient Neumann condition. The flow is incompressible and assumed to be governed by the Navier-Stokes

equations together with the equation for conservation of mass. The Reynolds number based on the equatorial diameter

D is ReD = DU∞/ν = 4000 in the present work.

The size of the computational domain is shown in figure 1. To facilitate easy discussion we choose to adopt the
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Figure 1 Computational domain and coordinate systems. D is the length of the spheroid’s minor axis. The
origin of the coordinate systems is in the center of the spheroid. To emphasize the spheroid shape and orientation,
it is enlarged with respect to the surrounding domain. The terms starboard and port are used for the sides
corresponding to the negative and positive z-axis, respectively. The spheroid is pointing with its nose down.

(aero)nautical terms port and starboard to distinguish the two sides of the spheroid. The port side is to the left when the

observer is positioned at the spheroid and looking against the oncoming flow. In mathematical notation, the port side is

the half of the spheroid with z > 0 and the starboard side is the half of the spheroid with z < 0.

We will also use a rotated coordinate system to present results. This coordinate system is found by rotating the

original coordinate system (in which the inflow is parallel to the x-axis) 45◦ in positive direction around the z-axis,

such that the resulting first axis coincide with the major axis of the spheroid. Flow variables presented in the rotated

coordinate system will have the ‘ax’-subscript, e.g. the flow velocity uax.

To enhance the 3-D visualizations and help in setting the point of view, we have added two meridian lines to several

of the figures presented in this paper. The first line is the intersection line between the spheroid and the xy-plane, and

the second line is the intersection between the spheroid and the zxax-plane.

III. Numerical methods
The codeMGLET [18] has been used to perform all simulations presented in this paper. MGLET uses a finite-volume

formulation on staggered Cartesian grids to solve the incompressible Navier-Stokes equations using linear interpolation

and integration for all spatial terms, hence leading to second-order accuracy in space. A third-order low-storage explicit
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Figure 2 a) grid on which initial development of flow was conducted b) final grid on which the final results are
computed. Each box in the figure represents a cube of 40 × 40 × 40 grid cells.

Runge-Kutta time integration scheme [19] is used for time stepping. The time step is fixed at 0.001 D/U∞ in the entire

simulation.

MGLET introduces the solid geometry through an immersed boundary method [20]. A local refinement of the grid

around the spheroid is achieved by constructing a multi-grid hierarchy that together form an unstructured arrangement

of Cartesian grid boxes. In the simulation presented here, we use five grid levels in total. This resolves the solid

geometry surface, its boundary layers and the wake behind it sufficiently while keeping the total number of grid cells at

a reasonable level. The refinement process is a simple cell splitting, in which each parent grid cell subject to refinement

is split into eight equal (3-D) child cells [21].

To develop an efficient grid without wasting cells in areas with no interesting flow structures, we initially constructed

a symmetric grid with the desired final resolution close to the spheroid surface, as seen in figure 2a). The flow was

simulated on this grid for a long time, and when the asymmetry was fully developed, we mapped the flow on to a new,
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Table 1 Grid and simulation parameters compared to reference [11]. ∆x,∆y,∆z is the grid spacing.

Case ReD = 3000 [11] ReD = 4000 (present)
min(∆x,∆y,∆z) 0.006D 0.004D

Number of grid cells 0.75 × 109 2.1 × 109

Time step 0.001D/U∞ 0.001D/U∞
Sampling time 600D/U∞ 369D/U∞
Domain size Lx × Ly × Lz 38D × 24D × 21D 53.7D × 25.6D × 25.6D

Starboard

Port

Figure 3 3-D Rendering of the λ2 vortex identification criterion [22], seen seen from upstream. The spheroid
body is not shown, to be able to see the flow structures behind it. The figure is created at time t = 345.760D/U∞.

asymmetric grid with improved wake resolution, as shown in figure 2b). After a second, short, simulation we used this

result as the initial condition for all further simulations from where our reference time sampling t = 0 starts.

The resulting grid and simulation parameters are summarised in table 1. It is worth mentioning that due to recent

efficiency improvements in the MGLET code, the present simulations are considerably cheaper to execute compared to

previous works, despite the fact that we have nearly three times as many grid cells as in [11].

IV. Results

A. Forces and torques

Similar to Reynolds number 3000 [11], the present wake is highly asymmetric, see figure 3. Because of this, there is

a strong sideforce Fz acting on the spheroid. The average sideforce is of the same order of magnitude as the average
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Figure 4 Force coefficients on the spheroid during the simulation.

Table 2 Mean and root-mean-square (RMS) of the force and torque coefficients. Coefficients at ReD = 3000
are from [11].

ReD CFx CFy CFz CMx CMy CMz

3000 (ref [11])
Mean 0.879 -0.796 -0.645 -0.168 0.166 0.311
RMS 0.006 0.006 0.019 0.009 0.009 0.010

4000 (present)
Mean 0.852 -0.807 0.637 0.084 -0.082 0.315
RMS 0.012 0.013 0.039 0.019 0.019 0.015
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drag force Fx . See figure 4. Since the inflow and geometry is symmetric about the xy-plane, this asymmetry is caused

by the resulting flow only.

In this work we normalize all forces the same way

CFi =
Fi

1
2 ρU2

∞Aref
, i = x, y, z (1)

and for the torques

CMi =
Mi

1
2 ρU2

∞Arefd
, i = x, y, z (2)

where Mi is the torque around axis i in the coordinate system given in figure 1. The reference length d = 1.817D is the

diameter of a sphere with the same volume as the 6:1 spheroid, and the reference area is Aref = πd2/4. This is the same

as used in previous literature on the same geometry.

Table 2 gives the force coefficients for each of the three main directions. We see that in the present case, both the

drag (CFx) and the sideforce (CFz) are slightly lower in magnitude than the corresponding values for ReD = 3000 [11].

The average drag coefficient is CFx = 0.852 in our case, and the average sideforce coefficient is CFz = 0.637, that is 75

% of the magnitude of the drag force. Since the wake developed to the other side in the ReD = 3000 case, the sideforce

CFz and torques CMx and CMy have the opposite sign in the two cases. The different wake asymmetry is caused by

insignificant numerical differences in the initial development of the flow. Each of the two asymmetric wakes are equally

likely. The vertical lift force is CFy = −0.807, approximately the same as in the ReD = 3000 case.

For ReD = 3000 Jiang et al. [11] observed clear periodic oscillations in the sideforce Fz with a period of around

13.6D/U∞, see figure 2 in [11]. At the present Reynolds number, the sideforce coefficient history, as shown in figure 4,

no longer show any obvious periodic patterns. However, the magnitude of the fluctuations are twice as large, as seen in

the difference in the RMS of CFz between the cases.

Compared to the previously reported force coefficients at ReD = 3000, table 2 shows much of the same general

tendency, except for the torque coefficients CMx and CMy . At the Reynolds number of 4000, the magnitude of the mean

torque around the x and y-axis is half of that at Reynolds number 3000, but the root-mean-square (RMS) value of the

fluctuations of the two coefficients are twice as large. At the present Reynolds number the RMS of the torque coefficients

CMx and CMy are now about 25 % of the mean value. Similarly, the RMS of the force coefficients in all three directions

have doubled. One possible explanation can be that this is a consequence of the increased turbulence and chaos in the

flow associated with the strong port side vortex. The turbulence provides a more uniform and symmetric loading in

average, but the oscillations are much higher in this more turbulent flow regime compared to ReD = 3000.

The pressure in the core of the two main vortices are of interest to study. Jiang et al. [17] presented the pressure

along the core of the weaker vortex (in the present case this is the starboard vortex in figure 3), which showed two
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Figure 5 Time-average of pressure in the vortex cores of the present case compared to Reynolds number 3000.
The Reynolds number 3000 results are mirrored (i.e. port and starboard are switched) to be comparable with
the present case. Results from ReD = 3000 are from [17].

distinct minima. In the present ReD = 4000 case, we extracted the pressure along both vortex cores (defined as the

locus of the pressure minima) in the same way, and observe a striking difference in both the strong and weak vortex.

This is shown in figure 5. The present strong port side vortex have grown even stronger (with lower pressure), and the

location of the pressure minima have shifted forwards slightly. In the weaker vortex core there were previously two

distinct pressure minima with a significant peak in between. This was associated with the helical vortex alteration as

described by [17]. These minima have now shifted both in magnitude and position, and are now nearly joined, only

separated with a slight increase in pressure. The maxima in between them also has a much lower pressure. The fact that

the increase in Reynolds number between the cases is very modest, supports the claim that the present case is highly

transitional and only a small change in Reynolds number gives rise to huge changes in the flow structures.

B. Overall wake topology

The coherent vortical structure originating from the weak starboard tip vortex is still present as for the lower Reynolds

numbers, but it now appears to be more unsteady. Starting from the tip of the spheroid, a counter-rotating vortex pair is

generated from the shear layers, see plane at x/D = −1.5 in figure 6. In the front part at x/D = −1.5, the port side

vortex grows stronger by 25 % compared to the starboard side vortex, creating an imbalance between the two. The

result is that the vortices twist and bend such that the stronger, port vortex is attracted to the spheroid surface, moving

towards the centerline further downstream along the spheroid, and the weaker starboard vortex is deflected outwards and

downwards from the spheroid surface, see figure 6. The stronger port vortex is not much affected, neither by the shear

layers forming from the spheroid nor the freestream, because it is mostly sheltered behind the spheroid body. Hence it is
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Figure 6 Axial vorticity ωax in six yz-planes along the spheroid, indicating the development of the tip vortices.
Figures are created at time t = 345.760D/U∞. The maxima and minima of ωax in the vortex cores are indicated
with a white cross. Blue colors indicate negative and red colors indicate positive vorticity. All individual plots
share the same color scales.
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nearly stationary. However, when the stronger port vortex reaches the aft end of the spheroid, close to x/D = 2.0, and

meets the flow coming over the spheroid, it immediately disintegrates into smaller turbulent structures. The weaker

starboard vortex on the other hand, interacts with both the shear layers forming from the sides of the spheroid and the

freestream, but in a highly complicated manner.

C. Axial flow behind the spheroid

There is a strong axial flow underneath the spheroid, see figure 7. The maximum value of the axial velocity uax

exceeds 1.5 times the freestream velocity. This was first reported and described by Jiang et al. [11]. Very close to the

nose of the spheroid (around x/D = −1.5), the axial flow is strongest between the port and starboard vortex, and further

downstream the axial flow in both vortex cores increases in strength and exceeds the velocity between the vortices. The

strong port vortex provides a stronger axial flow field than the weaker starboard vortex. This is similar to the results at

ReD = 3000 [11] and will not be discussed any further in this paper.

In the present simulation we observe a region of moderately strong negative axial velocity (uax < 0) on the starboard

side of the spheroid, see figure 7 and 8. The region of negative axial velocity is at the same side as the weaker vortex.

The negative axial velocity also leads to the formation of not only one, but two distinct shear layers with different

direction of the shear. The first shear layer is between the spheroid surface (with u = v = w = 0) and the region of

negative axial velocity, and the second shear layer is between this region and the freestream. These shear layers are

easily visible as thin white layers in figure 7.

To investigate details in the region of negative axial velocity, we randomly selected a number of seedpoints in the

volume where uax < 0. From these points we integrated streamlines in the instantaneous velocity field both downstream

and upstream. The result is shown in figure 8. We notice that a large majority of the fluid particles that end up in the

region of negative axial velocity, originate from the port side of the spheroid nose. After the fluid particles ‘turn around’

underneath the nose, from the port to the starboard side, they are captured by the powerful upwards axial flow that is

established between the two main vortices. The main wake deflects towards starboard in this case, and so do the fluid

particles. When they reach about halfway up along the spheroid, the fluid particles change direction and travel towards

the spheroid nose again. Eventually they are captured by the starboard vortex and escape, repelled downstream in the

helical vortex core. From this we understand that the region of negative axial velocity is not a recirculation region

where the same fluid is constrained in a small region and circulate without exchange of fluid, but a backflow region

where the fluid enter in the rear part, flows towards the nose of the spheroid, and leaves through the starboard vortex.

‘Fresh’ fluid continuously enters and leaves the backflow region.

The exact mechanisms creating this backflow region is not yet fully understood, however, we suspect that differences

in separation patterns between port and starboard side of the spheroid have strong influence on it. On the port side, there

is suction due to the strong vortex (which is the cause of the strong sideforce Fz), while on the starboard side there is
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Figure 7 Axial velocity uax in the same six yz-planes along the spheroid as in figure 6. Figures are created at
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Starboard

Figure 8 3-D perspective view of starboard side. Regions with backflow (uax < 0) are enclosed with yellow
isosurfaces. The spheroid body and vortex cores (here defined by λ2 < −80) are both grey. The streamlines
are integrated from randomly selected seed points in the backflow region both upstream and downstream. The
lines from the backflow region and upstream towards the inflow, are blue, and the lines exiting and moving
downstream and into the wake, are red. The perimeter of the 3-D yellow region near the starboard nose is the
boundary of the backflow region. Figure is created at time t = 345.760D/U∞.
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ridge of the spheroid, facing the inflow, and 180 degrees are the backside of the spheroid.
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less suction. The minima of the pressure is shifted downwards about five degrees on port side compared to starboard

side, see figure 9. Based on observations of the flow direction a few grid cells away from the wall, we see that the flow

separation at the center of the spheroid is around 90 degrees from the ridge on the starboard side and 100 degrees on the

port side.

D. Interaction between the starboard main vortex and the shear layer

The weaker starboard side vortex, being deflected away from the spheroid surface and into the freestream, interacts

with the double shear layers between the spheroid, backflow region and freestream. In this interaction region, a number

of interesting phenomena occur. In order to explore some of them, we conducted a simulation from where we saved

the entire 3-D flow field in a selected region close to the spheroid every 15th time steps, that is every 0.015D/U∞.

The simulation was conducted for 30 000 timesteps, which resulted in a dataset of 2000 full 3-D flow field snapshots.

This collection of 3-D flow fields has been examined and interesting flow phenomena have been selected and will be

discussed in the following sub-sections.

For a long duration of time a double helical structure is observed, see figure 10a). The weak starboard tip vortex

interacts with a secondary vortex originating from the shear layer on the starboard side. This vortex pair curl around

each other, forming a helical pair of vortices with the same rotational direction. This secondary vortex is in fact stronger

(in terms of maximum vorticity in the vortex core) than the starboard tip vortex. The two vortices both rotate in the same

direction, that is, they have negative axial vorticity. This is easily explained by the fact that they are both generated from

the same side of the spheroid, one originating from the nose and the other originating near the center of the spheroid.

The same pair of helical vortices are also shown in figure 6, in the plane at x/D = 1.0.

The formation of this helical pair originates from the main starboard vortex that separates from the boundary layer

and turn downstream. This is particularly visible in figure 8. However, the boundary layer continues to roll up, and

generates more vortices. From several time instants in the simulation we count between two and four additional vortices

being generated from the starboard boundary layer. All of them have the same rotational direction, and occasionally

they form helical pairs with the main starboard vortex structure.

In another sequence of repetitive events a number of delicate and almost identical hairpin vortices are formed outside

of the shadow of the spheroid and shear layers, as indicated on figure 10 b) and c). The hairpin vortices are generated and

elongated, while they simultaneously wrap themselves around the core of the starboard tip vortex. The origin of these

hairpin vortices is the turbulence generated by the port side tip vortex when it disintegrates. At certain times, a single

vortex from the port side is wrapped around the starboard side tip vortex. This is when the hairpin vortices are created.
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Figure 10 (a): double helical structure at time t = 346.825D/U∞. (b) and (c): hairpin vortex formation at time
t = 354.835D/U∞ from two different viewpoints. The yellow arrows indicate the features of interest.
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through this point. b): like a), but zoomed in around the region of the observed Kelvin-Helmholtz instabilities.
c): 3-D rendering of the Kelvin-Helmholtz instability from the starboard shear layer at time t = 363.790D/U∞.
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E. Intermittent Kelvin-Helmholtz vortices

When we study the time-series from the simulations, a number of nearly identical vortex filaments are observed on

the starboard side only. These are traced back to the shear layer that rolls up and forms the starboard side tip vortex. We

have already discussed the double shear layers that form due to the backflow in this region, and from the outermost of

these we observe the characteristic Kelvin-Helmholtz instability, similar to what occurs in the shear layer shed from a

circular cylinder, see figure 11c).

Since the studied time series are limited and we only observed one of these ‘bursts’ of Kelvin-Helmholtz instabilities,

we cannot compute the intermittency factor, but we do get a very good estimate of the frequency of these events because

they occur very regularly. Figure 11 a) and b) show λ2 in a point (x, y, z) = (1.5, 0.1,−0.85) as a function of time. Each

time a vortex core passes by, in the vicinity of this point, the measured value drops far below 0 in the plot. In the time

intervals (16.815 - 18.465 D/U∞ and 19.98 - 20.76 D/U∞) we see five and three such vortices passing by. In addition

there might be some vortices passing nearby in the interval 18.465 - 19.98 D/U∞, but that is not directly clear from

the plot alone. In total, from figure 11b) we can estimate the period of the instabilities to be approximately 0.4D/U∞,

corresponding to a frequency of 2.5 U∞/D.

This frequency of 2.5 U∞/D is amazingly high for a Kelvin-Helmholtz shear layer instability compared to for

instance similar frequencies found in the shear layers of circular cylinders. The similar instability frequency of shear

layers shedding from a circular cylinder are 5 fv [23], which is around 1U∞/D for a Strouhal number of 0.2. This is

generally valid over a broad range of Reynolds numbers around 4000. However, there is a striking similarity between

the current investigated spheroid shear layer instability and the Kelvin-Helmholtz instabilities found in shear layers

around spheres. Constantinescu and Squires [24] performed direct numerical simulations on the flow around a sphere at

Re = 10000, and found Kelvin-Helmholtz instabilities in the frequency range between 1.9 and 2.4 U∞/D. This is in

good agreement with the present result.

Another very interesting observation is that the rotational direction of the Kelvin-Helmholtz vortices are opposite of

the ‘intuitive direction’. In figure 12 the yellow arrows indicate regions of high and low fluid velocity, the larger arrow

indicates higher velocity (details on this is shown in figure 7). Since the axial fluid velocity on the leeward side (back

side) of the spheroid is higher than the freestream velocity, the observed Kelvin-Helmholtz vortices have a positive

vorticity ωy . If the fluid behind the spheroid was nearly stagnant (like the recirculation zone behind a circular cylinder)

the rotation of the Kelvin-Helmholtz vortices would have been in the opposite direction.

V. Concluding Remarks
The wake behind the 45◦ inclined 6:1 prolate spheroid at ReD = 4000 turned out to be severely skewed as in the

ReD = 3000 case, in spite of the completely symmetric geometry. Although the force coefficients were almost identical,

the secondary torque coefficients in the present case were substantially reduced compared to the lower-Re case. Also,
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Figure 12 A xz-slice at z = 0.63 colored by the vorticity ωy , showing the Kelvin-Helmholtz vortices at time
t = 363.790D/U∞. The yellow arrows indicate regions with high (large arrow) and low (small arrow) fluid
velocity.
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the RMS of all force- and torque coefficients are roughly doubled from ReD = 3000, which indicate a major change in

the near-wake with more unsteadiness than before.

The pressure within the two main coherent vortical structures were also significantly changed from ReD = 3000.

The two minima from the helical vortex alteration process are almost gone in the present case. This confirms the

hypothesis from the introduction, that the flow is highly transitional in this Reynolds number regime.

The present work is the first to describe the interesting backflow region associated with the weak starboard side

vortex. In this region the fluid enters from behind, flows towards the nose and leave through the weak starboard side

vortex. There is a continuous exchange of fluid in this region.

The interesting flow phenomena reported in section IV, namely the double helix, the hairpin vortices and the

Kelvin-Helmholtz vortices, are all observed intermittently. These phenomena repeat themselves intermittently, but the

accompanying animations are not sufficiently long to draw conclusions about how recurrent they are. These intermittently

occurring flow phenomena are confined in space and have only negligible influence on the force coefficients shown in

figure 4. The intermittent vortex dynamics in the ReD = 4000 wake strongly suggest that the flow is in a transitional

regime where modest variations in the Reynolds number give rise to major changes in the wake. Neither the double

helix nor any Kelvin-Helmholtz vortices were observed at ReD = 3000. We therefore speculate that periodic vortex

dynamics phenomena may occur if the Reynolds is somewhat further increased.

We admit that the wake flow at ReD = 4000 is in a transitional flow regime and strongly Reynolds number dependent.

The intermittent phenomena observed herein were not reported at lower Reynolds numbers. This makes the present

wake distinctly different from the wake at ReD = 3000, although the overall asymmetries are in common.
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