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Chapter 1

Introduction

The introductory chapter in this thesis contains basic results concerning the
Gaussian distribution and fundamentals of the theory of matrix functions
and how they relate to the Gaussian distribution, as well as some applications.
We will refer to other parts of the thesis as required, but the introduction
should for the most part be a self-contained piece of text. Throughout
the thesis, necessary information is repeated as needed. We conclude the
introductory part by giving a succinct account for the main contribution of
the thesis.

Before getting into the details on the different aspects, we say a few words
about the motivation for the research we have done: In many ways, spatial
statistics and graphical models are in need of new computational frameworks.
The dimensionality of the data that needs to be analysed in modern statistical
problems increases faster than the computational power available on a
single workstation, and in order to do inference in a particular framework,
say, maximum likelihood, the individual procedures needed to compute a
likelihood- or gradient estimate need to accommodate this. In particular,
the algorithms needed to do inference should be cloud-computing friendly
through interfaces such as MapReduce (Dean and Ghemawat, 2008). The
first part of this thesis, namely Chapter 2 and 3 deals with parallel-friendly
aspects of computing for the Gaussian distribution. The first one deals

1



1.1. The Gaussian distribution 2

with sampling from high-dimensional Gaussian distributions, needed for
sampling based inference, and the second deals primarily with the hard
part of likelihood-based inference in Gaussian models – computation of the
log-determinant.

Another aspect that is of vital importance when designing prior distributions
is flexibility of including prior information from different sources, and how
to do that with ease. Multivariate spatial models, in particular, quickly
become high-dimensional, and we need to specify priors that are possible to
store and that treats different regions in space differently. In Chapter 5, we
present a framework for dealing with different aspects of a Gaussian prior
using systems of linear stochastic partial differential equations (SPDEs)
driven by Gaussian white noise, which induces a Markovian model with nice
properties.

For non-linear problems that are driven with Gaussian noise, many challenges
appear, including multi-modality, fast convergence and performance gain
over a linearised model. For seismic amplitude versus angle (AVA) inversion,
such a problem is treated in Chapter 4, with heuristics to overcome some of
these challenges.

1.1 The Gaussian distribution

The Gaussian distribution is probably the most known probability distribu-
tion in existence. The reason for this stems not only from its wide use in
statistics, but also from aspects of different branches of analysis, where it
pops up as parts of a solution to a PDE, or as being an eigenfunction of the
Fourier transform. Every person who has studied mathematics is bound to
have encountered this distribution in one form or another. A real-valued
random variable, x, has a Gaussian distribution if

p(x|σ2, µ) =
1

σ
√

2π
e−(x−µ)2/(2σ2). (1.1)
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The parameters µ, σ2 are the expectation and the variance of the variable
respectively. The definition is easily extended to Rd-valued variables as
follows: the variable x has a multivariate Gaussian distribution if

p(x|Q,µ) =
det(Q)1/2

(2π)d/2
e−

1
2

(x−µ)TQ(x−µ). (1.2)

Here, the precision matrix, Q, is symmetric positive definite and µ is the
expectation vector. The precision matrix is the inverse of the covariance
matrix, i.e. Σ = Q−1. If Q has some eigenvalues that are zero, (1.2) does
not define a proper density, since the “distribution” for x is invariant under
addition of linear combination of the corresponding eigenvectors. We call
variables having such a “distribution” intrinsic Gaussian variables. It should
be possible to formulate a proper distribution for equivalence classes of
variables that are shifted by linear combinations of eigenvectors, but we do
not address this topic here.

It is possible to go farther than this, defining continuously indexed Gaussian
fields, and even Gaussian measures. A random field x : Ω → RT is a
Gaussian field if for all finite subsets {ki}Ni=1 ⊂ T , x = (x(k1), . . . , x(kN ))T

has a multivariate Gaussian distribution. Here, Ω is the probability space,
and T is the index family (typically Rn). Gaussian fields are uniquely
identified through their expectation function µ(t) = E(x(t)) and covariance
function C(s, t) = E([x(s) − µ(s)][x(t) − µ(t)]). A thorough treatment of
the theory of Gaussian fields is found in Adler and Taylor (2007), and the
treatment of Gaussian measures is found in Bogachev (1998). In this thesis,
we will only concern ourselves with finite dimensional Gaussian distributions
and finite dimensional, discretized representations of Gaussian random fields.

1.1.1 Properties of the Gaussian distribution

There are several properties that inhabits the Gaussian distribution that
makes it attractive for the prospective user, ranging from its asymptotic
properties and the central limit theorem to its closure properties, and, of
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course, its computational properties. We start by having a look at the closure
properties of the multivariate Gaussian distribution. We give them without
proof, but they are easily obtained and can be found in any introductory
book on the multivariate Gaussian distribution. In particular, most of them
are found in Rue and Held (2005), where they are formulated in terms of
the precision matrix Q rather than the covariance matrix, wherever this is
appropriate.
Theorem 1. Suppose that(

x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Q11 Q12

Q21 Q22

)−1
)
, (1.3)

and let A be any matrix compatible with x = (x1,x2)T , then

y = Ax ∼ N (Aµ,AQ−1AT ) (1.4)

x1|x2 ∼ N (µ1 −Q−1
11 Q12(x2 − µ2),Q−1

11 ) (1.5)

xj ∼ N (µj , (Q−1)jj), (1.6)

where the superscript indicates the component of the corresponding vector.
Moreover, if HHT = Q, then if z ∼ N (0, I), x = H−T z ∼ N (0,Q−1).

In words, the Gaussian distribution is closed under linear combinations,
conditioning and marginalisation. Moreover, the precision matrices remain
fixed for any computation, only requiring multiplications and inversions
of itself or another fixed matrix. A natural consequence of the preceding
theorem is prediction in the Gauss-linear model, where observations are
noisy versions of a linear combination – i.e.

y = Ax + ε, (1.7)

where ε ∼ N (0,Qε). The goal in the Gauss-linear model is to infer x|y.
Both the posterior expectation and precision are easily obtained by noting
that

Cov

(
x
y

)
=

(
Q−1 Q−1AT

AQ−1 AQ−1AT + Q−1
ε

)
, (1.8)
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and by block inversion of this covariance matrix, we obtain the corresponding
precision matrix;(

Q−1 Q−1AT

AQ−1 AQ−1AT + Q−1
ε

)−1

=

(
Q + ATQεA −ATQε

−QεA Qε

)
. (1.9)

Hence we obtain the posterior expectation as

E(x|y) = (Q + ATQεA)−1xmod, (1.10)

with xmod = Qµ + ATQεy. This expectation is, in other words, some
weighted mean of observations and the prior mean.

1.1.2 Introducing hyperparameters

If all precision matrices and observation processes did not depend on hyper-
parameters, the last part of the previous section would contain all parts
needed for doing inference in the Gauss-linear model. This assumption
is unrealistic, and the matrices Q,Qε,A, may very well depend on hyper-
parameters, say η. In this situation, the entire likelihood must be considered
in order to do maximum likelihood estimation of η. The expression reads

p(y|η,µ) =
p(y|x,η,µ) p(x|η,µ)

p(x|y,η,µ)
, (1.11)

and in the Bayesian setting, where we have a prior for η and µ,

p(η|y,µ) ∝ p(y|x,η,µ) p(x|η,µ) p(η,µ)

p(x|y,η,µ)
. (1.12)

In order to find the maximum likelihood estimate for η, we need to optimise
the log-likelihood or posterior for η. In the Gauss-linear case, the conditional
distributions on the right hand side of the preceding case are Gaussian. The
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log-posterior reads

2 log p(η|y,µ) = C + log p(y|x,η,µ) + log(p(x|η,µ)+

log p(η,µ)− log p(x|y,η,µ)

= C + log det Qε,η − (y −Aηµx|y)TQε,η(y −Aηµx|y)+

log det Qη − (µx|y − µ)TQη(µx|y − µ)

− log det(Qη + (Aη)TQε,ηAη) + 2 log p(η,µ), (1.13)

where the η subscript denotes dependence on the hyper-parameters. Some-
times the hyper-parameters comes in conjugate forms, leading to explicit
distributions for η|y,µ, but most of the time, we need to evaluate the
expression (1.13). Often, this expression simplifies, and everything that
simplifies is worth looking into, as optimising this expression is the most
computationally intensive problem in solving the Gauss-linear model.

Finding the uncertainty for the parameters η can be done by using Taylor
expansions, and fitting a density with respect to the derivatives at the
optimum. Typically a Gaussian is used, requiring only the Hessian at the
estimated η, and in the literature, this is called the Laplace approximation or
Laplace’s method (see, e.g. Tierney and Kadane (1986)). It is also possible
to do MCMC, but this may be very costly, as it requires the evaluation of
the ratio of two likelihoods in each iteration. For small models, this may be
feasible.

One of the main contribution of this thesis deals with the approximation
of this likelihood or posterior in the case where all precision matrices are
sparse, and the Gaussian distributions have large dimensions. This is the
theme for Chapter 3. Here, we also present some alternative approximations
that may be suitable in specific cases.

It may happen that the observation process is non-linear, i.e. y = A(x) + ε,
but the error- and prior process remains Gaussian. In this case, many of
the properties of the computational parts for the Gaussian distribution may
be retained with small modifications, and approximate inference is quite
feasible through non-linear least squares methods, such as Gauss’ method
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(Kelley, 1999). Here approximate means that the distribution for x|y is not
known explicitly. In Chapter 4, one such model, dealing with seismic AVA
inversion, is treated in detail.

1.1.3 Applications of the Gauss-linear model

Applications of the Gauss-linear model is abundant in the literature, ranging
from the most trivial linear regression found in any introductory statistics
course to huge climate reconstruction models. We mention a few here, and
focus on problems in high dimensions as this is keeping in line with the
theme of the thesis.

An archetypical application of the Gauss-linear model in a really high
dimensional setting is the seismic AVA inversion problem (Buland and
Omre, 2003; Buland et al., 2003). Here, data is collected on 2-D grid or
3-D cube, and the number of data points can almost be arbitrarily large.
In 2-D, the dimensionality ranges from the 10 000s to several 100 000s, and
in 3-D from 100 000s up to about 109 data points, if all data is considered.
The linear forward model takes elastic parameters, such as velocities and
density, to reflection coefficients and observations. The prior from the
elastic parameters can be specified through a covariance function, as in
Buland and Omre (2003) and Buland et al. (2003), but when the model
is non-stationary, this quickly becomes computationally infeasible, since
fast Fourier transform-type (FFT-type) inversion models are not applicable.
Possible remedies for this is explored in Chapter 5, where flexible Markovian
models are studied specifically for this problem. A non-linear forward model
of the top reservoir with Gaussian noise assumptions have been studied
in Rabben and Ursin (2011), Rabben and Ursin (2009) and Rabben et al.
(2008), and the numerically much more challenging 3-D problem is studied
in Chapter 4. In Figure 1.1, typical inline-crossline and traveltime-crossline
data is depicted. In this case, the dimensionality is about 106.

Reconstruction of global ozone levels from scattered satellite data is another
high dimensional problem suited to be treated Gauss-linearly. Here, the
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Figure 1.1: Illustration of seismic data. Traveltime vs. crossline (top) for different
angles, inline-crossline for different angles (bottom)
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satellite gathers date along its trajectory, yielding transects of ozone ob-
servations, and the goal is to reconstruct ozone level at arbitrary locations.
This data, as it is publicly available, has become popular in the statistics
literature for demonstrating methods for estimation, and has been treated
in, e.g., Cressie and Johannesson (2008), Eidsvik et al. (2011) and Bolin and
Lindgren (2011), where the two treats computational aspects and the last
deals with sound statistical modeling. In Chapter 3, this example is used for
illustrating the methodology presented therein. We note that the ozone data
at one date, i.e. a snapshot, can easily be treated by usual methodology
for estimating hyper-parameters. Proper reconstruction where the time
dimension is also considered, is another story. In this case, alternative
methodologies, like the one presented in Chapter 3 or in Eidsvik et al. (2011)
is likely required to do proper inference. In Figure 1.2, a snapshot over
ozone levels for one day is given.

In agricultural statistics, an important challenge is to determine how much
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Figure 1.2: Ozone observations for one day, given in Dobson units
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traits are influenced by inheritance, and how much by external properties,
such as living conditions, seasonal effects, and so on. In Mrode and Thomp-
son (2005), a detailed account for linear models for predicting breeding
values is given, and in Gorjanc (2010) a graphical model representation for
pedigree based mixed models is presented. The important aspect is that
the “prior” precision matrix for inheritance can be constructed explicitly
by using pedigree graph for the individuals in question. The number of
individuals in these models can be extremely large, ranging from tens of
thousands to tens of millions. The community treating such problems on a
regular basis seems to lack methodologies for treating the largest models
properly, and this thesis addresses some of the challenges they face.
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1.2 Gaussian Markov random fields

In the previous section we discussed the general properties of the Gaussian
distribution. Many models do, however, have a Markovian property, meaning
that the distribution at some location is only dependent on its neighbourhood,
where in this setting, neighbourhood must be understood in a rather wide
sense. For Gaussian fields indexed by Rd, there is a theorem classifying all
Gaussian Markov random field (GMRF), and it reads as follows: A Gaussian
random field has the continuous Markov property if its spectral density
can be written as 1∑

j aj(2πiξ)
j – i.e. one divided by a polynomial, with the

restriction that the polynomial is symmetric and positive. What this means
is that all GMRFs in the continuous sense can essentially defined through
stochastic differential equations. This theorem among others is proved in
Rozanov (1977). Now, discretization of these operators typically leads to
sparse precision matrices, but the Markovian property in the discrete sense
can be described even simpler. Here, we define a GMRF as a multivariate
Gaussian distribution having a sparse precision matrix, i.e. that most entries
of the precision matrix Q are zero. For row i, let I denote the non-zero
indices of Qi,:, and let xI ⊂ x be the subvector containing these indices,
then xi ⊥ xj |xI ⇐⇒ Qij = 0. This is the Markov property. One advantage
of having a sparse precision matrix is that storing it takes much less space in
memory using a sparse storage scheme, such as compressed column sorted
rows, its transpose or coordinates of the non-zero entries stored in two
vectors and its corresponding values in a third. Another advantage is that
computation using sparse matrix techniques usually is much faster than the
corresponding ones for dense matrices. One of the main foci of this thesis is
this computational part.

There is some ambiguity of language when speaking of GMRFs, and we
will try to clarify this here. First, we note that any sparse precision matrix
defines a GMRF. There are, however, occasions where we will talk about a
d-dimensional GMRF. In this situation, it is not the dimensionality of the
precision matrix, but rather that we are dealing with a discretized version
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of a d-dimensional GMRF in the continuous sense. The dimensionality
of the precision matrix should be clear from context if it is important, or
suppressed otherwise. We never use d-dimensional GMRF in the sense that
we are dealing with a sparse Q ∈ Rd×d. If the term high dimensional GMRF
is used, however, it is usually the precision matrix that is considered.

A flexible method for constructing discrete Gaussian Markov random field
is through discretization of linear stochastic PDEs,

Lx =W, (1.14)

with appropriate boundary conditions, where L is a linear differential oper-
ator satisfying some conditions ensuring non-degeneracy, and W is spatial
white noise. In Lindgren et al. (2011), they explored the use of the fractional
SPDE

(κ2 −4)α/2x =W (1.15)

using Neumann boundary conditions, noting the link between (1.15) and
the Matérn fields (Matérn, 1960). This has been very successful due to its
incorporation of the inference package INLA (Rue et al., 2009). In this
thesis, we will say that any solution of (1.15) is a Matérn field, even if
the induced covariance function do not satisfy the traditional stationary
covariance function defined in Matérn (1960).

A particular class of SPDEs that is flexible and nice to work with are second
order elliptic SPDEs, possibly extended to (fractional) powers of them. I.e.,

Lx =
n∑

i,j=1

(∂si(a
ij(s))x)∂sjx+

n∑
i=1

bi(s)∂six+ c(s)x, (1.16)

with the uniform ellipticity condition

∃C > 0 s.t.∀ξ ∈ Rn,
n∑

i,j=1

aij(s)ξiξj ≥ C‖ξ‖22, (1.17)
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for all s in the bounded domain of interest. This includes (1.15) and its
extension to the anisotropic case

(κ2 −∇H∇)α/2x =W. (1.18)

Apart from the computational benefits arising from these equations gener-
ating sparse precision matrices, they also have more flexibility in treating
boundaries in a physically sound way than covariance function models,
and it is easy incorporate local behaviour that corresponds to nature. An
extension of these ideas in the multivariate setting is treated in Chapter 5.
Here the goal is to parametrise the local dependence of multivariate fields
in an interpretable way that can facilitate discrete structures with different
correlation structures between fields.

1.2.1 The Cholesky decomposition

The Cholesky decomposition of the precision matrix or the covariance matrix
is one of the main tools for doing computation when using the Gaussian
distribution, in particular in the Gauss-linear model and some extensions
of it. For a positive definite matrix, Q, the Cholesky decomposition is
the unique lower triangular matrix, L with positive diagonal elements such
that Q = LLT . Such a factorisation also exists for positive semi-definite
matrices. The reason why the Cholesky decomposition is such a popular
tool for inference is that once you have a fast and robust implementation of
an algorithm computing L, it is usually easy to

• Sample x ∼ N (µ,Q−1), by setting x = L−T z + µ

• Compute the marginal variances (Q−1)ii for all i by recursion (Rue
and Martino, 2007)

• Compute log det Q = 2 ·
∑

i logLii

• Compute ∂
∂ηj

log det Q(η) by combining analytic formulae and recur-
sion
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The last point obviously depends on how the parameter η influences Q.
Hence inference is, in principle, easy. For dense precision- or covariance
matrices, the computation of L quickly becomes too expensive with growing
dimensions, as computing it takes n3/3 operations. Algorithm 1 is one
straight-forward way to compute the Cholesky decomposition.

Algorithm 1 Computing the Cholesky factor of the precision matrix, Q

Input: Q
Output: L such that LLT = Q
Set:
for j = 1 to n do

Ljj =
√
Qjj −

∑j−1
k=1 L

2
jk

Lij = 1
Ljj

(
Aij −

∑j−1
k=1 LikLjk

)
end for

For GMRFs the precision matrix is sparse, and it is possible to exploit
this when computing the Cholesky factors: if Q is sparse, L is often also
sparse, and storage- and computational costs remain only a fraction of those
required when using non-sparse matrices. In general, however, if Q is sparse,
its Cholesky factor does not need to be sparse. An example is the matrix
A ∈ Rn×n with A11 = 2n+ 1, Aii = 3, i 6= 1 and A2:n,1 = 1,A1,2:n = 1. The
lower Cholesky triangle of this matrix is full. Using the inverse ordering of
this matrix, sending i 7→ n− i+1, its Cholesky factor becomes sparse, which
suggests that good re-orderings may help in producing sparse Cholesky
factors in some cases.

The most common library for computing these sparse Cholesky factors is
CHOLMOD (Chen et al., 2008), and it is indeed extremely fast, and it
serves as a black-box routine in many libraries used for statistical inference,
e.g. INLA (Rue et al., 2009).

Now, suppose that we are dealing a d-dimensional GMRF and that Q ∈ Rn×n
is a precision matrix defined by discretizing this field in some (discretely)
Markovian way. Then, if d = 1, the fill-in is O(n), if d = 2, fill-in is
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Figure 1.3: Non-zero pattern of (the lower triangular part of) Q (left) and its
sparse Cholesky factor (right)
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O(n log(n)) and computational effort O(n3/2). For d = 3, fill-in is approx-
imately O(n3/2) and computational effort O(n2) (Liu and George, 1981).
Here the fill-in is defined as follows: Let nnz(M) be the number of non-zero
entries of a matrix M. Then the fill-in is given by (nnz(Q) + n)/2− nnz(L).
The general trend is, the higher the d, the harder it is to reduce fill-in and
computational costs when computing L. For general graphs, it is hard to
say anything, and in these situations, it is prudent to try different reordering
types and use the one that produces least fill-in. We also note that the
reordering typically needs to be computed only once, and hence it is worth
spending the time to find a good one if n is large. The concept of fill-in is
illustrated in Figure 1.3.

In the following chapters, we study what we can do if even after reordering
the fill-in is so large that we cannot store the Cholesky factor in memory. It
may also happen that it indeed is possible to store it, but the computational
efforts required for solving linear systems are too large to remain efficient.
In these cases, we present some alternatives that may be useful for some
problems, but not necessarily for all.
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1.3 Matrix functions

The theory of matrix functions is a huge area in mathematics, and it comes
up in many applications. In particular, any linear ODE has a solution
that can be expressed by matrix functions. And for PDEs, exponential
integrators (Hochbruck et al., 1998) is a popular technique for approximating
the solution. For Gaussian distributions, many matrix functions are also
highly relevant, but before going into the details, we introduce the general
definition of matrix functions and some of their properties. For an excellent
treatise on matrix function and their properties, we recommend the book
by Higham (2008).

Any square matrix, M, can be decomposed into the Jordan canonical form
as follows

M = V


J1

J2

. . .

JN

V−1, (1.19)

where V is a matrix containing as columns the eigenvectors of M and Ji is
the Jordan block associated with the eigenvalue λi defined by

Ji =


λi 1

λi 1
. . .

. . .

. . . 1
λi

 . (1.20)

If Ji ∈ R1×1, the Jordan block consists simply of the eigenvalue λi.

For any (m− 1)-times differentiable function, f , we define its variation on a
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Jordan block of size m by

f(Ji) =



f(λi) f ′(λi) · · · · · · fm−1(λi)
(m−1)!

f(λi) f ′(λi) · · ·
...

. . .
. . .

...
. . . f ′(λi)

f(λi)


(1.21)

This induces the definition for the function f of M as follows

f(M) = V


f(J1)

f(J2)
. . .

f(JN )

V−1. (1.22)

If two Jordan blocks have equal eigenvalues, λi = λj , then we must have the
equality f(λi) = f(λj). This means that we deal with an equation for which
cardf−1({λi}) > 1, we must choose one solution and stick with it. Using
this restriction, we now have the definition of the primary matrix function.
For some functions it is possible to make other definitions: for instance,
for a square root of a matrix M can be defined as any matrix N such that
N2 = M, or even more generally, as any matrix such that NNT = M. When
we mention a matrix function, we will refer to the standard matrix function
defined by (1.22). A nice consequence of this definition is that eigenvectors
are invariant under matrix functions for diagonalizable matrices.

To see that this definition makes sense, we consider two functions; the matrix
power, Mn and the matrix exponential, eM, for the Jordan block

M =

(
a 1
0 a

)
(1.23)

We can easily verify the power, by induction, we obtain

Mn =

(
an−1 (n− 1)an−2

0 an−1

)(
a 1
0 a

)
=

(
an nan−1

0 an

)
(1.24)
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And since by verification

M2 =

(
a2 2a
0 a2,

)
(1.25)

the induction is obvious. Additionally,

Mn =

(
f(a) f ′(a)

0 f(a)

)
=

(
an nan−1

0 an

)
, (1.26)

and since both ways of computing Mn coincide, our definition makes sense.

Since the Taylor series for the exponential function converges everywhere, it
should coincide with the definition above. Looking at the entries,

eM = I +

(
a 1
0 a

)
+

1

2

(
a2 2a
0 a2

)
+ · · ·+ 1

n!

(
an nan−1

0 an

)
+ · · ·

=

( ∑∞
i=0

ai

i!

∑∞
i=1

ai−1

(i−1)!

0
∑∞

i=0
ai

i!

)
=

(
ea ea

0 ea

)
, (1.27)

and we see that the matrix function definition coincides with the Taylor
series expansion.

An important property of matrix functions is that they commute under
basis changes. For some of the applications we discuss in the suceeding
chapters, this property is essential. Suppose that M = VJV−1 ∈ Rn×n,
and that W ∈ Rm×n is a (possibly redundant) basis for Rn. Then,

f(WMW†) = Wf(M)W†. (1.28)

This follows simply from the definition, since if we expand J by a zero block,
it still remains a Jordan block.

We conclude these generalities by outlining some applications of matrix
functions. One of the most intuitive cases arises from generalising polynomial
equations in one variable to where the variable is replaced with a matrix.
Take, e.g. the quadratic matrix equation

AX2 + BX + C = O, (1.29)
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where O is an all zero matrix. Then, in fact, the solution involves a matrix
square root, but other than that resembles the usual formula

X = −1

2
B +

1

2

(
B2 − 4C

)1/2
. (1.30)

A particular problem one encounters often in the literature when exploring
high dimensional problems featuring Krylov methods and matrix functions
is computations regarding Lattice quantum chromodynamics (QCD). We
mention (van den Eshof et al., 2002; van den Eshof and Sleijpen, 2003),
but these are only a few. The main problem here is to compute y =
sign(M− zI)x, for Hermitean M, and z ∈ C. Fortunately, this problem has
close connections to principal component regression. We treat the principal
component regression problem using the matrix sign function superficially
in the next section.

We conclude the generalities by mentioning the topic of sensitivity analysis
for matrix function. This is a big research area and is related to the Fréchet
derivative of a matrix function. This has not been investigated in this thesis,
but we note that all the chapters in Higham (2008) touch upon this subject
for the respective matrix functions. Since we are dealing with positive
definite matrices, we are in the best possible scenario for most relevant
functions.

1.3.1 Matrix functions for precision matrices

If the matrix Q is positive semi-definite, the eigenvectors are orthogonal
and the Jordan blocks have size 1, and hence,

f(Q) = V

 f(λ1)
. . .

f(λn)

VT . (1.31)

This is the situation that is relevant for Gaussian distributions, since all
matrix function are to be computed on the precision matrix or a modification
of it.
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There are several matrix functions that are of particular interest for Gaussian
computation. The most obvious one is the matrix inverse square root, since
if z ∼ N (0, I), Q−1/2z ∼ N (0,Q−1), or alternatively, the matrix square
root if one works in the covariance domain.

The second matrix function of clear interest is the matrix logarithm. This
is the basis for computing the log-likelihood for GMRFs having high dimen-
sional, sparse precision matrices. The reason why it is important is indirect,
and relies on the identity

log det Q = tr log Q. (1.32)

How to obtain efficient computational methods for the matrix inverse square
root and the matrix logarithm is explored in Chapter 2 and 3. We also
explore an alternative “log-precision” parametrisation, so that the matrix
exponential becomes the matrix function of interest. This appears in
Chapter 3. Note that it is possible to solve linear systems using the matrix
exponential, as well (see e.g. Hasan et al. (2011)), and such methods can
probably be facilitated for sampling as well.

These are, however, not the only matrix functions of interest. The matrix
sign-function, for instance, may possibly play an important role in principal
component regression (Faber and Kowalski, 1997), which is commonly used
in chemical analyses. This is essentially a regularised regression estimate
where instead of damping small spectral components, we disregard them
completely. Take the ordinary regression model as in (1.7). Assuming no
prior model for x yields the ordinary least squares regression,

E(x|y) = (ATQεA)−1ymod. (1.33)

Principal component regression, however, uses the spectral decomposition
of ATQεA = VΛVT and produces a regularised estimate by selecting some
λs and their corresponding eigenvectors, so that

xPCR =
∑
i∈I

λ−1
i (viv

T
i )ymod, (1.34)
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where typically eigenvectors below a threshold, {j|α > λj} /∈ I. How this
can be related to the matrix sign function can be seen as follows, if f(x) =
x−1(sign(x − α) + 1)/2, then f(ATQ−1

ε A)ymod = xPRC. It is, of course,

possible to generalise this, so that f(x) = x−1
(∑

j sign(x− αj) + 1
)
/2,

which means that we only allow projections of eigenvectors with eigenvalues
in certain intervals to appear in our solution.

One “drawback” is that we have no explicit control over the number of
principal components to include, but it is still possible to easily estimate
α or several αjs by a cross-validation or other predictive procedure. It
may be possible to remedy this “drawback” by considering the following: If
f(Q) = (sign(Q− αI) + I)/2,

f(Q) = V

(
Iλi>α

O

)
VT , (1.35)

and hence

tr (f(Q)) = tr (Vf(Λ)VT ) = tr (VTVf(Λ))

= card({λ|λi ≥ α}). (1.36)

So f(Q) counts the number of eigenvalues larger than α. This quantity
can be computed using probing vectors with techniques similar to those in
Chapter 3.

The matrix sign function is essentially as easy to compute as the inverse
matrix square root by rational approximations (Bloch et al., 2009), but a
nested Krylov subspace approximation seems to be even better (Bloch and
Heybrock, 2009) for computing sign(Q)v – that is, the sign function of a
matrix times a vector. We do not explore this topic further, but mark it
as an interesting venue for people who are interested in applying principal
component regression in a high dimensional setting.

The reason that it is possible to treat the Gaussian distribution through
matrix functions computationally, is that we only need the action f(Q)v
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for different vs. This leads to much less storage requirements than com-
puting each entry of f(Q). A particular technique we have used fruitfully
throughout this thesis is rational approximations to a matrix function times
a vector, i.e.

f(Q)v ≈
N∑
j=0

αj(Q− σjI)−1v, (1.37)

where the approximation should hold throughout the spectrum of Q, and,
preferably, perturbations of Q. By using rational approximations, we have
reduced the problem of computing f(Q)v to solving a family of shifted
linear systems.

Note that in the rational approximation for f(x) = x−1(sign(x− α) + 1)/2,

f(x) =
1

2x
+

N∑
i=1

αi
x(x+ σi)

, (1.38)

we have the expansion

1

x(x+ σi)
=

1

σix
− 1

σi(x+ σi)
, (1.39)

so the rational approximations are as easy to evaluate for f(x) = x−1(sign(x−
α) + 1)/2 as for sign(x− α). Problems occur, however, if α = λj , where λj
is an eigenvalue of the matrix in question.

1.4 Krylov methods

There exists a myriad of Krylov methods in the literature, tailored to the
most specific and most general problems imaginable, as long as they deal
with matrices and you can form cheap matrix vector products with these
matrices. A thorough introduction to Krylov methods for solving linear
systems can be found in Saad (2003) or Golub and van Loan (1996), while
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one concerning large eigenvalue problems is Saad (1992), but these are by
no means exhaustive.

We are mainly concerned with Krylov methods for solving linear systems
and computing matrix functions. Simpson (2008) explores the use of Krylov
methods for computing matrix functions in some detail. In all the succeeding
chapters, they are essential parts of the algorithms. Since we are dealing
with precision matrices, we will only consider Krylov methods for positive
(semi-)definite matrices. These methods are usually simpler than those
for more general matrices and usually have better convergence properties.
In this thesis, the focus is not theory of Krylov methods, but rather the
application of a good Krylov method for the problem at hand. Performance
is measured through computational examples, but it is still important to
know the definition of Krylov subspaces and some properties that we use in
order to obtain the so-called “good” Krylov methods for our problems.

We define the Krylov subspace of dimension m wrt. Q and a vector r as

Km = Km(Q, r) = span{r,Qr, . . . ,Qm−1r}. (1.40)

The most readily available method for generating an orthonormal basis for
Km(Q, r) in the positive definite case is the Lanczos algorithm, given in
Algorithm 2. In this algorithm,

T = tridiag(β,α,β) =


α1 β2

β2 α2 β3

. . .
. . .

. . .

βm
βm αm

 . (1.41)

In order to solve linear systems, Qx = b, using the Lanczos method, set
v1 = (b − Qx0) 1

‖b−Qx0‖2 , where x0 is an initial guess for the solution,

and set the approximation to xm = x0 + 1
‖b−Qx0‖2 ‖2VmT−1

m e1, where

e1 = (1, 0, . . . , 0)T . For a matrix function f , we can, for initial guess x0 = 0
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Algorithm 2 Lanczos algorithm

Input: Q and a vector v1.
Output: Ortonormal basis Vm, tridiagonal matrix Tm = tridiag(α,β,α)
s.t. Tm = VT

mQVm

Set: β1 = 0, v0 = 0
for j = 1 to m do

wj = Qvj − βjvj−1

αj = 〈wj ,vj〉
wj = wj − αjvj
βj+1 = ‖wj‖2, if ‖wj‖2 = 0, stop.
vj+1 = wj/βj+1

end for

find the approximation f(Q)b = x0 + 1
‖b−Qx0‖2 Vmf(Q)e1. By construction,

we build a polynomial approximation p(Q)b ≈ f(Q)b that has good prop-
erties, which is shown in Simpson (2008), where error bounds are given for
the Lanczos- and full orthogonalisation methods (see Saad (2003), Chapter
6.4 for the definition of this method). Typically stopping criteria for the
conjugate gradient (CG) method for solving linear systems can be used for
matrix functions as well. The CG method is given in Algorithm 3, and one
of the many relevant theorems from Simpson (2008) is

Theorem 2. (Simpson (2008), Theorem 3.3) For any Stieltjes function f ,
the error in the Lanczos approximation to f(Q)b satisfies

‖f(Q)b−Vmf(Tm)VT
mb‖2 ≤ (f(λmin)− a)‖rm‖2, (1.42)

where λmin is the smalles eigenvalue of Q, and rm is the residual after using
m iterations of the CG algorithm so solve Qx = b.

In Algorithm 3, explicit formulae relate the coefficients of Tm to the co-
efficients in the algorithm, so that we do not need to run both methods
if we want to use aspects of either. With some abuse of notation, let
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Algorithm 3 Conjugate gradient method for solving Qx = y

Input: Q, an initial guess x0 and tolerance
Output: Approximate solution, xm
Set: r0 = b−Qx0, p0 = r0

for j = 0, 1, . . . until convergence do
pQ = Qpj
αj = 〈rj , rj/〈pQ,pj〉
xj+1 = xj + αjpj
rj+1 = rj − αjpQ

βj = 〈rj+1, rj+1〉/〈rj , rj〉
pj+1 = rj+1 + βjpj

end for

Tm = tridiag(η, δ,η), and let η, δ be given by

δj+1 =

{
1
αj

if j = 0
1
αj

+
βj−1

αj−1
otherwise

(1.43)

ηj+1 =

√
βj−1

αj−1
(1.44)

where αj , βj are computed by Algorithm 3.

One of the main points is that for computing f(Q)b using the Lanczos
approximation, the matrix function is only evaluated on the much smaller
matrix Tm, in addition to requiring relatively few iterations to converge. In
Chapter 2 and 3, rational approximation are used. Rational approximations
has the advantage that only systems of the form αj(Tm − σjI)−1b needs
to be solved. Another benefit of using rational approximations is that
Km(Q, r) = Km(Q − σI, r) for any σ ∈ C, and variant Krylov methods
using this fact can be used. In Chapter 2 and 3, this is exploited with great
success.

If m is very small, say, below 200, which may happen when we are dealing
with preconditioned iterations, eigen decompositions are also possible, as
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the O(m3) cost is dwarfed by the matrix vector product calculations. In
this situation, it is probably better to use particular methods for the matrix
function in question, discussed in detail in Higham (2008). We give one
such approach in Chapter 2 based on the polar decomposition.

1.5 Overview of contributions

This thesis is primarily based on the following four articles that have been
submitted to scientific journals (Aune et al., 2012a,c; Aune and Simpson,
2012; Aune et al., 2012b)

• Aune et. al., Iterative Numerical Methods for Sampling from High
Dimensional Gaussian Distributions, Statistics and Computing (2012).
Accepted.

• Aune et. al., Parameter estimation for high dimensional Gaussian
distributions. Statistics and Computing (2012). In revision.

• Aune et. al., Three-dimensional non-stationary and non-linear AVA
inversion. Geophysical Journal International (2012). Submitted.

• Aune and Simpson, The use of systems of stochastic PDEs as priors
in seismic AVA inversion. Scandinavian Journal of Statistics (2012).
Submitted.

The content is not, however, limited to that found in these articles. Here,
we give a brief account of the different chapters’ contents.

In Chapter 2, the use of Krylov method for sampling from high dimensional
Gaussian distribution is treated in detail. Specifically, the practical imple-
mentation and relative performance of some specific methods is discussed,
and potential of using graphical processing units for these methods. In
addition to the content in Aune et al. (2012a), another method for pre-
conditioned sampling is proposed, and we discuss sampling from intrinsic
Gaussian variables and conditioned sampling. We also briefly discuss al-
ternative iterations for the matrix inverse square root, that has not been
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considered in the literature in the context of sampling from Gaussian dis-
tributions. The methodology developed in this chapter is for Gaussian
sampling only, but it is easily adapted to sampling from generalised Laplace
fields (Bolin, 2012), and can be used for proposals for even more general
distributions. The moral is that for high-dimensional Gaussian variables,
and even for variables in moderate dimensions, the methods can be faster
than traditional approaches, which is a boon in any computational setting.

Chapter 3 is devoted to the computation of the Gaussian likelihood when the
precision matrices and/or observation process depends on hyperparameters.
The approach is based on a determinantal identity, rational approximation
to the matrix logarithm and cleverly chosen probing vectors, with appropri-
ate variations for specific problems. This content is predominantly found in
Aune et al. (2012c). In addition to this, two additional alternative modeling
approaches for the prior distribution are presented. One is based on a sparse
log-precision matrix parametrisation and the other is based on approxi-
mate algorithmic models using preconditioning techniques. The alternative
methodologies come with computational benefits that can be utilised in a
high-dimensional setting. The main benefit of the log-determinant approxi-
mation developed in the chapter is that it is possible to perform maximum
likelihood estimation in settings in which the dimensionality of the variables
proves prohibitive for traditional approaches.

Chapter 4 deals with the seismic AVA inversion problem, where we from
seismic observations want to infer relative differences in elastic parameters.
In particular, it deals with a non-linear approximate forward model that may
improve inversion accuracy in some specific situations, and the complications
this non-linear forward model introduces when doing inference. The results
are here summarised by parameter sweeps over different noise levels for
various inversion scenarios.

In Chapter 5, we present a way of constructing flexible Gaussian priors for
multivariate inverse problems where there are discrete geometric structures
that can be identified before inversion. We use systems of linear SPDEs
for doing this. We also present a new way of specifying fuzzy interfaces by
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using geodesic blending of local correlation matrices between the interfaces
of the multivariate discrete structures. This is motivated by different layers
in the subsurface in seismic AVA inversion.

Much of the work on this thesis has been of implementation type: To
make sure that the models and algorithms work in practice and have
potential in relevant industries, much testing and tweaking of many different
implementations have been done. The amount of code needed to produce the
desired results is perhaps not transparent in the exposition in the subsequent
chapters, but it is, in fact, substantial. A fraction of the methodology in
this thesis is implemented in the library KRYLSTAT, available at http:

//www.math.ntnu.no/~erlenda/KRYLSTAT/. Some care is needed to make
the routines work with regards to compilation.





Chapter 2

Iterative Numerical Methods for Sampling

from High Dimensional Gaussian Distribu-

tions

With the increased acquisition and storage of massive datasets, much statis-
tical research is focusing on inference and sampling in very high dimensions.
The machine learning community constructs models for identifying informa-
tion in such datasets, see e.g. Rasmussen and Wiliams (2006). In spatial
statistics the introduction of new scientific tools, such as satellite or seismic
data, are influencing the focus of modeling and methods, see e.g. Buland
et al. (2003), Banerjee et al. (2008) and Cressie and Johannesson (2008).
The most common distribution for such high dimensional problems is the
Gaussian distribution. The computational requirements for inference are
then evaluation of a quadratic form and a determinant. For sampling based
approaches we must be able to sample a variable with the right mean
and covariance structure. Samples are useful for understanding high-level
interactions. For instance, climate models, hydrological models, weather
forecasting and petroleum reservoir prediction all rely on the propagation
of samples (ensembles) over time. Moreover, a posterior model is often
represented in canonical form, where the precision matrix Q enters in the
quadratic part. The entries of Q are difficult to interpret, and sampling is a
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natural way to assess the uncertainty and correlations.

For applications which can be represented by a graphical structure, Gaussian
Markov Random Fields (GMRFs), or conditional autoregresive (CAR)
models, provide useful conditional independence representations of Gaussian
processes. For instance, spatio-temporal data on a grid or on a regionalized
areal model, are often modeled by a GMRF prior model, see e.g. Besag et al.
(1991) and Rue and Held (2005). A GMRF is characterized by a sparse
precision matrix obtained from the conditional formulation, giving non-
zero entries only on the diagonal and at entries within the neighbourhood
structure of the related graph. This sparse structure allows for efficient
computations. In contrast, the covariance matrix (inverse precision matrix)
tends to be almost full. The sampling methods using the covariance matrix
may thus be much less efficient in high dimensions, unless one is able to
utilize some approximation or a basis representation of the process. For
instance, one can use the fast Fourier transform for stationary Gaussian
processes on a torus (Gray (2006)).

In this chapter we explore iterative methods for sampling high dimensional
Gaussian processes. The purpose of this is to show that there exist iterative
methods that have comparable performance to Cholesky sampling in lower
dimensions, and remain useful in the domain where Cholesky sampling gets
impossible due to excessive memory requirements. The natural assumption
in this setting is that the precision matrix Q has a sparse Markov structure,
or that the matrix vector product Qx is available as a fast black-box proce-
dure for any input x. Here, ’iterative methods’ mean iterative numerical
linear algebra methods, see Golub and van Loan (1996), Trefethen and
Bau (1997) and Saad (2003). We do not refer to random iterative sampling
methods such as Markov chain Monte Carlo (MCMC). Our proposed sam-
pling methods use numerical methods to compute x = Q−1/2z, where z is a
vector of i.i.d. normal variables and Q−1/2 is the principal matrix inverse
square root. The error of the sample, that is, how much it deviates from a
sample from the true underlying distributions, can be controlled using the
accuracy of the functional (numerical) approximation. This is very different
from MCMC algorithms which study the ’error’ by checking the loss of any
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transient phase and the lack of autocorrelation in the Markov chain.

We outline three general procedures for sampling. All three are based on
Krylov methods (Saad (2003)) and rational approximations to a specific
matrix function (Higham (2008)). The first of these procedures is the
traditional Lanczos method and variations on that (Saad (2003)). The
second is based on a quadrature representation formula arising from Cauchy’s
integral formula and conformal mappings of regions U ∈ C, see Hale et al.
(2008). For an accessible introduction to complex analysis, see Stein and
Shakarchi (2003). The third procedure is a continuous deformation method
based on a system of ODEs found in Allen et al. (2000).

Iterative methods are used for solving Qx = b several times sequentially
or concurrently in order to build the sample. We employ variants of the
conjugate gradient (CG) method of Hestenes and Stiefel (1952) for this.
The basis of these methods was developed by the numerical linear algebra
community, and they are common in many applications of large datasets
with sparse structure. Our impression is that their merits can be useful to
statisticians, since their computational and mathematical properties can be
superior to the more classical (direct) linear algebra tools that are commonly
used in statistics today. Moreover, methods using sparse matrices can be
implemented quite easily on the GPU, allowing fast parallel computing.
We explore how using sparse matrix vector product on the GPU affect the
performance of the iterative methods in this setting. A tutorial on using
CUDA, a C++/C interface to the GPU, can be found on nVidias website
(http://www.nvidia.com/cuda/). Statisticians are likely to use more of
these recent parallel developments in the future. In our examples we get
speed-ups of up to a factor of 30.

We briefly review recently proposed methods for iterative sampling utilizing
and adapting ideas from numerical linear algebra. Schneider and Willsky
(2003) and Parker and Fox (2011) study Krylov subspace approximations,
where samples are in the directions obtained by the CG method. Their
realizations are fast to generate, but they oversmooth the process. Moreover,
they are impractical for large problems due to inherent instability in the
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presence in round-off error in the orthogonal vectors generated by the
Krylov method. Simpson et al. (2008) describe restarted Lanczos routines
for constructing a sample. For very high dimension the storage capacity
seems very large for this method, but this can be overcome using a so-
called two-pass strategy described in Frommer and Simoncini (2008). In
the machine learning literature, Belabbas and Wolfe (2009) used iterative
methods to approximate the eigenvalues, and capture the most important
feature of the Gaussian process. Their approach seems to work well for
moderate dimensions, but it is unclear what its properties are, and how to
tune this method in high dimensions.

The chapter is organised as follows: Section 2.1 gives some background
model assumptions and a review of direct sampling methods. In Section 2.2
we present the iterative sampling procedures, which are applied to examples
in Section 2.3. In this example section, we compare timings for two different
sparse models and sample the posterior for elastic earth properties given
seismic 3D data from a North Sea reservoir.

2.1 Modelling assumptions and direct sampling methods

The distribution of a n-dimensional Gaussian random variable x = (x1, . . . , xn)T ,
denoted x ∼ N (µ,Q−1) for a symmetric positive definite Q, is given by

p(x) =
|Q|1/2

(2π)n/2
exp[−1

2
(x− µ)TQ(x− µ)]

∝ exp(−1

2
xTQx + xTb), (2.1)

where the covariance matrix is Σ = Q−1, and Q is the precision matrix.
The linear canonical parameter b = Qµ links the mean µ and the precision
matrix. For GMRFs the precision matrix Q is sparse, with Qi,j = 0 unless
i, j are neighbours on a graph. On a 2D-grid, the first order neighbourhood
is defined by the cells north, east, south and west. For a map of regions,
the neighbours have a common border. The extension to second and higher
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order neighbourhoods follows naturally (Rue and Held (2005)). We will
treat the precision matrix and the mean as fixed. In the application to
seismic data one typically determines these parameters from auxiliary data
sources.

2.1.1 Gaussian linear model

In many applications the GMRF constitutes a latent process, while the data
are noisy and indirect measurements of this process. Then, p(x) takes the
form of a prior model, while the data y = (y1, . . . , yny)T are represented via
a likelihood model. Here, we consider a Gaussian linear likelihood model
y|x ∼ N (Gx,Q−1

lik ), with m × n forward matrix G and noise covariance
matrix Q−1

lik determined by the data acquisition procedure. The posterior
distribution for the latent process x given y is

p(x|y) ∝ exp[−1

2
(x− µ)TQ(x− µ)−

1

2
(y −Gx)TQlik(y −Gx)]

∝ exp[−1

2
xT (Q + GTQlikG)x+

xT (Qµ+ GTQliky)]. (2.2)

This posterior is a Gaussian process with precision Q→ Q + GTQlikG and
linear canonical parameter b→ b+GTQliky, compared with the prior distri-
bution. The posterior mean is E(x|y) = (Q+GTQlikG)−1(Qµ+GTQliky).
Commonly, the likelihood is modeled as conditionally independent, i.e. G
and Qlik are diagonal. For this situation, the posterior p(x|y) inherits
the neighbourhood structure of the prior p(x), with a change in b and
the diagonal entries of Q alone. In some applications the likelihood might
involve smoothing, either from G or Qlik. This increases the neighbourhood
of the posterior model, and some of the sparse computational benefits might
be reduced.
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We consider sampling methods for both the prior process and the posterior
process. Posterior sampling can be done either by sampling from the Gaus-
sian process defined via the conditional p(x|y), or as a three-step procedure
which i) generates a variable from the prior Gaussian process, ii) draws a
randomized data value from the Gaussian likelihood, and iii) computes a
linear combination of the two that maintains the correct conditional mean
and variance. The simplest of these strategies will depend on the situation.

2.1.2 Direct sampling of Gaussian processes

A key observation when sampling from a Gaussian is the following: If the
precision matrix Q = LLT , then the covariance is Σ = (LLT )−1 = L−TL−1,
where L−T = (L−1)T . If we want a sample x ∼ N (0,Q−1), it is enough to
compute x = L−T z for z ∼ N (0, I), since Cov(L−T z) = L−T Cov(z)L−1 =
(LLT )−1. This approach is called the Cholesky sampling from a GMRF
(Rue (2001) and Rue and Held (2005)). The matrix L is the lower-triangular
Cholesky factor. In an autoregressive graph with first order neighbourhood,
L has non-zero entries only along the diagonal and the first sub-diagonal. The
Cholesky factor may be fast to compute from Q depending on its non-zero
structure; more specifically for the autoregressive graph, the computational
cost is of order O(n). For a two dimensional grid the cost is O(n3/2),
for a three dimensional grid it is O(n2). Here n denotes the number
of discretization points of the underlying space. Moreover, the storage
requirements for computing L become enormous in high dimensions because
of the large fill-in between the non-zero structure of Q and the larger non-
zero structure of L. One can reduce the storage requirements by intelligent
reordering of the n indices in the graph, but for a three dimensional grid,
the reordering we tried did not prove particularly helpful in our study. A
remedy is to apply Cholesky factorization for block updating in an MCMC
sampler (Roberts and Sahu (1997)), but the burn-in and mixing of the
resulting Markov chain can be quite slow.

A different point of view comes from considering Q−1/2 as the principal
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square root of the matrix Q. Since Q is symmetric positive definite, Q =
VDVT , where V is the orthogonal eigenvector matrix and D has the eigen-
values of Q on its diagonal. Consequently, we have Q−1/2 = VD−1/2VT .
Then for z ∼ N (0, I),

Cov(VD−1/2VT z) = VD−1/2VT I(VD−1/2VT )T

= VD−1VT = Q−1, (2.3)

as desired. In high dimensions the eigenvalues and eigenvectors are very hard
to compute directly, namely it is O(n3), unless there is particular structure
in the model. For instance, if the precision matrix Q is circulant or is
well approximated by a circulant matrix, the eigenvalues and eigenvectors
are easy to compute using the fast Fourier transform (Gray (2006)). This
gives an algorithm of order O(n log n). Any stationary GMRF may be
approximated by a circulant Q through clever discretization of the spatial
domain, provided that the spatial domain is regular enough (it should at
least be a convex subset of Rn). For more complex domains, alternative
approaches may be preferable - see e.g. Lindgren et al. (2011) for details on
one such method.

We note that Cholesky and matrix function sampling give different samples x,
even though they use the same input i.i.d. variable z. Still, both realizations
are from the correct distribution, and correspond to one another through a
unitary matrix given by the polar decomposition of L (Higham, 2008). Even
though the Cholesky method and the eigen representation do not allow direct
sampling in very high dimensions, they are often used as building blocks
for iterative sampling methods. For instance, the fast Fourier transform
on circulant matrices and incomplete Cholesky factorization are popular
preconditioning methods for iterative numerical methods.

2.2 Iterative numerical methods for sampling

There are two major ingredients in our iterative methods for sampling
from Gaussian distributions. The first one is the rational approximation
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fN (·) of the matrix inverse square root Q−1/2, i.e. we design a rational
function fN (·) such that fN (Q)z ≈ Q−1/2z on the spectrum of Q. To
sample x ∼ N (0,Q−1) we set

x = Q−1/2z ≈ fN (Q)z =

N∑
j=1

αj(Q− σjI)−1z, (2.4)

for σj ∈ R−, αj ∈ R and z ∼ N (0, I). The expected value in the Gaussian
is added afterwards. The specification of αj , σj is described in Section 2.2.3,
except for the method described in Section 2.2.6, which is a bit different.
The quantity N is typically less than 10.

The second ingredient is solving

(Q− σjI)x = z, (2.5)

for each shift σj in the rational approximation (2.4). We use iterative
numerical linear algebra techniques (Krylov methods) to solve this equation.
They are used throughout Section 2.2, but the basic idea is given in Section
2.2.1. Direct methods for solving (2.5) are based on Cholesky factorization
of (Q − σjI) or a domain decomposition method (see e.g. Saad (2003))
followed by Cholesky factorizations. Obviously, the first of these is a not a
good choice, as a sample can be obtained directly if we have the Cholesky
factor of Q, and in the situations we consider here, this is not possible. The
second strategy without the shift may possibly provide an alternative to our
methods, but this approach is not explored here.

The resulting sample x from equation (2.4) is in the span of the combined
Krylov space constructed for different components j = 1, . . . , N of the
rational approximation. The iterative Krylov methods are truncated using
a numerical tolerance on the residual norm. Independent samples can be
generated by using independent starting variable z in the construction.
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2.2.1 Krylov methods

The most famous and readily available Krylov method for solving (2.5) is
the CG method, first published by Hestenes and Stiefel (1952). For iteration
number m it minimises the functional

f(x) = xTQx− xT z. (2.6)

on the subspace

Km(Q, r0) = span{r0,Qr0,Q
2r0, . . . ,Q

mr0},

which is referred to as the Krylov space. Here, x0 is the initial value, usually
set to 0, and the associated residual is r0 = x−Qx0. Naturally, for a unique
minimum to exist, and thus the CG method to be operational, Q must
be symmetric positive definite. This is the case for all precision matrices
which define Gaussian fields that are not intrinsic. A nice derivation of the
CG method from this point of view can be found on Wikipedia (Conjugate
gradient method) or in the electronic publication (Shewchuk (1994)). To
solve (2.5), we use the CG method with shifts; i.e. we solve for Q→ Q−σjI,
j = 1, . . . , N , in the Krylov space using Algorithm 4 for several σjs.

An equivalent point of view is that the conjugate gradient method finds the
best possible solution to Qx = z in the subspace Km(Q, r0). This point of
view is explored in detail in Saad (2003) together with a myriad of different
Krylov methods which may be obtained by using different subspaces. It is
possible to replace all the Krylov methods in what follows by another suited
Krylov method and obtain similar methods that may be better suited for
special problems.

There are many ways to control convergence, i.e. the number of iterations
m required. Our criterion is based on a relative tolerance criterion (see Saad
(2003)) on the 2-norm of the residual vector. The CG method is given in
Algorithm 4. In addition to the matrix Q, it requires as inputs the desired
accuracy (relative 2-norm of residual error).
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Algorithm 4 Conjugate gradient algorithm for computing x = Q−1z

Input: Q, z ∼ N (0, I), convergence tolerance.
Output: x ≈ Q−1z
Set: x0 = 0, rcur = z−Qx0, p = rcur
for j = 1... to converged do

qp = Qp

α = 〈rcur,rcur〉
〈qp,p〉

x→ x + αp
rnew = rcur − αqp

β = 〈rnew,rnew〉
〈rcur,rcur〉

p = rnew + βp
rcur = rnew

end for

The performance of Algorithm 4 essentially depends on two things: 1) The
performance of the matrix vector product Qp and 2) the condition number
of the matrix Q, i.e. the ratio of its extremal eigenvalues κ = λmax/λmin.
If the matrix vector product is fast, we are assured that each iteration in
Algorithm 4 is fast. If κ is small, we are assured that the algorithm will
require only a few iterations to converge (see Saad (2003) and Golub and
van Loan (1996)). These are the essential aspects that immediately apply
to the Krylov methods in the following sections as well. If Q is defined by
a Markov random field, it is typically very sparse, and hence the matrix
vector product Qp is fast. If Qp is fast by some other virtue, sampling
using Krylov methods should be fast, provided the conditioning is not too
bad. The routine for computing a sample using CG and (2.4) is given in
Algorithm 5.

If a matrix has a particularly large (bad) condition number, κ, a possible
remedy is using a preconditioner, M. Now, we solve, for instance, the system
MQMTy = Mb followed by MTy = x instead of the original system, and
hopefully this system has spectrum better suited for CG iterations. Note
that for this to be efficient the matrix vector product Mr must be fast to
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Algorithm 5 Sequential CG for computing x ∼ N (0,Q−1)

Input: Q, σj , αj according to (2.4) for j ∈ 1, . . . , N
Output: x ∼ N (0,Q−1)
Set: z ∼ N (0, I), x = 0
for j = 1, . . . , N do

Compute yj = (Q− σjI)−1z using Algorithm 4
x = x + αjyj

end for

compute, and also that the preconditioner may change for each shift; a way
to compute an approximate inverse for each shift is described in Benzi and
Bertaccini (2003). Typically, M ≈ Q−1, but is much faster to compute
than Q−1. We mention also that apart from in the usual CG method,
preconditioning can be difficult. It is for instance difficult to precondition
the method CG-M described below. Moreover, preconditioners can be hard
to parallelize which may be an important practical consideration.

We also mention that all the methods in this chapter can be modified
to models in which the matrix vector product Σx is fast, where Σ is a
covariance matrix.

In the Bayesian setting, the precision matrix Q often depends on hyper-
parameters, η, that require estimation. For optimization, this requires
evaluation of the log-likelihood; that is the logarithm of an expression
similar to (2.1). This again requires evaluation of a log-determinant. By
using the identity log det Q = tr log Q, along with probing vectors and the
matrix logarithm, Aune et al. (2012c) show that similar algorithms allow
approximate evaluation of log-determinants using Krylov methods.

2.2.2 Lanczos methods for the inverse square root

The Lanczos method for sampling x ∼ N (0,Q−1) provides us with an
alternative method to that of Algorithm 5. It is the building block for
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self-adjoint Krylov methods and is perhaps the easiest ways of forming
an orthonormal basis for Km(Q, r0). In principle the method is simple; it
builds an orthonormal basis for the Krylov subspace Km(Q, r0), namely
V = (v1, · · · ,vm) as well as the tridiagonal Hessenberg matrix Tm =
VTQV. Lastly, we project out the closest solution to Q−1/2z in K(Q, r0),
by x = x0 + β0VT−1/2e1, as in Algorithm 6 given below.

Algorithm 6 Lanczos algorithm obtaining a sample x ∼ N (0,Q)

Input: Q, dimension of Krylov subspace, m
Output: x ∼ N (0,Q−1)
Set: z ∼ N (0, I), x0 = 0, r0 = z−Qx0, β0 = ‖r0‖, v1 = r0/β0, v0 = 0,
e1 = (1, 0, . . . , 0)T ∈ Rm
for j = 1 to m do

wj = Qvj − βjvj−1

αj = 〈wj ,vj〉
wj = wj − αjvj
βj+1 = ‖wj‖
vj+1 = wj/βj+1

end for
Set: Tm = tridiag(β,α,β), V = [v1, . . . ,vm]
Compute: x = x0 + β0VT−1/2e1.

In the Lanczos algorithm m is typically much smaller than the dimension of
the matrix. If m < 2000, it is possible to compute the eigen decomposition
of T and the resulting sample x in a reasonable amount of time. For this

we have to compute T−1/2e1 = VTΛ
−1/2
T VTe1, where VT ,ΛT ,VT is the

eigen decomposition of T. An alternative approach comes from considering
rational approximations, T−1/2e1 ≈ fN (T)e1, as in (2.4). This essentially
requires a fast tridiagonal solver, and such solvers have computational
complexity of O(n). The samples obtained using fN (T)e1 are equivalent to
those obtained by Algorithm 5 if the subspace dimensions are identical.

Simpson et al. (2008) present a theorem for the error of the Lanczos approx-
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imation:
Theorem 3. Let Q be symmetric positive definite with smallest eigenvalue
λmin. Then

‖Q−1/2z− ‖z‖2VT−1/2e1‖2 ≤ λ−1/2
min ‖r‖, (2.7)

where r is the residual after m iterations of conjugate gradients to solve
Qx = z.

This theorem essentially says that we can use the residual of the CG algo-
rithm to find the number of iterations required to obtain an appropriate
approximation. The CG coefficients are available essentially for free through
explicit formulae (Saad (2003)), and we can modify the algorithm to accom-
modate this. Since we want to compute several samples, it is practically
more efficient to pre-compute the number of Krylov dimensions required
using the CG algorithm. We do this pre-computation on a number of
samples N (0, In), and use the dimension of the largest Krylov subspace
needed in the Lanczos approximation of the inverse square root times a
vector. This also allows us to control the amount of memory used by the
algorithm.

We note that it is difficult to interpret Theorem 3 in terms of the difference
between a Lanczos approximation and an exact sample. However, the
Lanczos process quickly identifies the needed components for the small scale
variability defined by Q. We tested this by visualizing various samples
for different ms in Algorithm 6. The smallest m terms appear to give
an almost independent process, but capture the small scale variability
of the process. With increasing ms, the Lanczos process captures the
smoothness of the sample. It is possible to obtain such a visualisation at
http://www.math.ntnu.no/~erlenda/misc.

In general, loss of orthogonality of the basis v1, . . .vm for Km(Q, r0) may be
a challenge. For our purposes this does not seem to be an issue. See, however
Simon (1984) for an analysis of the Lanczos method with and without re-
orthogonalization of the basis vectors. For us, the more important aspect
is storage of the basis; it is evident that we cannot store 1000 vi ∈ R107 .
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There are two ways to overcome this - the first is to use a restart strategy,
essentially restarting when loss of orthogonality occurs or when the memory
limit is reached. This approach is investigated in Ilic et al. (2010). Another
approach is to use a so-called 2-pass strategy. This 2-pass strategy is
mentioned in Frommer and Simoncini (2008) and we implement a version
of it here.

In the 2-pass Lanczos algorithm we only need vj ,vj−1 in each iteration
to compute αj , βj . We exploit this, and compute T first, discarding the
older vis, so that we do not have to store them. In the next pass, we
compute xj = (T−1/2e1)jvj and sum the xjs as we pass through the
Lanczos iterations once more.

Another Lanczos-type algorithm we have implemented involves deflating
some orthonormal vectors into the Lanczos procedure. That is, given
some orthonormal vectors {wi}si=1 (s < n,m) in the eigenspace of Q, we
construct a Krylov space Km(Q, r0) ⊥ wi ∀i ∈ 1, . . . , s. This has the effect
of improving the conditioning of the system as per a preconditioner (Saad
et al. (1999)). A similar procedure is explored in detail in Ilic et al. (2008)
and it can be adapted to this setting. Specifically, let W = (w1w2 · · ·ws)
be a matrix with the given orthonormal eigenvectors, and λi, i = 1, . . . , s
are the corresponding eigenvalues. In order to construct a Krylov basis
which is orthogonal to W, let x0 = x−1 + W(WTQW)−1WT r−1, with
x−1 arbitrary (e.g. x−1 = 0) and r−1 = z −Qx−1. This is a projection
of the solution of Qx = z onto the space spanned by the wis. This initial
value, x0, ensures that the Krylov vectors vi are orthogonal to the wis.
Now, compute the Lanczos decomposition using a 2-pass version, compute
the approximation xKrylov = VT−1/2e1, and set xProj = WΛ−1/2WT z.
Finally, the approximate solution is x = xKrylov + xProj . Note that if W
has eigenvector columns we get WTQW = diag(λ1, . . . , λs). The procedure
is summarised in Algorithm 7 in which � is element-wise division and � is
element-wise multiplication.

An obvious drawback of algorithm 7 is the additional storage requirements
of the approximated eigenvectors of Q. Also, there is some overhead in
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Algorithm 7 2-pass deflated eigenvector Lanczos algorithm for x ∼
N (0,Q−1)

Input: W, Q, WQ = WTQ, QW = QW, λ = (λ1, . . . , λs)
T

Output: x ∼ N (0,Q−1)
Set: z ∼ N (0, I) r−1 = z, x0 = W[(WT r−1) � λ], r0 = z − Qx0,
β1 = ‖r0‖ vcur = r0/β1,vold = 0
for j = 1 to m or converged (1st pass) do

if j = 1 then
w = Qvcur −QW (WQvcur � λ)

else
w = Qvcur −QW (WQvcur � λ)− βjvold

end if
αj = 〈w,vcur〉
w = w − αjvcur
βj+1 = ‖w‖
vold = vcur
vcur = w/βj+1

end for
Set: q ≈ β1 trid(βm2 , α

m
1 , α

m
2 )−1/2 e1 using (2.4) (here e1 =

(1, 0, . . . , 0) ∈ Rm)
vcur = r0/β1, xKrylov = 0
for j = 1 to m (2nd pass) do

xKrylov = xKrylov + qjvcur
if j = 1 then

w = Qvcur −QW (WQvcur � λ)
else

w = Qvcur −QW (WQvcur � λ)− βjvold
end if
w = w − αjvcur
vold = vcur
vcur = w/βj+1

end for
x = W(λ−1/2 � (WT z)) + xKrylov



2.2. Iterative numerical methods for sampling 44

the matrix vector, matrix-matrix computations in the algorithm, but most
of this can be overcome by pre-computing QW,WTQ and (WQWT )−1.
This comes at the cost of approximately tripling the initial vector storage
requirements. However, this pre-computation seems necessary to make the
algorithm competitive.

The orthonormal vectors need not necessarily be eigenvectors, but can be
a wavelet decomposition or any other basis decomposition that contains
much information with few vectors. We may optionally choose to focus the
projection on a subspace where we need more accuracy, and for that we
need to deflate an orthonormal basis of that subspace.

The theory of Krylov methods is usually presented under the assumption of
infinite precision arithmetic. On the computer, however, we need to deal
with the fact that we only have access to finite precision arithmetic and
representations of the quantities in question, usually 64 bits per real number.
There are, however, good expositions on what happens to Krylov methods
using finite precision arithmetic, and one such source is the long exposition
of Meurant and Strakos (2006). For our methods, however, Theorem 3.4 in
Simpson (2008) gives a rather definite answer. This also shows that we can
use Theorem 3 to define a stopping criterion without further worries. The
Cholesky method does have some small issues in finite precision arithmetic
for very ill-conditioned matrices, but these are less severe than those for
Krylov methods if they occur. An approach to address this for linear systems
can be found in Riley (1955) and it generalises trivially to our setting.

2.2.3 Optimal rational approximations with linear solves

The rational approximation in (2.4) require careful choices of the αjs and
σjs, which in turn can give a small number N . One can achieve attractive
solutions through numerical quadrature of a contour integral. More generally,
for functions that are analytic in some domain containing the spectrum of
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Q, it is possible to compute f(Q)z by Cauchy’s integral formula

f(Q)z =
1

2πi

∮
Γ
f(ζ)(ζI−Q)−1zdζ, (2.8)

where Γ is a curve which encloses the spectrum of Q. In our case, we have

Q−1/2z =
1

2πi

∮
Γ
ζ−1/2(ζI−Q)−1zdζ. (2.9)

We have to make two important choices when approximating this integral:
i) which curve Γ to use, ii) what type of quadrature to employ. Davies
and Higham (2005) show that direct quadrature is inefficient in the sense
that if we use uniformly sampled quadrature points on a circle enclosing
the spectrum we need an enormous number of quadrature points to achieve
good accuracy. For our function, f(ζ) = ζ−1/2, it is possible to modify (2.9)
and obtain quadrature points which are optimal. A thorough description
of this can be found in Hale et al. (2008). We next describe this approach
briefly.

First, observe that Q−1f(Q)z = 1
2πi

∮
f(ζ)ζ−1(ζI−Q)−1zdζ, and set ω2 = ζ,

so that 2ωdω = dζ. We next use f(ζ) = ζ1/2, and get

Q−1/2z =
1

2πi

∮
Γω

ω−2ω(ω2I−Q)−1z2ωdω

=
1

πi

∮
Γω

(ω2I−Q)−1zdω, (2.10)

where Γω is the curve resulting from the change of variables ζ 7→ ω. Since
Q has positive real spectrum, we may integrate over the imaginary axis
to enclose the spectrum. In essence, this is the contour we integrate over.
To choose the quadrature points optimally, Hale et al. (2008) suggest
a conformal or angle preserving mapping of the Jacobi elliptic function

ω = λ
1/2
minsn(t|k2). The mapping goes from the rectangle

(−K,K) × (0,K ′) to C. Here, sn(t|k2) adheres to standard notation for
elliptic functions (see e.g. Akhiezer (1990)) and the second co-ordinate is the
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imaginary part. Moreover, k = (λmin/λmax)1/2, where λmin, λmax are the
smallest and largest eigenvalues of Q respectively, and K,K ′ is implicitly
determined by k and the logarithm of sn(·|k2). In this transformation,
quadrature points are sampled uniformly on the line 0×(0,K ′), i.e. 0.5/n, 1∗
0.5K ′/n, 2∗0.5K ′/n, . . . (2n−1)0.5K ′/n, in the rectangle (−K,K)×(0,K ′).

The approximation resulting from using these contours rediscovers a result
from Zolotarev concerning optimal rational approximations of t−1/2 on
defined intervals (see Zolotarev (1877) and Akhiezer (1990)). Using this
quadrature, we get an approximation as in (2.4):

Q−1/2z = − 1

πi

∮
R−

(Q− ω2I)−1zdω

≈
N∑
j=1

αj(Q− σjI)−1z (2.11)

The algorithm requires estimation of the extremal eigenvalues of Q. One
should underestimate λmin and overestimate λmax to cover the spectrum
appropriately in the quadrature. In practice, the rational approximations of
the matrix inverse square root seem to be fairly robust in perturbing λmin,
λmax. We tested several approximations, some really coarse, and we did not
lose much in accuracy. Moreover, the number of terms, N , in the rational
approximations (2.4) must be chosen. The number of quadrature points
grows logarithmically with the condition number of the precision matrix.
A more precise result is the following theorem by Hale et al. (2008), which
can also be used to choose the number of quadrature points, N .
Theorem 4. Let Q be a real or complex matrix with spectrum contained
in [λmin, λmax]. Then the rational approximations (2.4) with coefficients
computed by quadrature converge to Q−1/2 at the rate

‖Q−1/2 − fN (Q)‖ = O(eε−2πKN/K′), (2.12)

for any ε > 0 for K,K ′ defined by the conformal maps above. The con-
stant in the exponent is asymptotically πK ′/(2K) ∼ 2π2 log(λmax/λmin), as
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λmax/λmin →∞. For any λmin, λmax ∈ R+ we have

‖Q−1/2 − fN (Q)‖ = O(e−2π2N/[log(λmax/λmin)+3]). (2.13)

For a matrix with λmax/λmin = 104, which is common in our examples,
this yields a convergence rate of O(5−N ) for the entire matrix function. In
practice, N between 2 and 9 is sufficient. Note that ‖Q−1/2z− fN (Q)z‖ ≤
‖Q−1/2 − fN (Q)‖‖z‖, and therefore the theorem holds for functions of a
matrix times a vector as well.

For computing (ω2I−Q)−1z or equivalently −(Q− ω2I)−1z to identify ω
and σi in (2.4), we employ versions of the conjugate gradient algorithms.
Since ω2 lies on the negative real axis, the condition number of the linear
system gets smaller with decreasing ω2 and this works as a stabilising agent
for the sampling algorithm. For the tolerance of the iterative solvers, we use
the approximation given by (2.13), divided by N . This can be regarded as
a tuning parameter in the algorithms. Note that the αj and σj values can
be obtained before Krylov methods are employed. A succinct MATLAB
implementation of the required conformal maps is method3.m in Hale et al.
(2008).

2.2.4 Conjugate gradients for multiple shifts

The rational approximations have the property that all the systems that need
to be solved are shifts of the initial system Qx = z. In relation to Krylov
methods we have Km(Q, r0) = Km(Q− σj , r0), for σj ∈ C. This property
is exploitable and Krylov methods for such shifts are developed in, e.g.
van den Eshof and Sleijpen (2003) and Frommer and Simoncini (2008). The
computational advantage in employing such a method comes from the fact
that the coefficients in the CG algorithm for Q−σjI can be computed for all
the σj simultaneously. We pay by storing some additional vectors compared
to the classical CG algorithm. We give here a version of CG-M developed
in Jegerlehner (1996). We use it for computing rational approximations
fN (Q)z ≈ Q−1/2z. The main advantage of using this strategy is that the
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cost of producing a sample is essentially the cost of solving one linear system.

Note that the shift in Algorithm 8 only appears in the computation of
ζσnew, and the corresponding coefficients are those that would be obtained
from running CG on the shifted systems. Algorithm 7 (with no deflated
vectors) and Algorithm 8 are equivalent because of the invariance of Krylov
subspaces under shifts. Algorithm 8 has the advantage that no two-pass
strategy is required, and it can use a stopping criterion for the CG algorithm.
The total number of matrix vector products required for convergence should
therefore in theory be half that of two-pass Lanczos - in practice the story
is a bit different which can be seen in Section 2.3.

2.2.5 Factored preconditioned sampling and alternative inverse
square root iterations

In this section we outline an extension that is not part of the timings
presented in Section 2.3, using factored preconditioners. Additionally, we
outline alternative iterations that may be useful when the Krylov subspace
required for convergence is particularly small.

While preconditioning can be difficult in general, there exists a trick that
may be useful. This trick requires a factored preconditioner, MMT ≈ Q−1.
Now, suppose that x ∼ N (0,M−TQ−1M−1). Then, MTx ∼ N (0,Q−1),
since Cov(MTx) = MTM−TQ−1M−1M = Q−1. What this essentially
means is that we replace the matrix vector product Qv in the Lanczos
process or CG for multiple shifts by MQMTv and follow up the sample
generated by this, x, with MTx.

Factored preconditioners are, however, a much smaller class than the one that
only requires a matrix vector product for its application. All the ones relying
on a spectral factorisation are, however, in this smaller class, including
the FFT circulant preconditioner (Tyrtyshnikov, 1990), the discrete cosine
transform types (Chan et al., 1999), and many others. Factored approximate
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Algorithm 8 CG-M for x ∼ N (0,Q−1)

Input: Q, shifts σk, k = 1, . . . , N , quadrature weights wk, k = 1, . . . , N
and convergence tolerance
Output: x ∼ N (0,Q−1)
Set: z ∼ N (0, I), r = z,p = r, βold = 1, α = 0, ccur = 〈r, r〉,xσ =
0, ζσcur = 1, ζσold = 1, pσ = z
for j = 1 to m or hardest system converged do

pQ = Qp
βcur = − ccur

〈p,pQ〉

for k = 1 to nσ do

ζknew = βold
ζkcurζ

k
old

βcurα(ζkold−ζkcur)+βoldζ
k
old(1−σkβcur)

βk = βcur
ζknew
ζkcur

xk = xk − βkpk
end for

r = r + βcurpQ
cnew = 〈r, r〉
α = cnew

ccur
p = r + αp

for k = 1 to nσ do

αk = α ζknewβ
k

βcurζkcur

pk = ζknewr + αkpk

end for

Set: ζσold = ζσcur, ζ
σ
cur = ζσnew, βold = βcur and ccur = cnew

end for

Set: x = 0
for k = 1 to nσ do

x = x + wkx
k

end for
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sparse inverse preconditioners (Benzi et al., 1996) are also in the admissible
class, and can be combined with wavelet compression (Chan et al., 1997).

Alternative inverse square root iterations

Typically, when preconditioners are applied, the number of iterations needed
for the Krylov method to converge is less than 200, and it may happen
in other cases as well. When the the dimensionality of Km is small, it is
possible to exploit other methods for computing the matrix inverse square
root for the tridiagonal matrix Tm, containing coefficients obtained from
the Lanczos process. This is possible since the computational time required
for this inverse square root is small compared to the matrix-vector product,
Qv. We mention a particular scheme alluded to in Higham (2008).

First, note that any full-rank square matrix, A has a unique polar decomposi-
tion, A = UH, with U unitary and H positive definite, with H = (A∗A)1/2.
For the tridiagonal matrix Tm, compute the bidiagonal Cholesky decomposi-
tion, LLT = Tm, and set LT = UH. Now, compute L−TLT = L−TUH, so

that H−1 = L−TU. Since H = (LLT )1/2, L−TU = T
−1/2
m . Computing the

polar decomposition of LT can be done by Algorithm 8.20 in Higham (2008),
which is an accelerated Newton algorithm. In this algorithm, we need to
approximate ‖ · ‖1 and ‖ · ‖∞ for scaling the algorithm properly. Estimating
these matrix norms is cheap, using for instance a block algorithm, such as
the one found in Higham and Tisseur (2000).

Indeed, this observation leads to another method for computing Q−1/2z
that we have not discovered in the literature. It is possible to compute the
matrix-vector product Uv or UTv by noting that

sign

(
L

LT

)
=

(
U

UT

)
, (2.14)

where L is the Cholesky factor of Tm. Using the nested Krylov subspace
method in Bloch and Heybrock (2009), we have an efficient method for
computing the required matrix-vector product. The method is now doubly
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nested – one Krylov method for computing Tm, and a nested one for

computing Uv, where L−TU = T
−1/2
m as above. Note that the conditioning

of the matrix in (2.14) is the square root of the original Tm, effectively
leading to an algorithm which converges in fewer than m Krylov iterations
on this extended matrix.

It is also possible to use the matrix sign function directly, noting the identity

sign

(
Q

I

)
=

(
Q1/2

Q−1/2

)
. (2.15)

Since Qv for some v needs to be computed only once in each Krylov
iteration, and Iv is free, we may use the method in Bloch and Heybrock
(2009). This may lead to a highly efficient sampling algorithm. It is also
ameanable to factored preconditioning, replacing Q with MQMT in (2.15).
We need to double the vector storage cost over that of the Lanczos method
to use this strategy.

2.2.6 Continuous deformation method

The continuous deformation method is based on solving the following ODE
(Allen et al. (2000))

dz/dt = r(Q− I)[t(Q− I) + I]−1z, t ∈ [0, 1], (2.16)

with z(0) ∼ N (0, I) and r = −1/2. The solution at the endpoint, z(1) = x
is a sample from N (0,Q−1).This continuous deformation approach is one
of the methods for the (inverse) square-root mentioned in Higham (2008).
One can show that this method gives correct sampling by considering the
eigen decomposition of the system as in Allen et al. (2000). Let V,Λ be
the eigenvectors and eigenvalues of Q respectively, and let further z(t) =∑

j αj(t)vj , where vi is the i’th column of V. Inserting this representation
in (2.16) and taking the i′th component gives

d

dt
αi(t)vi = rαi(t)(Q− I)[t(Q− I) + I]−1vi. (2.17)
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This corresponds to the equation

d

dt
αi(t) = rαi(t)(λi − 1)[t(λi − 1) + 1]−1, (2.18)

with initial condition αi(0) = z(0)Tvi
vTi vi

. The first order ODE above is solved

by separation of variables and gives

αi(t) = (1 + t(λi − 1))r
z(0)Tvi

vTi vi
. (2.19)

Setting t = 1, r = −1/2, αi(1) = λ
−1/2
i z(0)Tvi/(v

T
i vi) and summing over

the i′s, we get

z(1) =
∑
i

λ
−1/2
i

z(0)Tvi

vTi vi
vi = Q−1/2z(0). (2.20)

This ODE, when discretized, leads to rational approximations which are
different from those of the previous section, but can be reduced to a form
similar to that of (2.4). Equation (2.20) shows in an explicit way that we
only need to interpolate the inverse square root on the spectrum of Q.

An alternative viewpoint comes from looking at a deformation matrix,
B(t) = (1− t)I + tQ, take the inverse square root, and differentiate to see
that we get the matrix ODE below.

dB−1/2

dt
=

d

dt
[(1− t)I + tQ]−1/2

=
1

2
(Q− I)B−1/2−1 (2.21)

Projecting the matrix equation onto the start vector, z(0) = N (0, I) yields
(2.16).

The critical points for implementing this ODE routine are: i) a good solver
for [t(Q− I) + I]b = z for all t ∈ [0, 1] and ii) an appropriate ODE solver.
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Table 2.1: Timings in seconds, random structure precision matrices

83 163 323 643 1283

κ = 5.4 κ = 10.3 κ = 12.9 κ = 15.3 κ = 27.3

CHOL 3.57 · 10−4 3.29 · 10−2 1.71 N/A N/A
SEC-CG 1.36 · 10−3 9.19 · 10−3 1.10 · 10−1 1.08 30.1
RAT-CG-M 1.11 · 10−3 4.70 · 10−3 4.54 · 10−2 0.496 15.5
2pLANC 4.52 · 10−4 3.40 · 10−3 4.10 · 10−2 0.458 16.4
CONT-D 3.20 · 10−2 3.71 · 10−1 2.78 30.7 6.01 · 102

CU-CG-M 2.47 · 10−3 2.83 · 10−3 8.08 · 10−3 6.99 · 10−2 0.743

We use Krylov methods (CG) to solve [t(Q − I) + I]b = z at every time
step. The ODE is solved by MATLAB R©s ODE45 discretization scheme
(MATLAB (2010)). Natural tuning/accuracy parameters for this method
are relative and absolute tolerances in the ODE-solver. If the matrix Q is
badly conditioned, the ODE (2.16) is stiff (this can be taken as a definition
in some settings). This can slow down the ODE solver for time steps close
to t = 1 in our implementation, but is partially overcome by ODE45’s
adaptive time-stepping. An advantage of this implementation over that of
the previous section is, however, that the extremal eigenvalues of Q need
not be estimated.

A natural extension of this method comes from looking at the class of ODEs
defined by

z′(t) = r(Q− I)[I + g(t)(Q− I)]−1g′(t)z(t), (2.22)

with the constraints g ∈ C1[0, 1], g(0) = 0, g(1) = 1 and r = −1/2. This
may lead to better performance for some systems. Two examples are
g(t) = ln(t+1)

ln(2) and g(t) = t2.
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Table 2.2: Matrix vector products, random structure precision matrices

83 163 323 643 1283

κ = 5.4 κ = 10.3 κ = 12.9 κ = 15.3 κ = 27.3

SEC-CG 4 5 5 5 5
RAT-CG-M 4 6 5 6 7
2pLANC 2× 3 2× 4 2× 4 2× 4 2× 4
CONT-D ∼ 100 ∼ 100 ∼ 80 ∼ 100 ∼ 100
CU-CG-M 7 7 8 8 8

2.2.7 Sampling from intrinsic fields

The methods we have discussed so far are predominantly suited for sampling
from fields which are not intrinsic – i.e. they do not have some invariant
subspace defined through eigenvectors having zero eigenvalues. Some of
the methods are easy to modify in order for them to work for intrinsic
fields, while others are harder to adjust. Before going into the case for
iterative sampling methods, we mention that using direct methods, the most
straightforward way of obtaining an intrinsic sample is through the pivoted
LDLT -factorisation method. Let Q = PLDLTPT , where P is permutation
matrix, then PTL−TD†/2z ∼ N (0,Q−1) by direct verification, where D†/2

is the the pseudo inverse square root given by D
†/2
ii = D

−1/2
ii if Dii > 0 and

D
†/2
ii = 0 otherwise.

Iterative methods for computing a sample from an intrinsic field are essen-
tially harder than ones for definite fields. This is closely related to finding
suitable stopping criteria for the Krylov iterations. There is, however, a
recent method developed for computing the minimal norm least squares
solution for a semi-definite symmetric system. An analysis of the method,
named minres-QLP, can be found in Choi et al. (2010) and Choi (2006).
The strategy builds on using a pivoted QLP factorisation of the tridiagonal
matrix Tm. What we propose, is to use the minres-QLP algorithm for com-
puting appropriate stopping conditions for the Krylov methods, and then



55 Chapter 2. High-dimensional Gaussian sampling

use rational approximations or eigen decompositions to form T
−1/2
m e1. Using

eigen decompositions are, naturally, more computationally demanding.

When the zero eigenvectors are known, however, it is possible to use the
explicit deflation strategy in Section 2.2.2. The methods remains as it stands
– simply deflate the singular vectors. It is also possible to deal with the
problem by implicit deflation. More, specifically, if uj , j = 1, . . . , r are the
eigenvectors of Q associated with zero eigenvalues, we orthogonalise the an
i.i.d. sample z ∼ N (0, I) to these eigenvectors by a Gram-Schmidt process
and use the sample ẑ ⊥ ui in any of the algorithms described above. While
this approach has sound theory, one has to be careful so that round-off
errors due to loss of orthogonality do not start to dominate – this affects
our stopping conditions adversely. One remedy is to orthogonalise current
estimator of Q−1/2ẑ in the Krylov method to the known eigenvectors at
regular intervals. The cost of this orthogonalisation is small.

2.2.8 GPU implementation and parallel CPU performance

The advent of CUDA by the nVidia corporation gives us the possibility
to implement massively parallel algorithms on the GPU in ”high level
languages”. It is natural to see if we can get speedup using such massively
parallel computing hardware. In statistics, GPU implementations of Monte
Carlo algorithms have been successful, see e.g. Lee et al. (2010). The
basic idea using CUDA as an entry point for using such hardware is to
have a built-in fine grain independent structure in the computations and
then assign threads to these computations automatically using special code
constructs.

For Krylov methods, the needed ingredient to implement the presented
algorithms is a sparse matrix vector multiplication, Qz. The cublas library
by nVidia provides fast dense matrix operations. For sparse matrix vector
products, we use the cusp-library, which is a further development of the
work of Bell and Garland (2009) made available through google code. Both
hardware and compilers have evolved since that point.
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In our view, the best candidate for GPU implementation is CG-M - both
because its potential performance and it is a method that is easy for a
possible end-user to utilise; no choice of deflation vectors is needed and it
does not require the programming of a preconditioner.

The above mentioned cusp library has a CG-M implementation available.
With some work, it is possible to modify the CG-M code to facilitate the
rational approximations in (2.4) - we have coded these modifications. The
possible performance gain then essentially comes from faster matrix vector
products and inner products of vectors. The performance of this CUDA
implementation is presented in the examples below.

Parallelization on a workstation with multiple CPUs is straightforward:
Run the described algorithms on each core independently. Of course, using
this approach, the precision matrix only need to be allocated once, but all
auxiliary vectors that change need to be allocated separately for each core.
There is minimal overhead using this approach, and we get a linear speedup
in the number of cores with proportionality constant close to unity.

2.3 Examples

In Section 2.3.1 we present a random precision matrix model inspired by
a space-time application of infectious disease count, see Paul et al. (2008).
In Section 2.3.2 we consider an model for seismic data. Section 2.3.3 is a
comparative study of the computation time, while Section 2.3.4 samples
elastic model parameters given seismic 3D reflection data acquired at a
North Sea reservoir.

The different algorithms we test are:

• CHOL: Cholesky sampling using approximate minimal degree re-
ordering.

• SEC-CG: Sequential use of CG on each term in (2.4) using the
coefficients developed in Section 2.2.3.
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• P-SEC-CG: Preconditioned version of SEC-CG using a circulant
preconditioner from a circulant approximation of the precision matrix.

• RAT-CG-M: Algorithm 8.

• 2pLANC: 2-pass Lanczos sampling.

• DEF-2pLANC: The deflated version of 2-pass Lanczos, Algorithm
7.

• CONT-D: The continuous deformation method.

• CU-CG-M: The GPU implementation, using CUDA, of algorithm
RAT-CG-M. We have used double precision arithmetic in our timings.
It is a stand alone program compiled using nvcc with g++-4.4 with
appropriate optimization settings.

In all our comparisons, we have used a relative tolerance of 0.005 for the
2-norm of the residual vector, which also defines our stopping criterion.

There is one important aspect that must not be ignored when comparing the
algorithms: are the comparisons fair? Is, for instance, one of the algorithms
favoured in implementation compared to the others? We have tried to
implement the algorithms on equal grounds. The deformation method
(Section 2.2.6) may become faster by using a better ODE-solver for the
problem at hand. We have chosen to use the fairly standard ODE45 solver
(existing in MATLAB). All the methods, except the one implemented for the
GPU, were implemented in MATLAB using serial matrix vector products.
A point that is often mentioned for methods using loops in MATLAB is that
the performance of such loops can be very bad. In these methods the cost
of the loops are dominated by the matrix vector-product - a routine that is
fairly well optimised in MATLAB. To test how well it is optimised, we used
the linear algebra package Eigen, which actively uses lazy evaluation and
expression templates to minimise overall cost of a particular set of operations.
We used a discretized Laplacian on 1003 grid points and ran 1000 matrix
vector products in MATLAB and Eigen. The timings were 20 seconds using
Eigen and 27 seconds using MATLAB, running the computations on a single
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core, leading to a factor of 1.35. The conclusion is that there may be some
overhead in the MATLAB matrix vector product.

The following hardware was used for computations: The CPU computations
were done on a Core2 Duo @ 2.93 GHz with 8 Gb memory. The GPU
computations were done on a nVidia Tesla c2050 with 3 Gb memory.

The timings reported in the following sections favour the GPU implemen-
tation. When deciding whether or not to use GPUs when having different
hardware than what is reported here, one should check if this makes sense.
A simple way of doing this is simply to time matrix-vector products for the
appropriate matrix using both the CPUs in question and the GPUs. If one
outperforms the other, it is probably wise to use the best performing one.
If they perform similarly, it may be a good idea to use both simultaneously
depending on how many samples that are required for the application at
hand. Packages like Eigen and cusp make these comparisons easy to perform.

Table 2.3: Timings for D-2pLANC, random structure precision matrix. The first
column indicates number of deflated vectors.

83 163 323 643

5 4.91 · 10−4 4.81 · 10−3 6.78 · 10−2 0.726
10 5.02 · 10−4 4.96 · 10−3 7.44 · 10−2 0.775
15 5.15 · 10−4 5.17 · 10−3 8.15 · 10−2 0.849
20 5.27 · 10−4 5.41 · 10−3 8.91 · 10−2 0.916

Lastly, we use an alternative, non-standard criterion for convergence in the
2pLANC methods, namely we look at a large number of samples and see
what dimension of the Krylov subspace is needed to make a sample converge
on average and use this as a fixed m in Algorithm 6.

The timings are in seconds, and represent the time required to get one
sample. For all methods, the natural way to get multiple samples is to
run the algorithms several times, either in parallel or sequentially. The
abbreviations given in the list above are also used in the tables. The timing
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starts when the i.i.d. Normal samples are generated, followed directly by
the Krylov method. It therefore includes the allocation of the temporary
scalars and vectors used in the method. The timing ends when is after the
Krylov method finishes after it has looped over enough samples to get a
good estimate for the time required to produce one sample.

On top of Table 2.1, 2.2, 2.4, 2.5, 2.7 and 2.8, κ = λmax/λmin denotes the
condition number of the corresponding matrix. It is a well known fact that
the number of matrix vector products required for a Krylov is dependent
on the condition number of a matrix; in fact, the following bound holds for
the CG algorithm (Saad (2003))

‖x− xm‖ ≤ 2

(√
κ− 1√
κ+ 1

)m
‖x− x0‖ (2.23)

where m is the dimension of the Krylov subspace. Hence, as κ grows,
(
√
κ− 1)/(

√
κ+ 1)→ 1 and convergence can be slow.

2.3.1 Random pattern precision matrices

The random pattern precision matrices of this section are generated by the
following heuristic algorithm:

1. Pick a random entry, i, j ∈ {1, . . . , n}

2. Add to Q(i, j), Q(j, i) a realization of N (0, 1)

3. Add this realization to the diagonal of Q

4. Loop until enough non-zero entries and Q is positive definite

This gives rise to an unstructured matrix. A similar unstructured pattern
may emerge from using a non-standard spatio-temporal model (Paul et al.
(2008)), where the spread of disease is simulated based on the neighbourhood
pattern obtained from airline routes across the world. It has also come to
our attention that this type of unstructured matrices play important roles
in reconstruction in e.g. X-ray images (Björck (1996)). An illustration of
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a matrix with such sparsity pattern can be found on the right in Figure
2.1. We generate matrices of size n3 × n3 for n = 8, 16, 32, 64, 128 in order
to have comparable results with the matrices in Section 2.3.2 and also
with a comparable amount of non-zero entries. For these type of matrices,
circulant preconditioners are inappropriate since the Q is completely non-
stationary, and hence P-SEC-CG is not included in the comparison. For
other preconditioners, P-SEC-CG could be a good choice for these type of
matrices, but we have not researched such preconditioners. Note, however,
that for other non-stationary processes, circulant preconditioners may work
well despite of the non-stationary. See for instance Tyrtyshnikov (1990)
for information on constructing potentially good preconditioners for any
linear system. Incidentally, the matrices constructed by this method are
extremely ill-suited for Cholesky factorizations as the amount of fill-in (even
after reordering) is enormous. Additionally, by construction, the condition
number of a particular matrix is independent of the dimension. This makes
these matrices particularly well suited for Krylov methods.

In Table 2.1 the timings of the different methods are displayed, while
Table 2.2 shows the number of matrix vector products needed for the
iterative methods. The number of matrix vector products for CONT-D is
approximate, as our implementation does not allow for exact counts. An
entry N/A means that the memory requirements are larger than 8Gb. We
use a separate table for D-2pLANC with different degrees of deflation. This
is summarised in Table 2.3. The number of matrix vector products is the
same as for 2pLANC in Table 2.2.

The timings given in Table 2.1 show that in low dimensions, i.e. 83 and
163, the choice of sampling method is not particularly important. We get
samples fast and at a comparable rate whatever method we choose. Note,
however, that even in dimensions 83, the timings of all the Krylov methods
are comparable to that of Cholesky sampling. As has been mentioned before,
these random matrices are particularly ill-suited for Cholesky sampling, but
nonetheless, if this structure information is available a priori, choosing a
Krylov method seems very reasonable. The scaling of timings is much better
using Krylov methods, which can be seen in the last three columns in Table
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Table 2.4: Timings in seconds, prior seismic precision matrices

83 163 323 643

κ = 2.3 · 102 κ = 2.9 · 102 κ = 5.6 · 106 κ = 1.5 · 104

CHOL 1.20 · 10−4 7.55 · 10−2 1.19 N/A
SEC-CG 5.90 · 10−3 0.364 41.9 23.9
P-SEC-CG 4.01 · 10−3 4.70 · 10−2 1.34 6.08
2pLANC 1.40 · 10−3 0.228 35.5 19.7
RAT-CG-M 4.27 · 10−3 0.300 26.5 16.6
CU-CG-M 9.21 · 10−3 0.175 2.24 0.502

Table 2.5: Matrix vector products, prior seismic precision matrices

83 163 323 643

κ = 2.3 · 102 κ = 2.9 · 102 κ = 5.6 · 106 κ = 1.5 · 104

SEC-CG 25 448 3990 273
P-SEC-CG 12 41 132 58
2pLANC 2× 15 2× 268 2× 1880 2× 151
RAT-CG-M 25 610 4498 344
CU-CG-M 25 591 4386 311
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2.1. We believe this is mainly due to the approximate invariance of the
condition number of the matrices as the number of dimensions increase.

The effects of RAT-CG-M requiring only one pass of the matrix vector
products are seen in the last column, since the cost of the matrix vector
products compared with the other operations increase more with dimension.
This is also reflected in Table 2.2, comparing 2pLANC to RAT-CG-M.

The GPU-implementation of RAT-CG-M, namely CU-CG-M, shows different
degrees of speedup/-down depending on the size of Q. For 83, CU-CG-M
performs worse than the bulk of algorithms, but from 163 and up, we have
different degrees of speedup; from a speedup of 1.3x in dimensions 163 to a
speedup of 20.9x in dimensions 1283. We believe this can be explained by
the increasing importance of fast matrix vector products as we increase the
dimensions of the precision matrix.

For deflation, the results are summarised in Table 2.3. It appears that
deflation is not a good choice for this particular type of matrices, and the
most natural explanation is that the small eigenvalues of Q cluster together
in a relative sense.

The CONT-D method compares unfavourably to the others, but one could
possibly improve this by using a more favourable ODE-solvers for the
equation (2.16).

Table 2.6: Timings for D-2pLANC, seismic prior. The first column indicates
number of deflated vectors.

163 323 643

5 0.211 23.7 22.8
10 0.157 20.2 25.4
15 0.140 18.6 28.0
20 0.138 19.5 29.4
30 0.114 16.9 N/A
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Figure 2.1: Structure of posterior seismic- (left) and random structure (right)
precision matrices
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2.3.2 Seismic prior and posterior precision structures

Seismic data play an extremely important role in the exploration for oil and
gas resources. The inversion of seismic reflection data to elastic parameters
in transversely isotropic media is a well studied problem. The basic physical
model is governed by the Zoepritz equations, see e.g. Stovas and Ursin (2003).
We consider a linear approximation of the Zoepritz equations (Buland and
Omre (2003) and Rabben et al. (2008)). More precisely, for reflection angle
θ, and north, east and depth reference (i, j, k), we have the following model

yp = f(θ, x(i, j, k)) =
1

2 cos2 θP

4IP
IP

(i, j, k)−

4 sin2 θS
4IS
IS

(i, j, k)

− 1

2
tan2 θP [1− 4γ2(k) cos2 θP ]

4ρ
ρ

(i, j, k), (2.24)

where 4·· denotes relative change in the corresponding elastic P-impedance
IP , S-impedance IS and density ρ, and γ is a background (average) vP /vS-
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Table 2.7: Timings in seconds, posterior seismic precision matrices

83 163 323 643

κ = 4.5 · 10 κ = 1.6 · 102 κ = 3.7 · 103 κ = 2.7 · 103

CHOL 1.20 · 10−4 7.41 · 10−2 1.13 N/A
SEC-CG 3.72 · 10−3 3.59 · 10−2 1.79 18.1
P-SEC-CG 3.60 · 10−3 2.83 · 10−2 0.918 13.2
2pLANC 1.11 · 10−3 1.10 · 10−2 0.736 8.12
RAT-CG-M 4.67 · 10−3 1.19 · 10−2 1.16 10.3
CU-CG-M 4.91 · 10−3 1.10 · 10−2 9.50 · 10−2 0.431

Table 2.8: Matrix vector products, posterior seismic precision matrices

83 163 323 643

κ = 4.5 · 10 κ = 1.6 · 102 κ = 3.7 · 103 κ = 2.7 · 103

SEC-CG 25 70 193 186
P-SEC-CG 11 19 74 99
2pLANC 2× 9 2× 17 2× 67 2× 65
RAT-CG-M 17 30 155 141
CU-CG-M 15 29 152 137
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trend. The response is a convolved signal of the physical reflections yp, and
Buland and Omre (2003) defined the following statistical model to describe
the data at one angle:

y = W(Ax + ε1) + ε2, (2.25)

with ε1 ∼ N (0, c1Q
−1
1 ), ε2 ∼ N (0, c2Q

−1
2 ) and prior distribution x ∼

N (µ,Q−1). Here, the coefficients in A are obtained using (2.24), and the
matrix W contains the convolution model. We assume that all precision
matrices Q, Q1 and Q2 are sparse Markov.

In this section, we will use a simplified version of (2.25) to compare the
different sampling algorithms. We use prior mean 0, only one of the elastic
parameters and one reflection angle θ. This simplification can be obtained
directly from the full model by using only θ = 0, so that we only are given
information on P -impedances. We do a full case posterior analysis on North
Sea data in Section 2.3.4.

The matrices Q1,Q are constructed as follows: We use an exponential
correlation function and optimise for parameters in a 3×3×3-neighbourhood
in the Markov graph for Q. For exponential correlation, this approximation
is very good (Rue and Tjelmeland (2002)). Note, however, that this choice
is of minor importance when it comes to relative performance between the
sampling procedures. We have used an effective correlation length of 10
cells. We may alternatively choose our parameters freely in a different way
if we have convenient procedures for doing so. Q1 is a diagonal matrix
with linearly decreasing precision with depth. Since we are dealing with a
field of size nx × ny × nt, where nx, ny are lateral coordinates and nt is a
depth coordinate, this linear decrease comes in diagonal blocks of size nt
embedded in the larger matrix Q1. Choosing Q2 = I gives the posterior
precision matrix for the simplified model

Qpost = Q + ATWTQlikWA. (2.26)

with Qlik = (c1WQ−1
1 WT + c2I)−1.
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Figure 2.2: Relative differences in timings on a log-scale, random precision
structure matrices
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Figure 2.3: Relative differences in timings on a log-scale, seismic prior matrix
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Figure 2.4: Vertical (top) and horizontal (bottom) slice of Norne data (left) and
inverted mean (right)
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Sampling results for sampling from Q and Qpost as in (2.26) are given in
Table 2.4,2.6 and 2.7. In all these cases, the sampling methods based on
rational approximations and Krylov methods work really well. The structure
of this posterior precision matrix can be found on the left in Figure 2.1.
The prior precision matrix Q has similar structure to that of the posterior
precision matrix, but has a narrower band close to the diagonal due to the
exclusion of the convolution.

In Table 2.4, we see that Cholesky sampling remains competitive until it is
impossible to do it due to memory constraints. This occurs between 323 and
643 in our model. The band 3D band structure makes Cholesky sampling a
bit more forgiving than the structure of the matrices in the previous section.
While Cholesky sampling is faster in all cases except the 163 case, we suspect
that if Cholesky sampling was possible in the 643 case, it would perform
relatively worse as the conditioning of the matrix improved in that case.

At this point, a comment regarding the conditioning of the 643 matrix is
in place. We clearly see the condition number for the 643 matrix is better
than that of the 323 matrix, and this explains why both the timing is better
for the 643 case and that the number of matrix vector product is less.

The Krylov methods with no preconditioning are very comparable to each
other, with RAT-CG-M having an edge in higher dimensions, as expected.
The prior precision matrix is by design close to circulant, and that is why
we see a massive improvement in the P-SEC-CG row. Note that P-SEC-CG
computes the solution of several linear systems and RAT-CG-M essentially
only computes the solution of one. If we have a good preconditioner that
can be extended to shifts, it is natural to use it, but implementation
and parallelisation can be major issues. Optimally, we could imagine
a preconditioned RAT-CG-M, but this may be very difficult to obtain
in practice. The D-2pLANC perform favourably for both 163 and 323

dimensions in this example.

For the GPU implementation, the story is a bit different from that of the
random precision structure matrices. We do not have a clear improvement
over all other methods before the 643 case. CU-CG-M remains competitive,
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however, with both CHOL and P-SEC-CG in all cases except in dimensions
83, and in dimensions 643 it gives a speedup of 12.1x over P-SEC-CG
and a overwhelming speedup 33.1x over the similar CPU implementation,
RAT-CG-M. In Table 2.7 for the posterior precision matrices, the condition
numbers of the matrices are a bit better and we have more fill-in due to
bandwidth increase. Here Cholesky sampling quickly falls behind compared
to the Krylov methods. We also see that the preconditioned version does
not offer as much of an improvement as in the prior precision counterpart,
and this is caused by the strong deviation from stationarity incurred by the
likelihood. Additionally, the potential condition number improvement is not
as huge as in the prior case.

One counter-intuitive result is that 2pLANC performs better that RAT-CG-
M. This may be, as hinted in the introduction of Section 2.3, related to the
different convergence criteria.

The CU-CG-M starts to outperform the other methods in dimensions 163,
where it performs exactly as good as 2pLANC, and the speedup increases
to 18.8x over 2pLANC. Not as good as for the prior precision matrices, but
still a massive performance boost.

The question of whether we should deflate approximate eigenvectors (or
other vectors) or not does not have an obvious answer. Comparing the
results in Table 2.6 and Table 2.3, we see that in one case, deflating is really
a good idea, while in the other, it hampers the performance of the sampling
procedure. Heuristically speaking, there are two reasons to deflate vectors;
one is increasing the performance of the sampling procedure, the other is
the following: suppose we have a region of interest U ⊂ D, where D is the
domain for the sampling, and we need more accurate sampling results in
that region. Then we may deflate some orthogonal basis vectors pertaining
to that region. The first of these two is the more natural, and in this one it is
possible to address the question on whether we should deflate or not. In the
article Saad et al. (1999) a detailed analysis on how deflating is related to
preconditioning is presented. So suppose that Km(Q, r0) ⊥ w1,w2, . . . ,ws

for eigenvectors wi. Then whether we should deflate a new vector, w(i+1),



71 Chapter 2. High-dimensional Gaussian sampling

Figure 2.5: Samples from the posterior, vertical slice, Norne
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depends on the associated fraction of eigenvalues κ(i + 1) = λ(i+1)/λ(i),

where λ(i) = min(λi|λi ∈ σ(Q) − {
⋃i−1
k=1 λ(k)}), where σ(Q) is the set of

eigenvalues of Q. Note that κ(i+ 1) ≥ 1, and if κ(i+ 1) is large enough, we
deflate w(i+1). ”Large enough” is dependent on the implementation of the
algorithm, specifically, the cost of dot products and populating vectors. In
practice, it is easy to deflate more and more vectors, so we stop as soon as
they are difficult to compute or the performance gain is small.

2.3.3 Discussion of performance and application of the methods

While the performance of Cholesky sampling and the different Krylov
methods differ between the applications, there is a basis for some general
conclusions. Apart from CONT-D, the best Krylov methods have compa-
rable performance on the CPU. Moreover, the best Krylov methods are
comparable to CHOL in lower dimensions both on the CPU and the GPU.
The question then is: When should we use CHOL and which Krylov method
should we use if we can choose between two of comparable performance?

In 1-D applications, CHOL is most likely to outperform any of the Krylov
methods mentioned here except if there are weird and non-standard couplings
in the system. In 2-D, CHOL is should also outperform the Krylov methods.
If one is unsure, however, if this is the case, one may run the standard CG
algorithm to see how fast it may solve a linear system. If that is several
times faster than doing a Cholesky sample (either on the CPU or the GPU),
there is reason to investigate using one of the Krylov methods. In 3-D and
higher dimensions, Krylov methods should be superior provided the number
of discretization points, n, is high enough.

The dilemma one faces is illustrated on Figure 2.2 and 2.3. Here the relative
differences between each of the methods are depicted on a log-scale, where
a level of 1 is the fastest method for the specified dimensions and each
integer above that denotes a doubling of the required time to perform a
sample. These bar charts and the tables of timings and matrix vector
products are considered to give guidance on what method to use for a
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Figure 2.6: Samples from the posterior, horizontal slice, Norne
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Figure 2.7: Posterior means with different prior levels, vertical (left) and hori-
zontal (right)
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specific application and are found below. In the bar charts, a missing bar
for the CHOL means that it was impossible to perform the sampling due to
high memory requirements.

The other question, mostly related to 2pLANC and RAT-CG-M (or CU-
CG-M) is a matter of implementation considerations. If the Krylov method
in question takes very few iterations to converge, 2pLANC or even just a
pure Lanczos iteration (if one has enough memory to store some of the
basis vectors) is comparable to RAT-CG-M in performance, but at the
same time easier to implement; no estimation of extremal eigenvalues is
required. In that case, we would recommend choosing the 2pLANC method
for sampling, either on the CPU or GPU, depending on the requirements
of the application and use eigen decomposition for the VT−1/2e1 in 6. If
on the other hand, the application requires a moderate amount of Krylov
iterations, RAT-CG-M or CU-CG-M are likely to be your optimal pick. In
the case where extremely many iterations are required for CG to converge,
the P-SEC-CG with an appropriate preconditioner should be investigated.
More research into good preconditioners for the application at hand must
then be done, and that can be a huge task in itself.

The ”tuning” parameters are dependent on the method in question. For the
CONT-D method, the tolerance, εCD, for the ODE solver must be specified,
and it should be set low enough for the application at hand and does not
really need to be tuned. The Krylov method in CONT-D must however
be tuned. An easy way to obtain a good enough relative tolerance is to
run CONT-D once with very high accuracy in the Krylov method, see how
many time steps, nt it needs for convergence and use εCD/nt as the relative
tolerance. It can be advantageous to experiment with higher values for the
relative tolerance. As of now, we see no reason to recommend the CONT-D
method, but there is likely room for improvement here, using another ODE
solver.

Finding the N in (2.4), can be done using Theorem 4. In practice, however,
one may only need to use a fraction of that. Here it is beneficial to try to
reduce the number of that obtained from Theorem 4 and see if the results
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are accurate enough for a few samples. Additionally, finding N also requires
estimates of λmin, λmax. Coarse under- and over estimation respectively
is the recommended practice here. Specifying the relative tolerance of the
Krylov method may be done exactly the same way as for CONT-D.

For 2pLANC the tuning parameter is the dimension, m, of the Krylov
subspace to construct. Using the non-standard convergence criterion in
Section 2.2.2 paragraph 3, this is easily done. For the deflated version,
this together with deflating different numbers of vectors must be done,
varying both the subspace dimension and the number of deflated vectors
simultaneously.

2.3.4 Inversion of Norne-data and sampling from the posterior

In this section we will look at inversion of seismic data, and sampling from
its posterior. The data we consider is from the Norne field in the North Sea.
It consists of seismic reflection data gathered in three angles of resolution
and on a 3D grid of size 111× 111× 510. We take the slice 111× 111× 128
and resample it to 64×64×64 in order to fit the posterior matrix in memory.
Alternatively, a routine for each matrix vector product may be constructed
and applied in sequence. A typical vertical slice of this data y along with
its inverted acoustic impedance can be visualised as in Figure 2.4. The
model is the same as in Section 2.3.2, but here we include the full version
of the A-matrix in (2.25), and we assume correlation between the elastic
parameters in the prior model. It is straight forward to construct Q in this
situation: We have Q := Q⊗Q0, where Q0 is the 3× 3 precision matrix for
the elastic parameters. The relevant least squares problem, then becomes

(ATWTQlikWA + c1Q)E(x|y) = b, (2.27)

b = c1Qµ+ ATWTQliky,

where Qlik is similar to the one in equation (2.26). We solve for E(x|y),
and we sample from the precision matrix given on the left side of (2.27).
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The parameters in the prior mean µ, precision matrices Q1 and Q, for the
γ-parameter in the A-matrix and the convolution model (W) are typically
assigned from auxiliary data. This consists of well log information from
neighbouring reservoirs, lab measurements used to build geophysical rela-
tionships, and geological knowledge of the subsurface. Well logs are used
to specify many of the prior parameters within the context of a geological
depositional environment. Moreover, the well observations constitute rel-
atively perfect observations of the reservoir properties as compared with
the seismic data. Thus, a well log and seismic data at the same location
are used to assess the seismic likelihood parameters, within the modeling
assumptions defined from years of geophysical lab experiments. The large
angle seismic data is noisier than that at small angles. Also, the noise level
increases as a function of depth. The spatial correlation parameters are
tuned from geological modeling.

For interpretation purposes, it can be argued that it is better to look at an
ensemble of samples instead of only the inverted mean; what if there are
regions with features that can be significantly perturbed for interpretation
purposes that only show up in some of the samples from the posterior?
This is valuable information for the contractor and should be present in
evaluation of assets. Four samples from the posterior are given in Figure 2.5.
In our example the horizontal slice in Figure 2.6 are a bit more perturbed
than the lateral one, but there are no huge differences on the scale we are
looking at here. To see the effect of the prior, we have included inversion
results with different prior levels in Figure 2.7. This figure shows that as
the prior level increases, we have more smoothing and hence more boundary
effects, and less dependency on the data, as expected.

The timings for these samples are comparable to that of Section 4.2. However,
in the multivariate setting, the number of non-zero entries in the posterior
precision matrix is approximately 10 times that of the posterior generated
in Section 2.3.2. In our implementation the sampling takes about 5 minutes.
This computation time is too large to attempt MCMC solutions of a non-
linear model, but is useful for visualizing an ensemble of seismic inversion
results.
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2.4 Conclusions

In this chapter we have looked at several algorithms using Krylov subspace
methods combined with rational approximations for sampling Gaussians.
The methods assume that matrix vector products are available at a low cost,
using the sparse structure of the precision matrix or the covariance matrix.
We believe that the recent numerical linear algebra techniques could be
valuable in statistical applications. They provide interesting links between
mathematical analysis, numerics and statistics.

The results show that our proposed methods are useful for high dimensional
problems where traditional Cholesky sampling is infeasible, and that they
are comparable to Cholesky sampling in lower dimensions. In addition, we
have seen a considerable speedup in employing these methods in parallel on
the Graphical Processing Unit (GPU). The results may lead to possibilities
for sampling based inference in higher dimensional problems than have been
considered previously.

Aune is currently developing a C++ library for sampling using the CG-
M method and for log-determinant approximations. It is in its infancy,
but can be found on http://www.math.ntnu.no/~erlenda/KRYLSTAT/. In
this package, the CPU-implementation of CG-M is not done using parallel
matrix vector product, but rather, each core produces samples independently,
resulting in a linear speedup in the number of cores available.



Chapter 3

Parameter estimation in high-dimensional

Gaussian distributions

In computational and, in particular, spatial statistics, increasing possibilities
for observing large amounts of data leaves the statistician in want of compu-
tational techniques capable of extracting useful information from such data.
Large datasets arise in many applications, such as modelling seismic data
acquisition (Buland and Omre, 2003); analysing satellite data for ozone
intensity, temperature and cloud formations (McPeters et al., 1996); or
constructing global climate models (Lindgren et al., 2011). Most models
in spatial statistics are based around multivariate Gaussian distributions,
which means that random vector x = (x1, . . . , xn)T has probability density
function

p(x|µ,η) =(2π)−n/2 det(Qη)1/2

× exp

(
−1

2
(x− µ)TQη(x− µ)

)
,

where the mean vector is µ, and the precision matrix Qη is the inverse
of the covariance matrix, which depends on the parameters η. For short,
we write x ∼ N (µ,Q−1

η ). In this chapter, we assume that the precision
matrix is sparse, that is, most of its entries are zero. For our purposes this
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sparseness arises from a Markov property on the random vector x, which
gives computational advantages (Rue and Held, 2005). Moreover, the sparse
structure also has strong physical and statistical motivations (Lindgren
et al., 2011). We note that Rue and Tjelmeland (2002) showed that it
is possible to approximate general Gaussian random fields on a lattice by
multivariate Gaussians with sparse precision matrices.

Throughout this chapter, we will consider the common Gauss-linear model,
in which our data y = (y1, . . . , yny)

T is a noisy observation of a linear
transformation of a true random field, that is

y = Aθx + ε, (3.1)

where the matrix Aθ connects the true underlying field x to observations
and ε ∼ N (0,Q−1

ε,η). We assume that Aθ and Qε,η are sparse matrices.
In the simplest case they are diagonal, or block diagonal. Under the
Gauss-linear model assumption the conditional distribution of x, given y, is
Gaussian with x|y ∼ N (µx|y,Q

−1
x|y), where Qx|y = Qη + AT

θ Qε,ηAθ and

µx|y = Q−1
x|y(Qηµ + AT

θ Qε,ηy). Estimating the parameters, η,θ, in the
frequentist way amounts to maximising the following likelihood

p(y|η,θ,µ) ∝ p(y|x,η,θ,µ)p(x|η,µ)

p(x|y,η,θ,µ)
. (3.2)

In the Bayesian setting, we look at the posterior distribution of model
parameters, p(η,θ|y), which decomposes similarly, and we often need to
compute the mode of this distribution. In both cases, we minimise the
function Φ(η,θ) = −2 log(f(η,θ)) for f = p(y|η,θ) or f = p(η,θ|y). These
expressions involve the log-determinant of matrices. When we evaluate (3.2)
at the conditional mean µx|y = µx|y(η,θ), the likelihood is available as

2 log p(y|η,θ,µ) = ny log(2π) + log det Qη

+ log det Qε,η − log det(Qη + AT
θ Qε,ηAθ)

− (µx|y − µ)TQη(µx|y − µ)

− (y −Aθµx|y)TQε,η(y −Aθµx|y). (3.3)
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Thus, the main computational requirement is the evaluation of three log-
determinants, where log det Qε,η is usually trivial to compute because it is
assumed to be diagonal.

We consider the situations when n and ny are very large, say 106. In such
high dimensions the direct determinant evaluations of the terms in (3.3)
often become infeasible due to computational costs and storage limitations.
For instance, the standard method of computing the determinant through
the Cholesky factor is in most situations impossible due to enormous storage
requirements. We suggest to use ideas from numerical linear algebra to
overcome this problem, and present methods for likelihood evaluation or
Bayesian computations that are useful for massive datasets. Our approach
relies on fast evaluation of sparse matrix-vector products.

Previous approaches have tried to circumvent the determinant evaluation by
constructing approximate likelihood models. A determinant-free approach
is investigated in Fuentes (2007), based on estimated spectral densities.
Pseudo-likelihood methods (Besag, 1974), composite likelihood and block
composite likelihood (Eidsvik et al., 2011) combine subsets of the data to
build an approximate likelihood expression. What these methods generally
have in common is that they change the statistical model; i.e. they make
simplifying assumptions about the model to reduce the computing dimen-
sions. For models with long-range interactions or complex non-stationary,
these approaches may be insufficient. Our approach differs from these in
that we do not approximate the likelihood model, but rather approximate
the log-determinant expressions directly.

In Section 3.1 we outline the main concepts behind our log-determinant
evaluation and the different challenges involved. This is the methodology
we have implemented for the examples in Section 3.4. In Section 3.2 we
present possible solutions to these different challenges, using a number of
results from numerical linear algebra, complex analysis and graph theory.
Results are shown for real and synthetic datasets in Section 3.4.
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3.1 Log-determinant evaluations

Precision and covariance matrices are characterised by being symmetric,
positive definite; that is Q = QT and for all z ∈ Rn, zTQz > 0. For this
class of matrices, the log-determinant can be found through the Cholesky
factor of Q in the following manner: Let Q = LLT , where L is lower
triangular. Then log det Q = 2

∑
i logLii. This is the most common way

to compute the log-determinant. It takes only a few lines of code using a
library for computing the Cholesky factor, such as CHOLMOD (Davis and
Hager, 1999; Chen et al., 2008).

If Q is dense, computing L is an O(n3) operation, and this quickly becomes
infeasible for large n. If Q is sparse, much lower computational complexities
may be obtained. In particular, if x is a one dimensional random field,
such as a random walk or characterised through some stochastic differential
equation, the computational complexity for computing L is O(n). Similarly,
for a 2-D Markovian field, the complextiy is O(n3/2) and for a 3-D Markovian
field O(n2) (Rue and Held, 2005). These order terms are obtained after
reordering the elements in the precision matrix. The fill-in is defined by the
number of extra non-zero terms in L, compared with Q. This fill-in becomes
large for higher dimensional processes. In Figure 3.1 we plot the number of
non-zero entries of L versus that of Q on a log-scale. The Cholesky factor
(second axis) grows quickly in 3-D, causing memory requirements to explode.
The precision matrices used to display this figure come from a discretized
Matérn field in 1-D, 2-D and 3-D.

We define a Matérn field to be solution to the following stochastic PDE,

(κ2 −4)α/2x(s) =W(s) (3.4)

with Neumann boundary conditions. Here, s is in a bounded domain,
Ω ⊂ Rd, with d = 1, 2, 3 and W is Gaussian white noise. The connection
of this representation and Matérn covariance functions, can be found in
Lindgren et al. (2011). Our definition of a Matérn field differs from what may
be found in the literature. It is usually defined as being a stationary field
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Figure 3.1: Loglog-plot of nonzero elements in the precision matrix Q (first axis)
versus nonzero elements in the Cholesky factor L (second axis). The precision
matrices are constructed from a discretized Laplacian in 1-D, 2-D and 3-D.
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having the Matérn covariance function. Our definition does not induce a
stationary covariance function, but it is locally similar to a Matérn function
with appropriate parameters. Where it is appropriate in this section and
Section 3.2, we use discretizations of the Matérn field in 1-D 2-D to illustrate
properties of the method and its extensions. In Section 3.4, we use a 3-D
Matérn field for parameter estimation. The precision matrix coming from
discretizing (3.4) will be denoted Qη := Qκ2 .

In Figure 3.2 an illustration of fill-in in the Cholesky factor is depicted.
Here, the precision matrix Q of the 3-D Laplacian is used (lower triangular
part of Q shown in left display). The lower triangular Cholesky factor L
(right display) is obtained using METIS’ nodal nested dissection reordering
(Karypis and Kumar, 1999).
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Figure 3.2: Illustration of fill-in for a 3-D Laplacian. The black dots indicate the
non-zero structure of matrices. The lower triangular part of the precision matrix
(left) is very sparse, with 2048 non-zero elements. In contrast, the Cholesky factor
(right) contains 18530 non-zero elements.
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In this chapter we suggest methods to overcome the prohibitive storage
requirements of the Cholesky approach by using ideas from different areas
of numerical mathematics, namely

• a matrix identity stating that log-determinants are equal to the
tr log Q, where log Q is the matrix logarithm,

• Cauchy’s integral formula along with rational approximations for
computing the logarithm of a matrix times a vector (Hale et al., 2008),

• Krylov subspace methods for solving linear systems (Saad, 2003),

• stochastic probing vectors (Hutchinson, 1989; Bekas et al., 2007; Tang
and Saad, 2010).

We next outline these main concepts for evaluating log-determinants. Section
3 presents several useful extensions for practical use.
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3.1.1 Determinant approximations

It appears that approximating the determinant of a large sparse matrix to
sufficient accuracy is a hard problem. Nevertheless, several approximating
techniques exist in the literature, the most useful of which is the approx-
imation developed in Hutchinson (1989). The Hutchinson estimator was
originally developed for calculating the trace of a matrix and it applies to
our situation by the following observation:

log det Q = tr log Q. (3.5)

This identity is proved using the Jordan- or eigen decomposition of the
system and the cyclic property of the trace operator.

For practical implementation of this result we note the following;

tr log Q =
n∑
j=1

eTj log(Q)ej , (3.6)

where ej = (0, . . . , 1, . . . , 0)T and the 1 entry is in position j. The unit
vectors extract the diagonal of log Q in (3.6). From this we can obtain a
Monte Carlo estimator by introducing stochastic vectors vj as follows: Let
vj , j = 1, . . . , s be vectors with random entries. In position k the vector
entry is defined by P (vkj = 1) = 1/2, P (vkj = −1) = 1/2, independently for
all k = 1, . . . , n. Next, let

tr log Q ≈ 1

s

s∑
j=1

vTj log(Q)vj . (3.7)

Using the Hutchinsons estimator theorem (Proposition 4.1 in Bai et al.
(1996)), we recover a Hutchinson type estimator for the log-determinant. It
is possible to compute confidence regions for the estimator in (3.7) since it
is a Monte Carlo estimate, or we can use the Hoeffding inequality (Bai and
Golub, 1997; Bai et al., 1996). This can give guidelines for choosing s < n.
The memory requirements are low, but since this is a Monte Carlo method,
the estimator requires a large s to be sufficiently accurate.
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Figure 3.3: Illustration of 1-distance colouring. Nodes sharing an edge cannot
have the same colour.
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3.1.2 Probing vectors

One method for keeping the number of vectors to a reasonable number is
to choose the vjs in a clever way, so that we require far fewer vectors than
a Monte Carlo method. These cleverly chosen vectors are called probing
vectors. In recent publications, Bekas et al. (2007) and Tang and Saad (2010)
explored the use of probing vectors for extracting the diagonal of a matrix
or its inverse. Bekas et al. (2007) extract the diagonal of a sparse matrix
under mild conditions. Tang and Saad (2010) relies on an approximate
sparsity pattern of Q−1, determined by a power of the original matrix, i.e.
Qp, p = 2, 3, . . . ,. That this is always true for large enough p can be seen
using polynomial Hermite interpolation (Higham, 2008), although for large
enough ps it is not necessarily practical. It turns out that if the sparsity
structure of Q−1 can be approximated by that of Qp, then a set of probing
vectors can be computed that takes this into account by using a colouring
of the adjacency graph of Qp. If Q−1 has sufficient decay off the diagonal,
say exponential, small ps are sufficient.



87 Chapter 3. High-dimensional Gaussian estimation

In this chapter, we are considering Gaussian random vectors that have
an approximate Markov property, which, equivalently, means that their
precision matrices are approximately sparse. By approximately sparse, we
mean that by thresholding the matrix appropriately – i.e. setting non-zero
entries below a certain magnitude to zero – it becomes sparse. We can
therefore for each precision matrix associate a graph, such as the one shown
in Figure 3.3. We can use this graph structure, and the idea that Q−1

or log(Q) can be well approximated by a matrix with the same sparsity
structure as Qp to design a good set of probing vectors. Ideally, we would
choose vj ≡ ej . This is not practical due to the computational costs induced
by using n vectors. We will therefore relax our requirements and chose a
set of probing vectors that are sums of ejs. In order to not lose too much
accuracy with this approximation, we need to make sure that the non-zero
elements of vj are sufficiently separated in some appropriate sense. Using
the fact that our desired matrix function is well approximated by Qp, Tang
and Saad (2010) suggested that a good choice of probing vectors would have
the property that if both the kth and `th element of vj were non-zero, then
the (k, `)-entry of Qp is zero. A set of probing vectors with this property
can be constructed using a graph colouring of Qp.

A neighbourhood colouring of the graph induced by Qp associates with each
node a colour, c, such that no adjacent nodes have the same colour. While
constructing the optimal graph colouring is generally a difficult problem,
sufficiently good colourings can often be generated easily using greedy
algorithms (Culberson, 1992). Figure 3.3 illustrates the concept with three
colours inducing three probing vectors. Here, the probing vectors are defined
by v1

1,2,3,4,5 = 1, v2
6,7,8,9,10 = 1, v3

11,12,13,14,16 = 1, with the remaining entries
equal to zero.

A heuristic method suggested in Tang and Saad (2010) is to find the power,
p in Qp by solving Qx = ej and setting p = min{d(l, j)||xl| < ε} where
d(·, ·) defines the graph distance. In our case, we may compute log(Q)ej
and apply the same heuristic. Figure 3.4 illustrates how ones in a probing
vector influence neighbors. This is illustrated on a grid, where the size is
32 × 32, i.e. n = 1024. We discuss some issues with using this kind of
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Figure 3.4: Illustration of log(Q)vi for different probing vectors using (κ2−4)x =
W. Top right: log(Q)vi in a situation with few probing vectors in 2-D. Left:
Situation with more probing vectors in 2-D. The vectors have been reshaped to fit
its corresponding 2-D grid. Bottom: The same computation for the 1-D problem.
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probing vectors in Section 3.1.3, and propose a potential remedy. Note that
the probing vectors need not be stored, but may be computed cheaply on
the fly. If we pre-compute them, they are sparse, and do not need much
storage. Since what we need for each probing vector is vTj log(Q)vj , we
observe that the computation is highly parallel with low communication
costs. On a computing cluster, each node gets one probing vector, and
computes vTj log(Q)vj and sends back the result. In essence, this leads to
linear speed-up in the amount of processors available with proportionality
close to unity.
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3.1.3 Random sign flipping in probing vectors

For the computed probing vectors, setting the non-zero entries to +1 as
in Tang and Saad (2010) is not necessarily the optimal choice. Indeed, in
spatial modeling, it is common to know in advance if the precision matrix
induces a monotone, decreasing function off the diagonal of the covariance
matrix. This is the case for Matérn type covariance functions and many
other used in a wide range of spatial models (see e.g. Cressie (1993)). It
may also be known in graphical models that the correlation of nodes remain
positive throughout the graph. In this particular setting, it is possible to
refine the probing vectors in order to achieve greater accuracy with fewer
vectors. To see this, note that if uk = −ek,

uTk fN (Q)uk = eTk fN (Q)ek, (3.8)

and we could have replaced all probing vectors with their negatives and
recovered the same approximation. Now, let vk, k = 1, . . . , s be the probing
vectors computed with the graph colouring approach, and let some of the
entries of vk be flipped to −1. We propose the following approach: If
vj(i) = 1, set vj(i) = −1 with probability 1/2. We motivate this heuristic
as follows: Given a non-zero entry in a probing vector, e.g. vj(i) = 1, then
surrounding ones in the same probing vector will all contribute positively or
negatively to the entry so that (fN (Q)vj)(i) = fN (Q)ii + ε, where ε denotes
errors accumulating from nearby ones. If, however, some of the surrounding
ones are flipped to minus one, some of this error will cancel locally. Moreover,
since we are interested in the sum of many quadratic forms vTj fN (Q)vj , a
global cancellation also occurs. One can see this approach as a synthesis of
the original Hutchinson estimator (Hutchinson (1989)), in which the vectors
have entries +1 or −1 with probability 1/2 and the basic probing approach
in Tang and Saad (2010). It appears that this synthesis greatly improves
upon the accuracy of the log-determinant approximations, which can be
seen in Table 3.2.

Even though the heuristic suggested above does not immediately carry over
to precision matrices inducing oscillating covariance functions, it appears
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Figure 3.5: Error of standard versus random probing vectors with flips for an
oscillating covariance function.
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that using this randomised approach still gives better approximations than
not using it. We illustrate this by using a stationary covariance function
that oscillates and induces a sparse precision matrix. In Figure 3.5, we
see the effect of using randomised probing vectors versus the standard
ones. Considering these observations, it becomes quite clear that randomly
flipping entries in the probing vectors should be the default behaviour for
computing these log-determinant approximations. It may be that in some
cases, it is possible to compute the optimal distribution of +1 and −1 in the
probing vectors, but how to do this is not obviously clear in all situations.
The randomised version is therefore a good default choice. The observations
made here also suggests that randomised probing vectors is compatible with
the wavelet approach discussed in Section 3.2.1.
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3.1.4 Computing log(Q)vj

The procedure described above requires the evaluation of log(Q)vj . The
matrices we consider have real positive spectrum, and it is possible to
evaluate log(Q)vj through Cauchy’s integral formula,

log(Q)vj =
1

2πi

∮
Γ

log(z)(zI−Q)−1vjdz, (3.9)

where Γ is a suitable curve enclosing the spectrum of Q and avoiding
branch cuts of the logarithm. Discretizing this integral leads to a rational
approximation of log(Q)v of the following form

log(Q)vj ≈ fN (Q)vj =
N∑
l=1

αl(Q− σlI)−1vj ,

αl, σl ∈ C, (3.10)

where typically N < 20 in our case, and αl, σl, l = 1, . . . , N are integration
weights and shifts respectively.

Davies and Higham (2005) show that direct quadrature on (3.9) can be
extremely inefficient, but through clever conformal mappings, Hale et al.
(2008) developed midpoint quadrature rules that converge rapidly for in-
creasing number of quadrature points. The maps needed depend on the
extremal eigenvalues of the matrix Q and therefore need to be estimated.
An example of the contour and shift produced by this method is illustrated
in Figure 3.6. For the quadrature rules resulting from these mappings, the
following theorem holds
Theorem 5. (Hale et al., 2008) Let Q be a positive definite matrix with
eigenvalues in [λmin, λmax], then the N -point discretization formula devel-
oped in Hale et al. (2008) (equation 3.2) converges at the following rate

‖ log Q− fN (Q)‖ = O(e−2πN/(log(λmax/λmin)+6)) (3.11)

with fN as in (3.10).
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Figure 3.6: Contours, the αjs, (left) and shifts, the σjs, (right) for fN in (3.10),
with N = 200 (note that typically N ≤ 20).

By the inequality ‖ log(Q)v−fN (Q)v‖ ≤ ‖ log Q−fN (Q)‖‖v‖, the theorem
holds for functions of a matrix times a vector as well. This theorem can
be used to determine the needed number of terms, N , in (3.10) required
to achieve a certain accuracy. The conformal maps required for computing
this quadrature rule, require the evaluation of the Jacobi elliptic functions.
These functions are in general difficult to compute. We use an approach
similar to that in Driscoll (2009) to compute them.

The approximation of log(Q)v in (3.10) is based on solving a family of
shifted linear systems. The method of choice for computing fN (Q)vj is
problem dependent, but in high dimensions, we usually have to rely on
iterative methods, such as Krylov methods. Conjugate gradients (CG) is
the most famous such method for solving Qx = v, for a sparse Q. This
method solves for x by iteratively computing Qw, many times, for different
w. Generally, a Krylov subspace, Kk(Q,v) is defined by Kk(Q,v) =
span{v,Qv,Q2v, . . . ,Qk−1v}, see e.g. Saad (2003). The Krylov method
of choice is highly dependent on the condition number K(Q) = λmax/λmin
of Q, and the performance can often be improved by preconditioning the
matrix Q. The convergence of Krylov methods depends explicitly on the
condition number of the matrix, with large values having an adverse effect
on the the iterations needed for convergence, and small values – the closer
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to 1 the better – are essentially good (Saad, 2003).

If the condition number K(Q) is relatively small, there are Krylov methods
that are particularly well suited to compute the approximation in (3.10).
These methods are based on the fact that Kk(Q,v) = Kk(Q−σlI,v) for any
σl ∈ C. This means that we can obtain the coefficients for the shifted systems
in (3.10) without computing new matrix-vector products, see Jegerlehner
(1996) and Frommer (2003) for details. We have employed the method
CG-M in Jegerlehner (1996) for our implementation. One possible difficulty
in employing the method is that we have complex shifts - this is remedied
by using a variant, Conjugate Orthogonal CG-M (COCG-M), which entails
using the conjugate symmetric form (v,y) = vTy instead of the usual
inner product (v,y) = vTy in the Krylov iterations. See van der Vorst
and Melissen (1990) for a description of the COCG method. In practice,
little complex arithmetic is needed, since the complex, shifted coefficients
are computed from the real ones obtained by the CG method used to
solve Qv = y. Note that for large K, this particular method may have
poor convergence behaviour and it is difficult to precondition the COCG-M
method. In these cases, one is better of by solving the shifted systems in
(3.10) in sequence using good preconditioners for Q− σlI.

3.1.5 Subtractive cancellation for log-determinants

Suppose that the quantity of computational interest is given by

f(η, λ2) = log det(Qη)− log det(Qη + λ2K) + q(η, λ2) (3.12)

for some well conditioned matrix K, and where q(η, λ2) is shorthand for the
quadratic forms and potential prior distributions involving model param-
eters η, λ2. This happens when we have noisy observations of a Gaussian
field and we want to find the posterior distribution or compute the max-
imum likelihood estimate for η, λ2, as in (3.3). When computing f(η), it
appears that log det(Qη) is over-/underestimated while log det(Qη + λ2K)
is under- or overestimated comparatively. As a result, the relative error in
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log det(Qη)− log det(Qη + λ2K) is greater than for each of the quantities
individually. In the numerical litterature, this is known as subtractive can-
cellation. This effect may lead to problems in optimisation procedures where
this difference needs to be computed for several and different parameters,
η, λ2. In computational terms, it essentially means that we will need more
probing vectors to accurately compute this difference than to accurately
compute its individual parts.

To illustrate this effect, we utilise a 2-D Matérn field defined by (3.4) with
indirect observation using iid Gaussian noise on each discretization point.
If Qκ2 denotes the discretized precision obtained from (3.4), the perturbed
matrix becomes Q2

κ2 + λ2I. In Table 3.1 we can see this effect, and this is
typical for these type of models. The column captions in Table 3.1 and 3.2
are defined as follows

rApri =
(log det Qκ2)est

(log det Q)est
,

rApost =

(
log det(Qκ2 + λ2I)

)
est

(log det(Qκ2 + λ2I))true

,

rAdiff =
(log det Qκ2)est −

(
log det(Qκ2 + λ2I)

)
est

(log det((log det Qκ2)est −Qκ2 + λ2I))true

, (3.13)

where (·)est denotes the log-determinant computed by the approximation
technique, and (·)true is the true determinant. The (·)true can be computed
exactly, since the eigenvalues for the Matérn field on a 2-D grid is known
analytically, when using a standard finite-difference discretization of the
Laplacian. Better conditioning of both matrices (corresponding to higher
κ2 and λ2) leads to less subtractive cancellation and worsening of the condi-
tioning leads to greater amounts of subtractive cancellation. Specifically,
when κ2 = 0.001, λ2 = 0.05, the differences of the log-determinants are too
inaccurate to perform optimisation on the parameters, and we need to have
sufficient accuracy in the entire range of possible values for the parameters
for an optimisation routine to stably find the correct optimum.

One possiblity for removing the subtractive cancellation effect is to use the
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Table 3.1: Relative accuracy for log-determinants of precision matrices, perturba-
tions of these and their differences. Here we used a 14-distance colouring.

rApri rApost rAdiff

κ = 0.001, λ2 = 0.1 1.01411 0.99997 0.75638
κ = 0.005, λ2 = 0.1 1.00714 0.99996 0.85185
κ = 0.01, λ2 = 0.1 1.00468 0.99996 0.89247
κ = 0.05, λ2 = 0.1 1.00098 0.99995 0.96623
κ = 0.001, λ2 = 0.05 1.01410 0.99980 0.68790
κ = 0.005, λ2 = 0.05 1.00714 0.99980 0.79878
κ = 0.01, λ2 = 0.05 1.00468 0.99980 0.84818
κ = 0.05, λ2 = 0.05 1.00098 0.99984 0.94338
κ = 0.001, λ2 = 0.5 1.01411 1.00001 0.87264
κ = 0.005, λ2 = 0.5 1.00714 1.00001 0.92890
κ = 0.01, λ2 = 0.5 1.00468 1.00001 0.95090
κ = 0.05, λ2 = 0.5 1.00098 1.00001 0.98751

following identity

log det(Q)− log det(Q + λ2ATA)

= log(det Q(Q + λ2ATA)−1)

= tr log(Q(Q + λ2ATA)−1). (3.14)

Here, we have to use an inner Krylov method to compute (Q+λ2ATA)−1vi
for each shift in (3.10). Another advantage of using this identity, is that the
off-diagonal decay of log(Q(Q + λ2ATA)−1) may be better than for those
of their respective components.

Another approach that seems to partially remove the effect of subtractive
cancellation is the random sign-flipping approach discussed in Section 3.1.2.
To illustrate this, we use the same model as in Section 3.1.5, and reproduce
Table 3.1 and give them in Table 3.2. We also note that producing this
table requires a 4-distance colouring, whereas the previous one required a
14-distance colouring, so using randomised entries in the probing vectors
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Table 3.2: Relative accuracy for log-determinants of precision matrices, perturba-
tions of these and their differences. Now using random flipping in probing vectors.
Here we used a 4-distance colouring.

rApri rApost rAdiff

κ = 0.001, λ2 = 0.1 1.00262 1.00008 0.95061
κ = 0.005, λ2 = 0.1 1.00227 1.00008 0.95446
κ = 0.01, λ2 = 0.1 1.00200 1.00009 0.95766
κ = 0.05, λ2 = 0.1 1.00113 1.00011 0.96962
κ = 0.001, λ2 = 0.05 1.00262 1.00020 0.93674
κ = 0.005, λ2 = 0.05 1.00227 1.00021 0.94097
κ = 0.01, λ2 = 0.05 1.00200 1.00021 0.94470
κ = 0.05, λ2 = 0.05 1.00113 1.00024 0.95969
κ = 0.001, λ2 = 0.5 1.00262 0.99989 0.97432
κ = 0.005, λ2 = 0.5 1.00227 0.99989 0.97679
κ = 0.01, λ2 = 0.5 1.00200 0.99990 0.97871
κ = 0.05, λ2 = 0.5 1.00113 0.99991 0.98539

both reduces the number of probing vectors required and eliminates some
of the subtractive cancellation.

3.2 Potential tools for improving the log-determinant ap-
proximation

The method outlined in Section 3.1 can be used as a black-box procedure for
well-conditioned matrices, for which COCG-M only requires a few iterations
to converge. For poorly conditioned matrices, such as ones that require
more than 500 iterations for the Krylov method to converge, the method
is slow; solving hundreds of linear systems for computing one determinant
approximation can be very time consuming, and therefore we should make
the effort of tuning the method to the application at hand. Indeed, if it is
possible to solve one set of shifted systems using fewer Krylov iterations, we
should do so. Additionally, if we are able to shave off some probing vectors
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for a sufficiently accurate approximation, we should do so as well.

In the following subsections we propose various extensions of the basic
methodology presented in Section 3.1 to facilitate special problems that
may arise. These tricks are useful both for evaluating the potential of the
approach and in practical implementations. First, we give some general
advice on using the proposed log-determinant approximations. This advice
also applies when using the numerous extensions proposed.

The most obvious way to reduce the number of Krylov iterations for con-
vergence, is if Q is in product form, Q =

∏K
i=1 Qi. If there are repeated

factors in the product, i.e. for ij , j = 1, . . . , J , Qij = Qik , we note that

log det
∏J
j=1 Qij = J log det Qi1 , and the conditioning of Qj1 is better than

that of the product. Additionally, some matrices may have determinants
that are easy to compute, such as diagonal or tridiagonal matrices and can
be separated from the approximation.

To reduce the number of probing vectors, start using the approach above,
looking at log(Q)ej for some js to find a k-distance colouring that is sufficient.
Then compute the log-determinant using a (k − 1)-distance colouring for
finding the probing vectors and see if the resulting determinant is (almost)
the same as for the k-distance version, in a scenario where the parameter
η creates the largest possible condition number K(Q). If they are, use the
(k − 1)-distance colouring instead, which should decrease the number of
probing vectors by a significant amount.

If Q does not depend on parameters, one should obviously pre-compute it
and use it in each step of the optimisation routine. This reduces the total
number of log-determinant evaluations with one third for each matrix that
is fixed.

While we do not do explicit parameter estimation using the extensions
discussed in the following subsections, they have been tested on the issues
they are meant to partially resolve.

Section 3.2.1 and 3.2.2 deal with general procedures for improving ap-
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proximations that may have potential for any model, while Section 3.2.3
treats computational properties for precision matrices that come in a special
factored form. Section 3.2.4 treats the case where we have an intrinsic prior.

3.2.1 Off-diagonal compression using time-frequency transforms

The most common matrix functions have the property for many precision
matrices, Q, the elements of f(Q) decay quickly (polynomially or better)
as they get farther from the diagonal (Benzi and Golub, 1999; Benzi and
Razouk, 2007). However, the rate of decay often depends on the basis -
that is, the elements of f(WQW−1) = Wf(Q)W−1 may decay faster than
those of f(Q). In our context the rate of decay is very important: the
faster the diagonal elements decay, the smaller we can take p. Therefore,
the efficiency of our method is intimately tied to the decay properties of
f(Q) and, in this section, we consider some options for finding a good basis
W. We remark that this can be regarded as a pre-processing step that is
executed in full before applying the approximation discussed in Section 3.1.

In particular, we can change the basis through a wavelet transform. The
continuous wavelet transform of a function g ∈ L2(R) is defined by through
shifts and scalings of a mother wavelet φ ∈ L2(R), namely φu,s(t) = 1√

s
φ((t−

u)/s), by

Wg(u, s) =

∫
R
g(t)φu,s(t)dt, (3.15)

provided that
∫
R φ(t)dt = 0 and that

∫
R |φ̂(ω)|2/ω dω <∞. This transform

can be discretized and has a fast version if g has compact support, called
the fast wavelet transform. In the discretized setting, this corresponds to
a basis change with another orthonormal basis (i.e. W−1 = WT ). This
can also be generalised to multiple dimensions and on general manifolds.
An introduction to wavelets can be found in Mallat (1998). Now, the
properties of this transform that are interesting for our setting is exactly
this: if the underlying field inducing Q possesses some smoothness, which
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it almost always will when Q corresponds to a spatial prior, the entries
in the transformed basis will have good decay. What we here mean by
smoothness is that if its continuous operator equation (for instance an
SPDE) induces local differentiability of the solution, the discretized one is
also “smooth,” meaning slowly varying. This also happens for the logarithm.
This is essentially the compression property of wavelet bases. While we
consider wavelets here, the approach naturally extends to other transforms
which may compress the off-diagonal entries and at the same time has a
fast transform and inverse transform. Examples include curvelet transforms
and Gabor frames (see Gröchenig (2001) and Candès et al. (2006)).

In our setting, we are not interested in using this as a preconditioner for
solving linear systems, as is done in e.g. Chan et al. (1997), but rather to find
a basis in which we need fewer probing vectors to make a sufficiently good log-
determinant approximation. Since W(Q− σI)−1WT = (WQWT − σI)−1

we do not need to modify our rational approximations to accommodate
this new basis. The probing vectors do, however, need to be computed
with respect to the new basis, which may be difficult to facilitate in a
computationally efficient way. An empirical observation, however, suggests
that it may be possible to use the probing vectors computed from the
original precision matrix.

To illustrate how the decay behaviour may change, we compute log(Q)e256

and log(WQWT )e256 for a 1-D Matérn model defined by (3.4) using the
Daubechies 2 wavelet (the compact wavelet with fewest non-zero entries
with vanishing moments of order 0, 1 and 2). The result is illustrated in
Figure 3.7. In this Matérn model, the log det Q = 2.8347 ·103, the 1-distance
colouring in the wavelet approximation, corresponding to 27 colours gives
log det Q ≈ 2.8318 · 103, while the 17-distance colouring (30 colours) in the
original basis gives log det Q ≈ 2.6893 · 103. In the original basis, we require
a 169-distance colouring, corresponding to 172 colours in order to match
the approximation accuracy in the wavelet basis.

Now, computing WQWTv for arbitrary vs can be done without forming
the matrix WQWT by using the fast wavelet transform, and while we need
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Figure 3.7: Decay behaviour of wavelet basis versus normal basis. log(Q)e256 and
log(WQWT )e256 are sorted ascendingly
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to form an approximation to WQWT in order to compute the probing
vectors, it will be faster to use the fast wavelet transform in the matrix
vector product case. This certainly suggests that for specific problems,
where underlying field has some smoothness this may be an approach to
pursue.

3.2.2 Nodal nested dissection reordering and recursive compu-
tation

When computing the log-determinant of a precision matrix using the
Cholesky approach, we should always do a fill-in reducing reordering of
the precision matrix before computing the Cholesky factor. In effect, we
then compute chol(PQPT ), where P is a permutation matrix. A particu-
larly well-suited reordering is the METIS nodal nested dissection reordering
(Karypis and Kumar (1999)). Figure 3.8 illustrates a sparsity structure
coming from employing this reordering coming from a pedigree of cows (see
Gorjanc (2010) for an exposition of the model type). Pedigree matrices
appears to be especially well suited for this type of reordering.

While this type of reordering allows for fill-in that is close to minimal, it also
allows for recursive computation of the log-determinant via a nested Schur-
complement technique. Take the following block matrix, corresponding
to the general block form of a matrix that has undergone nodal nested
dissection reordering,

Q =


A1 F1,1 O F2,1

FT
1,1 B1 O F2,2

O O A2 F2,3

FT
2,1 FT

2,2 FT
2,3 B2

 , (3.16)

and let

F2 =
(
FT

2,1 FT
2,2 FT

2,3

)T
,
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Figure 3.8: Example of nested dissection reordering for a precision matrix defined
by a pedigree model. The non-zero elements are very centered near the diagonal,
except for a small number of variables that are coupled with almost all predecessors.
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Q1 =

 A1 F1,1 O
FT

1,1 B1 O

O O A2

 ,

and let the block Schur complements be S1 = B1 − FT
1,1A

−1
1 F1,1 and

S2 = B2 − FT
2 Q−1

1 F2. Then we can compute the log-determinant of Q in
the following recursive manner,

log det Q = log det Q1 + log det S2

= log det A1 + log det S1

+ log det A2 + log det S2. (3.17)

This obviously extends to arbitrary levels of recursion, say k. The key
elements in this recursive way of computing the log-determinant are 1)
we can use Krylov methods to compute FT

2 Q−1
1 F2 and its upper level

counterparts. This requires the solution of some linear systems that do not
need to be stored. 2) S1,S2, . . . ,Sk are typically low dimensional, and we
can use direct methods for computing their log-determinants, and 3) we can
use the determinant approximations of the previous section for computing
log det Ai, and the condition numbers and the distance colourings required
for the Ais are typically much smaller than for the original system.

The question then is: when do we need to use this recursive approach
rather than using the matrix function approach directly? The obvious
situation in which to apply this extension is when, after reordering the
matrix Q, the last block matrix Bk is very small, and the conditioning of
Q1 is much better than the original Q. Then this approach should be orders
of magnitude faster than using the direct approximation on Q, depending
on how much the conditioning is improved. Another situation for which
the nested dissection strategy may be prudent is when it is very hard to
compute log det Q or log det Q− log det(Q +λ2ATA). In this case the goal
is to increase the accuracy of the log-determinant approximations without
them taking much more time.
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3.2.3 Model variants with particular factored precision matrices

When doing optimisation using high-dimensional determinant approxima-
tions, it is important to use whatever structure that is available in order to
speed up computations. The approach outlined in this chapter is not always
fast, and if it is possible optimise some aspects of computation for special
models, we should do so.

In particular, for precision matrices of the kind

Q = (K + κ2C)B−1
1 (K + κ2C) · · ·B−1

k (K + κ2C), (3.18)

which for instance arises in the SPDE approach in Lindgren et al. (2011), it
is possible to compute the partial derivative with respect to κ2 at almost
no extra cost. To see this, note the following calculations

∂

∂κ2
log det

(
(K + κ2C)B−1

1 (K + κ2C)

· · ·B−1
k (K + κ2C)

)
=

∂

∂κ2

(
(k + 1) log det(K + κ2C)+

k∑
j=1

log det Bj

)
= (k + 1) tr ((K + κ2C)−1C). (3.19)

First note that the matrix vector products, (K + κ2C)vi are exactly those
needed to compute the log-determinant. The trace approximation then
follows directly from the diagonal inverse approximation in Tang and Saad
(2010). If Cvi is relatively cheap to compute, as happens if C is, e.g.
diagonal, this partial derivative comes at essentially no extra cost.

Similarly, if we have an observation matrix, A after which i.i.d. noise is
added, we need to compute log det(Q + η2ATA). Then we obtain the



105 Chapter 3. High-dimensional Gaussian estimation

following partial derivatives

∂

∂κ2
log det(Q + η2ATA) = tr

(
(Q + η2ATA)−1

× (k + 1)C(K + κ2C)k
k∏
i=1

B−1
i

)
(3.20)

by the cyclic property of the trace operator for symmetric matrices, and

∂

∂η2
log det(Q + η2ATA) = tr

(
(Q + η2ATA)−1ATA

)
. (3.21)

In computations, the matrix vector product (Q + η2ATA)v needs to be
computed for the determinant approximation. Hence ATAv needs to be
cheap if the second expression is to compute at low costs. The first of these,
however, is a bit more complicated, but observe that if k = 1 and B−1

1 is
diagonal, we can have (K + κ2C)v from (3.19), provided that the probing
vectors are equal, and by definition the B−1

1 v is cheap to compute. Hence it
is possible to compute the gradient in an optimisation routine on the fly while
computing the objective function at little extra cost, and the computational
requirements for a Newton-type algorithm is easily decreased to a fraction
between 1/2 and 1/3 compared to the one where finite differences are used for
gradient computations. We also note that these observations are compatible
with the wavelet compression approach discussed in Section 3.2.1.

3.2.4 Deflation for generalised determinants

The determinant approximations described in Section 3.1 also allows for
an elegant way of computing the generalised log-determinant. The need
for computing this arises, for instance, if we have an essentially intrinsic
(singular) precision matrix. That is, the evaluation of

˜log det Q =
∑

λi∈σ(Q)
λi>0

log λi. (3.22)
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To do this, we will need to implicitly deflate the eigenvectors corresponding
to the zero eigenvalues. More, specifically, if uj , j = 1, . . . , r are the
eigenvectors of Q associated with zero eigenvalues, we orthogonalise the
probing vectors vi to these eigenvectors by a Gram-Schmidt process and use

these new probing vectors for computing ˜log det Q. While we need accurate
approximations to these eigenvectors for this procedure to work, they are
often known from the modelling assumptions (see, for example, Chapter 3
in Rue and Held (2005)).

It is also possible to use this technique if we have a small cluster of eigenvalues
that are very different (on a relative scale) to the other eigenvalues. Then
we use the same approach as above, but we include the eigenvalues in
our determinant evaluation, which leads to log det Q = (log det Q)probe +∑r

j=1 log λj . While this approach has sound theory, one has to be careful so
that round-off errors due to loss of orthogonality do not start to dominate.
One remedy is to orthogonalise current estimator of fN (Q)vj in the Krylov
method to the known eigenvectors at regular intervals. The cost of this
orthogonalisation is small.

3.3 Alternative modeling for efficient log-determinant eval-
uations

As was mentioned in the introduction of this chapter, there are several
strategies for parameter estimation that changes the model in some way in
order to obtain efficient procedures. In this section, we present two alterna-
tives that we have not seen in the literature that may be good alternatives in
some cases. The first one uses a log-covariance parametrisation in order to
transform computations to matrix exponentials. The particular parametri-
sation explored quickly recovers the Gaussian correlation function, which is
inherently hard to compute with using traditional approaches. The second
deals with using preconditioning techniques for generating approximate
models.
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3.3.1 Modeling in the logarithmic domain

A particular avenue that has not been investigated yet is the prospect of
doing the covariance modeling sparsely in the logarithmic domain. What
we mean by this is essentially that

G = log(Σ) (3.23)

is a sparse matrix, so that eG = Σ. If doing the modeling by using a
sparse G is possible, we may be in for huge computational benefits in the
cases where our stochastic fields are very large and direct observations are
available. For indirect observations, the savings are more moderate.

In order to make this intuitive, we start by giving one example of a class of
Gs that may turn into useful models. Suppose that Dxx defines the usual
finite difference approximation to the second derivative wrt. x, and that
Dyy is the same wrt. y. Then define the log-domain model by

G = Dxx ⊕Dyy. (3.24)

This can be facilitated for more complicated domains in the usual fashion.
A realisation from this particular model is then given by

x = e0.5·Gz, (3.25)

where z ∼ N (0, I). To see this, note simply that Cov(e0.5·Gz) = e0.5·G(e0.5·G)T =
eG = Σ. In Figure 3.9, we see realisations from this particular model. The
realisations may not inspire confidence, but this simple model is only the
building block for ones including different correlation lengths that may
depend on position and scales that may also be position dependent.

The range and scale parameters

We propose a simple parametrisation of a parameter that is both a range
and differentiability parameter. This parametrisation is

G(α) = αG. (3.26)
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Figure 3.9: Realisation defined by e0.5·Gz. 1282-grid (left), 5122-grid (right)
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The scale parameter has the usual interpretation, and the joint parametri-
sation is given by

G(α, τ) = αG0 + τI. (3.27)

This parametrisation is for an essentially stationary field. A more general
parametrisation where correlation range and scale is allowed to depend on
position, s, is given by

G(α, τ,T, s) = αK(s)1/2G0K(s)1/2 + τT(s). (3.28)

The factorisation K(s)1/2GK(s)1/2 is made for preserving symmetry of the
log-covariance. A realisation from G(α = 50) is given in Figure 3.10 on
the left, with its induced covariance function in some locations on the right.
Looking at the induced covariance function at some location, we see that
the scalings vary similarly to using Neumann boundary conditions in the
SPDE-approach in Lindgren et al. (2011). If one desires uniform marginal
variances depending on location, this can be scaled in the usual way – only
the implementation here is a bit simpler as you only need to add a diagonal
scaling matrix.

The scaling parameter has the same interpretation as in the usual setting.
The range parameter, α, has a slightly different interpretation in this model
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Figure 3.10: Realisation defined by e0.5·G(α=100)z (left), induced covariances
(right)
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than, for instance, usual correlation function approaches (Cressie, 1993) or
SPDE-models (Lindgren et al., 2011). In this log-covariance parametrisation,
α is a fractional convolution approach for parametrising correlation length.
To see this, just notice that the precision matrix Q = e−αG0 =

(
e−G0

)α
, and

hence, if the process generated by G(α = 1) is k times differentiable, the one
generated by α = h is hk times differentiable, by the convolution theorem
for distributions (see e.g. Grafakos (2004)). Now, as α increases, more and
more of the usual interpretation becomes valid – the correlation function
approximates the Gaussian correlation function better, and increasing α
then only increases the range using this correlation function. This is a
consequence of the fact that if f ∝ e−x

2
, f ? f ∝ e−kx

2
, a fix point for

convolutions – using the Fourier transform, we may get fractional entries.
How eαG0 approximates the Gaussian correlation function with increasing
α on a 5122-grid is Given in Figure 3.11. Small αs really have small
ranges in this parametrisation – using αs above 100 is very common, so
it really approximates the Gaussian correlation function quickly. In both
the machine learning and statistical literature, it has been known for a
long time that computation using this type of correlation function is very
unstable due to the bad conditioning of the covariance matrix. The approach
outlined here makes these claims void – computation using the log-covariance
parametrisation is extremely stable. Note that in the SPDE approach of
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Figure 3.11: How well eαG0 approximates the Gaussian correlation function with
increasing α
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Lindgren et al. (2011), increasing the exponent of (κ−4)kx =W increases
its resemblance of the Gaussian correlation function, but as k increases, the
model quickly becomes too unmarkovian for it to be practical.

Computation for direct observations

While this is quite uncommon in statistics, we include derivations for this
case, as it has the remarkable property that Jacobian evaluations are free.
The log-likelihood for direct observations is simply

log p(x) = C + trG(α, τ)− (x− µ)T e−G(α,τ)(x− µ)

= C + tr(αG0 + τI)− (x− µ)T e−αG0−τI(x− µ)

= C + αtr G0 + τn− e−τ (x− µ)T e−αG0(x− µ) (3.29)
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Differentiating wrt. α and τ yields

∂

∂α
log p(x) = tr G0 + e−τ (x− µ)TG0e

−αG0(x− µ) (3.30)

∂

∂τ
log p(x) = n+ e−τ (x− µ)T e−αG0(x− µ) (3.31)

Since e−αG0(x−µ) needs to be computed for the likelihood evaluation, the
Jacobian is then free. The action e−Gv are computed by the use of methods
developed for exponential integrators (Hochbruck et al., 1998; Al-Mohy and
Higham, 2011). These methods usually converge extremely fast, requiring
only a few matrix-vector products.

Computation for noisy observations

Unfortunately, these nice computations do not carry over to indirect obser-
vations. For observations given by

y = Ax + ε (3.32)

where ε ∼ N (0, σ2I), we need to compute the following log-determinants
and quadratic forms in the likelihood:

log det

(
e−G +

1

λ2
ATA

)
(3.33)

log det(e−G) (3.34)

(µx|y − µ)T e−G(µx|y − µ) (3.35)

σ−2(y −Aµx|y)
T (y −Aµx|y) (3.36)

The one expression that is not covered yet is the first of these. To compute
this log-determinant, we must use the machinery developed in the earlier sec-
tions. Fortunately, this is the most well-behaved of all the log-determinants,
and should be fast to approximate in usual situations. It has the drawback
that the action of e−Gv must be computed one more time in the inner
iteration of the scheme.
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The bottom line is that we essentially save one determinant evaluation, a
lot of effort on the Jacobian calculations at the cost of including even more
complex inner iteration computation in our method.

3.3.2 Algorithmic approximate prior models through precondi-
tioning techniques

An aspect that, to our knowledge, has not been touched upon in the statis-
tical literature is the use of purely algorithmic techniques for approximating
the prior precision matrix. In spatial statistics, the prior precision is often
not modelled through physically exact systems, but rather some heuristic
about the spatial relationship between points in space. Many statisticians
adopt some covariance function, often in the Matérn class, and estimates
parameters for interpolation through, e.g., Kriging.

Since this prior precision or covariance matrix does not arise from physics
or theory alone, but rather is some vague idea about how variable should
interrelate, there should a priori be no harm in using algorithmic approxi-
mates of the models in question. Suppose, for instance, that we adopt the
usual SPDE framework for defining a prior,

(κ2 −4)α/2x =W. (3.37)

For this there exist many preconditioning techniques that is usually used for
Krylov subspace solvers. Let Q be the precision matrix associated with this
model, and recall that the main idea for preconditioners usually is to design
a matrix M that approximates Q−1. The matrix M should have favourable
computational properties.

In the statistical modeling setting, the aim for M is different from in the
literature on solving sparse linear systems. In this traditional setting, the
matrix M is used in a Krylov subspace solver to accelerate and/or stabilise
the algorithm so solve Qx = y. In our case, there are two other characteris-
tics that are more important. Firstly, the covariance function induced by
M should have essentially the same behaviour as the one induced by Q,
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secondly, the determinants should be good enough for optimisation purposes.
For these specific purposes, it is natural to look at factored precondition-
ers, M = BBT , which include some incomplete Cholesky preconditioning,
spectral preconditioning (e.g Tyrtyshnikov (1990) and Chan et al. (1999))
and some cases of sparse approximate inverse preconditioners (Benzi et al.,
1996).

As is always true for approximate models for high-dimensional problems, it
is difficult to lay forth a general procedure that will work for all observations
processes and classes of priors. At the same time, however, the idea is
general enough to be adapted to the individual settings.

To illustrate the use of this approach, we use the simplest model available:
An SPDE model with α = 2 in 2-D with identity observations. For this
particular model, the matrices in question are Qbase = Q2

0 + κ2
0Q + κ4

0I
and Q = Qbase + κ2I + (1/λ2)I, where κ2

0 is the smallest range parameter
admissible. We also use the modification that κ2 defines the the range
parameter only through shifts. For Q0 + κ2

0I, we define an incomplete root-
free Cholesky preconditioner, Qbase ≈ LDLT , that recovers the covariance
model at key locations (e.g. corners and centres) quite well, and that defines
a determinant that is comparable to that of Q0 +κ2

0I. Now, instead of using
the normal model, we define one that is composed of updates of the root-free
decomposition for shifts, see e.g. Benzi and Bertaccini (2003) and Bellavia
et al. (2011), and use wavelet compression so that we have fast decay off the
diagonals in the original model. What this essentially means is that in the
incomplete factorisation, we need less non-zero elements than when using
the uncompressed one for approximating the model. The decomposition is
as follows

WQWT ≈ PLDLTPT , (3.38)

where W denotes the wavelet transform matrix, P a fill-in reducing permuta-
tion matrix, L a lower triangular incomplete factorisation and D its diagonal
scaling matrix. An alternative is to use an incomplete factorisation with
sparsity pattern defined by the lower triangular part of WQWT . This spar-
sity pattern is easy to compute without the use of transforms, but may have
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quite a large number of non-zero entries compared to that of Q. The incom-
plete factorisation, on the other hand, may be computed using matrix vector
products only, and by using the fast wavelet transform on sparse vectors,
this is quite efficient. The fact that W(Q+κ2I)WT = WQWT +κ2I makes
updating strategies based on Q equal to those based on WQWT . Another
alternative is to use an incomplete Cholesky factorisation on WQWT +κ0I
with standard thresholding strategies. The challenge here is to form the
matrix WQWT , which may have very many non-zero entries, and thereafter
compute its incomplete factorisation. Fortunately, this factorisation may be
regarded as a preprocessing step, and we may use out-of-core strategies to
form it. Once it is formed, subsequent computations may be carried out
efficiently and parallelised on nodes in a cluster.

Using a thresholding parameter of 0.013 in the incomplete factorisation on a
64× 64 grid using κ2

0 = 0.01, we get nnz(L) = 79 977 whereas the number of
non-zero entries for the true Cholesky factorisation is nnz(Chol(WQWT )) is
967 900, and nnz(Q) = 51 972. In Figure 3.12, the true covariance functions
at key locations are depicted, as well as using the approximate model. They
resemble each other quite a lot. We use the shifting strategy in Bellavia
et al. (2011) for our approximate model. This is given by updating the
diagonal of L by

Lii → Lii +

√
1 +

κ2

Dii
− 1 (3.39)

and its off-diagonal by

Lij → Lij + Lij

 1√
1 + κ2

Djj

− 1

 (3.40)

The effect of using this updating strategy instead of simply adding a constant
on the diagonal can be seen in Figure 3.13 to 3.15. Here we see that for
small and large values of κ2, the covariance models are very close to one
another. For intermediate values, however, they differ, and we have some
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Figure 3.12: Covariance function at the center and corners for the seed model
and its approximation
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spurious effect at certain locations in the field. These effects also depend
on the sparsifying transform used. Here, a 1-D wavelet transform has been
used – for a 2-D one, the effects are different, of course, they also depend
on the wavelet itself.

While the prior fields defined through this updating strategy are different
from the ones defined through adding a constant to the diagonal, they are
not necessarily worse, and they can be used on problems of much higher
dimensionality than the other approach. Between κ2 = 10−2 and κ2 = 1
there are some adverse effects, like large negative correlations at specific
places depending on the probing vector, but in a prediction setting, they
need not be too bad.

Note that while we have used a stationary field as an example here, the
approach is trivially valid in the non-stationary anisotropic setting, as well
as in domains with complex geometry. Computing a basic incomplete
LDLT decomposition is only done once and the procedure for doing so is
independent of the seed precision matrix. Having κ2 depending on position
is also not a problem.

The computational benefits of using this model are many. Recall that for
inference, the following quantities and their derivatives need to be computed:

• The log-determinant of the prior precision, log det(LDLT )

• The log-determinant of the posterior precision, log det(LDLT+(1/λ2)ATA)

• The log-determinant of the error model

• Solution of a linear system (LDLT + (1/λ2)ATA)x = y

• Some quadratic forms

Computing the log-determinant of the prior precision is trivial by con-
struction of the model, as log det(LDLT ) = 2

∑
i(logLii + (1/2)Dii), is

essentially free. Derivatives are cheap by construction. Solving the linear
system (LDLT + (1/λ2)ATA)x = y is easy, since a good preconditioner
is available. Quadratic forms are trivial, since we are dealing with preci-
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Figure 3.13: Effect of updating strategy vs. adding a constant diagonal term,
κ2 = 10−4 and κ2 = 10−3

Diagonal added, κ
2
=0.0001

 

 

10 20 30 40 50 60

10

20

30

40

50

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L updated, κ
2
=0.0001

 

 

10 20 30 40 50 60

10

20

30

40

50

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diagonal added, κ
2
=0.0001

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.2

0

0.2

0.4

0.6

0.8

L updated, κ
2
=0.0001

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.2

0

0.2

0.4

0.6

0.8

Diagonal added, κ
2
=0.001

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.2

0

0.2

0.4

0.6

0.8

L updated, κ
2
=0.001

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.2

0

0.2

0.4

0.6

0.8

Diagonal added, κ
2
=0.001

 

 

10 20 30 40 50 60

10

20

30

40

50

60

−0.2

0

0.2

0.4

0.6

0.8

L updated, κ
2
=0.001

 

 

10 20 30 40 50 60

10

20

30

40

50

60

−0.2

0

0.2

0.4

0.6

0.8



3.3. Alternative modeling for efficient log-determinant evaluations 118

Figure 3.14: Effect of updating strategy vs. adding a constant diagonal term,
κ2 = 10−2 and κ2 = 10−1

Diagonal added, κ
2
=0.01

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.2

0

0.2

0.4

0.6

0.8

1

L updated, κ
2
=0.01

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.2

0

0.2

0.4

0.6

0.8

1

Diagonal added, κ
2
=0.01

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.5

0

0.5

1

L updated, κ
2
=0.01

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.5

0

0.5

1

Diagonal added, κ
2
=0.1

 

 

10 20 30 40 50 60

10

20

30

40

50

60 −0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L updated, κ
2
=0.1

 

 

10 20 30 40 50 60

10

20

30

40

50

60 −0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Diagonal added, κ
2
=0.1

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

L updated, κ
2
=0.1

 

 

10 20 30 40 50 60

10

20

30

40

50

60
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1



119 Chapter 3. High-dimensional Gaussian estimation

Figure 3.15: Effect of updating strategy vs. adding a constant diagonal term,
κ2 = 100 and κ2 = 101
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sion matrix construction. The only thing that is left is the determinant
log det(LDLT + (1/λ2)ATA), for which other techniques need to be consid-
ered. If the the observation matrix is the identity, it is easy to use approach
with rational approximations to that matrix logarithm with probing vec-
tors, as we have a good preconditioner available, and using just updated
diagonals of L may be good enough. When ATA does not modify the
sparsity structure of LDLT , the incomplete Cholesky factorisation with no
fill-in should work quite well (as long as its positive definite), given the
structure of the problem. If ATA is diagonally dominant, one can use the
optimal diagonal preconditioner as shift parameters in the updating scheme
for L to construct a good preconditioner, and thereafter use probing vectors
with shifted systems to approximate the log-determinant. We emphasize
that no subtractive cancellation will occur, since one log-determinant is
exact. Hence, we need not worry about other things than computing the
log-determinant.

Another strategy that is potentially even better, is the use of an incomplete
Cholesky factorisation in each computational part, based on the initial
sparsity pattern obtained by an incomplete factorisation of WQWT + κ2

0I.
This should give models that resemble the original even better than using
the aforementioned preconditioning strategy for obtaining approximate
models. Since the sparsity pattern is fixed and having few non-zero entries,
computing an updated Cholesky factor is cheap. In order for this to work, we
need to store the parts of the matrix WQWT , corresponding to the sparsity
structure of the incomplete factorisation, and the parts corresponding to
the sparsity structure of ATA, where A is the observation process. When
using this approach, we do not need to consider different techniques for
computing the two needed log-determinants, as the Cholesky factorisation
with pre-specified sparsity pattern of the shifted model is essentially as easy
to compute as the incomplete factorisation for WQWT .
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3.4 Examples

In this section we apply the approximate log-determinant methods to param-
eter estimation on three examples. The examples are chosen to emphasise
both the nice properties and challenges that occur in practical implemen-
tations. In the notation here, we assume that x ∼ N (µ, (σ2/λ2)Q−1

κ2
),

and y = Aθx + σN (0,Q−1
ε,η), with essentially Aθ = A and Qε,η = I in

subsequent sections. This corresponds to a SPDE model with i.i.d. obser-
vations on top of it. When approximating the determinants for parameter
estimation in our examples, we solely used the techniques in Section 3.1
with random sign-flipping in the probing vectors.

We compare the estimates using the approach explored in the previous
sections with those obtained by a block composite likelihood approach, see
Eidsvik et al. (2011). The main idea behind composite likelihoods is to
replace the computationally demanding likelihood expression with several
block-type expressions. Each term requires less memory and computa-
tional time. Thus, rather than working with the full likelihood function
log p(y|η,θ, σ2, λ2), which in the Gaussian setting is given by (3.3), the
block composite likelihood approach adds up Gaussian composite terms
built from block interactions.

In essence, partition the domain D into pairwise disjoint subdomains; Di ∩
Dj = ∅, i 6= j and

⋃M
i=1Di = D. Thereafter, assume that the only interaction

terms are between neighbouring blocks. Let yk and yl be the data in domains
Dk and Dl. Then, the block composite likelihood is available by

2 log pCL (y|η,θ, σ2, λ2)

=

M−1∑
k=1

∑
l>k

2 log p(ykl|η,θ, σ2, λ2)

=

M−1∑
k=1

∑
l>k

(
log det Qy,kl

−(ykl − µy,kl)TQy,kl(ykl − µy,kl)
)

(3.41)
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where µy,kl is the mean of block variables (yTk ,y
T
l )T and Q−1

y,kl = Cov(yk,yl)
is the covariance matrix for this block pair.

The maximum composite likelihood estimators are the parameter values
(η,θ, σ2, λ2) that optimize expression (3.41). Theoretical considerations and
computational approaches for this block composite likelihood model can be
found in Eidsvik et al. (2011).

3.4.1 3-D Matérn field with direct and indirect observations

In spatial statistics, it is fairly common to assume that an underlying
spatial field comes from the Matérn family or to use a Gaussian prior
coming from the same family. The underlying field or prior field is then
described by (3.4). We mention that from a physical point of view, the
same article makes good arguments for using Neumann boundary instead
of imposing artificial boundary conditions corresponding to completely
unchanging marginal variances at each site. If we observe x(s) directly, we
have direct observations, and we only need to compute one log-determinant
for the likelihood evaluation and we avoid the previously discussed effects of
subtractive cancellation. If we have an observation process on top of x(s),
we are in the setting of (3.3), and we have the problem described in Section
3.1.5. In Figure 3.16 we see a slice of the direct observations and a slice of
the corresponding indirect observations, as well as a reconstruction from
the indirect observations. In the following examples, we assume that α = 2.

In our example, we assume that we gradually observe more sites of the total
field, from 153 sites to 1203 sites.

Direct observations

For the rare case where direct (non-noisy) observations are available, the
log-likelihood for the Gaussian represents the objective function, presuming
no prior information on the parameters to estimate is available. In this
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Figure 3.16: Direct (left) and indirect (right) observations of Matérn field, and a
reconstructed field (bottom).
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Table 3.3: Estimation of precision parameters in a Matérn field with respect to
distance colouring and observed part of field. This is for the situation with direct
observations.

4-distance 8-distance 16-distance
τ2 κ2 τ2 κ2 τ2 κ2

153 0.98362 0.23740 1.00158 0.17137 1.00675 0.15188
303 0.97116 0.18467 0.99003 0.11396 0.99783 0.08355
603 0.97135 0.18442 0.99147 0.10676 1.00067 0.06988
1203 0.96716 0.18112 0.98759 0.10131 0.99741 0.06152

setting, two parameters need to be estimated, κ2, representing the range,
and a scaling parameter, τ2, representing a measure of the amplitude of
the realisation. In Table 3.3, we see the effect of using different distance
colourings of the precision matrix and observing smaller and larger parts of
the field. The true parameters were τ2 = 1, κ2 = 0.05.

Indirect observations

Suppose that the discretized field x generated by (3.4) has the observation
process y = x+σε attached to it, where ε ∼ N (0, I). Then we optimise (3.3)
for the parameters η = (κ2, τ2, σ2) in the corresponding precision matrices.
In addition to generating a table of the estimated parameters for different
distance colourings, we compare them with parameters obtained from the
block composite likelihood method. In order to obtain comparable accuracy
between for the two log-determinant evaluations in (3.3), we needed to use
a larger distance colouring for the perturbed matrix, reflected by n1/n2

in Table 3.4. In addition, we use the re-parametrisation λ2 = τ2 σ2, since
this is beneficent in the optimisation routine. The true parameters are
σ2 = 0.1, λ2 = 0.1 and κ2 = 0.05, and we see that we recover these well by
observing more of the field and using more probing vectors.

In order to compare our results with those resulting from the block com-
posite likelihood procedure, some care must be taken: the parameter we
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Table 3.4: Estimation of precision parameters in a Matérn field with respect to
distance colouring and observed part of field. This is for the situation with indirect
observations. The rightmost column indicates the typical number of iterations
needed in the Krylov method to compute one log det(Q)v.

4/5-distance 8/9-distance 16/17-distance
λ2 κ2 σ2 λ2 κ2 σ2 λ2 κ2 σ2

153 0.0822 0.2714 0.0966 0.1179 0.1423 0.1040 0.1286 0.10587 0.1055
303 0.0667 0.2431 0.0925 0.0941 0.1193 0.1001 0.1042 0.07595 0.1020
603 0.0633 0.2559 0.0906 0.0906 0.1189 0.0984 0.0989 0.06943 0.1007
1203 0.0601 0.2603 0.0894 0.0861 0.1191 0.0972 0.0968 0.06520 0.0994

Table 3.5: Iteration count for Table 3.4

Dimensions Typical iteration count

153 67/48
303 85/48
603 85/48
1203 85/48
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estimate in this model are not completely equivalent to those coming from
using covariance functions. In our case, we have the SPDE from the pre-
vious section, given by (3.4) for α = 2 and the corresponding exponential
covariance function in three dimensions,

C(r) = γ2e−r/φ. (3.42)

In particular, the marginal variance parameter, γ2 for the field is estimated
in the composite likelihood approach, while in the SPDE model, using the
natural Neumann boundary conditions, the entries of Q−1

ii differ, depending
on how far i is from the boundary. Now, tr (Q−1)/n gives a natural estimate
for the marginal variance parameter for the overall field and should be com-
parable to that coming from the composite likelihood approach. Similarly,
the range parameter φ has its relative in the parameter κ2, but here there
is also no direct correspondence. A natural surrogate in this case is the
correlation length, `, which can be computed from the probing vectors. The
parameter σ2 is directly comparable between the two models.

A comparison of estimates achieved by approximating the log-determinant
and the composite likelihood estimation is shown in Table 3.6. The estimates
are very similar. It appears as if the composite likelihood returns slightly
larger range values ` and signal to noise γ2, while the measurement noise
level σ2 is a little smaller. For the log-determinant approach there seems to
be a monotone trend in all the parameters when observing more of the field.
This is a desirable property that does not seem to hold for the composite
likelihood approach. In Table 3.6, there is an artefact for the correlation
distance in dimensions 153 – this is a consequence of the discretization being
so coarse that it is impossible to properly adjudicate it.

Optimisation for the full model using a 16/17-distance colouring took about
50 hours using 24 Intel Xeon cores running at 2.67 GHz. These cores were
active with other processes at the same time. Comparing timing between
examples is quite hard in this case, since using a computing server usually
is busy with many activities at the same time. Additionally, it is possible
to tweak performance quite a lot using, for instance, more efficient matrix
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Table 3.6: A comparison of block composite likelihood and the determinant ap-
proximation. The γ relates to signal to noise ratio, the ` is the correlation range
parameter and σ is the measurement noise standard deviation.

Comp. lik. log-det approx.
γ2 ` σ2 γ2 ` σ2

153 0.4552 9.86 0.3022 0.4852 27.3 0.3252

303 0.4642 11.3 0.3092 0.4672 10.7 0.3192

603 0.4532 11.2 0.3092 0.4372 10.5 0.3172

1203 0.4502 10.7 0.3062 0.4252 10.3 0.3152

vector products (which is possible with a 3-D Matérn matrix on a grid) and
using the extensions discussed in the previous section. The point of these
examples is not to compare computational speed, but rather to show that
it is possible to obtain maximum likelihood estimates that were previously
not possible to do because of the matrix dimensions and properties.

3.4.2 Ozone column estimation

In this example, we analyse total column ozone (TCO) data acquired from
an orbiting satelite. This is a popular dataset that has been analysed in
Cressie and Johannesson (2008) using a fixed rank Kriging approach and
in Eidsvik et al. (2011) using the block composite likelihood method. The
dataset has also been modeled using a nested SPDE approach in Bolin and
Lindgren (2011). What is special about this dataset is that it is 1) on the
sphere and 2) since the data is acquired along the transects of the satellite
and therefore a rather special sampling pattern is obtained.

We use the SPDE approach as in the previous sections, only this time on
a sphere. We use a “uniform” triangulation on the sphere coming from a
triangle fan starting from the (northern) polar vertex for discretizing the
SPDE. This gives us a different observation process than in the previous
section: the observed data is given by y = Ax + σε, where the matrix A
interpolates from the uniform triangulation on the sphere to the observation
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pattern given by the satellite. Our discretization consists of 324 002 points
on the sphere, and we have 173 405 observations. Since the observations
are not snapshots of the globe at a given time, we also get temporal effects
in the data. We do not model this temporal effect. An illustration of the
observations is given in Figure 3.17.

The estimated parameters are λ2 ≈ 0.01172, κ2 ≈ 1.612 and σ2 ≈ 5.0152.
Here we used a 32-distance colouring for choosing the probing vectors. Using
the same tricks as in the last section, this converts to, γ2 ≈ 55.32, ` ≈ 10 567
km. In comparison, the block composite likelihood model, with 15 × 15
blocks in latitude and longitude, gives the γ2 ≈ 73.62, ` ≈ 7028 km, and
σ2 ≈ 4.72, which is reasonably similar. We mention that the blocking in
the block composite likelihood may not be sufficient to capture all large
scale variations. In addition, the covariance function is the exponential,
leaving the SPDE model and the block composite likelihood model slightly
dissimilar.

In this example, it is actually possible to estimate the parameters using direct
factorisation methods for calculating the determinant using a computer
with sufficient memory. We did this and the estimates were equal to the
ones coming from the approximation technique (γ2, κ2 to the first 2 digits,
and σ2 to the first 4 digits). Of course, using a smaller number of probing
vectors could potentially influence this negatively, but this issue is of minor
importance.

3.5 Discussion

In this chapter, we have presented a new method for performing statistical
inference on Gaussian models that are too large for conventional techniques
to work. Focussing on the problem of computing likelihoods for large Gaus-
sian Markov random vectors, we have shown that by combining a number of
approximation techniques, we can evaluate the likelihood of truly large mod-
els in a reasonable amount of time with reasonable accuracy. In particular,
we have shown that a combination of function approximation, graph theory,
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Figure 3.17: Total column ozone observations (dots) acquired along satellite
orbits. There are 173 405 measurements in total. Measurements in Dobson units
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wavelet methods, modern numerical linear algebra, and problem specific
tricks are necessary when a problem is so large that Cholesky factorisations
are no longer feasible. The explosion of complexity of the proposed com-
putational methods – indicative of the difficulty of the problem – comes at
the advantage that we can actually solve these models, which is not possible
using standard techniques. Furthermore, when combined with the work
of Simpson et al. (2008); Simpson (2008); Aune et al. (2012a), this work
completes a suite of methods for performing statistical calculations with
large Gaussian random vectors using Krylov subspace methods.

3.5.1 Extensions and future work

An article that inspired this work in many ways is the work on using probing
vectors for finding the diagonal of the matrix inverse (Tang and Saad (2010)).
In this approach, the entire diagonal is wanted - not just its sum - and hence
a variant expression is needed, namely

diag f(Q) =

 n∑
j=1

vTj � f(Q) vj

�
 n∑
j=1

vj � vj

 , (3.43)

where � and �, respectively, are element-wise division and multiplication of
vectors. Using the same probing vectors as those needed for the determinant,
and f(t) = t−1 will then yield an estimate for the diagonal of the inverse
of the precision matrix, i.e. the marginal variances. Note that it is much
easier to compute the diagonal of the inverse using probing vectors, since
in this case we are dealing with the matrix inverse. Preconditioning can
therefore be applied directly, and since we need to compute Q−1v for quite
some vectors, traditionally expensive preconditioners can be worth looking
into. Specifically, combination of AINV (see. Huckle and Grote (1997)) and
wavelet compression may be well suited for extracting this diagonal. In this
situation, we get a dual benefit from the wavelet compression: it may both
improve upon the AINV preconditioner and decrease the number of probing
vectors needed.
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The marginal variances together with the log-determinant (required for
optimisation) are components needed in dealing with inference by the
integrated nested Laplace approximation (INLA) (Rue et al. (2009)), and the
approach given in this chapter is a way to extend the INLA approximation
to larger models than can not be handled with the current direct methods.

Another potential application of (3.43) is the computation of communication
in graphical models, such as social networks and networks of oscillators
(Estrada et al. (2011)). Using the matrix exponential or relatives as the
map, the diagonal of this is a measure for self-communicability or sub-graph
centrality, which is used in analysis of complex networks. Naturally, a
matrix-vector type method is needed for the action exp (αQ) v, and an
innovative approach for this can be found in Al-Mohy and Higham (2011).
This approach is well suited for computing the matrix exponential times
several probing vectors in parallel.

Using rational approximations for the square-root or inverse square-root
with random vectors (v ∼ N (0, I)) with Krylov subspaces is another venue
which has been pursued in Aune et al. (2012a) and Simpson et al. (2008).
In these articles, the authors demonstrate that in circumstances where the
Cholesky factorisation is impossible to compute due to memory constraints,
using rational approximations with Krylov methods is a good substitute,
and also show that it is competitive in other circumstances.

In some cases, we may be interested in other entries of f(Q) than its diagonal
ones. For f(t) = t−1, we obtain correlations between specific nodes and for
f = exp we can obtain an estimate of the communicability between two
nodes in an undirected graph. Looking at (3.43), we note that if we change
vTj � f(Q) vj to wj � f(Q) vj , it may be possible to extract other entries

of the matrix f(Q). The question that remains is how to choose {wi}knj=1

corresponding to the set {vj}nj=1. A heuristic that may help in forming
the set of wis is that if vj is given, the corresponding wis should be those
corresponding to the neighbours of the non-zero entries of vj . We do not
pursue this idea in here, but it is an interesting topic for future research.



3.5. Discussion 132

3.5.2 Software

The software package KRYLSTAT by Aune, E. contains an implementa-
tion of the log-determinant approximation outlined in Section 3.1 with
random flipping in probing vectors. For ease of use, MATLAB (MAT-
LAB (2010)) wrappers for the relevant functions are included. It also
contains implementations of one of the sampling procedures found in Aune
et al. (2012a) and a refined version of the marginal variance computa-
tions found in Tang and Saad (2010). The package can be found on
http://www.math.ntnu.no/~erlenda/KRYLSTAT/.



Chapter 4

Non-linear and non-stationary AVA inver-

sion in 3-D

The inversion of seismic amplitude versus angle (AVA) data is relevant
for petroleum exploration and production. One goal of the inversion is to
extract the elastic parameters of the subsurface from the processed seismic
AVA data, while incorporating a priori understanding of the geological
conditions. Another important goal is to obtain the uncertainties of the
inversion results, which allow decision making under uncertainty.

There are three modeling elements that have to be specified for doing seismic
AVA inversion: i) We need an AVA reflectivity model consisting of physical
relations for the receiver responses, given the subsurface properties, see Aki
and Richards (1980). ii) The statistical error model for these seismic AVA
responses must be defined. Together, i) and ii) comprise what is called
the likelihood model for the seismic AVA data. iii) A prior model for the
elastic parameters must be specified, enforcing solutions that are geologically
representative. This prior also corresponds to a regularisation term in the
numerical literature. The prior and likelihood model define a Bayesian
framework, where we have an associated, consistent, posterior distribution
for the elastic parameters, given the seismic AVA data, see e.g. Ulrych et al.
(2001) and Malinverno and Briggs (2004). Of course, it is critical to use
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realistic modeling assumptions in i)-iii) in order to get reliable results in the
seismic AVA inversion.

The key issue in step i) is the geophysical model for the seismic AVA
reflectivity. We will focus only on the PP reflectivity, and we will compare
the linear approximation of Buland and Omre (2003) and the quadratic
approximation developed in Stovas and Ursin (2003). It is well known
that the linearized version does not work so well for large angles, or for
large contrasts in the elastic parameters at interfaces. One contribution
in this chapter is to study the impact of linearized reflection models on
the inversion results. Another important modeling aspect in step ii) and
iii) is the structure imposed by the prior model and the error terms in the
likelihood. In this chapter we will use Gaussian distributions for the prior on
elastic parameters and for the error terms in the likelihood model. We will
allow non-stationarity in these Gaussian processes, i.e. use varying mean or
covariances for different locations, and study how stationarity assumptions
(Buland et al., 2003) influence the inversion results.

When we use a linear reflectivity model, we get a Gaussian posterior dis-
tribution for the elastic parameters. For the quadratic reflectivity model,
the posterior is not available in closed form. The objective function may
then contain multiple optima. In a similar way, we would get intractable
posterior distributions if we imposed a non-Gaussian a priori model, or
non-Gaussian error terms in the likelihood. This has for instance been used
to obtain blocky inversion results, see e.g. Farquharson and Oldenburg
(1998), Youzwishen and Sacchi (2006) and Theune et al. (2010). We show
that flexible models can be constructed by staying within the Gaussian class,
but incorporating non-stationarity.

Seismic data come in very high dimensions, often with observation counts
of O(105) − O(109), depending on how they are processed and acquired.
The effective dimension is not that large, because there is much smoothing
of the data via the wavelet convolution, but nevertheless there are big
computational challenges in handling the dimension. The statistical model
and the numerical techniques, often intertwined, are constrained both in
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computational cost and in memory. In order to construct relevant solutions
in 3D, we therefore focus on sparsity both of the statistical model and the
numerical techniques. The Gaussian processes are parametrized by sparse
precision matrices (inverse covariance matrices), which lowers the memory
requirements.

Our focus in this chapter is to identify the regions of noise-space where it
may be advantageous to use the quadratic reflectivity model, and we study
the impact of incorporating a specific type of non-stationarity in the model.
The main contribution can be seen as an extension of Rabben et al. (2008),
who showed the effect of non-linearity in a 2D model at an interface. We
extend this approach to 3D applications, and allow non-stationarity in the
Gaussian models. One can also regard the methodology in this chapter as
an extension of the 3D linearised inversion of Buland et al. (2003), where we
now allow non-linearity and/or non-stationarity. One of the main challenges
in this is the numerics required to obtain proper inversion. By extension,
this is also a natural focus of this text.

In Section 2 we discuss the geophysical model for the seismic AVA reflectivity.
Section 3 specifies our statistical modeling assumptions. The computational
aspects, which become so important in massive 3D seismic datasets, are
presented in Section 4. We analyze and interpret numerical experiments
in Section 5. In particular, we investigate both the `2-error and `∞-error
in the inversion result: The `2-error captures the mean performance over
the entire field, but is unsuitable for assessing performance locally in a
high-contrast layer. The `∞-error is more appropriate for investigating
possible performance gains when using a quadratic forward model, as it is
in the high-contrast layer(s) we expect to gain the most. However, if this
gain comes at a large expense in the `2 world, it may not be completely
desirable.
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4.1 AVA model

General formulae for the seismic AVA reflections at an interface date back
to Zoeppritz, and this topic is thoroughly presented in Aki and Richards
(1980). The relationships hold for different subsurface media, and for P- and
S-wave incidence or reflections. Several approximate representations of these
formulae have been presented in the literature. The seismic AVA model
we adopt in this chapter is primarily based on the one given in Rabben
et al. (2008). This model uses the quadratic approximation derived in
Stovas and Ursin (2003) for the reflection coefficients in layered transversely
isotropic viscoelastic media. Here, the seismic PP reflection coefficients, at
an interface, and for incidence angle θ, are given by

rPP =
1

2 cos2(θ)
m1 − 4 sin2(θ)γ2m2 −

1

2
tan2(θ)(1− 4γ2 cos2(θ))m3+

tan(θ)γ

1− γ2 sin2(θ)

{
4γ2(1− sin2(θ)(1 + γ2))m2

2−

4γ2(1− sin2(θ)(3/2 + γ2))m2m3 + (γ2(1− (2 + γ2) sin2(θ)− 1/4)m2
3

}
,

(4.1)

where the relative difference of elastic parameters are,

m1 =
4IP
IP

, m2 =
4IS
IS

, m3 =
4ρ
ρ
. (4.2)

Here the 4 denotes differences in time. Hence, m1,m2,m3 denotes the
relative difference of P -impedance, S-impedance and density respectively.
Moreover, γ denotes the background vs/vp-ratio, which is allowed to depend
on depth. Of course, the elastic parameters m1,m2 and m3 depend on the
position in the subsurface x (inline), y (crossline) and t (traveltime). It is
possible to parametrise rPP in terms of other quantities as well, such as
P -velocity, S-velocity and density, as is done in Buland and Omre (2003),
but it is shown in Tarantola (1986) that it is more efficient to work with
impedances.
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In the common situation with processed 3D seismic AVA data, the reflections
rPP at interfaces are represented by a convolution model, see Buland and
Omre (2003). Mathematically, we represent the observations by,

d(x, y, t, θ) =

∫
R
w(τ, θ)(rPP (x, y, t− τ, θ) + ε1(x, y, t− τ, θ))dτ + ε2(x, y, t),

(4.3)

where w is a wavelet working in the vertical direction, and ε1, ε2 are wavelet
convolved and independent error terms, respectively. We will work with the
model (4.3) under different assumptions on ε1, ε2 and rPP . Explicitly;

• if we drop line 2 and 3 of (4.1), we are left with the corresponding
linear model, and we compare this simplified model with the quadratic
expression.

• We investigate effects of the stationarity assumption on the error
processes ε1, ε2.

In practice we collect the entire dataset, for all angles and at all crossline,
inline and depth coordinates, in a long vector d. The same holds for the
elastic parameters m. In matrix-vector notation, our discretized model then
reads

d = W(q(m) + ε1) + ε2, (4.4)

where q denotes the functional operation defined by (4.1), collected into
a long vector over all interfaces for various traveltimes and for all seismic
inline-crossline traces. Moreover, W denotes the discretized version of w
in (4.3), m is discretized elastic parameters and ε1, ε2 are vectors of noise
components. If we use the linear reflection model in (4.1) – i.e. the first
line of the equation – we set q(m) ∼ Am, signifying the linearity by using
a fixed matrix A that does not depend on m.

It is known that for large angles, and large relative differences in the
elastic parameters, the linear model is insufficient for producing accurate
response data (Aki and Richards, 1980). The quadratic approximation
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used here alleviates this to some extent (Stovas and Ursin, 2003). It is not,
however, obvious that the quadratic model robustly reconstructs the elastic
parameters in a seismic inversion, and we will address this topic.

In addition to this, we assume that we observe the elastic properties m
directly from one or more well logs. This can be written by d3 = Gm + ε3,
where G simply picks out some coefficients of m, i.e. G(i, j) = 1 when well
observation i is a measurement of the elastic parameter indexed j. We will
assume that ε3 is small, i.e. the well log information, at the location where
it is collected, has much higher fidelity than the seismic data.

4.2 Statistical model

Now, we assign distributions to the stochastic elements of the model, and
study the impact on the posterior model under different reflection models.
Explicitly, we will assume Gaussian distributions, i.e.

ε1 ∼ N (0, σ2
1Q−1

1 ), ε2 ∼ N (0, σ2
2Q−1

2 ), ε3 ∼ N (0, σ2
3Q−1

3 ), m ∼ N
(
µm, λ

2Q−1
m

)
.

(4.5)
Here the overall noise level σ2 depends on σ2

1 and σ2
2, but it is not needed in

any computational parts in this text, and is therefore generally suppressed
in our notation.

The precision matrices, i.e. the inverse covariance matrices, denoted Q, will
depend on some statistical model parameters, but this is suppressed in the
notation. Notably, the precision or covariances matrices include parameters
that specify the measurement noise level – possibly depth dependent –
and the a priori uncertainty in the elastic properties. In addition, the
dependencies between the various elastic properties (P-, S-impedance and
density) are represented in a parametric form. Finally, there is spatial
dependence involved, stating that the parameters at one spatial location
are closely related to the neighbouring parameters.

The modeling assumptions entail that the likelihood model, defining the
conditional distribution of the observations given the parameters, is d −
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Wq(m) ∼ N (0,Q−1
lik ). Using (4.4), and assuming independent ε1 and ε2,

we get a likelihood precision matrix given by

Qlik = (σ2
1WQ−1

1 WT + σ2
2Q−1

2 )−1. (4.6)

The resulting likelihood is denoted by p(d|m), while the prior model, p(m),
is Gaussian defined in (4.5). The posterior model is then given by Bayes
rule:

p(m|d) =
p(d|m)p(m)

p(d)
∝ p(d|m)p(m). (4.7)

This posterior is the key output from a Bayesian inversion of seismic AVA
data. If a linear approximation Am is used in place of q(m). In this case,
the posterior is Gaussian, and the mean or mode value is available in closed
form. It might be computationally demanding to solve for the posterior
mean, and not to mention the posterior variance, but in theory its form is
known. If the quadratic model q(m) is used, the posterior is not available
in closed form. One can still approximate the mode of the posterior by
iterative methods. It is also possible to fit a Gaussian approximation by
matching the curvature (second moment) at the mode. We discuss both
approaches below. We will incorporate information obtained from the well
log in the prior distribution for m and use this for both the linear and
non-linear case. The derivation in the Appendix 4.6 also gives guidance on
how to incorporate this well log information into the prior. In this respect,
the well log part is integrated through p(m) = p(m|d3). Before studying
the posterior distributions, we will specify the full modeling assumptions
for the covariances.

4.2.1 Prior and likelihood modeling

The standard technique for prior and likelihood modeling in 3-D is the one
given in Buland et al. (2003). This technique puts some limitations on
both the likelihood and prior structure, but provides an extremely fast and
stable inversion algorithm due to its reliance on the fast Fourier transform
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(FFT). More explicitly, the assumption made is that ATWTQlikWA + Qm

is (block-)circulant. To facilitate this, the matrix A needs to have a fixed
vS/vP -ratio and Qm and Qlik need to be circulant and hence cannot depend
on the position in the field.

Until this point we have treated the elastic parameters and data quite
generically, without going into details about dimensions. When defining the
covariances or precisions properly, we require some more notation. Let the
3-D grid of seismic data be of size nx, ny and nt, which is most commonly
related to the number of inlines, crosslines and the indexed traveltimes.
The resolution of the grid may differ, and depends both on acquisition
and processing. At each grid cell there are three elastic parameters (P-, S-
impedance and density), and nθ observations for various angles. Our model
specifications will rely on cell-wise components, trace-wise components, and
spatial dependence components.

For the likelihood terms, we assume that Q1 and Q2 are diagonal matrices.
We set Q2 = σ−2

2 I indicating independent measurement noise at the receiver
end, and assume that the variance σ2

2 is quite low compared with the wavelet
convolved noise term. For Q1, representing the precision of the wavelet
convolved noise, factors in the geophysical properties of the subsurface are
propagated, and we therefore assume that this noise level increases with
depth. The assumption leads to non-stationarities in the likelihood (and
the posterior). The precision matrix Q1 is built to decay with depth:

Q1 = P
(
Qθ ⊗ (Inx·ny ⊗Qw)

)
PT , (4.8)

where Qθ represents the (inverse of) the correlation between the reflection
angles (assumed diagonal here), Qw induces the increasing variance with
depth and P is a permutation matrix giving the wanted ordering of the
inline crossline and traveltime cells. The Kronecker product is represented
by the symbol ⊗. We stress that it is not necessary to use the permutation
explicitly, but rather access indices as needed during computation. In
general, it is difficult to construct Qlik explicitly, and the most convenient
representation of (4.6) depends on the structure of Q1 and Q2. Setting
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Qθ = I, it is possible to write a computationally efficient expression for Qlik.
First note that W = Inθ·nx·ny ⊗W0, where W0 is contains wavelets that
are replicated for each trace. Moreover,

Q−1
1 = (Qθ ⊗ (Inx·ny ⊗Qw))−1 = Q−1

θ ⊗ (Inx·ny ⊗Q−1
w ) (4.9)

Now, with Qθ = I,

σ2
1WQ−1

1 WT + σ2
2I = σ2

1(Inθ·nx·ny ⊗W0)Q−1
θ ⊗ (Inx·ny ⊗Q−1

w )WT + σ2
2I

= σ2
1(Q−1

θ ⊗ (Inx·ny ⊗W0Q
−1
w ))WT + σ2

2I

= (Q−1
θ ⊗ (Inx·ny ⊗ σ2

1W0Q
−1
w WT

0 )) + σ2
2I

= Inθ ⊗ (Inx·ny ⊗ (σ2
1W0Q

−1
w WT

0 + σ2
2Int)). (4.10)

This gives

Qlik = (σ2
1WQ−1

1 WT + σ2
2I)−1 = Inθ ⊗ (Inx·ny ⊗ (σ2

1W0Q
−1
w WT

0 + σ2
2Int)

−1).
(4.11)

Since nt < 1000, it is easy to compute this inverse, which will be blocked
and very sparse.

For specifying the prior precision Qm, we use a variant of the framework
developed in Lindgren et al. (2011). More explicitly, we will assume that
the prior is defined by the following separable system of stochastic partial
differential equations:

(Q0 ⊗M)m(s) = τ(s)�W(s), (4.12)

where M = (κ − ∇ · H∇)α/2, wherein κ denotes the range parameter.
Furthermore, H is positive definite matrix, determining the anisotropy of the
prior field, τ(s) is a scaling term, and � denotes element-wise multiplication.

For the case where H is diagonal and κ does not vary spatially, the model
reduces to (κ − 4)α/2mi = W. Lindgren et al. (2011) show through a



4.2. Statistical model 142

spectral argument how this model is equivalent to the Matérn covariance
function (Matérn (1960)) for stationary spatial Gaussian fields

r(s, t) =
ς2

Γ(ν)2ν−1
(κ‖s− t‖2)νKν(κ‖s− t‖2). (4.13)

Here ς2 is defines the marginal variance of the field, ν is a smoothness
parameter and κ is a range parameter. Kν is a modified Bessel function of
the second kind. The parameters in this model relates to the stationary
SPDE model through

α = ν + d/2, (4.14)

where d is the dimension of the field. Hence, α and ν govern the differentia-
bility of the field.

We will use Neumann boundary conditions for the differential equation,
i.e. that normal derivatives at the boundary are zero. This is a reasonable
assumption for our model: when getting closer to the boundary, less infor-
mation from the surrounding field is available for lending strength to the
value of the parameter at that point in space.

Discretizing equation (4.12) gives a zero-mean realization m which has
sparse precision matrix Qm, and we add the mean µm to get the correct
expected value in the prior. The resulting structure of Qm defines a Markov
random field for the Gaussian process, where non-zero elements in Qm

indicate neighbours on the defined neighbourhood for the 3-D lattice. A
realisation from the prior is given in Figure 4.1, where we see that the
information from the well incorporated clearly.

4.2.2 Mode of the posterior

The main goal of a Bayesian inversion is the mode of the posterior distribu-
tion in (4.7). When we use a linear approximation, both prior and likelihood
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Figure 4.1: Realisation from prior distribution. Time view (left) and lateral
coordinates (right)
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exponents are quadratic forms in m. Thus, the posterior distribution can
be written explicitly:

p(m|d) = (2π)n/2 det(Qm|d)
1/2e−

1
2

(m−µm|d)TQm|d(m−µm|d) (4.15)

with posterior precision matrix

Qm|d = λ2Qm + ATWTQlikWA (4.16)

assuming that the prior for m is distributed as N
(
µm, λ

−2Q−1
m

)
, and Qm

is defined as in the previous section. Moreover, the posterior mean is

µm|d = Q−1
m|ddmod, (4.17)

where dmod =
(
λ2Qmµm + ATWTQlikd

)
. Even though this expression is

in closed form, the posterior mean in (4.17) requires the solution to a very
high dimensional linear system of equations. Since the precision matrices
are quite sparse, we benefit from using Krylov subspace methods here, such
as conjugate gradients (CG), see below.

For the linear case the mean equals the mode because of symmetry. For
the non-linear case, neither mean nor mode of the distribution can be
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determined explicitly. The posterior mode is defined by

m̂ = argmin
[
(d−W(q(m))TQlik(d−W(q(m)) + λ2(m− µm)TQm(m− µm)

]
.

(4.18)

We solve for the posterior mode using iterative techniques. At each stage
we solve a high dimensional linear system similar to that in (4.17), where
the matrix A and d are modified according to a linearisation at the current
value of the iterative scheme. Computational details are provided below.

4.2.3 Marginal variances of the posterior

In order to assess the variability of the elastic parameters, it is natural to
look at the marginal variances at each site. Unfortunately, since we are in
the precision domain, these are not explicitly available - contrary to the
situation where modeling is through covariance functions. We therefore
need a way to extract these from the posterior precision matrix. In the
linear case, this is merely Qm|d as in (4.16). In the non-linear case, the
matrix A is replaced by Dq(m)

∣∣
m̂

- i.e. the derivative of q at the mode,
and we then have a proper surrogate for the posterior precision.

In order to compute the marginal variances, we adopt the strategy described
in Tang and Saad (2010) with the modification of Aune et al. (2012c). Let
� be element-wise division. Then, the diagonal elements of the precision
matrix are approximated by

diag Q−1 ≈

 N∑
j=1

vj � uj

�
 N∑
j=1

vj � vj

 , (4.19)

where vj are so-called probing vectors and uj = Q−1
m|dvj . These vjs are

chosen by doing a k-distance colouring of the graph induced by Qm|d, and

setting, for colour i, vij = f ⇐⇒ Qk
m|d(i, j) 6= 0, where f = ±1 with

probability 1/2 for each value. The number of probing vectors, N , depends
heavily on the basis choice and spatial correlation length induced by Qm|d
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but it is usually moderate, say N = 100, which is much smaller than the
number of elements in vj . The equation Qm|duj = vj must again be solved
by a Krylov method in order to keep the memory requirements low enough.
For more details, see Aune et al. (2012c).

4.2.4 Wavelet parametrization and estimation

So far we have treated all statistical model parameters as fixed. This also
holds for the wavelet operator. In practice one must estimate the wavelet
from data. Commonly well logs are combined with seismic AVA data at the
well location to perform this estimation task.

We introduce an alternative wavelet parametrisation in order to reduce the
parameter space when doing optimisation. The class is parsimonious, yet
quite flexible. First, assume that ψ is a symmetric, smooth wavelet; i.e. that
limt→∞(1 + |t|α)ψ(t) = 0 for α > 0 and that

∫
R ψ(t)dt = 0. Now, let g be

smooth, bounded with supt h(t) = B and antisymmetric. Set h = g
2b + 1/2,

and let w = ψ · h, then w is a skewed wavelet.

An example of a parametrisation of this kind is given as follows: Let ψn
be the nth Hermite function and let g = erf, then we get the following
parametrisation

w(t|s, a, p, v, n) = (−1)naψn(t/v − p){erf[s(t/v − p)] + 1}/2 (4.20)

where s governs the skewness, a governs scale, v governs dilation and p
position of the wavelet.

Suppose we have both seismic AVA and well data, and we assume the
relative noise level, σ2

3, in the well log is minuscule. Then, we define the
objective function by the residual

Φθ(s, a, p, v, n) =

N∑
i=1

|wθ ? qθ(mwelli)− dθseism| (4.21)
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where dθseism is the seismic AVA data along the well at angle θ, qθ is the
forward reflection coefficient model for angle θ, wθ is the discretized wavelet
for angle θ and ? denotes discrete convolution in time. The wavelet, wθ,
depends implicitly on the parameters in (4.20).

The objective function, Φθ, is non-linear with multiple local maxima, so we
cannot expect that starting Newton iterations from an arbitrary starting
position will yield a global maximum. To remedy this, we make a sobol
sequence (Bratley and Fox, 1988) to have a low-discrepancy sequence of
starting positions. The discrepancy of a set P = {s1, s2, . . . , sn} ⊂ R5 is
given by

sup
B∈J

∣∣∣∣A(B;P )

n
− µ(B)

∣∣∣∣ , (4.22)

where µ is 5-dimensional Lebesgue measure, A(B;P ) is the number of points
in P that falls into B, and J is the set of all 5-dimensional boxes. Hence, a
sequence has low discrepancy if the number of points falling in an arbitrary
box is close to proportional to to the measure of that box.

Having a low discrepancy sequence should leave at least one point in each
region of convexity of the parameter space. After that, we perform (Quasi)
Newton iterations on each starting position and at the end, choose the one
which minimises Φθ. In our synthetic case below, the wavelets are recovered
with high precision using this automatised fitting procedure.

We mention that in general, it may be advantageous to leave one well out
for prediction purposes and cross-validation to see the performance of the
prediction using the other wells for estimating the wavelet.

4.3 Computational methods and challenges

When we use the linear likelihood model, the inversion for the elastic
parameters entails a solving the linear system

Qm|dm = dmod (4.23)
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Figure 4.2: Wavelet estimates – near (left), middle (middle) and far (right)
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with dmod = Dq(m)TWTd +λ2µm. It is also a linear least squares problem
– maybe an ill-conditioned one – easily treated by the methods in Björck
(1996).

In order to invert for the elastic parameters, the hyperparameters in the prior
model, κ2 and σ2

3 are set, and in the likelihood σ2
1 and σ2

2 are swept over.
Estimation of these parameters may be done in any way that is convenient
for latent Gaussian model – for the quadratic model, no modification is
needed. Typically, they can be estimated by maximum likelihood procedures,
or, more generally, by sampling. For Gaussian models, these matters are
treated in e.g. Rasmussen and Wiliams (2006); Rue and Held (2005); Cressie
and Wikle (2011). Typically, procedures reminiscent of the EM algorithm
(Dempster et al., 1977) can be used for estimation. In our treatment, these
estimates are not the matters of interest – rather, we would like to see how
different regimes of the parameters may affect a possible superiority of using
the quadratic model over the linear one. Therefore, the parameters σ2

1, σ
2
2

are swept over, while the range parameter, κ2, is estimated from the well,
and σ2

3 is simply kept at a very low level. The parameters σ2
1, σ

2
2 jointly

determine the total noise level of the model.

For estimating the wavelet, we use the approach described in Section 4.2.4,
with Hermite functions as building blocks. In Figure 4.2, we see what these
estimates look like in a specific case.

Before going into details, it is convenient to specify the variable ordering of
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our discretization scheme; it is naturally easy to go from one ordering to
another through specific permutation matrices. However, to fix our notation
for Kronecker-type operations, we specify it here. In discretizing, we sample
regularly in the x, y, t, leaving us with xi, i = 1, . . . , nx, yj , j = 1, . . . , ny,
tk, k = 1, . . . , nt, where nx, ny, nt are O(102). Discretising the angles, θi,
comes naturally from the different incident angles of the data collected.
Typically nθ is less than 10. We adopt the following ordering:

m =
(
m1(x1, y1, t1),m2(x1, y1, t1),m3(x1, y1, t1),m1(x1, y1, t2), · · · ,

m1(x1, y2, t1), · · · ,m3(xnx , yny , tnt)
)T
,

and similarly,

d =
(
dθ1(x1, y1, t1), · · · , dθnθ (x1, y1, t1), dθ1(x1, y1, t2), · · · , dθnθ (xnx , yny , tnt)

)T
.

4.3.1 Linear inversion

Central to the outlined seismic AVA inversion are efficient iterative solvers
for linear systems. That is, how to solve Qm|dm = dmod. The method of
choice is highly dependent on the structure of the posterior precision. In
our context this matrix is sparse and with varying structure properties.

It is possible to define a stationary approximation to the model discussed
in the previous sections. If we let the prior precision be stationary, which
in our setting means that we do not incorporate the precision modification
at the well location, let the vS/vP -ratio be constant for the entire field,
let the wavelet be symmetric, and do not let the error model depend on
depth, then we have a completely stationary model. In this setting, if we
wrap our matrices at the edges, leading to a periodic boundary, we obtain a
circulant approximation to Qm|d in (4.17). For such circulant matrices, all
computations can be done using the FFT (Gray, 2006). In this particular
case, the inversion is of O(n log n), and this is the main advantage for using
a stationary model.
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In the non-stationary linear case, the natural domain is iterative solvers
for the corresponding linear system. These typically use the matrix vector
product Qm|dv or some modification of that multiple times for different vs
in each iteration, and there are several options to choose from, going from
the usual Gauss-Seidel iterations, through multigrid methods to Krylov
methods. An overview of all these can be found in Saad (2003), with further
references. We focus on Krylov methods – a suite of methods that are very
general and require only the matrix vector product Qm|dv in each iteration
for pursuing the solution.

The essence of Krylov methods is the following: build a Krylov subspace,
defined by

Km(Q, r0) = span{r0,Qr0,Q
2r0, . . . ,Q

m−1r0}, (4.24)

with r0 = d − Qx0, where x0 is an initial guess of the solution. Now
project the solution of Qm = d onto this subspace. The most widespread
and known Krylov method is the conjugate gradient (CG) method, first
published in Hestenes and Stiefel (1952). This method, can be used directly
for solving (4.17) to find the posterior mean using the normal equations.
There are, however, Krylov methods that may be better suited for least
squares problems of this sort – in particular, the LSQR-method (Paige
and Saunders, 1982), which has better convergence properties than using
the normal equations directly, mainly coming from a condition number
argument.

4.3.2 Non-linear inversion

For the non-linear case, the situation is a bit different. In this case, we can
define the following objective function

Φ(m,η) = f(η) + (d−Wq(m))TQlik(d−Wq(m)) + λ2(m− µ)TQm(m− µ)
(4.25)

where in general f(η) involves the determinantal quantities of the model
matrices and the prior distribution for the hyperparameters, η. A vital
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issue with this model is that the objective function Φ may be multimodal.
We will abuse notation Φ(m) = Φ(m,η), whenever η is treated as fixed.

In order to find arg maxm Φ(m), we need to compute its gradient. We have
the following partial derivatives, needed to compute the Jacobian of q(m)

∂rPP
∂m1

=
1

2 cos2(θ)
(4.26)

∂rPP
∂m2

= −4 sin2(θ)γ2 +
tan(θ)γ

1− γ2 sin2(θ)

{
8γ2(1− sin2(θ)(1 + γ2))m2−

4γ2(1− sin2(θ)(3/2 + γ2))m3

}
(4.27)

∂rPP
∂m3

=
1

2
tan2(θ)(1− 4γ2 cos2(θ)) +

tan(θ)γ

1− γ2 sin2(θ)
+{

−4γ2(1− sin2(θ)(3/2 + γ2))m2 + 2(γ2(1− (2 + γ2) sin2(θ)− 1/4)m3

}
(4.28)

It is important to note that the Jacobian, Dq(m)T = AT in the linear
case and hence only needs to be populated once. For the non-linear case,
it changes for each iteration and it becomes too expensive to populate the
matrix each time, and hence we only compute its action on a vector.

The gradient of the objective function is

∇Φ(m) = Dq(m)TWTQlik(Wq(m)− d) + λ2Qm(m− µm). (4.29)

Now, to employ a Newton-Krylov type method to solve this optimisation
problem, we would also need the Hessian matrix, H(m) = D2Φ(m). How-
ever, it is possible to overcome this challenge by using an inexact Hessian
matrix vector product. We use the finite difference approximation as in
Kelley (1999),

D2Φ(m : p) =
∇Φ(m + hp/‖p‖)−∇Φ(m)

h/‖p‖
, (4.30)

where h is the step-length for the finite difference approximation, and p is
the direction in which this finite difference is computed. It is also possible to
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use a complex-step derivative approximation, if greater accuracy is needed.
This is given by

D2Φ(m : p) =
Im(∇Φ(m + i hp/‖p‖)

h/‖p‖
. (4.31)

where Im takes out the imaginary part in the expression, and i denotes
the imaginary unit. In this expression, h can be set extremely low, say
h = 10−300 in order to achieve very high accuracy. This can be done
since no subtractive cancellation occurs. The expression is, however, more
computationally demanding than the usual finite differences. The first of
these is faster and the preferred inexact method when the condition number
of the resulting system is not too large. This depends on the total noise
level of the process.

For the non-linear case, Krylov methods enter in a natural way. In the
classical Newton algorithm (see e.g. Kelley (1999); Nocedal and Wright
(1999)), the linear system

D2Φ(mk)pk = −∇Φ(mk) (4.32)

must be solved for each outer iteration. Here k is denotes the kth outer
iteration and pk is the kth search direction. In our case, the exact Hessian
is not available, and we use the approximate Hessian matrix vector product,
(4.30), in the Krylov method. Additionally, it is sufficient to let rk =
‖D2Φ(mk)pk + ∇Φ(mk)‖ < ηk‖∇Φ(mk)‖ to get a convergent algorithm.
Methods based on this criterion are called inexact Newton algorithms. See
Kelley (1999); Nocedal and Wright (1999) for an overview of their properties.
The Krylov method of choice in the inner iterations could be both the CG
algorithm, based on the “local” normal equations, or a more sophisticated
LSQR algorithm. In our computations, we have used the CG method.

The objective function, Φ(m), is inherently multimodal for small λ2. To see
this, simply initiate a Newton algorithm with a random starting vector and
see how the norm of the gradient quickly goes to zero and does not yield
the vector m∗ that generated d. In Figure 4.3, we see an example of this.
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It occurs merely because as a multivariate quartic polynomial, Φ(m) may
have several optima in some of its variables.

Figure 4.3: True m2 (left), estimated m2 from random starting position terminated
at ‖∇Φ(m)‖2 < 10−3 (right)
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Our hopes lie in the following: that our starting vector, generated from the
linear approximation is in the domain of attraction of the physical solution
to the optimisation problem. Additionally, our prior for m convexifies the
the optimisation problem and helps in identifying the correct solution. We
note that neither of these strategies guarantee that we find the correct
optimum.

Comparing the 3-D model presented here to the 2-D problem treated in
Rabben and Ursin (2009), we observe that the introduction of the wavelet
dramatically increases the condition number of the system over that in
Rabben and Ursin (2009). Without a very good preconditioner, full inversion
with estimation of hyper-parameters both in the forward model and precision
matrices is infeasible.
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4.3.3 Preconditioners

One of the most important aspect of getting a non-linear inversion problem
of this type to work on a large scale is the availability of adaptive pre-
conditioners for the Krylov-step in the optimisation algorithm. Potential
preconditioners for a system related to the one defined by (4.25) will need to
adapt to changing m, need to be fast to compute, and need to approximate

the inverse of the sum of two matrices, M ≈ (F+Qm)−1
∣∣∣
mcur

, in each itera-

tion, where M is the preconditioner. F in this case is either ATWTQlikWA
or Dq(m)TWTQlikWDq(m), where differentiation is taken with respect
to the current value of m. Note that the usual BFGS-type Newton scheme
(see e.g. Nocedal and Wright (1999)) is too demanding in this application
since the computational demands for approximate Hessians are infeasible.

Candidates that are feasible for our systems are ones based on operator
splitting and ones based on the discrete cosine transform (DCT). For the
splitting approach, the preconditioner has the following form

M =
(

(p(F) + γI)1/2(p(Qm) + γI)(p(F) + γI)1/2)
)−1

(4.33)

where p defines some preconditioning operation on the respective matrices
and γ is a tuning parameter. By construction F has a structure that makes
it easy to approximate F−1/2b quickly and explicitly, and Qm is very close to
being diagonalised by the DCT, since the discrete Laplacian with Neumann
boundaries is diagonalised by this transform. In practice, it is hard to get
this split preconditioner to work on our system.

Another possibility is to use a DCT-type preconditioner on both matrices
simultaneously, but this is highly dependent on how F reacts to such
preconditioners. In this case, we approximate the full operator F + Qm by
c(F+Qm) = c(F)+c(Qm), where c denotes the optimal DCT preconditioner.
The optimal DCT preconditioner is defined by c(F) = arg minB∈B ‖F−B‖F ,
where B is the n-dimensional space of matrices diagonalizable by the DCT,
and ‖ · ‖F is the Frobenius norm. A method to construct this preconditioner



4.4. Numerical results 154

is described in Chan et al. (1999). The method described therein extends
to 3-D in the obvious way. We are then left the eigenvalue matrices for the
operators c(F) and c(Qm), denoted by ΓcF ,Γ

c
Qm

. The preconditioner is then

M = C(ΓcF + ΓcQm
)−1CT , where C denotes the DCT matrix. In practice

this is computed in sequence by the fast 3-D DCT. This preconditioner is
also easy to split, if that is required for the Krylov method in question.
Our experience is that this preconditioner works well for the problem we
investigate, and it is our default choice.

In order to apply the preconditioners on the non-linear system, updating
of the preconditioners must be feasible. In practice, it may be sufficient to
update the operator once in a while in the outer iterations of the Krylov-
Newton method.

4.4 Numerical results

In this section we compute and compare posterior estimates for m for
different models. For testing potential performance, we use the following
specifications for the physical model

• Low relative differences in elastic parameters and small angles

• Low relative differences in elastic parameters and large angles

• One jump with high relative differences in elastic parameters and
small angles

• One jump with high relative differences in elastic parameters and large
angles

Here, the small angles are given by θsmall = (5, 10, 25) and large angles
are given by θlarge = (10, 25, 35). The maximum absolute value of relative
differences where we have low relative differences is mlow

max =, and for high
relative differences, mhigh

max =. We invert for elastic parameters using three
different strategies
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• Stationary linear model

• Full linear model – that is, non-stationary prior and likelihood

• Quadratic model

The data is generated from the quadratic model with non-stationarity for
all test cases, and we present the results as follows: We start by examining
the noiseless inversion case to demonstrate its potential, but keep in mind
the multi-modality of the objective function it induces (Figure 4.3). We
do the same for the non-stationary model. Thereafter, we give inversion
results for the quadratic model and its differences from the linear model
using noisy data to illustrate what we actually get – we do the same for the
linear non-stationary model and its stationary approximation. To conclude,
we give parameter sweeps of inversions using different noise levels to see
potential gains from using a quadratic or non-stationary model over their
respective counterparts. We do not do a sweep for the case where we have
low relative differences and small angles in the quadratic vs. linear nor
stationary vs. non-stationary case.

4.4.1 Inversion examples – quadratic vs. linear and stationary
vs. non-stationary

The noiseless model gives a standard (non-linear) least-squares problem.
The reasoning for considering the noiseless model is the following: in order
to assess what potential benefits for using a more complex model in the noisy
case, it is beneficent to see what happens in the noiseless case. The data
in this case is generated without the noise components. The performance
criteria are relative differences in the `2-norm and the `∞-norm. We depict
this in Figure 4.4, where the true parameters are on the left, and the
difference between those coming from a quadratic and a linear inversion
on the right, where time-east is on the upper panel and east-west on the
lower. In the noiseless case, the non-linear inversion procedure recovers the
parameters exactly – as expected.
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Figure 4.4: Noiseless inversion, large contrasts, large angles. True parameters
(left), difference quadratic - linear (right)
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Figure 4.5: Noiseless inversion, low contrasts, small angles. Differences non-
stationary (left), differences stationary (right)
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We also include a noiseless inversion for the non-stationary versus stationary
case for small angles and low contrasts. Figure 4.5 depicts deviations from
the truth, and it is clearly seen that the stationary approximation is worse
than the non-stationary one, albeit not very much worse.

We give several visualisations in the noisy case, and we summarise the
models in Table 4.1. In all the figures, the left panels give inversion results
for the more sophisticated model, i.e. quadratic when the quadratic model is
compared to the full linear one, and the full linear one when this is compared
to the stationary one. In the right panel, the difference in inversion results
is shown, i.e. the inversion results of the more sophisticated model minus
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Table 4.1: Table of different models and their respective figures

Contrasts Angles Quadratic Stationary Figures Sweep figures

Low Small No Yes 4.5,4.10 4.18,4.19
Low Small No No 4.5,4.10,4.6 4.18,4.19
Low Small Yes No 4.6 No
Low Large No No 4.7 4.12,4.13
Low Large Yes No 4.7 4.12,4.13
High Small No No 4.8 4.14,4.15
High Small Yes No 4.8 4.14,4.15
High Large No No 4.4,4.9 4.16,4.17
High Large Yes No 4.4,4.9 4.16,4.17

the results for the less sophisticated one.

In Figure 4.9 we see results for one layer with high contrasts and relatively
large angles. The same trends as from the noiseless inversion is apparent
here – in the high contrast layer, the differences are high, while in the other
areas, the inversion results are virtually identical. Obviously, the effects
from the prior comes into play, giving smoother images than for the noiseless
case. In the subsequent figures, we see that the large differences in inversion
results come where there are large contrasts. In Figure 4.6, where we have
small angles and low contrasts, the inversion results are very close to one
another.

Comparing the differences between inversion results in the stationary vs.
non-stationary case (Figure 4.10), we see that there are differences in the
inversion results, but they are not localised only at interfaces.

Marginal variances

For completeness, we include marginal variance estimates for the quadratic
model at the mode. The estimates are given in Figure 4.11. Here we clearly
see that the marginal variance estimates are affected by the estimated
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Figure 4.6: Noisy inversion, low contrasts, small angles. Quadratic inversion
(left), differences (right)
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Figure 4.7: Noisy inversion, small contrasts, large angles. Quadratic inversion
(left), differences (right)
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Figure 4.8: Noisy inversion, large contrasts, small angles. Quadratic inversion
(left), differences (right)
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Figure 4.9: Noisy inversion, large contrasts, large angles. Quadratic inversion
(left), differences (right)
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Figure 4.10: Noisy inversion, low contrasts, small angles. Non-stationary inver-
sion (left), differences (right)
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Figure 4.11: Estimate for marginal variances, quadratic inversion.
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parameters in the quadratic model, and that at the well, the variance is
much less than everywhere else. Comparing this to the marginal variances
from the linear model, we see that there is clearly a difference at the high
contrast interface, and notably, the variances adapt to the data in a specific
way.

4.4.2 Parameter sweep

In order to identify where the non-linear model yields superior estimates to
that of the linear one, we employ a parameter sweep over the two components,
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σ2
1, σ

2
2. With increasing noise levels, we expect the prior information to

dominate. For very low noise levels, however, the non-linear model should
yield superior estimates. This is done for the four scenarios discussed in the
previous section. Some particular quantities of interest are

f2(σ2
1, σ

2
2) =

‖m− m̂quad‖2
‖m− m̂lin‖2

(σ2
1, σ

2
2)

f∞(σ2
1, σ

2
2) =

‖m− m̂quad‖∞
‖m− m̂lin‖∞

(σ2
1, σ

2
2). (4.34)

These two quantities are the relative mismatch in `2- and `∞-norm. Here,
m contains the elastic parameters used for data generation, where the data
is generated using the quadratic model. Moreover, m̂lin and m̂quad are
estimated parameters using the linear modeling assumption and quadratic
modeling assumption respectively.

In our sweep, we estimate parameters from scenarios where the noisy data
essentially is indistinguishable from noiseless data to scenarios where the
noiseless data is very different to that with noise. The two noise components
are defined with levels (σ2

1, σ
2
2) ∈ [5 · 10−8, 10−3]× [5 · 10−7, 5 · 10−1] – quite

a big range of different noise levels.

The figures for low contrasts and large angles are Figure 4.12 and 4.13. In
on the top of the first figure, we see that for `2-loss, the quadratic inversion
gives a smoother pictures, with lower errors at high noise levels which
is counter-intuitive to what we would expect. We cannot give any good
explanation for this behaviour. For `∞-loss, the situation is more along
what we would expect, with better predictions in the low-noise region.

In Figure 4.14 and 4.15, we also have some erratic behaviour in th `2 case,
where we have some islands where the quadratic inversion does much better
for moderate noise levels. In the `∞ case, the expected behaviour in the low
noise region is seen, with quadratic inversion being better than the linear
one. The quadratic inversion for `∞-loss also produces quite a smooth error
landscape, while the `2 is less smooth.
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Figure 4.12: Parameter sweep, low contrasts, large angles, `2-loss. Left: ‖m̂lin −
mtrue‖2/‖mtrue‖2. Right: ‖m̂quad −mtrue‖2/‖mtrue‖2. Bottom: f2(σ2
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In Figure 4.16 and 4.17 the sweeps are shown,for large contrasts and angles.
This is the scenario in which we expect to gain the most from using the
quadratic approximations in (4.1). In the upper left corner of the two norm
comparisons, the noise level is so low that the quadratic approximation is
much better than the linear one, but this quickly changes as the noise levels
increase. However, for the large contrasts, there is a rather large region
on the left part of Figure 4.16,4.17 that gives better predictions for the
quadratic approximation than the linear one. This is the critical area that
determines whether it may be worth doing the extra work required. We
believe this is situation dependent. In most cases, however, the predictions
have similar accuracy, and we gain nothing by using the more intricate
approximation. Of all the three sweeps, this one seems to be the one that
correspond to our expectations the most.

In Figure 4.18,4.19, the relative improvement on using the non-stationary
model over the stationary one is illustrated. Recall, that the non-stationarity
is introduced in the prior precision at the well locations and in the likelihood
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Figure 4.13: Parameter sweep, low contrasts, large angles, `∞-loss. Left: ‖m̂lin−
mtrue‖∞/‖mtrue‖∞. Right: ‖m̂quad −mtrue‖∞/‖mtrue‖∞. Bottom: f∞(σ2
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Figure 4.14: Parameter sweep, high contrasts, small angles, `2-loss. Left: ‖m̂lin−
mtrue‖2/‖mtrue‖2. Right: ‖m̂quad −mtrue‖2/‖mtrue‖2. Bottom: f2(σ2
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Figure 4.15: Parameter sweep, high contrasts, small angles, `∞-loss. Left: ‖m̂lin−
mtrue‖∞/‖mtrue‖∞. Right: ‖m̂quad −mtrue‖∞/‖mtrue‖∞. Bottom: f∞(σ2
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Figure 4.16: Parameter sweep, high contrasts, large angles, `2-loss. Left: ‖m̂lin−
mtrue‖2/‖mtrue‖2. Right: ‖m̂quad −mtrue‖2/‖mtrue‖2. Bottom: f2(σ2
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Figure 4.17: Parameter sweep, high contrasts, large angles, `∞-loss. Left: ‖m̂lin−
mtrue‖∞/‖mtrue‖∞. Right: ‖m̂quad −mtrue‖∞/‖mtrue‖∞. Bottom: f∞(σ2
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through increasing variances with traveltime. Here, we see that essentially,
the non-stationary one is better – especially for the `∞-norm, but as the
noise levels increase, they perform similarly. The non-stationarity included
in this model is not very severe, so this observation is not surprising, but
for a more tailored one, e.g. the one that is described in Aune and Simpson
(2012), the results may be more diverse.

4.5 Discussion and conclusion

The linear and quadratic models have been compared throughout this text
for seismic AVA inversion in 3-D. Our formulation allows the inclusion of
non-stationary Gaussian processes in the prior model or for the likelihood
noise terms. This gives added flexibility over the current state of the art. It
is, however, difficult to give an unanimous conclusion on using these models.
Each have its own merit, and which to use depends very much on what is the
goal of the inversion. Stationary inversion is extremely fast, and can easily
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Figure 4.18: Parameter sweep, non-stationary (left), stationary (right), ratio (bot-
tom), `2-loss. Left: ‖m̂lin−mtrue‖2/‖mtrue‖2. Right: ‖m̂stat−mtrue‖2/‖mtrue‖2.
Bottom: f2(σ2
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Figure 4.19: Parameter sweep, non-stationary (left), stationary (right), ra-
tio (bottom), `∞-loss. Left: ‖m̂lin − mtrue‖∞/‖mtrue‖∞. Right: ‖m̂stat −
mtrue‖∞/‖mtrue‖∞. Bottom: f∞(σ2
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be used on huge datasets, and while the non-stationary model discussed here
can be almost as fast with the use of appropriate preconditioners. There
are many more details, both in the physical and implementation domain,
that need to be addressed in order to achieve equivalently fast inversions.
For a rough estimate of the parameters, the good old stationary model may
indeed be sufficient.

Inversion using the quadratic forward model is much slower than when using
the linear non-stationary one, and needs as input an inversion from the
linear non-stationary one in order to get consistent estimates, i.e. converging
to the correct optimum. On the other hand, it may give better estimates
of high-contrast interfaces, and even overall better estimates in general,
depending on the noise levels. Optimally, we would like the speed of the
linear non-stationary model and perhaps add local information from the
quadratic model in specific areas of the subsurface. A potential candidate
for this is to essentially use the non-stationary linear model everywhere, and
extract high-contrast interfaces from this inversion and refine the inversion at
these high contrast interfaces using the non-linear quadratic model. This is
highly motivated by Figure 4.6-4.9, where we see that differences in inversion
results using the respective models are local only for high contrast interfaces.
The boundary conditions in this case should facilitate compatibility with
the linear model, so that the inversion is consistent. We believe that future
research on non-linear AVA inversion should focus on this aspect.

In this modeling framework, there are new important aspects to consider.
How can we incorporate the linear inversion results into the non-linear one?
Should we use it as initial conditions for a Newton method or use it as a
pseudo-prior. If we use this inversion result as some pseudo-prior, what
sort of boundary and mixing conditions should we use, and what precision
matrix?

A point that is worth addressing is the summary of the performance of
one inversion model over another. In this chapter, we proposed using a
parameter sweep and thereafter to look at some relative error estimate
over another. As we at best expect local improvements of one model over
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another, it is worth asking if there are other performance criteria that are
better suited for this comparison. Of course, the `∞-norm performance
gives in a sense a maximal local comparison criterion, but one could imagine
taking out high-contrast interfaces and looking at some average there. This
strategy is, of course, hard to automate and requires a lot of manual input.

An advantage of the parameter sweep is that when estimating hyper-
parameters, one can immediately identify whether it is any point doing any
further inversion – if the estimated σ2

1, σ
2
2 lie in an area in which non-linear

inversion gives no benefit over the linear one, the natural choice is, naturally,
to only do a linear one. Unfortunately, this may be field dependent, and
appropriate sweeps should be made for each case study.

Overall, we believe that this work highlights both difficulties and benefits
from using the different models we have addressed.

4.6 Addendum: Derivation of linear precision structure and
conditional expectation

For the Gauss-linear model, we have the following joint covariance structure
for m, WAm + Wε1W

T + ε2 and d3 = Gm + ε3

Cov

 m
d

dw

 =

 Q−1
m Q−1

m AWT Q−1
m GT

WAQ−1
m WAQ−1

m ATWT + Q−1
lik WAQ−1

m GT

GQ−1
m GTQ−1

m ATWT GQ−1
m GT + Q−1

3


(4.35)
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Now, block inversion of this matrix for Cov(m,d,d3)−1 =

(
Qm|d,d3 BT

B D

)
gives

Qm|d,d3 = Qm + Qm

(
Q−1
m ATWT Q−1

m GT
)(

Cov(d,d3)−
(

WAQ−1
m

GQ−1
m

)
Qm

(
Q−1
m ATWT Q−1

m GT
))−1

(
WAQ−1

m

GQ−1
m

)
Qm

= Qm +
(

ATWT GT
)(

Cov(d,d3)−
(

WAQ−1
m ATWT WAQ−1

m GT

GTQ−1
m ATWT GQ−1

m GT

))−1(
WA
G

)
= Qm +

(
ATWT GT

)( Q−1
lik 0

0 Q−1
3

)−1(
WA
G

)
= Qm + ATWTQlikWA + GTQ3G (4.36)

The off-diagonal block yields

BT = −Qm

(
Q−1
m ATWT Q−1

m GT
)( Q−1

lik 0

0 Q−1
3

)−1

= −
(

ATWTQlik GTQ3

)
(4.37)

and lastly,

D =

(
Qlik 0
0 Q3

)
(4.38)

The conditional expectation is hence given by

µm|d,d3 = Q−1
m|d,d3(Qm −BT )

 m
d
d3

 (4.39)
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Chapter 5

The use of systems of stochastic PDEs as

priors for multivariate models with discrete

structures

A challenge in multivariate problems with discrete structures is the inclusion
of prior information that may differ in each separate structure. A particular
example of this is seismic amplitude versus angle (AVA) inversion to elastic
parameters, where the discrete structures are geologic layers. Recently, the
use of systems of linear stochastic partial differential equations (SPDEs)
have become a popular tool for specifying priors in latent Gaussian models.
This approach allows for flexible incorporation of non-stationarity and
anisotropy in the prior model. Another advantage is that the prior field is
Markovian and therefore the precision matrix is very sparse, introducing
huge computational and memory benefits. We present a novel approach
for parametrising correlations that differ in the different discrete structures,
and additionally a geodesic blending approach for quantifying fuzziness of
interfaces between the structures.

175
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5.1 Introduction

In spatial statistics, the need for specifying different behaviour in different
regions in space is crucial for making a good prior model. The literature
is abundant with methodologies for this. In the multivariate setting, this
generalises to having different correlations between the fields in different
regions and different cross-differentiability properties.

A particular model problem where this is important is the seismic AVA
inversion problem, which is well studied in the geophysical literature. There
are several incarnations of this problem with varying degrees of complexity.
In this chapter, our primary example is the inversion problem studied
in Buland and Omre (2003); Buland et al. (2003); Rabben et al. (2008),
using the wave-field propagation approximations in Aki and Richards (1980),
which results in linear systems of equations to solve. Variants and extensions
of these equations are found in Stovas and Ursin (2003), including non-linear
approximations that may yield better inversion results in some situations.
We exemplify our contributions using this example explicitly throughout
the chapter.

The model we adopt in this text is the same as in Buland and Omre (2003),
which is essentially

d(s) = w ? rPP (m)(s) + ε, (5.1)

where ? denotes convolution in time, w is an approximation to the source
wavelet – i.e. the shape of the wave travelling through the subsurface, and
rPP (m) denotes a reflectivity operator. The reflectivity operator takes
relative differences in elastic parameters to reflection coefficients for the
wave. We adopt the following elastic parameters,

m1 =
4vP
vP

, m2 =
4vS
vS

, m3 =
4ρ
ρ
. (5.2)

I.e. m1,m2,m3 denotes the relative difference of P -velocity (pressure wave
velocity), S-velocity (shear wave velocity) and density respectively, and the
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reflectivity operator is defined by

rPP (θ) =
m1

2
(1 + tan2 θ)− 4m2γ

2 sin2 θ +
m3

2
(1− 4γ2 sin2 θ), (5.3)

there θ is the reflection angle and γ2 denotes a background (vS/vP )-ratio.
Rewriting this in matrix notation yields

d = WAm + ε, (5.4)

where d are observations, W is the discretized wavelet operator, A, the
discretized reflectivity operator, m the elastic parameters and ε ∼ N (0, σ2I)
an error term which is often assumed to be normally distributed.

In this text, we will explore a novel method for designing a good prior
for m using linear systems of stochastic partial differential equations. We
emphasize, however, that while the approach developed here is designed
with seismic AVA inversion in mind, it is very flexible and can be adopted
in any setting where we have multivariate fields with separate regions where
we would like to incorporate prior information.

All the figures that appear in this text have comparative scales, so that
the colour schemes have the same min-max values in each individual figure.
Hence, the figures makes sense, without cluttering them with additional
colour bars.

5.2 Prior specification

The choice of prior in the inversion problem is of great importance when
it comes to the performance of the inversion. It is vital to choose a “good”
prior to emphasise the properties of m that we know it has. For us, m will
denote the parameters of interest, and it depends on position. We construct
the prior by combining heuristics and expert knowledge of the spatial model.
For a Gaussian prior model, the standard way of specifying the prior model
is through the covariance function, which is often assumed to be stationary
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(see, e.g. Buland and Omre (2003)). A stationary covariance function is
defined by a correlation function that defines how much a point is correlated
with its neighbours and a marginal variance parameter, %2 through

%2c(‖x− y‖A) = Cov(x,y), (5.5)

where H is a positive definite matrix that defines the non-changing anisotropy
of the field. In the Gaussian case, this defines a strictly stationary process if
the mean is constant. There is a list of widely used covariance functions in
Cressie (1993). We will throughout this text assume that the prior is from
the Gaussian family. This family is defined by having density

p(x|Q,µx) = (2π)−n/2 det(Q)1/2 exp

(
−1

2
(x− µx)TQ(x− µx)

)
, (5.6)

where Q = Σ−1 is the precision matrix – the inverse of the covariance
matrix Σ – and µx is the expectation, E(x|µx).

Moreover, the fields m1,m2,m3 are assumed correlated with correlations
specified by well data and/or other local knowledge. In the discretized
domain, this allows for the following decomposition of the total covariance
matrix

Σm = Σspace ⊗Σ0 (5.7)

where Σspace denotes the spatial covariance matrix, typically defined through
a covariance function, and Σ0 the correlations between the elastic parameters.
Since seismic observations typically are on a regular grid, either in 2-D or
3-D, it is possible to let Σspace be circulant by extending the grid by as
many points as is needed to get the correlation below a threshold – typically
0.1 or 0.05. This allows us to use fast Fourier transforms for computing
quantities of interest related to the covariance matrix. This, together with
the Kronecker structure of Σm allows for fast computations. See Buland
et al. (2003); Rue and Held (2005); Gray (2006) for details. This approach
also has very low memory requirements; since Σspace is circulant it may be
stored using only one vector. Hence storage is O(n) and computations (of
any kind) are at most O(n log n), where n is the number of nodes in the
extended lattice.
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5.2.1 SPDE formulation

While this decomposition is sensible, it is also very inflexible and requires
stationarity for low storage requirements. Another way of pursuing good
prior models with fast computations and low memory requirements is
through the use of elliptic (pseudo) differential operators (Ruzhansky and
Turunen (2009), part 2 is an accessible source). The theory of pseudo
differential operators is closely related to Weyl transforms and short-time
Fourier transforms or Gabor transforms (Feichtinger et al. (2008)) and
usual spectral considerations in seismology apply. In this approach, it is
the sparsity of the resulting precision matrices that makes storage and
computation manageable. Recently, Lindgren et al. (2011), studied how to
apply such operators in a statistical setting. They studied a Riesz-Bessel
operator, (−4+κ)α/2 and its relation to computation and Matérn covariance
models (Matérn, 1960; Whittle, 1963). The main lessons are firstly, if

Mκ,αx(s) := (κ2 −4)α/2x(s) =W(s), (5.8)

where W is spatial Gaussian white noise, then x(s) has Matérn type covari-
ance function, i.e.,

ρ(r) =
%2

Γ(α− d/2)2α−d/2−1
(κr)α−d/2Kα−d/2(κ r), (5.9)

%2 =
Γ(α− d/2)

Γ(α)(4π)d/2κ2(α−d/2)
, (5.10)

where Ks is the modified Bessel function of the first kind. Secondly, fast
computations through finite element methods or other discretizations of
the differential operator in (5.8) are available through the induced Markov
properties of the discretisation matrix, Qspace. That essentially means
that Qm = Qspace ⊗Q0 is (very) sparse and with a structure amenable to
Cholesky factorisation. An alternative requirement is that we can construct
the matrix vector product Qmv and det(Qm) relatively quickly through
some iterative or direct procedure, see Simpson (2008); Aune et al. (2012a,c)



5.2. Prior specification 180

When addressing the “stationarity” of the field defined by (5.8), it is only
stationary in the sense of (5.5) if it is defined on the whole of Rk, where
k = 2, 3 in our case – alternatively when the corresponding operator is
defined on a manifold without boundary. In our case the domain on which
(5.5) is defined is merely a subset, namely a square or box in R2 or R3.
Hence boundary effects resulting from boundary conditions may destroy its
direct interpretation in terms of this equation. It is, of course, possible to
specify boundary conditions in such a way that you retain the property in
(5.5), but usually there are more natural physical boundary conditions that
in our opinion improves upon the specification through SPDEs compared
to the model defined by covariance matrices through stationary covariance
functions also in the stationary case.

There are two properties that are desirable to have in the prior model in
AVA inversion. The first is being able to have different correlation length at
different points in space. If a geologist have sound reasons to believe that
a layer is very inhomogeneous, it may warrant putting a lower correlation
length here than in a layer that is thought to be very homogeneous with very
similar properties. Facilitating this is trivial - one merely lets κ2 = κ2(s) vary
with space. The other property that is very desirable to have is anisotropy.
Letting the correlation length vary with direction is very natural given that
the layers are typically not flat but are deformed in a specific way. The
SPDE resulting is the following variant of (5.8):

Mκ,α,sx(s) = (κ2(s)−∇ ·H(s)∇)α/2x(s) =W(s), (5.11)

where H is a 3×3 symmetric positive definite matrix defining the anisotropy
angle and principal correlation length in the three directions defined by the
eigenvectors of the matrix. Realisations of the stationary model and the
non-stationary model is given in Figure 5.1. Here we have illustrated the
“layer” flexibility mentioned above, where the top layer is isotropic, and the
bottom layer is anisotropic with deformation defined by the layer.

To see how this relates to the usual approach, consider Q0 = Σ−1
0 and say

that m1,m2,m3 have equal Matérn covariance models (this includes the
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Figure 5.1: Realisations from stationary model given by (5.8) (left) and non-
stationary model given by (5.11) (right). The non-stationary model has a curved
interface, and the field below the interface has anisotropy directed along the curve,
while above the interface it is almost isotropic.
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widely used exponential and Gaussian models), then the prior given as in
(5.7) is given by the following system of stochastic differential equations:

(Mκ,α,s ⊗Q0)m = W (5.12)

where W is vector Gaussian spatial white noise. The experience in AVA-
inversion is that at least one component of m is worse resolved than the
others, with m1 being resolved the best (see Rabben et al. (2008) or any
other article treating this problem). The obvious next question then is
whether or not (5.12) specifies the best way of lending strength to the least
resolved parameters. If not, can we find better operators on the diagonal
in (5.12), and/or replace the off-diagonals with other operators that have
better properties in the inversion problem? The answer to this question is
not obvious, but we investigate some alternatives and see how they perform
in our inversion problem; the criterion for a better prior in the synthetic
case being that E((mtrue −mnew

est )2) < E((mtrue −mbase
est )2), where mbase

est

is given by the prior model (5.7).

It is possible to replace the operator Mκ,α in (5.12) by more general pseudo-
differential operators. Representations of such operators in terms of its
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symbol are given by

(Kσf)(x) =

∫
Rd
σ(x, ξ)f̂(ξ)e2πix·ξdξ, (5.13)

where f̂ is the Fourier transform of f , and σ is the symbol of the operator.
The symbol can be interpreted as defining the local spectrum of the operator.
A deep theorem given in Rozanov (1977) states that a stationary random field
is Markov (in the continuous sense) if and only if σ−1 is a symmetric positive
polynomial. Hence Markov fields are represented by differential operators.
Now, if the field in question is not Markov, it is possible to approximate
σ by a rational approximation, σ(x, ξ)−1 ≈ σ−1

rat(x, ξ) =
∑k

j=0 aj(x)(2πiξ)j .
To find the ajs one can, for instance, use optimisation techniques. This is
one way to do it, but we suspect that the time-frequency localisation of
such an approach may be suboptimal, and discretization of the non-Markov
operator may be better suited for time-frequency compressing approaches
inducing approximate Markovity. We do not pursue these type of ideas here,
but mention them as they are good candidates for future research.

5.3 Systems of SPDEs – generalising “ Q0”

It is easy to write the form the generalised approach must have. First, for
i, j = 1, . . . , 3, let

Kij = qij(s)(κij(s)−∇ ·Hij(s)∇)αij/2 (5.14)

and define the following system of SPDEs

Km(s) =

 K11 K12 K13

K12 K22 K23

K13 K23 K33

m(s) = W(s) (5.15)

For qij(s) = Q0
ij and Kij = Mκ,α we recover the structure in the previous

section with stationarity. For convenience, we call qij(s) the blending
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coefficients. In Hu et al. (2012), they study the properties of this model in
the stationary case, and give the link to the multivariate Matérn fields in
Gneiting et al. (2010). Any choice of Kij defines a valid Gaussian Markov
random field, both in the continuous sense and when discretized. In our
treatment, we restrict ourselves to the case where αij = α,Hij(s) = H(s)
and κij(s) = κ(s).

5.3.1 Parametrising the blending coefficients

In general, it is both hard to interpret a local precision matrix, Q0(s) =
{qij(s)}ij defining how the individual parts of the multivariate fields is
related to each other at position s, and to ensure that this matrix is positive
definite. It is much more natural to work with the inverse, namely the
correlation matrix defining the local correlation of the fields, Σ0(s) = Q−1

0 (s).
The qij(s) is then simply given by the corresponding matrix elements. In
the AVA inversion problem, information about correlation in different layers
may come from geologists or geophysicists for who may know of phase
changes when going from one layer to another in the different layers, or
other, more complex phenomena. It may also come from well-logs that may
contain information about such matters.

Suppose that Σ0(s) = Σ0,1 for s ∈ S1 ⊂ Rd and Σ0,2 for s ∈ S2 ⊂ Rd.
Then we have a model that has specific correlations in one spatial region of
the multivariate fields, and different correlations in another spatial region.
There is obviously a transition between these two states. If the transition is
discontinuous, this may be seen as a discontinuity of the correlations in the
realisation of the multivariate random field, which may make sense in some
situations.

In order to visualise what this means, we give realisations of the four major
prior models we have discussed. In Figure 5.2, no prior information about
the geometry of the subsurface can be included. In Figure 5.3, geometric
information has been incorporated, but no change in the correlation be-
tween the parameters in space can be included. In Figure 5.4, an example
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Figure 5.2: Stationary model given by (5.7). The field looks the same wherever
we are.
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Figure 5.3: Nonstationary model with fixed Q0. Here the bottom layer has
anisotropy along the curve of the interface, and the correlation between the fields is
fixed through space.
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realisation from the full model is given. Pay attention to the rightmost field
– here the correlation to the other two fields changes from being positive in
the top layer to being negative in the bottom layer.

5.3.2 Geodesic blending

There are obviously many ways of making a smooth transition between Σ0,1

and Σ0,2, but one key consideration is that Σ0(s) must remain positive
definite for all s in some transition domain ST . One thing is certain - it
is not necessarily enough to let the off-diagonals element in Σ0,1 change
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Figure 5.4: Full nonstationary model with varying qij(s) according to (5.20). The
bottom layer has anisotropy along the curved interface, and the correlation between
the fields changes between interfaces. In particular, the rightmost field is positively
correlated to the others above the interface and negatively correlated below the
interface.
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linearly in R3 to the corresponding off-diagonal elements in Σ0,2.

A very natural way of making such a transition between Σ0,1 and Σ0,2 is by
considering geodesics on the manifold of symmetric positive definite matrices,
denoted Pd. The natural metric on this space has a reasonable statistical
interpretation, closely related to information entropy and Kullback-Leibler
divergence, and an accessible account for the theory is given in Bhatia (2007).
Different treatments are given in (Ohara et al., 1996; Hiai and Petz, 2009).
For completeness, we give a small account of the definition and properties
we need related to this manifold. This exposition is based on Hiai and Petz
(2009); Bhatia (2007).

The Boltzmann entropy of the Gaussian distribution (5.6), defining an
information potential, is given by

B(p(x|Q,µx)) = B(Q) =
1

2
log det Σ + C, (5.16)

where C is an arbitrary constant and Σ = Q−1 is any positive definite
matrix. The Riemannian metric based on this information potential is the
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Hessian

gQ(H,M) =
∂2

∂s∂t

∣∣∣∣∣
s=0,t=0

B(Q + sH + tM) = tr QHQK, (5.17)

and where H,S ∈ Sd, the tangent space of symmetric matrices, Sd = {V ∈
Rd×d|V = VT }. This defines the line element

ds =
(

tr
[
(Q−1/2dQQ−1/2)2

])1/2
. (5.18)

Hence, if we have a curve in Pd, i.e. γ : [a, b] → Pd, its length can be
calculated as

L(γ) =

∫ b

a

(
tr
[
(γ(t)1/2γ′(t)γ(t)1/2)2

])1/2
dt (5.19)

A nice property that follows from this is that lengths of curves are invariant
under congruence transformations. That is, if g(t) = XTγ(t)X, L(γ) = L(g).
The geodesic, the curve with minimal length, between two matrices, A and
B can from this be deduced to be

gA,B(t) = A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2, t ∈ [0, 1]. (5.20)

Obviously, gA,B(0) = A and gA,B(1) = B. It is this curve we use when we

go from A = Q0,1 = Σ−1
0,1 to B = Q0,2 = Σ0,2 in different discrete structures

in our prior model, and this ensures that we are within the realm of positive
definite matrices in a natural way. Noting that (A#tB)−1 = A−1#tB

−1,
we see that it is unproblematic to work with precision matrices rather than
covariance matrices. Integrating gA,B(t) yields the distance between the
two matrices,

dPd(A,B) =

∫ 1

0
gA,B(t)dt =

(
tr
[
(log A−1/2BA−1/2)2

])1/2
. (5.21)

A potential drawback of using this strategy is that if Q0,1,Q0,2 are correla-
tion matrices, and what you want is a continuum of correlation matrices,
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gQ0,1,Q0,2
(t) are not correlation matrices for t ∈ (0, 1). It is possible to cor-

rect for this by using geodesics on the sub-manifold of correlation matrices
in Pd. In practice, however, gQ0,1,Q0,2

(t) seem to be very close to being
correlation matrices in most cases. We do not have any counterexamples.

Fuzzy interfaces

In some situations, we may actually have a hard interface in our multivariate
field, but even in this situation, experts may place the interface incorrectly,
which may lead to imprecise interpretation of the field. The geodesic
blending strategy discussed in the previous section gives us a way to handle
this situation in a specific way: the blending range may serve as quantifying
the uncertainty or fuzziness of this interface. This range may then be
estimated based on realisations of the field, possibly requiring a strong prior
for identifiability.

To illustrate this, suppose that an expert says that the interface is as in the
upper left part of Figure 5.5, while the real interface is given on the right.
The bottom illustration in Figure 5.5 shows what the geodesic range should
be in this case (grey area) – it should cover the true interface properly,
showing that there actually is a fair amount of uncertainty in the placement
of the interface. In Section 5.4, we investigate whether this range may be
estimated purely from data or if a strong prior on the range is needed. It
is, of course, possible to combine this idea with procedures for actually
estimating the interface, but, as always, this increases the complexity of
the model that is to be estimated. Additionally, the blend range may easily
confound with potential parameters needed to estimate the actual location
of the interface.

5.3.3 Modified parametrisations

There are many ways to modify the parametrisation described above to
reduce parametrisation demand or incorporate different flexibility. A possible
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Figure 5.5: Illustration of blend range. Guessed interface (left), true interface
(right), blend range illustrated in grey (bottom)
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way to reduce the parametrisation demand further is to do the modeling in
the Cholesky domain. This is a simplification, but it is one we believe should
increase interpretability and possibly estimation properties. To motivate this
approach, consider the following: Suppose that the Cholesky factorisation of
Q0 is given by Q0 = L0L

T
0 , and that Qspace = Bs

1(Qs
2)∗, for some matrices

Bs
1,B

s
2. Generating the matrices {Bs

i}1,2 can for instance be done by using
αs = α/2 in (5.8) and discretizing this operator, but there exist many other
factorisations that may behave in better way for the problem at hand. By
a Kronecker product identity, Qspace ⊗Q0 = (Bs

1 ⊗ L0)((Bs
2)∗ ⊗ LT0 ). The

intuition stemming from this identity carries over to the more general case
in a natural way: Let lij(s) be entry i, j of the Cholesky factor of the
matrix {qij(s)}ij locally, and define locally operators that will correspond
to some square root of its original form in (5.14). It is possible to define
the operators in such a way that we get back (5.15), but this is of minor
concern in practice as long as we get the interpretability we want. This is
reminiscent to the triangular approach mentioned in Hu et al. (2012).

5.4 Parameter estimation and conditional expectation

In order to show that our proposed model is useful with confidence in the
realm of seismic AVA inversion, we must show that estimation of hyper-
parameters in the prior model is feasible and that the conditional expectation,
E(x|y,θ) (here θ denotes model parameters), is better than in the simpler
model. A natural way to see if the hyper-parameters are identifiable is
to simulate from the prior fields and do maximum likelihood estimates on
these. If this works well, one may go one level higher and assume noisy
observations of the form

y = WAx + ε, (5.22)

where W denotes a convolution matrix defined by the wavelet, and A
denotes the reflectivity matrix, and ε ∼ N (0, I). It is also here possible
to do maximum likelihood estimates. For more information on estimating
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this type of model, consult your favourite treatise that discusses latent
(Gaussian) models for, e.g. Rasmussen and Wiliams (2006); Rue and Held
(2005); Cressie and Wikle (2011). In treating this estimation problem, we use
the simpler anisotropic model where the correlation changes from positive to
negative at an interface defined by a straight line. It is, of course, possible
to estimate the geometry as well, but this is beyond the scope of this text.

When estimating the qij , supposing it changes between layers, we must
impose constraints to enforce the interpretability we want – namely that
of its local inverse being the correlation matrix of the multivariate field
at that point. Now, the matrix consisting of ones on its diagonal with
three free parameters off its diagonal uniquely specifies these constraints
through its eigenvalues: they must all be greater than zero. Hence we have
three constraints, depending only on the off-diagonal elements of the local
correlation matrix. The same type of restriction would apply if we were to
use general local 3× 3 covariances instead. In that scenario, however, the
three constraints would depend on six parameters instead of three. In this
section, we will denote the different models as follows

1. Model 1 is the simple stationary Q0 ⊗Qspace as in (5.7)

2. Model 2 is stationary in space using the extended qij(s) parametri-
sation as in Section 5.3.1, equation (5.15), using interpretability con-
straints

3. Model 3 is nonstationary in space and using the extended qij(s)
parametrisation as in Section 5.3.1, equation (5.15). Additionally,
we use a blending of two correlation matrices at the interface, so that
the correlation change is not discontinuous.

5.4.1 Identifiability

We show that the parameters in Σ0,Σ1 are identifiable through simulation.
To do this, we simulate from many multivariate fields and estimate the
parameters by maximum likelihood. If the estimated maximum likelihood
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density – which is estimated from several realisations – is unimodal, the
parameters are identifiable. Suppose that Σ0,Σ1 are given by

Σ0 =

 1 0.7 0.2
1 0.4

1

 , Σ1 =

 1 0.7 -0.9
1 -0.85

1

 , (5.23)

using κ2 = 0.1, and τ2Q, with τ2 = 50. Using 200 realisations from the field,
we get maximum likelihood density estimates for the parameters – these
are illustrated in Figure 5.6. For obtaining the parameters, we used a quasi-
Newton method with initial correlation parameters being zero. Judging
from this figure, since all density estimates are unimodal, all parameters
seem to be identifiable.

In the case where we have noisy observations, we use profile likelihood
to estimate the noise level, σ2, and a quasi-Newton method to estimate
λ2 = τ2σ2, κ2 and the correlation parameters. In this case we used the
correlation matrices

Σ0 =

 1 0.7 0.6
1 0.95

1

 , Σ1 =

 1 0.75 -0.9
1 -0.85

1

 . (5.24)

In Figure 5.7 the corresponding estimates for a hidden field is given. Of
course, it is much more difficult in this situation, which is reflected through
the broad distributional tails in the figure. Overall, however, the estimates
seem to recover the true values quite well. One odd observation is the
bimodality of Σ0(2, 3). We believe it may come from observing rather small
fields, from a 64× 64-grid, and that it may go away for larger ones. The
values over one on the left part of the figure are artefacts coming from using
a kernel smoother for estimating the density.

5.4.2 Conditional expectation

The real test on whether it is wise or not to use this advanced parametrisation
of the model is essentially the reconstruction problem: based on noisy
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Figure 5.6: Maximum likelihood density estimates for correlation parameters, κ2

and τ2 using direct observations of 200 fields
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Figure 5.7: Maximum likelihood density estimates for correlation parameters, κ2

and τ2 using indirect observations of 600 fields
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observations, are we able to reconstruct the original fields with higher
fidelity?

In the following subsections, we give several reconstructions examples, and we
use two observations schemes. The first one is based on identity observations
with i.i.d. noise, and the second is based on the AVA model, giving the
observation matrix WA followed by i.i.d. noise.

Identity observations

First, we present a reconstruction example where the observation matrix
is the identity, followed by iid. noise, and with two signal-to-noise ratios.
One with λ2 = 50 and one with λ2 = 0.5. For these two models, we use the
following true correlation matrices

Σ0 =

 1 0.99 0.99
1 0.99

1

 , Σ1 =

 1 -0.99 -0.99
1 0.99

1

 . (5.25)

In Figure 5.8, we illustrate reconstruction of the first of the three fields with
signal-to-noise ratio 1/50, using a flat interface and identity observations.
I.e. the true field is generated by Model 2, followed by i.i.d. noise. A priori
we believe one of the worst situations for estimating Model 1, as correlations
change very much from structure to structure and the noise level is very high.
The likelihood function in the situation with high noise levels appears very
flat, requiring high accuracy and many iterations in the optimisation scheme
to give consistent estimates. For λ2 = 50, ‖EM2(x|y,θ)− x‖2/‖x‖2 = 0.526
for Model 2 and ‖EM1(x|y,θ) − x‖2/‖x‖2 = 0.674 for Model 1. The first
field is chosen, as for the correlation matrices defined for this, the first
field is the one with changing correlation between interfaces, relative to the
others. The main effect we see in this comparison is that the level of the
reconstructed field using the Model 1 does not completely reach up to the
true levels – we believe this can be attributed to a flattening effect arising
from the sum of the two correlations in the different layers being zero.
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Figure 5.8: Kriging for identity observations with signal-to-noise ratio 1/50. True
parameters (left), kriging using true Model 2 (center), using Model 1 (right)
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In the second comparison we generate fields and observations from Model
2, with λ2 = 0.5. Here a different effect is more prominent – we see that
the reconstructed field on the right in Figure 5.9, i.e. the reconstruction
based on using Model 1, is smoother and does not exhibit as much of the
jaggedy effect of the true surface compared to the field in the middle. A
consistent property when estimating the Model 1 is that κ2 seems to be
underestimated, leading to a larger range and hence smoother reconstruction.
One may think that this smoothing effect of the field on the right in Figure
5.9, but for comparison, we also include reconstructions of the second field,
depicted in Figure 5.10. Here the mentioned smoothing effect is not as
present as in Figure 5.9. Hence, we believe that this is an effect induced by
the changing correlations. In Figure 5.9, ‖EM2(x|y,θ)− x‖2/‖x‖2 = 0.179
for the middle reconstruction, and ‖EM1(x|y,θ)− x‖2/‖x‖2 = 0.269 for the
rightmost one, while in Figure 5.10, ‖EM2(x|y,θ)− x‖2/‖x‖2 = 0.168 and
‖EM1(x|y,θ)− x‖2/‖x‖2 = 0.195.

AVA observations

While the results using the identity observations are convincing in the
extended models’ favour, we also need to investigate the effects where the
observation matrix is the seismic AVA model. In this case, the true fields
are generated by Model 2, and the observations are linear combinations
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Figure 5.9: Kriging for identity observations with signal-to-noise ratio 1/0.5, field
1. True parameters (left), Kriging using Model 2 (center), using Model 1 (right)
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Figure 5.10: Kriging for identity observations with signal-to-noise ration 1/0.5,
field 2. True parameters (left), using true model (center), using model defined by
(5.12) (right)
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Figure 5.11: Observations using identity observations (middle) and the seismic
AVA model (bottom)
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of the various fields at each space location followed by a convolution with
a smooth wavelet and i.i.d noise. We use λ2 = 0.5 and λ2 = 20 in these
examples.

In Figure 5.11, we can see the observations that are generated by this process.
A key feature in the observations is that there occurs some cancellation,
resulting from the fact that they are linear combinations of the underlying
fields. This results in varying signal-to-noise ratios depending on the varying
correlations.

Reconstructing the original multivariate field using the AVA observation
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Figure 5.12: Reconstructed field using the AVA model with signal-to-noise ratio
1/0.5. True parameters (left), kriging using Model 2 (centre), using Model 1 (right).
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scheme is more difficult than for using the identity observation matrix. The
aforementioned cancellation effect is a major contributor to this. Addition-
ally, there does not seem to be a straightforward way of interpreting the
estimated correlation parameters coming from Model 1. In Figure 5.12, we
illustrate the true parameters on the left, with reconstruction using Model 2
in the middle and Model 1 on the right, using a signal-to-noise ratio of 1/0.5.
The effects we see are reminiscent of those using identity observations, but the
smoothing effect is not present here. In this case ‖EM2(x|y,θ)−x‖2/‖x‖2 =
0.461, while ‖EM1(x|y,θ) − x‖2/‖x‖ = 0.728. Reconstruction using the
same model, with a signal-to-noise ratio 1/20 is depicted in Figure 5.13.
No smoothing effect relative to Model 2 is observed here, but predictions
are worse using Model 1, having ‖EM2(x|y,θ) − x‖2/‖x‖2 = 0.762, while
‖EM1(x|y,θ)− x‖2/‖x‖ = 0.863.

Identity observations and non-stationarity

Until this point, we have only studied the effects coming from changing
correlations between interfaces. The model we have described is much richer
than that, providing a flexible way of specifying anisotropy that moves along
geometry of the subsurface. In this situation, we expect the results to be even
more convincing, and we provide one example to cover this situation as well.
In this case, we generate the true field by using Model 3, and we have identity
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Figure 5.13: Reconstructed field using the AVA model with signal-to-noise ratio
1/20. True parameters (left), kriging using Model 2 (centre), using Model 1 (right).
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Figure 5.14: Kriging for identity observations with signal-to-noise ration 1/0.2,
field 1. True parameters (left), kriging using Model 3 (center), Model 1 (right)
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observations followed by i.i.d. noise. The realisations of the true fields are
then similar to the one in Figure 5.4, and we estimate both the simple and
complex model for thereafter giving a reconstruction of the latent field. In
Figure 5.14, we see the reconstructions using Model 3 (center) and Model 1
(right), and the most prominent effect we see is the smoothness differences
in the bottom layer. Reconstruction using Model 1 is rugged and does not
capture the anisotropy of the layer at all, contrasting the reconstruction
using Model 3. On the top layer, on the other hand, the reconstructions are
more comparable. The relative errors are ‖EM3(x|y,θ)− x‖2/‖x‖2 = 0.280
(center) and ‖EM1(x|y,θ)−x‖2/‖x‖2 = 0.382 (right) for the reconstructions
– i.e. predictions are about 37% better using the true model.
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Reconstruction – final remarks

It is also important to note that if we simulate from the simple model, the
parameters here are recovered well by using the parametrisation in Section
5.3.1. This means that the correlations estimated by the simple model are
close to the ones estimated by the more complex model. This, of course,
adds to the usefulness of the model in situations where we do not know in
advance that the correlation changes between interfaces. The uncertainty,
however, is greater, leading to more disparate estimates of the correlations
than when using the simple parametrisation.

5.4.3 Estimating the blend range for fuzzy interfaces

In this section, we will treat all parameter except the blend range as fixed.
The model we will treat is one where the true interface is given as a sine
function, and what we guess is a flat interface. This is exactly the model
which is depicted in Figure 5.5. In our example, we use Model 2 for
constructing the true field, followed by identity observations and i.i.d. noise.

Before actually doing maximum likelihood estimation, we visualise heuris-
tically why it may make sense. In Figure 5.15, we see a sample of the
true model at the top, the true sample minus the guessed model in the
middle, and the true sample minus the blend model with optimal range at
the bottom. The norm of the bottom figure is less than that of the middle
one.

Maximum likelihood estimates for the range is given in Figure 5.16, where
the left figure is the range estimates when the guessed interface is a line and
the true line is a full-period sine with a maximum amplitude of 23 and the
right is a half-period sine with maximum amplitude 23. These estimates are
good in the sense that the range covers the true model as in Figure 5.5.

A comparison of predictions using the guessed interface with no blend and
the one with optimal blend is given in Figure 5.17. Here we see that the
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Figure 5.15: Sample from true model (top), sample from true minus guessed
model (middle), sample from true model minus blend model with optimal range
(bottom).
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Figure 5.16: Estimated blend range using maximum likelihood for 200 samples.
Sine-interface with full period (left), sine-interface with half period (right).
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predictions using optimal blend range are only marginally better than using
the interface with no blend for both interface structures. For the blend
range, however, better prediction is not the goal. The goal here is to get an
idea about how uncertain we are about the interface location, and better
predictions comes as an additional boon, even if the improvement is marginal.

5.5 Conclusions and future work

In this chapter we have showed three things: First, how it is possible
to incorporate information about the geometry of the problem flexibly.
Secondly, how to facilitate changing covariances between elastic parameters
depending on position. Lastly, we have introduced a novel way of specifying
uncertainty related to the position of an interface using the concept of
geodesic blending based on local correlation of the multivariate field. The
first hinges on using SPDEs in order to specify local properties of the fields,
and the second on how systems of SPDEs interrelate depending on position.
The geodesic blending approach is based on the smooth manifold structure
of the set of positive definite matrices. The ideas presented here are not
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Figure 5.17: Performance gain using the blended interface over the guessed
interface with sine-interface with full period (left) and sine-interface with half period
(right). The x-axis is defined by (‖xnoblend−xtrue‖2−‖xoptblend−xtrue‖2)/‖xtrue‖2,
and the y-axis through the corresponding density estimate. This is generated from
the same 200 samples as in the previous figure
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limited to the relatively simple models described here – rather, they may be
used in any spatial inversion problem with a natural geometry where soft
constraints based on expert opinion may be used.

5.6 Addendum: Finite difference disretization – the details

This appendix is devoted to the finite difference scheme we used for dis-
cretizing the elliptic operator in (5.11). We employ a changed notation in
this appendix for convenience, replacing H with A, and we hope that it is
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transparent for readers. For a 2-dimensional field with α = 1, we have

∇ ·
(
a11(x, y) a12(x, y)
a21(x, y) a22(x, y)

)(
ux(x, y)
uy(x, y)

)
+ κ(x, y)u(x, y)

=∇ ·
(
a11(x, y)ux(x, y) + a1,2(x, y)uy(x, y)
a21(x, y)ux(x, y) + a22(x, y)uy(x, y)

)
+ κ(x, y)u(x, y)

=∂x(a11ux + a12uy) + ∂y(a21ux + a22uy) + κu

=ax11ux + a11uxx + ax12uy + a12uyx + ay21ux + a21uxy + ay22uy + a22uyy

=diag(A)∇ · ∇u+ (a12 + a21)uxy + ax11ux + ax12uy + ay22uy + ay21ux (5.26)

where avij , v = x, y denotes differentiation wrt. x or y of the i, j element of
A, depending implicitly on the position. To discretize (5.26), we employ a
finite difference scheme. We define the following finite difference operators

δxu =
1

h
(uji+1 − u

j
i )

δx̂ =
1

h
(uji − u

j
i−1),

where i, j are positions on the grid, with i denoting the x-direction and j
denoting the y-direction. Now, we define the following operators

Λxxu = δx (α11δx̂u) = δx

(
1

h
α11

(
uji − u

j
i−1

))
=

1

h2

(
αi+1,j

11

(
uji+1 − u

j
i

)
− αi,j11

(
uji − u

j
i−1

))
, (5.27)

where

αi,j11 =
1

2

(
ai,j11 + ai−1,j

11

)
αi,j22 =

1

2

(
ai,j22 + ai,j−1

22

)
.

A equivalent expression holds for Λyyu. We define α1,1
kk = a1,1

11 , k = 1, 2. For
the mixed operators we have

Λ+
xyu =

1

2
(δx (a12δyu) + δx̂ (a12δŷu)) (5.28)
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and we have

δx (a12δyu) =
1

h
δx

(
a12u

j+1
i − uji

)
=

1

h2

(
ai+1,j

12 (uj+1
i+1 − u

j
i+1)− ai,j12(uj+1

i − uji )
)

δx̂ (a12δŷu) =
1

h
δx̂

(
a12(uji − u

j−1
i )

)
=

1

h2

(
ai,j12(uji − u

j−1
i )− ai−1,j

12 (uji−1 − u
j−1
i−1 )

)
.

Hence

Λ+
xyu =

1

2h2

((
ai+1,j

12 (uj+1
i+1 − u

j
i+1)− ai,j12(uj+1

i − uji )
)

(5.29)

+
(
ai,j12(uji − u

j−1
i )− ai−1,j

12 (uji−1 − u
j−1
i−1 )

))

For Λ+
yx we reverse the order of the difference operators:

Λ+
yxu =

1

2
(δy(a12δxu) + δŷ(a12δx̂))

=
1

2h2

((
ai,j+1

12 (uj+1
i+1 − u

j+1
i )− ai,j12(uji+1 − u

j
i )
)

+
(
ai,j12(uji − u

j
i−1)− ai,j−1

12 (uj−1
i − uj−1

i−1

))

And the complete discretisation is

(Λxx + Λ+
xy + Λ+

yx + Λyy)u = f(u,W ) (5.30)
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In Samarskii et al. (2002), it is proved that this scheme is convergent. If we
assume that A does not vary in space, we can simplify the scheme;

Λ̂xxu =
1

h2
(a11(uji+1 − u

j
i )− a11(uji − u

j
i−1))

=
1

h2
a11(uji+1 − 2uji + uji−1)

Λ̂yyu =
1

h2
a22(uj+1

i − 2uji + uj−1
i )

Λ̂+
xyu =

1

2h2

((
a12(uj+1

i+1 − u
j
i+1)− a12(uj+1

i − uji )
)

+
(
a12(uji − u

j−1
i )− a12(uji−1 − u

j−1
i−1 )

))
=
a12

2h2

(
2uji + uj+1

i+1 + uj−1
i−1 − u

j
i+1 − u

j+1
i − uj−1

i − uji−1

)
Λ̂+
yxu =

1

2h2

((
a12(uj+1

i+1 − u
j+1
i )− a12(uji+1 − u

j
i )
)

+
(
a12(uji − u

j
i−1)− a12(uj−1

i − uj−1
i−1

))
=
a12

2h2

(
2uji + uj+1

i+1 + uj−1
i−1 − u

j
i+1 − u

j+1
i − uj−1

i − uji−1

)
(

Λ̂+
xy + Λ̂+

yx

)
u =

a12

h2

(
2uji + uj+1

i+1 + uj−1
i−1 − u

j
i+1 − u

j+1
i − uj−1

i − uji−1

)
This corresponds to the following stencil

S = − 1

h2

 a12 −a22 − a12 0
−a11 − a12 2(a11 + a22 + a12) −a11 − a12

0 −a22 − a12 a12

 (5.31)
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