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Abstract	

This paper shows the development of an optimization based profitability management tool for 
a cloud broker with a particular business model organized as following: On behalf of a 
governing telecommunication holding company this cloud broker integrates, aggregates and 
customizes software and storage services of third-party internet software vendors (ISVs). The 
cloud broker neither pays license fees to ISVs nor gets payments from the sales of the service 
bundles. The cloud broker solely receives both a fixed and a subscription based commission fee 
from the telecommunication company. The cloud broker faces a limited amount of human 
resources that are necessary to deal with the legal, technical and economic activities that are 
required for this kind of endeavor. Moreover, sales numbers, service prices and resource usage 
cannot be estimated with certainty, which implies the risk of missing financial and operational 
targets. In order to run its business efficiently, the cloud broker needs to determine which 
services and service bundles improve the profitability and reduce the financial risk. This 
information is needed in order to support the negotiations concerning the fixed and variable 
commission as well as the prioritization of services and service bundles to be provided. For this 
situation, we develop an optimization model that can be used to select the service program with 
the highest profit-versus-risk potential. 
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1 Introduction	

In this paper, we report the development of a service portfolio and profitability management 
tool for a cloud service broker. Generally, a cloud service broker is an entity that negotiates 
relationships between cloud service customers and internet software vendors (IOS/IEC 17788, 
2014). A cloud broker can be established on the grounds of different business models with 
respect to type of service (platform, infrastructure and software), type of customers (businesses, 
households), functions carried out (identity management, accounting and billing, location, etc.), 
degree of rebranding, degree of service aggregation and other criteria. Because of this variety, 
different cloud brokers have different attitudes towards which decisions are particularly 
relevant for running their business. These can be pricing, capacity planning and utilization, 
coupled with issues like quality of service, security, scalability among others (Filiopoulou et al. 
2017, Wang et al. 2017, Shawish and Salama 2014). In this paper, we focus on a cloud broker 
that mediates software as a service (SaaS) to private households and small to medium sized 
enterprises. 

One of the key decisions that such a cloud-service broker has to face is the choice of the services 
and service bundles to offer to its customers. Integration, aggregation and customization of such 
services from different internet software vendors can be a time consuming and therefore costly 
endeavor. Furthermore, both the time and resources used to create service offerings and the 
demand generated for these services is subject to uncertainty. Hence, a cloud broker needs to 
channel its time and human resources into the most beneficial service portfolio.  

The contribution of this paper is therefore the development of a model that helps a cloud broker 
to make superior decisions concerning its service portfolio. The model draws from ideas found 
in other research domains than cloud computing and brokering. From the point of view of cost 
accounting the proposed model supports product-mix (output) decisions under scarce resources 
(capacity constraints) (McLaney and Atrill, 2010, pp. 335-337; Horngren et al., 2012, pp. 427-
428). The model also fits the class of knapsack problems (Rardin, 1998; Gaivoronski and 
Lisser, 2010) because the entities of our model are represented by binary numbers. On the other 
hand the model can be seen as a financial portfolio problem where service bundles and services 
generate wealth while the implementation and maintenance of service utilizes scarce factors of 
different nature like financing, labor time, competency and others. Markowitz (1952) has 
pioneered modern financial portfolio theory and in the recent years financial portfolio 
optimization has developed into a rich body of models and applications (Elton et al. 2014, 
Zenios 2007). In the context of modern communication and information services the portfolio 
theory approach and business optimization has been used by Gaivoronski and Zoric (2008), 
Nesse et al. (2013) and Gaivoronski et al. (2013). 

The development of the model described below is the outcome of a research process with case 
study characteristics (Yin, 2009). In order to understand the cloud service providers’ role in the 
value chain, to identify relevant cost and income objects and their hierarchy, to elaborate the 
model structure, and to finally assign relevant financial data we conducted several semi-
structured interviews with key persons both at the superior telecommunication company and 
the cloud service provider. More particularly, we have conducted several telephone and face-
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to-face interviews with the business manager, financial manager and service designers at the 
cloud service provider as well as product manager and product specialists at the 
telecommunication operator. In addition, we collected secondary data containing of product 
specifications, the companies web sites and annual reports. 

The sequel of this paper is structured as follows: The next session describes the type of the 
cloud broker that we have studied. In section 3, we describe the base model for deterministic 
input data. Section 4 focuses on the implementation of uncertainty and risk. A numerical 
example is provided in section 5, and section 6 concludes the paper. 

2 Description	of	our	Particular	Cloud	Broker	Firm	

The cloud broker in our case is a fully owned subsidiary of a larger telecommunication holding 
company. It leases a platform from a third party platform provider. This platform facilitates the 
connection between users and services offered by internet service providers. By means of this 
platform, the cloud broker integrates, maintains and composes service bundles on request of 
other affiliated firms of the same telecommunication holding company. Let us refer to these 
subsidiaries as the service sellers. The platform run by the cloud broker also provides the 
infrastructure needed for service provision like identity and access management, pricing, 
billing, web design, and other features. The services to be integrated, maintained and bundled 
on the platform are provided by third party internet software vendors (ISVs). The service sellers 
sell the services and service bundles to the end customers. 

The constellation of the cloud broker and its clients is illustrated in Figure 1. The peculiarity of 
the cloud broker is that it neither directly makes decisions concerning the composition of service 
offers nor decides the prices or marketing of the services or service bundles. Furthermore, the 
cloud broker does not directly pay any license fees to the internet software vendors. Although 
mediated through the platform, the service sellers receive payments from customers and pay 
license fees to the ISVs. For integrating services and generating service bundles and delivering 
the corresponding infrastructure, the cloud broker receives a commission from the service 
sellers. This commission is partly fixed and partly based on the number of subscriptions to the 
services. This commission is negotiated by the cloud broker and the telecommunication 
company, where the cloud brokers power of negotiation rests basically on well-founded 
arguments concerning its own profitability and cost effectiveness. 
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Figure 1: Flow of Services and Pricing 

On one side, the cloud broker is requested to run its business in an economic feasible way and 
on the other hand it has a restricted influence on marketing, pricing and service portfolio 
composition, i. e. the cloud broker’s decision space consists of cost management and 
negotiation of commission. For the latter the cloud broker needs a reliable way to assess the 
profitability of the service portfolio and the parts therein.  

The model developed in the next section is intended to provide the following support to the 
cloud broker. First, it provides a suggestion about what the optimal cloud service portfolio 
should be if the cloud broker could autonomously control its service portfolio. Since the cloud 
broker integrates services and bundles on behalf of its clients (service sellers) the model 
highlights the mismatch between what ought to be provided and what indeed is provided. The 
model then can be used to derive indications about target numbers on costs, time usage, and 
commission payments. It provides incentives for cost reduction measures, re-negotiation of 
brokering or commission fees and re-negotiation of service integration. This enables the 
management to communicate incentives to the service sellers as well as to their developer teams 
or employees. 
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3 The	Base	Model	in	Case	of	Certain	Input	Data	

Our optimization model requires a realistic and consistent picture of the cause-effect 
relationships between costs and revenues on one side and the cost objects like services, service 
groups, ISVs, service bundles and markets on the other side. In terms of cost accounting, we 
have to classify variable and fixed revenues and costs or direct and indirect costs and revenues. 
Variable costs are costs that vary with the production volume of the related cost object. 
Accordingly, fixed costs do not vary with production volume. Direct costs can be traced directly 
to a cost object such as a product, market or a department while indirect costs cannot. In the 
first place our model requires an appropriate cost object (or revenue object) hierarchy and the 
identification of the direct costs of each cost object.  For our cloud broker we identified the 
following entities as most relevant: 

- Global internet software vendors (like Microsoft, F-secure, Jotta, etc.) 
- Local or market related internet software vendors on particular markets (like Microsoft 

in Denmark, Microsoft in Sweden, etc.) 
- Service families or groups (like Office 365 Suites) 
- Single services (like Lync Online or Office 365 Business Essentials) 
- Service bundles (Mobile subscription with a particular Office 365 and Cloud storage 

and Internet Telephony) 
- Markets (Denmark, Sweden, etc.) 
- Clients (Sellers of service bundles) 

The identification of these entities and their relationships may not only depend on purely 
financial reasons but can rest on juridical or technological characteristics as long as they cause 
resource usage and respective costs. The reason for differentiating global and local or market 
specific ISVs is the following: A service provided by some global ISV can be essentially the 
same on different markets with respect to installing the service on the platform, generating 
interfaces, integration and interoperability of the service with other services. However, with 
respect to other factors, the same service provided to different markets can require market 
specific (local) activities. For example, contracts between ISVs and the cloud broker need to be 
adjusted to country specific legal codes; payments may be specified in the respective country’s 
currency. Furthermore, country or area specific legal requirements need to be fulfilled 
concerning data portability, location of processing and storage of data. 

Figure 2 gives an overview on the entities in our model and indicates the relationships between 
them. In what follows, we represent the mathematical representation of these relationships. Let 
us start with the cloud broker itself. We introduce a binary variable 𝑥୓ that indicates if the cloud 
broker offers services (𝑥୓ ൌ 1) or if the cloud broker does not offer services (𝑥୓ ൌ 0). All 
overhead expenses that cannot be traced to any other entity will be linked to this variable. 
Hence, there will be no overhead expenses if 𝑥୓ ൌ 0 meaning that the cloud broker should not 
carry on with its business. During the optimization the value of 𝑥୓ tells if the cloud broker is 
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profitable or not. It is a trivial variable in the sense that all other binary variables will be zero if 
𝑥୓ ൌ 0. Only if 𝑥୓ ൌ 1, some or all other variables may become active (equal to 1). 

 

Figure 2: The Relationships between the Entities of the Cloud Broker 

 

Let there be 𝑁େ service sellers that sell the service bundles generated by the cloud broker. Binary 
variables 𝑥େ,௚ indicate whether a service seller 𝑔 ൌ 1, … , 𝑁େ will be served by the cloud broker 

or not. The following constraints assure that the clients cannot exist if the cloud broker is not 
active: 

𝑥େ,௚ ൑ 𝑥୓   or   𝑥େ,௚ െ 𝑥୓ ൑ 0   for all 𝑔 ൌ 1, … , 𝑁େ 

The cloud broker mediates or bundles services of the ISVs. There are two perspectives to be 
considered when integrating an ISV on the platform. On one hand, the ISVs services need to be 
made available on the platform. On the other hand, in order to sell services in different markets, 
legal, contractual and other market specific requirements need to be met. We therefore consider 
these perspectives separately in the model and refer to it as “technological ISV” and “market 
ISV”.  

Let there be 𝑁୑ local ISVs. In the case of our cloud broker, markets overlap with service sellers 
in the sense that there is only one service seller per market. We can therefore enforce that a 
local ISV will only be implemented if a particular market will be served. This is done by the 
following constraints: 

𝑥୑,௛ ൑ 𝑥େ,௚       for all ℎ ∈ 𝑋୑େ,௚   and for all   𝑔 ൌ 1, … , 𝑁େ 

where 𝑋୑େ,௚ is the set of set of market ISVs that theoretically can be part of the service portfolio 

on market 𝑔. 
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Let there be 𝑁୚ technological ISVs. The market ISVs would not be available if the ISVs were 
not technologically integrated on the platform. We therefore impose the following constraints: 

𝑥୑,௛ ൑ 𝑥୚,௞       for all ℎ ∈ 𝑋୑୚,௞   and for all   𝑘 ൌ 1, … , 𝑁୚ 

where 𝑋୑୚,௞ is the set of local ISVs that can be formed from the global ISV indexed by 𝑘.  

The ISVs provide the services that will be bundled and sold to the clients (markets). Market 
specific services will not be available if the market specific local ISV is not implemented on 
the platform. Let there be 𝑁ୗ particular services like office software, backup, storage, 
connectivity, security, communication, e-mail, etc. Let 𝑥ୗ,௜ be a binary variable that indicates if 

a service 𝑖 (𝑖 ൌ 1, . . , 𝑁ୗ) will be implemented or remains on the platform; 𝑥ୗ,௜ ൌ 1 indicates 

that service 𝑖 will be either integrated or kept on the platform, and 𝑥ୗ,௜ ൌ 0 indicates that service 

𝑖 will either not be integrated on the platform or dismissed from the platform. 

𝑥ୗ,௜ ൑ 𝑥୑,௛       for all 𝑖 ∈ 𝑋ୗ୑,௛   and for all   ℎ ൌ 1, … , 𝑁୑ 

where 𝑋ୗ୑,௛ is the set of services that the market ISV ℎ provides.  

Services often come in different versions that address different market segments like private 
user, student, small business or large enterprise versions. If the same software is offered in 
different versions, then we treat these versions as different services with their specific 𝑥ୗ,௜. 

However, the implementation of different versions of the same software or internet software 
vendor often causes joint costs. Therefore, we treat this kind of services as a group of services. 
Once the software group is successfully integrated on the platform it can be distributed in 
different versions to different customers and different markets. Once software is implemented 
on the platform the offering of different versions often adds little costs to each version. 

Let 𝑥ୋ,௝, 𝑗 ൌ 1, … , 𝑁ୋ denote a binary variable that indicates that service group 𝑗 will be 

implemented on the platform. The value 𝑥ୋ,௝ ൌ 1 indicates that the service group 𝑗 will be either 

deployed or kept on the platform, and 𝑥ୋ,௝ ൌ 0 indicates that service group 𝑗 will either not be 

integrated on the platform or dismissed from the platform. Single services belong to service 
groups that incur joint costs when integrated on the platform. Single services are not available 
if the corresponding service group is not integrated on the platform. The constraints 
representing this relationship are the following. 

𝑥ୗ,௜ ൑ 𝑥ୋ,௝        for all 𝑖 ∈ 𝑋ୗୋ,௝   and for all   𝑗 ൌ 1, … , 𝑁ୋ 

where 𝑋ୗୋ,௝ is the set of services that are contained in the service group 𝑗.  Once a service is 

successfully integrated on the platform it can be distributed solely or can become part in 
different service bundles. 

Finally, services are bundled into potential service bundles. In our application, service bundles 
are market specific. Let 𝑥୆,௟ ൌ 1 describe the decision that service bundle 𝑗 will be offered to 

customers (𝑥୆,௟ ൌ 0 means that a particular service bundle 𝑗 will not be composed or dismissed). 

Service bundles can consist of one or many services. A service bundle cannot exist if the 
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necessary services are not installed on the platform. Let 𝑋୆ୗ,௜ be the set of potential bundles that 

a service 𝑖 can contribute to. The following constraints describe the necessity of having installed 
services for the corresponding service bundles: 

𝑥୆,௟ ൑ 𝑥ୗ,௜        for all 𝑙 ∈ 𝑋୆ୗ,௜   and for all   𝑖 ൌ 1, … , 𝑁ୗ 

The profit of the cloud broker is given as follow: 

𝛱 ൌ 𝜋୓ ∙ 𝑥୓ ൅ ෍ 𝜋େ,௚ ∙ 𝑥େ,௚

ேి

௜ୀଵ

൅ ⋯ ൅ ෍ 𝜋ୗ,௜ ∙ 𝑥ୗ,௜

ே౏

௜ୀଵ

൅ ෍ 𝜋୆,௟ ∙ 𝑥୆,௟

ேా

௟ୀଵ

 

Here the dots represent a placeholder for the remaining entities shown in Figure 2. Both the 

objective value 𝛱 and the coefficients  𝛑 ൌ ൣ𝜋୓,  𝜋େ,௚,  … ൧ may net income consisting of 

revenues and costs or present values based on cash inflows and cash outflows. Taking costs and 
revenues as an example, these figures can furthermore be split down into fixed or variable costs 
with respect to certain cost/revenue drivers. Such drivers may be working time, processing time, 
number of subscriptions or users, and others.  

The cloud broker may face several financial or operational constraints. In the case of the cloud 
broker studied here, we had to consider constraints concerning the human resources that deal 
with technical and juridical aspects of service bundling. In other words we had to deal with one 
critical resource related to the time needed for integrating and maintaining services on the 
platform. Let the amount of the limited resource be denoted by 𝑄୘ and let 𝑞௜ denote the usage 
of this resource by some entity 𝑖. Then the following resource constraint is added to our 
optimization problem:  

𝑞୓ ∙ 𝑥୓ ൅ ෍ 𝑞େ,௚ ∙ 𝑥େ,௚

ேి

௜ୀଵ

൅ ⋯ ൅ ෍ 𝑞ୗ,௜ ∙ 𝑥ୗ,௜

ே౏

௜ୀଵ

൅ ෍ 𝑞୆,௟ ∙ 𝑥୆,௟

ேా

௟ୀଵ

൑ 𝑄୘ 

Summarizing, the constraints and the objective from above, the decision problem becomes the 
following: 

maximize
𝐱

 𝛱 ൌ 𝜋୓ ∙ 𝑥୓ ൅ ෍ 𝜋େ,௚ ∙ 𝑥େ,௚

ேి

௜ୀଵ

൅ ⋯ ൅ ෍ 𝜋ୗ,௜ ∙ 𝑥ୗ,௜

ே౏

௜ୀଵ

൅ ෍ 𝜋୆,௟ ∙ 𝑥୆,௟

ேా

௟ୀଵ

 
 

subject to  𝑥େ,௚ െ 𝑥୓ ൑ 0   for all 𝑔 ൌ 1, … , 𝑁େ 

𝑥୑,௛ െ 𝑥େ,௚ ൑ 0       for all ℎ ∈ 𝑋୑େ,௚   and for all   𝑔 ൌ 1, … , 𝑁େ 

𝑥୑,௛ െ 𝑥୚,௞ ൑ 0       for all ℎ ∈ 𝑋୑୚,௞   and for all   𝑘 ൌ 1, … , 𝑁୚ 

𝑥ୗ,௜ െ 𝑥୑,௛ ൑ 0       for all 𝑖 ∈ 𝑋ୗ୑,௛   and for all   ℎ ൌ 1, … , 𝑁୑ 

𝑥ୗ,௜ െ 𝑥ୋ,௝ ൑ 0        for all 𝑖 ∈ 𝑋ୗୋ,௝   and for all   𝑗 ൌ 1, … , 𝑁ୋ 

𝑥୆,௟ െ 𝑥ୗ,௜ ൑ 0       for all 𝑙 ∈ 𝑋୆ୗ,௜   and for all   𝑖 ൌ 1, … , 𝑁ୗ 
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𝑞୓ ∙ 𝑥୓ ൅ ෍ 𝑞େ,௚ ∙ 𝑥େ,௚

ேి

௜ୀଵ

൅ ⋯ ൅ ෍ 𝑞ୗ,௜ ∙ 𝑥ୗ,௜

ே౏

௜ୀଵ

൅ ෍ 𝑞୆,௟ ∙ 𝑥୆,௟

ேా

௟ୀଵ

൑ 𝑄୘ 

 

 

    
 𝑥୆,௟ ∈ ሾ0,1ሿ    for all 𝑙 

𝑥େ,௚ ∈ ሾ0,1ሿ    for all 𝑔 
𝑥ୋ,௝ ∈ ሾ0,1ሿ    for all 𝑗 
𝑥୑,௛ ∈ ሾ0,1ሿ    for all ℎ 
𝑥ୗ,௜ ∈ ሾ0,1ሿ    for all 𝑖 
𝑥୚,௞ ∈ ሾ0,1ሿ    for all 𝑘 
 

 

 

Before we continue with our analysis we will write this problem in more compact and more 
general form. Let 𝛑 ൌ ሾ𝜋୓, 𝛑େ, 𝛑୚, 𝛑୑, 𝛑ୋ, 𝛑ୗ, 𝛑୆ሿ, 𝐱 ൌ ሾ𝑥୓, 𝐱େ, 𝐱୚, 𝐱୑, 𝐱ୋ, 𝐱ୗ, 𝐱୆ሿ and 𝐪 ൌ
ሾ𝑞୓, 𝐪େ, 𝐪୚, 𝐪୑, 𝐪ୋ, 𝐪ୗ, 𝐪୆ሿ. Let 𝐀୶ be the matrix that describes the assignment of the entities 
to each other, i. e. 𝑎୶,௛௜ ൌ 1, 𝑎୶,௛௝ ൌ െ1 and 𝑏୶,௛ ൌ 0 have the meaning that entity 𝑖 depends 

on the installation of entity 𝑗. Then the problem can be compactly formulated as: 

maximize
𝐱

 𝛱 ൌ 𝛑 ∙ 𝐱୘  

   
Subject to  𝐀୶ ∙ 𝐱୘ ൑ 𝟎 

 
(1) 

 𝐪 ∙ 𝐱୘ ൑ 𝑄୘ 
 

(2) 

 𝐱 ∈ ሾ0,1ሿ  (3) 
 

4 Consideration	of	Uncertainty	and	Risk	

The model developed so far assumes that all data is given in a deterministic way. In practice, 
however, most of the data that drive the parameters 𝛑 and 𝐪 are not known with certainty. The 
diffusion of services and service bundles in different market segments cannot be perfectly 
forecasted. Among other factors a lack of commitment from the service sellers to achieve 
demand targets or unforeseen competitive forces can degenerate demand. Also the time usage 
for integrating and maintaining entities like services, service bundles and ISVs cannot be 
predicted with absolute certainty. Another factor are the labor cost rates which can vary with 
the level of sick leave, substitution of employees, salary adjustments, etc. 

The consequences of these uncertainties are that the resources denoted by 𝑄୘ can be insufficient 
for producing the service portfolio x. Furthermore, the objective function value 𝛱 representing 
total income or value may be higher or lower than expected, in the worst case being below the 
break-even or some desired target value.  
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For modeling this uncertainty, we therefore apply a probabilistic framework. It is common to 
indicate the uncertainty by a random event 𝜔 from the set of possible future states Ω that 
happens with some probability 𝛼ఠ. In what follows, we describe the process of developing the 
model that can treat uncertainty and risk. In a first step we will reformulate the model in such a 
way that the expected present value 𝔼ఠሾ𝛱ఠሿ is maximized. Furthermore, we assume that we 
aim at the expected resource usage (working time) being equal to the available resources 𝑄୘. 

maximize
𝐱

 𝔼ఠሾ𝛱ఠሿ ൌ 𝔼ఠሾ𝛑னሿ ∙ 𝐱  

Subject to  𝐀୶ ∙ 𝐱୘ ൑ 0   
 𝔼ఠሾ𝐪ఠሿ ∙ 𝐱୘ ൑ 𝑄୘  
 𝐱 ∈ ሾ0,1ሿ   

 

In this formulation, the decision maker is neutral concerning both the financial risk and 
infringing the time constraint. The time constraint is only met in average, but will be violated 
in some of the possible future states. In the present formulation, if the time constraint is violated 
there will be no additional consequences like increased costs due to overtime or losses because 
of not being able to offer services on time. Note that costs related to resource usage are part of 
the 𝛑ன such that extra costs will come along with extra time usage, but the costs per unit time 
are the same with or without violating the time constraint.  

If we focus on the uncertainty concerning the time resources required for implementing and 
bundling services then the negative consequences are delays in service offerings, postponed 
income, churn, and increased costs. We will therefore adjust our formulation in the following 
way. Let the per-unit costs (penalty) for constraint violation be denoted by 𝜑. The violation of 
the resource constraint in the case of the event 𝜔 can be represented maxሼ𝐪ఠ ∙ 𝐱୘ െ 𝑄୘, 0ሽ. The 
objective function of our optimization problem can then be extended by the expected penalty 
costs. Our problem then becomes: 

maximize
𝐱

 𝔼ఠሾ𝛱ఠሿ ൌ 𝔼ఠሾ𝛑னሿ ∙ 𝐱 െ 𝔼ఠሾ𝜑 ∙ maxሼ𝐪ఠ ∙ 𝐱୘ െ 𝑄୘, 0ሽሿ  

Subject to  𝐀୶ ∙ 𝐱୘ ൑ 0   
 𝐱 ∈ ሾ0,1ሿ   

 

In addition, one can restrict the overuse of resources by limiting, either in each state 𝜔 or in 
expectation. For example, with 𝑅୘ being a user defined parameter the constraint  
maxሼ𝐪ఠ ∙ 𝐱୘ െ 𝑄୘, 0ሽ ൑ 𝑅୘ restricts the expected exceedance of the resource constraint. In 
what follows the latter kind of constraint is neglected. 

Finally, we also want to control the financial risk which is governed by the stochastic input 
parameters like demand, costs, cost driver quantities and penalties. The financial literature has 
suggested various different risk measures: Some of the most prominent are the variance or 
standard deviation (applied by Markowitz, 1952), the value at risk (Jorion, 1997) and the 
conditional value at risk (Uryasev and Rockafellar, 1999). 
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The selection of the right risk deserves some attention: First of all, a risk measure should 
sufficiently describe the users perception of risk. Second, a risk measure needs to support 
rational decisions. Finally, the choice of the risk measure affects the model properties, i. e 
linearity, convexity, differentiability, which are important for optimization software 
implementations. 

In our analysis, we have chosen to apply two alternative risk measures. The first risk measure 
is the mean negative deviation, a risk measure that is based on Baumol (1963). With respect to 
financial portfolio optimization it has been used by Zenios (2007). This risk measure is a special 
case of the more general lower partial risk measures introduced by Fishburn (1977). The second 
risk measure is the conditional value at risk. Unlike other measures like the variance (standard 
deviation), mean absolute deviation, or negative (semi lower) deviations, this kind of risk 
measures prevents irrational decisions in the context of our model. We will illustrate this by 
means of an example. The following table contains the expected costs of two entities (or cost 
objects) as well as three risk measures, the standard deviation (StDev) the average deviation 
from then mean (MAD) and the one-sided negative deviation from the mean (NAD). The last 
column of this table shows the objective of the form േሺ1 െ 𝜆ሻ ∙ Performance െ 𝜆 ∙ Risk. 
Assume that entity 1 is somehow necessary for the cloud broker because it is required for other 
entities that provide revenues to the cloud broker. Entity 2, however, does not contribute any 
value to the cloud broker, and its absence would not involve any negative consequences. Hence, 
in an optimization model this entity should be eliminated. 

 

As can be seen in the last row and first column in this table, the pure minimization of expected 
costs would eliminate Entity 2 because it adds costs. A pure risk minimization, however, would 
not eliminate this entity because all three risk measures indicate that the risk is reduced by 
including entity 2. Even the use of an objective function that contains a linear combination of 
expected costs and risk will lead to the inclusion of entity 2, although it only provides negative 
consequences in all possible future states as indicated in Figure 3. With lower partial risk 
measures or the conditional value at risk, this undesired effect can be avoided. 
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Figure 3: Mean Absolute Deviation and Standard Deviation as Risk Measures 

Beside supporting rational decisions, both CVaR and MAD can be implemented in a way such 
that the optimization problem remains a linear program (See Zenios 2007). In the following, 
we show the integration of these risk measures in our optimization model. 

Modeling the Negative Deviation from Target: Let there be a target present value (for 
example the break-even): 𝑄୊. A negative deviation from this target profit can be measured by 
the expression maxሼ𝑄୊ െ 𝛑ன ∙ 𝐱 െ 𝜑 ∙ maxሼ𝐪ఠ ∙ 𝐱୘ െ 𝑄୘, 0ሽ , 0ሽ. In what follows we limit the 
expected shortfall below the target 𝑄୊:  

maximize
𝐱

 𝔼ఠሾ𝛱ఠሿ ൌ 𝔼ఠሾ𝛑னሿ ∙ 𝐱 െ 𝔼ఠሾ𝜑 ∙ maxሼ𝐪ఠ ∙ 𝐱୘ െ 𝑄୘, 0ሽሿ (4) 

   
Subject to  𝐀୶ ∙ 𝐱୘ ൑ 0 

 
 

 𝔼ఠሾmaxሼ𝑄୊ െ 𝛑ன ∙ 𝐱 െ 𝜑 ∙ maxሼ𝐪ఠ ∙ 𝐱୘ െ 𝑄୘, 0ሽ , 0ሽሿ ൑ 𝑅୊ 
 

(5) 

 𝐱 ∈ ሾ0,1ሿ   
Again, 𝑅୊ is a parameter that needs to be defined by the user. 

In the present form, the objective function (4) is not linear because of the maximum operator. 
For the same reason the left hand side of constraint (5) is not linear. The problem becomes 
simpler if we assume that the random parameters have finite support defined by a finite number 
of scenarios. Suppose that we have 𝑆 scenarios and each scenario 𝑠 ൌ 1, … , 𝑆 has probability 
𝛼௦. Then the problem can be written in the follow form (See also Zenios, 2007: Chapter 5): 

maximize
𝐱,𝐯,𝐰

 𝔼௦ሾ𝛱௦ሿ ൌ ෍ 𝛼௦ ∙ ሺ𝛑ୱ ∙ 𝐱 െ 𝜑 ∙ 𝑣௦ሻ
ௌ

௦ୀଵ

 (6) 

   
Subject to  𝐀୶ ∙ 𝐱୘ ൑ 0 

 
(7) 

 𝐪௦ ∙ 𝐱୘ െ 𝑣௦ ൑ 𝑄୘   for all 𝑠 ൌ 1, … , 𝑆 
 

(8) 
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 𝛑ୱ ∙ 𝐱 െ 𝜑 ∙ 𝑣௦ ൅ 𝑤௦ ൒ 𝑄୊   for all 𝑠 ൌ 1, … , 𝑆 
 

(9) 

 
෍ 𝛼௦ ∙ 𝑤௦

ௌ

௦ୀଵ

൑ 𝑅୊ (10) 

   
 𝐱 ∈ ሾ0,1ሿ 

𝑣௦ ൒ 0, 𝑤௦ ൒ 0   for all 𝑠 ൌ 1, … , 𝑆  (11) 

 

In constraint (8), the variables 𝑣௦ measure any exceedance of the restricted resource 𝑄୘ in 
scenario 𝑠. In constraint (9) the variables 𝑤௦ measure any negative deviation from the target 
profit 𝑄୊ in scenario 𝑠. We now have a linear optimization problem with binary variables 𝐱 and 
non-negative real-valued variables 𝐯 and 𝐰. This problem is solvable with standard software 
for mixed-integer linear problems. The computational efforts, of course, depends mainly on the 
size of 𝐱 (the number of entities to consider) and the number of scenarios. 

In praxis, the parameter 𝑅୊ may be hard to identify generally by the user, particularly if input 
data is changed or if the number of entities to consider is increased or reduced. It is more 
convenient to further reformulate the problem by introducing a composite objective function 
that is a linear combination with weight 𝜆 between the performance measure (6) and the risk 
value from the left hand side of expression (10). The problem becomes: 

maximize
𝐱,𝐯,𝐰

 ሺ1 െ 𝜆ሻ ∙ ෍ 𝛼௦ ∙ ሺ𝛑ୱ ∙ 𝐱 െ 𝜑 ∙ 𝑣௦ሻ
ௌ

௦ୀଵ

െ 𝜆 ∙ ෍ 𝛼௦ ∙ 𝑤௦

ௌ

௦ୀଵ

 (12) 

   
Subject to  𝐀୶ ∙ 𝐱୘ ൑ 0 

 
(13) 

 𝐪௦ ∙ 𝐱୘ െ 𝑣௦ ൑ 𝑄୘   for all 𝑠 ൌ 1, … , 𝑆 
 

(14) 

 𝛑ୱ ∙ 𝐱 െ 𝜑 ∙ 𝑣௦ ൅ 𝑤௦ ൒ 𝑄୊   for all 𝑠 ൌ 1, … , 𝑆 
 

(15) 

 𝐱 ∈ ሾ0,1ሿ 
𝑣௦ ൒ 0, 𝑤௦ ൒ 0   for all 𝑠 ൌ 1, … , 𝑆  (16) 

 

In fact, one can prove that under mild technical assumptions any solution of problem (12) to 
(16) for any fixed 𝜆 ∈ ሾ0,1ሿ is also a solution of problem (6) to (11) for some specific 𝑅୊ which 
depends on this solution. In the theory of financial portfolio management this transformation is 
widely used, see for example Zenios (2007: Chapter 3). 

Modeling the Conditional Value at Risk: The formulation with the CVaR as risk measure is 
very similar. The only adjustment to be made is the risk-part of the objective function, i. e. 
expression (12) needs to be adjusted to: 

 
maximize

𝐱,𝐯,𝐰
 ሺ1 െ 𝜆ሻ ∙ ෍ 𝛼௦ ∙ ሺ𝛑ୱ ∙ 𝐱 െ 𝜑 ∙ 𝑣௦ሻ

ௌ

௦ୀଵ

െ 𝜆 ∙ ൭𝑉 ൅
1

𝛼୚ୟୖ
∙ ෍ 𝛼௦ ∙ 𝑤௦

ௌ

௦ୀଵ

൱ (17) 
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Subject to constraints (13) to (16).   

5 Practical	Implementation	and	Modification	of	the	Model	

In this section, we will show the results, which one can obtain from the model by presenting a 
numerical example. We furthermore illustrate our approach with fewer service bundles, which 
allows us to compute and visualize all possible production combinations with the computational 
resources at hand. The original practical case contained 154 entities (ISVs, service groups, etc.) 
from which 47 are service bundles. This implies that there are 2ேా ൌ 2ସ଻ ൎ 1.41 ∙ 10ଵସ 
possible service-bundle combinations, both feasible and infeasible with respect to the 
constraints of the optimization problem. Although the optimization model can still be solved in 
negligible time (less than 1 second on a standard PC), it is computationally expensive to 
evaluate all combinations. In the following illustrative example we shall therefore reduce the 
number of entities (binary variables) to 79: these are 1 overhead department, 3 markets, 5 
technological ISVs, 10 market-ISV’s (not all ISVs deliver services to all markets), 7 service 
groups, 35 services and 18 service bundles. In this case we have  2ேా ൌ 2ଵ଼ ൌ262,144 possible 
service-bundle combinations, both feasible and infeasible with respect to the constraints. For 
each entity of the model, the expected present value, the variation of the present value, the 
working time and working time variations are input data to our model. All values of these input 
data are given in Table 1: . Like in the original practical case, this present value is based on the 
cash flows for the forthcoming three years. These cash flows consist of fixed, variable costs 
and revenues. For example, in the case of the service bundles, these cash flows are driven by 
the number of subscriptions and the compensation per subscription. Since, the constituents of 
the cash flows (i. e. costs, revenues, sales, working hours) are not given with certainty we 
allowed deviations from the expected value. Based on these data, we generated 2 000 scenarios. 
Figure 5 shows the standard deviation of the present value and the resource consumption, which 
are result of this simulation. 

In model (12) to (16) and (17) the variables ሼ𝛑ୱሽ௦ୀଵ,…,ௌ and ሼ𝐪ୱሽ௦ୀଵ,…,ௌ contain these 2 000 

present values and resource consumption values respectively.  
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Table 1: Input Data to Our Model (79 entities from which 18 are service bundles) 

 

Before we continue showing some numerical results, we have to point out one practical 
obstacle: As mentioned in the introduction the cloud broker receives two kinds of commission 
fees, namely a fixed commission per market and a variable commission per service bundle that 
depends on the number of subscriptions. In some cases, the costs of a service bundle together 
with up-stream services and ISVs may be greater than the revenues. In such case, the 
optimization model tends to implement markets (for which a large fixed commission is paid) 
without offering services (for which the contribution margin is negative). If we implement the 
model (17) without further constraint then we obtain the production program shown in Figure 
4. This figure indicates that independent from the risk attitude all markets are implemented on 
the platform. This is because of the large fixed commission paid by telecommunication operator 
for each market served. However, for a risk seeking decision maker (𝜆 ൑ 0.26) there are service 
bundles offered only on one market (bundle 14 to 18), while a risk averse decision maker (𝜆 ൐
0.26) does not offer any services bundles at all. 
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Figure 4: Optimal Service Bundle Combinations and their Components 

Implementing markets without offering services is not intended. Therefore, a constraint is added 
to the optimization model that enforces a minimum number 𝑛௛ of service bundles to be 
produced in each market ℎ: 

 𝑛௛ ∙ 𝑥୑,௛ ൑ ෍ 𝑥୆,௟

௟∈௑ా౉,೓

   for all  ℎ ൌ 1, … , 𝑁୑  (18) 

with 𝑋୆୑,௛ being the set of the bundles that are offered on market ℎ. Depending on this 

minimum requirement the number of feasible combinations will be further reduced. In case of 
𝑛௛ ൌ 3, for all ℎ, we are left with 73,099 feasible combinations out of the initially 262,143 
combinations. In what follows we look at these feasible and rational production combinations 
in a risk-value diagram. By rationality we mean that any upstream entity (ISV, service, etc.) 
will not be implemented if this does not contribute to a downstream entity (service bundles 
being the most down stream). Note, that there is no such constraint that prohibits this 
irrationality in the optimization problems above. For the reason described in section 4, the 
preferred risk measures to be applied is the conditional value at risk (CVaR) or a similar risk 
measure like the mean negative deviation from some target (MND). In what follows we solely 
present results for the CVaR. An equivalent analysis can be carried out with the MND. 
Nevertheless, we also show the results for standard deviation The reason for this is that the 
standard deviation normally produces more efficient production combinations. In our analysis 
we use 𝛼 ൌ 95 % for the computation of the CVaR. The following results are furthermore based 
on a penalty of 𝜑 ൌ 2 for violations of the resource constraints. Furthermore, we require that 
the cloud broker produces at least 3 service bundles in each markets, if the respective market is 
served, i. e. 𝑛௛ ൌ 3 in constraint (18). 

Figure 5 shows all the feasible (73 099) combinations of the service bundles in a risk-return 
diagram as commonly used in financial theory (Markowitz, 1952). However, instead of using 
the standard deviation and expected return we apply the CVaR as risk measure and the present 
value of the service bundle portfolio as performance measure. Surprisingly, there exist only 
very few efficient production points (5 points) relative to all feasible service bundle 
combinations (73,099). These points are numerically shown in Table 2. Moreover, Figure 6 is 
an excerpt of Figure 5 that zooms into the efficient service bundle combinations and shows a 
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hypothetical efficient frontier. Note that only the efficient production points are achievable 
production bundles. Any other point on the efficient frontier is not achievable because of the 
non-divisibility of the decision variables. The same applies to Figure 7 that shows all efficient 
production points and a hypothetical efficient frontier for the standard deviation. Once more, it 
needs to be pointed out, that the standard deviation may give irrational decision. However, in 
the computation of all possible production combinations, irrational service bundle decisions 
were excluded. 

 

Figure 5: CVaR-Present-Value Diagram of all Feasible Service Bundle Combinations 

 

 Present Value Risk (CVaR 95 %) 
Bundle Combination #1 2533.80 3178.89 
Bundle Combination #2 2085.86 3081.52 
Bundle Combination #3 2028.93 3035.19 
Bundle Combination #4 1850.12 2136.07 
Bundle Combination #5 1774.74 2086.91 

Table 2: Efficient Service Bundle Combinations Expressed by Present Value and Risk 
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Figure 6: Efficient Service Bundle Combinations Based on CVaR 

 

 

Figure 7: Efficient Service Bundle Combinations Based on Standard Deviation 
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The active entities within the efficient service bundle combinations of the cloud broker are 
schematically shown in Figure 8. This figure gives a clear indication about which markets and 
service bundles are definitely profitable or non-profitable (independent of risk attitude) or partly 
profitable (depending on risk attitude). For example, Market 1 and 3 should be served 
irrespective of the risk attitude of the cloud broker.  The provision of service bundles to market 
2 is a more risky endeavor. A cloud broker with a high degree of risk aversion should not 
provide services to this market. On market 1, the bundles 1, 2, 3 and 5 should definitely be 
provided. We also see that ISV 3 on market 1 is a clear value destroyer. This means that despite 
of having already incurred some of the common costs (for example for the market entry on 
market 1 or service groups) the costs for implementing this ISV are higher than the revenues or 
that its implementation does not contribute to a reduction of the risk. The same applies for 
bundles 6, 8, 9, etc. These bundles do not contribute to either profitability improvement or risk 
reduction. The provision of other bundles, like bundle 4 and 7, depends on the risk attitude of 
the cloud broker. Similar conclusions can be drawn for the other markets and bundles.   

 

Figure 8: Efficient Service Bundle Combinations and their Components 

This entity (here a 
particular ISV) is active 
in all production 
alternatives. 

This entity (here a particular 
service group) is active in 
production alternative 1 to 3, 
and inactive otherwise. 

This entity (here a particular 
service bundle) is not active 
(unfavorable) in neither 
production alternative. 

Overhead Markets 

ISVs ISVs on Markets Service Groups 

Services to be bundled 

Services Bundles on three 
different markets 
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After having implemented this model we can pursue further economic questions: For example 
how should the variable compensation of a particular service bundle be adjusted, such that this 
bundle will be prioritized, or how should the fixed compensation of a particular market be 
adjusted in order to reduce the risk and raise profitability of the cloud broker. The model 
contains several subjective parameters that can affect the decision. Two important parameters 
are the probability for which the CVaR is defined and the penalty-costs for resource expansion. 

Before we want to conclude this section, we will shortly comment on the computational 
requirements for the model presented above. The computational resources needed to solve the 
problem depend on the size of the problem and the values of the parameter. The size of the 
problem is driven by the number of entities (i.e. service bundles, services, etc.), the number of 
scenarios and the number of heterogeneous resources. The most critical factor is the number of 
entities considered in the model because these drive the number of the binary variables. Let us 
depart from the total number of entities, no matter if these are service bundles, ISVs service 
groups, etc. Then the number of possible combinations, both feasible and infeasible is given by 

2ሺேిାே౉ାே౒ାேృାே౏ାேాሻ. In our numerical example with 154 entities this number becomes 
2ଵହସ ൎ 2.28 ∙ 10ସ଺. Being aware of other integer programming solution approaches (see for 
instance Bertsimas and Weismantel 2005) we will here discuss the size, scalability and 
computational requirements from the perspective of the Branch-and-Bound strategy. Although, 
it is beyond the scope of this paper to develop or represent a superior candidate of Branch-and-
Bound algorithm, it is obvious that it can exploit the dependencies between the entities 
(services, service bundles, etc.) in the model. Because of service bundles depending on services, 
and services on ISVs, etc. the number of potential combinations to be analyzed can be reduced 
to 2ேా ൌ 2ସ଻ ൎ 1.41 ∙ 10ଵସ where 𝑁୆ ൌ 47 is the number of service bundles delivered to the 
customers. Branch-and Bound algorithms have the property to reduce the number of computed 
combinations because potentially infeasible and non-beneficial combinations will early be 
discarded. Infeasibility in our problem is mainly driven by the amount of resources 𝑄୘ (right 
hands side of constraint (8) or (14) compared to the number of services and their individual 
resource requirements (i. e. the coefficients 𝐪௦ on the left hand side in constraint (8) or (14). 
Although it was beyond the scope of our paper to mathematically and empirically analyze the 
number of Branch-and-Bound iterations for the number service bundles, we can by means of a 
little example indicate what the growth behavior of the model will be. Imagine a more 
simplified non-stochastic production model with only one resource and one kind of product.  
Assume that the production capacity is 𝐾 units. Assume furthermore that we have 𝑀 potential 
products to be produced, each requiring exactly one unit of production capacity. Hence, there 

are 
ሺெሻ!

ሺெି௄ሻ!∙௄!
 production combinations. The binomial coefficient has a far less pronounced 

growth rate than 2ெ. Furthermore, since some of the products will be less profitable, the branch-
and bound strategy will not evaluate all of the possible combinations. Hence, the binomial 
coefficient represent the most pessimistic value concerning the increase of computational 
resources required for this problem. In our practical application, we cam still expect a 
considerable increase in the number of the entities before computational resources become 
exhausted.   
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6 Summary	

In this paper, we have introduced a tool that helps to identify profitable combinations of service 
bundles to be produced by a cloud broker. More precisely, this tool identifies which 
combinations of service bundles are value contributors and which services are value destroyers. 
We have applied an optimization framework since traditional management accounting tools are 
insufficient for the complex and intertwined structure of production processes like for our cloud 
brokering case. In addition, and inspired by financial theory, we added risk control to the model. 
Hence, the decision maker can choose the service bundle combination that gives the best trade-
off between risk and expected value. Although the model has been applied to cloud brokering 
services, it can be used for other kind of products and production processes, which have an 
intertwined structure described in this paper. 
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