Effect of low loading of yttrium on Ni-based layered double hydroxides in CO₂ reforming of CH₄

Katarzyna Świrk¹,²,*, Monika Motak², Teresa Grzybek², Magnus Rønning³, Patrick Da Costa¹

¹Sorbonne Université, CNRS, Institut Jean le Rond d’Alembert, F-78210 Saint-Cyr l’École, France
²AGH University of Science and Technology, Department of Fuel Technology, 30-059 Cracow, Poland
³Norwegian University of Science and Technology, Department of Chemical Engineering, N-7491 Trondheim, Norway

Abstract

Ni/Al/Mg layered double hydroxides (LDHs) modified with low loading of yttrium (0.2 and 0.4 wt%) were used in dry reforming of methane at 700 °C. Physicochemical characterization, such as: X-ray fluorescence, N₂ sorption, X-ray diffraction, temperature programmed reduction in H₂, temperature programmed desorption of CO₂, H₂ chemisorption, thermogravimetry analysis coupled by mass spectrometry and Raman spectroscopy, showed that the introduction of low loadings of yttrium lead to a smaller Ni⁰ crystallite size, a decrease in reducibility of the nickel, and a decreased number of basic sites in the modified Ni/LDHs catalysts. The doping with 0.4 wt% of Y improves catalytic activity resulting in higher CH₄ and CO₂ conversions at 700 °C, i.e. ca. 84 % and ca. 87 %, respectively with no clear deactivation observed after 5 h run. The increase in CO₂ conversion and a decrease of H₂/CO ratio indicates that side reactions occurs during DRM.

Keywords: dry reforming of methane, nickel, yttrium, layered double hydroxides

*Corresponding author: Katarzyna Świrk (swirk@agh.edu.pl, katarzyna.swirk@sorbonne-université.fr)
1. Introduction

With a view to enhancing chemical CO\(_2\) utilization technologies, dry methane reforming (DRM) is a one of the prospective processes, which allows to convert carbon dioxide and methane into valuable products, i.e. synthesis gas (equation 1). The process is complex and consists of several steps, in which the most important are the reactions mentioned below [1,2]:

\[
\begin{align*}
\text{CH}_4 + \text{CO}_2 &= 2\text{CO} + 2\text{H}_2, \quad \Delta H^0 = 247 \text{ kJ/mol} \\
\text{CO}_2 + \text{H}_2 &= \text{H}_2\text{O} + \text{CO}, \quad \Delta H^0 = 41 \text{ kJ/mol} \\
2\text{CO} &= \text{C}(s) + \text{CO}_2, \quad \Delta H^0 = -172 \text{ kJ/mol} \\
\text{CH}_4 &= \text{C}(s) + 2\text{H}_2, \quad \Delta H^0 = 75 \text{ kJ/mol}
\end{align*}
\]

The industrialization of DRM is, however, limited by a high reaction temperature (at least 642 °C), which increases the economic costs of process, and by undesirable coke formation (equations 3 and 4) which causes the catalyst deactivation [3]. Supported noble metal catalysts (Rh, Ru, Ir, Pt and Pd) show efficient catalytic performance and low sensitivity to carbon deposits, but their high price and low availability prevent their industrial application in contrast to Ni-based catalysts. The latter represent a promising alternative [4–7]. However, the main drawback of their application is fast deactivation caused by coke formation, sintering of active phase and metal oxidation [2,8,9]. The deactivation may be limited due to possible improvement of the physical properties, e.g. Ni particle size lower than 10 nm and high dispersion of the metal species [10,11]. Thus, finding a highly active, selective and stable catalyst remains a serious problem for industrialization of DRM and the preparation of a novel catalyst is still a challenge [12,13]. The choice of proper support may contribute to an improvement.

Synthetic layered double hydroxides (LDHs), show good properties as precursors due to their double layered and homogenous structure with appropriate basic properties and the presence of Mg\(^{2+}\) and Al\(^{3+}\) introduced by co-precipitation method. These cations may by
partially substituted by ions of promoter, in order to improve properties of the material [14–17].

A large number of studies have shown that Ni-based catalysts can result in high activity and stability in DRM [18–27].

Yttrium has received considerable attention as a promising promoter for many chemical processes [28–33], including dry reforming of methane [34–37]. Recently, yttrium promotion (0.2-0.6 wt%) was examined by us over Ni-based catalysts, which were additionally modified with Zr [33]. The promotion with Zr (5 wt%) and Y (0.4 wt%) resulted in an enhanced stability and activity which could be ascribed to the formation of ZrO$_2$-Y$_2$O$_3$, the latter possibly leading to the reduction of bulk NiO. Bellido et al. [38] also synthesized Zr-modified Ni-containing catalysts with a varying mole fraction of Y (4 to 12 mol%). The catalyst modified with 8 mol% showed the highest activity and stability in the DRM, possibly due to the increased formation of oxygen vacancies. The effect of higher Y-loadings (0.6 and 1.5 wt%) on Ni/Mg/Al layered-double hydroxides was also studied elsewhere [3]. The modification with these quantities resulted in the increased specific surface area, smaller Ni crystallite size, enhanced dispersion of active sites, changes in the reducibility and higher distribution of weak and medium basic sites as compared to the unpromoted catalyst. The modification with higher amount of yttrium (1.5 wt%) showed enhanced stability in the dry reforming of methane tests.

No study concerning the effect of low yttrium loading (lower than 0.6 wt%) on Ni-LDHs has been reported before. Thus, the aim of this work was to examine the influence of the yttrium promotion (0.2 and 0.4 wt%) of Ni-based layered double-hydroxides on their structure and catalytic behavior in dry reforming of methane.
2. Experimental

2.1. Catalysts preparation

The layered double hydroxides were synthesized by co-precipitation method. An aqueous solution of following salts was used: Mg(NO$_3$)$_2$$\cdot$6H$_2$O (Sigma Aldrich, 99% pure), Ni(NO$_3$)$_2$$\cdot$6H$_2$O (Sigma Aldrich, 98.5% pure), Al(NO$_3$)$_2$$\cdot$9H$_2$O (Fluka, 98% pure) and Y(NO$_3$)$_3$$\cdot$6H$_2$O (Aldrich, 99.8% pure), together with a 2M solution of NaOH to control pH. These two solutions have been added dropwise to sodium carbonate solution (cp=25%). The pH of a mixture was kept in the range of 9.8-10.2. The synthesis of the materials assumed ratio M$^{2+}$/M$^{3+}$=3.0. In individual sample the following content of yttrium was doped 0.2 and 0.4 wt%. After co-precipitation of the salts, the mixture was aged for 24 h, and the slurry was then filtered and washed with distilled water. The final product was calcined in air at 550 ºC for 5 h. So prepared catalysts were labeled HTNi, HTNi-Y0.2 and HTNi-Y0.4.

2.2. Catalysts characterization

X-Ray Fluorescence (XRF) analysis was used to examine elemental composition in the Ni catalysts after calcination. The analysis was carried out by using a Supermini200 instrument. The samples were kept under vacuum at 36.5 ºC in the presence of P-10 gas (flow 24.7 cm3/min). The powdered materials were diluted in boric acid and pelletized under a press (10 bar). The pellets were covered with 6 µm polypropylene film.

Nitrogen sorption was performed by a Micromeritics TriStar II 3020 in order to determine textural properties of the materials. The samples were degassed for 3 h at 110 ºC before the measurement. Nitrogen sorption isotherms were measured at liquid-nitrogen temperature of -195 ºC.
X-ray diffraction (XRD) patterns were obtained from PANalytical-Empyrean diffractometer, equipped with CuKα (λ = 0.15406 nm) radiation source. The average crystallite size of Ni was determined from the Scherrer equation.

Temperature-programmed reduction (TPR-H₂) measurements were carried out on a BEL Japan BELCAT-M equipped with a thermal conductivity detector (TCD). Calcined materials (60 mg) were first degassed in helium atmosphere at 100 °C for 2 h and then reduced in 5 % H₂/Ar mixture with a heating rate of 10 °C/min starting from 100 °C to 900 °C. The measurements of temperature programmed desorption (TPD-CO₂) were performed for the sample just after TPR-H₂ test, using the same apparatus. CO₂ was adsorbed at 80 °C for 1 h from a mixture of 10% CO₂/He. Then, helium flow was applied for 15 min in order to desorb weakly adsorbed CO₂. Finally, the materials were heated from 80 °C to 800 °C in helium in order to determine weak, medium and strong basic sites based on temperature of desorption. TPD profiles were deconvoluted into three Gaussian peaks.

Hydrogen chemisorption was used to determine nickel dispersion (Micromeritics, ASAP 2020S). 200 mg of calcined materials were loaded in tubular quartz reactor. Prior the experiments, evacuation at 40 °C for 1 h and reduction in pure H₂ at 900 °C for 1 h was applied. After the reduction, the sample was evacuated in helium for 30 min at 900 °C and subsequently for 1 h at 40 °C. After the leak test pass, the sample was continuously evacuated for 30 min at 40 °C, at this temperature, an adsorption isotherm was recorded and the metal dispersion was determined based on the quantity of hydrogen uptake. Also, Ni crystallite size was calculated, assuming spherical metal crystallites of uniform diameter d [39]:

\[
d = \frac{97.1}{\%D} \quad \text{[nm]}
\]

In which 97.1 represents a constant for nickel and %D the percentage dispersion obtained from H₂ chemisorption.
Thermogravimetric analyzes were carried out by a TGA-MS (TGA: Netzsch STA 449C Jupiter, MS: Netzsch Aërlos QMS 403C) in order to evaluate the coke formation on spent catalysts. An air flow of 100 cm3/min and protective gas flow of 20 cm3/min were applied. 10 mg of a spent sample was heated starting from ambient temperature to 900 °C with a ramp rate of 10 °C/min. The amount of coke deposition was estimated by the mass loss in TGA analysis, confirming by CO$_2$ production derived from MS results.

Raman was employed to characterize carbon deposits formed on the spent catalysts by using a Horiba Jobin Yvon LabRam HR800 instrument. The spectra were recorded with a laser excitation wavelength of 633 nm at an accumulation of 3 and an acquisition time of 20 s. A diffraction grating of 1800 gr/mm and a 50x objective were applied.

2.3. Catalytic tests

The catalytic DRM tests were conducted under atmospheric pressure, in a fixed-bed U type reactor (8 mm inner diameter). The catalytic bed temperature was monitored by a K-type thermocouple placed in a quartz shield. Calcined catalysts were introduced into the reactor and reduced in situ earlier to the reaction in flowing a mixture of 5% H$_2$/Ar (flow 50 cm3/min) at 900 °C for 1 h to activate the catalyst in-situ. Then two types of tests were carried out.

A first series of the experiments were performed in the temperature range of 850-600 °C with a temperature step every 50 °C, and cooling time of 15 min between the steps. The duration of the test at each temperature was 30 minutes corresponding to steady-state measurements.

A second series of experiments were carried out in isothermal conditions at 700 °C for 5 hours in order to evaluate the catalysts initial stability.

For both experiments, the gas composition was equal to CH$_4$/CO$_2$/Ar= 1/1/8. The total flow was 100 cm3/min which corresponds to a gas hourly space velocity (GHSV) of 20,000 h$^{-1}$. The outlet gases were analyzed by gas chromatograph (490 Varian Micro-GC). In order to acquire
CH\textsubscript{4}, CO\textsubscript{2}, conversions as well as the H\textsubscript{2}/CO ratios the following equations (6), (7), (8) were employed:

\[X_{\text{CH}_4} = \left[\frac{n_{\text{CH}_4}^{\text{in}} - n_{\text{CH}_4}^{\text{out}}}{n_{\text{CH}_4}^{\text{in}}} \right] \cdot 100 \quad [\%] \quad (6) \]

\[X_{\text{CO}_2} = \left[\frac{n_{\text{CO}_2}^{\text{in}} - n_{\text{CO}_2}^{\text{out}}}{n_{\text{CO}_2}^{\text{in}}} \right] \cdot 100 \quad [\%] \quad (7) \]

\[H_2/CO = \frac{n_{\text{H}_2}^{\text{out}}}{n_{\text{CO}_{2}}^{\text{out}}} \quad \] (8)

Direct methane decomposition (DMD) was also carried out in the same experimental device. The following gas composition was equal to CH\textsubscript{4}/Ar= 2/8. The total flow was 100 cm3/min which corresponds to a gas hourly space velocity (GHSV) of 20,000 h-1. Similarly, to equation (6), CH\textsubscript{4} conversion was calculated as follows:

\[X_{\text{DMD,CH}_4} = \left[\frac{n_{\text{CH}_4}^{\text{in}} - n_{\text{CH}_4}^{\text{out}}}{n_{\text{CH}_4}^{\text{in}}} \right] \cdot 100 \quad [\%] \quad (9) \]

3. Results and discussion

3.1. Catalysts characterization

Elemental analysis was carried out by means of X-ray fluorescence (XRF). The contents of Ni and Y, together with the assumed M2+/M3+ ratio are listed in Table 1. The studied catalysts showed ca. 20 wt% of Ni loading, and yttrium contents which are close to the nominal values, i.e. 0.2 and 0.4 wt%. The calculated ratios of M2+/M3+, i.e. (Ni,Mg)/(Al,Y), were also close to the values which were assumed during the synthesis step. This shows that the studied materials were successfully synthesized, and contents of metals may be easily controlled during the material preparation.
Table 1 Summary of the structural properties of the calcined catalysts. The values in brackets are nominal values.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>XRF</th>
<th>Nitrogen sorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni$^{2+}$ [wt%]</td>
<td>Y$^{3+}$ [wt%]</td>
</tr>
<tr>
<td>HTNi</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>HTNi-Y0.2</td>
<td>19</td>
<td>0.2 (0.2)</td>
</tr>
<tr>
<td>HTNi-Y0.4</td>
<td>21</td>
<td>0.4 (0.4)</td>
</tr>
</tbody>
</table>

1 Specific surface areas calculated from the BET equation
2 Mesopore volumes derived from the BJH desorption isotherm
3 Pore size distribution obtained from the BJH desorption isotherm

Specific surface area for calcined samples was obtained through BET analysis, and varied from 120 to 127 m2/g, suggesting no significant influence of yttrium addition on this parameter (Table 1). Total pore volume also remained stable after modification with yttrium. However, pore diameters slightly decreased as compared to HTNi catalyst. Fig. 1 shows IV type isotherms for the calcined materials, which are characteristic for mesoporous structure. [40] The obtained hysteresis loop indicates the slit shaped pores with nonuniform size and shape. The adsorbed amounts decreased with the increasing loading of yttrium, which may possibly be related with observed decrease in pore size (Fig. 2).

Fig. 1 N$_2$ adsorption/desorption isotherms and pore distribution for HTNi, HTNi-Y0.2 and HTNi-Y0.4 catalysts.
Fig. 2A presents XRD patterns of the prepared catalysts. For the calcined samples reflections of Ni-Mg-Al mixed oxides (ICOD 00-045-0946) (20 ca. 36.7°, 43°, 62.5°) are observed, which are characteristic for layered double-hydroxides after thermal treatment at 550 °C [11,41,42]. The reduction at 900 °C resulted in the formation of segregate phase of metallic nickel (ICOD 01-087-0712) as evidenced by reflections at 20 ca. 44.5°, 52°, 76.5° corresponding to crystal planes of (111), (200), (220), respectively (Fig. 2B) [3,31,41]. No separate phase for yttrium was registered in XRD patterns, probably due to small amounts of this metal [3]. Moreover, according to Li et al.[43] and Taherian et al.[32] promotion with Y(NO₃)₃·6H₂O resulted in Y₂O₃ phase formation which is not further unreducible in our tested conditions. The Ni° crystallite sizes calculated from the width of the reflection at 2θ of ca. 53°, are shown in Table 2. The yttrium addition resulted in a decrease of nickel crystallites from ca. 8 nm for the unpromoted HTNi to ca. 5-6 nm for HTNi-Y (Table 2).

Fig. 2 XRD patterns of a) catalysts after calcination at 550 °C for 5 h, b) catalysts reduced in 5% H₂/Ar mixture at 900 °C for 1 h (GHSV= 20,000 h⁻¹).
Table 2 Nickel crystallite size and metal dispersion for the reduced catalyst, and reducibility and basic properties of the studied catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>XRD</th>
<th>H₂ chemisorption</th>
<th>TPR-H₂</th>
<th>TPD-CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni₀</td>
<td>Ni₀</td>
<td>Dispersion Ni</td>
<td>H₂ consumption</td>
</tr>
<tr>
<td></td>
<td>crystallite size</td>
<td>crystallite size</td>
<td>[%]</td>
<td>[mmol H₂/g]</td>
</tr>
<tr>
<td>HTNi</td>
<td>8</td>
<td>11</td>
<td>8.9</td>
<td>0.209</td>
</tr>
<tr>
<td>HTNi-Y0.2</td>
<td>6</td>
<td>10</td>
<td>9.5</td>
<td>0.143</td>
</tr>
<tr>
<td>HTNi-Y0.4</td>
<td>5</td>
<td>9</td>
<td>10.7</td>
<td>0.151</td>
</tr>
</tbody>
</table>

1) Based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2θ ca. 53°.
2) From H₂ chemisorption assuming spherical crystallites of uniform size, calculated from equation (5).

The reducibility of the catalysts was studied by TPR-H₂. Hydrogen consumption for the reduced samples, presented in Table 2, decreased after yttrium addition. The highest consumption of 0.209 mmol H₂/g was observed for non-modified HTNi catalyst. After yttrium promotion the hydrogen uptake decreased to 0.143 mmol H₂/gcat and 0.151 mmol H₂/g for HTNi-Y0.2 and HTNi-Y0.4 catalysts, respectively. The decrease of reducibility has been reported before for the materials modified with higher yttrium contents of 0.6 and 1.5 wt% [3]. Fig. 3 presents TPR-H₂ profiles for studied LDHs. Two wide peaks with maxima at 386 and 829 ºC are registered for HTNi catalyst. They may be ascribed to NiO weakly-bonded to the surface of the material and nickel oxides present in the Ni-Mg-Al mixed oxides originating from layered double hydroxides, respectively [44–47]. According to Hu et al. [48] only a part of nickel can be reduced, i.e. Ni–O–Ni species, and it is not possible to reduce Ni–O–Mg. After the yttrium addition a rightward shift of the maximum temperature peak (Tₘₐₓ) was reported, which indicates stronger interaction of Ni species with the support as compared to HTNi catalyst. For HTNi-Y0.4 catalyst, the shift was less evident, as revealed in Tₘₐₓ (866 ºC).
Similar observations were reported by Huang et al. [21] for NiO-Al₂O₃ materials modified with Y₂O₃, and Y/HTNi catalysts with higher loading of yttrium [3].

![Fig. 3 TPR-H₂ profiles recorded over HTNi, HTNi-Y0.2 and HTNi-Y0.4.](image)

Table 2 presents Ni dispersion calculated from H₂ chemisorption. There is a small increase of metallic nickel after the modification with yttrium, i.e. from for HTNi to 9.5 and 10.7 % for HTNi-Y0.2 and HTNi-Y0.4, respectively. The enhanced dispersion has been observed before in other Y modified catalysts, and it had beneficial effect on catalytic performance in DRM. Better dispersed nickel particles make them more accessible for the reaction with methane in dry reforming of methane process. The improved dispersion is linked with smaller crystal size, as confirmed by calculation assuming spherical crystallites of uniform size (Table 2). The obtained values agree well with the XRD estimates, i.e. in both characterization techniques a decrease of Ni crystallites was observed after Y promotion. A number of studies have shown that H₂ or CO chemisorption results are in line with values obtained from XRD [49–52]. This result affects the catalytic behavior of the studied materials, as will be described in the catalytic tests section.
Basic properties were investigated by TPD-CO$_2$. The results of the basicity measurements are shown in Fig. 4. Weak, medium and strong basic sites could be distinguished, respectively, with maximum peaks at the temperature range of (i) 100-150 °C (Brønsted basic sides with surface OH$^-$), (ii) ca. 190 °C (medium-strength Lewis acid-base pairings) and (iii) ca. 280 °C (strong Lewis basic sites arising from low-coordination surface O$^{2-}$) [3,33,45,46,53]. Table 2 presents the calculated number of basic sites, with the highest value for HTNi catalyst. A similar value of total basicity was reported by Dębek et al. [17] and assumed as an optimal for DRM. For Y-doped catalysts this parameter decreased, being the lowest for HTNi-Y0.2. A decrease of total basicity caused by Zr, Ce or Y promotion has been reported elsewhere [3,42,54,55]. Although, the basicity was lower it did not negatively affect DRM performance of the promoted catalysts. Indeed, the modification with Zr, Ce or Y resulted in better stability and/or activity.

3.2. Catalytic tests of dry reforming of methane

A first series of experiments was performed while keeping the catalysts at certain temperatures, starting from 850 to 600 °C. Figs. 5A-C present the CH$_4$ and CO$_2$ conversion and the H$_2$/CO ratio for HTNi-Y catalysts. One can find that yttrium promoted the activity of Ni-
containing layered double hydroxides. The unmodified HTNi showed the lowest values, both for CH$_4$ and CO$_2$ conversion (Figs. 5A, 5B), as well as H$_2$/CO molar ratio (Fig. 5C). The addition of Y significantly improved the catalytic performance. In the temperature range of 600-700 ºC the samples promoted with 0.2 and 0.4 wt.% of Y presented conversion of CO$_2$ higher than the one reported for the unmodified catalyst. However, an opposite effect was registered at temperatures higher than 700 ºC, in which the Y promotion led to higher CH$_4$ conversion. Considering the H$_2$/CO ratio, it was always below unity at all temperatures. The values were much higher for the Y-promoted catalysts at least in the 600-800 ºC temperature range, reaching 0.98 at temperature above 750 ºC.

Table 3. Side reactions occurring during dry reforming of methane.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
<th>ΔH° [kJ/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse water gas shift</td>
<td>CO$_2$ + H$_2$ = H$_2$O + CO</td>
<td>41</td>
</tr>
<tr>
<td>Hydrogenation of CO$_2$</td>
<td>CO$_2$ + 2H$_2$ = C(s) + 2H$_2$O</td>
<td>-90</td>
</tr>
<tr>
<td>Boudouard Reaction</td>
<td>2 CO = C(s) + CO$_2$</td>
<td>-172</td>
</tr>
<tr>
<td>Direct methane decomposition</td>
<td>CH$_4$ = C(s) + 2H$_2$</td>
<td>75</td>
</tr>
<tr>
<td>Steam on C</td>
<td>C(s) + H$_2$O = CO + H$_2$</td>
<td>131</td>
</tr>
</tbody>
</table>

The positive effect of the Y promotion was observed before for Ni and Y-modified Al$_2$O$_3$ [28], Y-doped Ni/SBA-15 [29,43], (Ni-Y)/KIT-6 [31], NiO-Y$_2$O$_3$-Al$_2$O$_3$ [21], Y-doped Ce$_{0.75}$Zr$_{0.25}$O$_2$ [30], and more recently, for Ni-layered double hydroxides based catalysts with higher loadings of yttrium [3]. The enhanced conversion observed for Y promoted catalysts can be directly linked with a smaller particle size of Ni$^\circ$ observed both by XRD and H$_2$ chemisorption. It is in good agreement with the appropriate values registered in this work (cp. Table 2). CO$_2$ conversion, which was reported to be slightly higher than that of CH$_4$, and the values of H$_2$/CO ratio lower than 1 at certain temperatures may be ascribed to the side reaction occurrence, i.e. reverse water gas-shift (RWGS) (Table 3) [21]. Moreover, when more CH$_4$ was
converted compared to CO$_2$, the other side reactions such as direct methane decomposition and Boudouard reaction could take place [45].

Fig. 5 Catalytic DRM tests as a function of temperature, steady-state measurements after 30 min at each temperature (GHSV=20,000 h$^{-1}$, CH$_4$/CO$_2$/Ar=1/1/8, total flow rate 100 cm3/min$^{-1}$).

A second series of experiments was performed at 700 °C for 5 hours. Only HTNi-Y0.4 and HTNi were tested (after the reduction at 900 °C). The results are presented in Fig. 6. The catalytic activity of Y promoted catalyst was higher than that of HTNi. In the isothermal test,
the difference in conversion is even more marked for both CH₄ and CO₂, with CH₄ conversion of 84% for Y doped catalyst versus only 72% for the non-modified material, and CO₂ conversion of 87% for Y the doped catalyst versus only 75% for the non-doped material. In the isothermal conditions, the CO₂ conversion is still higher than CH₄ conversion, which may suggest the occurrence of RWGS (Table 3). The H₂/CO molar ratio, which is higher for Y promoted materials, is always lower than unity. The results agree with those obtained as a function of temperature (Figs. 5A, 5B, 5C). In the isothermal conditions, we clearly see that CH₄ conversion is stable after 5 h for HTNi-Y0.4 catalyst, while a slight deactivation is observed for the non-promoted material.

Based on the literature [2,10], the DRM mechanism is driven by 2 main reactions (i) decomposition of methane on nickel active site and (ii) dissociative adsorption of CO₂ on the metal surface and metal-surface interface. Promotion with yttrium resulted in the small Ni crystallite size, known to hinder direct decomposition of methane (DMD). Dissociative adsorption of CO₂ highly depends on basic properties of the catalysts. High number of strong basic sites leads to strong CO₂ adsorption which cannot further react with CH₄ molecule, and, and this, as a consequence, leads to the DMD [45]. Appropriate basicity provides good catalytic performance in dry reforming of methane, together with the suppression of carbon forming reactions. Moreover, a number of studies showed a positive effect of Y₂O₃ promotion on the rate of carbon removal due to oxygen vacancies, which induced oxygen radicals from CO₂ to react with coke [32,38,43,56,57]. Thus, a possible removal of carbon could have taken place (to some extend) according to the reverse Boudouard reaction (Table 3) [43].

In order to better understand the catalysts behavior in terms of side reactions and avoid any deactivation, the direct methane decomposition (DMD) was carried out over HTNi and HTNi-Y0.4 catalysts. The results are presented in Fig. 7, where DMD is more dominant for HTNi. During the CH₄ decomposition experiment, stable methane conversion was registered for HTNi
catalyst, whereas HTNi-Y0.4 showed decreasing values after first 30 min, pointing to an evolution of surface properties resulting in the suppression of this reaction. Small Ni crystallite size calculated for the Y-promoted sample could have contributed to this phenomenon, similar as reported in the study of Dębek et al. [41]. It illustrates that the Y promotion inhibited the direct methane decomposition, and thus the C formation.

![Graph](image)

Fig. 7 Catalytic tests of direct methane decomposition as a function of temperature (GHSV=20,000 h⁻¹, CH₄/Ar=2/8, total flow rate 100 cm³/min).

The carbon suppression has been already reported for Y-promoted materials in other studies [31,43].

3.3 Catalysts characterization after isothermal DRM tests

As reported in Table 4, the specific surface of the unpromoted spent catalyst remained constant (125 compared to 120 m²/g), whereas the S_BET decreased significantly for the Y promoted spent catalyst (95 vs. 120 m²/g). This decrease may be explained by the carbon deposition occurring upon the DRM. No changes in pore volumes and diameters of pores were registered.
Table 4. Textural and structural properties of the spent catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Nitrogen sorption</th>
<th>XRD</th>
<th>Raman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_{BET} 1) [m2/g]</td>
<td>V_p 2) [cm3/g]</td>
<td>d_p 3) [nm]</td>
</tr>
<tr>
<td>HTNi</td>
<td>125</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>HTNi-Y0.4</td>
<td>108</td>
<td>0.3</td>
<td>10</td>
</tr>
</tbody>
</table>

1) specific surface areas calculated from the BET equation
2) mesopore volumes derived from the BJH desorption isotherm
3) pore size distribution obtained from the BJH desorption isotherm
4) based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2θ ca. 53°

XRD diffractograms have been recorded over the spent catalysts in order to verify the Ni0 crystallite size, the possible changes in the support after the catalytic process, and the carbon formation. The results are presented in Fig. 8, where reflections typical for metallic nickel (ICOD 01-087-0712) and periclase-like mixed oxides can be found (ICOD 00-045-0946) [31, 45, 46, 58], similarly as for the reduced samples (cp. Fig. 3). Crystallite size of Ni0 did not change significantly after the tests. For both catalysts the values are close to the ones recorded for the reduced samples, i.e. 8 and 5 nm versus 7 and 6 nm for HT and HTNi-Y0.4, respectively. This suggests the lack of sintering of the nickel particles upon DRM and then confirm the stability of Y doped catalyst during DRM in stability runs. Additionally, reflections of graphite (ICOD 01-075-2078) at 2θ=26.6 ° were registered for both HTNi and HTNi-Y0.4 (Fig. 8), which shows that the studied materials have suffered a deactivation during time on stream experiments. For the HTNi catalyst additional reflections of Mg$_6$Al$_2$(OH)$_{16}$CO$_3$·4H$_2$O (ICOD 00-014-0191) have been registered at 2θ=11.5 ° and 22.9 °. This phase is typical for LDHs after synthesis and before calcination at around 500 °C [6, 41, 53]. The presence of the hydroxides (H) has been reported before for Ni-based LDHs after DRM tests, and indicates a partial
regeneration of the support in the presence of water. The latter could have been produced during side reactions, such as RWGS or hydrogenation during DRM as reported elsewhere [33,41].

TGA-MS data are presented in Fig. 9, where mass loss of 27% and 32% was registered for HTNi and HTNi-Y0.4, respectively. Also, a small weight increase may be observed at 300 °C for both spent catalysts. According to Tsyganok et al. [59], this increase arises from Ni° oxidation to NiO. Moreover, the registered MS data revealed that the weight decrease was linked to CO₂ formation, which occurs due to the oxidation of carbonaceous species, formed upon dry reforming of methane [3,59,60]. The peaks of CO₂ were found at ca. 600 °C, which mainly suggests the formation of carbon filaments [11]. Their presence was considerably higher for HTNi-Y0.4 as compared to Y-free catalyst. The formation of carbon filaments cannot be, however, linked directly with the CH₄ decomposition because of the limitation of this reaction for HTNi-Y0.4 (cp. Fig. 7).
Raman spectroscopy was used to examine the properties of carbonaceous species on the spent HTNi and HTNi-Y0.4 catalysts. For both materials, four bands were registered at the following Raman shift: 1324 cm$^{-1}$ (D band), 1573 cm$^{-1}$ (G band), 1600 cm$^{-1}$ (D’ band) and 2647 cm$^{-1}$ (G’ band) (Fig. 10). The D and D’ bands arise from a disorder present in graphite structure and they have been ascribed to the non-zone centered phonons associated to the disorder-induced vibration of C–C bond. The G and G’ bands refer to the stretching vibration in the
aromatic layers of graphite and they are only present in perfect crystalline graphite [61]. Table 4 presents the calculated ratios of I_D/I_G, which describe the graphitization degree of carbon and the disorder in its structure. The Y-modified material showed lower I_D/I_G ratio, i.e. 1.65 versus 1.83 for HTNi. One can conclude that the C deposited on Y promoted materials is more graphitic and thus more difficult to remove upon DRM [62]. This shows that low loadings of yttrium influenced the DRM mechanism in favoring side reactions, such as for example CO_2 hydrogenation. Indeed, it was observed in Figs. 6B and 6C, a slight increase in CO_2 conversion only for HTNi-Y0.4 catalyst with a simultaneous decrease of the H_2/CO ratio, showing a possible consumption of H_2 during the DRM only for the promoted catalysts.

4. Conclusions

Dry reforming of methane was studied over Ni-based layered double hydroxides precursors modified with low loadings of yttrium, i.e. 0.2 and 0.4 wt%. The catalysts were prepared by the co-precipitation method in the presence of NaOH and Na_2CO_3. In the isothermal test at 700 °C, the promoted HTNi-Y0.4 catalyst was found to be the most active with a CH_4 conversion of ca. 84%. A slight increase in CO_2 conversion (increasing from 86.8 % to 88.4 % in 5 h time on stream test) has been also registered, together with a decrease in H_2/CO ratio. This shows a possible consumption of H_2 during the overall DRM for promoted catalyst, whereas a stable H_2/CO ratio was found for HTNi catalyst. Thus, this carbon formation could be due to CO_2 hydrogenation (CO_2 + 2H_2 = C(s) + 2H_2O) leading to a decrease in H_2 in the gas phase and a decrease of H_2/CO ratio during DRM.

Graphitic type of carbon was recorded in the spent catalysts, which led to a decrease of the specific surface, and a greater mass loss during TGA-MS test. In the latter, CO_2 formation was recorded at 600 °C, which suggests filamentous carbon formation. More graphitic carbon was confirmed by Raman for HTNi-Y0.4 sample than for HTNi material. However, a partial
regeneration of support has been observed and revealed as a presence of \(\text{Mg}_6\text{Al}_2(\text{OH})_{16}\text{CO}_3\cdot4\text{H}_2\text{O} \) reflections in XRD patterns only in the unpromoted catalyst (HTNi). This shows that Y promotion leads to a better structural resistance to the side reactions which produce \(\text{H}_2\text{O} \), e.g. reverse-water gas shift or other reaction, such as \(\text{CO}_2 \) hydrogenation.

Acknowledgments

K. Świrk acknowledges the French Embassy in Poland for her grant “BGF Doctorat en cotutelle” between Sorbonne University and AGH University of Science and Technology. InnoEnergy PhD school and AGH (grant 15.11.210.440) are acknowledged for the financial support. This work was carried out within the framework of Erasmus+ traineeship of K. Świrk at NTNU (the KinCat Catalysis Group). T. Grzybek and M. Motak thank AGH grant 11.11.210.373.
References

