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INTRODUCTION

Solving partial differential equations (PDEs) using high order numerical meth-
ods is very attractive for problems where the solution and the given data exhibit
a high degree of regularity; this is due to the rapid convergence rate that can
be achieved for such problems. Such methods are also invaluable for problems
where the solution is very sensitive to discretization errors, for example, when
solving hydrodynamic stability problems. High order methods for PDEs have
enjoyed a significant progress over the past few decades, starting with pure
spectral methods in simple domains based on truncated Fourier series. The
extension of these first methods to problems with non-periodic boundary condi-
tions was later achieved by considering high order polynomial approximations
[19, 8].

The combination of domain decomposition and spectral methods subse-
quently resulted in the development of the spectral element method [37, 32].
This method combines (some of) the geometric flexibility of low order finite el-
ement methods with the good convergence properties of spectral methods. The
original spectral element method decomposes the global domain into quadrilat-
eral or hexahedral elements, with each element considered as the image of a
corresponding tensor-product reference domain (e.g., a d-dimensional cube in
Rd). The polynomial approximation is constructed using a tensor-product nodal
representation based on the tensor-product Gauss-Lobatto Legendre points on
the reference domain. In more than one space dimension, the multi-dimensional
basis functions are all tensor-product extensions of the one-dimensional case,
and only one-dimensional differentiation matrices are needed. Using the weak
form of the PDE as a point of departure for the discretization, the associated
integrals are also evaluated using the same GLL points. Convergence can be
achieved by only increasing the polynomial approximation within each element,
keeping the number of elements fixed; this will result in a convergence rate
which depends on the regularity of the problem, with the possibility of achiev-

1



ing exponential convergence for analytic solution and data. However, it is also
possible to achieve convergence by both increasing the polynomial degree within
each element as well as increasing the number of elements, which is similar in
philosophy to hp finite element methods [2, 41].

Over the past couple of decades the spectral element methodology has been
extended to triangular and tetrahedral elements [29]. The motivation for this
is to be able to consider even more complex domains and also to be able to use
automatic mesh generators. Again, each individual element is constructed as
the image of a reference triangle or reference tetrahedron. However, we remark
that the approximation space on the d-dimensional cube is different from the
approximation space on a simplex. On the cube, the polynomial approximation
in each spatial direction is N , while on a triangle or on a tetrahedron, N denotes
the total polynomial degree.

While the initial spectral element methods on simplices used modal basis
functions, there has been a significant development over the last decade on
constructing nodal basis functions. This has spurred interest in finding good in-
terpolation points on simplices [20, 42, 36]. On triangles, the Fekete points have
been considered close to optimal in the sense of minimizing the Lebesgue con-
stant associated with polynomial interpolation. Another attractive feature with
the Fekete points is that they reduce to the GLL points in the one-dimensional
case, e.g., along an edge of a triangle. On tetrahedrons it is not clear what the
best nodal points are. A complicating factor with simplices is that a single set
of points may not give both good interpolation properties and good quadrature
properties as the GLL points do in the tensor-product case.

When considering a computational domain with a piecewise smooth bound-
ary, there is a common ingredient in all the spectral element methods discussed
above: each element in physical space is considered as the image of a corre-
sponding reference element (either a cube or a simplex). Independent of the
choice of nodal points on the reference element, there is a need to construct an
appropriate mapping between the reference element and each physical element.
A common approach is to use an isoparametric approximation, which means
that the geometry is represented using the same approximation space as for the
other pertinent field variables. A key aspect of this construction is the quality of
the polynomial approximation of the domain boundary, e.g., the approximation
of each edge of a quadrilateral element or each edge of a triangular element.
However, there is very limited discussion in the literature of how to best do
this, and this topic will play a central role in this thesis. While the topic of
interpolation of curves and surfaces has been given very little attention in the
high order community, it is a central part of Computer Aided Geometric Design
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Introduction

(CAGD). Some of the work in this thesis will therefore try to exploit already
existing results and adapt and extend these to the high order numerical solution
of PDEs. In the two-dimensional case, high order polynomial approximation of
edges is required, either edges of quadrilateral elements or the edges of triangles.
One way to approximate a single edge is to view this as a function relative to an
appropriately oriented coordinate system, and to apply classical interpolation.
However, an edge can also be viewed as a parametric curve, with the possibil-
ity of reparametrization in order to more easily approximate the curve through
polynomial approximation; this will also be a topic of this thesis work.

Once a good approximation of the boundary has been constructed, this
approximation can be extended to the interior of the element (or global domain)
through a chosen mapping. This mapping is often chosen as simple as possible,
e.g., an affine mapping. However, there is an inherent freedom in high order
methods to choose the mapping differently, and a wise choice can potentially
give better representation of the various field variables (e.g., the solution and
the geometry). This freedom is very often not exploited, but will be considered
in this thesis. In particular, this freedom can give rise to adaptive methods.
Methods for achieving adaptivity in the context of spectral methods have been
proposed earlier [3, 35, 43], but the methods either lack robustness or generality
or both.

Methods for adaptive mesh construction represent valuable and essential
tools in the solution of moving boundary problems, i.e., time-dependent PDEs
where the geometry itself changes with time and hence is part of the solution.
An important example of such problems is free surface flows. A simpler example
is mean curvature flow, in which case we do not have to solve the full governing
fluid flow equations for each time step. Nonetheless, such problems give us the
same challenge in terms of geometry representation: we have a computational
domain which evolves and several degrees-of-freedom in how we let the compu-
tational mesh evolve with it. In particular, tangential movement of mesh points
along the surface is allowed and may improve both the representation of the ge-
ometry and the numerical solution of other dependent field variables. However,
mesh update algorithms have seen little development, and many authors resort
to ad hoc methods such as imposing homogeneous Neumann or Dirichlet bound-
ary conditions on the mesh movement [23, 6, 5, 25, 4]. Again, better control of
the evolution and representation of the domain boundary will (implicitly) result
in the construction of better mappings between the reference domain and each
physical element.

This chapter is organized as follows: in Section 1, we review some standard
results from classical interpolation of functions in one space dimension, and we
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discuss how interpolation of parametric curves in R2 can play an important part
of this topic; this is illustrated by including a numerical example. We end Section
1 by discussing interpolation of curves and surfaces in R3. In Section 2, we
discuss adaptive spectral methods in R1, while in Section 3, we discuss spectral
methods for PDEs in R2 with particular focus on geometry representation in
deformed quadrilateral domains. Finally, in Section 4, we discuss the role of
geometry representation in evolving domains, with particular focus on high order
methods and solving minimal surface problems.

1 High order interpolation

Consider polynomial interpolation of a one-dimensional function u(x), x ∈ Ω =
[a, b]. With N+1 interpolation points we can construct a polynomial interpolant
INu(x) of degree N . The interpolation points can be chosen to be some type of
Gauss points, e.g., the Gauss-Lobatto Legendre (GLL) points which will include
the end points of the interval. The Gauss points are attractive to use since they
give rapid convergence of the interpolation error ||u − INu|| as the polynomial
degree, N , increases, and the convergence rate increases with the regularity of
u. The interpolation points are associated with the zeros of some orthogonal
polynomials and are defined on the interval Ω̂ = [−1, 1]. If the interval is [a, b],
the simple linear coordinate transformation x = F(ξ), with

F(ξ) = a+
(b− a)

2
(ξ + 1), (1.1)

will transform u(x) to u(x) = u(F(ξ)) = (u ◦ F)(ξ) = û(ξ), and standard
GLL interpolation can be applied to the function û(ξ) to give the interpolant
IN û(ξ) ∈ PN (Ω̂), such that

IN û(ξi) = u(xi), i = 0, . . . , N, (1.2)

where ξi is a GLL point and xi = F(ξi). Here, PN (Ω̂) is the space of polynomials
of degree less than or equal to N defined over Ω̂. Once we have constructed
IN û, INu is readily given as INu = (IN û) ◦ F−1.

The quality of a set of interpolation points Ξ in Ω̂ is usually measured
through the Lebesgue constant ΛN (Ξ), for functions û defined over Ω̂ [36],

||û− IN û||∞ ≤
(
ΛN (Ξ) + 1

)
||û− ûN ||∞, (1.3)
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Introduction

where ûN is the best approximation of û by polynomials of degree less than
or equal to N . A good set of interpolation points is therefore a set which has
a small Lebesgue constant, something which is true for the GLL points. The
norm in the above inequality is the L∞(Ω̂) or the maximum norm.

If we assume that u ∈ Hσ(Ω), the interpolation error can be bounded as [8]

||u− INu||L2(Ω) ≤ cN−σ||u||Hσ(Ω). (1.4)

In particular, if u is analytic (σ →∞), the error decays exponentially fast as N
increases. A similar error estimate can be derived for the best approximation
uN (x), where

||u− uN ||L2(Ω) = min
v∈PN (Ω)

||u− v||L2(Ω). (1.5)

We now make a few comments regarding these error estimates. First, they are
generally derived for functions defined on Ω̂. However, the simple linear coordi-
nate transformation (1.1) implies that INu(x) and uN (x) are also polynomials
of degree N , and the error estimates also applies for the functions defined in the
original coordinate system.

An interesting question now is how we potentially could use a different (non-
affine) coordinate transformation (or mapping) F : Ω̂→ Ω to produce a different
û = u◦F that (i) would be more suitable to polynomial interpolation in the GLL
points; and (ii) produce a resulting interpolant INu in the original coordinate
system with a smaller interpolation error than the interpolant generated through
the standard (affine) mapping. Such an interpolant INu(x) would generally
no longer be a polynomial in x, and the interpolation points xi = F(ξ), i =
0, . . . , N , would no longer correspond to a GLL distribution.

1.1 Interpolation of parametric curves in R2

Another way to look at the problem of interpolating a one-dimensional function
u(x) is by looking at the given function as a parametric curve in R2. A simple
parametrization is the curve

(x, u(x)), x ∈ [a, b]. (1.6)

However, we can also look at the reparametrized curve

(F(ξ), û(ξ)), ξ ∈ [−1, 1], (1.7)

where x = F(ξ) and û(ξ) = u(F(ξ)). Of course, as ξ varies from -1 to 1, and
x varies from a to b, these two parametrizations describe the same curve (or
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geometric object). However, for a nonlinear F , the "speed" at which the curve
is traversed is different from the linear case.

In general, a function u(x) can thus be described as a vector-valued function

f(ξ) = (x(ξ), y(ξ)), ξ ∈ [−1, 1], (1.8)

which again can be reparametrized through a change of variable. Reparametriza-
tion represents an opportunity to improve the approximation properties of the
interpolant. A natural question is then how to find the best reparametriza-
tion in the sense that the interpolation error, measured in a suitable norm, is
minimized.

Interpolation of functions is an old and well-explored topic. Interpolation of
parametric curves, on the other hand, is a field where research is still active, and
where there are still unanswered questions. In one way, one can consider inter-
polation of a parametric curve in Rd as interpolation of a vector-valued function,
and traditional methods can be applied. For example, one can interpolate each
parametric function in the Gauss points. However, the particular feature that
separates parametric curves from vector-valued functions is reparametrization:
one can choose to reparametrize the given parametric curve before applying
the interpolation procedure. In effect, we interpolate a different vector-valued
function that describes the same geometric object. Reparametrization can be
thought of as traversing the same curve at a different speed, and interpolating
a reparametrized curve can be thought of as moving the original interpolation
points along the exact curve. For example, one particular parametrization is
the arc length parametrization, which traverses the curve with constant velocity
(i.e., the Jacobian J(ξ) =

√
x2
ξ + y2

ξ is constant in ξ).
Let us now make a few additional remarks about parametric curves. A

parametric curve is Ck-continuous if each parametric function (x(ξ) or y(ξ) in
(1.8)) is a Ck function. Moreover, the curve is Gk-continuous if its arc length
parametrization consists of only Ck functions. The concept of Gk-continuity is
independent of the given parametrization. In R2, G1 continuity means that the
curve has no break points (i.e., a continuous tangent), and G2 continuity means
it has a continuous curvature.

Consider interpolation of the curve (1.8) in R2 in the Gauss-Lobatto Legen-
dre (GLL) points. To this end we define the curve interpolation operator IN
by

INf(ξ) = (INx(ξ), INy(ξ)), (1.9)

where IN means interpolation of a function in the GLL points. Hence, the
interpolant is a parametric curve, and each parametric function is a polynomial
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Introduction

in PN ([−1, 1]). The polynomials can be represented by the nodal bases

INx(ξ) =

N∑

i=0

xi`i(ξ),

INy(ξ) =

N∑

i=0

yi`i(ξ),

(1.10)

where `i is the i’th Lagrange interpolant through theN+1 GLL points ξ0, . . . , ξN ,
such that `i(ξj) = δij . This way interpolation is achieved simply by sampling
the given curve in the points (xi, yi), i = 0, . . . , N . The polynomial interpolant
is uniquely determined by the 2(N + 1) coefficients xi and yi in (1.10). In the
current context, only (N−1) of these are free variables: once x0, . . . , xN are de-
termined, y0, . . . , yN are determined by the requirement that yi = u(xi). Also,
since we use Lobatto type interpolation points it is natural to let x0 = a and
xN = b, i.e., we require that the end points be interpolation points. Hence,
interpolation of parametric curves is a problem with N − 1 degrees-of-freedom.
Note how this differs from classical interpolation of functions: this freedom ex-
ists after we have chosen the GLL points to be the interpolation points in the
reference variable ξ.

We now make some remarks on the resulting interpolation error. In the case
of parametric curve interpolation, the interpolation error can get contributions
from both parametric functions, so we somehow need to “balance” the regularity
between the two parametric functions. This is what reparametrization is about:
moving the variation and complexity from one parametric function to the other.
However, it is not obvious how we can exploit this freedom to minimize the
interpolation error in a controlled and automatic way.

The issue of curve interpolation has been given very little attention in the
high order community. However, it is a central part of Computer Aided Geomet-
ric Design (CAGD) where it has been studied extensively [12, 34]. In [10] it was
shown that under certain conditions, cubic polynomial curves in R2 can inter-
polate both function values, tangent directions and curvature at the end points,
resulting in approximation order six. This is in contrast to classical interpola-
tion of functions, which gives fourth order approximation. The price to pay for
the increased accuracy is a system of non-linear equations that must be solved.
The interpolation method was viewed as a generalization of Hermite interpola-
tion based on geometric quantities and was therefore called geometric Hermite
interpolation. In recent years we have seen a lot of work on geometric Hermite
interpolation in the CAGD community; e.g., see [11, 15, 16, 28, 39, 40, 46]. A lot
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of interpolation methods have been proposed, and almost all are based on the
same principle: using the degrees-of-freedom that are available to increase the
number of interpolation points or to increase the number of derivatives matched
at each interpolation point. Based on the number of degrees-of-freedom, the
maximum attainable number of interpolation points for curves in R2 has been
conjectured [24] to be 2N , i.e., N − 1 more interpolation points than classical
interpolation of a function. The conjecture remains unproven, and no general
interpolation method to achieve 2N interpolation points for general N have
been proposed in the literature.

1.2 Numerical example: Interpolating the Runge function
We consider now the function famous for illustrating the Runge phenomenon
[17],

u(x) =
1

1 + 16x2
, x ∈ [−1, 1]. (1.11)

A standard high order interpolation at the GLL points yields a polynomial
INu(x), and a slight oscillatory behavior can be observed in Figure 1. Compared
with other types of polynomial interpolations, the GLL points are considered to
be close to optimal. For example, equidistant interpolation points will give such
wild oscillations that the interpolants do not even converge when N increases.

Note that a standard interpolation method makes the approximation INu
a polynomial in x. In contrast, for the equal-tangent method discussed in Pa-
per 1, we require the individual approximations xN = INx and yN = INy to
be polynomials in the reference variable ξ, while yN (xN ) will not, in general,
be a polynomial. This makes the equal-tangent method completely different
from classical interpolation, and there is a potential of avoiding the well-known
oscillations associated with classical interpolation.

Figure 2 shows the interpolation error in the L2-norm. The standard method
gives exponential convergence, but with very low convergence rate. The equal-
tangent method converges fast from the very beginning, reaching machine pre-
cision already at N ≈ 15.

1.3 Interpolation of curves and surfaces in R3

The results and conclusions related to the interpolation of parametric curves
in R2 can be extended to parametric curves (x(ξ), y(ξ), z(ξ)) in R3; see Figure
3. However, note that a polynomial interpolant in R3 does not involve more
degrees-of-freedom than in R2.
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Figure 1: The exact curve (dashed) and the interpolant for N = 4 and N = 10,
using the standard method (top) and the equal-tangent method (bottom) discussed in
Paper 1. We see that the standard method results in oscillations which decrease as N
increases, while no oscillations are observed with the equal-tangent method.

There are many similarities between interpolation of parametric curves and
interpolation of parametric surfaces. In particular, there is a certain number of
degrees-of-freedom associated with a reparametrization, and these can be used
to improve the interpolant.

A parametric surface f in R3 can be described in a Cartesian coordinate
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Figure 2: Interpolation error measured in the discrete L2-norm. The equal-tangent
method gives a much faster convergence than standard interpolation in the GLL points.
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Figure 3: Interpolation of a space curve that is one and a half turn of a helix.
Interpolating the natural helix parametrization yields a solution (×) that is clearly
distinguished from the exact curve. On the other hand, the equal-tangent method
described in Paper 3 gives an interpolant (∗) that cannot be distinguished from the
exact curve.
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system by


x
y
z


 =



f1(η1, η2)
f2(η1, η2)
f3(η1, η2)


 = f(η1, η2), η1, η2 ∈ [−1, 1]. (1.12)

Hence, each of the parametric functions fi, i = 1, 2, 3, are defined over a ref-
erence domain Ω̂ = [−1, 1] × [−1, 1] ⊂ R2. A change of variable, realized by a
bijective mapping ϕ : Ω̂→ Ω̂ yields a reparametrization

g(ξ1, ξ2) = f(ϕ(ξ1, ξ2)) = f(η1, η2). (1.13)

Note that ξ1 and ξ2 here represent two independent variables and not two GLL
points.

The interpolant is a parametric surface INg described by

IN g(ξ1, ξ2) =



INg1(ξ1, ξ2)
INg2(ξ1, ξ2)
INg3(ξ1, ξ2)


 , ξ1, ξ2 ∈ [−1, 1], (1.14)

where each component INgi, i = 1, 2, 3, is a polynomial of degree less than or
equal to N in the two independent variables in Ω̂. Each component is conve-
niently represented by sums of tensor-product Lagrangian interpolants in the
tensor-product GLL points, i.e.,

INgi(ξ1, ξ2) =

N∑

m=0

N∑

n=0

(gi)mn `m(ξ1)`n(ξ2), i = 1, 2, 3. (1.15)

The rectilinear mesh that is made up by the interpolation points in Ω̂ is mapped
to a curvilinear mesh on Ω; see Figure 4.

The basis coefficients (gi)mn are uniquely determined by the interpolant.
Some of these are determined by the requirement that the nodes on the boundary
of the tensor-product GLL mesh are mapped to the boundary ∂Ω of the exact
surface. This gives 2(N − 1)2 interior degrees-of-freedom plus 4(N − 1) edge
degrees-of-freedom, i. e., we are left with a total of 2N2 − 2 degrees-of-freedom
in the parametric surface interpolation problem. This is to be compared with
the N − 1 degrees-of-freedom for the interpolation of parametric curves (e.g, in
R2 or in R3).

The concept of geometric Hermite interpolation can also be applied in the
context of parametric surfaces, but the problem is much harder due to the in-
creased number of unknowns. Mørken [33] gives a detailed discussion of the op-
timal approximation order and constructs a quadratic Taylor approximant with

11



f

Figure 4: The surface is mapped from a reference domain Ω̂ = [−1, 1]× [−1, 1] by the
parametrization f (which can be reparametrized). The physical interpolation points
are the images of the tensor-product GLL points.

approximation order four. Lagrange interpolation of surfaces with quadratic
polynomials is considered in [27]. Paper 3 discusses the problem of interpola-
tion of curves and surfaces in R3 in more detail.

2 Adaptive spectral methods in R1

Adaptivity is well developed in the context of low order finite element methods
[1, 41, 44]. However, this is not the case in the context of spectral methods [7].
As a motivation for looking closer at this problem, consider the one-dimensional
advection-diffusion equation

−εuxx + ux = f, x ∈ Ω, (2.1)

accompanied by suitable boundary conditions. Here, ε is a (small) constant, f
is a smooth, given function, and Ω is a bounded interval on the real axis. To be
specific, we may consider the particular case with Ω = (0, 1), ε = 0.01, f(x) = 1,
and homogeneous Dirichlet boundary conditions. This problem has the exact
solution

u(x) = x− ex/ε − 1

e1/ε − 1
, (2.2)

which features a boundary layer with a width of order O(ε) near x = 1.
Given the exact solution u(x) to this differential equation, we can construct

the classical high order interpolant, or we can construct the parametric inter-
polant discussed earlier. The conclusion is that, for boundary-layer solutions
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like (2.2), a smooth, non-affine mapping F which moves the physical interpo-
lation points towards the boundary layer will give a smaller interpolation error
than the standard one.

In order to more clearly see how we may formulate an adaptive problem
here, consider the weak formulation of the advection-diffusion problem: find
u ∈ X = H1

0 (Ω) such that

a(u, v) = `(v), ∀v ∈ X, (2.3)

where the bilinear form is given as

a(u, v) = ε

∫

Ω

uxvx dx+

∫

Ω

uxv dx, (2.4)

and the linear form is given as

`(v) =

∫

Ω

fv dx. (2.5)

For the spectral discretization we first define the mapping F : Ω̂ → Ω and
then define the discrete space

XN = {v ∈ X, v ◦ F ∈ PN (Ω̂)}, (2.6)

i.e., comprising functions that are polynomials over Ω̂. We also let

J = J(ξ) =
dF
dξ

(ξ) (2.7)

denote the Jacobian associated with the coordinate transformation x = F(ξ).
The discrete problem then reads: find uN ∈ XN such that

a(uN , v) = `(v), ∀v ∈ XN . (2.8)

Over Ω̂ (i.e, in the reference variable ξ) the bilinear and linear forms read

a(uN , v) = ε

∫

Ω̂

1

J
ûξ v̂ξ dξ +

∫

Ω̂

ûξ v̂ dξ, (2.9)

and
`(v) =

∫

Ω̂

f̂ v̂ J dξ. (2.10)
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In practice, the bilinear and linear forms are evaluated using GLL quadra-
ture. Since the Jacobian will then only be evaluated at the GLL points, it
certainly suffices to consider an isoparametric mapping, which we denote by
F = FN (ξ), and which can be expressed explicitly as

x(ξ) = FN (ξ) =

N∑

i=0

xi`i(ξ), (2.11)

where xi = FN (ξi), i = 0, . . . , N are the physical points corresponding to the
GLL points, and with x0 = 0 and xN = 1 (the domain boundary in this case).

In principle, we can then formulate an adaptive spectral method as follows:
find FN ∈ PN (Ω̂) and u∗N ∈ XN (FN ) such that

||u− u∗N ||L2(Ω = min
uN∈XN (FN )

||u− uN ||L2(Ω), (2.12)

where uN satisfies

a(uN , v) = `(v), ∀v ∈ XN (FN ). (2.13)

We have here written XN as XN (FN ) to explicitly emphasize that the discrete
space depends on the mapping used. The ideas presented here is discussed in
more details in Paper 5 together with some initial numerical results.

3 Spectral methods in R2

The main motivation behind the work presented in this thesis has been to im-
prove the numerical solution of partial differential equations in complex domains
using high order methods. As a simple example, consider the numerical solution
of the Poisson problem in a deformed quadrilateral domain Ω. A numerical solu-
tion based on high order polynomials necessitates an accurate representation of
the geometry. This is typically achieved by first constructing an accurate repre-
sentation of the boundary of the domain, ∂Ω, and then constructing a mapping
between the reference domain Ω̂ = (−1, 1)2 and Ω.

Despite the fact that spectral (element) methods have been used to solve
PDEs in complex geometries for a long time [9, 13, 21, 29], few results exist
in the literature for how to best construct a high order representation of a
single curve in the plane. In the case of a deformed quadrilateral, we need to
approximate four curves in the plane (the four edges of Ω) before we are able
to construct the mapping between Ω̂ and Ω.

14
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3.1 Geometry representation in deformed domains

If the PDE is defined in a deformed quadrilateral domain (i.e., Ω 6= Ω̂), it
is mapped to the reference domain before it is solved. For methods that are
based on a weak formulation of the problem, this means in practice one or
more changes of variables in order to make all the integrals go from −1 to 1.
The change of variable can be viewed as a realization of a mapping F from
the reference domain Ω̂ to the physical domain Ω. Figure 5 shows what this
mapping can look like when the spatial dimension is d = 2. The mapping is
required to be one-to-one, and it is often required that both F and F−1 are
analytic, in which case F is a diffeomorphism.

x

y

Ω

(1, 1)

(−1,−1)

η

Ω̂
ξ

F

F−1

Figure 5: The mapping F between the reference domain Ω̂ and the physical domain
Ω in R2. The basis functions, numerical quadrature and differentiation are all defined
on Ω̂.

In high order methods it is common to take an isoparametric approach, i.e.,
to represent the geometry with polynomials of the same degree as the pertinent
field variables. In this case the mapping is a d-dimensional tensor-product of
polynomials of degree N , and it is denoted FN . It defines an approximation ΩN
of the physical domain. The isoparametric approach makes sense for several
reasons. First, differentiation matrices that are already available for the field
variables can be re-used. Second, if the geometry is deformed, errors in the
representation of the geometry itself contributes to the overall discretization
error. The isoparametric approach often ensures a balance in the work we put
into approximating the field variables and approximating the geometry.

In R2, the numerical solution ûN and the isoparametric mapping FN are
both polynomials of degree N in each free variable in the reference domain
Ω̂ = [−1, 1] × [−1, 1] ⊂ R2. The mapping of the geometry is described by the

15



two functions

x = F1
N (ξ, η) =

N∑

i=0

N∑

j=0

xij`i(ξ)`j(η),

y = F2
N (ξ, η) =

N∑

i=0

N∑

j=0

yij`i(ξ)`j(η),

(3.1)

where ξ and η are the two free variables in Ω̂. From this representation we note
that:

• The mapping is uniquely determined by the values of the 2(N + 1)2 basis
coefficients xij and yij , 0 ≤ i, j ≤ N .

• Each point (xij , yij) is the image of the point (ξi, ξj) on a tensor-product
GLL grid in Ω̂.

Let us now discuss how the coefficients may be determined. If the exact mapping
F from Ω̂ to Ω is explicitly available, the points can be determined simply
by evaluating F in the tensor-product GLL points, i.e., by interpolating F to
construct the approximate mapping FN . The accuracy in the approximation of
the geometry, and hence the overall discretization error in the numerical solution
of the PDE, will then depend on F .

However, the exact mapping is often not available. Instead we have a de-
scription of each of the four edges (or curves) that make up the boundary ∂Ω.
In such cases the mapping FN can be constructed by first determining the coef-
ficients (xij , yij) that are associated with the boundary ∂ΩN , and then extend
the mapping to the interior. Two common ways of achieving the latter is trans-
finite interpolation and harmonic extension. The former can be done using the
Gordon-Hall algorithm [18], which creates FN by multiplying the approxima-
tion of the boundary edges by weight functions and summing up. The latter can
be done by solving an elliptic PDE with non-homogeneous Dirichlet boundary
conditions. Both methods usually give smooth mappings when the boundary
mappings are smooth, so the choice is often not vital for the overall performance
of the high order method. However, harmonic extension can in some cases give
“overspill” over the boundary in cases where the Gordon-Hall method does not
[31].

The key to a good geometry representation is a good representation of the
boundary. However, what a good representation means and how to achieve it
turns out to be (at least partially) unsolved problems. Despite the fact that
high order methods have been used to solve PDEs in complex geometries for a
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long time, few results exist in the literature for how to best construct a high
order representation of the geometry.

Figure 6 shows two numerical approximations of a domain with three straight
edges and a curved edge, described by the Runge function. The two mappings
FN are created using the Gordon-Hall algorithm, but with two different repre-
sentations of the top edge. In the left plot, the x-coordinate of the grid points
on the top edge are the GLL points, the same as on the bottom edge. However,
this results in a poor approximation of the Runge function, and we see oscilla-
tions along the top boundary. In the right plot, a different set of interpolation
points along the top edge is used, customized for this domain. The difference in
the horizontal displacement of the interpolation points along the top and bot-
tom edges results in non-linear vertical grid-lines when using the Gordon-Hall
algorithm, despite the fact that both side edges are straight. However, this is
no problem; the improvement in the representation of the curved boundary is
more important, and the resulting approximation ΩN of Ω is far better than in
the left figure. The corresponding numerical solution uN of a Poisson problem
defined in Ω is also much improved.

−1 0 1

0

1

2

x

y

(a) The standard method

−1 0 1

0

1

2

x

y

(b) The equal-tangent method

Figure 6: Computational grids on a domain where the top boundary curve is de-
scribed by the Runge function. The mappings FN , where N = 10, are created using
the Gordon-Hall algorithm; only the representation of the boundary ∂Ω is different
between the two.

The boundary ∂Ω̂ of the reference domain will be mapped to the boundary
∂Ω of the physical domain. Each of the four curves that make up the boundary
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∂ΩN of the computational domain corresponds to either ξ = ±1 or η = ±1.
From (3.1) we see that the given boundary curve is represented as a parametric
curve (p1(ξ), p2(ξ)) (and correspondingly for η), where each of the parametric
functions is a polynomial of degree N . Since it is natural (though not necessary)
to map boundary points on the tensor-product GLL grid to points on ∂Ω, the
coefficients corresponding to these points are often chosen to be coordinates
on the boundary curve in the physical domain. Hence, the boundary curves
of ∂ΩN are polynomial parametric curves that interpolate a given exact curve.
This interpolation problem is independent of the high order method used and
the extension method used to represent the interior; we can therefore study it
separately; high order interpolation of parametric curves in R2 will represent a
key ingredient. In three space dimensions, accurate interpolation of curves and
surfaces in R3 will be essential. Papers 1–3 discuss these issues in more detail.

4 Free surface problems

Consider a time-dependent surface (or a front) depicted in Figure 7. Assume
that we know the front at time tn. Assume also that a numerical approximation
of the front is used, e.g., a high order polynomial approximation.

Γ(tn+1)

Γ(tn)

Figure 7: A front Γ at time tn with an “optimal” point distribution. For example,
the points can be the nodes along an edge of a deformed spectral element. The front
is “immersed” in a velocity field and the particles follow the paths of the dashed lines
between tn and tn+1.

At each point x along the surface there is an associated velocity field u.
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This velocity field can be explicitly known, e.g., as the solution of an underly-
ing partial differential equation (for example, the solution of the Navier-Stokes
equations in a free surface problem).

The velocity at a point along the surface represents the velocity of the cor-
responding “fluid particle”. If we integrate the velocity of all the fluid particles
along the surface, we obtain the position of the surface at a later time. This
is what a pure Lagrangian description will give us; the motion of a particle is
simply governed by the equation

dx

dt
= u(x, t). (4.1)

In a computational setting, we can limit the integration of (4.1) to the grid
points, and then use the underlying surface parameterization to represent the
entire surface at a later time; see Figure 7. A severe problem with this approach
is obvious: we have no control over the distribution of the grid points at a later
time tn+1. This will again result in a loss of accuracy in the calculation of surface
quantities, e.g., tangent and normal vectors, as well as the local curvature.

An advantage with the Arbitrary Lagrangian Eulerian (ALE) formulation
is that it introduces a separate domain velocity w (also referred to as the grid
velocity in the context of the discrete problem), which limits the deformation
of the computational domain [25]. In an ALE-framework, the position of the
interface is advanced according to

dx

dt
= w(x, t) (4.2)

instead of the pure Lagrangian approach (4.1). A continuum description dictates
that w · n = u · n (the kinematic condition), where n is the unit normal along
the interface. However, no particular condition is required for the tangential
component w ·t of the domain velocity (t is the unit tangent vector). A common
choice is to set w · t = 0 along the surface, although this is often not an optimal
choice; see Figure 8.

Let us also comment on the issue of temporal accuracy. Integration of (4.1)
and (4.2) is commonly done using an explicit method; often an explicit multi-
step method (e.g., Adams-Bashforth) is preferred [22, 6]. If the velocity fields
(u and w) are sufficiently regular, we expect to achieve higher order temporal
accuracy (second and third) in terms of the location of individual points along
the front. As mentioned above, this approach may yield limited control over
the distribution of the points along the front. If the point distribution is non-
optimal, the resulting loss of spatial accuracy will affect the accuracy of surface
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Γ(tn)

Γ(tn+1)

Figure 8: A front at time tn with an “optimal” point distribution. This interface is
advanced by honoring the kinematic condition, while imposing a zero tangential grid
velocity. The resulting point distribution at a later time tn+1 is obviously no longer
optimal.

quantities such as normal and tangent vectors, local curvature, and length/area,
and this again may affect the accuracy of the interface tracking.

In order to develop a computational approach which will yield both high
order temporal accuracy (e.g., second or third order), as well as good spatial
accuracy in the calculation of surface quantities, it is crucial to solve the problem
of automatically obtaining a good point distribution in a satisfactory way. This
problem is particularly acute in the context of using high order methods. Despite
the importance of this issue, very limited discussion or results appear to be
available in the literature [4].

One of the obstacles in the study of moving geometries is the lack of (geo-
metrically interesting) exact solutions. Another factor is the complexity and the
cost of solving fluid flow problems in R3. Both of these problems are (partially)
solved by considering minimal surface problems. These are problems where one
represents only a surface in R3, not a three-dimensional body, and there exist
some known interesting exact solutions. Finding minimal surfaces can be done
in many ways; one of them is by numerical solution of a surface that evolves
toward the area minimizer. In the context of time-dependent PDEs, minimal
surfaces are then steady-state solutions. Even if the exact solutions in the prior
time steps are still unknown, the known steady-state solution enables us to
compare various mesh update strategies by how well the representation of the
steady-state solution is. These and other issues are studied in Paper 4; we only
give a brief introduction below.

20



Introduction

4.1 Minimal surfaces

A minimal surface is a surface with the smallest possible area under certain
constraints (boundary conditions, volume constraints etc.). These surfaces are
mathematically intriguing, but still easily realized physically in the form of soap
film [26, 30]. The study of minimal surfaces dates back to the eighteenth century,
with the discovery of the catenoid (Euler, 1744) and the helicoid (Meusnier,
1776). Still, only a limited number of minimal surfaces are known, but new
ones are still being found [14].

An important characteristic of minimal surfaces is that they have zero mean
curvature, which is defined as the average of the two principal curvatures, i.e.,
κ = 1

2 (κ1 +κ2). For surfaces that can be represented as functions u(x, y) over a
domain Ω ⊂ R2, open minimal surfaces are those that satisfy Plateau’s equation

div

(
∇u√

1 + |∇u|2

)
= 0, (4.3)

with given boundary conditions. The equation is named after the Belgian
physicist J. A. F. Plateau, who studied soap films experimentally and deter-
mined some interesting geometric properties [38]. A more general representa-
tion is a parametric surface, where the surface is represented by a mapping
ϕ : Ω̂ ⊂ R2 → R3, i.e., ϕ is of the form f in (1.12). The minimal surface
condition is then

∆Ωϕ = 0 in Ω̂,

ϕ = ϕ0 on ∂Ω̂,
(4.4)

where ∆Ω is the Laplace-Beltrami operator, a generalization of the Laplace op-
erator to Riemannian manifolds [45]. The first set of equations represents a
system of three non-linear partial differential equations, while the last set of
equations represents the boundary conditions (the position of the known wire
frame).

Since the minimal surface equations (4.4) are non-linear, it is very difficult
to solve them directly. A more feasible approach is to solve them with Newton’s
method. This requires the construction of an initial surface, i.e., a parametric
surface that fits the boundary conditions. From each iteration level to the next,
a new parametric surface ϕn+1 is constructed based on the previous one ϕn by
the addition of a displacement

ϕn+1 = ϕn + ∆ϕn+1 (4.5)
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that is determined by the governing equations. A purely Lagrangian approach
means updating the surface exactly according to the solution of the governing
equations. However, one can choose to add a tangential displacement in order to
retain a smooth mapping of the surface. This is where mesh update strategies
are needed, and algorithms from numerical solutions of free surface problems
can be used. The problem is discussed in detail in Paper 4, where customized
strategies are compared with common general-purpose strategies, and a new
general-purpose strategy is proposed.

Figure 9 shows an example of a minimal surface along with the surface used
as initial condition for the computation.

(a) Initial surface (b) Minimal surface

Figure 9: Enneper’s surface is a minimal surface with a single boundary curve (shown
in blue). The surface is parametrized using 12 spectral elements.
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5 Summary of papers

5.1 Overview

The papers in this thesis are all related to the topic of geometry representation
and coordinate transformations in spectral approximation of PDEs, but from
different angles. Paper 1 focuses on the representation of deformed quadrilat-
erals in R2 and contains both a discussion of parametric curve interpolation
and application to the solution of different Poisson problems. Paper 3 consid-
ers parametric curves and surfaces in R3 and discusses only the interpolation
part, not the PDE part. Paper 2 is from the proceedings of the ICOSAHOM-09
conference and touches upon many of the topics discussed in papers 1 and 3.

Paper 4 considers moving boundary problems in the context of high order
approximation of minimal surfaces. The problem involves geometry representa-
tion in R3, but only surfaces are considered, not deformed hexahedra. For this
class of problems, optimal representation of the geometry is currently infeasi-
ble, and the main focus is to avoid break-down in the numerical algorithm due
to large errors in the geometry representations. However, in special cases we
have an exact steady-state solution and we are able to compare the quality of
different geometry update strategies.

The last paper considers customization of the coordinate transformations in
order to improve the representation of the field variables, i.e., adaptive methods
for the numerical solution of differential equations in R1.

5.2 List of papers

Paper 1: T. Bjøntegaard, E. M. Rønquist and Ø. Tråsdahl. Spectral approx-
imation of partial differential equations in highly distorted domains. To appear
in Journal of Scientific Computing. DOI: 10.1007/s10915-011-9561-8

In this paper we discuss spectral approximations of the Poisson equation
in deformed quadrilateral domains. High order polynomial approximations are
used for both the solution and the representation of the geometry. Following an
isoparametric approach, the four edges of the computational domain are first
parametrized using high order polynomial interpolation. Transfinite interpola-
tion is then used to construct the mapping from the square reference domain to
the physical domain. Through a series of numerical examples we show the im-
portance of representing the boundary of the domain in a careful way; the choice
of interpolation points along the edges of the physical domain may significantly
affect the overall discretization error. One way to ensure good interpolation
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points along an edge is based on the following criteria: (i) the points should
be on the exact curve; (ii) the derivative of the exact curve and the interpolant
should coincide at the internal points along the edge. Following this approach,
we demonstrate that the discretization error for the Poisson problem may decay
exponentially fast even when the boundary has low regularity.

Paper 2: T. Bjøntegaard, E. M. Rønquist and Ø. Tråsdahl. High order poly-
nomial interpolation of parameterized curves. Lecture Notes in Computational
Science and Engineering, Vol. 76, 365–372, 2011.

We consider interpolation of parameterized curves in R2 and R3. Such curves
are represented by vector-valued functions, but interpolation differs from classi-
cal interpolation of functions since a curve can be reparameterized. This means
that a presumably good interpolation (e.g., at the Gauss points) of a given pa-
rameterization does not necessarily give the best approximation of the curve,
as there may exist a reparameterization better suited for polynomial interpola-
tion. The reparameterization can be done implicitly by choosing different sets
of interpolation points along the exact curve. We present common interpolation
methods, and propose a new method, based on choosing the interpolation points
in such a way that the interpolant is tangential to the exact (reparameterized)
curve at these points. The new method is compared to the traditional ones in
a series of numerical examples, and results show that classical interpolation is
sometimes far from optimal in the sense of the Kolmogorov n-width, i.e., the
best approximation using n degrees-of-freedom.

Paper 3: Ø. Tråsdahl. High order interpolation of parametric curves and
surfaces in R3. NTNU Preprint Numerics No. 5/2011. Submitted to Advances
in Computational Mathematics.

In this paper, high order interpolation of parametric curves and surfaces in
R3 is studied. Curve interpolation is discussed in much greater detail than in
Paper 2, and many numerical examples are provided to show the performance of
the different interpolation methods in different situations. Two of the proposed
interpolation methods, the extra-points method and the equal-tangent method,
are discussed in the context of an unproven conjecture made in the community of
Computer Aided Geometric Design (CAGD), concerning the highest attainable
approximation order in fixed-degree interpolation. This conjecture is based on
counting the number of degrees-of-freedom in interpolation of parametric curves.
Some of the interpolation methods are extended to interpolation of paramet-
ric surfaces, where vast differences in convergence properties between different
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interpolation methods are observed in some cases. Most notably, exponential
convergence is achieved by one of the proposed methods for a surface described
by a function of low regularity.

Paper 4: Ø. Tråsdahl and E. M. Rønquist. High order numerical approxi-
mation of minimal surfaces. Journal of Computational Physics, 230(12): 4795–
4810, 2011.

We present an algorithm for finding high order numerical approximations of
minimal surfaces with a fixed boundary. The algorithm employs parametriza-
tion by high order polynomials and a linearization of the weak formulation of
the Laplace-Beltrami operator to arrive at an iterative procedure to evolve from
a given initial surface to the final minimal surface. For the steady state solution
we measure the approximation error in a few cases where the exact solution is
known. In the framework of parametric interpolation, the choice of interpola-
tion points (mesh nodes) is directly affecting the approximation error, and we
discuss how to best update the mesh on the evolutionary surface such that the
parametrization remains smooth. In our test cases we may achieve exponential
convergence in the approximation of the minimal surface as the polynomial de-
gree increases, but the rate of convergence greatly differs with different choices
of mesh update algorithms. The present work is also of relevance to high order
numerical approximation of fluid flow problems involving free surfaces.

Paper 5: Ø. Tråsdahl and E. M. Rønquist. Adaptive spectral methods. Tech-
nical report. NTNU Preprint Numerics No. 1/2012.

This paper discusses numerical solution of boundary value problems using
spectral methods combined with nonlinear and adaptive mappings between the
reference domain and the physical domain. A brief review of existing methods
for adaptive mesh generation is given, and a method for finding close to optimal
mappings for boundary value problems in R1 is presented. The method exploits
the link between high order numerical solutions of PDEs and approximation of
parametric curves. Also, other adaptive methods for boundary value problems
in R1 are proposed, based either on minimizing the discrete L2-norm of the
residual, or interpolating the residual as a parametric curve. The adaptive
methods are constructed with the aim of finding optimal mappings, however,
this turns out to be a very difficult task. Still, significant improvement from
standard (non-adaptive) high order methods is achieved in some cases.
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Abstract

In this paper we discuss spectral approximations of the Poisson equa-
tion in deformed quadrilateral domains. High order polynomial approx-
imations are used for both the solution and the representation of the
geometry. Following an isoparametric approach, the four edges of the
computational domain are first parametrized using high order polyno-
mial interpolation. Transfinite interpolation is then used to construct
the mapping from the square reference domain to the physical domain.
Through a series of numerical examples we show the importance of rep-
resenting the boundary of the domain in a careful way; the choice of
interpolation points along the edges of the physical domain may signif-
icantly affect the overall discretization error. One way to ensure good
interpolation points along an edge is based on the following criteria: (i)
the points should be on the exact curve; (ii) the derivative of the exact
curve and the interpolant should coincide at the internal points along the
edge. Following this approach, we demonstrate that the discretization
error for the Poisson problem may decay exponentially fast even when
the boundary has low regularity.

Keywords: Spectral approximation, boundary representation, polynomial in-
terpolation, reparametrization, mapping.

1 Introduction

The motivation behind the work presented in this paper has been to solve partial
differential equations in complex domains using high order methods. As a simple
example, consider the numerical solution of the Poisson problem in a deformed
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quadrilateral domain Ω. A numerical solution based on high order polynomi-
als necessitates an accurate representation of the geometry. This is typically
achieved by first constructing an accurate representation of the boundary of the
domain, ∂Ω, and then constructing a mapping between the reference domain
Ω̂ = (−1, 1)2 and Ω. Assuming that the physical domain is not too distorted,
the latter can readily be achieved via a Gordon-Hall transfinite interpolation
procedure [9].

Despite the fact that spectral (element) methods have been used to solve
PDEs in complex geometries for a long time [4, 7, 10, 11], few results exist
in the literature for how to best construct a high order representation of the
boundary of the domain. In the case of a deformed quadrilateral, we need to
approximate four curves in the plane (the four edges of Ω) before we are able
to construct the mapping between Ω̂ and Ω.

In this paper we investigate the impact of the choice of geometry repre-
sentation in the context of solving partial differential equations using spectral
methods. We compare previously used methods with a new method.

The outline of the paper is as follows. In Section 2 we discuss an illustrative
example of the spectral solution of a Laplace problem. In Section 3 we discuss
in some detail alternative ways to approximate a curve in the plane. In Section
4 we again discuss the impact of the different boundary representations on
the discretization error of various Poisson problems. Finally, in Section 5 we
summarize our main findings.

2 Solving a Laplace problem: Case 1

As a first example, we consider the numerical approximation of the following
two-dimensional Laplace problem

∇2u = 0 in Ω,

u = ex sin y on ∂Ω,
(2.1)

where Ω is a deformed square. Specifically, we consider a domain with three
straight edges (x = ±1 and y = 0) and a deformed top edge having the shape
of the Runge function [8]

yR(x) =
1

1 + 16x2
for − 1 ≤ x ≤ 1.

The exact solution to (2.1) is u(x, y) = ex sin y, which is analytic.
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We discretize (2.1) based on the equivalent weak form. To this end, we
use a pure spectral discretization based on high order polynomials [12, 1, 7, 4].
As usual, the integrals in the weak form are transformed to integrals over the
associated reference domain Ω̂ = (−1, 1)2, and exact integration is replaced by
Gauss-Lobatto Legendre (GLL) quadrature.

The mapping between Ω̂ and Ω is constructed based on transfinite inter-
polation [9], also referred to as the Gordon-Hall algorithm. In the following,
we consider an isoparametric mapping, i.e., the geometry is approximated using
high order polynomials of degreeN similar to the numerical solution uN . The re-
sulting computational domain is denoted as ΩN . Using a tensor-product basis to
represent the field variables, the mapping between (ξ, η) ∈ Ω̂ and (xN , yN ) ∈ ΩN
is given explicitly as

xN (ξ, η) =

N∑

i=0

N∑

j=0

xij`i(ξ)`j(η),

yN (ξ, η) =

N∑

i=0

N∑

j=0

yij`i(ξ)`j(η),

where `i(ξ) is the Nth order Lagrangian interpolant through the GLL points,
i.e., `i(ξ) ∈ PN (−1, 1) and `i(ξj) = δij , 0 ≤ i, j ≤ N , and where xij = x(ξi, ξj)
and yij = y(ξi, ξj) are the coordinates of the grid points corresponding to the
mapping of the tensor-product GLL points.

The difference between the exact solution u and the numerical solution uN
is measured in the energy norm,

|||u− uN |||2 =

∫

ΩN

∇(u− uN ) · ∇(u− uN ) dA. (2.2)

Again, the integral on the right-hand side is transformed to an integral over the
associated reference domain Ω̂ = (−1, 1)2, and exact integration is replaced by
GLL quadrature. The error measure (2.2) will take into account the quality
of the isoparametric mapping for a pure spectral discretization of (2.1). In
order to eliminate quadrature errors in the error computations, we will use
overintegration based on a polynomial degree 3N .

In order to use the Gordon-Hall algorithm, we first approximate the bound-
ary ∂Ω using high order polynomial interpolation; specifically, we need to choose
the grid points along the four edges of Ω. The choice of grid points along the
three straight edges is straightforward and corresponds to a GLL distribution.
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However, we may consider different alternatives for the choice of grid points
along the top edge. In the following, we will compare four different methods. In
the standard method, the grid points are chosen according to a GLL distribution
along the x-direction; see Figure 1(a). This corresponds to a standard interpo-
lation of the Runge function in the GLL points. In the arc length method, the
grid points along the top edge are chosen in such a way that they correspond
to a GLL distribution in arc length. In the L2-method, we choose the N − 1
internal interpolation points along the top edge in such a way that the inter-
polation error is minimized in the L2-norm. However, this is a very difficult
problem to solve and we therefore introduce an alternative method, denoted as
the equal-tangent method, which is able to obtain a similar result, but more
easily.

Figure 1 shows the computational grids using the standard method and the
equal-tangent method. For N = 10 we can still see the ripples along the top
edge when using the standard method; these ripples represent a typical feature
of a standard polynomial approximation of the Runge function. In contrast,
the top edge of the domain looks very smooth using the equal-tangent method.
Figure 2 shows the discretization error (2.2) when solving the Laplace problem
in the computational domains induced by our choice of grid points along the
top edge.

−1 0 1

0

1

2

x

y

(a) The standard method

−1 0 1

0

1

2

x

y

(b) The equal-tangent method

Figure 1: Computational grid for Case 1 using a polynomial degree N = 10.
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Figure 2: The discretization error in the solution of the Laplace problem (2.1) mea-
sured in the energy norm (2.2). The standard method and the arc length method
do not represent the top edge well, and the convergence rate is slow. However, the
convergence rate of the L2-method and the equal-tangent method is much faster. The
difference in convergence rate between the different methods is fundamentally linked to
our choice of interpolation points along the top edge; the rest of the solution procedure
is identical for all methods.

3 High-order interpolation of a curve

Before we show more examples of the spectral solution of the Poisson problem,
we first discuss in more detail the different methods we use to represent a curve
in the plane.

Consider a one-dimensional function y(x), x ∈ [a, b]. A high order polyno-
mial interpolant yN (x) can be constructed by choosing points xj , j = 0, . . . , N ,
and evaluating the function at these points, yielding yj = y(xj), j = 0, . . . , N ;
see [1, 2, 3]. If the function y(x) is regular, the interpolation error ‖y− yN‖ will
decay rapidly as N increases.

If the mapping x(ξ) is affine, both the function yN (x) and the function
yN (ξ) = yN (x(ξ)) are polynomials of degree N . Specifically, yN (ξ) is given as

yN (ξ) =

N∑

j=0

yj`j(ξ), (3.1)

where `j(ξ) is the Nth order Lagrangian interpolant through the GLL points,
and where yj = y(x(ξj)). Note that, in order to keep the notation as simple as
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possible, we will use the same symbol for the function y both when expressed
in terms of the physical coordinate x and in terms of the reference coordinate
ξ. It should be clear from the context what is meant.

One way to describe a curve in the plane is to view the curve as a given func-
tion y(x), where the specific function y(x) will depend on the orientation of our
coordinate system. Another alternative is to use a parametric representation,
e.g., a curve in the plane can be given by two functions g1(ξ) and g2(ξ),

x(ξ) = g1(ξ),

y(ξ) = g2(ξ).
(3.2)

For any value value ξ ∈ [−1, 1], there exists a unique point (x(ξ), y(ξ)) on the
curve. For example, if g1(ξ) = a + b−a

2 (ξ + 1), i.e., an affine mapping x(ξ), we
may eliminate ξ by first expressing ξ as a function of x, and then recover the
original function y(x) from y(x) = g2(ξ(x)). However, the parametric repre-
sentation (3.2) allows for additional flexibility, also when it comes to numerical
approximation.

In the following we consider high order polynomial approximations xN (ξ)
and yN (ξ) of x(ξ) and y(ξ). Both xN (ξ) and yN (ξ) are elements of PN (−1, 1).
These approximations can be expressed explicitly as

xN (ξ) =

N∑

j=0

xj`j(ξ),

yN (ξ) =

N∑

j=0

yj`j(ξ),

(3.3)

where xj and yj are the nodal values for each approximation. We will here only
consider interpolants of the exact curve (x(ξ), y(ξ)), ξ ∈ [−1, 1], i.e., we require
that the nodal points (xj , yj), j = 0, . . . , N , are located on the exact curve; in
particular, the end points of the exact curve and the numerical curve always
coincide. Hence, our problem is to determine the “best” set of (internal) values
ξ∗j , j = 1, . . . , N − 1, −1 < ξ∗j < 1, where xj = g1(ξ∗j ) and yj = g2(ξ∗j ), i.e.,
this is a problem with N − 1 degrees-of-freedom; see [13] for a discussion and
analysis.

Let us now briefly consider a few choices which can be used to represent a
curve in the plane, e.g., an edge of a deformed quadrilateral domain.
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3.1 The standard method

This method assumes that x(ξ) = g1(ξ) is a simple affine mapping. The numer-
ical approximation is given by (3.3), with nodal values xj = a+ b−a

2 (ξj + 1) and
yj = y(xj); see Figure 3. By construction, yN (ξ) is a polynomial of degree N .
However, we also note that yN (x) will also be a polynomial of degree N , i.e.,
we consider classical interpolation. In the following, we refer to this method as
the “standard” method.

Figure 3: The function y(x) evaluated at the (affinely mapped) GLL-nodes.

3.2 The chord method

Even if the original curve is represented in a coordinate system as depicted in
Figure 3, we can transform this representation to a coordinate system where the
x-axis is aligned with the chord connecting the two end points of the curve; see
Figure 4. This can be achieved through a simple rotation and translation. After
the transformation to this new coordinate system (with coordinates x′ and y′),
we can again apply the standard method as described above.

Note that the transformed function y′(x′) is different from the original func-
tion y(x) even though both functions describe the same curve. This will, of
course, also be true for the associated numerical approximations (x′N , y

′
N ) and

(xN , yN ). Note also that the function y′(x′) may have steep gradients or may
not always exist since y′ may take on several different values for a given x′. In
such cases the interpolation procedure will give poor results or will break down.
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Figure 4: The original function y(x) can be considered in a transformed coordinate
system in which the transformed x-axis is aligned with the chord between the two
end points of the curve. The function is then evaluated at the (affinely mapped)
GLL-nodes relative to this coordinate system.

The parametric representation of the exact curve (x′(η), y′(η)), η ∈ [−1, 1],
can be viewed as a reparametrization [14] of the original parametric represen-
tation (x(ξ), y(ξ)), ξ ∈ [−1, 1]. To this end, there exists a mapping ξ(η) from
[−1, 1] to [−1, 1] such that x′(η) = x(ξ(η)) and y′(η) = y(ξ(η)).

Using the standard method in the transformed coordinate system, we end
up with a set of nodal values (x′j , y

′
j), j = 0, . . . , N . These coordinates are then

transformed back to the corresponding coordinates (xj , yj), j = 0, . . . , N , in the
original coordinate system. The reason for transforming back to the original
coordinate system is motivated by the fact that we ultimately want to use these
representations in the context of solving partial differential equations. In this
case, all the curve segments associated with the boundary of the computational
domain are part of a common description. For example, these representations
may be the input to a Gordon-Hall algorithm as discussed earlier.

The numerical representation of the curve will therefore be exactly the same
as before and given by (3.3). However, the numerical values of (xj , yj), j =
0, . . . , N , will be different than the standard method applied in the original
coordinate system. In the following, we will refer to this method as the “chord”
method.

Note that, even though xN (ξ) and yN (ξ) both belong to PN (−1, 1), the im-
plicitly given function yN (xN ) is not, in general, a polynomial. In the particular
case when the chord is parallel to the x-axis, the chord method coincides with
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the standard method.

3.3 The arc length method

Let s be the arc length as we move along the curve y(x), with s = 0 at x = a and
s = L at x = b, i.e., the length of the curve is L. Construct the affine mapping
s(ξ) = L

2 (ξ+1), ξ ∈ [−1, 1], and define the values sj = s(ξj), j = 0, . . . , N . Each
value sj corresponds to a unique point along the curve with coordinates (xj , yj);
see Figure 5. The arc length method uses these points as the nodal values in the
numerical representation (3.3). In other words, the nodal points are distributed
along the curve as a GLL-distribution according to arc length. As for the chord
method we note that, even though xN (ξ) and yN (ξ) both belong to PN (−1, 1),
the implicitly given function yN (xN ) is not, in general, a polynomial.

Figure 5: The original function y(x) is here evaluated at points corresponding to a
GLL-distribution according to arc length.

3.4 The L2-method

The three previous representations all rely in one way or another on a point
distribution which corresponds to an affinely mapped GLL-distribution: for the
standard method, the points along the x-axis correspond to a GLL-distribution;
for the chord method, the points along the chord correspond to a GLL-distribution;
for the arc length method, the points along the arc of the curve correspond to
a GLL-distribution.
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We can, of course, also propose a method where there are no such restrictions
on the nodal points. Instead, we search for N−1 internal points along the curve
which will ensure a good numerical approximation to the exact curve. As a way
to measure how good the approximation is, we consider the L2-error

J = ||y − yN ||L2 =

(∫ b

a

(y(x)− yN (x))2dx

)1/2

. (3.4)

The exact curve is given by the parametric representation (x(ξ), y(ξ)), ξ ∈
[−1, 1], while the numerical approximation is given by (3.3). As stated earlier,
our problem is to determine the “best” set of (internal) values ξ∗j , j = 1, . . . , N−
1, −1 < ξ∗j < 1, where xj = g1(ξ∗j ) and yj = g2(ξ∗j ), i.e., this is a problem with
N − 1 degrees-of-freedom. In principle, these unknowns can be determined by
minimizing the functional J . Hence, we will refer to such a method as the
“L2-method”.

3.5 The equal-tangent method
As mentioned in the previous section, the N − 1 values ξ∗j , j = 1, . . . , N − 1,
−1 < ξ∗j < 1, can be determined by defining N − 1 independent conditions. As
an alternative to the L2-method we propose the following conditions:

dxN
dξ

(ξj)
dy

dξ
(ξ∗j )− dyN

dξ
(ξj)

dx

dξ
(ξ∗j ) = 0, j = 1, . . . , N − 1. (3.5)

Note that xN and yN are evaluated in the GLL points, but still depend on the
unknowns ξ∗j via the coefficients xj = x(ξ∗j ) and yj = y(ξ∗j ) in the representation
(3.3).

One way to better understand these equations is by considering the ex-
act curve subject to a reparametrization ξ(η), η ∈ [−1, 1], ξ ∈ [−1, 1]. That
is, we consider the representation (x̃(η), ỹ(η)) = (x(ξ(η)), y(ξ(η))) which, of
course, represents the same curve. With this approach, it is possible to find a
reparametrization such that the conditions (3.5) can be expressed as

dxN
dξ

(ξj)
dỹ

dη
(ξj)−

dyN
dξ

(ξj)
dx̃

dη
(ξj) = 0, j = 1, . . . , N − 1, (3.6)

i.e., the reparametrization maps the GLL points to the interpolation points. The
left hand side of equation (3.6) then represents the dot product of a tangent vec-
tor to the numerical approximation and a normal vector to the exact curve at the
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interpolation points. Hence, by solving the system (3.5) for ξ∗j , j = 1, . . . , N−1,
we are implicitly finding a reparametrization of the exact curve such that the
exact curve (x̃(η), ỹ(η)) and the numerical approximation (xN (ξ), yN (ξ)) have
equal tangent directions at the internal GLL points ξj , j = 1, . . . , N − 1; see
Figure 6. We will refer to this method as the equal-tangent method.

The system (3.5) consists of N − 1 nonlinear equations, which in general
may not have a real solution. However, it has been conjectured [13, 15] that
for a given parametrized curve, there always exists an interpolant that satisfies
certain types of additional conditions, as long as the number of equations does
not exceed the number of degrees-of-freedom (here, N − 1). The conjecture
applies to the system (3.5), and we have yet to see a counter-example. For an
overview of the conjecture, see also [6].

n = (−dy
dξ
, dx
dξ
)

tN = (dxN

dξ
, dyN

dξ
)

Figure 6: The solid (blue) analytical curve and the dashed (black) numerical curve
with associated normal and tangent vectors. Here, N = 2. At the internal interpola-
tion points (only one in this example), we require that the analytical normal vector,
n, and the numerically computed tangent vector, tN , are orthogonal.

3.6 Remarks on the implementation
We close this section with a few remarks related to the implementation of the
various methods. These are included in order to better understand the details of
the implementation, and in order to be successful in reproducing these results.

3.6.1 Error computation

We first comment on how the interpolation error (3.4) is computed numerically
in these tests. First, the integrand needs to be transformed to an integral over
the reference domain so that we can use Gauss quadrature. To this end, we
use the mapping xN (ξ) which will, in general, be nonaffine. We then use GLL
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quadrature with M + 1 points; typically, we use M = 3N in order to ensure
that the quadrature error is subdominant the interpolation error.

3.6.2 Solving the nonlinear system of equations

The implementation of the L2-method and the equal-tangent method necessi-
tates the solution of nonlinear systems of equations. For both methods, solving
these systems is challenging. In the present work, we have used a standard
Newton iteration. The main difficulty has been to construct a sufficiently good
initial guess for the Newton iteration. In order to improve the robustness, we
have also limited the change in the solution per iteration by introducing a re-
laxation parameter.

The system of nonlinear equations resulting from minimizing the L2-error
is particularly hard to solve. The Newton iteration can easily get trapped into
finding a local minimum, for which the corresponding point distribution is non-
optimal.

The equal-tangent method does not correspond to solving a minimization
problem. Instead the method finds a point distribution which (i) interpolates the
exact curve and (ii) results in equal tangent vectors at the internal interpolation
points. This method is also sensitive to the initial guess. In particular, the
system (3.5) may have multiple solutions.

The way we have implemented both the L2-method and the equal-tangent
method is by first solving the problem for a low polynomial degree, and then
successively increase the value of N using the solution achieved for N − 1 to
produce an initial guess. Hence, this corresponds to a bootstrapping approach.
This may not always be sufficient and we have therefore also used the point
distribution corresponding to the chord method as an initial guess. Each of
these initial guesses will result in a set of interpolation points corresponding
to a polynomial degree N . In order to proceed to the next value N + 1, we
start from whichever point distribution produces the smallest L2-error for the
polynomial degree N .

For the curves considered in this paper, the mapping x(ξ) is always bijective,
and so we expect xN (ξ) to be the same. However, non-injective solutions may
be produced by the Newton iterations. Note that, even if

ξ∗0 < ξ∗1 < . . . < ξ∗N (3.7)

is satisfied, xN (ξ) may still not be monotonic due to oscillations. Monotonicity
is not strictly enforced in our implementation, but (3.7) is checked during the
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iterations. Together with the step length restriction, this has proven to be
enough in practice.

4 Numerical solution of the Poisson problem

In this section we revisit the Laplace problem (2.1) from Section 2, but for
different domains Ω. We will also consider a few Poisson problems with different
exact solutions u(x, y).

4.1 Case 2

Consider a deformed quadrilateral domain with three straight edges and the top
edge parametrized as

x(ξ) =
1

2
(ξ3 + ξ2 + ξ − 1),

y(ξ) = 1 +
1

3
(1− ξ2),

(4.1)

where ξ ∈ [−1, 1]. The top edge can thus be parametrized by low order poly-
nomials, but the corresponding function representation y(x) is complicated and
contains several root functions. Hence, a standard mesh, featuring vertical grid-
lines in the interior, will not be optimal. Figure 7 shows this mesh, along with
the mesh generated by the equal-tangent method.

−1 0 1
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(a) The standard method
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x
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(b) The equal-tangent method

Figure 7: Computational grids in Case 2, using a polynomial degree N = 10.
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Figure 8 shows the relative error in the numerical solution of the Laplace
problem (2.1). The exact solution u(x, y) = ex sin y is analytic, and we reach
machine precision around N = 25 using the equal-tangent mesh. On the other
hand, the standard mesh yields errors in the geometry representation that dom-
inate the error in the representation of the solution of the Laplace problem, and
the error (2.2) decreases much more slowly.

Figure 8: Relative error measured in the discrete energy norm when solving the
Laplace problem (2.1) in the domain depicted in Figure 7.

Next, we solve a Poisson problem with a low order polynomial solution over
the same domain. The exact solution is given as u(x, y) = x3 + y3, and we
impose corresponding non-homogeneous Dirichlet boundary conditions. With
the equal-tangent method we get a mapping where xN is a polynomial of degree 3
and yN is a polynomial of degree 2 in ξ, respectively, and hence u is a polynomial
of degree 9 in ξ. Unless we introduce any quadrature error, we should get the
exact solution for N ≥ 9. Figure 9 confirms this.

4.2 Case 3
In this case we solve the same two problems as in the previous case, but now
investigate the effect of having a domain with four deformed edges where all the
edges can be parametrized by low order polynomials. In particular, Ω is a de-
formed quadrilateral where the top edge is described by the curve (4.1), whereas
the other edges are modifications of this curve. All edges are parametrized by
polynomials of degree less than or equal to 5, so exact representation of the ge-
ometry can be achieved at N = 5 by direct interpolation of the given parametric
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Figure 9: Relative error measured in the discrete energy norm when solving the
Poisson equation with an exact polynomial solution u(x, y) = x3 + y3 in the domain
depicted in Figure 7.

functions. If there exist reparametrizations that only consist of polynomials of
even lower degree, we may see even faster convergence.

The meshes generated by the standard method and the equal-tangent method
are shown in Figure 10. Figure 11 shows very similar behavior to what we saw
in Case 2, though the convergence rate is slightly lower. From Figure 12 and
an argument similar to that in Case 2 we conclude that exact representation
of the geometry is achieved at N = 5 by the L2-method and the equal-tangent
method.

4.3 Case 4
Consider a deformed quadrilateral domain with three straight edges and the top
edge described by the function

yT (x) = 1 +
1

10
(1− |x|). (4.2)

The equal-tangent method gives a clustering of interpolation points around x =
0 on the top edge, which is due to a strongly nonaffine mapping. This gives
a significant distortion of the mesh compared to the mesh generated by the
standard method (vertical grid lines); see Figure 13.

Figure 14 shows the relative error in the numerical solution of the Laplace
problem (2.1), measured in the energy norm. The standard method yields al-

47



Paper 1

−1 0 1

−1

0

1

x

y

(a) The standard method

−1 0 1

−1

0

1

x

y

(b) The equal-tangent method

Figure 10: Computational grids in Case 3, using a polynomial degree N = 10.

Figure 11: The relative error in the solution of a Laplace problem with an exact
solution u(x, y) = ex sin y and a domain shown in Figure 10 (Case 3); the error is
measured in the discrete energy norm.

gebraic convergence due to the low order approximation of the geometry. The
equal-tangent method yields exponential convergence for sufficiently large N ;
for low values of N there is a trade-off between the representation of the ge-
ometry and representation of the solution to the Laplace problem. Note that,
even if the exact solution is very regular on the physical domain, it could exhibit
steep gradients and boundary layers on the reference domain due to the strongly
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Figure 12: The relative error in the solution of a Poisson problem with an exact
solution u(x, y) = x3 + y3 and a domain shown in Figure 10 (Case 3); the error is
measured in the discrete energy norm.
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Figure 13: Computational grids in Case 4 using a polynomial degree N = 20.

nonlinear mapping.

4.4 Case 5

In the final example, we consider a domain where all the four edges are deformed;
see Figure 15. The top edge is part of a circle of radius one, the left edge and
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Figure 14: The relative error in the solution of the Laplace problem (2.1) in the
domain depicted in Figure 13; the error is measured in the discrete energy norm.
Only results for the standard method and the equal-tangent method are shown. For
comparison, we also show the L2-error in the approximation of the top edge.

the right edge are trigonometric functions of y, and the bottom edge can be
described by the function yB(x) = 1

10 (1− |x|3).
The left grid in Figure 15 represents a typical way to construct a grid, with

the bottom edge and the left and the right edges approximated using the chord
method, and the top edge approximated using the arc length method. The
right grid in Figure 15 is fully based on using the equal-tangent method for
the approximation of the domain boundary. The most notable feature is the
clustering of grid points towards the center of the bottom edge; this is due to
the finite regularity of yB(x).

In Figure 16 we compare the discretization error (2.2) as a function of N
for the two different grids depicted in Figure 15. Similar to Case 4, the equal-
tangent method is not optimal for small N . Again, this is because the clustering
of grid points along the bottom edge strongly affects the mapping from the two-
dimensional reference domain to the physical domain.

5 Conclusions and final remarks

In this study we have investigated the impact of the choice of geometry repre-
sentation in the context of solving partial differential equations using spectral
methods. We have shown that the overall discretization error for the Poisson
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Figure 15: Computational grids in Case 5, using a polynomial degree N = 20.

problem can sometimes be significantly reduced by a careful representation of
the boundary of the domain (in our case, the four edges of a deformed quadri-
lateral domain).

Each edge of the two-dimensional domain is approximated using high order
polynomial interpolation. Once the boundary of the domain has been approx-
imated, the mapping between the reference domain and the physical domain
follows readily. The numerical results presented in this study show the impor-
tance of, and the sensitivity to, the choice of interpolation points along a curve
in the plane. We have also proposed a method (the equal-tangent method)
as a way to ensure close to optimal interpolation results. The advantage of
this method compared to directly finding an L2-optimal interpolant is that it
is computationally less difficult to solve the nonlinear system of equations. The
new method can give significantly faster convergence compared to more stan-
dard interpolation methods. For example, approximating a deformation in the
form of the classical Runge function using the new method yields a much faster
convergence rate compared to classical interpolation. The most extreme case is
exponential convergence obtained for a problem with an analytic solution in a
domain where the boundary has a finite (low) regularity.

One can easily think of other methods for interpolating a parametrized curve
than the ones presented here. The points can be chosen by distributing them
according to a weight function along the curve, or along the x-axis, as was done
in [5] for construction of optimal finite element meshes. This approach can
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Figure 16: The error in the solution of the Laplace problem (2.1), for the domain
depicted in Figure 15, measured in the energy norm. For comparison, we also show
the L2-error in the approximation of the bottom edge. The algebraic convergence
of the standard approach is due to the inability to represent the bottom edge (a
function of low regularity) accurately. In contrast, the equal-tangent method is able
to represent the geometry to machine precision at N = 20, at the cost of a highly
nonlinear mapping. This is not ideal for representing the field variables on the reference
domain, and the method is clearly not optimal for small N . However, for large N the
equal-tangent method is able to achieve exponential convergence.

in principle be applied to high order methods, but the analysis that ensures
optimality no longer holds. New methods can also be constructed by replacing
the equal-tangent conditions by N − 1 other conditions. One can for example
require equal tangents and equal curvature at b(N − 1)/2c points, or one can
reduce the number of points and increase the order of contact even further.
According to the conjectures [13, 15], this should give results similar to those
seen here using the equal-tangent method. Finally, we can use the N−1 degrees-
of-freedom to ensure interpolation in a set of N − 1 extra interpolation points
such that we have a total of 2N interpolation points. Numerical experiments
yield varying results, with the best results achieved when the extra set of points
are required to be very close to the existing internal interpolation points. This
approach gives a very similar behavior as the equal-tangent method.

The extension of the mesh from the boundary of the domain to the interior
can also be done in several different ways. Instead of using the Gordon-Hall
algorithm one can solve an elliptic PDE, but in our experience the potential
gain is very limited.
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Future work will focus on extending the current study to other types of
partial differential equations and to solving three-dimensional problems. Find-
ing optimal high order representations of curved surfaces in three dimensions
is an unsolved problem. Furthermore, it would be of interest to investigate to
what extent the choice of interpolation points can be used to construct adaptive
algorithms for high order discretizations.
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Abstract

Interpolation of parameterized curves differs from classical interpolation
in that we interpolate each spatial variable separately. A difficult chal-
lenge arises from the option of reparameterization: a presumably good
interpolation (e.g., at the Gauss points) of a given parameterization does
not necessarily give the best approximation of the curve, as there may ex-
ist a reparameterization better suited for polynomial interpolation. The
reparameterization can be done implicitly by choosing different sets of
interpolation points along the exact curve. We present common inter-
polation methods, and propose a new method, based on choosing the
interpolation points in such a way that the interpolant is tangential to
the exact (reparameterized) curve at these points. The new method is
compared to the traditional ones in a series of numerical examples, and
results show that classical interpolation is sometimes far from optimal in
the sense of the Kolmogorov n-width, i.e., the best approximation using
n degrees-of-freedom.

1 Introduction

The topic of polynomial interpolation of parameterized curves appears in prac-
tical applications in high order methods for solving partial differential equations
in deformed domains [3, 4]. The accuracy of the numerical solution is directly
influenced by the accuracy of the geometry representation [7]. If the distortions
are not too large, this representation can readily be achieved via a Gordon-Hall
transfinite interpolation procedure [6]. For a deformed quadrilateral domain,
this algorithm requires that we first construct an accurate representation

(xN (ξ), yN (ξ)), xN , yN ∈ PN (−1, 1) (1.1)

57



Paper 2

of each of the four boundary curves. This is merely an approximation of the
exact curve, and an easy way to achieve a good approximation is through inter-
polation. Then the approximation problem simplifies to the problem of choosing
a set of interpolation points.

In this paper we explore different ways of choosing these interpolation points.
We compare previously proposed methods with a new method. The methods will
be introduced in the context of plane curves, and then later extended to space
curves. The accuracy of the different interpolation methods will be compared
in numerical experiments.

2 Interpolation methods for plane curves

The starting point is a given curve y(x) in the plane, defined by the parameter-
ization

(x(η), y(η)), η ∈ [−1, 1]. (2.1)

We assume that y(x) is C1, so that there is a unique tangent vector at each
point on the curve. Our numerical approximation is an interpolant based on a
representation by high order polynomials (1.1). A nodal basis for the polynomial
xN (ξ) is

xN (ξ) =

N∑

j=0

xj `j(ξ), (2.2)

and similarly for yN (ξ). Here, `j(ξ) is the j’th Lagrangian interpolant through
the Gauss-Lobatto-Legendre (GLL) points ξi, i = 0, . . . , N , with the property
that `j(ξi) = δij . Hence, the expansion coefficients xj and yj are coordinates
somewhere on the exact curve, i.e. xj = x(ηj) and yj = y(ηj) for some ηj ∈
[−1, 1]. We impose the restriction that the two end points of the numerical
curve are interpolation points, i.e., η0 = −1 and ηN = 1. However, we do not
require the internal interpolation points ηj , j = 1, . . . , N − 1 to be the internal
GLL points, as there always exists a reparameterization (x̃(ξ), ỹ(ξ)), ξ ∈ [−1, 1],
such that the interpolation points are mapped from the GLL points in the
reference domain, i.e., xj = x̃(ξj) and yj = ỹ(ξj). The two parameterizations
are connected by the relationship

x̃(ξ) = x(η(ξ)) = x
( N∑

j=0

ηj`j(ξ)
)
, (2.3)
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and correspondingly for y. The reparameterization is not unique [8], and we have
here chosen η to be a polynomial of degree N in ξ. Equation (2.3) implicitly
defines the reparameterization from the choice of interpolation points.

There are some widely known methods for choosing the values ηj . We will
first describe them briefly, and then introduce two alternative methods.

2.1 Common interpolation methods

The three most common interpolation methods all rely in some way on an affine
mapping of the GLL points from the reference domain to the physical domain
[4]. The first, which we will refer to as the standard method, uses an affine
mapping xN (ξ) such that the interpolation points are distributed according to
a GLL distribution along the x-axis. This implies that yN will not only be a
polynomial as a function of ξ, but also as a function of xN .

We can also choose a GLL distribution along the chord between the two end
points of the curve; see Figure 1. This is the chord method, which coincides with
the standard method when the chord is parallel to the x-axis.

The last method is based on a GLL distribution in the arc length variable
s, and is called the arc length method.

x

y

(a) Standard method

x

y

(b) Chord method

x

y

s

(c) Arc length method

Figure 1: Three common methods for choosing interpolation points.

2.2 The L2-method

The three previous methods each have special types of curves where they work
well. However, we do not know how good the resulting interpolants are com-
pared to the best possible interpolant.
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In order to be able to define an optimal interpolant, we restrict our study
to curves that can be described by a function y(x) for x ∈ [a, b]. Then the L2-
norm can be used to measure the interpolation error, and we define the optimal
set {ηj}N−1

j=1 of internal interpolation points to be the one that minimizes the
functional

J = ||y − yN ||2L2 =

∫ b

a

(y(x)− yN (x))2 dx. (2.4)

We can differentiate J with respect to each independent variable ηj , j =
1, . . . , N−1, and use Newton’s method to search for the minimum. We will refer
to this method as the L2-method; see [2] for more details. The resulting mini-
mizer can be viewed as the solution to the Kolmogorov n-width problem applied
to the interpolation of curves. Note that we are searching for the global mini-
mum of (2.4). Newton’s method uses a local search, and is therefore dependent
on a good initial guess.

In general, we are not guaranteed that xN (ξ) is invertible (i.e., that yN (xN )
is a function), but this does not seem to be a big practical problem.

2.3 The equal-tangent method
The functional J uses information about the curves on the entire interval [a, b],
which makes the L2-method slow and complicated as N increases. We therefore
propose a method which uses information about the curves only at the interpo-
lation points. The idea behind the equal-tangent method is to require that the
exact and numerical curves are tangential at the N − 1 internal interpolation
points. This can be achieved if we are able to find the roots η1, η2, . . . , ηN−1 of
the nonlinear system

dxN
dξ

(ξj)
dy

dη
(ηj)−

dyN
dξ

(ξj)
dx

dη
(ηj) = 0, j = 1, . . . , N − 1. (2.5)

The left hand side represents an inner product between a tangent vector to
the interpolant and a normal vector to the exact curve. In order to solve this
system of equations, we will apply a Newton method. This requires that we
differentiate the left hand side of (2.5) with respect to the N − 1 independent
variables ηj at the internal interpolation points.

We remark that the solution of (2.5) may not be unique; in such cases the
particular solution obtained will depend on the initial guess. The existence of
a solution in the general case has not been proven, however we have not yet
encountered a counter-example. The method works well on a wide range of
curves, and we will show a few examples here; see [2] for more details.
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2.4 Numerical results

The following examples are chosen to illustrate the behavior of the various meth-
ods in different situations. They are all given as functions y(x); a parameteri-
zation (2.1) is readily achieved, using an affine mapping x(η).

The interpolation error is measured in the discrete L2-norm, where the in-
tegral in (2.4) is evaluated using GLL quadrature [2].

Case 1 The first example we consider is described by the function y(x) =
1

1+16x2 , x ∈ [−1, 1]. Classical interpolation theory tells us that this function
is particularly difficult to interpolate [5], and as the standard method yields a
polynomial yN (xN ), we expect it to converge very slowly. Figure 2a confirms
this, and it shows that the arc length method is even worse. Compared to this,
the convergence rate of our proposed method is striking. By construction, the
L2-method is supposed to be the best, but it is only best forN < 9; as mentioned
earlier, this is due to the complexity of computing the global minimizer of (2.4)
as N increases.

Case 2 From classical interpolation theory we know that approximation of
functions of limited regularity with polynomials results in algebraic convergence
[1]. Consider the function y(x) = 1 − |x|3, defined on x ∈ [−1, 1]. Both the
standard method and the arc length method converge algebraically. The equal-
tangent method, however, converges exponentially; see Figure 2b. The L2-
method again converges fast only up to a certain value of N .

3 Interpolation of space curves

We now consider curves in space, defined by a given parameterization

(x(η), y(η), z(η)), η ∈ [−1, 1]. (3.1)

In order to be able to compare all methods, we restrict ourselves to curves where
both y and z can be described by functions of x. Then, the standard, chord and
arc length methods can all be extended in a natural way.
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(a) Case 1
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Figure 2: Interpolation error, measured in the discrete L2-norm. Left: for the Runge
function, the standard method and the arc length method both converge slowly, but
exponentially. The equal-tangent method and the L2-method both converge much
faster. Right: for this function of limited regularity, the standard method and the arc
length method both yield algebraic convergence. The equal-tangent method, on the
other hand, converges exponentially. The L2-method performs reasonably well, but
has difficulty finding the global minimum.

3.1 The L2-method

With our restriction on curves, we can define a functional similar to (2.4), ex-
tended to include the error in the z-variable:

J =

∫ b

a

[
(y(x)− yN (x))2 + (z(x)− zN (x))2

]
dx. (3.2)

The integral is transformed to the reference variable ξ and evaluated numerically
using GLL quadrature. With this extension, everything is similar to the two-
dimensional case, including the minimization procedure.

3.2 The equal-tangent method

The extension of the equal-tangent method is not as straightforward. In the
plane, there is a unique normal vector to the curve, but in space there is a
whole normal plane. Hence, one normal vector is not enough to ensure equal
tangents. We propose a method where we use one normal vector from each
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coordinate plane,

n1 =




0
−z′(η)
y′(η)


 , n2 =



z′(η)

0
−x′(η)


 , n3 =



−y′(η)
x′(η)

0


 . (3.3)

This is one more than we need to span the normal plane, but it gives symmetry
in the space variables. Numerical experiments indicate that this may add to the
robustness of the method. In order to realize the condition of orthogonality for
all the three normal vectors, we square the inner products and take the sum

3∑

i=1

(tN · ni)2 = 0, (3.4)

where tN = (x′N (ξ), y′N (ξ), z′N (ξ))T . Newton’s method applied to (3.4) do not
result in the same set of equations as Newton’s method applied to (2.5) for
curves in the plane (z(η) = 0). However, both systems have the same sets of
exact solutions.

3.3 Numerical results

Case 3 The curve we are looking at is a distorted helix, spiraling along the
x-axis with a varying radius. It is defined by the parameterization

x(η) = −5

2
+

7

4
(η + 1),

y(η) =
1

2
e−(1+η) cos(2πη),

z(η) =
1

8
(η + 2) sin(2πη),

for η ∈ [−1, 1]. Figure 3a shows that the situation is much the same as it was in
two dimensions: the equal-tangent method is the best, and it almost coincides
with the L2-method up to N = 11. The standard method works well in this
case due to the construction of the example, while the chord and arc length
methods converge very slowly.

63



Paper 2

Case 4 Consider the curve parameterized by

x(η) = η + 1,

y(η) =

√(
η +

9

4

)1/3

− 1,

z(η) =
(
η +

9

4

)2/3

− 1.

If we let η(ξ) = ((αξ + β)2 + 1)3 − 9/4 for suitable constants α and β, we get
a reparameterization where ỹ(ξ) is affine and x̃(ξ) and z̃(ξ) are polynomials
of degrees 6 and 4, respectively. Hence, the best distribution of interpolation
points should give an exact representation of the curve from N = 6. Figure 3b
shows that the equal-tangent method indeed finds this optimal solution, with
no a priori knowledge of the optimal distribution of interpolation points.
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Figure 3: Interpolation error, defined as the square root of (3.2). Left: the curve is
well suited for the standard method, but we are still able to achieve faster convergence
with the equal-tangent method and the L2-method. Right: the parameterization
consists of square and cubic roots, which makes the standard method a non-optimal
choice. In particular, the curve can be reparameterized using polynomials of degree
less than or equal to 6, which is detected by the equal-tangent method.
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4 Conclusions and future work

We have looked at interpolation of parameterized plane and space curves using
high order polynomials. We have proposed a new method, iterative in nature,
based on a requirement that the interpolant be tangential to the exact curve
at the internal interpolation points. Through numerical experiments we show
that the new method can give significantly smaller error than the conventional
methods, and we believe it yields results that are close to optimal in the sense
of the Kolmogorov n-width, i.e., the best approximation using n degrees-of-
freedom. The most extreme case is exponential convergence obtained for a
function y(x) with finite regularity.

The motivation behind this study has been the numerical solution of partial
differential equations in deformed domains using high order methods. The new
method can be applied to the representation of the domain boundary, which
affects the error of the resulting numerical solution. The preliminary results are
promising, and reported in a separate article [2].

Future work will focus on the representation of surfaces in space, which can
then be applied to the numerical solution of PDEs in deformed three-dimensional
domains.
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Abstract
In this paper, high order interpolation of parametric curves and surfaces
in R3 is studied. The topic differs from classical interpolation of func-
tions since any reparametrization of the given curve or surface can be
interpolated. This leads to the question whether there exists an opti-
mal reparametrization that results in the lowest possible interpolation er-
ror. This can also be viewed as a Kolmogorov n-width problem in terms
of polynomial interpolation: how to best use the available degrees-of-
freedom in order to minimize the interpolation error. Here, this problem
is studied numerically, and different interpolation methods are presented
and compared. The methods are introduced in the context of paramet-
ric curves and then extended to parametric surfaces when possible. The
results are relevant for numerical solution of PDEs using high order meth-
ods.

Keywords: Geometric Hermite interpolation, reparametrization, high order
polynomials, geometric continuity

Mathematics Subject Classifications: 41A10, 41A25, 65D05, 65D17, 65N35,
65N50

1 Introduction

Polynomial interpolation of parametric curves and surfaces is a central part of
Computer Aided Geometric Design (CAGD). The traditional way to interpolate
a given parametric curve f in Rd is to view it as a vector-valued function and
interpolate each of the d components separately. Polynomials of degreeN can be
made to interpolate the curve in N+1 points in this way. If f is in Ck (i.e., each
component is a Ck function), one can also choose to interpolate fewer points and

69



Paper 3

instead match both function values and derivatives in the interpolation points.
A polynomial of degree N can interpolate a function and its k first derivatives
at n points if N = n(k + 1) − 1. Common for both approaches is that the
interpolant can be constructed by solving systems of linear equations, and that
the approximation order (as defined for approximation of functions) is N + 1.
As an example, consider cubic spline curves in R2 which can be constructed
to interpolate function values and derivatives at the end points of each curve
segment, giving the approximation order four.

The parametrization of a curve can be thought of as the position vector for a
particle traversing the curve. This implies that the first derivative of f describes
its velocity, the second derivative the acceleration and so forth. If our goal is
to approximate the curve as a geometric object, these quantities are of little
interest. Instead we are interested in geometric properties of the curve, such as
tangent directions, curvature and torsion. It is possible to construct interpolants
based on such quantities, and it can yield a higher approximation order than
classical interpolation. In [6] it was shown that under certain conditions, cubic
polynomial curves in R2 can interpolate both function values, tangent directions
and curvature at the end points, resulting in approximation order six. The price
to pay for the increased accuracy is a system of non-linear equations that must
be solved. The interpolation method was viewed as a generalization of Hermite
interpolation based on geometric quantities and was therefore called geometric
Hermite interpolation.

In recent years we have seen a lot of work on geometric Hermite interpolation
in the CAGD community; e.g., see [7, 8, 9, 11, 13, 17, 22, 24, 27]. The work
has led to a conjecture [15] about the highest possible approximation order that
can be attained when interpolating parametric curves in Rd by polynomials of
degree N . The conjecture has been confirmed in some special cases, but it
remains unproven. Most of the authors focus on planar curves, but there has
also been some work done on curves in R3: cubic interpolation was studied in
[12, 15], quartic in [5, 26], and quintic in [25].

The concept of geometric Hermite interpolation can also be applied in the
context of parametric surfaces, but the problem is much harder due to the in-
creased number of unknowns. Mørken [19] gives a detailed discussion of the op-
timal approximation order and constructs a quadratic Taylor approximant with
approximation order four. Lagrange interpolation of surfaces with quadratic
polynomials is considered in [16].

There has been surprisingly little work done on high order interpolation of
parametric curves and surfaces. In the field of CAGD polynomials of degree
N > 5 are not so common in applications. However, the subject is relevant
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in the context of solving PDEs in deformed geometries using high order meth-
ods [4, 10]. Here, the accuracy of the numerical solution is directly influenced
by the accuracy of the geometry representation [18]. It is common to use an
isoparametric approach, representing the geometry with the same polynomial
degree as the other field variables. For example, in a Legendre spectral element
method, deformed quadrilaterals or hexahedrons are approximated by tensor-
product polynomials, constructed by interpolating the exact geometry. In this
context a reparametrization may yield a better representation of not only the
geometry, but also the primary field variables [2]. Still, the topic has not been
given much attention in the literature.

In the context of high order interpolation the concept of approximation or-
der is not commonly used since the approximation approach is global and we
only use one polynomial curve segment for the entire curve (as opposed to for
example a spline approach). Convergence is rather defined in terms of how
the interpolation error, measured in some appropriate norm, decreases as the
polynomial degree N increases. It is well known from classical interpolation
theory that smooth functions can be interpolated by polynomials to exponen-
tial convergence, i.e., the interpolation error decreases faster than any algebraic
power of N [3]. An optimal interpolation method may thus be defined as one
that yields exponential convergence with the highest possible rate, i.e., with
the largest possible negative exponent. Functions of finite regularity yield al-
gebraic convergence in classical interpolation, but as we will see, the choice of
interpolation points implicitly defines a reparametrization, which is the function
that is actually being interpolated. A good interpolation method may give us
exponential convergence, even if the given parametrization is a function of low
regularity.

The outline of the paper is a follows. In Section 2 we first present the frame-
work for polynomial interpolation of parametric curves and discuss how the
option of reparametrization makes the subject different from classical interpo-
lation. We then present two interpolation methods that are commonly used in
the high order methods community, and we introduce three new methods: one
optimization method aimed at directly minimizing the interpolation error, and
two methods in the family of geometric Hermite interpolation. In Section 3 we
compare the different methods through several numerical examples. In Section
4 we discuss how to extend the methods to interpolation of parametric surfaces,
and some numerical examples are presented in Section 5. The conclusions of
this study are summarized in Section 6.
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2 Interpolation of parametric curves

Consider a curve C in R3, defined by a given parametrization

f(η) = (f1(η), f2(η), f3(η)), η ∈ [−1, 1]. (2.1)

The curve is Ck-continuous if each of the parametric functions fi, i = 1, 2, 3,
are in Ck. The problem we set out to solve is how to best interpolate this curve
by polynomials, i.e., a parametric curve

p(ξ) = (p1(ξ), p2(ξ), p3(ξ)), ξ ∈ [−1, 1], (2.2)

where pi, i = 1, 2, 3 are functions in PN ([−1, 1]), the (discrete) space of polyno-
mials of degree less than or equal to N . This problem is different from classical
polynomial approximation of functions since C can be reparametrized. Specif-
ically, for all ϕ ∈ W = {ψ ∈ C∞([−1, 1]) | ψ(±1) = ±1, and ψ′ > 0} the
function

g(ξ) = f(ϕ(ξ)) (2.3)

describes the same curve, so interpolation of g instead of f gives an approx-
imation of the same geometric object. Intuitively, a reparametrization means
traversing the curve at a different speed. There exist infinitely many reparametriza-
tions of any given curve, and some may be better suited for polynomial inter-
polation than others. Hence, finding the best interpolant involves finding the
best parametrization, a problem which is very difficult.

From classical interpolation theory we know that for a well chosen set of
interpolation points (e.g., the Gauss points), a scalar function u ∈ Hσ([−1, 1])
can be interpolated by polynomials INu with an interpolation error [3]

||u− INu||L2 ≤ cN−σ||u||Hσ(Ω), (2.4)

where c is a constant. If u is analytic, the error will decrease faster than any al-
gebraic power of N , and we obtain exponential convergence. This also translates
to vector-valued functions.

Let us illustrate the importance of reparametrization with an example. Con-
sider a curve defined by the parametrization

f1(η) = η + 1,

f2(η) =
√

(η + c)1/3 − 1,

f3(η) = (η + c)2/3 − 1,

(2.5)
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where η ∈ [−1, 1] and c is a constant. For c > 2 the parametric functions are
smooth, and f can be interpolated by polynomials to exponential convergence.
However, applying the particular change of variable

η = ϕ(ξ) =
(
(aξ + b)2 + 1

)3 − c

to f , we get the reparametrization

g1(ξ) = ((aξ + b)2 + 1)3 − c+ 1,

g2(ξ) = aξ + b,

g3(ξ) = ((aξ + b)2 + 1)2 − 1,

(2.6)

where all the parametric functions are polynomials of degree less than or equal
to six. Interpolating this parametrization will result in exact representation of
the curve for N ≥ 6, which is obviously a great improvement.

When using Legendre spectral element methods in deformed hexahedra, the
edges are approximated by parametric curves and the faces are approximated by
parametric surfaces [10]. The end points of a curve are interpolation points and
the interpolation points are mapped from the Gauss-Lobatto-Legendre (GLL)
points ξj , j = 0, . . . , N by the interpolant. We represent such an interpolant
using Lagrange interpolation polynomials through the GLL points,

pi(ξ) =

N∑

j=0

αij`j(ξ), i = 1, 2, 3, (2.7)

where the coefficients αij are determined by the interpolation conditions. In
classical interpolation, this means simply evaluating the given parametrization
f in the GLL points, i.e., αij = fi(ξj). Reparametrizing the curve before inter-
polating yields αij = gi(ξj), in which case the interpolation points are no longer
mapped from the GLL points by f , but rather from the points

ηj = ϕ(ξj), j = 0, . . . , N. (2.8)

Note that due to the nodal representation (2.7), the interpolant always maps
the GLL points to the interpolation points.

In the current context, the mapping ϕ(ξ) is unknown, since we do not know
a priori which reparametrization is best suited for polynomial interpolation.
The ηj , j = 0, . . . , N , in (2.8) can thus be viewed as free variables which can
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be manipulated subject to certain restrictions, imposed by W . Specifically, we
must require all ηj ∈ [−1, 1], and that they appear in consecutive order, i.e.,

−1 ≤ η0 < η1 < . . . < ηN ≤ 1. (2.9)

Interpolation of the end points implies setting η0 = −1 and ηN = 1, and we are
left with N − 1 degrees-of-freedom which can be used to improve the approxi-
mation properties of the interpolant.

The interpolant is uniquely defined by the choice of ηj through the definition

αij = fi(ηj) (2.10)

of the expansion coefficients in (2.7). The change of variable ϕ, on the other
hand, is only partially determined by (2.8). To turn the statement around, one
can say that there are (infinitely) many reparametrizations that, when interpo-
lated in the classical sense, yield the same interpolant. It will be convenient to
choose ϕ to be the polynomial of lowest degree that satisfies (2.8). This can
be done if the polynomial interpolating η0, . . . , ηN is monotonic. It is then a
(uniquely determined) function in W ∩ PN ([−1, 1]), and we will refer to it as
ϕN .

2.1 Measuring the interpolation error
It is not trivial to define a norm for the interpolation error in the context of
parametric curves. The norm should measure the distance between the geomet-
ric objects represented by f and p, regardless of the particular parametrizations
chosen. One metric satisfying this requirement is the Hausdorff metric [21]. Un-
fortunately, this norm is not very well suited for numerical calculations. Other
possibilities are the normal distance proposed by Degen [7], or the metric pro-
posed by Mørken and Scherer [20].

We will use none of these metrics, but rather the L2-like norm

||f − p|| =
(∫ b

a

3∑

i=2

(
fi(f

−1
1 (x))− pi(p−1

1 (x))
)2

dx
)1/2

, (2.11)

where a = f1(−1) and b = f1(1). It will be implemented using GLL quadrature
with overintegration to ensure that the quadrature error is sub-dominant. The
reason for choosing this norm is that it makes the interpolation error an explicit
function of the free variables ηj , i = 1, . . . , N − 1. This will enable us to define
an interpolation method based on direct minimization of the interpolation error.
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It might not be immediately clear why a norm like

||f − p|| =
(∫ 1

−1

3∑

i=1

(
fi(ϕN (ξ))− pi(ξ)

)2
dξ
)1/2

(2.12)

is not acceptable. The problem is that basing the norm on an integral over the
parametric domain makes the norm parametrization-dependent. Even though
f(ϕN (ξj)) = p(ξj), j = 0, . . . , N (i.e., the reparametrization and the interpolant
reach the interpolation points “at the same time”), it is not given that p(ξ) is
the best approximation of f(ϕN (ξ)) for any other given ξ. After all, ϕN was
chosen among all the changes of variable that yield the interpolant p.

It should be noted that this is mainly a theoretical problem. If f is smooth,
then so is f ◦ ϕN , and hence p will approximate it to exponential convergence.
This implies that the curves are being traversed with approximately the same
velocity. Moreover, if f1(η) = η, then (2.11) and (2.12) coincide.

The definition of the norm (2.11) puts a restriction on the curves that can
be studied, since it is only defined when the first parametric function f1(η) is
monotonic, i.e., when the curve can be uniquely determined by specifying its x-
coordinate. This restriction on the curves is not a limitation on the interpolation
methods studied here. However, the numerical results will only include curves
from this subset in order to be able to quantitatively compare the different
methods.

2.2 Interpolation methods

As already mentioned, the simplest way to interpolate a parametric curve f is
to view it as a vector-valued function and let αij = fi(ξj), j = 0, . . . , N . This
may be satisfactory if we know fi, i = 1, 2, 3 to be smooth functions, but in
other cases it may be far from optimal.

In the high order methods community there are two common interpolation
methods that are independent of the parametrization [10]. Both rely in some
way on an affine mapping of the GLL points from the parametric variable to
the physical domain.

The first interpolation method considered here, referred to as the chord
method, is defined by first mapping the GLL points affinely to the chord be-
tween the two end points of the curve, and then letting the interpolation points
be the intersection between the exact curve and the normal planes to the chord
at these affinely mapped points (Figure 1a). Finding these intersection points

75



Paper 3

requires an iterative procedure like Newton’s method. The chord method obvi-
ously does not work for closed curves, and it also fails in cases where the the
curve intersects a normal plane to the chord in more than one point. However,
this is not a significant limitation in the context of high order methods for solv-
ing PDEs. The chord method will yield (rapid) exponential convergence if the
curve can be described by a smooth function in a rotated coordinate system
where the abscissa is parallel to the chord.

xy

z

(a) Chord method

xy

z

s

(b) Arc-length method

Figure 1: Two common methods for choosing interpolation points. Both methods
involve an affine mapping of the GLL points: the chord method along the chord
between the end points, the arc-length method in the arc-length variable s.

The second method is based on a GLL distribution in the arc-length variable
s, and is called the arc-length method. On a curve of length L, construct the
affine mapping s(ξ) = L

2 (ξ + 1), ξ ∈ [−1, 1], and define the values sj = s(ξj),
j = 0, . . . , N , associated with the GLL points ξj . Each value sj corresponds to a
unique point along the curve with coordinates (xj , yj , zj), which is then defined
as an interpolation point (Figure 1b). Again, an iterative procedure such as
Newton’s method is required.

The arc-length method is equivalent to interpolating a reparametrization g
with constant Jacobian

J(ξ) =

(
3∑

i=1

g′i(ξ)
2

)1/2

.

This, of course, does not guarantee that the parametric functions are smooth.
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In the example with the curve parametrized by (2.5) and (2.6), none of these
two interpolation methods correspond to classical interpolation of f or g.

2.3 The L2-method
A good interpolant should yield a small interpolation error, measured in the
norm (2.11). The norm was chosen because it enables us to explicitly evaluate
the measured interpolation error as a function of the free variables η1, . . . , ηN−1

(when approximated with GLL quadrature). This makes it possible to define
an interpolation method based on direct minimization of the measured interpo-
lation error, using a (global) optimization algorithm. We will use the objective
function

Λ(η1, . . . , ηN−1) = ||f − p||2, (2.13)

and the method will be referred to as the L2-method.
In order to avoid the evaluation of the inverses of f1 and p1, we only consider

parametrizations f where the first component f1(η) is linear. All curves that
can be measured by the norm (2.11) can be reparametrized this way. We then
have

f1(ϕN (ξ)) = p1(ξ), (2.14)

which allows a change of variable x = f1(ϕN (ξ)), and the norm can be rewritten
as

||f − p|| =
(∫ 1

−1

3∑

i=2

(fi(ϕN (ξ))− pi(ξ))2
p′1(ξ) dξ

)1/2

, (2.15)

Here, all terms can be evaluated explicitly; GLL quadrature will be used to
evaluate the integrals.

The minimization is implemented using Newton’s method, which requires
the first and second order partial derivatives of Λ w.r.t. η1, . . . , ηN−1. These
can be found explicitly from the formulation (2.15) when the change of variable
ϕN is viewed as a function of both ξ and η1, . . . , ηN−1. It is represented using
a standard linear combination of N -th order Lagrangian interpolants

ϕN (ξ; η1, . . . , ηN−1) =

N∑

j=0

ηj`j(ξ). (2.16)

Similarly, the components of the polynomial interpolant are defined as

pi(ξ; η1, . . . , ηN−1) =

N∑

j=0

fi(ηj)`j(ξ). (2.17)
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The first partial derivatives of (2.13) with respect to the ηj are then given by

∂Λ

∂ηj
=

∫ 1

−1

3∑

i=2

2
(
fi(ϕN (ξ))− pi(ξ)

)(
f ′i(ϕN (ξ))

∂ϕN
∂ηj

(ξ)− ∂pi
∂ηj

(ξ)
)
p′1(ξ)

+
(
fi(ϕN (ξ))− pi(ξ)

)2 ∂p′1
∂ηj

(ξ) dξ,

where the simplified notation p′1(ξ) is used to remind the reader that p1 is origi-
nally a function of ξ, even though it also depends on the parameters η1, . . . , ηN−1.
The second order partial derivatives ∂2Λ

∂ηj∂ηk
are easily derived by repeated par-

tial differentiation, and we do not write them out here. They include terms with
the first and second derivatives of f2 and f3, so these need to be known explic-
itly. The remaining functions can be differentiated numerically without error
by means of differentiation matrices, since all of the functions are polynomials.

The L2-method should, by construction, give the best interpolant in terms
of the measured interpolation error. However, it is based on a very hard global
minimization problem. The objective function Λ is almost never globally con-
vex, and its complexity increases as the polynomial degree N increases. This
is connected to the global interpolation approach: moving just one interpola-
tion point (locally) changes the entire interpolant (globally). Newton’s method
is a local minimization algorithm and can not be expected to find the global
minimum. Some measures will be taken to make the method more robust (see
Section 2.7), but the increasing complexity will be reflected in the numerical
results; see Section 3.

2.4 Geometric interpolation
From classical interpolation theory we know that interpolation of a smooth
function in N + 1 points yields approximation order N + 1. This is an incentive
for using the available degrees-of-freedom in curve interpolation to increase the
number of interpolation points.

By construction, the points p(ξj), j = 0, . . . , N are always interpolation
points. To achieve interpolation in one additional point, we need p to satisfy
the interpolation condition

f(ϕN (ξ∗)) = p(ξ∗) (2.18)

for a ξ∗ that is not a GLL point. Equation (2.18) represents a system of three
(non-linear) equations, and ξ∗ is a free variable. This means that we need two
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more degrees-of-freedom to find a solution in the general case. Since we have
N − 1 free variables η1, . . . , ηN−1, it is in principle possible to achieve a total of
N + 1 + b(N − 1)/2c interpolation points.

This argumentation can also be applied to interpolation of curves in Rd. In
this case we still have N − 1 free variables, but now an additional interpolation
point requires d−1 degrees-of-freedom. Assuming that the system of non-linear
equations always has a solution leads to the following conjecture [20]:

Conjecture 1. Let C be a curve in Rd. A polynomial curve of degree N can
be made to interpolate C at

m = N + 1 +

⌊
N − 1

d− 1

⌋
(2.19)

points.

The conjecture also applies to Hermite interpolation if one defines interpo-
lation of k coalescing interpolation points as interpolation of a (yet unknown)
reparametrization g and its k − 1 first derivatives. For the first derivative, this
means that we do not have to require f ′(ϕ(ξ∗)) = p′(ξ∗), only that they point
in the same direction. This kind of requirement can be expressed in terms of
geometric continuity. A curve C is said to be Gk-continuous if its arc-length
parametrization is Ck-continuous [1]. An equivalent definition can be found in
[9]. In terms of interpolation we say that two curves have contact order k if the
left segment of the interpolant meets the right segment of the exact curve with
Gk-continuity, and vice-versa. First order contact means a common tangent
direction, while second order contact additionally requires common curvature
and coinciding osculating planes.

With this definition, coalescing interpolation points means increased con-
tact order. Interpolation in the conjectured maximum number of interpolation
points, but with some points coalescing, is exactly the same as geometric Her-
mite interpolation that was described in the introduction. Consider for example
cubic polynomial curves in R2, which can interpolate a given curve in six points,
according to the conjecture. If three interpolation points coalesce at each end
point, the contact order is raised to two, and we have the same interpolation
conditions as in [6].

In the extreme case where all interpolation points coalesce to one point we
get a Taylor approximation of f . For a planar parametric curve f(η) = (η, y(η))
one can easily show [22] that a one-point Gk-interpolant coincides with the k+1
first terms of the Taylor expansion of y. Hence, one-point Gk-interpolation in
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R2 yields approximation order k+ 1. The argument can be extended to general
curves in Rd; see [20] for definitions of norms and approximation order. Then,
according to the conjecture, (2.19) is the highest attainable approximation order
for curve interpolation in Rd at a given N . Some authors [15, 22] have actually
formulated the conjecture in terms of approximation order, stating that the
approximation order (2.19) can be attained for any curve C in Rd.

The conjecture has turned out to be very difficult to prove. Since the sub-
ject has been studied mostly within the CAGD community, most authors are
concerned with low polynomial degrees (N ≤ 5). Of more general results, we
mention Rababah [22, 23] who showed that curves in Rd can be interpolated
by one-point interpolation to approximation order 4N/3 for arbitrary N , and
Floater [13] who showed optimal approximation order 2N for conic sections.

2.5 The extra-points method

We propose an interpolation method based on Conjecture 1, which we will refer
to as the extra-points method.

Assuming that f1 is invertible, the interpolation condition (2.18) can be
reduced to a system of two equations by choosing a specific ξ∗ and defining
x∗ = f1(ϕN (ξ∗)) = p1(ξ∗). Interpolation at x∗ then requires the two equations

fi(f
−1
1 (x∗)) = pi(p

−1
1 (x∗)), i = 2, 3

to be solved. Furthermore, when f1 is linear then (2.14) holds, and the inverses
can be eliminated. The extra-points method can then be defined as finding a
root of the vector-valued function Ψ with components

Ψi
k(η1, . . . , ηN−1) = fi(ϕN (ξ∗k))− pi(ξ∗k), i = 2, 3, (2.20)

where ξ∗k, k = 1, . . . , b(N − 1)/2c are pre-defined values in [−1, 1]. The depen-
dency of Ψi

k on ηj , j = 1, . . . , N − 1 is explicit in the representations (2.16)
and (2.17) of ϕN and pi, respectively. Note that for odd N there is one more
degree-of-freedom than the number of equations to be solved, so we are left with
one “unused” degree-of-freedom.

Applying Newton’s method to solve (2.20) requires the partial derivatives of
Ψi
k, which are given by

∂Ψi
k

∂ηj
= f ′i(ϕN (ξ∗k))

∂ϕN
∂ηj

(ξ∗k)− ∂pi
∂ηj

(ξ∗k).
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The derivatives of the parametric functions fi(η) must be known; the rest are
computed numerically with differentiation matrices.

The solution obtained depends on the choice of the values ξ∗k. Numerical
experiments show that the best results are usually obtained when the ξ∗k are
close to a subset of the GLL points. In the limit when the points coalesce, the
proposed method becomes useless because (2.20) is always satisfied. According
to the previous discussion, one should instead raise the contact order at the
coalescing points. This leads to the next proposed method.

2.6 The equal-tangents method
Two coalescing interpolation points should yield first order contact (common
tangent directions) between the exact curve and the interpolant. Common tan-
gent directions implies that a tangent vector tN to the interpolant is orthogonal
to all vectors in the normal plane of the exact curve, i.e.,

tN · n = 0 ∀n such that t · n = 0,

where t is a tangent vector to the exact curve. The space of normal vectors to a
curve in R3 is two-dimensional, so we must use two linearly independent normal
vectors and make both dot products zero. The tangent vector is easily found
by differentiating the parametrization,

tN =



p′1(η)
p′2(η)
p′3(η)


 .

It does not have to be normalized for our application, which is an advantage,
since it would have resulted in more complicated non-linear equations. We then
choose the two normal vectors

n1 =



f ′2(η)
−f ′1(η)

0


 and n2 =



f ′3(η)

0
−f ′1(η)


 .

Again, this is a choice to ease the implementation. It clearly would not work
for curves where f ′1(η) can be zero, since the two vectors then become linearly
dependent, but we have already excluded such curves from the current study
for the definition of the norm (2.11).

The number of degrees-of-freedom allows G1-interpolation in b(N − 1)/2c
(unique) points. By construction we have interpolation in N + 1 points, so a
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subset of the interpolation points must be chosen; we choose the set of internal
points ξk with odd indices k. The interpolation conditions can then be expressed
as a system of equations

Θi
k(η1, . . . , ηN−1) = f ′1(ϕN (ξk)) p′i(ξk)− f ′i(ϕN (ξk)) p′1(ξk) = 0, i = 2, 3.

(2.21)
Again Newton’s method is used for finding a solution of the non-linear system.
This requires us to differentiate (2.21) with respect to the independent variables
η1, . . . , ηN−1. The partial derivatives can be written out explicitly as

∂Θi
k

∂ηj
=f ′′1 (ϕN (ξk))

∂ϕN
∂ηj

(ξk) p′i(ξk) + f ′1(ϕN (ξk))
∂p′i
∂ηj

(ξk)

− f ′′i (ϕN (ξk))
∂ϕN
∂ηj

(ξk) p′1(ξk)− f ′i(ϕN (ξk))
∂p′1
∂ηj

(ξk).

Note again that for odd N we have one more degree-of-freedom than the number
of equations.

2.7 Implementation

The three interpolation methods proposed here (the L2-method, the extra-
points method and the equal-tangents method) are based on quite simple crite-
ria, but their implementations are challenging. We mention a few aspects here
that are important in order for the methods to work well in practice.

As mentioned previously, the extra-points method depends on the choice
of ξ∗k; letting these parameters be close to some of the GLL points is often a
good choice. In all the numerical experiments here ξ∗k = ξ2k−1 + ε for k =
1, . . . , b(N − 1)/2c and ε = 10−2.

All the proposed methods are highly dependent on a good set of initial
values ηj for the Newton iterations. For the L2-method, this is connected to
the fact that we are trying to solve a global minimization problem with a local
minimization algorithm. For the extra-points and equal-tangents methods, it is
due to the fact that non-linear functions may have several roots. The conjecture
says nothing about the uniqueness of the solution, and numerical experiments
have confirmed the existence of several solutions in many cases. We want the
solution with the smallest interpolation error, which we will refer to as the
optimal solution for the given interpolation method.

We have made the observation that when we are able to find the optimal so-
lution (or something close to optimal), the reparametrization seems to converge
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to a particular function as the polynomial degree increases. In other words, for
a given (high) N , the functions pi(ξ), i = 1, 2, 3 are very similar to the corre-
sponding functions at N − 1. This leads us toward the idea of a bootstrapping
algorithm, in which we use the solution from N − 1 as the initial guess by eval-
uating ϕN−1(ξ) in the current N + 1 GLL points. Starting all the way from a
polynomial degree of one, such a bootstrapping approach implies an added com-
putational cost. However, the improved robustness has been more important in
the current study.

The bootstrapping approach often yields good initial guesses, but not al-
ways. Newton’s method may not succeed, or it may find a non-optimal solution
(we can usually recognize non-optimal solutions from a sudden change in the
convergence rate as N increases). In such cases it may help to use other ini-
tial guesses, e.g., perturbations of the bootstrapping solution, or the solutions
found with the chord or arc-length methods. Here, we use such additional initial
values to increase the robustness of the methods. When different initial values
yield different solutions after the Newton iterations, the interpolation error is
compared and the solution with the smallest interpolation error is chosen.

One can also add to the robustness by making sure that the solution never
violates the restriction (2.9) imposed byW during the Newton iterations. Expe-
rience shows that the extra-points and equal-tangents methods sometimes find
“illegal solutions”. To avoid this, we limit the step sizes in the Newton iterations,
and we also explicitly check the condition (2.9).

3 Numerical Results

We now present a series of numerical tests to illuminate the challenges of
reparametrization and to illustrate the performance of the various methods in
different situations. All the parametrizations are defined on the interval [−1, 1].

Case 1

Consider one and a half rotations of a helix, which is most naturally parametrized
by

f1(η) =
3

2
πη,

f2(η) = sin(
3

2
πη),

f3(η) = cos(
3

2
πη).
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This particular parametrization yields a constant Jacobian J = 3π/
√

2, so the
arc-length method corresponds to interpolating f in the GLL points. Due to the
regularity of the given parametric functions, it gives rapid exponential conver-
gence; see Figure 2. The chord method also yields exponential convergence, but
much slower than the arc-length method. To reach the same level of interpola-
tion error, approximately three times the polynomial degree N is needed with
the chord method. In the context of solving PDEs using high order methods,
this has a huge impact on the computation time.

The extra-points and equal-tangents methods give almost exactly the same
interpolation error; in fact, the solutions are almost exactly the same. This is
due to our choice of ξ∗k in the extra-points method. Both methods converge
quite a bit faster than the arc-length method, reaching machine precision at
N = 15.

By construction, the L2-method should give the optimal solution. How-
ever, experience shows that the L2-method usually finds the optimal solution
(or something very close) for small N when the objective function is easier to
minimize globally. If an interpolation method is able follow and maintain this
convergence rate for higher N , it is a strong indication that it is able to yield a
solution which is close to optimal. This is what we observe in this case, strongly
suggesting that the extra-points and equal-tangents methods yield close to the
optimal solution.
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Figure 2: Interpolation error for Case 1, the helix, measured in a discrete version
of the norm (2.11). Note the large difference in convergence rate between the chord
method and the arc-length method. The latter is usually considered optimal for this
particular case, but the new methods show that it is possible to do better.
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Case 2

The curve defined by the parametrization (2.5) is designed in such a way that
we know that there exists a reparametrization (2.6) by low order polynomials.
However, none of the interpolation methods get this reparametrization as an
initial value for their iterative procedures.

The chord method and the arc-length method both converge exponentially;
see Figure 3. Note that this could not be foreseen from the given parametriza-
tions, as these methods do not correspond to interpolating any of them. We
also see that the new methods give considerably better results, although none
of them give exact representation of the curve at N = 6. The extra-points and
equal-tangents methods are very close, with error on machine level precision
from N = 7. The L2-method also yields good results, reaching machine level
precision atN = 14. It does, however, display the weakness that is characteristic
for this method: the functional to be minimized becomes increasingly compli-
cated as N increases, with many local minima, and our simple minimization
algorithm has difficulty finding a global minimum. The result is a convergence
rate that decreases as N increases.
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Figure 3: Interpolation error for Case 2, measured in the same norm as before. The
reparametrization (2.6) shows that exact representation of the curve is possible at
N = 6. None of the methods achieve this, but the extra-points and equal-tangents
methods yield rapid convergence, representing the curve to machine precision atN = 7.
The chord method and the arc-length method both converge exponentially, but much
slower than the new methods.
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Case 3

The parametric curve

f1(η) = −5

2
+

7

4
(η + 1),

f2(η) =
1

2
sin

(
3πη

2

)
+

9

8
(η + 1)2 − 9

4
(η + 1),

f3(η) =
1

2
cos(πη),

(3.1)

has only analytic components, so a classical approach, simply interpolating the
given functions in the GLL points, will give (rapid) exponential convergence.
However, the chord method and the arc-length method both yield very slow
(although still exponential) convergence; see Figure 4. Hence, neither of them
correspond to classical interpolation.

The new methods all give vastly better performance (and better than clas-
sical interpolation of (3.1)). They converge at approximately the same rate and
reach machine precision between N = 15 and N = 20. Compared to the two
traditional methods, only a small fraction of the polynomial degree is needed to
reach the same level of accuracy.
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Figure 4: Interpolation error for Case 3. The given parametrization (3.1) consists of
smooth functions, so classical interpolation results in rapid exponential convergence.
Neither the chord method nor the arc-length method corresponds to classical interpo-
lation of (3.1), and both methods yield very low convergence rate.
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Case 4

The parametric curve

f1(η) = η + 1,

f2(η) = sin(π(η + 1)),

f3(η) = sin(2πη),

bears some resemblance to the parametrization of the helix, except that the
trigonometric functions are phase-shifted and have different periods. Interest-
ingly, comparing the Figures 2 and 5, we see that the relative performance of
the chord method and the arc-length method are opposite. In the current case,
the chord method is vastly better than the arc-length method, which converges
extremely slowly and is rather useless.

Again, the new methods outperform the traditional ones. The extra-points
and equal-tangents methods give very similar results and converge very fast,
and the L2-method is almost as good.
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Figure 5: Interpolation error for Case 4. The results are similar to Case 3, except
that the chord method is now efficient, while the arc-length method is useless.
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Case 5

Consider the parametric curve

f1(η) = η,

f2(η) = |η − 1

2
|,

f3(η) = |η +
1

2
|.

Again the Jacobian J =
√

3 is constant, so classical interpolation of f corre-
sponds to the arc length method. The curve is G0, i.e., it has break points, and
f has two C0 components. Such a curve is normally considered unsuited for
classical high order interpolation, and indeed the arc-length method gives low
order algebraic convergence. So does the chord method, as Figure 6 shows.

The new methods, on the other hand, give exponential convergence. The
interpolation points are clustered close to the break points, so the implicitly
defined reparametrization is almost stationary at these points.
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Figure 6: Interpolation error for Case 5. The chord and arc-length methods yield low
order algebraic convergence, whereas the new methods converge exponentially, except
for some instability for large N .
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Case 6

The parametric curve

f1(η) = η,

f2(η) =
1

1 + 16η2
,

f3(η) =
1

1 + 16(η + 1)2
,

is difficult to interpolate since two of its components are Runge functions. It
was shown in [2] that the Runge function can be very well approximated (with-
out oscillations) when viewed as a planar parametric curve. Here, one of the
functions is shifted along the x-axis so that the curve is not equivalent to the
standard Runge function.

The chord method and the arc-length method both result in very low con-
vergence rates; see Figure 7. The chord method yields unwanted oscillations
in the solution, whereas the arc-length method method results in a poor ap-
proximation of f2(η) around η = 0. The three new methods converge fast in
comparison, reaching machine precision around N = 30. These methods yield
practically no unwanted oscillations.
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Figure 7: Interpolation error for Case 6. The chord and arc-length methods yield very
slow convergence. Again there is a huge gap in performance between these methods
and the three new methods.
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4 Interpolation of parametric surfaces

Let f be a parametric surface in R3, described in a Cartesian coordinate system
by 


x
y
z


 =



f1(η1, η2)
f2(η1, η2)
f3(η1, η2)


 = f(η1, η2), η1, η2 ∈ [−1, 1]. (4.1)

The parametrization can be viewed as mapping f from a reference domain
Ω̂ = [−1, 1] × [−1, 1] ⊂ R2 to a physical domain Ω ∈ R3. A reparametrization
of the surface can be found by a change of variables: for all bijective maps ϕ
from Ω̂ onto itself, the function

g(ξ1, ξ2) = f(ϕ(ξ1, ξ2)) = f(η1, η2)

describes the same surface. Note that ξ1 and ξ2 here represent two independent
variables and not two GLL points; it should be clear from the context what is
meant. Different parametrizations can consist of functions of different regularity,
and this will affect the convergence rate in polynomial interpolation.

The interpolant is a parametric surface p described by

p(ξ1, ξ2) =



p1(ξ1, ξ2)
p2(ξ1, ξ2)
p3(ξ1, ξ2)


 , ξ1, ξ2 ∈ [−1, 1],

where each component pi is a polynomial of degree less than or equal to N in
each reference variable. It is conveniently represented by sums of Lagrangian
interpolants in the tensor-product GLL points, i.e.,

pi(ξ1, ξ2) =

N∑

m=0

N∑

n=0

αimn`m(ξ1)`n(ξ2), i = 1, 2, 3. (4.2)

We note that, for a given ξ1, p is a parametric curve when viewed as a function
of ξ2, and vice versa. Hence, the rectilinear mesh that is made up by the
interpolation points in Ω̂ is mapped to a curvilinear mesh on Ω; see Figure 8.

The expansion coefficients are determined by letting them be points some-
where on the exact surface, i.e., αimn = fi(η1,mn, η2,mn). The coordinates η1,mn

and η2,mn in Ω̂ can be viewed as free parameters that implicitly determine
the change of variable ϕN , a polynomial of degree N in ξ1 and ξ2 such that
(η1,mn, η2,mn) = ϕN (ξm, ξn), 0 ≤ m,n ≤ N , i.e., (η1,mn, η2,mn) are the images
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f

Figure 8: The surface is mapped from a reference domain Ω̂ = [−1, 1] × [−1, 1] by
the parametrization f . The interpolation points are mapped from the tensor-product
GLL points.

of the tensor-product GLL points. There are 2(N+1)2 values to be interpolated;
hence the dimension of the discrete space is 2(N + 1)2.

We want the interpolation methods described in this paper to be applicable
in the context of high order methods for solving PDEs in deformed hexahedra.
The construction of a numerical approximation of the hexahedron often starts
with an interpolation of the six faces, followed by a transfinite interpolation
method to patch them together. For the latter to be possible, a consistent
representation of the shared edges is necessary. This puts a few restrictions on
the choice of η1,mn and η2,mn. In particular, we require that the interpolation
points that are mapped from the boundary of Ω̂ interpolate the boundary of Ω,
and that the corner points map to the corner points. This leaves N − 1 free
parameters on each of the four boundary curves of an individual face. Together
with the 2(N − 1)2 free parameters in the interior of Ω, we have a total of

2(N − 1)2 + 4(N − 1) = 2N2 − 2

degrees-of-freedom.

When each boundary curve is considered separately, these requirements are
in essence the same as the requirements that we made for the curve interpolants
in Section 2. This enables us to use the interpolation methods from Section 2
on each of the four boundary curves of Ω.
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4.1 Interpolation error and approximation order

In order to be able to measure the interpolation error in a parametrization-
independent norm, we will consider surfaces that can be represented as functions

z = h(x, y),

in a Cartesian coordinate system. This allows the use of the L2-norm

||f − p|| =
(∫∫

ΠΩ

(
h(x, y)− hN (x, y)

)2
dxdy

)1/2

, (4.3)

where ΠΩ is the projection of Ω to the xy-plane and hN (x, y) is a parametrization-
independent representation of the interpolant. The latter is not always readily
available from the parametric description of the interpolant. However, in the
case where f1 and f2 are affine in both variables the norm can (without error)
be transformed to an integral over the reference domain Ω̂,

||f − p|| =
(∫ 1

−1

∫ 1

−1

(
f3(ϕN (ξ1, ξ2))− p3(ξ1, ξ2)

)2
J dξ1 dξ2

)1/2

, (4.4)

where
J =

∂f1

∂η1

∂f2

∂η2
− ∂f2

∂η1

∂f1

∂η2

is the Jacobian of the mapping f . To keep the evaluation of the norm simple, we
restrict our investigation to parametric surfaces that fit this requirement. Note
again that this is not a restriction for the interpolation methods. The error
norm is implemented as a discrete version of (4.4), based on GLL quadrature
with overintegration.

In the context of interpolation using a fixed polynomial degree N (and possi-
bly using several patches to represent the entire surface), the concept of approx-
imation order is relevant. With traditional interpolation methods, interpolation
by polynomials of degree N gives approximation order N + 1. For example,
bicubic Bézier patches give fourth order convergence as the size of the patch
decreases.

The conjectured optimal approximation order in curve interpolation was
based on counting the number of equations that must be solved and comparing
it with the number of free parameters. The same can be done in the context of
interpolation of surfaces. Mørken [19] did it by counting the number of (non-
linear) equations that must be solved in order to reduce the degree of a classical
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bivariate Taylor approximant without reducing the approximation order. He
showed that the approximation order k is bounded by

k ≤
√

3N2 + 9N − 23/4− 1

2
,

which means that one theoretically can achieve approximation order k = 2N
for N < 7. However, the asymptotically optimal approximation order as N
increases is approximately k =

√
3N .

As before, in the context of high order interpolation, convergence is more
conveniently evaluated in terms of how the interpolation error decreases as a
function of N . Interpolating a parametric surface f where all the components fi
are analytic will give exponential convergence, while low order components will
give algebraic convergence. Again, the goal is exponential convergence with the
highest possible rate for all surfaces. The note on approximation order serves
only as indication of the possible improvement when the free parameters are
chosen in a clever way.

4.2 Interpolation methods

Classical interpolation of the parametric surface f means discarding the possi-
bility of reparametrization and setting αimn = fi(ξm, ξn). This corresponds to
interpolation of the vector-valued function f in the tensor-product GLL points.

A simple, parametrization-independent alternative is to apply one of the
curve interpolation method from Section 2 to the boundary curves of the surface,
and then to find the internal points by a method for transfinite interpolation,
e.g., the Gordon-Hall algorithm [14]. However, relying only on a transfinite
interpolation method can yield a very crude approximation of the interior of
the surface. If all three components of the interpolant are determined by the
Gordon-Hall algorithm, the interior points will in general not be interpolation
points. We therefore add a third step to make sure that all the coefficients in
(4.2) are interpolation points. This will be our basic interpolation procedure:

1. Interpolate the boundary as four separate space curves.

2. Use Gordon-Hall transfinite interpolation for x and y.

3. Find z by function evaluation h(x, y) at the internal interpolation points.

If the function h(x, y) is not known, the last step would require an iterative
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procedure to find η1 and η2 from the system

x = f1(η1, η2)

y = f2(η1, η2)

in each internal interpolation point. The z-coordinate could then be found by
evaluating z = f3(η1, η2).

This algorithm will be the basis for our extension of the chord method and
the arc-length method to interpolation of surfaces. Hence, they are only applied
to the boundary curves; the interpolation points in the interior are determined
by steps 2 and 3. Since there is no natural way to define the chord or the
arc-length across a surface, this is in fact the most natural way to extend the
methods to surface interpolation.

Since the Gordon-Hall algorithm in principle represents the interior as a
weighted sum of the boundaries, it is clear that given a smooth boundary repre-
sentation, we get a smooth representation of the interior. However, we have no
way of knowing if this will be an optimal representation of the interior. Hence,
we add another step in the algorithm:

4. Apply a surface interpolation algorithm to improve the distribution of
interpolation points in the interior.

There are two main reasons why we do not skip the first three steps and go
directly to a surface interpolation algorithm for the entire surface. First, ex-
perience from numerical experiments have shown that a good representation of
the boundary is sometimes the single most important factor in achieving a good
representation of the surface. Secondly, the restriction we have made on the in-
terpolation points on the boundary means that there is a difference between the
boundary and the interior in the number of degrees-of-freedom associated with
each interpolation point. Hence, a boundary point cannot be treated exactly
like an interior point. This does not prohibit us from interpolating the entire
surface simultaneously, but it makes it more natural to treat them separately.

The L2-method can be defined as the optimization procedure to find the
interpolant that minimizes the functional

J = ||f − p||2, (4.5)

where || · || is the norm (4.3). For parametric surfaces f where f1 and f2 are
affine, the method can be implemented based on the simpler form (4.4). Viewing
the functional (4.5) as a function of the 2N2 − 2 independent variables η1,mn
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and η2,mn, it is in principle possible to minimize it with Newton’s method in
the same way as was done for curves in Section 2.3. One can do this for the
entire surface simultaneously, using all the free parameters, or one can apply it
as step 4 in the algorithm, using only the free parameters in the interior.

Based on our experience with interpolation of parametrized curves, it should
not come as a surprise that (4.5) is very hard to minimize. The rapidly increasing
number of free parameters makes the method infeasible, and it will not be
implemented here.

The extra-points method can also be extended to interpolation of surfaces.
Due to the similarity between this method and the equal-tangents method,
we choose to focus on only one of these methods in the context of surface
interpolation. To avoid the dependence of the method on a choice of extra
interpolation points, the equal-tangents method is chosen.

4.3 The equal-tangents method

When it comes to tangent and normal vectors, the situation for surfaces in R3 is
in a sense opposite to the curve case: there is one unique surface normal and a
two-dimensional tangent plane. The equal-tangents method must therefore be
based on requiring equal tangent spaces or, equivalently, equal normal vectors.
This can be achieved by making a normal vector to the exact surface orthogonal
to two linearly independent tangent vectors to the interpolant at the chosen
interpolation points. The normal vector is given by

n =
(∂f2

∂η1

∂f3

∂η2
− ∂f3

∂η1

∂f2

∂η2
,
∂f3

∂η1

∂f1

∂η2
− ∂f1

∂η1

∂f3

∂η2
,
∂f1

∂η1

∂f2

∂η2
− ∂f2

∂η1

∂f1

∂η2

)T
, (4.6)

and the natural choice of tangent vectors is

tN1 =
(∂p1

∂ξ1
,
∂p2

∂ξ1
,
∂p3

∂ξ1

)T and tN2 =
(∂p1

∂ξ2
,
∂p2

∂ξ2
,
∂p3

∂ξ2

)T
. (4.7)

Equal tangent spaces is achieved when

n · tNi = 0, i = 1, 2. (4.8)

Just as in the case of curve interpolation, this means two equations have to be
solved for equal tangents in one interpolation point. However, each interpolation
point in the interior of Ω is associated with two degrees-of-freedom, as opposed
to points on curves that only yield one degree-of-freedom. Hence, if we are able
to solve the resulting system of non-linear equations, equal tangents should be
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possible in all the internal interpolation points. The boundary curves, on the
other hand, can be interpolated with equal tangents in only b(N − 1)/2c the
points.

The equal-tangents method can be implemented either according to the four-
step algorithm or as a method for the entire surface. In order to study the
importance of a good representation of the boundary, we implement the method
according to the four-step algorithm, and consider the solution before and after
the last step. We will refer to the first as equal-tangents boundary and the
second as equal-tangents surface.

All the systems of non-linear equations are solved with Newton’s method,
and the remarks from Section 2.7 still apply. Most importantly, the dependency
on good initial guesses is important to achieve the best solution in the interior
of Ω, and a bootstrapping method will be applied.

5 Numerical Results

Case 1

For surfaces that can be described by functions on the form

h(x, y) = f(x) + g(y), a ≤ x ≤ b, c ≤ y ≤ d,

the Gordon-Hall method should be sufficient for an optimal representation of
the entire surface, given that we are able to find an optimal representation of
the boundary. The reason for this is that for a fixed x∗, the curve described
by h(x∗, y) is the same as the boundary curves h(a, y) and h(b, y), only shifted
vertically. Hence, the optimal set of interpolation points is the same. For
example, consider the surface described by the function

h(x, y) =
√
x+ 2 +

1

2
arctan(y), −1 ≤ x, y ≤ 1. (5.1)

The interpolation methods considered here are all based on a parametric de-
scription of the surface. This is trivial to find from the function description,
using affine mappings f1 and f2.

Figure 9 shows that applying step 4 in the interpolation process, i.e., enforc-
ing equal tangents also in the interior, makes no difference in the convergence
rate. It is the representation of the boundary that separates the two equal-
tangents methods from the other two methods.
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Figure 9: The interpolation error in Case 1, measured in the discrete L2-norm. The
surface can be described by a function of the form h(x, y) = f(x) + g(y). With a good
representation of the boundary, the Gordon-Hall algorithm is sufficient for a good
representation of the entire surface.

Case 2

Consider the surface given by

h(x, y) =
3

2
+

3

10

(3

2
− y
)

sin
(π

3
x
)

+
3

10
y cos

(4

3
πx
)
, 0 ≤ x, y ≤ 3

2
. (5.2)

Figure 10 shows that there is a vast difference between the chord method and the
arc-length method in the convergence rate. Applying the equal-tangents method
on the boundary gives only a slight improvement compared to the chord method,
whereas the equal-tangents surface method gives a significant improvement.
However, at N = 9 the latter seems to lose track of the optimal solution, and
the convergence rate decreases dramatically. This is most likely due to a failure
of Newton’s method to find a solution to the equal-tangents problem in the
interior. After all, at N = 9 there are 2(N − 1)2 = 128 free parameters in the
interior, far more than what we ever encountered in curve interpolation.

Case 3

Consider now a surface described by a function of low regularity,

h(x, y) = (x2 + y2)3/2, −1 ≤ x, y ≤ 1. (5.3)

97



Paper 3

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

N

||
f 
−

 p
||

 

 

chord

arc length

eqtan boundary

eqtan surface

Figure 10: The interpolation error in Case 2. The surface is described by a smooth
function, but the arc-length method results in a very low convergence rate. The equal-
tangents surface method shows that very rapid convergence is possible, but we are not
able to maintain the convergence rate until we reach machine precision, most likely
due to the difficulty of finding solutions of the non-linear system of equations that
arises from the equal-tangents conditions.

Affine mappings f1 and f2 will make f3 a function of low regularity in both η1

and η2, and classical interpolation will give low order algebraic convergence. In
fact, the chord method corresponds to the classical interpolant, and Figure 11
confirms the poor convergence rate. The arc-length method works even worse
for this surface.

The reason for the low regularity of f3 is a singularity in the third partial
derivatives at the origin. The boundary curves, on the other hand, are smooth
functions that can be interpolated by high order polynomials to exponential
convergence. This is a problem for the equal-tangents boundary method; it
may give a good representation of the boundary, but the Gordon-Hall algorithm
does not take the singularity at the origin into account. The result is low order
algebraic convergence.

However, with the addition of the fourth step in the algorithm, we are indeed
able to get exponential convergence. Figure 12 shows the mesh of interpolation
points projected onto the xy-plane, with polynomial degree N = 15 and using
the equal-tangents boundary and equal-tangents surface methods. The latter
results in all internal interpolation points moving toward the origin, the position
of the singularity. This corresponds to interpolating a reparametrization of the
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Figure 11: The interpolation error in Case 3. The surface is described by a function
of low regularity, but the equal-tangents surface method finds a set of interpolation
points that corresponds to interpolating a smooth reparametrization. This results in
exponential convergence. The plot only extends to N = 12 because we are not able to
maintain the same convergence rate for higher N .

surface of higher regularity than f – hence the increased convergence rate.
The exact surface is rotationally symmetric around the z-axis, and one may

therefore expect the optimal mesh of interpolation points to be rotationally
symmetric as well. The mesh in Figure 12b is not entirely symmetric, but one
should be careful with concluding that a more symmetric mesh will give better
approximation properties. It is in general impossible to predict the convergence
rate from the mesh unless one knows which parametrization it interpolates.

Case 4

The last surface is

h(x, y) =
arctan(2x) sin(2x+ (y + 1)2)

1 + x2 + y2
, −1 ≤ x, y ≤ 1, (5.4)

which is a little more complicated than the other surfaces. Both the chord
method and the arc-length method give low exponential convergence rates. By
applying the equal-tangents method on the boundary, we achieve a better con-
vergence rate. When we apply equal-tangents in the interior as well, the conver-
gence rate is improved even more. However, we see that the convergence rate
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(a) Equal-tangents boundary (b) Equal-tangents surface

Figure 12: The interpolant at N = 15, projected onto the xy-plane. Left: solution
obtained using the equal-tangents boundary method. Right: solution obtained using
the equal-tangents surface method. The latter yields a clustering of interpolation
points around the origin, since this is the position of the singularity in the exact surface.
The non-linear reparametrization enables us to achieve exponential convergence.

decreases as N increases, most likely due to the failure of Newton’s method to
find the optimal solution.

6 Conclusion

High order interpolation of parametric curves and surfaces is an important part
of the geometry representation in high order methods for solving PDEs in de-
formed rectangles and hexahedra, and the interpolation method chosen may
have a big influence on the error in the numerical solution [2]. Still, the topic
has received very little attention in the literature. On the other hand, a lot of
work has been done on interpolation of parametric curves (and some on para-
metric surfaces) in the CAGD environment, but almost all of it concerns only
low order polynomial interpolation.

Any parametric curve or surface can be reparametrized before being inter-
polated, and some reparametrizations will result in a smaller interpolation error
than others. Finding the optimal reparametrization is in general a very diffi-
cult (and unsolved) problem. In the context of high order methods for solving
PDEs, most authors settle with relatively simple and computationally inexpen-
sive interpolation methods. The two most common methods of this kind is the
chord method and the arc-length method, both of which are studied in this
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Figure 13: The interpolation error in Case 4.

paper. These methods are based on heuristic arguments and rarely yield sig-
nificantly better results than classical interpolation (i.e., interpolation without
reparametrization).

In order to construct better interpolation methods for parametric curves, a
new interpolation method (the L2-method) is introduced. It is based on doing
a direct minimization of the interpolation error using Newton’s method. The
method works quite well for low polynomial degreesN (although it is expensive),
but for high N it often degrades, since Newton’s method is not sufficient for
finding the global minimum of the objective function.

In the CAGD community, interpolation methods based on parametrization-
independent quantities such as tangents, curvature and torsion have been sug-
gested, and they are referred to as geometric Hermite interpolation methods.
These methods are conjectured to be optimal in terms of approximation order
(as defined for interpolation using a fixed N), but they are costly and difficult
to implement, since they require systems of non-linear equations to be solved.
Two methods in the family of geometric Hermite interpolation are proposed,
and they yield very good results. Some of the results are assumed to be very
close to optimal, since they are approximately equal to the solution found by
the L2-method for low N , and they often maintain a constant convergence rate
until machine precision.

Some of the interpolation methods are extended to interpolation of para-
metric surfaces, and the relative performance of the different methods is often
similar to the curve interpolation results. However, in the context of surfaces
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one can choose to apply costly interpolation methods only on the boundary,
or one can do it over the entire surface. In some cases the former is enough
to achieve a vast improvement from classical interpolation, but sometimes one
needs to consider the entire surface to achieve any significant improvement.

Some important commonly known limitations of high order interpolation are
challenged when considering interpolation of parametric curves and surfaces,
because of the option of reparametrization. For example, curves and surfaces of
low regularity can be interpolated to exponential convergence (as a function of
N), as shown by examples in this paper. Whether this is possible for all curves
and surfaces of low regularity is a topic for future work.

Another such limitation is the Runge phenomenon, which describes the un-
wanted oscillations displayed by the interpolant for certain functions and point
distributions. Examples from this paper and from [2] show that this can be
avoided by reparametrization. In fact, in all the numerical experiments consid-
ered, we have seen no examples of curves that could not be interpolated without
oscillations. This includes the Runge function (viewed as a parametric curve),
C0 curves and functions with boundary layers (again, viewed as a parametric
curve). Verifying (or disproving) the claim that any parametric curve can be
interpolated by high order polynomials without oscillations is a topic for future
work.

Acknowledgments

The work has been supported by the Research Council of Norway under contract
185336/V30. The author would like to thank Prof. E. M. Rønquist for many
helpful comments and suggestions throughout the work on this paper.

Bibliography

[1] B. A. Barsky and T. D. DeRose. Geometric continuity of parametric curves:
three equivalent characterizations. IEEE Comput. Graphics Appl., 9(6):60–
69, 1989.

[2] T. Bjøntegaard, E. M. Rønquist, and Ø. Tråsdahl. High order interpolation
of curves in the plane. Technical report, Norwegian University of Science
and Technology, http://www.math.ntnu.no/preprint/numerics/2009/N11-
2009.pdf, 2009.

102



High order interpolation of parametric curves and surfaces in R3

[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Meth-
ods, Fundamentals in Single Domains. Springer, 2006.

[4] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Meth-
ods, Evolution to Complex Geometries and Applications to Fluid Dynamics.
Springer, 2007.

[5] X. D. Chen, W. Ma, and J. Zheng. Geometric interpolation method in
R3 space with optimal approximation order. Comput.-Aided Des. Applic.,
7(6):919–928, 2010.

[6] C. de Boor, K. Höllig, and M. Sabin. High accuracy geometric Hermite
interpolation. Comput. Aided Geom. Design, 4(4):269–278, 1987.

[7] W. L. F. Degen. Best approximations of parametric curves by splines. In
Geometric modelling, volume 8 of Comput. Suppl., pages 59–73. Springer,
Vienna, 1993.

[8] W. L. F. Degen. High accurate rational approximation of parametric curves.
Comput. Aided Geom. Design, 10(3-4):293–313, 1993.

[9] W. L. F. Degen. Geometric Hermite interpolation – in memoriam Josef
Hoschek. Comput. Aided Geom. Design, 22(7):573–592, 2005.

[10] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge University Press, 2002.

[11] Y. Y. Feng and J. Kozak. On G2 continuous cubic spline interpolation.
BIT, 37(2):312–332, 1997.

[12] Y. Y. Feng and J. Kozak. On spline interpolation of space data. Mathemat-
ical Methods for Curves and Surfaces II, M. Dæhlen, T. Lyche, and L. L.
Schumaker (eds.), Vanderbilt University Press, Nashville, pages 167–174,
1998.

[13] M. S. Floater. An O(h2n) Hermite approximation for conic sections. Com-
put. Aided Geom. Design, 14(2):135–151, 1997.

[14] W. J. Gordon and C. A. Hall. Construction of curvilinear co-ordinate
systems and applications to mesh generation. Internat. J. Numer. Methods
Engrg., 7(4):461–477, 1973.

103



Paper 3

[15] K. Hollig and J. Koch. Geometric Hermite interpolation. Comput. Aided
Geom. Design, 12(6):567–580, 1995.

[16] G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, and E. Žagar. On geometric
Lagrange interpolation by quadratic parametric patches. Comput. Aided
Geom. Design, 25(6):373–384, 2008.

[17] G. Jaklič, J. Kozak, M. Krajnc, and E. Žagar. On geometric interpolation
by planar parametric polynomial curves. Math. Comput., 76(260):1981–
1993, 2007.

[18] Y. Maday and E. M. Rønquist. Optimal error analysis of spectral meth-
ods with emphasis on non-constant coefficients and deformed geometries.
Comput. Methods Appl. Mech. Engrg., 80(1-3):91–115, 1990.

[19] K. Mørken. On geometric interpolation of parametric surfaces. Comput.
Aided Geom. Design, 22(9):838–848, 2005.

[20] K. Mørken and K. Scherer. A general framework for high-accuracy para-
metric interpolation. Math. Comput., 66(217):237–260, 1997.

[21] C. W. Patty. Foundations of Topology. Jones & Bartlett Publishers, Inc.,
2nd edition, 2009.

[22] A. Rababah. High order approximation method for curves. Comput. Aided
Geom. Design, 12(1):89–102, 1995.

[23] A. Rababah. High accuracy Hermite approximation for space curves in Rd.
J. Math. Anal. Appl., 325(2):920–931, 2007.

[24] R. Schaback. Interpolation with piecewise quadratic visually C2 Bézier
polynomials. Comput. Aided Geom. Design, 6(3):219–233, 1989.

[25] K. Scherer. Parametric polynomial curves of local approximation of order
8. Curve and Surface Fitting: Saint-Malo 99, pages 375–384, 2000.

[26] L. Xu and J. Shi. Geometric Hermite interpolation for space curves. Com-
put. Aided Geom. Design, 18(9):817–829, 2001.

[27] J. H. Yong and F. F. Cheng. Geometric Hermite curves with minimum
strain energy. Comput. Aided Geom. Design, 21(3):281–301, 2004.

104



PAPER 4

HIGH ORDER NUMERICAL APPROXIMATION OF
MINIMAL SURFACES

ØYSTEIN TRÅSDAHL AND EINAR M. RØNQUIST

Published in
Journal of Computational Physics,

Vol. 230, No. 12 (2011), pp. 4795–4810





HIGH ORDER NUMERICAL APPROXIMATION OF
MINIMAL SURFACES

ØYSTEIN TRÅSDAHL AND EINAR M. RØNQUIST

Department of Mathematical Sciences,
Norwegian University of Science and Technology,

Trondheim, Norway

Abstract

We present an algorithm for finding high order numerical approxima-
tions of minimal surfaces with a fixed boundary. The algorithm employs
parametrization by high order polynomials and a linearization of the weak
formulation of the Laplace-Beltrami operator to arrive at an iterative pro-
cedure to evolve from a given initial surface to the final minimal surface.
For the steady state solution we measure the approximation error in a few
cases where the exact solution is known. In the framework of parametric
interpolation, the choice of interpolation points (mesh nodes) is directly
affecting the approximation error, and we discuss how to best update the
mesh on the evolutionary surface such that the parametrization remains
smooth. In our test cases we may achieve exponential convergence in the
approximation of the minimal surface as the polynomial degree increases,
but the rate of convergence greatly differs with different choices of mesh
update algorithms. The present work is also of relevance to high order
numerical approximation of fluid flow problems involving free surfaces.

Keywords: Minimal surfaces, mean curvature, free surface flow, evolutionary
surfaces, mesh update techniques

1 Introduction

Surfaces of least area, called minimal surfaces, is a field of study that has in-
trigued scientists for many years and has been studied extensively [8, 21, 24].
Part of the interest stems from the fact that they are so easily realizable phys-
ically in the form of soap films, and for this reason they have been studied
not only mathematically, but also physically for many years. An important
early contribution came from the physicist J. A. F. Plateau, who studied them
experimentally and determined some interesting geometric properties [25]. A
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breakthrough in the mathematical study of minimal surfaces came around 1930
with the works of J. Douglas [10] and T. Radó [26], who established some im-
portant theory around the existence of minimal surfaces.

The problem of finding exact minimal surfaces is very hard and in general
unsolved. Only a few minimal surfaces have been found in closed form, and
numerical methods are therefore an important tool. For non-parametric sur-
faces, methods have been proposed by Concus [6], Greenspan [16], Elcrat and
Lancaster [14], Hoppe [19].

For parametric surfaces, the minimal surface problem has been solved with
finite element methods by Dziuk and Hutchinson [12, 13], Brakke [3], Hinata
et al. [17] and Wagner [28], whereas Coppin and Greenspan [7] use direct
simulation of surface tension forces on a grid of marker particles. Chopp [5] has
proposed a level set method which allows for natural handling of topological
changes, but gives only linear convergence. It also employs a three-dimensional
volume mesh, which is expensive and undesirable in our case, since we are only
interested in a three-dimensional surface.

Minimal surfaces are smooth provided that the boundary curve is smooth.
Spectral (or spectral element) methods based on high order polynomials should
therefore, in principle, be very suitable numerical methods for such problems.
However, better algorithms are still needed in order for high order methods to
reach their full potential for computing minimal surfaces or for tracking time-
dependent interfaces. We feel that the sensitivity to the choice of interpolation
points have not been properly addressed in the literature before, and these
challenges are particularly acute for high order methods.

The goal with this work is to find a high order numerical approximation of
a minimal surface with a given boundary. We start off with an introduction
to minimal surface conditions, and from there we derive a weak form of the
problem. The problem is discretized using high order polynomials, and we show
how it results in a nonlinear system that can be solved with an iterative method.
The iterations make our solution an evolutionary surface, and it leads to the
question of mesh update techniques, which will be discussed in some detail.
These techniques are also needed in moving boundary problems with arbitrary
Lagrangian-Eulerian (ALE) formulations [20], and the algorithms presented in
this paper are also relevant in an ALE setting.

We conclude with numerical results showing the convergence properties of
our method; these results are based on considering surfaces with analytically
known solutions (the catenoid, the Scherk surface, and the Enneper surface).
We also show examples of cases where the exact solution is unknown.
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2 Problem formulation

Consider a two-dimensional surface Ω in R3 with a fixed boundary ∂Ω, repre-
sented locally by a diffeomorphism ϕ : Ω̂ ⊂ R2 → R3. The mapping ϕ satisfies
the following set of three partial differential equations [29]

∆Ωϕ = 2κn, (2.1)

where κ is the mean curvature, n is a unit surface normal vector, and ∆Ω

is the Laplace-Beltrami operator, a generalization of the Laplace operator to
Riemannian manifolds. Minimal surfaces are characterized by the property that
the mean curvature is everywhere zero. From (2.1) we conclude that minimal
surfaces are solutions to the following system of equations,

∆Ωϕ = 0 in Ω̂,

ϕ = ϕ0 on ∂Ω̂,
(2.2)

where ϕ0 is simply a parametrization of the boundary ∂Ω. Note that ϕ has
three components, one for each coordinate direction. Apart from the trivial
case where ∂Ω lies in a plane, these partial differential equations are nonlinear.

As an example, consider the simpler case where the surface can be described
by a function z(x, y). Then (2.2) reduces to the (scalar) Plateau problem [15, 27]

∇ ·
(

∇z√
1 + |∇z|2

)
= 0,

with prescribed boundary conditions.

2.1 Weak formulation
A peculiar aspect of the minimal surface problem (2.2) is that the differential
operator ∆Ω is inextricably linked to the solution itself. This makes it very hard
to solve the problem analytically except for in a few special cases.

We therefore start by considering the simpler, but related problem

∆Ωû = 0 in Ω̂,

û = û0 on ∂Ω̂,
(2.3)

where û is a scalar function defined on Ω̂, and û0 is some given boundary
condition. Here we assume the mapping ϕ to be known a priori. The problem
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can then be transformed to a problem defined on Ω by means of ϕ. Assume
that this mapping describes the surface in a Cartesian coordinate system,

ϕ(ξ, η) =



ϕ1(ξ, η)
ϕ2(ξ, η)
ϕ3(ξ, η)


 =



x(ξ, η)
y(ξ, η)
z(ξ, η)


 .

The Jacobian associated with this mapping is given as

J =



xξ xη
yξ yη
zξ zη


 .

Let u = û ◦ ϕ−1; the inverse ϕ−1 exists since ϕ is a diffeomorphism. In the
Cartesian coordinate system the Laplace-Beltrami operator simplifies to the
well-known Laplace operator in R3,

∆Ωû = ∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

Hence, solving (2.3) is equivalent to solving the problem

∆u = 0 in Ω,

u = u0 on ∂Ω,
(2.4)

where u0 = û0 ◦ ϕ−1, and ∂Ω is the image of ∂Ω̂ under the mapping ϕ. The
change of variables has moved the complexity from the operator to the domain
itself. However, one advantage of this transformation is that the derivation of a
weak formulation of (2.4) becomes easy. The Galerkin problem is given as: find
u ∈ Y D ≡ {v ∈ H1(Ω)

∣∣ v|∂Ω = u0} such that
∫

Ω

(∇v)T∇udΩ = 0 ∀v ∈ Y ≡ H1
0 (Ω), (2.5)

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )T is the standard gradient operator in R3. The integral

(2.5) is not readily evaluated since Ω is a curved surface. We therefore apply
a change of variables to transform it back to the reference domain Ω̂. An
infinitesimal surface area dΩ on the curved surface can be expressed in the
reference variables as

dΩ = g dΩ̂,
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where the metric g is defined in terms of the Jacobian J of ϕ by

g =
√

det(JTJ).

Gradients on Ω are related to gradients in the two-dimensional reference domain
Ω̂ through the Jacobian J̃ of ϕ−1. Written out, we have

∇u =



ux
uy
uz


 =



ûξξx + ûηηx
ûξξy + ûηηy
ûξξz + ûηηz


 =



ξx ηx
ξy ηy
ξz ηz



(
ûξ
ûη

)
= J̃T ∇̂û,

where ∇̂ = ( ∂∂ξ ,
∂
∂η )T is the two-dimensional gradient on the reference domain.

Note the reappearance of the function û; it is the same as in (2.3) since we use
the particular inverse mapping ϕ−1.

The integral in (2.5) can now be expressed in reference variables as
∫

Ω

(∇v)T∇udΩ =

∫

Ω̂

(J̃T ∇̂v̂)T J̃T ∇̂û g dΩ̂

=

∫

Ω̂

(∇̂v̂)T J̃ J̃T ∇̂û g dΩ̂.

We can eliminate the dependence on the inverse mapping ϕ−1 by using the fact
that the two Jacobian matrices J and J̃ are related as

J̃ J̃T = (JTJ)−1.

The resulting integral can then be expressed as the bilinear form

a(v̂, û) =

∫

Ω̂

k (∇̂v̂)TG ∇̂û g dΩ̂, (2.6)

where G = (JTJ)−1 and k = 1 (the reason for introducing the parameter k
will be explained below). The matrix G is obviously symmetric, and it is also
positive definite, since, for all q ∈ R2, q 6= 0,

qTG−1q = qTJTJq = (Jq)T (Jq) > 0.

Hence, a(v̂, v̂) > 0 for all v̂ ∈ H1
0 (Ω̂), v̂ 6= 0, and thus the bilinear form a(·, ·) is

symmetric and positive definite (SPD).
We now introduce the space Ŷ D = {ŵ ∈ H1(Ω̂)

∣∣ ŵ|∂Ω̂ = û0}. The weak
formulation of (2.3) is then given as: find û ∈ Ŷ D such that

a(v̂, û) = 0 ∀v̂ ∈ H1
0 (Ω̂). (2.7)
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By comparing the strong formulations (2.2) and (2.3), we see that a weak
formulation of the former is just a vector version of the latter: find ϕ =
(ϕ1, ϕ2, ϕ3)T = (x, y, z)T ∈ X̂D ≡ {ŵ ∈ (H1(Ω̂))3

∣∣ ŵ|∂Ω̂ = ϕ0} such that

a(v̂i, ϕi) = 0 ∀v̂i ∈ H1
0 (Ω̂), i = 1, 2, 3. (2.8)

The notation in (2.8) hides an important fact: a(·, ·) is not a bilinear form for
this particular argument because of the hidden dependence of ϕ in G and g.
We will get back to this problem shortly.

2.2 Relation to free surface flow

There is a close link between minimal surfaces and free surface flows that de-
serves some attention here, particularly because the mesh update techniques
described later in this paper also have relevance to the numerical treatment of
such flows.

For free surface flow, the surface tension represents a molecular force that
acts to minimize the free surface at all time. Consider a three-dimensional
unsteady flow with a free surface Ω. The total stress force acting on the free
surface is the sum of a normal component F n and a tangential component F t
and is given by [23]

F = F n + F t = γκn+∇Ωγ,

where γ is the surface tension, n is the outward unit normal vector and ∇Ω is
the surface gradient. The free surface flow is described by the Navier-Stokes
equations, for which surface tension forces are represented by the boundary
conditions

niσijnj = γκ,

tiσijnj = ti(∇Ωγ)i,

where ni and nj are components of the unit normal vector n, ti is a component
of a unit tangent vector t, and σij is a component of the stress tensor. Summa-
tion over repeated indices is assumed. A natural imposition of the free surface
boundary conditions in a variational formulation of the Navier-Stokes equations
yields the integral ∫

Ω

viσijnj dΩ, i = 1, 2, 3,
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where vi is a test function. This term includes both normal and tangential
contributions. In [18] it was shown that this integral can be expressed as

∫

Ω

viσijnj dΩ = −
∫

Ω̂

γ v̂i,α g
α
i g dΩ̂, i = 1, 2, 3,

where v̂i,α denotes the partial derivative of v̂i = vi ◦ ϕ with respect to the
reference variable rα (here, r1 = ξ and r2 = η), and gαi is the i’th component
of the contravariant base-vector gα. From differential geometry we have [22]

gα = gαβgβ

where gαβ is the contravariant metric tensor, which in matrix notation is nothing
but our matrix G = (JTJ)−1. The vector gβ is the covariant base-vector and
is defined as the partial derivative of the mapping with respect to the reference
variable rβ , i,e., gβ = ϕ,β . Thus, gβ , β = 1, 2, represent two vectors spanning
the tangent plane at a particular point on the surface. Inserting this into the
integral yields

∫

Ω̂

γ v̂i,α g
α
i g dΩ̂ =

∫

Ω̂

γ v̂i,α g
αβϕi,β g dΩ̂

=

∫

Ω̂

γ (∇̂v̂i)TG ∇̂ϕi g dΩ̂

= a(v̂i, ϕi), i = 1, 2, 3.

Hence, it is interesting to observe that the contributions from the free surface
boundary conditions (both normal and tangential) can be expressed by the form
(2.6) in the particular case with û = ϕi, i = 1, 2, 3, and with k = 1 replaced by
k = γ. Note that for surface-tension-driven flows (Marangoni-type problems),
γ is not a constant, but is still a positive quantity over the free surface.

2.3 Linearization and iterative scheme
The system (2.7) is linear in the unknown û and is readily solved with a finite
or spectral (element) method. It also has the advantage that the bilinear form
is SPD, so that the corresponding algebraic system can easily be solved using
the Conjugate Gradients (CG) method.

The problem (2.8) is nonlinear, but can be solved by introducing an iterative
scheme. At each iteration we start with a known surface Ωn, parametrized by
ϕn, and we move to the next iteration by letting

ϕn+1 = ϕn + ∆ϕn+1,
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where ∆ϕn+1 is a vector field with components ∆ϕn+1
i , i = 1, 2, 3, that are the

solutions of
a(v̂i, ϕ

n
i + ∆ϕn+1

i ) = 0, i = 1, 2, 3. (2.9)

Here, a(·, ·) represents an integral over the unknown surface Ωn+1, and the
unknown ∆ϕn+1 enters into the nonlinear terms G and g and makes the entire
system nonlinear. However, assuming that the update ∆ϕn+1 is relatively small,
we can approximate a(·, ·) by an integral over the known surface Ωn. We do
this by “freezing” G and g at the values Gn and gn that are computed from the
current mapping ϕn. This approximation yields a bilinear form

an(v̂, ŵ) =

∫

Ω̂

(∇̂v̂)T Gn ∇̂ŵ gn dΩ̂ (2.10)

which is also SPD, since Gn is an SPD matrix and we consider v̂ ∈ H1
0 (Ω̂). Note

that we have omitted k in (2.10) since k = 1. The linearized version of (2.9) is
then

an(v̂i,∆ϕ
n+1
i ) = −an(v̂i, ϕ

n
i ), i = 1, 2, 3, (2.11)

which is suitable for a numerical discretization.

3 Discretization

For the numerical solution of the Galerkin problem (2.8) we apply a spectral
discretization based on high order polynomials [4]. For simplicity, we consider a
pure spectral method here, i.e., Ω̂ = (−1, 1)2; the extension to spectral elements
is straight-forward and standard. The relevant discrete function spaces are

X̂N = {ŵ ∈ H1
0 (Ω̂)3

∣∣ ŵ ∈ PN (Ω̂)3},
X̂D
N = {ŵ ∈ H1(Ω̂)3

∣∣ ŵ ∈ PN (Ω̂)3 and ŵ = ϕ0 on ∂Ω̂}.

As a basis for these spaces we choose the tensor-product Lagrangian interpolants
through the Gauss-Lobatto-Legendre (GLL) points ξ0, . . . , ξN . If ψN represents
a component of an element in X̂N or X̂D

N , this component is expressed as

ψN (ξ, η) =

N∑

i=0

N∑

j=0

ψij`i(ξ)`j(η), (3.1)

where some of the basis coefficients are given by the prescribed boundary values.
This enables us to compute partial derivatives easily via differentiation matrices,
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and we can evaluate all integrals with sufficient accuracy with GLL quadrature.
Applying quadrature leads to the definition of the discrete version of a(·, ·),

aN (v̂, ŵ) =

N∑

α=0

N∑

β=0

ραρβ

(
(∇̂v̂)T G ∇̂ŵ g

) ∣∣∣
αβ
,

where ρα, α = 0, . . . , N , are the GLL quadrature weights and the subscript αβ
means that we evaluate the integrand in the tensor-product GLL point (ξα, ξβ).
The discrete problem, in vector notation, is then: find ϕN ∈ X̂D

N such that

aN (v̂N ,ϕN ) = 0 ∀v̂N ∈ X̂N . (3.2)

The boundary conditions are met by choosing the nodal values of ϕN (cor-
responding to the basis coefficients in (12)) to be interpolation points on the
boundary ∂Ω.

By applying discretization to the iterative scheme (2.11) we arrive at an
algebraic system

An∆φn+1 = −Anφn (3.3)

where An is the discrete, linearized Laplace-Beltrami operator, φn is a vector
containing the nodal values of ϕN at iteration level n, and ∆φn+1 is a vector
of the change in the nodal values of ϕN . Since the bilinear form (2.10) is SPD,
the matrix An is SPD, and the system is readily solved with CG iterations.

3.1 Mesh construction

Since the Lagrangian interpolants satisfy `j(ξi) = δji at the GLL points, the basis
coefficients in (3.1) represent the nodes on a curvilinear mesh on the numerical
surface. In the context of polynomial interpolation, i.e., if ψN = INψ for a given
function ψ, then the mesh nodes are defined by evaluating ψ in a predefined set
of interpolation points,

ψij = ψ(ξi, ξj),

in our case the tensor-product GLL points. In interpolation of parametric sur-
faces, each parametric function is interpolated separately. From basic interpo-
lation theory we know that for a scalar function û ∈ Hσ(Ω̂) the interpolation
error is bounded by [4]

||û− IN û||L2(Ω̂) ≤ CN−σ||û||Hσ(Ω̂), (3.4)
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where N is the polynomial degree and C is a constant. In our case this holds
for each of the parametric functions. Hence, the accuracy of the interpolation
of the surface depends on the regularity of the parametric functions.

As an example, consider the catenoid which is a minimal surface. A natural
parametrization of a catenoid of height H and “waist” radius Rm (radius at the
midpoint between the two boundary circles) is [9]

ϕ1(ξ, η) = Rm cosh

(
Hη

2Rm

)
cos(πξ),

ϕ2(ξ, η) = Rm cosh

(
Hη

2Rm

)
sin(πξ),

ϕ3(ξ, η) =
H

2
η,

(3.5)

where −1 ≤ ξ, η ≤ 1. However, consider also the alternative parametrization

ϕ̃1(ξ, η) = Rm cosh

(
Hη

2Rm

)
ξ,

ϕ̃2(ξ, η) = ±Rm cosh

(
Hη

2Rm

)√
1− ξ2,

ϕ̃3(ξ, η) =
H

2
η,

(3.6)

again with −1 ≤ ξ, η ≤ 1. It is easy to see that ϕ and ϕ̃ represent the same
surface. However, when we approximate them with polynomial interpolation,
ϕ yields a GLL distribution in arc length of interpolation points along the two
boundary circles, whereas ϕ̃ yields a chord distribution [2]. Figure 1 shows the
two meshes generated by interpolating the two parametrizations in the case of
using four spectral elements and a polynomial degree N = 15. In this case the
surface is first decomposed into four deformed quadrilateral elements and the
reference domain (−1, 1)2 is mapped to each of these four spectral elements.

In order to measure the interpolation error we consider the distance between
two surfaces measured along the surface normal to one of the surfaces, in our
case the interpolant. To find this distance requires an iterative procedure, but
in cases where a non-parametric representation of the exact surface is known
this is straightforward and can be accomplished with Newton’s method. The
interpolation error is then defined as

||ϕ−ϕN || =
(∫

ΩN
e2
N dΩN∫

ΩN
dΩN

)1/2

(3.7)
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(a) Interpolation based on (3.5) (b) Interpolation based on (3.6)

Figure 1: The two meshes are generated by interpolating a multi-domain version of
(3.5) and (3.6); here, four spectral elements are used. The meshes look almost the
same.

where eN is the distance along the surface normal from the interpolant to the
exact surface. The integrals over the numerical surface ΩN are evaluated using
Gauss quadrature of high degree.

The two different parametrizations (3.5) and (3.6) are now compared by
considering a multi-domain version based on four spectral elements. We define
the height of the catenoid to be H = 2 such that the radius of the boundary
circles are R = Rm cosh 1

Rm
. The catenoid is only stable if R/H > 0.755 [8]; we

safely choose R = 1.6.
As expected, both mappings yield exponential convergence; see Figure 2.

However, this example illustrates the sensitivity to the particular mapping used:
despite the fact that the difference between the two grids is not noticeable, the
convergence rate is quite different.

Our main objective is not to interpolate a given surface since we do not
assume a priori knowledge of the exact solution. However, in the case of the
catenoid, the solution of (3.2) will be a polynomial approximation (although not
an interpolation), and the results from this section will then serve as a reference.

3.2 Mesh update algorithms

Our iterative scheme can be stated as a two-step algorithm:

1. Solve (3.3) for ∆φn+1.

2. Update the geometry accordingly.
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Figure 2: A multi-domain version of the two different parametrizations (3.5) (×)
and (3.6) (◦) are interpolated in the tensor-product GLL points; here, four spectral
elements are used. The interpolation error is measured in a discrete version of the norm
(3.7). Both parametrizations yield exponential convergence, but there is a significant
difference in the convergence rate.

The most straightforward implementation of the second step is

φn+1 = φn + ∆φn+1. (3.8)

However, this is not the only option, as we can choose to add small tangential
components to ∆φn+1 to obtain a different mesh in the next configuration
ϕn+1
N . This can be used to control the distribution of the mesh nodes during

the iterations and retain a “good” mesh, i.e., a mesh that corresponds to a
smooth mapping ϕn+1

N .
Our main problem is that we do not know the surface we are approximating,

so we do not know which mesh gives us the best representation of the next
state of the surface. Retaining an optimal mesh in an evolutionary geometry
is a very complicated and generally unsolved problem [1]. It makes it even
more difficult that the problem of optimal representation of a given stationary
parametric surface remains unsolved. Numerical investigation of the problem
is made difficult by the dearth of geometrically interesting evolutionary surface
problems for which the exact solutions are known at all times.

For the numerical results we present later, we will compare three differ-
ent mesh update algorithms which highlight some of the important aspects of
evolutionary surfaces and with particular relevance to high order discretization
methods. One algorithm is the straightforward one (3.8), which we will refer to
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as the Lagrangian update. The method is the simplest of all since it does not
require any post-processing after solving (3.3), but we have little control over
the regularity of the resulting mapping.

A second algorithm is defined by removing all tangential components from
∆φn+1 (where the tangents are computed numerically based on ϕnN ) and moving
the mesh nodes in a direction normal to the current surface ΩnN . This normal
update approach can be motivated from the fact that it is the displacement
in the normal direction which changes the shape of the surface (similar to the
kinematic condition for free surface flows). It is implemented by finding the
unit surface normal at each mesh point (numerically) and then projecting the
update ∆φn+1 onto these vectors. The algorithm is also discussed in [1].

The third algorithm can be viewed as a compromise between the two previous
ones. If the normal component of ∆φn+1 is larger than the tangential compo-
nent in all the nodes on the computational surface, we do a Lagrangian update.
Otherwise, we scale the tangential component everywhere by the largest factor
such that the tangential component is never larger than the normal component.
We denote this as a restricted Lagrangian update.

Besides these three, we will also consider a few special mesh update algo-
rithms customized for the particular test case at hand.

3.3 Comparison with mean curvature flow

Finding minimal surfaces can also be done by solving the time-dependent PDE

∂ϕ

∂t
= ∆Ωϕ, (3.9)

over a large time interval [T0, T ]. If the solution reaches a steady state within
t = T , then that is necessarily also a solution to (2.2) and hence a minimal
surface. This problem is called mean curvature flow, since the time-derivative
of the solution points in the direction of the mean curvature. It has been studied
numerically with a finite element method in [11].

A numerical treatment of (3.9) with a spectral element method will involve
much the same ingredients as we have seen in the previous sections. The starting
point is a weak formulation of the PDE, and spatial discretization is applied
based on high order polynomial representations. This results in the semi-discrete
system

∂

∂t
Bφ = −Aφ,
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where B is the mass matrix and A is the discrete Laplace-Beltrami operator. We
would prefer to treat this problem with an implicit time integration method due
to the step restrictions induced by A. However, we have the same problem with
the nonlinear factors G and g as before, so in order for the system to be solvable
with CG iterations, these terms must be treated explicitly. Hence the system
will never be fully implicit. Actually, this imposes a relatively severe time step
restriction which makes the method inefficient if we are only interested in steady
state solutions.

There is also another drawback with the time-dependent problem compared
to our iterative scheme, namely the lack of control over the mesh. In mean
curvature flow φn+1 is fully determined by the algebraic system we solve at
each time-step, and we may have to re-mesh in order to avoid severely distorted
meshes and possible breakdowns.

4 Numerical Results

4.1 The Catenoid

We first revisit the surface from Section 3.1, and use the same parameters H
and R in order to make the results comparable to those in Figure 2.

The iterative scheme requires the definition of an initial surface. A natural
starting point is the cylinder with radius R. This surface is most naturally
parametrized by trigonometric functions for x and y and an affine mapping for
z, which yields a conformal mapping from the reference domain. We use four
spectral elements, which can be recognized in the mesh-structure in Figure 3a.

The chosen parametrization of the initial surface consists of analytic func-
tions and is very suitable for polynomial interpolation. It is also relatively
similar to a good parametrization of the catenoid (see (3.5)), so if the chosen
mesh update algorithm yields small distortions of the mesh, then we can ex-
pect something close to an optimal polynomial representation of the catenoid
at steady state.

For the catenoid we also consider a customized mesh update algorithm: we
restrict the mesh update to the radial direction by projecting ∆φn+1 onto the
unit radial vector towards the z-axis. Hence, the affine mapping along the z-axis
of the initial surface will be retained during the iterations.

The difference between the different mesh update algorithms is hardly visible
in the steady state solutions shown in Figure 3. Still, there is a significant
difference in the convergence rate for the different algorithms; see Figure 4. The
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(a) Initial surface (b) Lagrangian update

(c) Update in normal direction (d) Update in radial direction

Figure 3: The initial surface (a) is a cylinder represented using four spectral elements
and a polynomial degree N = 15. The steady state solutions are displayed for the
three different mesh update algorithms: (b) Lagrangian update (3.8); (c) update in
the direction of the surface normal; and (d) update in the radial direction. The solution
obtained using the restricted Lagrangian update algorithm is essentially the same as
shown in (d).

radial update algorithm will, by construction, end up in almost exactly the mesh
defined by interpolating (3.5), and therefore converges with approximately the
same rate. Both the pure and the restricted Lagrangian update algorithms need
about twice the polynomial degree to reach machine precision, while the normal
vector update algorithm needs about three times the polynomial degree. The
relatively poor performance of the latter is caused by a slight movement of the
mesh points towards the boundary circles, thus resulting in a nonaffine mapping
ϕ3,N (ξ, η).
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Figure 4: Error in the steady state solution for the catenoid problem, measured in
a discrete version of the norm (3.7), as a function of the polynomial degree, N . The
initial state is a cylinder. Different mesh update algorithms yield different levels of
accuracy for a given N .

However, there is a problem with the pure Lagrangian update algorithm
that is not shown in Figure 4: the algorithm is unstable. After the steady
state is reached, small numerical errors in the solution of (2.10) keep causing
small perturbations in the mesh, and the surface evolves away from the steady
state. This is illustrated in Figure 5, which displays the error as a function of
the iteration number at a fixed polynomial degree N = 15. We see that all
four update algorithms converge at approximately the same rate, reaching the
steady state within 100 iterations; the number of iterations needed depends on
the level of accuracy reached. The solutions corresponding to the restricted
Lagrangian, the normal, and the radial update algorithms remain at steady
state, and the size of the updates ∆ϕn+1 remain at machine precision level.
The pure Lagrangian update algorithm, on the other hand, sees an increase in
the error from around n = 200, and from there it continues to increase until the
surface collapses. This behavior is also seen for other values of N .

This first example had a clear symmetry in the mapping of the initial surface.
To show that the results do not depend on this symmetry, we repeat the nu-
merical experiment, but with element boundaries spiraling around the cylinder;
see Figure 6. It is important to note that this “twisting” of the cylinder must
be done in a smooth fashion; if the element boundaries cannot be represented
by parametric functions of high regularity, then the representation of the entire
surface will suffer. By twisting the cylinder like a spiral with a constant “angle
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Figure 5: Error in the stationary solution, measured in the same norm, but now as
a function of the iteration level n at a fixed polynomial degree N = 15. The restricted
Lagrangian, the normal, and the radial mesh update algorithms are all stable at steady
state, whereas the pure Lagrangian update algorithm yields small perturbations of the
mesh at steady state, which after many iterations cause large mesh distortions.

of rotation”, we retain a smooth parametrization.

The similarity between the cylinder and the catenoid again makes the radial
update algorithm the best alternative. Figure 7 shows the same relation between
the mesh update algorithms as we saw with the plain parametrization of the
cylinder in Figure 4. Note that the Lagrangian update algorithm is still unstable
with this new mesh configuration.

We now investigate the impact of starting “further away” from the minimal
surface (in terms of the norm (3.7)). Let the initial surface be the rotational
surface with radius R(z) = 1.6 + 1

2 (1 + z)(1 − z). This yields a surface that
resembles a sphere with parts of the upper and lower hemispheres cut off; see
Figure 8a. The parametrization includes an affine mapping ϕ3,N (ξ, η), meaning
that the radial update scheme should converge at exactly the same speed as
before. On the other hand, we expect the normal update scheme to be affected,
since the normal vectors on the initial surface are no longer horizontal. Figure
8b confirms this, showing that the mesh nodes have been displaced vertically
during the iterations. This also affects the error in the steady state solution;
see Figure 9. The normal update algorithm seems to stop converging when the
error caused by the mesh distortion becomes dominant. The Lagrangian update
algorithm converges at the same rate as before, but is still unstable.
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(a) Initial surface (b) Minimal surface

Figure 6: The initial surface mesh is “twisted” such that each element boundary
spirals along the cylinder wall. The steady state is a catenoid with a “twisted” mesh.
The solution shown is obtained using the restricted Lagrangian mesh updates.

Figure 7: Error in the steady state solution for the catenoid with a “twisted” mesh.
The performance of the different mesh update algorithms is almost exactly the same
as for the plain parametrization; see Figure 4.

4.2 Scherk’s fifth surface
This surface can be represented non-parametrically by [9]

sin(z) = sinh(x) sinh(y). (4.1)

In the following, we consider this surface for x and y in the range -0.8 to 0.8.
This allows us to represent the surface as a function z(x, y) while at the same
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(a) Initial surface (b) Minimal surface

Figure 8: (a) The initial surface resembles part of a sphere; the radius is a parabola as
a function of z. The surface normals on this initial surface have a non-zero component
in the z direction. (b) The minimal surface obtained with the normal update algorithm.
The vertical component of the updates has changed the vertical distribution of the
mesh nodes, resulting in a nonaffine mapping ϕ3,N (ξ, η).

time avoiding ∂z
∂x and ∂z

∂y becoming unbounded and the corner angles going to
zero. We represent this surface using a pure spectral method.

We start the iteration using the initial surface shown in Figure 10. Note that
the projection of the initial mesh to the xy-plane is still a (affinely mapped)
tensor-product GLL mesh.

The Lagrangian, the restricted Lagrangian, and the normal mesh update
algorithms are “general purpose” algorithms which can be used on any surface
in our current framework. As for the catenoid, we also now construct a cus-
tomized mesh update algorithm by restricting the updates to the z-direction.
This ensures that the projected mesh will remain a tensor-product GLL mesh
during the iterations. Since the minimal surface can be represented by an ana-
lytic function z(x, y), it is well represented on such a mesh, and we can expect
rapid exponential convergence for the customized mesh update scheme.

Figure 11 shows the error in the steady state solution as measured by (3.7).
As expected, the customized, strictly vertical mesh update algorithm yields ex-
ponential convergence, but we need a relatively high polynomial degree to reach
machine precision; this is due to the fact that we use a pure spectral method
for the entire surface. The multi-purpose mesh update techniques also yield ex-
ponential convergence, but the convergence rate is slower than the customized
scheme. The Lagrangian update method is somewhat better than the normal
update scheme. The reduction in convergence rate for the “general-purpose”

125



Paper 4

Figure 9: Error in the steady state solution for the catenoid with an initial surface as
displayed in Figure 8a. The Lagrangian and radial update algorithms yield the same
performance as before, but the normal update algorithm now seems to stabilize on an
error of magnitude 10−4.

methods is mainly due to a non-optimal mesh at steady state, which again is
related to the particular initial surface. This example indicates the importance,
as well as the sensitivity, of a good mapping between the reference domain Ω̂
and the deformed surface Ω.

4.3 Enneper’s surface
This surface can be parametrized by [9]

ϕ1(u, v) = u(1− 1

3
u2 + v2),

ϕ2(u, v) = v(1− 1

3
v2 + u2),

ϕ3(u, v) = u2 − v2,

(4.2)

where u and v are coordinates on a circular domain of radius R. For R ≤ 1 the
surface is stable and a global area minimizer, whereas for 1 < R <

√
3 the given

parametrization gives an unstable minimal surface. In the latter case there also
exist two (symmetrically similar) stable minimal surfaces which are also global
area minimizers. For R ≥

√
3 the boundary curve intersects itself.

We first consider the case R = 0.8, for which the solution is unique. The
surface is represented numerically using 12 spectral elements; see Figure 12.
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(a) Initial surface (b) Minimal surface

Figure 10: Scherk’s fifth surface, represented using a pure spectral method and a
polynomial degree N = 25. The minimal surface is obtained using strictly vertical
mesh updates, preventing severe mesh distortions.

Figure 11: Error in the steady state solution for Scherk’s fifth surface measured by
(3.7) and plotted as as function of the polynomial degree N .

The initial surface is created by a cylindrical extension of the boundary curve.
The normal, the Lagrangian, and the restricted Lagrangian mesh update

algorithms are again applied. The error, as measured by (3.7), is shown in
Figure 13. All mesh update algorithms yield exponential convergence, but the
normal algorithm displays a slower and more uneven convergence rate.

For the Enneper surface, there is no particular symmetry that enables us
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(a) Initial surface (b) Minimal surface

Figure 12: Enneper’s surface, represented using 12 spectral elements and a polyno-
mial degree N = 15. The minimal surface is obtained using the restricted Lagrangian
mesh updates.

to a priori determine a customized mesh update algorithm that will lead to a
good mesh at steady state and hence an even more rapid convergence rate than
observed with the “general-purpose” algorithms.

Figure 13: Error in the steady state solution for the Enneper surface with R = 0.8
measured by the norm (3.7) and plotted as a function of the polynomial degree N .

For 1 < R <
√

3, we can obtain the two stable solutions and at the same time
verify that the known solution (4.2) is unstable. We first use an interpolation of
(4.2) to construct an initial surface. We then add random perturbations of order
10−10 to all the internal points of this surface and start the iterative algorithm.
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At steady state we end up in one of the two stable solutions. Figure 14 shows
all the three surfaces.

(a) Unstable minimal sur-
face

(b) Minimal surface 1 (c) Minimal surface 2

Figure 14: The three minimal surfaces in the Enneper case for R = 1.2. The unsta-
ble solution (a) is known analytically (see (4.2)), and is depicted by interpolating this
known parametrization. The two other solutions are stable and global-area minimiz-
ers. The surfaces (b) and (c) are here obtained using the restricted Lagrangian mesh
update algorithm, starting from slightly perturbed versions of (a) (by adding random
perturbations on the order of 10−10).

4.4 The Trinoid

We conclude with two examples of geometrically more challenging minimal sur-
faces which we are able to obtain. The first is the Jorge-Meeks trinoid [9], which
has three circles as boundary curves and looks like three catenoids attached at
the end. Similarly to the catenoid, it collapses when the radius of the boundary
circles is too small compared to the distance between them. The initial surface
is not three cylinders, but rather three conical cylinders that interpolate linearly
between the boundary curves. Figure 15 shows the minimal surface obtained
using the restricted Lagrangian update algorithm.

4.5 The Costa surface

The last surface is a variation (or a simplification) of the Costa surface [9], which
is one of the more exotic minimal surfaces and discovered as late as 1982. Here,
the radius of the two small boundary circles is R = 1, while the radius of the
large circle in the middle is R = 2. The vertical distance between the two small
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(a) Initial surface (b) Minimal surface

Figure 15: The trinoid represented using 12 spectral elements.

boundary circles is H = 2. We remark that this is not the exact Costa surface,
since the large circle is a plane curve in our case, while the exact Costa surface
stretches to infinity in the horizontal plane. Figure 16 shows the minimal surface
obtained using the restricted Lagrangian update algorithm.

(a) Initial surface (b) Minimal surface

Figure 16: The modified Costa surface represented using 16 spectral elements.
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5 Conclusions

An algorithm for finding a high order polynomial approximation of a minimal
surface with a given boundary has been introduced. It is based on a weak
formulation of the Laplace-Beltrami problem. The problem is nonlinear, so a
linearization and iterative scheme is applied to solve the discrete problem. The
algorithm does not handle topological changes.

Minimal surfaces are smooth provided that the boundary curve is smooth.
Spectral (or spectral element) methods based on high order polynomials should
therefore be very suitable numerical methods for such problems. Indeed, our
numerical results show that we are able to achieve exponential convergence
as the polynomial degree increases. The convergence rate, however, depends
strongly on the structure of the mesh points on the surface. Our iterative
algorithm for computing minimal surfaces allows freedom in how the mesh points
are moved during the iterations. A good mesh update algorithm is needed to
retain a smooth mapping between the two-dimensional reference domain and the
three-dimensional surface; this is essential in order to obtain rapid convergence.

We have compared three different mesh update algorithms for computing
minimal surfaces. Our focus on minimal surfaces is partially motivated by the
fact that there exist nontrivial minimal surfaces with analytical solutions which
we can use for evaluation purposes. Numerical results show that purely La-
grangian updates are not always optimal, and neither are updates purely in
the direction of the surface normal. For the Lagrangian update algorithm we
always observe stability problems for sufficiently many iterations. A restricted
Lagrangian update algorithm (where the displacement in the normal direction
dominates the tangential displacement) seems to combine the good properties
from a purely Lagrangian update and a purely normal update approach. The
numerical results also show that a customized mesh update algorithm for the
particular problem at hand often yields the best result.

The work presented here points to several important aspects related to using
high order discretization methods for problems where the geometry is an un-
known. The present work focuses on computing minimal surfaces, but the work
is also highly relevant for fluid flow problems with free surfaces, in particular,
when formulated in an Arbitrary Lagrangian Eulerian setting. For example,
the normal update scheme is commonly used for such problems. Our numerical
results demonstrate that high order (exponential) convergence rates can be re-
alized, but great care has to be shown when selecting a mesh update algorithm.
The results demonstrate the sensitivity in the error to the choice of interpola-
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tion points along the curved three-dimensional surface. The results also suggest
that the restricted Lagrangian update scheme is a better choice than the normal
update scheme.

Finding a general interface tracking algorithm that works better than the
existing ones is a very challenging task. One such algorithm has been suggested
in [1], but much work remains to be done in this direction.

Better algorithms are needed in order for high order methods to reach their
full potential for computing minimal surfaces or for tracking time-dependent
interfaces. We feel that the sensitivity to the choice of interpolation points has
not been properly addressed in the literature before, and we stress that these
challenges are particular for high order methods. More work is required in order
to make high order methods robust and optimal for this class of problems.
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Abstract

This paper discusses numerical solution of boundary value problems us-
ing spectral methods combined with nonlinear and adaptive mappings
between the reference domain and the physical domain. A brief review
of existing methods for adaptive mesh generation is given, and a method
for finding close to optimal mappings for boundary value problems in R1

is presented. The method exploits the link between high order numer-
ical solutions of PDEs and approximation of parametric curves. Also,
other adaptive methods for boundary value problems in R1 are proposed,
based either on minimizing the discrete L2-norm of the residual, or in-
terpolating the residual as a parametric curve. The adaptive methods
are constructed with the aim of finding optimal mappings, however, this
turns out to be a very difficult task. Still, significant improvement from
standard (non-adaptive) high order methods is achieved in some cases.

Keywords: Spectral methods, optimal mesh, advection-diffusion equation

1 Introduction

Spectral and pseudo-spectral (PS) methods are attractive methods for the nu-
merical solution of partial differential equations (PDEs) for which the solution,
the geometry and the source terms have a high degree of regularity. In particu-
lar, for analytic solution and data, the error in the numerical solution decreases
exponentially fast as the dimension of the approximation space increases [6, 10].
This convergence rate is related to the global approach of the spectral and
PS methods: the basis functions (trigonometric or algebraic polynomials) have
global support, and the convergence rate is inherited from the convergence rate
of classical trigonometric or polynomial approximation. Compared with finite
difference and finite element methods, which are based on local approximations
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of fixed (low) order, this can lead to significantly smaller errors for a given
number of degrees-of-freedom.

However, there are problems where spectral and PS methods are considered
less suitable. If the solution has a boundary or interior layer with steep gra-
dients, then small errors will only be achieved when the polynomial degree is
high enough to resolve the localized phenomena. One such class of problems
is singularly perturbed boundary value problems. For example, considering the
advection-diffusion equation, a high Peclet number may yield a solution with a
thin boundary layer, and the numerical solution may be corrupted by oscilla-
tions, spreading globally over the computational domain (unless the resolution is
high enough). The thinner the boundary layer is, the larger the oscillations are
for a fixed resolution (or polynomial degree). These problems are common for
most numerical methods, including finite difference and finite element methods.
However, these are cheaper and easier to refine locally to the required resolution
[2, 26]. For this reason, adaptivity is much more developed in the context of
low order methods than for spectral methods.

There have been a number of strategies proposed for overcoming these diffi-
culties in the context of spectral and PS methods. One option is post-processing
the solution through filtering, which can be used to dampen oscillations. This
requires a modal representation of the numerical solution. Another option is
the addition of artificial viscosity. Tadmor introduced the vanishing viscosity
method for shock capturing [22, 23]. Brezzi et. al. [8] introduced bubble sta-
bilization in a finite element context, in which the space of test functions is
augmented by a set of “bubble functions”. The ideas were applied to spectral
methods by Canuto [9] and Pasquarelli and Quarteroni [20].

Adaptive methods can also be based on modifying the mesh on which the
spectral solution is represented. A spectral Galerkin approach typically involves
applying a coordinate transformation, solving the PDE in a reference domain
using a standard mesh, and then mapping the numerical (polynomial) solution
back to the physical domain to approximate the exact solution. A key idea
with adaptive methods is that, to achieve sufficient resolution in the interior or
boundary layers, mesh nodes are clustered in these critical regions in the physi-
cal domain. For low order methods this always leads to a better approximation,
but for high order methods based on polynomials, the issue is a bit more com-
plicated. A high mesh node density may not necessarily mean better accuracy,
since the numerical solution may display wild oscillations between the nodes.
The method may not even converge as the number of nodes increases. The key
to constructing good adaptive meshes in the context of high order methods is
regularity: the reference domain must be mapped to the physical domain by
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a smooth coordinate transformation in order to avoid oscillations. Enforcing a
smooth and yet suitably adaptive mapping is difficult, and few authors address
the regularity of the mapping explicitly. The adaptive methods are often based
on some other requirement, for example equidistribution of some function over
the computational domain, or minimization of some norm of the numerical so-
lution. An overview over existing adaptive methods in this category is given in
Section 3.

The objectives of this paper are to investigate optimal or close to opti-
mal mappings for the numerical solution of boundary value problems and to
test adaptive methods that are constructed with the aim of finding such map-
pings. The paper is structured as follows: in Section 2 the potential of adaptive
methods is demonstrated through the numerical solution of a one-dimensional
advection-diffusion model problem, and the role of the coordinate transforma-
tion is briefly discussed. We then proceed in Section 3 with a review of existing
adaptive methods in the high order context. In Sections 4 and 5 we present
methods for constructing close to optimal and approximate coordinate transfor-
mations, respectively; these methods are based on interpolation of parametric
curves, and the link between interpolation and adaptive high order methods is
explained. In Sections 6 and 7 we introduce alternative adaptive methods, and
in Section 8 some additional numerical results are presented. Finally, in Section
9, we present some conclusions and remarks.

2 A motivational example

To show the potential of adaptivity in the context of spectral methods, we begin
with an example. The problems we will consider in this paper are advection-
diffusion boundary value problems that can be written on the form

−εd2u

dx2
+

du

dx
= f, x ∈ Ω, (2.1)

accompanied by suitable boundary conditions. Here, ε is a constant, f is a
smooth function, and Ω is a bounded interval on the real axis.

Consider a particular model problem on the form (2.1) where Ω = (0, 1),
ε = 0.01, f(x) = 1, and with homogeneous Dirichlet boundary conditions. The
problem has the exact solution

u(x) = x− ex/ε − 1

e1/ε − 1
, (2.2)
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which features a boundary layer with a width of order O(ε) near x = 1.
A pure spectral method is applied to solve the problem numerically. It is

based on the equivalent weak form of (2.1), and can be stated as follows: find
u ∈ X = H1

0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ X, (2.3)

where

a(u, v) = ε

∫

Ω

du

dx

dv

dx
dx+

∫

Ω

du

dx
v dx, (2.4)

and

(f, v) =

∫

Ω

fv dx. (2.5)

Prior to discretization both integrals are transformed to integrals over a refer-
ence domain Ω̂ = (−1, 1). The coordinate transformation is given by x = F(ξ),
with x ∈ Ω, ξ ∈ Ω̂. Discretization is based on high order polynomials over Ω̂,
and the discrete space XN ⊂ X can be expressed as

XN = {v ∈ X, v ◦ F ∈ PN (Ω̂)}. (2.6)

Exact integration of the bilinear and linear forms is replaced by quadrature at
the Gauss-Lobatto Legendre (GLL) points. The numerical solution ûN = uN ◦F
is a polynomial of degree N over Ω̂, and it can be represented by the nodal basis

ûN (ξ) =

N∑

j=0

uj`j(ξ). (2.7)

Here, `j is a Lagrangian interpolant through the GLL points ξ0, . . . , ξN , i.e., it
is the unique polynomial of degree N satisfying `j(ξk) = δjk. The functions
`0, . . . , `N make up a basis for the space PN (Ω̂) of polynomials of degree less
than or equal to N over Ω̂. Note that in (2.7) the basis coefficients u0 = uN = 0
due to the homogeneous boundary conditions, and uj = ûN (ξj) = uN (xj), with
xj = F(ξj).

The difference between the exact solution and the numerical solution mea-
sured in the L2 norm is given by

||u− uN ||2L2(Ω) =

∫

Ω

(
u(x)− uN (x)

)2

dx. (2.8)
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Again, the integral can be transformed to an integral over Ω̂ and exact inte-
gration can be replaced by GLL quadrature. In practice, overintegration in
M � N quadrature points is used in order to ensure that the quadrature error
is subdominant the discretization error.

Solving the boundary value problem over a reference domain requires a bi-
jective mapping between Ω̂ and Ω. Of course, the easiest, and certainly the most
common, option is to use a linear (or affine) mapping, F = F , given explicitly
as

x = F(ξ) =
ξ + 1

2
. (2.9)

However, we may also consider more general (nonaffine) mappings F : Ω̂ → Ω.
There is nothing in the spectral method that requires F to be linear; the only
requirement is that it is bijective. Note that the numerical solution is not
constructed as a polynomial approximation of u, but rather of the mapped
solution

u(F(ξ)) = (u ◦ F)(ξ) = û(ξ). (2.10)

The standard error estimates apply to û, so using F to increase the smoothness
of û may increase the convergence rate.

A consequence of using a nonlinear mapping is that the test functions are
no longer polynomials when viewed as functions on the physical domain. This
is discussed in [21], where optimal error estimates are derived.

Let us now solve the model problem using a polynomial degree N = 10 and
two different mappings F : the affine mapping (2.9), and a customized, nonlinear
mapping determined by the ET method described in Section 4. Figure 1 shows
the two numerical solutions over both the physical domain and the reference
domain. The affine mapping results in an oscillatory numerical solution due to
the failure of resolving the boundary layer. On the other hand, the nonlinear F
gives a numerical solution that cannot be distinguished from the exact solution.
Figure 2 shows that this mapping is highly nonlinear, and that it moves all the
GLL points in the direction of the boundary layer.

3 A review of adaptive high order methods

Adaptive mesh generation in the context of spectral and pseudo-spectral (PS)
methods has been investigated for several decades. Although some progress has
been made, a lot remains to be done in order for this to represent a practical
and efficient tool. This is in contrast to adaptive low order methods (e.g., hp-
FEM), which is a mature field and also widely used in commercial applications.
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Figure 1: Two numerical solutions of an advection-diffusion problem with exact so-
lution (2.2), solved using a pure Legendre spectral method. Using an affine mapping
F (standard) from the reference domain Ω̂ to the physical domain Ω gives poor res-
olution of the boundary layer near x = 1 and therefore unwanted oscillations in the
numerical solution uN . Using a customized, nonlinear F (customized) smooths out
the variation in û over Ω̂ and gives sufficient resolution of the localized effects, resulting
in a vastly better numerical solution.
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Figure 2: The two mappings x = F(ξ) used to produce the two numerical solutions
shown in Figure 1. The affine (standard) mapping corresponds to the oscillatory
solution, and the nonlinear (customized) mapping corresponds to the solution that
cannot be distinguished from the exact solution.

The reason for the relative lack of breakthrough is probably the complexity and
the cost associated with constructing a global mapping which will minimize the
discretization error for a fixed order of approximation.

In the literature, adaptivity for high order methods is most often applied to
problems with interior or boundary layers. This is the area where such methods
have the biggest potential and where the effect of adaptivity is the most strik-
ing. Standard high order methods may yield exponential convergence for such
problems, but small error levels are typically achieved only after the interior or
boundary layer has been properly resolved, and then often at a very low (ex-
ponential) rate [27]. An adaptive mapping will typically cluster (physical) grid
points in the region(s) in Ω where the exact solution u changes rapidly, effec-
tively “stretching out” the corresponding region in Ω̂, yielding slower variation
and less step gradients in the mapped solution û.

Most adaptive methods can be applied to time-independent problems, but
they are more often applied to time-dependent problems. This is because such
problems lend themselves well to most of the existing adaptive algorithms. The
numerical solution from the current time step contains valuable information
about the variation that will occur in the solution at the next time step. In
time-independent problems, adaptivity either involves an a priori asymptotic
analysis to disclose the position (and width) of interior and boundary layers, or
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an iterative method is employed to gradually discover these features.
The analysis of adaptive spectral and PS methods can essentially be done

in two ways: on the reference domain or on the physical domain. With the
former approach, the basis functions are not mapped and standard tools can
be applied. The difficulty lies in the PDE, which must be mapped from the
physical domain by the inverse of F(ξ) and can be very complex. The latter
approach allows us to consider the original PDE, but now the basis functions
are mapped, and specialized tools must be developed. Wang and Shen used
this approach when they derived optimal error estimates for mapped Legendre
spectral methods in [21] and for mapped Jacobi spectral methods in [27].

The simplest adaptive mesh generation methods are not really adaptive, in
that they simply choose the structure of F without using any information about
the exact solution. In [17] the mapping

F(ξ;λ) = −1 + σλ

∫ y

−1

(1− t2)λ dt (3.1)

is used, where σλ is a constant depending on λ, and λ is a parameter to be
determined. For −1 < λ < 0 the mesh nodes are moved towards the origin, and
for λ > 0 they are clustered near the end points. The authors choose λ = 1
in their numerical experiments and solve various boundary value problems with
a modified Legendre spectral method. They also extend their method to two-
dimensional problems.

Similarly, in [24] Tang and Trummer use a transformation Fm(ξ) consisting
of iterated sine functions, defined recursively by

Fm(ξ) = sin(
π

2
Fm−1(ξ)), F0(ξ) = ξ. (3.2)

As m increases, the mesh nodes are clustered more densely at the end points
of the physical interval. The authors test their mappings on one-dimensional
boundary value problems for different m ≤ 3.

A common approach in adaptive high order methods is to restrict F to be a
function on a particular, a priori chosen form, with one or more free parameters.
Adaptivity is then simplified to the task of determining suitable values for these
parameters. This is the approach adopted by Kosloff and Tal-Ezer [16], who use
a mapping

F(ξ;λ) =
arcsin(λξ)

arcsin(λ)
, 0 < λ < 1, (3.3)

which stretches a Gauss-Lobatto Chebyshev (GLC) grid toward a uniform grid
as λ → 1−. They discuss various considerations for choosing the parameter λ:
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enabling resolution of the largest possible wave number, or optimizing for inter-
polation of a general trigonometric function. An adaptive approach is to choose
the parameters such that the function to be approximated can be represented by
a Chebyshev expansion with the minimal number of terms. The authors show
that a suitable choice leads to a differentiation matrix D whose eigenvalues are
all O(N), where N is the polynomial degree, reducing the time step restriction
in explicit time integration methods.

In the adaptive methods proposed in [1, 4, 5] the parameters in F are chosen
so that the numerical solution minimizes some chosen functional. The map-
pings used are two-parameter functions composed of trigonometric and inverse
trigonometric functions, e.g.,

F(ξ;λ1, λ2) = 1 +
4

π
arctan(λ1 tan(

4

π
(
λ2 − x
λ2x− 1

− 1))), λ1 > 0, −1 < λ2 < 1,

(3.4)
where λ1 relates to the width and λ2 to the position of an interior or boundary
layer in the exact solution. The functional to be minimized is typically a measure
of the total variation in the solution, for example the Sobolev norm

J =

∫

Ω

(u2 + u2
x + u2

xx) dx. (3.5)

The idea is that minimizing J means reducing unwanted oscillations, since these
can give large contributions to J through the second derivative of u. A good
mapping yields a solution with few (or no) unwanted oscillations, and hence a
low value of J . The interpolation and integration in the minimization procedure
introduces some significant overhead, but on the other hand, vast improvements
in convergence rate may be achieved.

Tee and Trefethen [25] choose a particular two-parameter mapping F based
on how it maps singularities of the exact solution in the complex plane. The
parameters are chosen to enlarge the ellipse of analyticity of û, which is the
largest ellipse with foci ±1 in which û has no singularities. This immediately
increases the convergence rate of the rational spectral collocation method, since
the error is of order O((L+ l)−N ), where L and l are the semi-axes of the ellipse
[3]. The method in [25] is limited to cases where u has one pair of complex
conjugated singularities, but it is extended to problems with multiple pairs of
singularities in [14].

Another family of adaptive mesh methods are based on equidistribution of
some monitor or weight function over the physical domain. Such methods must
consider general F , since it is not given that equidistribution can be achieved by
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an F on a particular functional form. One weight function that has been con-
sidered is the arc length of the numerical solution. Creating a mesh such that
the arc length is distributed equally between the mesh points will for example
ensure a clustering of mesh nodes in regions with steep gradients. Equidistribu-
tion has been shown to work well with different weight functions in FEM and
FD methods [11, 12, 15], but it has not been explored much in the context of
high order methods. It is usually not a suitable adaptive method in itself, since
it does not ensure regularity in F , as demonstrated in [19]. However, the same
paper shows that equidistribution in conjunction with filtering can give very
good results. The authors also reduce the cost of the method by solving the
equidistribution problem with a low order method.

Funaro [13] proposed an adaptive collocation method where the collocation
points are determined by inserting the Legendre polynomial of degree N into the
given PDE. For an advection-diffusion model problem this results in a staggered
mesh where the nodes are actually slightly shifted away from the boundary layer.
Still, the numerical solution on the staggered mesh displays smaller oscillations
than that obtained with the standard collocation method, and it is a better
approximation of the exact solution. A favorable feature of this method is that
it is applicable also in higher space dimensions, and the author shows an example
by solving a boundary value problem in R2.

4 Constructing an optimal mapping

The adaptive high order methods mentioned so far are all constructed with
the objective to adjust the mapping F from Ω̂ to Ω in such a way that the
discretization error decreases for a fixed number of degrees-of-freedom (i.e., for
a fixed polynomial degree, N). A natural question to ask is then: to what
extent can the mapping be used to reduce the discretization error? Let us
by optimal mapping define the mapping F that, when used in the numerical
solution of a given boundary value problem with a spectral method as described
in Section 2, results in the smallest numerical error, measured in the L2-norm.
This particular numerical solution will be defined as the optimal solution of the
given boundary value problem for the given method and the given polynomial
degree N . Note that the optimal mapping depends on all of these factors; even
changing the norm in which we measure the error may give a (slightly) different
optimal F .

The optimal F is not unique since information about the mapping is only
required at a finite number of points. For example, using a spectral method
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to solve (2.1) with Dirichlet boundary conditions only requires the value of
the Jacobian (the first derivative of F) at the quadrature points. Any two
mappings that have the same values of the derivatives at these points are not
discerned by the numerical method. In the following, we will therefore assume
that F ∈ PN (Ω̂) and we will denote the mapping as FN to emphasize this; this
corresponds to an isoparametric approach.

Finding optimal mappings adaptively is very difficult. We therefore start
by considering the simpler problem of finding optimal mappings based on the
exact solution. Consider an advection-diffusion problem (2.1) with a smooth
right hand side f and homogeneous Dirichlet boundary conditions. The exact
solution is a function u(x) defined on Ω. As any other function it can be viewed
as a parametric curve, using the trivial parametrization

u(x) = (x, u(x)), x ∈ Ω. (4.1)

The curve can also be reparametrized by a change of variable x = FN (ξ), yielding
the new representation

û(ξ) = (FN (ξ), u(FN (ξ))) = (FN (ξ), û(ξ)), ξ ∈ Ω̂. (4.2)

The numerical solution of the PDE, obtained with a spectral method using the
(isoparametric) mapping FN , can be represented by

ûN (ξ) = (FN (ξ), ûN (ξ)), ξ ∈ Ω̂, (4.3)

and this can be viewed as an approximation of the vector-valued function in
(4.2).

A simple way to approximate the exact solution is through interpolation.
In order to exploit the flexibility that the change of variable FN offers, we
consider interpolation of parametric curves. The parametric curve interpolation
operator IN is defined by applying the standard function interpolation operator
IN to each parametric function. The functions are interpolated in the (affinely
mapped) GLL points. Applying the operator to (4.1) produces the interpolant

INu(x) = (INx, INu(x)) = (x, INu(x)), x ∈ Ω, (4.4)

and interpolating (4.2) yields

IN û(ξ) = (INFN (ξ), IN û(ξ)) = (FN (ξ), IN û(ξ)), ξ ∈ Ω̂. (4.5)

We will refer to these curves as parametric interpolants. Now, even though u
and û describe the same curve, the interpolants INu and IN û are generally not
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the same. If we let F denote the affine mapping from Ω̂ to Ω, and xm = F(ξm),
we remark that (xm, u(xm)) and (FN (ξm), û(ξm)) are generally different points
on the exact curve (unless FN = F).

The interpolant (4.4) is equivalent to classical interpolation of the function
u(x) in the GLL points. The interpolant (4.5) also corresponds to classical
interpolation in the special case that FN = F , i.e., when FN just varies linearly
with ξ. However, if FN is chosen wisely, then û is better suited for polynomial
interpolation than u. For example, it may be a function of higher regularity,
or it may have slower variation and wider boundary layers. Reparametrization
can be used to “move” some of the complexity from one parametric function to
the other. One can in principle consider a strongly nonlinear change of variable
x = FN (ξ) that yields little or no variation in û(ξ), however, this may only be
possible for a very high N . A balance in complexity between the two parametric
functions is most likely better in order to achieve a small interpolation error for
a fixed N .

The optimal reparametrization is the one that results in minimization of the
L2-norm of the interpolation error1. Finding the optimal change of variable is
a problem with N + 1 free variables, since the reparametrization is uniquely
determined by the value of FN at the GLL points. The mapping FN : Ω̂ → Ω
such that FN ∈ PN (Ω̂) can be represented explicitly as

FN (ξ) =

N∑

j=0

x∗j `j(ξ), (4.6)

with x∗j = FN (ξj). Choosing basis coefficients x∗j uniquely determines FN ,
which in turn uniquely determines the interpolant IN û, with

IN û(ξ) =

N∑

j=0

u∗j `j(ξ), (4.7)

and with u∗j = IN û(ξj) = u(x∗j ), j = 0, . . . , N .
The free variables x∗0, . . . , x∗N represent N + 1 degrees-of-freedom in the con-

struction of the interpolant. Note how this differs from classical interpolation
of functions: these degrees-of-freedom are available after we have chosen the
GLL points as interpolation points in the reference domain. If exploited wisely,

1Since the exact curve can be represented by a single function, we measure the interpolation
error between this function and the function representation of the interpolant. This is possible
as long as FN is invertible.
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they represent a potential for parametric interpolants to be more accurate than
classical interpolants.

The variables x∗0, . . . , x∗N can be also expressed through the affine mapping
F(ξ). In particular, we can write

x∗j = FN (ξj) = F(ξ∗j ), j = 0, . . . , N, (4.8)

and thus redefine the problem of finding an optimal mapping to a problem of
choosing the values ξ∗0 , . . . , ξ∗N . The choice should be restricted to values that
satisfy

ξ∗0 < ξ∗1 < . . . < ξ∗N , (4.9)

since FN should be invertible. The monotonicity restriction (4.9) does not
guarantee that FN is invertible, since it can oscillate between the nodes, but
this is a small practical problem and will not be discussed here.

The problem of optimal choice of ξ∗0 , . . . , ξ∗N was investigated in [7], where
the equal-tangent (ET) method was proposed. The method reduces the number
of degrees-of-freedom by two by requiring that the end points be interpolation
points. This was motivated by the numerical solution of PDEs in deformed
quadrilaterals in R2, but it also makes sense here: it ensures that the end
points are nodes on the computational mesh in the physical domain, which
makes imposition of the boundary conditions easy. The remaining N − 1 free
variables are determined by the condition that the interpolant also matches the
tangent directions at the internal interpolation points. This can also be viewed
as Hermite interpolation when considering the function representation of the
curves [18]. It can be achieved by solving the system of non-linear equations

du

dx
(FN (ξj))

dFN
dξ

(ξj)−
dIN (u ◦ FN )

dξ
(ξj) = 0, j = 1, . . . , N − 1, (4.10)

with respect to the N − 1 free variables ξ∗1 , . . . , ξ∗N−1. The dependency of each
term on the free variables is trough the coordinate transformation FN ; see (4.6)
and (4.8). We use u◦FN instead of û since we do not assume a priori knowledge
of û; in fact, it depends on FN , which in essence is the unknown here. The last
term is given by

dIN (u ◦ FN )

dξ
(ξ) =

N∑

j=0

u(FN (ξj))`
′
j(ξ). (4.11)

The equations in (4.10) can be viewed in two ways: (i) in the reference domain
they represent the difference in the derivative between of û and IN û at the
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internal GLL points; (ii) in the physical domain, the equations represent the
dot product between the tangent vector (F ′N (ξj), (IN û)′(ξj)) to the interpolant
and the normal vector (u′(FN (ξj)),−1) to the exact curve at the interpola-
tion points. Hence, by solving the system (4.10) for ξ∗1 , . . . , ξ∗N−1, we are im-
plicitly finding a coordinate transformation FN such that the interpolant IN û
matches both function values and derivatives of û at the internal GLL points
ξ1, . . . , ξN−1.

The system (4.10) is solved using Newton’s method. Exact expressions for
the partial derivatives of the objective function with respect to the free variables
can be derived by standard techniques. In order to make the interpolation
method more robust, Newton’s method is run several times with different initial
values, and the solution that results in the smallest interpolation error, measured
in the discrete L2-norm, is chosen. Implementation is discussed in more detail
in [7].

When the ET method has produced a solution to the interpolation problem,
the associated mapping FN can be used in a pure spectral method for solving the
given boundary value problem. Assume that the exact solution u to this problem
belongs to Hσ(Ω) and that we construct the classical interpolant INu associated
with the GLL points. The standard interpolation error is then bounded by [6]

||u− INu||L2(Ω) ≤ cN−σ||u||Hσ(Ω), (4.12)

where c is a constant. If the exact solution u is analytic (σ → ∞), we can
expect the classical interpolation error to decrease exponentially fast as the
polynomial degree, N , increases. It is now of interest to consider the following
two questions: (i) what difference does it make to use a non-affine mapping
instead of the standard mapping? and (ii) what is the difference between the
interpolation error ||u − INu|| and the discretization error ||u − uN || in the
spectral solution of the given boundary value problem?

We illustrate these issues by revisiting the numerical example from Section
2. Figure 3 shows that a standard spectral method (i.e., using a linear mapping
F) results in exponential convergence, but that the convergence rate can be
increased dramatically by using the ET method to construct a more appropriate
mapping FN . Figure 3 also shows the interpolation error when interpolating
the exact solution as a parametric curve, for two different parametrizations, one
based on the non-affine mapping FN and one based on the affine mapping F .
As expected, the results indicate a close relationship between the discretization
error and the interpolation error.
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Figure 3: The error ||u − uN ||L2 in the spectral Galerkin solution of (2.1) where
(2.2) is the exact solution, and the error ||u− INu||L2 in the parametric interpolation
of the exact solution. The non-affine mapping FN produced by the ET method gives
much faster convergence than the standard (affine) mapping F , both when considering
interpolation and numerical solution of the boundary value problem.

5 Constructing an approximate mapping

Let us now change the way we construct our non-affine mapping. In the previous
section we applied the ET method to the exact solution of the original problem
to construct a very good mapping FN . Let us now instead apply the ET method
to the exact solution of a modified problem. In particular, we first change the
diffusivity ε to ε̃ (with ε̃ ≥ ε) in the advection-diffusion problem (2.1). The exact
solution of this modified problem has a thicker boundary layer compared to the
original problem. We now apply the ET method to the exact solution of the
modified problem and construct a corresponding non-affine mapping FN (ξ; ε̃)
(the argument is added to remind us that the mapping constructed this way
depends on the diffusivity ε̃ chosen in the approximate problem). Finally, we use
the mapping FN (ξ; ε̃) in the spectral Galerkin solution of the original problem.
In Figure 4 we show the discretization error as a function of the polynomial
degree, N , for ε̃ = 0.1, ε̃ = 0.02 and ε̃ = ε = 0.01 (i.e., corresponding to the
results of the previous section). We notice that significant improvement from
using the standard affine mapping is achieved. However, the results also show
a high degree of sensitivity to the quality of the mapping used.
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Figure 4: The error ||u − uN ||L2 in the spectral Galerkin solution of (2.1) where
(2.2) is the exact solution. The non-affine mapping FN (ξ; ε̃) used here is constructed
by applying the ET method to the exact solution of a modified advection-diffusion
problem with a diffusivity ε̃ ≥ ε.

6 Adaptivity through minimization of the resid-
ual

6.1 Residual of the strong form

If we want to construct an adaptive method to find the optimal solution of a
given boundary value problem, we immediately face a problem: our definition of
the optimal solution as the L2-minimizer of the error in the numerical solution
of the PDE does not lend itself to adaptivity, since the evaluation of the error
involves the exact solution; an adaptive method cannot assume any knowledge
of the exact solution.

The most valuable information we have about the approximation properties
of a numerical solution of a boundary value problem is the residual. It may give
information about about the magnitude of the numerical error, as well as the
location of the areas where the numerical solution represents a poor (or good)
approximation of the exact solution. An adaptive method can in principle be
constructed by minimizing the residual.

Consider an advection-diffusion problem on the form (2.1) with Dirichlet
boundary conditions, and assume that we apply a spectral method as shown in
Section 2, using a polynomial mapping FN . The residual of the strong form is
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then given by
rN (x) = f(x)− fN (x), (6.1)

where f(x) is the right hand side of the PDE and

fN (x) = −εd2uN
dx2

+
duN
dx

(6.2)

is the numerical solution (2.2) inserted into the left hand side of the PDE.
Figure 5 shows some examples of the residual (6.1) when solving the model

problem from Section 2. In the particular case of using a standard spectral
Galerkin method (including an affine mapping), all the integrals in the weak
form are computed without any quadrature error using standard GLL quadra-
ture, including the right hand side since f is only a constant. The numerical
solution is therefore also a solution of the strong form of the problem, and hence
the residual is zero at the mesh nodes. This is not the case for the ET solution,
which gives zero residual at other points throughout the domain. The standard
method gives poor approximation and large residual in the entire domain for
small N , whereas the ET method has managed a good approximation of the
outer solution even for relatively small N . The residual is relatively large in the
boundary layer, but here it decreases very rapidly as N increases.

In the following, we will only consider the strong form of the residual when
discussing potential ways to construct adaptive spectral methods. This choice
has been made in order to simplify as much as possible the implementation and
assessment of such an approach.

6.2 Unconstrained minimization of the residual
Ameasure of the quality of the numerical solution of the boundary value problem
can be given by the residual of the strong form measured in the L2-norm,

||f − fN ||2L2(Ω) =

∫

Ω

rN (x)2 dx, (6.3)

which is most conveniently evaluated over the reference domain. Mapping the
residual to the reference domain yields

r̂N (ξ) = f̂(ξ)− f̂N (ξ), (6.4)

where f̂(ξ) = f(FN (ξ)) and

f̂N (ξ) = −ε û
′′
N (ξ)F ′N (ξ)−F ′′N (ξ)û′N (ξ)

(F ′N (ξ))3
+
û′N (ξ)

F ′N (ξ)
(6.5)
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Figure 5: The residual (6.1) of the strong form after computing the spectral Galerkin
solution of the advection-diffusion problem (2.1) with exact solution (2.2). The stan-
dard method (i.e., using an affine mapping) results in a large residual over the entire
domain, whereas a non-affine mapping produced by the ET method confines the inac-
curacy to a very thin boundary layer.
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Applying quadrature with over-integration inM � N points to ensure subdom-
inant quadrature error yields the discrete norm

||f − fN ||N =
( M∑

α=0

ραr̂N (ξα)2F ′N (ξα)
)1/2

. (6.6)

An adaptive method can now in principle be defined by minimizing the func-
tional

J = ||f − fN ||2N . (6.7)

At this point, both FN and ûN are unknown. Similar to the case of interpolating
the exact solution (see Section 4), the mapping FN is given by (4.6) and (4.8).
The numerical solution ûN is also expressed through a nodal basis similar to
(4.7). The simplest implementation of the minimization procedure is achieved
when letting both ξ∗1 , . . . , ξ

∗
N−1 and the basis coefficients u∗1, . . . , u∗N−1 be free

variables. This means that we do not solve (2.1) numerically at this point,
but rather let the minimizer of J define the mapping FN that is subsequently
used in a spectral method to compute ûN . However, we keep a link with the
boundary value problem by letting ξ∗0 , ξ∗N , u

∗
0, u
∗
N be determined by the boundary

conditions.
The minimum of J occurs at a stationary point, which is a solution of the

system
∂J
∂ξ∗i

= 0, i = 1, . . . , N − 1,

∂J
∂u∗i

= 0, i = 1, . . . , N − 1.

(6.8)

Of course, J may have several stationary points, corresponding to different local
minima (and maxima). A crude global minimization procedure is constructed
by solving (6.8) several times, using Newton’s method, but with different initial
values. The solution that gives the smallest value of J is then chosen. As the
polynomial degree N increases, an exhaustive search for the global minimizer
will be infeasible (as the number of free variables becomes too large), but with
good initial values this minimization method may be sufficient to find close to
optimal solutions.

The result of the minimization procedure is set of variables that define FN
and ûN . We discard ûN and use a spectral method based on FN to solve (2.1)
numerically. This completes the adaptive method, which we will refer to as the
unconstrained minimum residual (UMR) method.
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Let us write out the terms in (6.8). The partial derivative of J with respect
to ξ∗i is

∂J
∂ξ∗i

=

M∑

α=0

ρα

(
2 r̂N (ξα)

∂r̂N
∂ξ∗i

(ξα)F ′N (ξα) + r̂N (ξα)2 ∂F ′N
∂ξ∗i

(ξα)

)
, (6.9)

where prime means derivative with respect to the free variable ξ on Ω̂. The
partial derivative of the residual is

∂r̂N
∂ξ∗i

=f ′(FN (ξ))
∂FN
∂ξ∗i

+ û′N (ξ)F ′N (ξ)−2 ∂F ′N
∂ξ∗i

+ εF ′N (ξ)−4

(
3û′N (ξ)F ′′N (ξ)

∂F ′N
∂ξ∗i

− û′N (ξ)F ′N (ξ)
∂F ′′N
∂ξ∗i

− 2û′′N (ξ)F ′N (ξ)
∂F ′N
∂ξ∗i

)
.

(6.10)
Note that ûN and its derivatives do not depend on ξ∗i since ûN is not a numerical
solution of the boundary value problem at this point; it is one of the unknowns.
From the representation (4.6) of FN we see that

∂FN
∂ξ∗i

= c `i(ξ),
∂F ′N
∂ξ∗i

= c `′i(ξ) and
∂F ′′N
∂ξ∗i

= c `′′i (ξ), (6.11)

where c = F ′(ξ) is a constant. The partial derivative of J with respect to u∗i is
simply

∂J
∂u∗i

= 2

M∑

α=0

ραr̂N (ξα)
∂r̂N
∂u∗i

(ξα)F ′N (ξα), (6.12)

since FN does not depend on any of the u∗i . The partial derivative of the residual
is

∂r̂N
∂u∗i

= − ε

F ′N (ξ)2

∂û′′N
∂u∗i

+

(
εF ′′N (ξ)

F ′N (ξ)3
+

1

F ′N (ξ)

)
∂û′N
∂u∗i

, (6.13)

where
∂û′N
∂u∗i

= `′i(ξ) and
∂û′′N
∂u∗i

= `′′i (ξ). (6.14)

The expressions above are needed just to evaluate (6.8). Newton’s method
additionally requires the partial derivatives of each equation in (6.8) with respect
to each free variable. The resulting 2(N − 1)× 2(N − 1) Hessian matrix is quite
complicated, but can be found explicitly through repeated partial differentiation.

We apply the UMR method in the numerical solution of the advection-
diffusion problem (2.1) with f = 1 and exact solution (2.2). Figure 6 shows that
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the UMR method almost keeps up with the ET method (as discussed in Section
4) for small N , but that the convergence rate decreases as N increases. This is
most likely due to the difficulty of solving the global minimization problem.
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Figure 6: The error in the numerical solution of the advection-diffusion problem
(2.1) with exact solution (2.2). The UMR method gives an improvement compared to
a standard spectral method (i.e., using an affine mapping), and it keeps up with the
solution obtained by the ET-method (as discussed in Section 4) for low values of N .
However, as N increases the convergence rate decreases due to the complexity of the
system of nonlinear equations that must be solved.

6.3 Constrained minimization of the residual

One possible way to improve the UMR method is to solve the boundary value
problem in conjunction with the minimization problem. In the UMR method,
the minimization procedure does not take into account which numerical method
is used to ultimately solve the boundary value problem. The minimization
procedure would be the same if we switched from a spectral method to a PS
method or another method.

Solving the minimization problem and the boundary value problem simulta-
neously means minimizing J subject to the constraint that ûN is a numerical
solution of (2.1). The resulting adaptive method will be referred to as the min-
imum residual (MR) method, and it is most conveniently implemented by con-
sidering a PS method for the numerical solution of the boundary value problem.
This means that the constraints are r̂N (ξj) = 0, j = 1, . . . , N − 1, i.e., vanish-
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ing residual (of the strong form) in the internal GLL points. The constrained
minimization problem can be solved by considering the Lagrange function

Λ = J +

N−1∑

k=1

λkr̂N (ξk), (6.15)

where λk are the Lagrange multipliers. Solutions of the constrained minimiza-
tion problem are stationary points for Λ, which is a function of ξ∗1 , . . . , ξ∗N−1,
u∗1, . . . , u

∗
N−1 and λ1, . . . , λN−1. Finding a stationary point means solving a

system of 3(N − 1) nonlinear equations,

∂Λ

∂ξ∗i
=
∂J
∂ξ∗i

+

N−1∑

k=1

λk
∂r̂N
∂ξ∗i

(ξk) = 0, i = 1, . . . , N − 1,

∂Λ

∂u∗i
=
∂J
∂u∗i

+

N−1∑

k=1

λk
∂r̂N
∂u∗i

(ξk) = 0, i = 1, . . . , N − 1,

∂Λ

∂λi
= r̂N (ξi) = 0, i = 1, . . . , N − 1.

(6.16)

Note that even if this system is larger than (6.8), it is not much more compli-
cated. The partial derivatives of J are the same as (6.9) and (6.12), and due
to our choice of using a PS method we can reuse the partial derivatives (6.10)
and (6.13) of r̂N .

In order to find solutions of (6.16) we again employ Newton’s method. The
implementation is basically the same as for the UMR method.

The MR method should, by construction, give the optimal solution in terms
of the residual, which again is very close to the optimal solution as defined in
Section 4. However, this requires us to find the best of all possible solutions
to (6.16). Figure 7 shows that we get the same convergence rate as the ET
method for low values of N ; this is an indication that the solution may be close
to optimal. However, the convergence rate decreases as N increases, just as in
Figure 6, most likely for the same reason.

7 Adaptivity through residual-based interpolation

The excellent results achieved with the ET method applied to the exact solution
in Section 4 motivates an investigation of how it may be used in an adaptive
method, but now without using any information about the exact solution. We
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Figure 7: The error in the numerical solution of the advection-diffusion problem (2.1)
with exact solution (2.2). The MR method almost keeps up with the ET method (as
discussed in Section 4) for small values of N , but the convergence rate decreases as N
increases since the minimization problem becomes more difficult to solve.

first recall that the ET method is based on using the available degrees-of-freedom
to ensure that the error in the derivative is zero at the internal interpolation
points. In the context of solving PDEs, the collocation method gives zero resid-
ual at the grid points, but has typically nonzero derivatives at these points,
e.g., see the results in Figure 5 for the standard method. A parallel to the
ET method would be to use the available degrees-of-freedom to also make the
derivative of the residual zero at the internal grid points. This means finding a
mapping FN (ξ) such that

r̂′N (ξj) = f̂ ′(ξj)− f̂ ′N (ξj) = 0, j = 1, . . . , N − 1. (7.1)

To make sure that zero residual is also satisfied, we must solve these equations
together with the collocation equations

r̂N (ξj) = f̂(ξj)− f̂N (ξj) = 0, j = 1, . . . , N − 1. (7.2)

As before, we use Newton’s method for the solution of the coupled system of
nonlinear equations. The Jacobian matrix of the system can be derived using
(6.10) and (6.13) and normal differentiation rules. Since the system may have
more than one solution, we repeat our strategy of solving the system several
times with different initial values, and choose the solution with the smallest
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L2-error. We will refer to this method as the equal-tangent residual (ETR)
method.

Figure 8 shows a convergence plot for the same test problem as before. There
is some improvement from the standard method, but the new method is not able
to find the optimal solution.
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Figure 8: The error in the numerical solution of the model problem (2.1) with exact
solution (2.2). The ETR method gives a certain improvement from the standard
method, but does not match the convergence rate of the ET method.

8 Additional numerical results

Let us now consider a few more numerical examples in order to compare the
various methods proposed earlier. Again, we consider the advection-diffusion
boundary value problem (2.1) with ε = 0.01, but now for different choices of f .

Figure 9 shows a convergence plot when the exact solution is given as

u(x) =
1

2

(
1− erf(x/

√
ε)

erf(1/
√
ε)

)
, x ∈ [−1, 1]. (8.1)

This solution has an interior layer of width O(ε) around x = 0. The ETR and
the UMR method only keep up with the ET method for very low N ; the error
then decreases very slowly as N increases. The MR method gives better results,
since it is able to follow the ET convergence rate a little longer.
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When the exact solution is given as

u(x) =
1

2
(1− x)(arctan(

1 + x

(2− a)ε
) + arctan(

a

ε
)), x ∈ [−1, 1], (8.2)

where a = 0.35, we get an interior layer of width O(ε) near x = 2a − 1 =
−0.3. Figure 10 shows that the UMR method is not very successful in this case,
although it suddenly finds a better solution after N = 20. This may be caused
by a lucky choice of initial value for the Newton iterations. The ETR method,
on the other hand, gives markedly better performance, and the MR method
gives an even better convergence rate.
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Figure 9: The error in the numerical solution of the advection-diffusion problem
(2.1) with exact solution (8.1), which has an interior layer near x = 0. Of the adaptive
methods, only the MR method gives a clear improvement from the standard method.

9 Conclusions

We have proposed several methods for constructing coordinate transformations
for spectral and PS methods, and these have sometimes yielded significant im-
provement compared to standard methods. Improvement here means smaller
discretization error for a fixed polynomial degree, N , used in the approximation.

The methods that are based on a direct minimization of the residual of the
strong form should, by construction, give close to optimal solutions. However,
these methods require proper global minimization procedures, something which
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Figure 10: The error in the numerical solution of the advection-diffusion problem
(2.1) with exact solution (8.2), which has an interior layer near x = −0.3. Again the
adaptive methods lose track of the ET convergence rate very early, but they maintain
a good convergence rate as N increases, making them far more accurate than the
standard method.

is very difficult and computationally expensive to achieve. The minimization
method used in this work sometimes yields close to optimal convergence rate for
low N , but the convergence rate often decreases as N increases; this is primarily
due to the increasing difficulty of solving the global minimization problem. One
conclusion from this effort is therefore that it is difficult to construct efficient
and robust adaptive methods based on minimization of the residual since good
global minimization procedures are often computationally expensive, and the
added cost typically outweigh the increased accuracy for a given N .

We have also proposed a way to construct close to optimal nonlinear map-
pings for spectral and PS methods based on information about the exact so-
lution. The approach uses the equal-tangent (ET) method investigated in [7]
to first construct an interpolant of the exact solution, viewed as a parametric
curve, and then employs this interpolant to define the mapping used in a sub-
sequent spectral Galerkin method to solve the given boundary value problem.
The method does not qualify as an adaptive method since it requires knowledge
of the exact solution, but it is useful for providing benchmark solutions to model
problems.

An adaptive method based on the same idea as the ET method has also
been proposed; this method is based on requiring zero derivative of the residual
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of the strong form in the nodal points of the solution. The method often gives
an improvement from the standard spectral method, but the convergence rate
is rarely optimal.

The methods proposed and tested in this paper are relatively expensive
computationally. A cost-benefit test has not been performed, since efficiency
has not been the main focus of this work. The problem of finding optimal
adaptive solutions of even the simplest boundary value problems is so hard that
even brute-force solutions do not always succeed. Hence, just finding solutions
has taken precedence over efficiency in this preliminary study. A lot of work
remains to be done in order to find efficient and robust adaptive methods for
the numerical solutions of PDEs using spectral methods.
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