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Diamagnetism and the dispersion of the magnetic permeability
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Abstract. It is well known that the usual Kramers–Kronig relations for the relative permeability function
µ(ω) are not compatible with diamagnetism (µ(0) < 1) and a positive imaginary part (Imµ(ω) > 0 for
ω > 0). We demonstrate that a certain physical meaning can be attributed to µ for all frequencies, and
that in the presence of spatial dispersion, µ does not necessarily tend to 1 for high frequencies ω and
fixed wavenumber k. Taking the asymptotic behavior into account, diamagnetism can be compatible with
Kramers–Kronig relations even if the imaginary part of the permeability is positive. We provide several
examples of diamagnetic media and metamaterials for which µ(ω,k) 6→ 1 as ω →∞.
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1 Introduction

With recent advances in metamaterial research, there is a
renewed interest in the properties of the magnetic perme-
ability function. The permeability function extracted by
homogenization methods may show peculiar properties,
such as a negative imaginary part, anomalous dispersion
effects, and diamagnetism [1,2]. This has lead to inves-
tigations on the properties of the magnetic permeability
[1–7].

A related problem is the well known paradox that dia-
magnetism is not compatible with a permeability function
that satisfies the Kramers–Kronig relations and has a pos-
itive imaginary part. Letting µ(ω) be the relative perme-
ability, and considering zero frequency in the Kramers–
Kronig relation, one has

µ(0)− 1 =
2

π

∫ ∞
0

Imµ(ω)dω

ω
. (1)

Apparently, (1) predicts that µ(0) < 1 is not possible
for media with Imµ(ω) > 0. It has been argued that
the Kramers–Kronig relations should be modified [2,8] to
avoid this problem. It has also been argued that the mag-
netic permeability can have a negative imaginary part, at
least for high frequencies [2,6,7,9,10].

In this article we show that Maxwell’s equations and
the fundamental principle of causality do not require the
magnetic relative permeability to approach unity for high
frequencies and fixed wavenumbers (Sec. 2). Causality is
not violated, as the requirement µ → 1 for high frequen-
cies is only necessary under eigenmodal propagation (in
the absence of sources in the medium), where k and ω are
connected by the dispersion relation k =

√
εµω/c. Here ε is

the relative permittivity, c = 1/
√
ε0µ0 is the vacuum light

velocity, and ε0 and µ0 are the vacuum permittivity and
permeability, respectively. We consider the ambiguity in
associating induced currents with the electric polarization
or magnetization, and describe, somewhat artificially, a
simple homogeneous conductor or superconductor as con-
crete examples of media possessing diamagnetism (Sec.
3). We find that their relative permeabilities do not tend
to unity for high frequencies and fixed wavenumbers. Fi-
nally, we evaluate the relative permeability of 1d and 2d
metamaterial examples with conducting inclusions, and
demonstrate analytically and numerically that it does not
tend to unity for high frequencies (Sec. 4).

Our findings do not contradict previous results [2,6,8,
9], but rather imply that diamagnetism is possible even if
Imµ > 0 for all positive frequencies. Here we note that
the definition of µ can be extrapolated to all frequencies,
such that the integrals in the Kramers–Kronig relations
do not have to be truncated. The function µ will certainly
not have its usual interpretation as a local parameter for
all frequencies, but rather be a quantity relating the av-
eraged magnetic moment of the material’s unit cell to the
averaged magnetic field.

For ease of notation we will denote the relative permit-
tivity and permeability by ε and µ, respectively, while the
absolute permittivity and permeability will be expressed
εε0 and µµ0.

2 Electromagnetic parameters

Following the classic treatments [8,11], we consider a pas-
sive and time-shift invariant medium, and formulate elec-
tromagnetism in frequency–wavenumber space. The Amp-
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ere–Maxwell’s law and Faraday’s law can be written

1

µ0
ik×B = −iωε0E + J + Jext, (2a)

ik×E = iωB. (2b)

Here Jext is the external source, and J is the induced cur-
rent density. We consider a single spatial Fourier compo-
nent of the source, i.e., Jext = J̄ext exp(ik·r) with constant
J̄ext. In a homogeneous medium, E and B are the electric
field and magnetic flux density, respectively. In a periodic
metamaterial, the Maxwell equations (2) result from an
averaging of the corresponding microscopic equations [4,
5,7,12]. The macroscopic electric and magnetic fields E
and B are then defined by the so-called fundamental Flo-
quet modes of the microscopic fields e and b, respectively:

E(r) =
eik·r

V

∫
V

e(r′)e−ik·r
′
d3r′, (3a)

B(r) =
eik·r

V

∫
V

b(r′)e−ik·r
′
d3r′, (3b)

where integration is over a unit cell volume V . Similarly,
the macroscopic induced current density is

J(r) =
eik·r

V

∫
V

j(r′)e−ik·r
′
d3r′. (4)

The induced current can be decomposed in several
ways. One option is to decompose it in terms of polar-
ization and magnetization terms,

J = −iωP + ik×M. (5)

In (5) the two terms do not have to be defined from a
multipole expansion; thus there is no loss of generality. Of
course, the term ik×M can only contain transverse parts
of the induced current, so the longitudinal part must be
contained in −iωP.

Assuming a linear medium, permittivity and perme-
ability dyadics ε and µ are defined from

P = ε0(ε− 1)E, (6a)

µ0M = (1− µ−1)B, (6b)

respectively. In general, both ε and µ are dependent on ω
and k, i.e., they are temporally and spatially dispersive.

By introducing auxiliary fields D = ε0E + P = εε0E
and H = B/µ0 −M, we obtain from (2) the Maxwell
equations

ik×H = −iωεε0E + Jext, (7a)

ik×E = iωµµ0H. (7b)

For simplicity, assume µ is a scalar µ, and ε in the form
[8]

ε =

ε‖ 0 0
0 ε⊥ 0
0 0 ε⊥

 , (8)

expressed in an orthogonal basis where the first unit vector
is k/k. By combining the two Maxwell equations (7), we
obtain the solutions

B =
iµµ0k× Jext⊥

k2 − ω2

c2 ε⊥µ
, (9a)

E⊥ =
iωµµ0Jext⊥

k2 − ω2

c2 ε⊥µ
, (9b)

E‖ =
Jext‖

iωε‖ε0
. (9c)

In (9) the source Jext and field E are decomposed into
their components parallel ‖ and perpendicular ⊥ to k.

As ω → ∞ the fields do not feel the presence of the
medium, so the solutions (9) must be the same as if we
set ε and µ equal to unity in the expressions. Considering
(9c) this immediately gives that ε‖ → 1. Also, for fixed k,
(9b) means ε⊥ → 1 (excluding the possibility ε⊥µ → 0).
Remarkably, we do not get any condition for the asymp-
totic behavior of µ. Indeed, for fixed k, the expressions
become independent of µ in the limit ω → ∞. Thus the
relative permeability is not required to approach unity for
high frequencies.

Nevertheless, even though µ does not necessarily ap-
proach unity, the magnetization M vanishes in the limit
ω →∞. This is a result of the fact that according to (9a),
the magnetic field vanishes in this limit.

For eigenmodal propagation, k2 = ε⊥µω
2/c2, the sit-

uation is different. To see this, let a current source plane
be located on the xy-plane in the infinite medium. In the
limit ω → ∞, the dispersion relation must take its vac-
uum form k2 = ω2/c2; thus ε⊥µ → 1. To calculate the
electric field as a function of z, we can inverse Fourier
transform (9b) with respect to k using residue calculus.
Comparing to the corresponding vacuum solution, it can
be shown that µ → 1. This ensures that the generated
waves have the same amplitude and the same phase ve-
locity as if the medium were not present. In other words,
ε→ 1 and µ→ 1 under eigenmodal propagation.

From (5), any transformation P → P′ and M → M′

satisfying

−iωP′ + ik×M′ = −iωP + ik×M (10)

will leave the induced current density J, and therefore also
the fundamental fields E and B, unchanged. This means
that the relative permittivity and permeability are not
uniquely defined by (5)-(6). We can define primed relative
permittivity ε′ and permeability µ′ from P′ and M′, simi-
larly to (6). Substituting the unprimed and primed version
of (6) into (10), and eliminating B with (2b),

(ω2/c2)(ε′ − 1)E− k× (1− µ′−1)k×E

= (ω2/c2)(ε− 1)E− k× (1− µ−1)k×E. (11)

Imagine now that a certain set ε and µ of a medium is
known. Then (11) predicts the existence of another set
of parameters ε′ and µ′, which is equivalent to the first
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set. By considering the components of (11) parallel and
perpendicular to k, we find

ε′‖ = ε‖, (12a)

ε′⊥ +
k2c2

ω2
(1− µ′−1) = ε⊥ +

k2c2

ω2
(1− µ−1), (12b)

respectively. The relation (12) is well known in literature,
although it is usually specialized to the case µ′ = 1. This
case, which is called the Landau–Lifshitz formulation, is
particularly useful in the presence of spatial dispersion,
where there is no set of local (independent of k) param-
eters ε and µ [8,11]. Then it is convenient to specify the
medium properties by a single (but nonlocal) quantity ε′.
For spatially nondispersive media where ε and µ are inde-
pendent of k, it is often more convenient to retain these
two parameters, as they are much simpler to use in prac-
tical situations formulated in the spatial domain. Since
there is not always a set ε and µ such that the parameters
are independent of k, we allow all parameters in (12), ε,
µ, ε′, and µ′, to depend on (ω,k) although not explicitly
specified.

Apparently, a medium described by a given set of pa-
rameters ε and µ is equally well described by any other
set of parameters, ε′ and µ′, that satisfies (12). Physi-
cally this can be understood as follows: Circulating cur-
rents can be described as magnetization, or alternatively
as time-dependent polarization. The choice of parameters
determines how much of the total induced current J is
described by the magnetization vector and how much re-
mains in the polarization. Clearly, only the transversal
(⊥) part of the induced current can be associated with
magnetization; the parallel (‖) part must remain in the
polarization.

In the Landau–Lifshitz formulation, i.e. when the in-
duced current is described solely by the permittivity, we
can prove that for passive media [8],

Im ε′ > 0 for ω > 0. (13)

Using (12b) this means that [6]

Im ε′⊥ = Im ε⊥ −
k2c2

ω2
Imµ−1 > 0. (14)

Thus

Imµ > −Im ε⊥
ω2|µ|2

k2c2
. (15)

In other words, the ambiguity for ε⊥ and µ makes it pos-
sible to define permeabilities or transverse permittivities
with negative imaginary parts, even for passive media, as
long as (15) is satisfied.

3 Homogeneous conductors as diamagnetic
media

Inspired by the split-ring resonator metamaterial [13], we
realize that it is not always obvious which choice of param-
eters that is most “physical”. One may take the view that

a split-ring resonator metamaterial, made of nonmagnetic
constituents, should be described by parameters ε′ 6= 1
and µ′ = 1. This is a perfectly valid and natural choice
[4], given that there is no microscopic magnetization in
the medium. However, metamaterial research has shown
that it is convenient to describe the circulating currents
using a macroscopic magnetization vector. This amounts
to using a set of parameters ε and µ, where µ 6= 1.

As another well known example, we may consider a su-
perconductor. Here there are two extremes [14,15]: Either
the induced current is described explicitly, or the trans-
verse current is described in the form of an effective mag-
netization. In the latter case, it is argued that one has
diamagnetism. Note however, that the latter description
may be somewhat dangerous, as the superconductor, be-
ing an intrinsically spatially nondispersive medium, here
is described by a nonlocal permeability. Also, the trans-
verse current is absorbed into a magnetization vector, so
e.g. in the second London equation the current must be
expressed as ik×M.

We now consider the superconductor example in more
detail. If the induced current is described by the permit-
tivity, the relative permeability is µ′ = 1, and the super-
conductor can be modeled by a two-fluid model in which
the conductivity has two terms. The permittivity is [15]

ε′ = 1− c2

λ2ω2
−

ω2
p

ω2 + iωΓ
(16)

Here the second term describes the supercurrent, λ being
the London penetration depth. The third term describes
the normal current due to the Drude model, with plasma
frequency ωp and a positive parameter Γ . For a (non-
super) conductor, we can set λ =∞.

It is also common to refer to a superconductor as dia-
magnetic. In this alternative picture, circulating currents
in the superconductor is described by a magnetization.
Then ε⊥ = 1, and µ is obtained from

1− µ−1 = − 1

λ2k2
−

ω2
p

c2k2
· ω2

ω2 + iωΓ
(17)

The equivalence with the first set of parameters ε′ and µ′

is seen by substitution into (12).
We observe from (17) that the permeability is nonlo-

cal. The superconductor acts as a perfect diamagnet in
the limit k → 0; however for spatially varying fields the
diamagnetism is not perfect due to the finite London pen-
etration depth λ.

By inspection we find that µ−1 = µ−1(ω,k), as given
by (17), is analytic in the upper half-plane Imω > 0, for
any fixed k. Also note that the relative permeability from
(17) is defined and has meaning even for high frequencies,
as long as the original ε′ has meaning. However, we observe
that µ(ω,k) does not tend to unity as ω →∞, but rather
tends to a real number µ(∞,k) between 0 and 1:

µ−1(∞,k) = 1 +
1

λ2k2
+

ω2
p

c2k2
(18)
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Therefore, from the conventional proof of the Kramers–
Kronig relations [8], µ−1 satisfies a Kramers–Kronig rela-
tion of the type

Reµ−1(ω,k)− µ−1(∞,k) =
2

π
P

∫ ∞
0

Imµ−1(x,k)xdx

x2 − ω2
,

(19)
where P denotes the Cauchy principal value.

It is perhaps surprising that µ(ω,k) does not tend to
unity for high frequencies. Here it is important to remem-
ber that in the presence of sources, ω and k are generally
not connected. For eigenmodal propagation where ω and
k are connected by the dispersion relation, the relative
permeability will indeed tend to unity for high frequen-
cies (see Sec. II). We also recall that despite µ 6→ 1, the
magnetization vector will tend to zero even for a fixed k.

Setting ω = 0 in (19) we see that for our example,
diamagnetism is indeed compatible with causality and
Imµ(ω,k) > 0. The only requirement from (19) is that

µ(0,k) > µ(∞,k). (20)

To compare with previous literature, we now prove
that the polarization–magnetization ambiguity means that
for the same diamagnetic medium, other analytic µ’s can
be defined, that tend to 1 for high frequencies. These func-
tions get negative imaginary parts for some frequencies,
while not violating the passivity requirement [6,9]. Our
findings therefore do not contradict previous results [2,6,
8,9]. To achieve µ→ 1 for ω →∞ and fixed k, we let di-
vision into ε⊥ and µ be frequency-dependent, so that the
medium is described solely by a permittivity for high fre-
quencies. From the parameter ε′⊥ (in the Landau–Lifshitz
formulation where µ′ = 1), we define a new set of param-
eters:

ε⊥ = 1 + (1− α)(ε′⊥ − 1), (21a)

1− µ−1 = α
ω2

k2c2
(ε′⊥ − 1). (21b)

The new set ε⊥ and µ is equivalent to the original set ε′⊥
and µ′ = 1 according to (12). The parameter α is a weight
factor describing the amount of transversal permittivity
placed into µ. It is natural to require 0 ≤ α ≤ 1; however,
in principle, α may be a completely arbitrary complex-
valued function of ω and k. Taking an ideal plasma ε′ =
1− ω2

p/ω
2 as a simple example, we obtain

ε⊥ = 1− (1− α)
ω2
p

ω2
, (22a)

1− µ−1 = −α
ω2
p

k2c2
. (22b)

Now, provided α = α(ω) → 0 for ω → ∞, we will get
the asymptote µ → 1. To describe diamagnetism at low
frequencies, we require that α(0) = 1. We want µ−1 to
be analytic, so α(ω) needs to be analytic. This involves
making it complex-valued. From the Kramers–Kronig re-
lations, or in particular (19) for ω = 0, we know that
the resulting function µ must have a negative imaginary

part somewhere in the spectrum. Clearly, since the new set
ε⊥ and µ is equivalent to the passive original set ε′⊥ and
µ′ = 1, the negative imaginary part does not contradict
passivity, and (15) is satisfied.

4 Metamaterial examples

We will now consider periodic metamaterials made from
nonmagnetic constituents, i.e., dielectrics and conductors.
If the metamaterial inclusions are described by a posi-
tion dependent, microscopic, relative permittivity ε(r), it
is known that ε(r) → 1 as ω → ∞. Therefore, as ω → ∞
the electromagnetic field will tend to the solution we would
have if the metamaterial is replaced by vacuum. With a
source Jext = J̄ext exp(ik · r), where J̄ext ⊥ k, we obtain
from (9) in this limit:

B =
iµ0k× Jext

k2 − ω2

c2

, (23a)

E =
iωµ0Jext

k2 − ω2

c2

. (23b)

Thus, for sufficiently large ω, we can express the micro-
scopic, induced current j = −iω(ε(r)− 1)ε0E as

j =
J̄ext

ω2

c2

k2 − ω2

c2

(ε(r)− 1) exp(ik · r). (24)

As discussed in Sec. 2, the magnetic permeability can
be defined in several ways. A natural alternative in the so-
called Casimir formulation [8,12,16] is to define the mag-
netization from the magnetic moment density:

M =
eik·r

2V

∫
V

r× jd3r, (25)

where we can e.g. choose the origin in the center of the
unit cell. Compared to e.g. [5] we have included an ex-
tra factor eik·r to be consistent with the definition of the
macroscopic fields (3). From (6b) we now have a defini-
tion of a permeability, which we in principle can use for
all frequencies.

We first consider a 2d metamaterial consisting of quad-
ratic unit cells of area a2. In the unit cell, there is a con-
ducting ring of inner and outer radius b1 and b2, respec-
tively, see Fig. 1. In the high-frequency range the relative
permittivity of the conductor is approximated by a plasma
response

ε(ω) = 1−
ω2
p

ω2
. (26)

By calculating the integral (25) under the assumption
ka� 1, and using (6b), we find that in the high-frequency
regime

1− µ−1(∞) = −
πω2

p

8c2
b42 − b41
a2

. (27)

When the ring is seen as a cylinder in 3d, we must interpret
1− µ−1 as the (z, z) element of corresponding tensor. Eq.
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ε(ω)

ε = 1

a

b1

b2

Fig. 1. The metamaterial unit cell consists of a cylinder of
inner radius b1 and outer radius b2. The cylinder has relative
permittivity ε(ω) and is surrounded by vacuum.

(27) shows that the relative permeability tends to a value
between 0 and 1 as ω →∞ while ka is fixed (ka� 1).

As proved in Appendix A, the function µ−1(ω,k) re-
sulting from (6b) with (25) is analytic in the upper half-
plane of complex frequency (Imω > 0), for fixed k. Thus
µ−1 satisfies a Kramers–Kronig relation of the form (19).

We next consider a 1d metamaterial consisting of al-
ternating layers of vacuum and copper (Fig. 2). The mi-
croscopic permittivity of copper is described by a Drude
model:

ε(ω) = 1−
ω2
p

ω2 + iωΓ
, (28)

where ωp = 1.20 · 1016 s−1 and Γ = 5.24 · 1013 s−1 [17].
Making use of boundary conditions and the Bloch prop-
erty of the fields, the microscopic fields can be found by use
of transfer matrices, thereby allowing for straightforward
calculation of the parameter 1−µ−1. Fig. 3 displays a plot
of 1−µ−1 vs. frequency for a = 100 nm and ka = 0.1. Re-
peated resonances are observed, which become narrower
with increasing frequency. Except the resonances, which
will be discussed in more detail below, 1−µ−1 is observed
to approach an asymptote unequal to zero. Similarly to
(27), the asymptote for this 1d structure can be calcu-
lated to be

1− µ−1(∞) = − 1

192

ω2
p

c2
a2 (29)

= −0.084.

This asymptote corresponds well with the dispersion of
1− µ−1 shown in Fig. 3.

There are several resonances, resulting from the peri-
odic structure. At the resonances, we observe that Imµ
changes sign. Clearly, we cannot view ε and µ as local
parameters describing the metamaterial’s response in this
range. Nevertheless, the parameter µ has a certain phys-
ical meaning, being defined from the averaged magnetic
moment of the unit cell ((25) and (6b)). A negative imag-
inary part is a result of a phase shift of the local field in the

cell. The fact that the parameter is well defined and phys-
ical for all frequencies, makes it possible to use the usual
Kramers–Kronig relations without truncation or any other
modifications (Appendix A). We have also computed the
permittivity ε′ in the Landau–Lifshitz formulation (not
shown here). It satisfies Im ε′ > 0 for all frequencies, as
required by passivity (13).

y

x

a/2

ε = 1

a

ε(ω)

a/2

Fig. 2. Unit cell of a layered medium (1d metamaterial).

5 Conclusion

It is well known that diamagnetism is an effect related to
spatial dispersion, although the medium can behave spa-
tially nondispersive for restricted wavenumber spectra. It
turns out that diamagnetism at zero frequency is compati-
ble with Kramers–Kronig relations and a positive Imµ for
all frequencies, as the asymptote of the relative permeabil-
ity for high frequencies and fixed k can be different from
1. We point out that such an asymptote is permitted by
Maxwell’s equations and causality, and provide analytical
and numerical examples of associated diamagnetic media
and metamaterials.

A Analyticity and Kramers–Kronig relations

It is interesting to explore the analytic properties of the
electromagnetic parameters [8,11,18,19]. If we use the La-
ndau–Lifshitz formulation in which the medium is desc-
ribed solely by a permittivity ε′ (and µ′ = 1), it is usu-
ally assumed that ε′ is an analytic function of ω [8,11].
This follows by regarding the electric field as the excita-
tion and the displacement field as the response. However,
as pointed out in [18], such an argument is not compelling
since the electric field includes the response of the medium.

In (9) the fields are expressed from the sources, which
means that it is straightforward to identify the response
functions. Treating the source Jext as the excitation, and
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5 10 15 20

ωa/c

-0.4

-0.2

0

0.2

0.4

Re 1-µ
-1

Im µ
-1

Fig. 3. 1− µ−1 vs. frequency for ka = 0.1. Several resonances
are observed which become narrower with increasing frequency.
At these resonances, Imµ changes sign, and one may think
that the parameter is unphysical. However, although µ does
not retain its usual interpretation as a local parameter, it is
still physical, in the sense that the definition based on averaged
magnetic moment of the unit cell ((25) and (6b)) applies. Given
this definition of µ, it is not surprising that the imaginary part
can be negative; it only means a phase shift of the local field.
The Landau–Lifshitz permittivity (which includes all electric
and magnetic multipoles) is verified to have positive imaginary
part, as required for a passive medium. For large frequencies,
above the plasma frequency ωpa/c = 4.0, we note that 1−µ−1

approaches the asymptote given by (29): 1− µ−1 = −0.086 is
observed for ωa/c = 24. Notice also that 1 − µ−1 approaches
zero as ω → 0.

the electric field as the response, it follows from (9c) that
1/ε′‖(ω,k) is analytic in the upper half-plane Imω > 0 for

fixed k. Moreover, from (9b)

R(ω) ≡ iωµ0

k2 − ω2

c2 ε
′
⊥

(30)

must be analytic in the upper half-plane. Even though
R(ω) is analytic, it is not entirely obvious that ε′⊥ is. Since
R(ω) is analytic there, any zero of R(ω) is of finite order.
We can write

ε′⊥(ω,k) =
R(ω)k2 − iωµ0

R(ω)ω2/c2
, (31)

and thus ε′⊥(ω,k) is analytic except possibly of poles. In
[19] it is proved that ε′⊥(ω,k) does not contain any poles
in the upper half-plane, for a metamaterial made of causal
constituents with analytic permittivities in the upper half-
plane.

We now leave the Landau–Lifshitz formulation and de-
scribe the medium with both ε and µ. Due to the presence
of both functions ε⊥(ω,k) and µ(ω,k) in (9a)-(9b), they
are not necessarily analytic functions separately. For ex-
ample, we may choose to describe the transversal current
by the permeability up to a given frequency, and abruptly
describe it using the permittivity for higher frequencies.

Although a somewhat artificial choice, it demonstrates
that an extra condition is required to establish analyticity
for ε⊥ and µ.

For the permeability resulting from the magnetization
(25), we can prove analyticity for µ−1 as follows. If the
metamaterial is described with a single permittivity tensor
ε′ = ε′(ω,k) (Landau–Lifshitz formulation), the magnetic
flux density is given by

B =
iµ0k× Jext

k2 − ω2

c2 ε
′
⊥
, (32)

analogously to (9a). Substituting (25) and (32) into (6b),
we have

µ0

2V

∫
V

r× j d3r = (1− µ−1)
iµ0k× J̄ext

k2 − ω2

c2 ε
′
⊥
. (33)

Choosing a source with k = kx̂ and J̄ext = J̄extŷ, we find
for the (z, z)-element of (1− µ−1):

1− µ−1 =
1

J̄ext

k2 − ω2

c2 ε
′
⊥

2ikV
ẑ ·

∫
V

r× jd3r. (34)

The source J̄ext can be chosen to be analytic in the up-
per half-plane. It can also be chosen zero-free. The func-
tion ε′⊥ is analytic in the upper half-plane, provided the
metamaterial is made of causal constituents [19]. Clearly
the microscopic, induced current j is analytic in the up-
per half-plane, since it is causally related to the source.
It therefore follows that µ−1 is analytic in the upper half-
plane.

With the analyticity and the asymptotic behavior, Kra-
mers–Kronig relations (19) for µ−1 can finally be stated.

Authors contributions

C. A. D contributed to the idea, calculated the permeabil-
ity function for the metamaterial examples analytically
and numerically, and did the analyticity proof of 1− µ−1
in the appendix. The main ideas were developed by J. S.,
who also wrote the manuscript. Both authors have read
and approved the final manuscript.

References

1. T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Phys.
Rev. E 68, 065602 (2003)

2. M.G. Silveirinha, Phys. Rev. B 83, 165119 (2011)
3. A.L. Efros, Phys. Rev. E 70, 048602 (2004)
4. M.G. Silveirinha, in Metamaterials Handbook: Theory and

phenomena of metamaterials, edited by F. Capolino (CRC
Press, London, 2009), chap. 10
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