
Noname manuscript No.
(will be inserted by the editor)

Register-Aware Optimizations for Parallel Sparse
Matrix-Matrix Multiplication

Junhong Liu · Xin He · Weifeng Liu ·
Guangming Tan

Received: date / Accepted: date

Abstract General sparse matrix-matrix multiplication (SpGEMM) is a fun-
damental building block of a number of high-level algorithms and real-world
applications. In recent years, several efficient SpGEMM algorithms have been
proposed for many-core processors such as GPUs. However, their implementa-
tions of sparse accumulators, the core component of SpGEMM, mostly use low
speed on-chip shared memory and global memory, and high speed registers are
seriously underutilised. In this paper, we propose three novel register-aware
SpGEMM algorithms for three representative sparse accumulators, i.e., sort,
merge and hash, respectively. We fully utilise the GPU registers to fetch data,
finish computations and store results out. In the experiments, our algorithms
deliver excellent performance on a benchmark suite including 205 sparse ma-
trices from the SuiteSparse Matrix Collection. Specifically, on an Nvidia Pascal
P100 GPU, our three register-aware sparse accumulators achieve on average
2.0x (up to 5.4x), 2.6x (up to 10.5x) and 1.7x (up to 5.2x) speedups over their
original implementations in libraries bhSPARSE, RMerge and NSPARSE, re-
spectively.

Keywords Sparse matrix · Sparse matrix-matrix multiplication · GPU ·
Register

Junhong Liu · Xin He · Guangming Tan
State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chi-
nese Academy of Sciences
University of Chinese Academy of Sciences
E-mail: liujunhong@ncic.ac.cn,hexin2016@ict.ac.cn,tgm@ict.ac.cn

Weifeng Liu
Department of Computer Science, Norwegian University of Science and Technology
E-mail: weifeng.liu@ntnu.no

2 Junhong Liu et al.

1 Introduction

General sparse matrix-matrix multiplication (SpGEMM) operation multiplies
a sparse matrix A with a sparse matrix B and generates a resulting sparse
matrix C. This is an essential building block in a number of applications
such as algebraic multigrid methods [1], shortest path algorithms [2], breadth
first search algorithms [3], and Markov cluster algorithms [4]. It is also an
important kernel in the GraphBLAS standard [5,6]. As a result, fast algorithms
for parallel SpGEMM received much more attention in recent years [7–23].

The most basic way to calculate SpGEMM is the row-by-row method pro-
posed by Gustavson [24] that multiplies each row of A with the whole matrix
B for the corresponding row of C. So the SpGEMM computation becomes a
combination of a number of sparse vector-matrix multiplications, i.e., so-called
sparse accumulators, which is different with the sparse matrix-vector multi-
plication [25–28]. Because the rows are independent of each other, they can
be easily parallelized on modern many-core processors. Since GPUs provide
higher computational power in terms of the theoretical peak floating-point
operations and memory bandwidth, several SpGEMM algorithms, in partic-
ular various sparse accumulators, have been proposed for GPUs [7,8,11,29,
30]. Moreover, to achieve better load balancing, several studies [11,29] create
a couple of tens of bins and then group rows requiring the similar number of
floating point operations into the same bin.

The compute for each row includes traversing nonzeros aij of the ith row
of A and accumulating all nonzeros in the jth rows of B into the ith row of
C. To efficiently accumulate the nonzeros from different rows of B, different
sparse accumulators have been developed. The dense-based [31], sort-based [7,
32], heap-based [29], merge-based [30] and hash-based algorithms [8,11,33]
are representative methods. All methods can be applied to bins of different
sizes. For bins accumulating a small number of nonzeros (in general no more
than 512), the compute can be completed in on-chip shared memory for fast
processing. On the other hand, the longer bins have to be finished in global
memory due to the limited size of the shared memory.

Besides shared memory and global memory, thread registers have proven to
be another very efficient alternative memory level to build fast algorithms. Li
et al. [34,35] pointed out that register reuse and communication are crucial for
more fine-grained GPU execution model. Rawat et al. [36] used GPU registers
for improving various stencil computations. However, for SpGEMM computa-
tion, although the overhead associated with the global memory accesses can
be reduced to a certain extent by performing the shared memory-based sorting
or hashing operation on the sub-matrices [9,30], an efficient utilisation of the
GPU registers for SpGEMM is not foreseeable and the best performance is
not achieved yet.

Motivated by the underuse of registers in recent SpGEMM algorithms, we
in this paper propose three register-aware algorithms, i.e., sort-, merge- and
hash-based, to improve the performance of SpGEMM, in particular for matri-
ces including bins of moderate sizes (i.e., the number of intermediate products

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 3

Val = a b c ed f g

Col = 3 0 2 10 3 0

Ptr = 0 1 3 6 7
b

fd e

a

c

g

Fig. 1: A sparse matrix and its CSR format.

is smaller than 512). Specifically, we use register to load entries from global
memory and store intermediate products calculated into shared memory, then
load them back to registers to work in a load balanced way and to implement
new primitives for fully using various in-register communication schemes.

The main contributions of this paper include proposing three register-aware
SpGEMM algorithms, relying on the sort-, merge- and hash-based sparse accu-
mulators, respectively, and achieving significantly improved performance over
state-of-the-art libraries. Specifically, on an Nvidia Pascal P100 GPU, our
three register-aware sparse accumulators achieve on average 2.0x (up to 5.4x),
2.6x (up to 10.5x) and 1.7x (up to 5.2x) speedups over their original im-
plementations in libraries bhSPARSE [18], RMerge [30] and NSPARSE [11],
respectively.

2 Background

2.1 Sparse Matrix

To avoid storing and calculating zeros, some matrices can be stored in their
sparse form. The most widely used storage scheme is the so-called Compressed
Sparse Row (CSR) format. Figure 1 shows a sparse matrix and its CSR storage.
The CSR format consists of three arrays, namely V al, Col and Ptr. The V al
array stores values, and the Col array stores column indexes of the nonzero
entries. The third array Ptr records the starting storage position (or offset) of
each row in the arrays V al and Col, thus the number of the nonzero entries
in the ith row of matrix can be calculated by Ptr[i + 1]− Ptr[i].

2.2 SpGEMM and Sparse Accumulator

SpGEMM operation C = AB multiplies two sparse matrices A and B, and
obtains a sparse matrix C. Figure 2 gives an example. It can be seen that
SpGEMM can be calculated row-by-row, and can be parallelized easily since
rows are independent of each other. As a result, the SpGEMM operation be-
comes a group of sparse vector-matrix multiplication1 c = aB, where c and a
are sparse vectors of C and A, respectively.

1 This should not be confused with sparse matrix-vector multiplication (SpMV), which
multiplies a sparse matrix with a dense vector and obtains a dense vector.

4 Junhong Liu et al.

x
2

1

3

764

A

=

B

b

fd e

a

c

g

C

1e

4a+6f

1d

6e

1f

3b 3c

6d+7g

2a

Fig. 2: An illustration of the SpGEMM operation.

This c = aB operation is also known as sparse accumulator. Based on the
expression, the computation of each output row c converts to the sum of the
intermediate products, namely the rows of B that are selected and scaled by
the nonzero elements of a. For example, when we compute the last row of C
in Figure 2, we multiply the first element of the last row of A, i.e. a30 = 4, by
the 0th row of B, i.e., b0 = {a}, obtaining one intermediate product c33 = 4a.
Then we multiply the second element of the last row of A, i.e. a32 = 6, by
the 2nd row of B, i.e., b2 = {d, e, f}, and obtain three intermediate products
c30 = 6d, c31 = 6e, and c33 = 6f . Finally, we multiply the last element of
the last row of A, i.e. a33 = 7, by the 3rd row of B, i.e., b3 = {g}, to obtain
c30 = 7g. For getting the last row of C, these intermediate products with the
same column indexes need to be summed up. Specifically, two intermediate
products 6d and 7g are summed up into c30, and 4a and 6f are summed
up into c33. Otherwise the intermediate products without the same column
indexes only need to insert themselves to the final results of c. In this case,
c31 only needs an insertion.

2.3 Three Implementations of Sparse Accumulator

There are three typical algorithms, i.e., sort-based [7,29], merge-based [30],
and hash-based [8,33,11], for implementing sparse accumulator. Also using the
last row in Figure 2 as an example, sort-based sparse accumulator first sorts
the five intermediate products {4a}, {6d, 6g, 6f} and {7g} according to their
column indexes to obtain a sequence {6d, 7g, 6e, 4a, 6f} and calls a segmented
sum primitive to sum up values in the same segment (with the same column
index) to obtain the final results {6d + 7g, 6e, 4a + 6f}.

The merge-based sparse accumulator runs in multiple iterations, and each
iteration vertically merges one element of the resulting sparse vector. In our
case, the first round merges {4a}, {6d} and {7g}, and calculates out {6d+7g}.
In the second round, {4a} and {6e} are merged and {6e} is computed out. In
the final round, {4a} and {6f} are merged into {4a + 6f}.

The hash-based sparse accumulator takes advantage of the hash functions
to fast locate the positions of {4a}, {6d, 6g, 6f} and {7g} and to accumulate
the values with the same column indexes. If conflict occurs, linear probing
can be used for finding out an empty position for inserting the entry and the
procedure will ensure to finish if memory space is enough large.

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 5

X =

c
(1x4)

6d4a 6e 6f 7g

c=aB

a
(1x4)

764

B
(4x4)

a

cb

e fd

g

4

6

7

6e6d+7g 4a+6f

Ctemp value

① expanding ② sorting ③compressing

7g6d 6e 4a 6f

①

②

③

03 1 3 0Ctemp column
00 1 3 3

Fig. 3: Original sort implementation.

a d e f g𝑽𝑽𝑽𝑽𝑽𝑽_𝑩𝑩

3 0 1 3 0𝑪𝑪𝑪𝑪𝑽𝑽_𝑩𝑩

4 6 7𝑽𝑽𝑽𝑽𝑽𝑽_𝑽𝑽

𝑪𝑪𝑪𝑪𝑽𝑽_𝑽𝑽 0 2 3

CSR-format

Global memory data

Shared memory

Register

t0: thread 0
t1: thread 1

Iteration 1①

①

Shared memory Register array

3
1
0

t0

0
3
*

t1

col col

reg-sort()
Register array

T
F
*

4a
6f
*

6d
7g
6e

T
F
T

t0 t1

bit-flag bit-flagvalue value col

0
1
3

t0

col

0
3
*

t1

0 30 1 3col

7g 4a6d 6e 6fvalue

Shared memory

6e6d+7g 4a+6f

reg-sum()

Register array

3 0 1 3 0𝑪𝑪𝑪𝑪𝑽𝑽_𝑩𝑩

𝑪𝑪𝑪𝑪𝑽𝑽_𝑽𝑽 0 2 3

t0 t0 t0t1 t1

Fig. 4: Our reg-sort method.

The three methods are plotted in Figures 3, 5 and 7, respectively, and will
be further explained along with our register-aware optimizations later on.

3 Methodology

3.1 Reg-sort: Register-Aware Sort-based Sparse Accumulator

Sort-based sparse accumulator [7,29] shown in Figure 3 has three phases: ex-
panding, sorting and compressing. The expanding phase first generates the in-
termediate products, namely the rows of B that are selected and scaled by the
nonzero elements of a, stored in two arrays Ctemp column and Ctemp value in
shared memory. The second sorting phase sorts the intermediate products in
the two arrays according to the Ctemp column index in shared memory. The
last compressing phase sums the values with the same column index. It can be
seen that in the original implementations, all operations should be completed
in shared memory, since entries stored in random locations need to compare,
move and sum up.

Fortunately, there are still some patterns can be exploited. Hou et al. [32]
pointed out that sorting network can be implemented more efficiently by using
an N -to-M pattern that uses N threads to sort M entries inside registers. Also,

6 Junhong Liu et al.

Blelloch et al. [37] developed a vectorized method for parallel segmented sum
which is also used in SpMV computation [38]. We utilise the two methods in
GPU registers for our sparse accumulator. To our knowledge, this is for the
first time that the two methods are implemented for GPU registers.

Figure 4 shows five steps of our reg-sort algorithm for completing the
same work in Figure 3, i.e., calculating c = aB for the last row of the matrix
in the Figure 2. We here use two threads to compute, and each thread has three
registers allocated. We in the first step fetch and compute the corresponding
intermediate products {4a}, {6d, 6g, 6f} and {7g} into the shared memory.
In the second step, each thread fetches data from the shared memory to its
own register vectors. Specifically, thread 0 gets column indexes {3, 1, 0}, and
thread 1 gets {0, 3}. Then in the third step we use the N -to-M sorting network
pattern for sorting the data in the register. Here the thread shuffle instructions
are heavily used for comparing and moving entries between threads. After this
step, the two threads store {0, 1, 3} and {0, 3} in their registers, respectively.
Then in the fourth step, the column indexes are stored back to shared memory.
In the fifth step, we load the values to register in a transposed pattern, meaning
that the two threads now have {6d, 7g, 6e} and {4a, 6f}, respectively. To label
which values are to be summed up, we allocate an extra bit-flag register vector
for each thread to support the parallel segmented sum. In this example, the
bit-flag array has a TRUE flag at the beginning of each same column index
segment, and has a FALSE otherwise. So the two threads now have {T, F, T}
and {T, F}, respectively. In the procedure of segmented sum, each thread first
sums up values in the local segments, and communicate with the other thread
to get values across different threads. Finally, the values summed up will stored
in the positions with bit-flag TRUE. After the five steps, those values are stored
to the global memory directly since their positions are already known.

Compared with the original method, the time consuming operations in-
cluding sorting and compression are now all calculated inside registers. Though
shared memory is still needed to use for exchanging data between the above
steps, there is no need to use it for heavy computes and data movement.

3.2 Reg-merge: Register-Aware Merge-based Sparse Accumulator

Figure 5 shows the merge-based sparse accumulator. This method has two
stages. The first stage is dividing the matrix A into small sub-matrices, if the
maximum row length of the first matrix is smaller than the warp size 32, this
row will be performed in the shared memory. The second stage is using one
warp to multiply the sub-matrices by the second input matrix B.

We still take the last row of the matrix in Figure 2 as an example. Suppose
we have four threads in one warp. Since the warp size is larger than the row
length of a, the first stage of dividing the matrix into sub-matrices is not
required. In the second stage, the rows of B corresponding to {4, 6, 7}, i.e.,
{a}, {d, e, f} and {g}, are merged at first. The process of merging is sequential.
Each thread needs to compute the minimum column index of the output row

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 7

X =

c
(1x4)

6e6d+7g 4a+6f

c=aB

a
(1x4)

764

B
(4x4)

a

cb

e fd

g

4

6

7

6e6d+7g 4a+6f

10 3

①

① min(col)

time

Fig. 5: Original merge implementation.

a d e f g𝑽𝑽𝑽𝑽𝑽𝑽_𝑩𝑩

3 0 1 3 0𝑪𝑪𝑪𝑪𝑽𝑽_𝑩𝑩

4 6 7𝑽𝑽𝑽𝑽𝑽𝑽_𝑽𝑽

𝑪𝑪𝑪𝑪𝑽𝑽_𝑽𝑽 0 2 3

CSR-format

Global memory data

Shared memory

Register

t0: thread 0
t1: thread 1

Iteration 1①

①

Shared memory Register array

3

0

t0

0

*

t1

col0 col1

6e6d+7g 4a+6f

3 0 1 3 0𝑪𝑪𝑪𝑪𝑽𝑽_𝑩𝑩

a d e f gVal_𝑩𝑩

6d+7g…

t0 t1

𝑪𝑪𝑪𝑪𝑽𝑽_𝑽𝑽 0 2 3

Val_𝑽𝑽 4 6 7

t0 t1

④

intra-thread-min(col0, col1)

Register variable

0

t0

6d

0

t1

7g

intra_min
intra_val

inter-thread-min(intra_min)

min0

t0

6d

0

t1

7g value

Register variable

⑤

inter-sum(value)

Register variable

Fig. 6: Our reg-merge method.

c, namely {0} in this case. Then the value of the corresponding column index
{0} of each thread is summed up using the register shuffle instructions, and the
first entry {6d+7g} is obtained. Then in the second iteration, the second entry
of c is acquired. After the third iteration, all of the entries of c is obtained. This
method has a disadvantage that the first stage, i.e., dividing the first input
matrix into sub-matrices, consumes relatively high cost in the whole process
of SpGEMM. For reducing the cost of the first stage, we devise reg-merge

method to use more registers to make more work done in each thread. As
follows we illustrate how the register merge-based algorithm computes the
output row c = aB using the threads within a warp.

Figure 6 shows our reg-merge method by using the last row of the case
in Figure 2 of Section 2.2. At first the data is fetched from global memory
to shared memory. The first two elements of a and the corresponding two
rows of B is assigned to thread 0, and thread 1 processes the last element
of a and the corresponding last row of B. In the second step, each thread
fetch two column indexes of its corresponding data from shared memory to
its own register vectors, which lengths are 2 in this example. For thread 1, it
only has one element, so its second value of the register vector is INTMAX.
Then, each thread performs an intra − thread −min(col0, col1) function to
obtain the private minimum column index intra min of each private register

8 Junhong Liu et al.

vector, i.e., 0 for thread 0 and 0 for thread 1 in this case. At the same time, each
thread gets the scaled corresponding intermediate products for each intra min
column index, i.e., 6d for thread 0 and 7g for thread 1. Next, each thread
performs inter−thread−min(intra min) function to get the minimum column
index across the threads at the same warp. The minimum column index across
the two threads are stored to the register variable min of each thread and
the corresponding scaled values are stored to the register variable value. The
inter − thread −min() function is implemented by the GPU register shuffle
instructions and each thread can get the minimum value of each thread at the
same time in the same variable names. After that, in the fifth step, using the
inter− sum(value) function, each thread can obtain the reduction sum of the
two threads, i.e., 6d+ 7g, the first element of the output c. The inter− sum()
function is also implemented by the GPU register shuffle instructions and each
thread can acquire the same reduction sum of the two threads. Using the same
process, we can obtain the other two elements of c, i.e., 6e and 4a + 6f . Then
computing the row of C is completed.

Compared with the original method, the time consuming operations in-
cluding dividing the matrix into sub-matrices in the global memory is now
completely eliminated and all of the intermediate products are calculated in-
side registers.

3.3 Reg-hash: Register-Aware Hash-based Sparse Accumulator

Hash-based sparse accumulator [8,33,11] shown in Figure 7 also has three
phases. The first phase is the hashing operations. It allocates a memory space
of the size of the number of intermediate products, namely the rows of B that
are selected and scaled by the nonzero elements of a, as the hash table. It
uses the column index of these intermediate products as the key, and is able
to leverage different hash methods to implement SpGEMM. For the values
with the same key, the scaled values need to be summed together to get one
entry of the output c. All of these operations are completed in the shared
memory using the atomic function atomicCAS() to sequentially access the
same position of the hash table for each thread. After the hash operations, it
needs to shrink the hash table to a dense state, i.e., putting the three effective
values {4a + 6f, 6e, 6d + 7g} to the first three positions of the hash table as
shown in Figure 7. At last, sort the values of these elements of c according
to their column indexes to obtain the final compressed storage format. In
this case, we take two threads to accomplish the computing of the row. The
hash operations need four iterations: 1) thread 0 puts {4a} and thread 1 puts
nothing to the hash table; 2) thread 0 puts {6d} and thread 1 puts {6f} to
the hash table; 3) thread 0 puts {6f} and thread 1 puts nothing to the hash
table; 4) thread 0 puts {7g} and thread 1 put nothing to the hash table.

In our register-based hash reg-hash algorithm, we optimize the data allo-
cations of each thread, rather than implementing the hash table in registers.
Also, we take the example of c = aB in Section 2.2 to illustrate the process

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 9

X =

c
(1x4)

04a+6f 6e 0 6d+7g

c=aB

a
(1x4)

764

B
(4x4)

a

cb

e fd

g

4

6

7

6e6d+7g 4a+6f

Hash table val

① hash: key = col ② shrinking ③sorting

①

②

③

-13 1 -1 0Hash table col

6e4a+6f 6d+7g 0 0

13 0 -1 -1

Fig. 7: Original hash implementation.

a d e f g𝑽𝑽𝑽𝑽𝑽𝑽_𝑩𝑩

3 0 1 3 0𝑪𝑪𝑪𝑪𝑽𝑽_𝑩𝑩

4 6 7𝑽𝑽𝑽𝑽𝑽𝑽_𝑽𝑽

𝑪𝑪𝑪𝑪𝑽𝑽_𝑽𝑽 0 2 3

CSR-format

Global memory data

Shared memory

Register

t0: thread 0
t1: thread 1

Iteration 1①

①

Shared memory Register array

3
1
0

t0

0
3
*

t1

③

* * * * *𝒉𝒉𝑽𝑽𝒉𝒉𝒉𝒉_𝒕𝒕𝑽𝑽𝒕𝒕𝑽𝑽𝒕𝒕

Shared memory

④3 * 0 * 1𝒉𝒉𝑽𝑽𝒉𝒉𝒉𝒉_𝒕𝒕𝑽𝑽𝒕𝒕𝑽𝑽𝒕𝒕

Shared memory

t0: nnzC=2 t1: nnzC=1

nnzC=3 ⑤

3 0 1 3 0𝑪𝑪𝑪𝑪𝑽𝑽_𝑩𝑩

𝑪𝑪𝑪𝑪𝑽𝑽_𝑽𝑽 0 2 3

t0 t0 t0t1 t1

inter-sum(nnzC)

Fig. 8: Our reg-hash method.

of our reg-hash algorithm, as shown in Figure 8. In this case, we use two
threads to compute c = aB. Each thread has a register vector with the size
of three. At first, we load data from the input matrices to the shared memory
as shown in the first step of Figure 8. After that, each thread fetches data
from the shared memory to its own register vectors alternately. Thread 0 gets
the column index data {3}, {1}, and {0} to its register vectors, and thread 1
gets the column index data {0} and {3} to its register vectors. The computing
of the indexes is a bit more complex. We need to compute both the index of
the shared memory tables and the register arrays precisely. In the third steps,
the hash table shared by the two threads in the shared memory is initialized.
Then, each thread fetches the data from its register arrays to perform the hash
operations of the hash table in the shared memory. The hash operations need
three iterations: 1) thread 0 puts{3} and thread 1 puts {0} to the hash table;
2) thread 0 puts {1} and thread 1 puts {3} to the hash table; 3) thread 0 puts
{0} and thread 1 puts nothing to the hash table. The number of times of ac-
cessing shared memory is less than that of the original hash method, leading
to the performance improvement. Each thread has its private register vari-
able nnzC to record the partial number of nonzeros of the output c for each
thread. For the hash operations, the nnzC with the same key of each thread,
namely the same column index, is only accumulated once for each threads. We
use the atomic function atomicCAS() to guarantee accuracy of parallel hash
operations. At last, in the fifth step, the same function inter − sum(nnzC)

10 Junhong Liu et al.

of reg-merge is performed by each thread to obtain the total sum of partial
number of nonzeros of the output c, i.e., nnzC of each threads. Finally, the
real size of c is acquired. We use the reg-hash to compute the size of the
output matrix.

Compared with the original hash method, though shared memory is still
needed to use for hash operations, the total number of shared memory hash
operation can decrease significantly, since now the intermediate products are
well organized and accumulated into their final positions in a load balanced
way.

3.4 Implementation Details

For the computation of each row of C, the numbers of the floating point oper-
ations, twice the number of intermediate products, can vary greatly because of
the various sparsity structures of the two input matrices A and B. To achieve
load balanced calculation on GPUs, we create a couple of bins and then groups
rows requiring the similar number of floating point operations into the same
bin. Here we focus on the rows having intermediate products between 0 to 512.
We divide those rows into nine bins according to their intermediate products.
The number of intermediate products is 0 − 2 for bin0, 3 − 4 for bin1, 5 − 8
for bin2, 9− 16 for bin3, 17− 32 for bin4, 33− 64 for bin5, 65− 128 for bin6,
129− 256 for bin7, and 257− 512 for bin8.

The register number for each method used in each thread is different. For
reg-sort and reg-hash, each thread uses the register vector with the size of
8. For reg-merge, each thread can use the register vector with the size of 2,
4, 8, 16 or 32, depending on the length of the rows of the first input matrix of
SpGEMM.

4 Evaluation

The experimental evaluation is conducted on an Nvidia Pascal P100 GPU
(3584 CUDA cores and 16GB HBM2 memory) hosted by an Intel Xeon server.
The programs are all compiled by CUDA v8.0 and Intel C/C++ compiler v18.

As for the benchmark suite, we first select 956 enough large matrices used
in our previous work [16] (with the number of nonzeros no less than 100K and
no more than 200M) from in total 2757 sparse matrices in the SuiteSparse
Matrix Collection [39]. For SpGEMM operation, we also calculate C = A2

to align with the existing work [7,11,29,30]. Furthermore, to clearly show
the effectiveness of the participating algorithms, we select 205 matrices which
with over 95% of their rows are small enough (calculating no more than 512
intermediate products in the rows of C) to use on-chip memories.

Our algorithms are compared with three state-of-the-art SpGEMM meth-
ods in bhSPARSE [29], RMerge [30] and NSPARSE [11] on GPU. Figures 9, 10
and 11 show the overall performance (their left side) and kernel performance
(their right side) of the three methods and our register-aware optimization

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 11

1 2 3 4 5 6 7
0

1

2

3

4

Compression rate

G
F

LO
P

s

Sort
Reg-sort

(a) Overall performance.

1 2 3 4 5 6 7
0

2

4

6

Compression rate

S
p

ee
d

u
p

s

(b) Kernel speedups.

Fig. 9: The performance and speedups of the reg-sort method.

1 2 3 4 5 6 7
0

5

10

15

Compression rate

G
F

LO
P

s

Merge
Reg-merge

(a) Overall performance.

1 2 3 4 5 6 7
0

5

10

15

Compression rate

S
p

ee
d

u
p

s

(b) Kernel speedups.

Fig. 10: The performance and speedups of the reg-merge method.

1 2 3 4 5 6 7
0

2

4

6

8

10

Compression rate

G
F

LO
P

s

Hash
Reg-hash

(a) Overall performance.

1 2 3 4 5 6 7
0

2

4

6

Compression rate

S
p

ee
d

u
p

s

(b) Kernel speedups.

Fig. 11: The performance and speedups of the reg-hash method.

methods, respectively. The overall performance is evaluated in terms of GFLOPs
(floating point operations per second) in double-precision, and the kernel per-
formance is shown in speedups of our sparse accumulators over their original
implementations. The x-axis is the factor compression rate denoting the ratio
of the number of intermediate products and the number of nonzeros of the
output matrix C.

12 Junhong Liu et al.

In Figures 9a, 10a and 11a, it can be seen that the performance of our
register-aware optimization in general brings better performance over bhSPARSE,
RMerge and NSPARSE. We obtain average 1.3x (up to 2.0x), 1.1x (up to 5.4x),
and 1.2x (up to 2.7x) speedups for the overall performance over the three
methods, respectively. In the reg-sort method, the speedups mostly come
from the fast in-register implementations of sorting network and segmented
sum. Matrices Baumann, ncvxqp3, and wathen120 obtain the speedups of 2.0x,
1.9x and 1.9x, respectively. For reg-merge, the improvements of the perfor-
mance mainly comes from assigning more work to each thread, and reducing
the expensive global and shared memory accesses. Matrices netherlands osm,
road central and great-britain osm obtain 5.4x, 5.2x, and 4.7x speedups, re-
spectively. As for reg-hash, the improvement of the performance is most
from more balanced workload when performing the hash operations. Matrices
ASIC 100ks, al2010 and id2010 obtain the speedups of 2.7x, 2.3x, and 2.3x,
respectively.

Figures 9b, 10b, and 11b compare the pure performance of sparse accu-
mulators including load and store cost between global memory and on-chip
memory and compute overhead. In other words, it is the execution time of all
CUDA kernels to finish an SpGEMM operation. Overall, our three implemen-
tations obtain average speedups 2.0x (up to 5.4x), 2.6x (up to 10.5x), and 1.7x
(up to 5.2x) over bhSPARSE, RMerge and NSPARSE, respectively. Those ker-
nel speedups are higher than the full SpGEMM, since the complete SpGEMM
algorithm also includes binning, memory allocation and possible data copy
overhead. In detail, for reg-sort, matrices Baumann, ch7-8-b5, ncvxqp3 ob-
tain the highest speedups 5.4x, 4.4x, and 4.3x, respectively. For reg-merge,
matrices europe osm, road usa, road central obtain the highest speedups 10.5x,
10.4x, and 9.3x, respectively. For reg-hash, matrices id2010, al2010, co2010
obtain the highest speedups 5.2x, 5.2x, and 5.1x, respectively. It is also worth
to note that kernel performance of reg-sort and reg-merge is almost con-
stantly better than the original method, while reg-hash is not always better
than the original one. The reason is that some matrices already bring rather
good load balancing and adequate floating point operations. Thus the load
balanced computations may lead to lower performance.

5 Related Work

There has been much work focusing on parallel SpGEMM algorithms. Bell
et al. [1] developed the ESC (expanding, sorting and compressing) method,
and Dalton et al. further improved it for better locality [7] and better load
balancing [40]. Liu and Vinter [29] grouped rows into 37 bins and utilized
various sorting algorithms, i.e., heap sort, bitonic sort and mergepath sort,
for different bins. Gremse et al. [30] merged rows of B in a vertical way.
Demouth [8] for the first time used hash table for sparse accumulator, and both
Pham et al. [33] and Nagasaka et al. [11] took load balancing into consideration
in hash methods. Deveci et al. [23] used hash methods on KNL and GPUs.

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 13

Moreover, Buluç et al. [12], Azad et al. [13], Ballard et al. [14], Akbudak et
al. [10] and Nagasaka et al. [20] proposed various novel SpGEMM algorithms
for many-core x86 processors and distributed memory machines. Besides, for
the sparse matrix problem, the memory bandwidth is also an important factor
to analyse [41].

Additionally, GPU registers have been proven to be an effective tool
for implementing faster execution models and algorithms. For example, Li et
al. [34,35] pointed out that register reuse and communication are crucial for
more fine-grained GPU execution model. Rawat et al. [36] demonstrated that
various stencil computations can be accelerated through GPU registers. Xie et
al. [42] designs a framework to allocate the registers by analyzing the lifetime
of variables.

In spite of the previous efforts, register-aware optimization is still not well
studied for SpGEMM algorithms. Compared to the existing literature, our
work presented in this paper exploits GPU registers to improve three repre-
sentative sparse accumulators, i.e., sort, merge and hash, in various SpGEMM
algorithms and achieves significant speedups on modern GPUs.

6 Conclusion

We in this paper have proposed three register-aware optimization techniques
to improve performance of SpGEMM. The three newly implemented sparse
accumulators covered representative parallel primitives, i.e., sort, merge and
hash, and demonstrated significant speedups over their original implementa-
tions. To our knowledge, this is for the first time that registers are fully utilised
for accelerating SpGEMM on massively parallel architectures. In the future,
we would like to explore the relationship between the features of sparse matri-
ces and the three different spare accumulators, and exploit the data reuse of
SpGEMM [43]. Furthermore, we are interested in performing our algorithms
to the real world applications using existing autotuning technologies [44,45].

Acknowledgements We would like to express our gratitude to all reviewers constructive
comments for helping us polishing this paper. This work is supported by the National
Key Research and Development Program of China (2017YFB0202105, 2016YFB0201305,
2016YFB0200803, 2016YFB0200300), National Natural Science Foundation of China, under
grant no. (61521092, 91430218, 31327901, 61472395, 61432018), and the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie project
(Grant No. 752321).

References

1. Bell, N., Dalton, S., Olson, L.: Exposing fine-grained parallelism in algebraic multigrid
methods. SIAM Journal on Scientific Computing 34(4) (2012) C123–C152

2. D’Alberto, P., Nicolau, A.: R-kleene: A high-performance divide-and-conquer algorithm
for the all-pair shortest path for densely connected networks. Algorithmica 47(2) (2007)
203–213

14 Junhong Liu et al.

3. Zhang, F., Lin, H., Zhai, J., Cheng, J., Xiang, D., Li, J., Chai, Y., Du, X.: An adaptive
breadth-first search algorithm on integrated architectures. The Journal of Supercom-
puting (Aug 2018)

4. Azad, A., Pavlopoulos, G.A., Ouzounis, C.A., Kyrpides, N.C., Buluç, A.: Hipmcl: a
high-performance parallel implementation of the markov clustering algorithm for large-
scale networks. Nucleic Acids Research 46(6) (2018) e33

5. Mattson, T.G., Yang, C., McMillan, S., Buluç, A., Moreira, J.E.: GraphBLAS C API:
Ideas for future versions of the specification. In: IEEE High Performance Extreme
Computing Conference (HPEC). (2017)

6. Davis, T.A.: Graph algorithms via SuiteSparse: GraphBLAS: triangle counting and
k-truss. In: IEEE High Performance Extreme Computing Conference (HPEC). (2018)

7. Dalton, S., Olson, L., Bell, N.: Optimizing sparse matrix-matrix multiplication for the
gpu. ACM Trans. Math. Softw. 41(4) (October 2015) 25:1–25:20

8. Demouth, J.: Sparse matrix-matrix multiplication on the gpu. GTC ’12 (2012)

9. Kunchum, R., Chaudhry, A., Sukumaran-Rajam, A., Niu, Q., Nisa, I., Sadayappan,
P.: On improving performance of sparse matrix-matrix multiplication on gpus. In:
Proceedings of the International Conference on Supercomputing. ICS ’17 (2017) 14:1–
14:11

10. Akbudak, K., Aykanat, C.: Exploiting locality in sparse matrix-matrix multiplication
on many-core architectures. IEEE Transactions on Parallel and Distributed Systems
28(8) (Aug 2017) 2258–2271

11. Nagasaka, Y., Nukada, A., Matsuoka, S.: High-performance and memory-saving sparse
general matrix-matrix multiplication for nvidia pascal gpu. In: 2017 46th International
Conference on Parallel Processing (ICPP). (Aug 2017) 101–110

12. Buluç, A., Gilbert, J.R.: Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM Journal on Scientific Computing 34(4) (2012)
C170–C191

13. Azad, A., Ballard, G., Buluç, A., Demmel, J., Grigori, L., Schwartz, O., Toledo, S.,
Williams, S.: Exploiting multiple levels of parallelism in sparse matrix-matrix multipli-
cation. SIAM Journal on Scientific Computing 38(6) (2016) C624–C651

14. Ballard, G., Druinsky, A., Knight, N., Schwartz, O.: Hypergraph partitioning for sparse
matrix-matrix multiplication. ACM Trans. Parallel Comput. 3(3) (December 2016)
18:1–18:34

15. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algorithms 1(1)
(July 2005) 2–13

16. Liu, J., He, X., Liu, W., Tan, G.: Register-based implementation of the sparse general
matrix-matrix multiplication on gpus. In: Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP ’18 (2018)
407–408

17. Liu, W.: Parallel and Scalable Sparse Basic Linear Algebra Subprograms. PhD thesis,
University of Copenhagen (2015)

18. Liu, W., Vinter, B.: A framework for general sparse matrix-matrix multiplication on
gpus and heterogeneous processors. Journal of Parallel and Distributed Computing
85(C) (2015) 47–61

19. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and Dis-
tributed Computing 74(12) (2014) 3202 – 3216

20. Nagasaka, Y., Matsuoka, S., Azad, A., Buluç, A.: High-performance sparse matrix-
matrix products on intel knl and multicore architectures. In: Proceedings of the 47th
International Conference on Parallel Processing Companion. ICPP ’18 Workshop (2018)
34:1–34:10

21. Gremse, F., Kpper, K., Naumann, U.: Memory-efficient sparse matrix-matrix multiplica-
tion by row merging on many-core architectures. SIAM Journal on Scientific Computing
40(4) (2018) C429–C449

22. Buluç, A., Gilbert, J.R.: Challenges and advances in parallel sparse matrix-matrix
multiplication. In: 2008 37th International Conference on Parallel Processing. (Sept
2008) 503–510

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication 15

23. Deveci, M., Trott, C., Rajamanickam, S.: Multithreaded sparse matrix-matrix mul-
tiplication for many-core and gpu architectures. Parallel Computing 78 (2018) 33 –
46

24. Gustavson, F.G.: Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Trans. Math. Softw. 4(3) (September 1978) 250–269

25. Zhang, F., Wu, B., Zhai, J., He, B., Chen, W.: FinePar: Irregularity-Aware Fine-
Grained Workload Partitioning on Integrated Architectures. In: Proceedings of the 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
(2017) 27–38

26. Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running behaviors
on integrated cpu/gpu architectures. IEEE Transactions on Parallel and Distributed
Systems 28(3) (March 2017) 905–918

27. Tan, G., Liu, J., Li, J.: Design and implementation of adaptive spmv library for multicore
and many-core architecture. ACM Trans. Math. Softw. 44(4) (August 2018) 46:1–46:25

28. Liu, W., Vinter, B.: CSR5: An efficient storage format for cross-platform sparse matrix-
vector multiplication. In: Proceedings of the 29th ACM on International Conference on
Supercomputing. ICS ’15 (2015) 339–350

29. Liu, W., Vinter, B.: An efficient gpu general sparse matrix-matrix multiplication for
irregular data. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. IPDPS ’14 (May 2014) 370–381

30. Gremse, F., Höfter, A., Schwen, L.O., Kiessling, F., Naumann, U.: Gpu-accelerated
sparse matrix-matrix multiplication by iterative row merging. SIAM Journal on Scien-
tific Computing 37(1) (2015) C54–C71

31. Gilbert, J., Moler, C., Schreiber, R.: Sparse matrices in matlab: Design and implemen-
tation. SIAM Journal on Matrix Analysis and Applications 13(1) (1992) 333–356

32. Hou, K., Liu, W., Wang, H., Feng, W.c.: Fast segmented sort on gpus. In: Proceedings
of the International Conference on Supercomputing. ICS ’17 (2017) 12:1–12:10

33. Anh, P.N.Q., Fan, R., Wen, Y.: Balanced hashing and efficient gpu sparse general
matrix-matrix multiplication. In: Proceedings of the 2016 International Conference on
Supercomputing. ICS ’16 (2016) 36:1–36:12

34. Li, A., Song, S.L., Liu, W., Liu, X., Kumar, A., Corporaal, H.: Locality-aware cta
clustering for modern gpus. In: Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’17 (2017) 297–311

35. Li, A., Liu, W., Wang, L., Barker, K., Song, S.L.: Warp-consolidation: A novel execution
model for gpus. In: Proceedings of the 2018 International Conference on Supercomput-
ing. ICS ’18 (2018) 53–64

36. Rawat, P.S., Rastello, F., Sukumaran-Rajam, A., Pouchet, L.N., Rountev, A., Sadayap-
pan, P.: Register optimizations for stencils on gpus. In: Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP ’18
(2018) 168–182

37. Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented Operations for Sparse Matrix
Computation on Vector Multiprocessors. Technical report, CMU (1993)

38. Liu, W., Vinter, B.: Speculative segmented sum for sparse matrix-vector multiplication
on heterogeneous processors. Parallel Computing 49(C) (2015) 179–193

39. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1) (December 2011) 1:1–1:25

40. Dalton, S., Baxter, S., Merrill, D., Olson, L., Garland, M.: Optimizing sparse matrix op-
erations on gpus using merge path. In: 2015 IEEE International Parallel and Distributed
Processing Symposium. IPDPS ’15 (May 2015) 407–416

41. Li, A., Liu, W., Kristensen, M.R.B., Vinter, B., Wang, H., Hou, K., Marquez, A., Song,
S.L.: Exploring and analyzing the real impact of modern on-package memory on hpc
scientific kernels. SC ’17 (2017) 26:1–26:14

42. Xie, X., Liang, Y., Li, X., Wu, Y., Sun, G., Wang, T., Fan, D.: Enabling coordinated
register allocation and thread-level parallelism optimization for gpus. In: 2015 48th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). (Dec
2015) 395–406

16 Junhong Liu et al.

43. Yuan, L., Liu, J., Luo, Y., Tan, G.: Locality of computation for stencil optimization. In
Carretero, J., Garcia-Blas, J., Ko, R.K., Mueller, P., Nakano, K., eds.: Algorithms and
Architectures for Parallel Processing, Cham, Springer International Publishing (2016)
449–456

44. Liu, J., Tan, G., Luo, Y., Li, J., Mo, Z., Sun, N.: An autotuning protocol to rapidly
build autotuners. ACM Trans. Parallel Comput. (2018)

45. Li, J., Tan, G., Chen, M., Sun, N.: SMAT: An input adaptive auto-tuner for sparse
matrix-vector multiplication. In: Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’13 (2013) 117–126

