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Abstract

We invert prestack seismic amplitude data to �nd rock properties of a

vertical pro�le of the earth. In particular we focus on lithology, porosity

and �uid. Our model includes vertical dependencies of the rock proper-

ties. This allows us to compute quantities valid for the full pro�le such as

the probability that the vertical pro�le contains hydrocarbons and volume

distributions of hydrocarbons. In a standard point wise approach, these

quantities can not be assessed. We formulate the problem in a Bayesian

framework, and model the vertical dependency using spatial statistics.
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The relation between rock properties and elastic parameters is established

through a stochastic rock model, and a convolutional model links the re-

�ectivity to the seismic. A Markov chain Monte Carlo (MCMC) algorithm

is used to generate multiple realizations that honours both the seismic data

and the prior beliefs and respects the additional constraints imposed by

the vertical dependencies. Convergence plots are used to provide quality

check of the algorithm and to compare it with a similar method. The im-

plementation has been tested on three di�erent data sets o�shore Norway,

among these one pro�le has well control. For all test cases the MCMC al-

gorithm provides reliable estimates with uncertainty quanti�cation within

three hours. The inversion result is consistent with the observed well data.

In the case example we show that the seismic amplitudes make a signi�-

cant impact on the inversion result even if the data have a moderate well

tie, and that this is due to the vertical dependency imposed on the lithol-

ogy �uid classes in our model.The vertical correlation in elastic parameters

mainly in�uences the upside potential of the volume distribution.

The approach is best suited to evaluate a few selected vertical pro�les

since the MCMC algorithm is computer demanding.

Keywords: inversion, noise, numerical study, rock physics, seismics

1 Introduction

Seismic data is a key factor for identifying and risking prospects. Structural

images from seismic data are the main source of information to map prospects

and leads in the oil companies. The structure alone is however not su�cient

for detection of hydrocarbon (HC) presence. Seismic amplitudes and ampli-

tude variations with o�set provide additional information about lithology-�uid

(LF) type and reservoir quality. Standard AVO methods, which only consider

a single contrast, neglect multilayered interference limiting their applicability.
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Figure 1: Cumulative volume curves P (HC volume > v) for di�erent v. Red

curve: No spatial correlation is modeled, Black curve: Spatial correlation is

modeled both in LF classes and elastic parameters.

Other methods which link seismic amplitude data to rock-physical properties

are point-wise methods. These models compute the probabilities for the di�er-

ent LF classes in each cell, but not the spatial dependence between LF classes in

neighboring cell. The point-wise methods are therefore not suitable to separate

the probability of HC presence and HC volumes. We demonstrate this in Figure

1. Figure 1 contains volume curves for two models that di�ers in the spatial

dependency in facies model. The volume curves displays the probability for ob-

serving a volume larger than the volume given at the �rst axis. For comparison

both models relate to the same pointwise probabilities such that the probability

of a LF-class is identical in all cells. The only di�erence between the models
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is the spatial dependence. To highlight the importance of the di�erence, as-

sume that a thickness of 20m is required for a success case. In the independent

model the probability of success is thus virtually zero, whereas the spatially

dependent model has a chance of success of about 20% and an upside as large

as 40m thickness. This demonstrate the limitations of point-wise methods and

the importance of modeling the spatial dependence.

In the exploration phase it is important to utilize all available knowledge to

improve predictions and reduce risk prior to drilling. Knowledge is however

limited and uncertain. To integrate di�erent types of information, we adopt

the Bayesian approach, see Duijndam (1988a,b); Ulrych et al. (2001); Scales

and Tenorio (2001). The Bayesian solution is the posterior distribution of the

LF classes and elastic properties gived the seismic data. For some inversion

problems it is possible to characterize the posterior distribution analytically, but

most often it is given by a Monte Carlo representation which is a large number

of models drawn at random from the posterior distribution. The computational

cost required to draw models from the posterior distribution will then be the

limiting factor. In a practical setting, any Bayesian approach will therefore be

a trade of between complexity in the prior and likelihood and our ability to

produce realizations from the posterior distribution within a limited time span.

The presented method focuses on the exploration setting, and is best suited for

detection of new hydrocarbon reservoirs in the vicinity of existing wells.

A vertical pro�le of the earth is discretized into cells of constant properties and

the LF class and rock-physical properties in these cells are the parameters of

interest. In Buland and Omre (2003) vertical dependencies in elastic parameters

are considered, in our work this is extended to include vertical dependencies for

all rock properties elastic and categorical. In particular we use a prior model

for the lithology and �uid class based on a Markov process, see Krumbein and
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Dacey (1969). Previous work that has considered this type of LF-model, e.g.

Larsen et al. (2006) and Hammer and Tjelmeland (2011), does not account for

the correlation of elastic parameters within the same LF-class. The use of in-

dependence assumption is unrealistic since rock physical properties in the same

sand interval will tend to be more similar than if di�erent sand intervals are con-

sidered. The volume within a sand interval will always have larger uncertainty

in a model where the porosity is correlated than in an independent model. The

Markov process gives a larger set of plausible lithology combinations in compar-

ison to the approach of Gunning and Glinsky (2004) which specify the relative

position of lithologies prior to inversion.

A contribution of the current paper is that the more realistic Markov prior

model is formulated such that the computational complexity drawing from the

posterior distribution is not increased. The current work is along the lines of

Kjønsberg et al. (2010). In particular in terms of the goal of the analysis. From

a modeling perspective both approaches include vertical dependency in rock

properties within one lithology, but di�er with respect to the prior distribution

for LF-classes. The Markov process used in the current approach gives a simple

parametrization of the LF prior model and does not require that the target is

positioned in the central part of the inversion region.

We consider pre-stack amplitude data and focus on LF classes and rock-physical

properties. We use a stochastic rock physics model to create a link between the

LF-class, porosity and elastic parameters, see Castagna et al. (1993); Mavko and

Mukerji (1998); Avseth et al. (2005). To link the elastic parameters to the seis-

mic, we use the likelihood model introduced in Buland and Omre (2003), but as

explained above we have a more complex prior distribution for our parameters.

Related methods which consider the problem of reservoir characterization are
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Haas and Dubrule (1994); Torres-Verdin et al. (1999); Contreras et al. (2005);

Merletti and Torres-Verdin (2006). In these models the presence of lithologies

are known and the spatial fractions of the facies are often �xed. The problem

is to distribute a known set of lithologies in the reservoir region, in correspon-

dence with the seismic data. The work of Bosch et al. (2007, 2009) apply Monte

Carlo methods to do seismic amplitude inversion coupled with a petrophysi-

cal and geostatistical model. The problem faced in the exploration setting is

that a major part of the uncertainty in the inversion is to determine which LF

combinations are present in a prospect.

In the current paper we draw models from the posterior distribution by using a

Markov chain Monte Carlo algorithm (Liu, 2001). The algorithm in this paper

is a modi�cation of the algorithm in Hammer and Tjelmeland (2011). Larsen

et al. (2006) presents an alternative algorithm which is much faster, but only

draw from an approximation to the posterior distribution. Buland et al. (2008)

and Ulvmoen and Hammer (2009) show that the approximative algorithm loose

a signi�cant amount of the information content in the posterior distribution

and in particular for properties involving the whole pro�le. This motivates for

simulating from the posterior distribution without approximations. The pa-

pers Hammer and Tjelmeland (2011) and Ulvmoen and Hammer (2009) discuss

statistical aspects in the simulation algorithm. We apply the methodology on

three earth pro�les o�shore Norway and discuss the impact of the correlation

structure have on the volume distribution of real data. We also compare the

results obtained by Kjønsberg et al. (2010) both in terms of risk updates and

performance of the Markov chain Monte Carlo algorithm.
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2 Methodology

To make general assertions regarding the full vertical pro�le, we need to model

the full set of dependencies between rock properties. A vertical pro�le of the

earth is discretized into n cells where the rock properties of a cell represent the

average property of this cell. We refer to the vertical positions along the pro�le

with the index i ∈ (1, . . . , n). In our work we use a Markov process to model the

vertical dependencies for lithology��uid (LF) classes and elastic parameters.

2.1 Lithology-�uid distribution

The LF-class is divided into discrete categories e.g. shale, brine-sand and

hydrocarbon-sand. Each cell in a vertical pro�le will belong to one LF-class,

thus the cell thickness de�nes the scale of the LF-class. Characteristics of a ver-

tical pro�le are the relative occurrence of each LF-class, thickness of intervals

with identical LF class, and preferences in the ordering of LF-class. Examples

of the latter property are that oil-sand should not be present directly below

brine-sand, or that a shale with bad ceiling properties is more common above

an interval of brine-sand than above an interval of hydrocarbon-sand.

In a Markov process it is possible to de�ne parameters that preserve the proba-

bility of a LF-class, the mean thickness of a LF interval, and preferences in the

relative ordering of LF-classes, see case study below for example. The model is

de�ned such that the LF class in a position only depends on the LF classes in

the neighboring cells. This reduces the number of parameters needed to specify

a model. Since the Markov process is �exible with a low number of parameters

it is ideal to use as a model for the vertical dependencies in the LF class. The

parameters in the model can be estimated from analog well pro�les, if this is

available.
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Figure 2: Directed acyclic graph (DAG) representation for the relation between

the variables in f .

The LF classes along the pro�le are denoted f = (f1, . . . , fn), where the LF class

in position i is denoted fi. In each position there are in general L possible LF

classes 1, . . . , L. The Markov process is de�ned sequentially, either top-down or

bottom-up. We will use the top-down approach, but bottom-up will produce

identical results. When de�ning the probability of a LF class in a new position

given all LF classes above, the Markov property dictates that this should only

depend on the LF class directly above. In Figure 2 this Markov property is

represented by only having an arrow from the previous position and not all

the previous positions. Based on the Markov property, the distribution for the

Markov process can be written as

p(f) = p(f1)

n∏
i=2

p(fi|fi−1), (1)

where p(f1) denotes the distribution for the LF class in the top position, and

p(fi|fi−1) is the probability for the LF class in the current position when we

know the LF class directly above, this is denoted transition probability.

Transition probabilities are speci�c to the resolution de�ned by the cell thick-

ness, thus if the cell thickness is changed, a di�erent transition probability should

be used. It is however possible to preserve the relative occurrence of each LF-
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class, the average thickness of intervals with identical LF class, and preferences

in the ordering of LF-class. The average thickness T (f) of a continuous interval

with LF-class f is given by the formula,

T (f) =
∆t

1− p(f |f)
, (2)

where ∆t is the cell thickness, and p(f |f) is the probability of not changing the

LF-class, i.e. a diagonal element on the transition matrix. The transition prob-

abilities are are used to de�ne the prior distribution of LF-classes in a vertical

pro�le, when conditioning to seismic amplitude data the posterior distribution

of lithology �uid classes will no longer retain the simple Markov structure of

one step transitions. This is the main challenge when sampling the posterior

distribution

Elastic parameters are denoted m = (m1, . . . ,mn)T . The link between a LF

class and the elastic parameters in the same cell, are de�ned by a rock physical

model. We select the model parameters to be the logarithm of P-wave velocity

(VP ), S-wave velocity (VS) and density (ρ), thus in each vertical position the elas-

tic parameters are denoted by a three dimensional vectormi = (mi,1,mi,2,mi,3).

In a vertical position of the earth with LF class fi, a stochastic rock physics

model de�nes the distribution of the elastic parameters, p(mi|fi). For simplicity

we will approximate this distribution with a Gaussian model which is de�ned

through the mean, E{mi|fi} = µfi and covariance Cov{mi,k,mi,l|fi} = σkl,fi .

Note that each LF class will be approximated with a di�erent distribution, thus

the resulting distribution for the elastic parameters will be multi modal, having

one mode for each LF class.

The vertical dependency in the elastic parameters is not de�ned through the rock

physics model, but requires additional modeling. If we consider two di�erent

sand cells, then the elastic properties of these two cells tend to be more similar
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if they come from the same sand interval than otherwise. This property can be

modeled with the use of spatial correlation. The LF classes breaks the vertical

pro�le into intervals where all consecutive cells have the same LF class. We

assume that the elastic parameters in di�erent intervals are independent, but

model dependency within each of these intervals with a spatial correlation. The

result of the vertical correlation is that we have small changes in the elastic

parameters from the present to the next position if the LF class is the same for

the two positions. In particular we select an exponential correlation function,

i.e. if all positions between i and j have the LF class f , we have the correlation

Cov{mi,k,mj,l|f} = σkl,f exp

(
−3
|i− j|∆t

R

)
, (3)

where the �rst term is the covariance of the elastic parameters in same position,

and the latter term is the component adjusting for the vertical relation, ∆t is

the size of the cells, i.e. the sampling interval, and R is commonly denoted

correlation range. The factor R determines how fast the correlation decay. The

factor 3 in the vertical term is set such that two cells being separated with

distance R have negligible correlation. A small value for the correlation range

results in independence between elastic parameters also within the same facies

interval. A large value of the correlation range gives high dependency between

elastic parameters.

Our particular choice of vertical dependency implies that when the LF class of

the whole pro�le is �xed, the distribution of the elastic parameters, p(m|f), also

have Markov properties. That is, the elastic parameters at the present position

only depend on the elastic parameters at the position above, in addition to the

LF classes in the pro�le. The distribution can then be written as

p(m|f) = p(m1|f1)
n∏
i=2

p(mi|mi−1, fi−1, fi). (4)

Figure 3 illustrates the relation between the variables in f and m. Note in
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Figure 3: Directed acyclic graph (DAG) representation for the relation between

the variables in f and m.

particular that arrows into elastic parameters in one cell is only from the pair

in the cell above and arrows out of this cell only goes to the pair below, thus

giving the Markov structure.

2.2 Likelihood

The Likelihood model gives the statistical relation between the elastic param-

eters and the seismic amplitudes. This is modeled in two steps by �rst linking

elastic parameters to the re�ection coe�cients and then linking these to seismic

data. We denote the re�ection coe�cients and seismic data for all vertical posi-

tions along the pro�le and o�set angle θj , j ∈ (1, . . . , nθ) with the variables cj

and dj , respectively. Further let c = (c1, . . . , cnθ) and d = (d1, . . . ,dnθ), repre-

senting all the re�ection coe�cients and seismic data related to the pro�le. The

likelihood model we rely on, was developed in Buland and Omre (2003). We go

through the details here to see how it appears in the current notation. We let

the re�ection coe�cients, cj , be related to the elastic parameters m through a

three term weak contrast approximation of the Zoeppritz equations (Aki and
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Richards, 1980; Buland and Omre, 2003)

cj = AjDm + ε1,j , (5)

where Aj represents the Aki and Richards equations and D gives the contrasts

in the elastic parameters. The term ε1,j is a multivariate Gaussian stochastic

variable denoting noise and is assumed to be independent in each vertical po-

sition and for each angle. The standard deviation of the noise varies only with

the angle. Thus given the elastic parameters and these assumptions of inde-

pendence, we �nd that p(c|m) =
∏nθ
j=1 p(cj |m), where p(cj |m) is a Gaussian

distribution given by expression (5).

The seismic data, dj , are related to the re�ection coe�cients through a convo-

lutional model,

dj = Wjcj + ε2,j , (6)

whereWj is a wavelet matrix and ε2,j is white noise also with di�erent variances

for the di�erent angles. We can then write p(d|c) =
∏nθ
j=1 p(dj |cj).

Substituting equation 5 into equation 6 gives

dj = WjAjDm + Wjε1,j + ε2,j

= WjAjDm + εj .

(7)

We have two sources of noise, wavelet coloured and white noise. The term

Wjε1,j is the wavelet coloured noise, while ε2,j is white. The variable εj repre-

sents the total noise level.

This shows that the error term in equation 5 is not only due to errors in the

linearization of the Zopperitz equation, but also due to the colored components

generated by imperfections in the seismic processing. This means that c should

not be interpreted directly as re�ection coe�cients, but re�ection coe�cients

with errors. Since we really are interested in facies and elastic parameters this
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interpretation is not important for our results. The quantity c is however es-

sential in the algorithm that generate realizations from the posterior.

2.3 Posterior distribution

Of interest now, is to evaluate the posterior distribution

p(f ,m, c|d) ∝ p(f)p(m|f)p(c|m)p(d|c), (8)

and in particular the distribution of LF classes f and elastic parameters m.

We evaluate the posterior distribution using a Monte Carlo algorithm. Due to

the speci�c model formulation, it is possible to adjust the algorithm presented

in Hammer and Tjelmeland (2011) to obtain realizations from the posterior

distribution in expression (8). Below and in appendix A we describe algorithm

we use. This accounts for the dependency in the elastic parameters and also

provides simpli�cations in comparison to Hammer and Tjelmeland (2011).

2.4 Simulation algorithm

We use a Markov chain Monte Carlo (MCMC) algorithm (Liu, 2001) to generate

a large number of realizations of f , m and c from the posterior distribution (8).

The realizations are then a representation of the posterior distribution. The

updates in each iteration use values from the previous iteration. Therefore

we need some initial values to run the �rst iteration of the algorithm. We

generate the initial values by a random draw of LF classes, elastic parameters

and re�ection coe�cients from the prior model, p(f ,m, c) = p(f)p(m|f)p(c|m).

This is a natural choice since this is the information we have about the variables

before the seismic data is considered. The algorithm then iteratively generates

new realizations of f , m and c using two steps in each iteration. In the �rst step

we simultaneously update m and c by drawing from p(m, c|f ,d), representing
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the distribution for elastic parameters and re�ection coe�cients given that the

seismic data and LF classes are known. It is simple to generate realizations from

this distribution, since it is multivariate Gaussian, i.e. the model in Buland and

Omre (2003) apply. This update is what is called a Gibbs step in the statistical

literature (Liu, 2001) and the updates of m and c will be realizations from the

posterior distribution for the given LF classes.

The second step in each iteration is more complex. We start by proposing

a potential new set of LF classes and elastic parameters (f∗,m∗) by drawing

randomly from a proposal distribution, (f∗,m∗) ∼ q(f ,m|c) where the proposed

values condition on the value of c generated in the previous Gibbs step of the

algorithm. The realization of LF classes and elastic parameters (f∗,m∗) is then

accepted with a certain probability

α = min

{
1,
p(f∗,m∗, c|d)q(f ,m|c)

p(f ,m, c|d)q(f∗,m∗|c)

}
, (9)

where f ,m, and c are the values from the previous iteration. If the proposal is

rejected, then the LF classes and elastic parameters are not altered by this step.

This type of algorithm is standard in the statistical literature and falls in the

class of Metropolis�Hastings algorithms. The key part in the construction of an

e�cient algorithm, is the proposal distribution q(f ,m|c). In our approach we

use a mixture of Gaussian distributions as proposal mechanism, see Appendix

A for details.

We do not need the updated value of m from the �rst step of the algorithm

in the second step. The only reason we also update m in the �rst step is for

computational reasons. Simultaneously updatingm and c is more e�ective than

doing a Gibbs step where only c is updated, i.e. updating c from the distribution

p(c|f ,m,d).

Generating proposals from q(f ,m|c) is memory demanding on a computer. The
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result is that we are not always able to generate good proposals for the LF classes

and elastic parameters along the whole pro�le. This is resolved by generating

proposals only for an interval of the pro�le in each iteration. In each iteration

we have the interval that we update. This is commonly known as block updates

in the statistical literature.

2.5 Computing aggregated properties from the posterior real-

ization

Having obtained N realizations from the posterior distribution, we want to

compute statistics for the properties of our interest. Below we present how to

compute the probabilities for di�erent LF classes in each position, the proba-

bility that the pro�le contains HC and the volume distributions of HC if HC is

present. Other quantities can also be evaluated.

2.5.1 LF probabilities

The standard result in point wise methods is the probability of the LF class in

each of the cells, i.e. P (fi = l|d) for positions i = 1, . . . , n and l = 1, . . . , L. We

estimate this by counting the amount of realizations where fi = l and divide by

the total amount of realizations N ,

P̂ (fi = l|d) =
1

N

N∑
k=1

I(fi,k = l), (10)

where P̂ (fi = l|d) is the estimate of the LF probability, fi,k is the LF class at

position i for realization k, and I(fi,k = l) the indicator function returning 1 if

fi,k = l and 0 else.
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2.5.2 Probability of discovery

Further we can also compute the posterior probabilities of discovering gas, oil

or both gas and oil in the pro�le. This can not be computed from point wise

methods. In practical terms an accumulation of hydrocarbons is not regarded a

discovery if the thickness is too small. The de�nition of discovery will therefore

wary from case to case. In our presentation we de�ne a discovery as a presence

of commercial hydrocarbon in a gross rock thickness of more than 10 meter.

To estimate the posterior probability of �nding only gas, we count the portion

of the realizations with hydrocarbon discovery and where the volume of gas is

larger then zero and the volume of oil is equal to zero. Similarly we can compute

the probabilities of discovering only oil and discovering both oil and gas in the

pro�le.

2.5.3 Volume distributions of gas and oil

The previous Section divides the realizations from the posterior into four groups,

those with no discovery, pure gas cases, pure oil cases and mixed cases. For all

three success groups we want the distribution of the hydrocarbon volume, as

this is essential information in the prospect evaluation.

The porosity φ of sand stone is important in volume computations. In a model

with �xed �uid density this is directly linked to the density of the saturated

rock through the relation,

ρ = φρF + (1− φ)ρM . (11)

where ρ, ρF and ρM are the bulk density of the saturated rock, the �uid and the

host-rock, respectively. The density of the di�erent hydrocarbon phases, brine

and the host-rock are �xed in the rock physical model we use. In addition we
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also �x the saturation in each �uid class, such that the �uid density is �xed by

the �uid class. Variability in saturation is obtained using multiple �uid classes.

Similarly the variability in the density of the host-rock can be obtained using

multiple lithology classes. When both the density of the saturated rock and the

�uid class is known, expression (11) is inverted to compute the porosity:

φ =
ρM − ρ
ρM − ρF

. (12)

The LF-class and the elastic parameters are given in each realization, thus the

density of the saturated stone is given along with the �uid class. This is used

to compute the porosity of hydrocarbon �lled sandstone using relation 12. The

saturation is also de�ned by the �uid class. The cell thickness in meters is

given as the cell thickness in terms the one-way travel time multiplied with the

interval velocity in the cell.

The volume of gas in a realization from the pure gas group is the sum of the

hydrocarbon volume in all cells containing gas. The volume in one cell is com-

puted as the product of cell volume, porosity and saturation. The total gas

volume Vgas in a realization from the pure gas group is hence computed by the

formula,

Vgas =
∑

i∈gas cells

SiφiVP,i∆t/2, (13)

were Si is the hydrocarbon saturation, φi the porosity, VP,i is the P-wave veloc-

ity, and ∆t/2 = 2 ms is the one-way travel time of the cell thickness. The index

i refers to cell i along the pro�le. The volume of oil is found similarly. Since we

only consider 1D pro�les in this paper it is really a volume per unit area which

is computed.

This computation is done for all realizations in each of the three groups only gas,

only oil and both gas and oil, and are used to compute the volume distribution

of each group. In the single phase cases we �nd the volume densities of the
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given phase, whereas in the two phase case we �nd the joint distribution.

2.6 Evaluation of the simulation algorithm

Since the Markov chain Monte Carlo algorithm is an iterative algorithm that

produces realizations from the correct distribution in the long run, it is impor-

tant to control how it behaves with a �nite number of realizations. Firstly it is

important to monitor that the realizations are from the correct distribution, i.e.

that the algorithm does not get trapped in a local mode. Further we want con-

secutive realizations in our updating scheme to be as dissimilar as possible. In

statistical terms the �rst property is denoted convergence, the latter is denoted

mixing.

2.6.1 Convergence

Evaluation of convergence for MCMC algoritms is a challeging topic. In this

paper we apply a simple, e�ective and much used method based on running

the MCMC algorithm from several di�erent initial values and see that all the

chains give the same results. Note that convergence does not mean convergence

to a unique optimal value, but that the algorithm produces realizations from

the posterior distribution. For more on MCMC convergence, see for example

Liu (2001).

2.6.2 Mixing properties

In the experiment we focus on evaluating how fast we can estimate the LF

probabilities P (fi = l|d) using the estimate in equation 10 in the previous

section. To investigate this, we run K independent Markov chains with a large

amount of realizations N (after burn in) in each. We are then able to get a very
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precise estimate using all the realizations from all the K chains. We simply

denote the estimate with the true probability P (fi = l|d). Next we estimate

the LF probabilities using only the �rst part of one of the chains. Using the �rst

ν realization, denote the resulting estimate P̂ν(fi = l|d). We are now interested

in evaluating how fast the estimate P̂ν(fi = l|d) converge to the true probability

P (fi = l|d). We therefore take the di�erence in absolute value and average over

all the possible LF classes (1, . . . , L)

δi,ν =
1

L

L∑
l=1

∣∣∣P̂ν(fi = l|d)− P (fi = l|d)
∣∣∣ . (14)

The decay of the discrepancy with an increasing number of realizations ν illus-

trates the e�ciency of the algorithm.

3 Real data example

In this case study we invert seismic data from three vertical pro�les o�shore

Norway. We denote the pro�les A, B and C. These are the same pro�les and

data as considered in Kjønsberg et al. (2010). From the inversion we �nd facies

probabilities and pore volume distributions. In pro�le A we have well log obser-

vations in addition to the seismic data, shown in Figure 4. From left to right we

have well log elastic parameters, LF-class, porosity, seismic data and synthetic

seismic. The LF-class is determined from the well logs for shale content and

brine saturation. The synthetic seismic is calculated using the convolutional

model. Comparing the seismic data with the synthetic seismic data, we see that

there is a moderate �t. In Figure 5 we see the seismic data for pro�le B and C.

Based on structural information, we expect to �nd hydrocarbons (HC) in pro�le

B, while C is expected to be outside the reservoir. The length of the pro�les are

0.4 seconds and the sampling interval is 4ms which also is the resolution used

for the de�nition of LF-class.
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Table 1: Transition probabilities. Each column show how the probability for

the LF class in the current position varies with the LF class in the cell above.

HS Shale Brine Oil Gas Fizz

HS 0.510 0.415 0.018 0.019 0.019 0.019

Shale 0.028 0.928 0.011 0.011 0.011 0.011

Brine 0.025 0.236 0.739 0 0 0

Oil 0.013 0.099 0.165 0.724 0 0

Gas 0.014 0.113 0.116 0.033 0.721 0

Fizz 0.013 0.106 0.1448 0 0 0.737

3.1 Parametrization of the model

The well log in location A is used to guide the prior model formulation. The

locations B and C are from the vicinity of A, thus the same prior parameters

are used for all three locations. The lithologies considered are hot shale, shale

and sand. The sand contains one of four di�erent �uids being brine, oil, high

saturated gas, and low-saturated gas, the latter is denoted �zz. Hot shale is

shale that contains organic material and has lower acoustic impedance than

standard shale. The model gives six distinct LF classes.

It is possible to estimate transition probabilities from near by wells or analo-

gies. In the present case we do not have a well with all LF-classes present, and

thus this is not possible. In our approach we use the transition probabilities

as a mean to impose additional information in the model, and thus there will

be a certain degree of subjectivity in the choice transition probabilities, cor-

responding to the subjectivity in selecting LF-classes an prior probabilities for

these. The transition probabilities, p(fi|fi−1), in the Markov process prior, see

expression (1), is given in Table 1. Here row one to six denote the probabilities

going from hot shale, shale and brine-, oil-, gas- and �zz-saturated sandstone,
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Table 2: Properties of the prior model. First row: Probabilities p(fi). Second

row: Average thickness of the intervals in ms.

Hot shale Shale Brine Oil Gas Fizz

P 0.05 0.75 0.10 0.033 0.033 0.033

T 8.1 55.6 15.3 14.5 14.3 15.2

respectively. The transition probabilities contain information about the vertical

properties of the lithology. The Table also gives the probability of transitions

between di�erent lithologies, e.g. it is about �ve times more likely that there

is a shale below a hot shale than that there is either of the sands. Some of the

transition probabilities are zero, this indicates that the transition is illegal. The

Table shows that it is impossible to go downward from brine to oil. This is con-

sistent with the �uid ordering in equilibrium. Table 2 summarize the e�ect the

transition probabilities have on the prior probabilities for LF classes in a vertical

position p(fi) and the average length of continuous LF-class interval, when the

lithology de�nition is given at 4ms. We can use well log information to �nd in-

formation about average thickness of intervals and what is common transitions.

This information in addition to stating what should be illegal transition, is to

construct prior transition probabilities.

The distribution of the elastic parameters for each LF class p(mi|fi) is illus-

trated in Figures 6 and 7. Figure 4 indicates that there is a trend in the elastic

parameters. This trend is not included in the current case example. It is possi-

ble to include a trend in our model as well, but in the exploration setting this is

often hard to de�ne the trend with su�cient accuracy. The important feature in

the inversion, is the relative positions of the distributions of elastic parameters

for the LF classes. This is often a more stable than the absolute positions of the

distributions. In Figures 6 and 7 we see that the distribution for some of the
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Figure 6: Plots of the prior distribution for AI and VP /VS . The colours gray,

black, blue, green, red and purple refer to hot shale, shale and brine-, oil-, gas-

and �zz-saturated sandstone, respectively. The center is the most likely value,

the outer limit shows the region containing 90% of data.

LF-classes have a substantial overlap. For example is it almost impossible to

distinguish between oil-sand and �zz-sand. In the modeling approach it is how-

ever still important to include both since �zz-sand is a failure case and oil-sand

is a success case. Even though data will not alter the relative occurrence of the

two LF-classes, the possibility of having �zz-sand will in�uence the probability

of success as well as the volume distribution. The last parameter is the corre-

lation range of the elastic parameters. In our initial runs we use a correlation

range of 50ms for the elastic parameters.

For all three pro�les we have seismic data for nθ = 3 angles, 10◦, 21◦ and 36◦.

The wavelet and the noise level are estimated from the well log at pro�le A. The
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value, the outer limit shows the region containing 90% of data.
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resulting signal-to-noise levels are 1.5, 1.7 and 1.6 for the three angles 10◦, 21◦

and 36◦, respectively. The noise levels for ε1 and ε2 are de�ned such that 10%

of the energy in the noise is white and 90% of the energy is wavelet colored.

As explained in the last paragraph in Section 2.4 we are not able to generate

good proposals for the whole pro�le in each iteration. In the simulation, we

therefore update an interval of 41 nodes in each iteration.

3.2 Results

In Figure 8 we show 10 randomly picked LF-realizations from the posterior

distribution together with the point wise LF prediction in location A. There

is clearly large uncertainty in LF-classes, at the same time all realizations have

certain similarities. In particular two layers of non standard shale in the position

of the two reservoir layers are clearly visible. These two layers are clearly seen

in the point wise probabilities as well.

Figure 9 shows the realizations of the elastic parameters which correspond to the

�ve �rst LF-class realizations in Figure 8. We see that the acoustic impedance

has the least uncertainty, and that the Vp-Vs-ratio and density has less uncer-

tainty in the interval 2300ms-2350ms.

Figure 10, shows the uncertainty in the contrasts of the elastic parameters com-

pared with the well log. All major contrasts are obtainable within the model.

There are also possibilities for additional contrasts in the data, these correspond

to layers that are not in the well, but are plausible based on the seismic am-

plitude data. The comparison of contrasts is done to avoid the e�ect of the

low frequent trend. There virtually no in�uence of the vertical trend in the

plot of the well logs, thus the relative positions of lithology classes is reasonably

stationary.
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Figure 8: LF-prediction in location A. To the left ten di�erent realizations of

LF-class from the posterior distribution. To the right the point wise probability

of LF-class. The colours gray, black, blue, green, red and purple refer to hot

shale, shale and brine-, oil-, gas- and �zz-saturated sandstone, respectively.
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Figure 11: Results for pro�les B and C. Marginal probabilities from the simu-

lations with range R=50 ms.

In Figure 11 we see marginal probabilities for pro�le B and C. In pro�le B we

have high probability for hydrocarbon sand in two separate layers and a third

layer above these is most likely hot-shale. The top reservoir layer in pro�le B

is more likely to be gas than oil or �zz, but it is generally hard to distinguish

between the three hydrocarbon cases, as we expected from the rock physics

models. In pro�le C the amplitudes give less room for hydrocarbon presence

than in pro�le B.

The target for the inversion is however not the point wise LF-class probabilities,

but the success probability when drilling a well in the location, and the volume

distribution for the success cases. We summarize the probabilities for discovering

oil and/or gas in all three pro�les in Table 3. The prior probabilities of discovery
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Table 3: Prior and posterior probabilities for discovering oil and/or gas, range

50m. A success is de�ned as the discovery of gross rock thickness containing

commercial hydrocarbon sand larger than 10 meters.

no HC oil gas gas and oil

Prior 0.22 0.19 0.15 0.43

Pro�le A 0.07 0.16 0.18 0.59

Pro�le B 0.07 0.14 0.27 0.52

Pro�le C 0.40 0.21 0.15 0.24

are included in the table for comparison. We �nd that the seismic amplitudes

provide evidence for hydrocarbon presence in pro�le A and B, and against it in

pro�le C.

The volume distribution is of interest in the success scenarios. Figures 12, 13

and 14, contain the volume distributions for the three pro�les. Again we see

that the volume distribution in pro�le C is substantially less than in pro�les A

and B. The volume distributions in pro�le A has two modes in the single �uid

case, and three modes in the mixed �uid case.

In the well which coincides with pro�le A it was found gas in a column of

28.7m. This value is about the same as the 95% quantile of the posterior

volume distribution. This means that in the posterior distribution it is about a

5% chance to observe a volume larger then the volume extracted from the well.

To investigate the e�ect of the vertical correlation of elastic parameters within

the same continuous LF-class, we also tested a case with correlation range of

10m. The discovery probabilities for these runs are listed in Table 4. There are

no strong systematic e�ects. The largest observed di�erence is the reduction in

the discovery probability in pro�le C.
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Figure 12: HC pore volume distributions for pro�le A. Top row: Volumes of oil

given that the pro�le contains only oil; Middle row: Volumes of gas given that

the pro�le contains only gas. Bottom row: Volumes of oil and gas given that

the pro�le contains both oil and gas.
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Figure 13: HC pore volume distributions for pro�le B. Top row: Volumes of oil

given that the pro�le contains only oil; Middle row: Volumes of gas given that

the pro�le contains only gas. Bottom row: Volumes of oil and gas given that

the pro�le contains both oil and gas.
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Figure 14: HC pore volume distributions for pro�le C. Top row: Volumes of oil

given that the pro�le contains only oil; Middle row: Volumes of gas given that

the pro�le contains only gas. Bottom row: Volumes of oil and gas given that

the pro�le contains both oil and gas.
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Table 4: Posterior probabilities for discovering oil and/or gas, range 10m. A

success is de�ned as the discovery of gross rock thickness containing commercial

hydrocarbon sand larger than 10 meters.

no HC oil gas gas and oil

Pro�le A 0.05 0.14 0.21 0.60

Pro�le B 0.07 0.11 0.31 0.51

Pro�le C 0.48 0.23 0.12 0.17

In Tables 5 and 6 we evaluate how the modeling of spatial dependence in the

prior model a�ect the volume distribution. We consider three di�erent prior

model choices. We denote the �rst choice 'No correlation'. In this case we

have no spatial correlation in the prior distribution. For the LF classes, this

means that the LF class in one position is independent of the LF classes in all

other position. This is in contrast to the prior based on the transition matrix

in Table 1, where it is essential that the LF class in a position is dependent

on the LF class in the previous position. As prior probabilities in a position,

p(fi), for the independence prior, we use the same probabilities that we have

for the transition matrix in Table 1 (given in the �rst row in Table 2). For the

independence prior, we further set the spatial correlation range in the elastic

parameters equal to 0 m. We denote the second prior model we consider 'Range

= 10 m'. In this model we use the transition matrix in Table 1 and use a spatial

correlation range in the elastic parameters equal to 10 m. The third prior model

choice, denoted 'Range = 50 m', is equal to the previous case except that the

spatial correlation range in the elastic parameters is equal to 50 m. In Table 5

we present volume distributions for these three prior model choices. We list the

mean volume and the 10% and 90% quantiles for each case. In the mixed case

we add the volume of oil and gas to get one summarizing volume. The 10% and

90% quantiles are de�ned as values for the volume such that it is 10% and 90%
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probabilities, respectively, to observe a volume less then the given quantile. In

the �rst four rows we have results for the model with no prior correlation, in the

next four rows for the prior model with range 10 m and the last four rows for

range 50 meters. We see that for the prior models with vertical correlation, the

hydrocarbon volumes is much larger for pro�le A and B then for the prior model

with no spatial correlation. For the prior model with no correlation the volumes

are almost the same for Pro�le A, B and C. This means that the modeling of

spatial dependence in the prior model is essential to separate the success cases

Pro�le A and B from the failure case C. Further we see that upper limit for the

volume generally are larger for the model with correlation range 50 m compared

to 10 m. On average the upper limit of the hydrocarbon volume is increased by

1.6m. This corresponds to an average increase of 12% in the upper limit. Thus

there is a larger upside potential for models with long spatial correlations. This

is of particular importance in marginal developments.

In Table 6 we have computed risked volume of HC for the three prior model

choices. This Table also contains the results obtained from Kjønsberg et al.

(2010). Similar to Table 5, we see from the three �rst columns that the modeling

of dependence in the prior model is essential to separate Pro�le A and B from

C. The major di�erence in results in this paper and Kjønsberg et al. (2010)

is in pro�le B, where the risked volume is about half of what is predicted in

Kjønsberg et al. (2010). The cause of this di�erence between the two models

is that we have included two more failure LF-classes in the current model, i.e.

low-saturated gas and hot-shale. This results in a model that is more likely to

contain two potential reservoir layers than three.
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Case only oil only gas gas and oil

No correlation

Prior 2.9 (1.3, 4.8) 2.3 (0.9, 3.8) 4.7 (2.5, 7.1)

Pro�le A 6.1 (3.6, 9.5) 5.6 (2.6, 8.7) 10.5 (6.2, 15.0)

Pro�le B 6.1 (3.3, 9.2) 6.2 (3.0, 9.0) 10.5 (6.4, 15.0)

Pro�le C 5.4 (2.6, 8.6) 4.3 (2.5, 6.7) 8.6 (4.9, 12.6)

Range=10m

Prior 4.6 (1.4, 9.1) 3.8 (1.1, 7.5) 6.9 (2.4, 12.5)

Pro�le A 12.2 (3.6, 22.6) 13.7 (4.3, 24.1) 20.4 (8.6, 32.5)

Pro�le B 8.7 (3.1, 15.9) 11.0 (4.9, 19.3) 16.2 (7.7, 25.7)

Pro�le C 5.8 (2.5, 11.0) 5.0 (2.4, 9.2) 8.1 (3.3, 14.0)

Range=50m

Prior 4.6 (1.4, 9.3) 3.9 (1.2, 7.7) 7.0 (2.4, 12.7)

Pro�le A 12.3 (3.4, 24.0) 13.4 (4.2, 24.1) 20.1 (8.2, 32.1)

Pro�le B 11.2 (4.0, 20.4) 11.8 (4.6, 20.4) 17.5 (8.4, 26.8)

Pro�le C 6.2 (2.5, 12.0) 6.2 (2.5, 10.8) 9.6 (3.3, 18.3)

Table 5: Prior and posterior HC volume (m) distributions given HC discovery.

The �rst four rows is for a case with no vertical correlation in the prior model.

The next four row is for range 10 m. The last four rows are for range 50 m. The

�rst value is the mean value, and the two values in the parentheses are the 10%

and 90% quantiles of the distribution.

No correlation Range=10m Range=50m Kjønsberg et al. (2010)

Prior 4.6 4.6 4.6 7.9

Pro�le A 10.3 16.9 16.3 19.4

Pro�le B 10.4 12.8 13.9 25.2

Pro�le C 8.2 3.3 4.6 5.7

Table 6: Risked volumes (m) of hydrocarbon.
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3.3 Performance of the simulation algorithm

To evaluate the performance of the MCMC algorithm we focus on pro�le B.

We run ten independent chains with N = 20000 iteration. The mean time per

iteration is 5.68 seconds and the initial burn�in is completed in approximately

10 minutes.

To quantify how e�ciently the algorithm estimates properties of the poste-

rior distribution we compute the average discrepancy over the positions i =

(21, . . . , 80) by de�ning,

δν = 1/60
80∑
i=21

δi,ν , (15)

where the local discrepancy δi,ν is de�ned in expression (14).

In Figure 15 we have plotted the discrepancy δν as a function of computing time.

All ten chains experience the same type of convergence pattern and speed. On

average the chains use 3 hours and 15 minutes to reduce the discrepancy below

the threshold 0.02. The convergence of the methodology in Kjønsberg et al.

(2010) is presented in the same �gure, and use an average time of 35 hours to

achieve the same accuracy. Thus the proposed method improves the speed by

a factor larger than 10 even though two more LF-classes are considered.

4 Conclusions

We use a Bayesian framework to integrate seismic restack data in the risk as-

sessment of prospects. We propose a model that is easy to parameterize and can

model complex spatial dependencies. We do the risk assessment by generating

multiple realizations from the posterior distribution. By using a spatial model,

we are able to separate presence and volume. This is essential in the exploration

phase.
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Figure 15: The panel show δν as function of the CPU�time. The convergence

for ten chains using the proposed methodology is displayed in green, the blue

lines show the convergence for three chains using the methodology in Kjønsberg

et al. (2010).
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The algorithm we use to generate realizations from the posterior distribution,

provides reliable results even in a complex case with many LF-classes, and obtain

a good representation of the posterior distribution within a few hours. When

compared to the method presented in Kjønsberg et al. (2010) the current ap-

proach is about ten times faster, even though more LF-classes are considered.

Since the approach still takes hours to run it is best suited to evaluate a few

selected vertical pro�les.

In the Bayesian setting the inversion results are in�uenced by both the prior

model and the seismic amplitudes. Comparing our risk updates to Kjønsberg

et al. (2010) we highlight the importance of taking all LF-class scenarios into

account in the prior model. Leaving out failure lithologies from the prior models

result in too optimistic volume predictions. By comparing the inversion results

in di�erent pro�les, we �nd that the seismic amplitudes make a signi�cant im-

pact on the inversion result even if the data has a moderate signal to noise

ratio. The sensitivity to data is severely reduced for models that assumes in-

dependence, thus the vertical dependency in facies and elastic parameters gives

an important contribution to volume estimates.

The use of vertical correlation in elastic parameters has no systematic e�ect on

hydrocarbon presence, but in�uence the upside potential in the volumes. The

upper limits for the volume is generally larger. In our cases we found that the

upper limit is increased by an average of 12% when the correlation is used.

The use of vertical dependency in elastic parameters does not ad computational

cost over the independence assumption. It is therefore recommended to use this

correlation in order to build as as much information as possible into the model.
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A The proposal distribution in the MCMC algorithm

Here we present the proposal distribution q(f ,m|c) in the second step of the

MCMC algorithm. For further details, see Hammer and Tjelmeland (2011).

Ideally we want to generate proposals from p(f ,m|c), because proposals from

this distribution always will be accepted, see expression (9). We are only able

to generate proposals from p(f ,m|c,d) for very low dimensions of n. In higher

dimensions we introduce an approximation to this distribution which we will

use as our proposal distribution q(f ,m|c).

When the re�ection coe�cients are known, the seismic data does not bring any

additional information about the elastic parameters this is formalized in the

relation p(f ,m|c,d) = p(f ,m|c). Thus this is our target distribution. It can be

written as

p(f ,m|c) ∝

[
p(f1)

n∏
i=2

p(fi|fi−1)

]
×[

p(m1|f1)
n∏
i=2

p(mi|fi−1, fi,mi−1)

]
×[

p(c·,1)

n∏
i=2

p(c·,i|mi−1,mi)

] (16)

and is a �rst order hidden Markov model. Here c·,i represents the re�ection

coe�cients for all the o�set angels at position i. A directed acyclic graph

(DAG) for the relation between the variables is given in Figure 16. In the

statistical literature realizations from distributions that has the form of ex-

pression (16) is obtained by constructing a forward�backward algorithm, see

Scott (2002). The forward part sequentially integrates out mi and fi for i =

1, . . . , n. After (fi,mi), i = 1, . . . , k are integrated out, the remaining distri-

bution p(fk+1, . . . , fn,mk+1, . . . ,mn|c) is a mixture of Lk Gaussian densities.

We see that the number of mixture terms grows exponentially with k. Thus,

we are only able to handle this distributions for very low values of n because
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Figure 16: Directed acyclic graph (DAG) representation for the relation between

the variables in f , m and c.

of memory limitations. For higher dimensions of n, we instead introduce an

approximate forward integration procedure, where we ignore the less important

Gaussian terms, keeping a number of mixture terms such that computer mem-

ory is not exceeded. Thereafter, the backward simulation is computationally

straight forward. We use the probability distribution de�ned by this approxi-

mate forward-backward procedure as the proposal distribution q(f ,m|c).


