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Preface
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contains results from scientific research work carried out in the field of Numerical and
Applied Mathematics. The work was fully funded by the Department of Mathematical
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August 2011. The main place of work has been IMF.
All numerical results presented were carried out using the scientific computing

software MATLAB. Other useful resources exploited include the online database sources
such as MathSciNet, ScienceDirect, Google, BIBSYS among others. All documentation
of the work was done using LaTeX.

Structure of thesis
This thesis consists of an introduction and five papers, arranged in a total of six chapters.
A brief summary of the results in each of the papers is given in Section 1.4 of the
introduction.
All five articles involve analysis, implementations and programming aspects. My

contribution to these articles has been substantial in all respects.
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Chapter 1

Introduction

1.1 Background
The model problems considered in this thesis are linear and nonlinear convection-
diffusion problems with a dominating convection term. These models are challenging and
ubiquitous in applications, an example being the numerical simulation of internal waves
phenomena occurring between the layers of a stratified flow. In Norwegian fjords, for
example, layers of stratified flow with different temperature and salt concentrations occur
due to ice melting and freshwater supply from rivers. Internal waves are caused by tides
and could have a dramatic influence on the ecosystem.
We hereby consider convection-diffusion PDE models, depending on a viscosity

parameter ν, of the type

B
Btupx, tq ` V ¨ ∇upx, tq “ ν∇2upx, tq ` fpxq, (1.1.1)

where x P Ω Ă Rd, t P p0, T s such that u : Ω ˆ p0, T s Ñ R
d , V : Ωˆ p0, T s Ñ R

d, and
upx, 0q “ u0pxq. In the nonlinear case the velocity field V also depends on the unknown u.
The case when the parameter ν tends to zero is particularly interesting and very challenging
from a numerical point of view. In this case the numerical discretizations often lead to the
phenomenon of numerical dispersion. In the 4th and 6th chapters we adapt and apply the
methods to the Navier-Stokes equations.
In this work, a new class of time integration methods which we believe has a large

potential for convection-dominated problems has been studied. These methods, earlier
presented in [6], are particular in that while the diffusion part is integrated by an implicit
scheme, the flow of the linearized convection term is computed accurately. For this reason
we call them exponential integrators. The class of time integration methods we present
and study in this thesis are designed to attain good performance in convection-dominated
problems. The accurate approximation of pure convection flows appears as a building
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Chapter 1. Introduction

block for these methods. The methods are obtained by composition of exact convection
flows and the implicit time integration of the diffusion, the overall method takes the form
of an implicit-explicit exponential integrator [36, 24].
A simple example is the following transport-diffusion algorithm studied by Pironneau

in [44],
Dũ
Dt

“ 0, ũn`1pxq “ unpxq,
un` 1

2
pxq “ ũnpxq,
un`1 “ un` 1

2
` hν∇2un`1 ` hf,

(1.1.2)

where h is the time step, while un, un`1 denote the numerical solution at time levels tn, tn`h
respectively, and un` 1

2
is an intermediate value. The exact integration of the linear pure

convection problem
Dũ
Dt
:“ B

Bt ũ` un ¨ ∇ũ “ 0, (1.1.3)

arises as a building block in the integration method, and can be achieved by computing
characteristics χpτq,

dχ
dτ

“ unpχpτqq, χptn ` hq “ x,

ũnpxq “ unpχptnqq.
(1.1.4)

The resulting methods are semi-Lagrangian.
The study of higher order time integrators of this type is also motivated by some

observations in recent work by Xiu and Karniadakis [54], and also Giraldo et al. [22]. The
semi-Lagrangian methods have gained significant popularity in recent years, especially
in meteorological and geophysical modeling (see for example [22, 31, 13, 4, 52] and
references therein). Applications to problems of fluid dynamics were pioneered in [44]
among others. Stability and error analysis have been studied in [44] for the first order
method (1.1.2), and more recently by Falcone and Ferretti [19] for linear advection
problems. In this work high order semi-Lagrangian methods have been studied.
Preliminary work illustrating the potential of the methods has been presented by

Celledoni in [5, 6].

1.2 Scope of thesis
The aim of the thesis has been to contribute in finding robust high order time integrators
for convection-dominated problems.
The authors in [54] pointed out that the use of low order semi-implicit methods in

the case of direct numerical simulation of turbulent flows leads to prohibitive time step
restrictions. In fact the time step dictated by the CFL condition can be several orders
of magnitude smaller than the intrinsic temporal scale of the problem predicted by the
theory. On the other hand semi-Lagrangian schemes allow for larger time steps (cf.

2



1.3. Key concepts

[54]) than Eulerian schemes, and show stable behaviour beyond the nominal limits set
by CFL restrictions. The new class of higher order semi-Lagrangian methods studied
here, take advantage of the these properties. In this thesis we develop the methods
originally proposed in [5] for linear convection diffusion problems and obtain methods
of one-step and multi-step type for nonlinear convection diffusion equations. We show
that the methods achieve high temporal order and study their performance in a variety
of convection-dominated model problems. We combine semi-Lagrangian exponential
integrators and discontinuous Galerkin discretizations for advection problems. We finally
study suitable ways to adapt the various schemes to the case of the incompressible Navier-
Stokes equations.

1.3 Key concepts
We shall describe some key concepts applicable to this thesis work.

1.3.1 Semi-Lagrangian methods
A pure linear convection of a scalar field u can be expressed in the conservative form

B
Bt u` ∇ ¨ pVuq “ 0, (1.3.1)

or in the advective or Lagrangian form

B
Bt u` pV ¨ ∇qu “ 0, (1.3.2)

where V “ Vpx, tq is the advection velocity. The two forms are equivalent when V is
divergence-free (i.e. ∇ ¨ V “ 0). Associated to these forms are two classes of semi-
Lagrangian methods popular in the literature: the conservative semi-Lagrangian methods
[55, 10, 14, 17] (associated to the form (1.3.1)), and the traditional semi-Lagrangian
methods [15, 53, 44] (associated to the form (1.3.2)). Common to either approach are
the concepts of tracing characteristics and interpolation or reconstruction. In this work we
have used the latter approach, which is briefly outlined here. Consider the characteristic
paths χptq, satisfying the equation

dχ
dt

“ Vpχptq, tq, χpt0q “ x0.

We note that along the characteristics the equation (1.3.2) takes the total derivative form

D
Dt
upχptq, tq “ 0

so that u is constant along the characteristics and

upχptq, tq “ upχpt0q, t0q.

3



Chapter 1. Introduction

The traditional semi-Lagrangian routine for solving (1.3.2) over a time interval rtn, tn`1s
with step size h :“ tn`1 ´ tn involves two main steps:

Tracing characteristics

We assume that the solution at time tn, namely un, is given. Particles in the flow are
assumed to move along characteristic paths χ “ χptq such that at time tn`1 the particles
have arrived at points x belonging to a fixed computational grid (in the domain of the
solution). But at time tn the particles were at points x̃ “ χptnq that do not necessarily
coincide with the computational grid. The points x̃ are referred to as the departure points
or feet of characteristics. We compute such points by solving the characteristic equation

dχ
dτ

“ Vpχpτq, τq, for τ P ptn, tn`1q, given χptn`1q “ x. (1.3.3)

This equation is solved backward in time using a suitable numerical method for ordinary
differential equations (ODE) to obtain the departure points χptnq.

Interpolation

Generally the departure points are not points on the fixed grid, while we assume that the
numerical solution at time level tn is explicitly known only at grid points. Therefore upx̃q
is recovered using a suitable interpolation procedure and we obtain the solution of (1.3.2)
at time tn`1 as

un`1pxq :“ unpx̃q.
Notice that (1.3.3) is naturally solved backward in time. However, in other

formulations of (1.3.3) the feet of the characteristics are set at grid points χptnq “ x,
and (1.3.3) is solved forward in time to obtain the arrival points χptn`1q. Both approaches
work fine, although they are not the same (see e.g. [17]). In this thesis, the characteristic
equations are solved backward in time.
We emphasize that the success of the semi-Lagrangian approach depends on the

accuracy of the characteristic tracing and interpolation methods used. Runge-Kutta
methods of reasonable accuracy are commonly used for tracing the characteristics. More
options include analytic integration, power series approximations (see for example [52]
and references therein). The choice of interpolation method used is largely influenced by
the kind of computational grid used for the spatial domain or the spatial approximation
space used. In the literature we observe that Lagrange, cubic spline, piecewise cubic
Hermite, piecewise parabolic, monotone interpolations etc [21, 46, 49, 40] are being used.
Standard Lagrange interpolation methods (not suitable for uniform grids) are however
sufficiently accurate for use on a pseudo-spectral or spectral element grid based on Jacobi
polynomials (see e.g. [23, 54]). For an extensive review on various semi-Lagrangian
methods we refer to [50, 3]. Within the finite-element framework the terms characteristic-
Galerkin and Lagrange-Galerkin are commonly used in association with semi-Lagrangian
methods [38, 32, 39, 45, 23].
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1.3. Key concepts

1.3.2 Convection-dominated problems
This terminology is generally used in the literature to refer to a convection-diffusionmodel
with relatively small diffusion parameter. Numerical methods for convection-dominated
problems are very important, as stated in [11]: “Practical problems in which convection
plays an important role arise in applications as diverse as meteorology, weather-
forecasting, oceanography, gas dynamics, turbomachinery, turbulent flows, granular
flows, oil recovery simulation, modeling of shallow waters, transport of contaminant
in porous media, visco- elastic flows, semiconductor device simulation, magneto-
hydrodynamics, and electro-magnetism, among many others. This is why devising robust,
accurate and efficient methods for numerically solving these problems is of considerable
importance.” For a short review on numericalmethods for convection-dominatedproblems
we refer to [18].

1.3.3 Implicit-explicit methods
The semi-discretization (in space) of several convection-diffusion models results in
ordinary differential equations (ODE) in which the vector field contains two components,
say, one linear and one nonlinear. The linear component typically arises from the diffusion,
it might be stiff, and is therefore integrated implicitly. The nonlinear part is easiest to treat
with an explicit scheme, and typically comes from the discretization of the convection.
The overall method is a time integration scheme called implicit-explicit (IMEX). Examples
include IMEX Runge-Kutta methods [1, 30, 42], IMEXmultistep methods [2, 28], linearly
implicit methods (see e.g.[24] and references therein) etc. The time integration methods
presented in this thesis are well-related to the IMEX methods in [1, 30], which are a
subclass of additive partitioned Runge-Kutta methods.

1.3.4 Commutator-free Lie-group exponential integrators
The time integration method used in this work involves a splitting of the nonlinear
convection operator and the linear operator. The convection operator is integrated with
the use of explicit commutator-free Lie-group exponential integrators (CF) presented in
[8], while the diffusion operator is solved implicitly. The framework of the CF methods
is such that the exponentials can be treated as exact flows of linearized convecting vector
fields. These flows can then be computed accurately using semi-Lagrangian methods. We
therefore give a brief description of the CF methods. 1
We consider vector fields F on Rd, to be smooth functions assigning to each point

y P Rd a tangent vector at y. The vector field F can be expressed in coordinates as

Fpyq “
dÿ
i“1
fipyq B

Byi

ˇ̌̌̌
y
,

1This section is similar to section 4.5.3 in the Appendix of paper III, chapter 4.
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Chapter 1. Introduction

to emphasize the fact that Fpyq is a tangent vector [51], where fipyq are the components of
the tangent vector and B

Byi

ˇ̌̌
y
is the canonical basis of the tangent space to Rd at y.

The flow at time t of F through the point y0 is denoted by

yptq “ exppt Fqy0, (1.3.4)

where yptq satisfies the differential equation

9yiptq “ fipyptqq, i “ 1, . . . , d, ypt0q “ y0.

The Lie bracket (or commutator) of two vector fields, F and G is a third vector field
obtained by applying first F to G as a differential operator, and then subtracting the result
of applyingG to F. This leads to

rF,Gs :“
dÿ
j“1

dÿ
i“1

ˆ
fi

Bg j
Byi ´ gi

B f j
Byi

˙ B
By j .

For vector fields F and G such that

f pyq “ A y, gpyq “ B y,

where A and B are d ˆ d matrices, the Lie bracket of the vector fields is the vector field
rF,Gs with components C y, where C “ BA´ AB is the matrix commutator of B and A.
The composition of the flows of two vector fields F andG can be expressed as the flow of
a third vector field defined by means of a series of iterated Lie brackets of the two vector
fields F and G. The set of vector fields on Rd, written XpRdq, forms a Lie algebra. A set
of vector fields tE1, . . . ,Emu, d ď m, is a set of frame vector fields on Rd if

R
d “ spantE1|x , . . . Em|xu, @ x P Rd.

Given any vector field F P XpRdq we have

Fpyq “
mÿ
i“1
fipyqEipyq.

We denote by Fp the vector field

Fppxq “
mÿ
i“1
fippqEipxq

and we say that Fp is the vector field F frozen at the point p.
We define Runge-Kutta commutator-free methods [16, 8] for approximating the flow

(1.3.4) as follows:

6



1.3. Key concepts

Algorithm 1.1. Commutator-free method

p “ yn
for r “ 1 : s do

Yr “ exp
´řr´1

k“1 α
k
rJFk

¯
¨ ¨ ¨ exp

´řr´1
k“1 α

k
r1Fk

¯
p

Fr “ hFYr “ h
řm
i“1 fipYrqEi

end

yn`1 “ exp
`řs

k“1 β
k
JFk

˘ ¨ ¨ ¨ exp `řs
k“1 β

k
1Fk

˘
p

Here n counts the number of time steps and h is the step-size of integration. The integrator
has s stages and parameters αkrl, β

k
l , r, k “ 1, . . . , s and l “ 1, . . . , J. Each new stage value

is obtained as a composition of J exponentials (i.e. exact flows) of linear combinations of
vector fields frozen at the previously computed stage values. In the case Eipyq “ B

Byi the
commutator-free methods reduce to the usual Runge-Kutta methods and the exponentials
are simple translations in Rd. Note that composition of exponentials can be replaced by
truncated series of repeated commutators, but this is not always preferable from the point
of view of computational complexity.
Now suppose the vector field Fpyq represents the semi-discrete nonlinear convection

operator in (1.1.1), for a chosen computational grid, and for the sake of simplicity, suppose
ν “ 0 and f “ 0, then we can apply Algorithm 1.1. The frozen vector fields correspond to
semi-discrete, linear, pure convection operators and each of the exponentials in Algorithm
1.1 can be computed in a semi-Lagrangian fashion. More precisely, assume q is an
obtained intermediate approximation of the solution known on the computational grid,
and so are the stage values Yk, k “ 1, . . . , r ´ 1, then each of the exponentials

exp

˜
r´1ÿ
k“1
αkr,lFk

¸
q, (1.3.5)

is computed following the procedure outlined in section 1.3.1, by first tracing character-
istics solving (1.3.3) backward in time on the interval rtn, tn ` hs, and then interpolating
q at the departure points of the characteristics x̃ “ χptnq. The convecting vector filed V
of (1.3.3) corresponding to such exponential is the linear combination of the stage values
with coefficients αkr,l, and its evaluations in the numerical integration of (1.3.3) require
interpolation.

7
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1.3.5 Krylov subspace methods and matrix exponentials
When the vector field Fpyq represents a semi-discrete convection operator, the flow (1.3.4)
or (1.3.5) could also be straightforwardly computed as the product of a matrix exponential
and a vector. Efficient numerical methods for computing such products are the Krylov
projection methods [9, 26, 48, 37, 33]. We explore this option in the first paper, section
2.3.1, and in the third paper, section 4.3.3. In general the semi-Lagrangian approach was
shown to perform better than the Krylov methods in the solution of convection-dominated
convection-diffusion problems. Thus the semi-Lagrangian approach has been the method
of choice throughout this thesis. Another option is, for example, the accurate solution of
pure convection flows using an order 4 Runge-Kutta integration method. This choice was
advocated by Maday et al. [34].

1.3.6 Notations
Abbreviations such as RK, IMEX, CF, DIRK, SL etc have meanings as summarized in
Table 1.1.
Unless otherwise specified, we denote by h the time step Δt of an integration method.

Since the methods presented and analyzed are typically methods for the time integration,
the order of accuracy when used without specifying would refer to the temporal order of
convergence. The temporal domain 0 ă t ă T is uniformly discretized into subdomains
t0 :“ 0 ă t1 ă . . . ă tn ă . . . ă tN “: T, with tn`1 ´ tn “ h for all n “ 0, . . . ,N ´ 1.We
have used boldface letters for d-dimensional field variables (where d “ 2 or 3), thereby
distinguishing them from corresponding scalar field variables. However, this rule is not
followed for vector fields of arbitrary dimension. All matrices are written with uppercase
letters.

Table 1.1: Some important abbreviations

Abbreviation Meaning

RK Runge-Kutta
SL Semi-Lagrangian
IMEX Implicit-Explicit
DIRK Diagonally implicit Runge-Kutta
CF Commutator-free exponential integrators
PDE Partial differential equations
ODE Ordinary differential equations
DAE Differential-algebraic equations

8
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1.4 Summary of results

Paper I: Semi-Lagrangian Runge-Kutta exponential integrators for
convection-dominated problems

Elena Celledoni and Bawfeh Kingsley Kometa
Published in Journal of Scientific Computing (2009)

Methods for convection-dominated convection-diffusion PDEs are derived. Numerical
treatment of the flows of the convection vector fields via semi-Lagrangian methods are
explained and the advantage over Eulerian methods are demonstrated numerically. Order
conditions for methods of orders 1 to 3 are also presented. Examples for the methods
are given. These examples are constructed out of additive IMEX partitioned RK methods
with DIRK parts. The related coefficients of the CF methods [8] are constructed out of the
explicit part of the IMEX RK. The convection term is treated with the CF methods while
the linear/diffusion term is treated with the DIRK methods. The overall method is termed
DIRK-CF. Using the viscous Burgers’ and KdV equations various numerical experiments
are carried out to demonstrate

• the advantage of the DIRK-CF over the IMEX methods, and

• the advantage of the SL over Krylov implementations of the DIRK-CF methods (for
convection-dominated problems)

over a range of viscosity parameters while keeping the spatial accuracy fixed. The
spatial discretization used is the centered-differences for both the convection and diffu-
sion/dispersion operators. Both cubic spline and piecewise cubic Hermite interpolations
are employed for the SL methods. The result shows that the SL implementations of
the DIRK-CF outperforms the Eulerian methods, at smaller viscosity regimes. It is also
observed that the choice of the interpolationmethod plays a crucial role in the performance
of the SL methods.

Paper II: Order conditions for Runge-Kutta exponential integrators
for convection-dominated problems

Elena Celledoni and Bawfeh Kingsley Kometa
Preprint series: Numerics, No.4, IMF, NTNU (2009)

In this paper the order conditions for the class of methods presented in Paper I are studied.
In paper I it was shown that for methods of order 1 to 3, the order conditions are a subset
of order conditions for the CF methods and the parent partitioned RK method from which
they are derived. However, we show that for methods of order 4 in this class, there exist
extra coupling conditions. Part of the calculations done here had been given in paper I.
A new method is then constructed out of the fourth order IMEX method of Kennedy and

9
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Carpenter [30], by enforcing the conditions of order four for the CF methods [41], and
the obtained extra coupling conditions. Using the viscous Burgers’ equation, we verify
numerically that the method achieves order 4.

Paper III: Semi-Lagrangian multistep exponential integrators for
index 2 differential-algebraic systems

Elena Celledoni and Bawfeh Kingsley Kometa
Published in Journal of Computational Physics (2011)

IMEX multistep methods based on BDF schemes have been developed and applied for the
time discretization of convection-diffusion PDE problems such as the Burgers’ equations
(see for example [2]) as well as the incompressible Navier-Stokes equations (see [35, 29,
27, 43, 54, 20]).
In this paper we propose a new class of exponential integrators for semi-implicit

index 2 DAEs based on the backward differentiation formula (BDF). We name these
methods BDF-CF for short. They have about the same implementation ease as the DIRK-
CF methods introduced in Paper I, and as such they can be regarded as their multistep
counterpart. Their main advantage compared to the DIRK-CF is that they can achieve
order of convergence higher than 2, when applied to the DAEs both in the algebraic and
differential variables.
Themethods are a subclass of the IMEXmultistep methods and they are closely related

to the SBDF methods presented and studied in [2, 28]. Compared to these methods the
BDF-CF methods can be used without modifications in a semi-Lagrangian approach to
convection-diffusion problems, whereby the exponentials must be realized as flows of pure
convection problems.

Paper IV: On discontinuous Galerkin methods and commutator-free
exponential integrators for advection problems

Bawfeh Kingsley Kometa
Submitted to Proceedings of the ICNAAM conference, 2011

In this paper we study the relations between CF methods and the semi-Lagrangian
discontinuous Galerkin methods (SLDG) presented in [47]. We propose an approach to
improve spatial accuracy and to obtain higher temporal-order in the context of SLDG
methods. Preliminary numerical tests are presented for the case of linear advection in
1D and 2D. Comparisons are made with the RKDG methods of Cockburn and Shu [12]
demonstrating the good performance of the methods at high Courant numbers.
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Paper V: Semi-Lagrangian exponential integrators for the incompress-
ible Navier-Stokes equations

Elena Celledoni, Bawfeh Kingsley Kometa and Olivier Verdier
Preprint series: Numerics, No.7, IMF, NTNU (2011)

Direct applications of high order DIRK-CF methods as presented in [7] to the
incompressible Navier- Stokes equations were found to yield a loss in order of
convergence. The DIRK-CF methods are exponential integrators arising from the IMEX
Runge-Kutta techniques proposed in [1], and are semi-Lagrangian when applied to
convection diffusion equations. As discussed in [25], inappropriate implementation of
projection methods for incompressible flows can lead to a loss in the order of convergence.
In this paper we recover the full order of the IMEX methods using projections unto the
space of divergence-free vector fields and we discuss the difficulties encountered in using
similar techniques for the semi-Lagrangian DIRK-CF methods. We finally assess the
performance of the semi-Lagrangian DIRK-CF methods for the Navier-Stokes equations
in convection-dominated problems.
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[50] A. Staniforth and J. Côté, semi-Lagrangian integration schemes for atmospheric
models, Monthly Weather Review 119 (1991), 2206–2223.

[51] L. W. Tu, An introduction to manifolds, second ed., Universitext, Springer, New
York, 2011. MR 2723362 (2011g:58001)

[52] R. A. Walters, E.M. Lane, and R.F. Henry, semi-Lagrangian methods for a finite
element coastal ocean model, Ocean Modelling 19 (2007), no. 3-4, 112–124.

[53] A. Wiin-Nielsen, On the application of trajectory methods in numerical forecasting,
Tellus 11 (1959), no. 2, 180–196.

[54] D. Xiu and G. E. Karniadakis, A semi-Lagrangian high-order method for Navier-
Stokes equations, J. Comput. Phys. 172 (2001), no. 2, 658–684. MR 1857617
(2002g:76077)

[55] M. Zerroukat, N. Wood, and A. Staniforth, SLICE: A semi-Lagrangian inherently
conserving and efficient scheme for transport problems, Quarterly Journal of the
Royal Meteorological Society 128 (2002), no. 586, 2801–2820.

15





Paper I

Semi-Lagrangian Runge-Kutta exponential
integrators for convection-dominated problems

Elena Celledoni and Bawfeh Kingsley Kometa

Published in Journal of Scientific Computing, Vol. 41 (2009),
pp.139–164





Chapter 2

Semi-Lagrangian Runge-Kutta
exponential integrators for
convection-dominated problems

Abstract. In this paper we consider the case of nonlinear convection-diffusion
problems with a dominating convection term and we propose exponential
integrators based on the composition of exact pure convection flows. These
methods can be applied to the numerical integration of the considered PDEs
in a semi-Lagrangian fashion. Semi-Lagrangian methods perform well on
convection-dominated problems [Pironneau in Numer. Math. 38:309-332;
Hockney and Eastwood in Computer simulations using particles. McGraw-Hill,
New York, 1982; Rees and Morton in SIAM J. Sci. Stat. Comput. 12(3):547-
572, 1991; Baines in Moving finite elements. Monographs on numerical
analysis. Clarendon Press, Oxford, 1994].
In these methods linear convective terms can be integrated exactly by first
computing the characteristics corresponding to the grid points of the adopted
discretization, and then producing the numerical approximation via an
interpolation procedure.

Key words Additive Runge–Kutta methods, commutator-free methods,
convection-diffusion equations, semi-Lagrangian methods

2.1 Introduction
The subject of this work is nonlinear convection-diffusion problems with a dominating
convection term:

B
Bt upx, tq ` Vpuqpx, tq ¨ ∇upx, tq “ ν∇2u` f pxq, (2.1.1)
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with x P Ω Ă R
d, V : Rd ˆ r0, T s Ñ R

d is a given vector field depending on u :
R
d ˆ r0, T s Ñ R, and upx, 0q “ u0pxq.
As an example one could consider the Burgers’ equation in one space dimension where

V is a scalar function coinciding with u. The unknown u becomes vector valued u :
R
d ˆ r0, T s Ñ Rd and V “ u in the Burgers’ equations in two space dimensions.
Another example arises in a popular model for the simulation of internal waves

occurring between layers of stratified flow. This model consists of the Navier-Stokes
equations coupled with a convection diffusion problem like (2.1.1) modelling transport of
temperature or of salt concentration in the fluid. In this case V is the velocity field solution
of the Navier-Stokes equations. This model is called Boussinesq approximation of the
Navier-Stokes equations [21]. In order to simulate properly the transport phenomena and
the waves it is important to achieve the right balance between convection and diffusion,
tuning appropriately ν over repeated numerical experiments.
The case when the parameter ν is very small is particularly interesting and very

challenging from the numerical point of view. In the Navier-Stokes equations (which are
themselves a suitable generalization of (2.1.1)) this corresponds to the presence of high
Reynolds numbers, as for example in the simulation of turbulent flows.
The numerical methods presented in this article are described for the sake of simplicity,

but without lack of generality, for the test problem (2.1.1). If we semidiscretize (2.1.1) in
space with a finite element or finite difference method we obtain a system of ordinary
differential equations of the type

yt ´Cpyqy “ Ay` f , yp0q “ y0. (2.1.2)

Here C is the discretized convection operator, A corresponds to the linear diffusion term,
often negative definite.
A typical approach for solving numerically the semidiscretized equations is to treat

convection and diffusion separately, the diffusion (as it might be stiff) with an implicit
approach and the convection with an explicit integrator possibly of higher order, see for
example [4, 2, 1, 15]. We will refer to these methods as IMEX methods. This approach
has a big advantage, as most of the spatial discretizations of the diffusion operator give
rise to matrices which are symmetric and negative definite, and implicit integration of the
diffusion would require the solution of only symmetric positive definite linear algebraic
systems.
When ν is small enough the diffusion term could in principle be treated explicitly as the

CFL condition imposes the use of small time step-sizes anyway1. In [22] the authors point
out that the use of low order semi-implicit methods in the direct numerical simulation of
turbulent flows leads to prohibitive time step restrictions. In fact the time-step dictated
by the CFL condition can be of several orders of magnitude smaller than the intrinsic
temporal scale of the problem predicted by the theory. The CFL condition restrictions can

1However in this case the iterative solution of the linear systems arising in the IMEX methods would also
require just few iterations
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be alleviated by the use of semi-Lagrangian schemes. In this case implicit integration for
the diffusion term is usually adopted.
We present a new class of integration methods for convection-diffusion problems.

These methods are exponential integrators and their peculiarity is that they allow for the
computation of exponentials of the linearized convection term of (2.1.2).
A simple example is the following first order integrator for (2.1.2),

yn`1 “ expphCpynqqyn ` hAyn`1 ` h f . (2.1.3)

The goal here is to present and analyse higher order methods which share some of
the features of (2.1.3). The methods in general need not be implicit in the diffusion
part, but all the examples given in section 2.2 have this feature. The main reason for
developing this type of methods is that as it turns out they can be applied to the numerical
integration of the considered PDEs in a semi-Lagrangian fashion. In semi-Lagrangian
methods [19, 14, 20, 3], linear convective terms are integrated exactly by first computing
the characteristics corresponding to the gridponts of the adopted discretization, and then
producing the numerical approximation via an interpolation procedure.
The exponential exppγhCpwqq ¨ g (where w and g are fixed vectors in RN , and γ is a

parameter of the integration method) is the solution of the semidiscretized equation

v1 “ Cpwqv, vp0q “ g, in r0, γhs, (2.1.4)

which corresponds to the pure convection problem

ϕt ` Ṽ ¨ ∇ϕ “ 0, ϕpxi, 0q “ gi, in r0, γhs ˆΩ, i.e.
Dϕ
Dt “ 0, ϕpxi, 0q “ gi, in r0, γhs ˆΩ,

(2.1.5)

where xi are the nodes of the space discretization, Ṽ is the convecting vector field obtained
interpolating the values Ṽpxiq “ wi, and D¨

Dt is the total derivative. If we apply (2.1.3)
directly to the problem (2.1.1) before discretizing in space, and we make the exponential
expphCpynqqyn correspond to the exact integration of a pure convection problem, we obtain
the following well known transport-diffusion algorithm studied in [19],

Dũn` 1
2

Dt “ 0, ũn` 1
2
px, tnq “ unpxq, on rtn, tn ` hs

un` 1
2
pxq :“ ũn` 1

2
px, tn ` hq

un`1 “ un` 1
2

` hν∇2un`1 ` h f ,
(2.1.6)

the convecting vector field is Ṽpxq “ unpxq. The accurate integration of the pure
convection problem in (2.1.6) can be obtained by introducing characteristics, we get

un` 1
2
pxq “ ũn` 1

2
px, tn ` hq “ unpXptnqq

dX
dτ “ unpXpτqq, Xptn ` hq “ x,

(2.1.7)
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and the equation for the characteristics Xpτq must be integrated backwards in time, either
exactly or with a suitable numerical integrator. Now substituting the result in the second
equation of (2.1.6) we have

dX
dτ “ unpXpτqq, Xptn ` hq “ x,

un`1 “ unpXptnqq ` hν∇2un`1 ` h f .
(2.1.8)

The outlined correspondence between (2.1.3) and (2.1.6) motivates the use of
exponentials of C (the semidiscrete convection operator of (2.1.2)) in the integrators.
The presented methods are of additive type. We derive methods up to and including

order three. Additive Runge-Kutta methods can be cast into the class of partitioned
Runge-Kutta methods and their order conditions can be studied in this setting [13, 15].
In particular applying two Runge-Kutta methods of order p to two different parts of the
vector field of the problem, does not guarantee order p overall: extra coupling conditions
must be satisfied by the coefficients of the two methods. In our methods the convection part
is treated by a commutator-free explicit method requiring the composition of exponentials
of C [8], the linear diffusion with a Runge-Kutta (implicit) method. For low order one can
show that the order conditions are a subset of the union of classical order conditions for
partitioned Runge-Kutta methods and commutator-free methods.2 As a consequence it is
quite easy to derive examples of methods in the new class by taking known IMEXmethods
as a starting point. In general the order conditions for the new methods do not reduce to
a special case of the known order conditions for partitioned Runge-Kutta methods. New
coupling conditions, involving the coefficients of the commutator free methods, do appear
at order four [7].
One nice feature of these methods compared to analogous IMEX methods is that they

inherit the A-stability features of the implicit part of the integrator.
The semi-Lagrangian methods here presented are based on Runge–Kutta one-step

strategies and are for this reason an alternative to the semi-Lagrangian multistep
approaches proposed for example in [22]. Previous preliminary work has also been
presented in [6].
In section 2.2 we present the new methods, discuss stability and the order conditions

and give some concrete examples. In section 2.3 we illustrate the performance of the
methods implementing them as semi-Lagrangian schemes.

2.2 Presentation of the new class of methods

We consider the semidiscretized ordinary differential equation

9y´Cpyqy “ Ay, yp0q “ y0, (2.2.1)

2See [17] for the order theory for commutator free methods.
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where for the sake of simplicity, but without loss of generality, we have dropped the forcing
term f of (2.1.2). Here A is a NˆN matrix with constant coefficients andCpyq is a matrix-
valued function, also N ˆ N.
The methods here studied have a Runge-Kutta like format with two sets of parameters:

A “ tai, jui, j“1,...,s, b “ rb1, . . . , bss, c “ rc1, . . . , css and α ji,l, βil, i “ 1, . . . s, j “ 1, . . . , s
l “ 1, . . . , J, ĉ “ rĉ1, . . . , ĉss. The methods have the following format:

for i “ 1 : s do

Yi “ ϕiyn ` hřs
j“1 ai, jϕi, jAY j,

ϕi “ expphř
k α

k
i,JCpYkqq ¨ ¨ ¨ expphř

k α
k
i,1CpYkqq,

ϕi, j :“ ϕiϕ´1j
end
yn`1 “ ϕs`1yn ` hřs

i“1 biϕn`1,iAYi,

ϕs`1 “ expphř
k β
k
JCpYkqq ¨ ¨ ¨ expphř

k β
k
1CpYkqq,

ϕs`1,i :“ ϕs`1ϕ´1i .

These methods are associated to the two Butcher tableaus,

c A

b
,

ĉ Â

b̂
, (2.2.2)

where we have defined

âi, j :“
Jÿ
l“1
α
j
i,l, b̂ j :“

Jÿ
l“1
β
j
l , (2.2.3)

for i “ 1, . . . , s, and Â “ tâi, jui, j“1,...,s and b̂ “ rb̂1, . . . , b̂ss. The coefficients of the first
tableau are used for the linear vector field Ay while the coefficients of the second tableau,
split up in the sums (2.2.3), are used for the nonlinear vector field Cpyqy.
For reasons of computational ease in the implementation of the methods, we are

particularly interested in the case where the coefficients ai, j define a diagonally implicit
Runge-Kutta method (DIRK), so that ai, j “ 0 when j ą i. In this case the methods require
the solution of only one linear system per stage. The discussion on order conditions is not
affected by this choice.
The presented methods can be directly interpreted as transport-diffusion algorithms for

convection-diffusion equations.

Remark 2.2.1. Let us consider the following change of variables in (2.2.1)

yptq “ Wptq ¨ zptq, (2.2.4)
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with
Wt “ CpWzqW, Wp0q “ I, (2.2.5)

I is the identity matrix. After differentiation and substituting for yt in the right hand side
of (2.2.1), we obtain the following system of equations equivalent to (2.2.1)#

zt “ W´1AWz, zp0q “ y0,

Wt “ CpWzqW, Wp0q “ I.
(2.2.6)

We apply a partitioned Runge-Kutta approach to this system combining an implicit Runge-
Kutta method for the equation for z and an explicit commutator-free method (in short CF)
for the equation forW, see Appendix 2.4. We obtain

for i “ 1 : s do

Zi “ zn ` hři
j“1 ai, jQ

´1
j AQjZ j

Qi “ exppř
k α

k
iJCpQkZkqq ¨ ¨ ¨ exppř

k α
k
i1CpQkZkqq ¨Wn

end
zn`1 “ zn ` řs

i“1 biQ
´1
i AQiZi

Wn`1 “ exppř
k β
k
JCpQkZkqq ¨ ¨ ¨ exppř

k β
k
1CpQkZkqq ¨Wn.

Using the following transformation

Yi :“ QiZi, ϕi :“ QiW´1n , yn`1 “ Wn`1zn`1, ϕs`1 “ Wn`1W´1n , (2.2.7)

we obtain the original format of the methods. Since QiQ´1j “ ϕiϕ´1j then ϕi, j :“ ϕiϕ´1j
arises naturally in the expression for Yi.

2.2.1 Stability function
For the stability analysis we follow the approach in [1], namely we apply the method to
the linear test equation

9y “ λy` ı̂μy, (2.2.8)

where λ ă 0 and μ are real numbers, and ı̂ is the imaginary unit (ı̂2 “ ´1). Further define
z :“ v` ı̂w where v “ λh and w “ μh.
We get

Yi “ eı̂wĉiy0 ` v
sÿ
j“1
ai, jeı̂wpĉi´ĉ jqYj, i “ 1, . . . , s, (2.2.9)

y1 “ eı̂wry0 ` v
sÿ
i“1
bie´ı̂wĉ jYis. (2.2.10)
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Writing
Y “ rY1, . . . , YssT

equations (2.2.9) get the form

Y “ pIs ´ vApwqq´1Dpwq1sy0,
whereApwqi j “ ai jeı̂wpĉi´ĉ jq, Dpwqi j “ eı̂wĉiδi j, and 1s “ r1, . . . , 1sT .
From (2.2.10) we get

y1 “ eı̂wr1` vbTDpwq´1pIs ´ vApwqq´1Dpwq1ssy0.
Thus the stabiliy function can be expressed as

Rpv,wq :“ eı̂wr1` vbTDpwq´1pIs ´ vApwqq´1Dpwq1ss. (2.2.11)

But by direct calculation one can see that

Dpwq´1pIs ´ vApwqq´1Dpwq “ pIs ´ vAq´1.
Thus

Rpv,wq “ eı̂wR̃pvq,
where R̃ is the stability function of the implicit RK method A, see [13] on stability
functions of Runge-Kutta methods. This means the linear stability of our method is

determined to a great extent by the stability of the RK method with tableau
c A

b
.

This is not the case for the IMEX methods, where the stability function is

Rpv,wq :“ 1` pvbT ` ı̂wb̂T qpIs ´ vA´ ı̂wÂq´11s,

therefore depending also on the explicit method with tableau
ĉ Â

b̂
and may not be

A-stable.

2.2.2 Order conditions
In the study of the order conditions it is convenient to treat the numerical solution yn`1 as
an extra stage value

Ys`1 :“ ϕs`1yn ` h
sÿ
j“1
as`1, jϕs`1, jAY j, as`1, j :“ b j,

with

ϕs`1 “ expph
ÿ
k
αks`1,JCpYkqq ¨ ¨ ¨ expph

ÿ
k
αks`1,1CpYkqq, αks`1,J´l :“ βkJ´l,
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and with ϕs`1, j “ ϕs`1ϕ´1j .
Assuming enough regularity of the solution of (2.2.1), expanding the exact and the

numerical solution with Taylor series and matching the terms one obtains the order
conditions reported in Tables 2.4, 2.5.
In the tables we report the elementary differentials appearing in the Taylor expansions,

and the corresponding bicoloured binary trees, related to each order condition. Black
nodes ( ) refer to the vector field Cpyqy and white nodes ( ) to Ay.

Derivatives of the exact solution

The derivatives of the exact solution can be written in the form

ypqq “
q´1ÿ
k“0

ˆ
q´ 1
k

˙ ˆ
dq´1´k

dhq´1´k
pCpyq ` Aq

˙
ypkq,

and therefore
yp1q

ˇ̌̌
h“0

“ 9y|h“0 “ Cpy0qy0 ` Ay0,

yp2q
ˇ̌̌
h“0

“ C1py0qp 9yp0qqy0 ` pCpy0q ` Aq2y0.
Here and in the sequel the upper index within round brackets denotes the order of
differentiation. We have used the matrixC1pyqpwq obtained by differentiating Cpyq,

pC1pyqpwqqi, j :“
Nÿ
k“1

Bci, j
Bxk pyqwk,

and ci, j :“ pCpyqqi, j, and N is the number of components of y.
In short we will write C, C1p¨q for Cpy0q, C1py0qp¨q respectively.

Derivatives of the numerical solution

We assume without loss of generality that n “ 0.
We obtain

9Ys`1
ˇ̌
h“0 “ 9ϕs`1|h“0 y0 `

sÿ
j“1
as`1, jAy0

In general we have

Ypqqi
ˇ̌̌
h“0

“ ϕ
pqq
i

ˇ̌̌
h“0

y0 ` q dq´1
dhq´1

´ř
j ai, jϕiϕ

´1
j AY j

¯ˇ̌̌
h“0

“ ϕ
pqq
i

ˇ̌̌
h“0

y0 ` q
ÿ
j
ai, j

q´1ÿ
k“0

ˆ
q´ 1
k

˙
ϕ
pq´1´kq
i, j AYpkqj

ˇ̌̌
h“0
,

(2.2.12)

where ϕi, j :“ ϕi ϕ´1j , i, j “ 1, . . . , s.
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2.2. Presentation of the new class of methods

The equations
Ypqqs`1

ˇ̌̌
h“0

“ ypqq
ˇ̌̌
h“0
, q “ 0, 1 . . . , p

give the order conditions for order p, and for p “ 1, 2, 3 are reported in Table 2.4 (page
31) and Table 2.5 (page 32).
The recursive computation of the derivatives of Yi requires the use of ϕi and ϕi, j and

their derivatives which we will now discuss.
Consider the following matrix-valued functions,

Ci,J´l :“ h
ÿ
k
αki,J´lCpYkq, l “ 0, . . . , J ´ 1,

and
C̃i,J´l :“ ´h

ÿ
k
αki,l`1CpYkq, l “ 0, . . . , J ´ 1.

Consider also the following product of matrix exponentials

ψi :“ exppBi,Jq ¨ exppBi,J´1q ¨ ¨ ¨ exppBi,1q,

such that

ψi “
$&%
ϕi, Bi,J´l “ Ci,J´l, l “ 0, . . . , J ´ 1
and
ϕ
´1
i Bi,J´l “ C̃i,J´l, l “ 0, . . . , J ´ 1,

respectively. We will make use of

ψli :“ exppBi,Jq ¨ exppBi,J´1q ¨ ¨ ¨ exppBi,J´lq.

We obtain1

9ψi “
J´1ÿ
l“0
Adψli

´
dexp´Bi,J´lp 9Bi,J´lq

¯
¨ ψi,

so

9ψi “ S iphqψi, S iphq :“
J´1ÿ
l“0
Adψli

´
dexp´Bi,J´lp 9Bi,J´lq

¯
,

and as a direct consequence we have

ψ
prq
i “

r´1ÿ
k“0

ˆ
r ´ 1
k

˙ ˆ
dr´1´k

dhr´1´k
S iphq

˙
ψ
pkq
i . (2.2.13)

The following proposition will be used to find the derivatives of S iphq.
1We recall that dexpwpuq :“

ez´1
z

ˇ̌̌
z“adw

puq “ u` 1{2!rw, us ` 1{3!rwrw, uss ` . . . and adwpuq :“ rw, us

(matrix commutator between w and u), Adψpuq :“ ψ uψ´1.
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Proposition 2.2.1. Given Z0 “ Z0phq, W “ Wphq two matrix-valued differentiable
functions then

dr

dhr
AdWZ0 “ AdWZr, (2.2.14)

with
Zr “ rW´1 9W , Zr´1s ` 9Zr´1. (2.2.15)

Proof. By induction. �

From (2.2.15) by differentiation we obtain

9Zr “ r 9W´1 9W `W´1 :W , Zr´1s ` rW´1 9W, 9Zr´1s ` :Zr´1, (2.2.16)

and using (2.2.15) and (2.2.16) and assumingWp0q “ I, we obtain

d
dhAdWZ

0
ˇ̌
h“0 “ Z1p0q “ r 9Wp0q, Z0p0qs ` 9Z0p0q

9Z1p0q “ r´ 9Wp0q2 ` :Wp0q, Z0p0qs ` r 9Wp0q, 9Z0p0qs ` :Z0p0q
d2
dh2 AdWZ

0
ˇ̌̌
h“0

“ Z2p0q “ r 9Wp0q, Z1p0qs ` 9Z1p0q
9Z2p0q “ r´ 9Wp0q2 ` :Wp0q, Z1p0qs ` r 9Wp0q, 9Z1p0qs ` :Z1p0q

d3
dh3 AdWZ

0
ˇ̌̌
h“0

“ Z3p0q “ r 9Wp0q, Z2p0qs ` 9Z2p0q
...

(2.2.17)
Further assuming Z0 “ dexp´Bp 9Bq for some matrix-valued differentiable function

B “ Bphq, expanding the right hand side and differentiating we obtain

Z0p0q “ 9Bp0q
9Z0p0q “ :Bp0q
:Z0p0q “ ;Bp0q ´ 1

2 r 9Bp0q, :Bp0qs
;Z0p0q “ Bp4qp0q ´ r 9Bp0q, ;Bp0qs ` 1

2 r 9Bp0q, r 9Bp0q, :Bp0qss
...

(2.2.18)

We can now obtain the derivatives of S i and ψi. By settingW “ ψli and B “ Bi,J´l we can
calculate the derivatives of S i using (2.2.14). We obtain

S ip0q “ řJ´1
l“0 9Bi,J´l,

d
dhS i

ˇ̌
h“0 “ řJ´1

l“0
řJ´l´1
r“0 r 9Bi,J´rp0q, 9Bi,J´lp0qs ` :Bi,J´lp0q,

d2
dh2 S i

ˇ̌̌
h“0

“ 2
řJ´1
l“0

řJ´l´1
r“0 r 9Bi,J´rp0q, :Bi,J´lp0qs`řJ´1

l“0
řJ´l´1
r“0 r :Bi,J´rp0q, 9Bi,J´lp0qs`řJ´1

l“0
`

;Bi,J´lp0q ´ 1
2 r 9Bi,J´lp0q, :Bi,J´lp0qs˘ ,

(2.2.19)
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analogously the derivatives of S li “ řJ´l´1
r“0 Adψri pdexp´Bi,J´r 9Bi,J´rq are obtained as in the

previous formulae, but substituting J ´ 1 as upper index in the external summation with
J ´ l´ 1.
In Table 2.2 we report the values of the derivatives of ϕi and ϕ´1j at h “ 0, these are

obtained from (2.2.13) using (2.2.19). In Table 2.3 we report the derivatives at 0 of ϕi, j,
which are obtained using Table 2.2 and

ϕ
pmq
i, j “

mÿ
r“0

ˆ
m
r

˙
ϕ
pm´rq
i pϕ´1j qprq.

The derivatives of Yi are reported in Table 2.1 and are obtained using Tables 2.2 and
2.3 and the recursion formula (2.2.12).
We here derive the first few rows of Table 2.2, Table 2.3 and Table 2.1. From (2.2.13)

we obtain that

9ϕip0q “
J´1ÿ
l“0

9Bi,J´lp0q “
J´1ÿ
l“0

9Ci,J´lp0q “
J´1ÿ
l“0

ÿ
k
αki,J´lC “ p

ÿ
k
âi,kqC, (2.2.20)

analogously one can compute 9
ϕ´1j p0q. These expressions are reported in Table 2.2 and can

be used in (2.2.12) to obtain

9Yi
ˇ̌
h“0 “ p

sÿ
k“1
âi,kqC y0 ` p

sÿ
j“1
ai, jqA y0 “ ĉiC y0 ` ciA y0, (2.2.21)

see Table 2.1. Imposing 9Ys`1
ˇ̌
h“0 “ 9yp0q, where 9yp0q “ Cy0`Ay0 we obtain the following

order conditions for order 1,
sÿ
k“1
âs`1,k “ 1,

sÿ
j“1
as`1, j “ 1.

These correspond to requiring consistency of the two Runge-Kutta methods (2.2.2).
For deriving the conditions for order two we use (2.2.12) and we get

:Yi
ˇ̌
h“0 “ ϕp2qi

ˇ̌̌
h“0

y0 ` 2
ÿ
j
ai, j

´
ϕ
p1q
i, j p0qAYjp0q ` ϕi, jp0qA 9Yjp0q

¯
with ϕi, jp0q “ I and ϕp1qi, j p0q “ 9ϕip0q ´ 9ϕ jp0q “ pĉi ´ ĉ jqC. Using 9Yjp0q form Table 2.1
we obtain

:Yi
ˇ̌
h“0 “ ϕ

p2q
i

ˇ̌̌
h“0

y0 ` 2ř
j ai, jppĉi ´ ĉ jqCAy0 ` ĉ jACy0 ` c jA2y0q. (2.2.22)

From (2.2.13) and (2.2.19) we obtain

ϕ
p2q
i

ˇ̌̌
h“0

“ d S iphq
d h ϕiphq

ˇ̌̌
h“0

` `
S iphq2ϕiphq

˘ˇ̌
h“0

“ 2
ř
k âi,kĉkC1pCy0q ` 2ř

k âi,kckC1pAy0q `
´řs

j“1 âi, j
¯2
C2,

(2.2.23)
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Table 2.1: Derivatives of Yi at 0.

q Ypqqi p0q
0 y0
1 př

j âi, jqCy0 ` př
j ai, jqAy0

2 2
ř
j âi, jC1pĉ jC ` c jAq ` ĉ2i C

2 ` 2ĉiciCA ´ 2př
j ai, jĉ jqCA `

2
ř
j ai, jApĉ jC ` c jAq

Table 2.2: Derivatives of ϕi and its inverse.

q ϕ
pqq
i p0q pϕ´1j qpqqp0q

0 I I

1 Cĉi ´Cĉ j
2 2

ř
k âi,kC1pĉkCy0 ` ckAy0q ` ĉ2i C2 ´2ř

k â j,kC1pĉkCy0 ` ckAy0q ` ĉ2jC2

Table 2.3: Derivatives of ϕi, j.

q ϕ
pqq
i, j p0q

0 I

1 Cpĉi ´ ĉ jq
2 2

ř
kpâi,k ´ â j,kqC1pĉkCy0 ` ckAy0q ` pĉi ´ ĉ jq2C2

which is reported in Table 2.2. Substituting the results in (2.2.22) we obtain

:Yi
ˇ̌
h“0 “ p2ř

k âi,kĉkC1pCy0q ` 2ř
k âi,kckC1pAy0q ` ĉ2i C2qy0`

2
ř
j ai, jppĉi ´ ĉ jqCAy0 ` ĉ jACy0 ` c jA2y0q,

(2.2.24)

and report it in Table 2.1.
Taking i “ s ` 1 and matching this result with yp2q

ˇ̌
h“0 “ C1p 9yp0qqy0 ` pC ` Aq2y0,

we obtain the four conditions for order twoř
j as`1, jĉ j “ 1

2 ,
ř
j âs`1, jc j “ 1

2 ,ř
j as`1, jc j “ 1

2 ,
ř
j âs`1, jĉ j “ 1

2 .

The conditions for order 3 are obtained in a similar way, see [7].
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Table 2.4: Conditions of order 1 and 2.

condition trees elementary differential

order1ř
i b̂i “ 1 Cř
i bi “ 1 A

order 2

2
ř
i b̂iĉi “ 1 C1pCq

2
ř
i b̂ici “ 1 C1pAq

2
ř
i biĉi “ 1 AC

2
ř
i bici “ 1 A2

It is easy to check, see for example [13], that the conditions for order two coincide
with the conditions of partitioned Runge-Kutta methods of the same order for the tableaus
(2.2.2). Under the assumption that ck “ ĉk, the conditions for order three (see also [7])
include a subset of the classical conditions of order 3 for partitioned RK methods for
(2.2.2). Due to the linearity of A one of the classical elementary differentials does not
appear. If we assume ck “ ĉk the remaining conditions of order three (the first two in
Table 2.5) coincide with the conditions for commutator-free methods of order three [8]
and [17].
In the tables we have associated to each order condition its corresponding

elementary differential and its corresponding bicolored rooted tree. We have used trees
τ with |τ| ` 1 nodes for representing the differentials of order |τ| in order to include the
commutators between lower order differentials, as done in [17]3.

Remark 2.2.2. We consider the system (2.2.6). Xiu et al. in [22] considered splittings of
the Navier-Stokes equations into a convection and a diffusion problem and studied a semi-
Lagrangian version of the partitioned combination: the second order Adams-Basforth and
the Crank-Nicolson scheme (midpoint rule) (AB2-CN). This method does not achieve
second order as a time integrator. Instead they proposed and proved numerically that
combining a semi-Lagrangian scheme for the nonlinear convection term (linearized via
a second order extrapolation scheme) together with the implicit midpoint rule for the
remaining terms, would result in a scheme with overall second order accuracy in time.
We have verified their observations in our framework by applying a CF version of the
second order Adams-Bashforth to the first equation of (2.2.6) (convection part) and the

3Recall the notation: if τ is a rooted tree |τ| is the number of nodes of the tree.
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Table 2.5: Conditions of order 3.

condition trees elementary differential

4
řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lĉm`

´ rC1pCq,Cs´2řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lĉk`

´ řJ´1
l“0

ř
k β
k
J´l

ř
r β
r
J´lĉr “ 0

4
řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lcm`

´ rC1pAq,Cs´2řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lck`

´ řJ´1
l“0

ř
k β
k
J´l

ř
r β
r
J´lcr “ 0

3
ř
k b̂kĉ2k “ 1 C2pC,Cq

3
ř
k b̂kĉkck “ 1 C2pC, Aq

3
ř
k b̂kc2k “ 1 C2pA, Aq

6
ř
k b̂k

ř
j âk, jĉ j “ 1 C1pC1pCqq

6
ř
k b̂k

ř
j âk, jc j “ 1 C1pC1pAqq

6
ř
k b̂k

ř
j ak, jĉ j “ 1 C1pACq

6
ř
k b̂k

ř
j ak, jc j “ 1 C1pA2q

6
ř
j b jc j ´ 6ř

j b jĉ jc j “ 1 CA2

6
ř
j b j

ř
m â j,mĉm “ 1 AC1pCq

6
ř
j b j

ř
m â j,mcm “ 1 AC1pAq

3
ř
j b jĉ2j “ 1 AC2

6
ř
j b j

ř
m a j,mĉm “ 1 A2C

6
ř
j b j

ř
m a j,mcm “ 1 A3

implicit trapezoidal rule to the second equation of (2.2.6) (diffusion part) of the nonlinear
convection-diffusion problem.
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Assuming thatWn´1,Wn are known, from the first equation of (2.2.6) we get

Wn`1 “ expph
2

p3Cpynq ´Cpyn´1qqqWn (2.2.25)

which agrees with the semi-Lagrangian method used in [22], but in place of the midpoint
rule, we apply the implicit trapezoidal rule for the diffusion term to obtain

zn`1 “ zn ` h
2

pW´1n AWnzn `W´1n`1AWn`1zn`1q. (2.2.26)

Transforming back to the variable y “ Wz and assuming yn´1 and yn are known apriori we
have the following scheme

yn`1 “ Enyn ` h
2

pEnAyn ` Ayn`1q,where En “ expph
2

p3Cpynq ´Cpyn´1qqq (2.2.27)

which is tested numerically to be second order accurate in time. This has also been verified
directly by Taylor expansion. A direct translation of the AB2-CN scheme into our semi-
Lagrangian method results in

yn`1 “ Enyn ` h
2
ApEnyn ` yn`1q (2.2.28)

which is tested to be only first order accurate in time. Further investigations on exponential
integrators based on explicit multi-step formulae, combining the ideas of the present paper
to the results of [10] will give rise to a systematic order theory for methods like (2.2.27)
and will be addressed elsewhere.
The incompressibility constraint of the Navier-Stokes equations leads to further

complications in the design of high order numerical integrators, the reason being that after
discretization in space these equations are not ordinary differential equations, but index 2
differential algebraic equations. For a discussion on these issues see for example [23].

2.2.3 Methods of order 2 and 3
The preliminary analysis of the order conditions reported in the previous section leads to
the following conclusions:

• Any couple of classical RK methods of order 1 gives a new method of order 1.

• A couple of partitioned RK methods of order 2 gives a new method of order 2 .

• If we take a pair of PRK of order 3 (explicit + implicit ) and construct a commutator-
free method out of the explicit method in such a way that

b̂k “
Jÿ
l“1
βkl , âk, j “

Jÿ
l“1
α
j
k,l, (2.2.29)

the resulting method satisfies the conditions for order 3 for the new class of methods.
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We will use these observations to obtain methods up to and including order three in
the new class of methods proposed in this paper. Our starting point are the IMEXmethods
of [1] and other partitioned Runge-Kutta methods reported in [13]. In all these methods
bi “ b̂i and ci “ ĉi for i “ 1, . . . , s.
In particular it is advantageous to consider methods requiring a minimal number of

exponentials per stage, i.e. minimal J [8]. It is possible to obtain methods of order one
and two with J “ 1. For order three J must be at least 2. This implies that the methods
of order one and two proposed in [1] can be used directly to obtain methods of the same
order within the new class, while for order three we need to split up the coefficients of the
explicit method according to (2.2.29) and also consider the extra (commutator-free) order
condition form Table 2.5 (first and second row, coinciding when we assume ck “ ĉk).
From the first two conditions of order three in Table 2.5, setting J “ 2 and using the

conditions of order 1 and 2 one obtains
sÿ
k“1

pβk2 ` 2βk1ckq “ 2
3
. (2.2.30)

Example 2.2.3. The couple of methods with tableaus

0
1
2 0 1

2

0 1
,

0
1
2

1
2 0

0 1
,

[1], gives rise to the new method of order two

ϕ 1
2

“ expp h2Cpy0qq, Y 1
2

“ ϕ 1
2
y0 ` h

2AY 12

ϕ1 “ expphCpY 1
2
qq, y1 “ ϕ1y0 ` hϕ1ϕ´11

2
AY 1

2
.

The corresponding transport-diffusion algorithm for convection-diffusion problems of
type (2.1.1) has the form

Dũ0
Dt “ 0, ũ0px, 0q “ u0pxq, on r0, h2 s,

Vpxq “ u0pxq,
ũ0pxq “ ũ0px, h2 q,

u 1
2

“ ũ0 ` h
2ν∇

2u 1
2

Dũ 1
2

Dt “ 0, ũ 1
2
px, 0q “ ν∇2u 1

2
pxq, on r´ h

2 , 0s,
Vpxq “ u0pxq,
u 1
2
pxq “ ũ 1

2
px,´ h

2 q,
Dũ1
Dt “ 0, ũ1px, 0q “ u0pxq ` hu 1

2
pxq, on r0, hs,

(2.2.31)
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Vpxq “ u 1
2
pxq,

u1pxq “ ũ1px, hq.

Example 2.2.4. In the next example we consider a second order IMEX method from
[1], we implement this method in the numerical experiments as an IMEX or a DIRK
commutator-free method obtaining in both cases order 2:

0
γ γ

1 δ 1´ δ
0 1´ γ γ

,

0 0
γ 0 γ

1 0 1´ γ γ

0 1´ γ γ

with γ “ 2´
?
2

2 and δ “ ´2
?
2

3 . The implicit method is stiffly accurate and L-stable.4

Example 2.2.5. For obtaining order 3 we consider as starting point the partitioned Runge-
Kutta methods proposed by Griepentrog [13],

0
1
2

1
2

1 ´1 2
1
6

2
3

1
6

,

0 0
1
2 ´ β2 1`β

2
1 3`5β

2 ´p1` 3βq 1`β
2

1
6

2
3

1
6

.

The implicit method on the right is A-stable for β “ ?
3{3. Starting from the explicit

Runge-Kutta method on the left we can derive a commutator free method of order 3 using
(2.2.29) and (2.2.30), we obtain

0
1
2

1
2

1 ´1 2
1
12

1
3 ´ 1

4
1
12

1
3

5
12

,

this method coupled with the implicit method gives approximations of order three for
(2.2.6).

Example 2.2.6. In the next example we have considered a third order IMEX method from
[1] as a starting point and, using (2.2.29) and (2.2.30), we have obtained the following pair
of Commutator-Free DIRK methods of order 3:

4Stiffly accurate Runge-Kutta methods, i.e. those whose last stage coincides with the numerical update, are
particularly suited for index 1 differential algebraic equations.
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0
γ γ

1´ γ γ ´ 1 2p1´ γq
0 1

2 ´ ϕ 1
2 ` ϕ

0 ϕ ´ϕ

,

0 0
γ 0 γ

1´ γ 0 1´ 2γ γ

0 1
2

1
2

with γ “ 3`?3
6 and ϕ “ 1

6p2γ´1q .

Alternatively one could have considered the following commutator-free method:

0
γ γ

1´ γ γ´ 1 2p1´ γq 0
α β σ

´α 1
2 ´ β 1

2 ´ σ

where σ “ pα` βp1 ´ 2γq ´ 1
3 q{p1´ 2γq, α “ 1{2, β “ 1{6, and the same value of γ as

above.
We have not found substantial difference in the numerical experiments between these

two explicit commutator-free methods.

2.3 Numerical tests
We consider the short names DIRK for Diagonally Implicit Runge-Kutta methods, CF for
Commutator-free method, IMEX for Implicit-Explicit, and SL for Semi-Lagrangian, and
combinations of these. The methods considered in the numerical experiments are

IMEX1 based on implicit and explicit Euler,
DIRK-CF1 transport diffusion algorithm (by Pironneau),
IMEX2 based on the midpoint , example (2.2.3),
DIRK-CF2 based on the midpoint, example (2.2.3),
IMEX2L IMEX based on an L-stable implicit DIRK method,

example (2.2.4),
DIRK-CF2L partitioned RK commutator-free method with L-stable

DIRK method, example (2.2.4),
IMEX3G partitioned RK method due to Griepentrog,

example (2.2.5),
DIRK-CF3G partitioned RK commutator-free method due to

Griepentrog, example (2.2.5),
IMEX3 IMEX method, example (2.2.6),
DIRK-CF3 partitioned RK commutator-free method, example (2.2.6).

36



2.3. Numerical tests

The numbers refer always to the order of the method. All the DIRK-CF method have
a semi-Lagrangian counterpart which we denote with SL1, SL2, SL2L, SL3G and SL3
respectively. In the semi-Lagrangian methods the exponentials of the convection operator
are computed by approximating the characteristics of the corresponding pure convection
problem and using interpolation. See the next section for an example and for further details
on the approximation of the exact pure convection flows.
In the methods denoted by DIRK-CF the exponentials are simply matrix exponentials

and if not specified otherwise they are computed by using the built-in MATLAB function
expm.

2.3.1 Exponentials
We firstly consider a pure convection problem on the square with Dirichlet boundary
conditions and with a convecting vector field tangent to the boundary of the square, i.e.

utpx, y, tq “ Vpx, yq ¨ ∇upx, y, tq, Vpx, yq “
„
π sinpπxq cospπyq

´π cospπxq sinpπyq
j
,

px, yq P r0, 1s ˆ r0, 1s, t ą 0. The initial condition is u0px, yq “ upx, y, 0q “
ep´45py´ 3

4 q2´15px´ 1
2 q2q. We consider a discretization grid in space based on the Gauss-

Lobatto-Legendre (GLL) points. We seek the approximate solution on the nodes of the
grid at time t “ 1.2.
This problem corresponds to the computation of a single exponential of the convection

operator. The purpose of this experiment is to illustrate and propose two good strategies
for the implementation of the exponentials of the methods presented in this paper.
The first approach consists in using an integration method for ordinary differential

equations for computing fairly accurately the characteristics

dX
dτ “ VpXpτqq, Xptn ` hq “ x, τ P rtn, tn ` hs (2.3.1)

where x denotes any point of G the GLL discretization grid. We want to evaluate unpyq at
y “ Xptnq (the output of the ODE (2.3.1)) and, since unpyq is explicitly known only for
y P G (the grid points), we extend it by interpolation on the GLL nodes to the rest of the
domain. We obtain

upx, tn ` hq « un`1pxq :“
ÿ
x̃PG
unpx̃qlx̃pXptnqq

where lx̃ is an element of the tensor product basis of Lagrange basis functions on the GLL
nodes. See also [6, 11, 22] for similar approaches. In the experiment the ode23MATLAB
routine with tolerances set at 10´3 was used to compute the characteristics.
Alternatively, using a spectral Galerkin approach based on the GLL points, one

can construct the matrix C discretization of the convection operator, and compute the
exponentials of the discrete operator using a restarted (preconditioned) Krylov subspace
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(a) (b)

Figure 2.1: Pure convection with spectral methods in two dimensions. Approximation of
the exponential of the convection operator. Semi-Lagrangian versus Eulerian method: (a)
approximation of the characteristics trajectories with an accurate time-stepping procedure
and interpolation of the initial condition; (b) semidiscretization in space and accurate
Krylov subspace solution of the linear system of ODEs in time.

method for the approximation of the matrix exponential. The system of ODEs arising from
the space discretization (using spectral Galerkin discretization of the convection operator)
is

9y “ Cy, yp0q “ y0,

and each component of y0 corresponds to u0px̃q for some x̃ P G. One considers

yn`1 “ }yn}2 VkehHke1,

with
spanpVkq “ spantyn,Cyn, . . . ,Ck´1ynu, Hk :“ VTk CVk,

spanpVkq is the column range of Vk which is constructed to have orthonormal columns (i.e
VTk Vk “ Ik the kˆk identity matrix) and e1 P Rk is the first canonical vector. For details on
the restarting procedure see [9], where also some cases of less trivial boundary conditions
are covered. For preconditioning techniques for this method see [16]. We refer to this
approach as Eulerian approach.
In both cases n “ 0, t0 “ 0 and h “ 1.2.
The results are shown in Figure 2.1. The semi-Lagrangian method does not produce

any substantial numerical dispersion compared to the Eulerian approach, but, in our
implementation, it does require more computational time. On the other hand the only
possibility for improving the performance of the Eulerian method is to increase the number
of points in the spatial discretization and this could cause slower convergence of the Krylov
subspace method.
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2.3.2 Korteweg de Vries equation (KdV)
In this and in the next subsection we consider two nonlinear test problems the KdV
equation and the viscous Burgers’ equation. Both the models involve a parameter ν and
they coincide with the inviscid Burgers’ equation when ν “ 0. In the limit as ν Ñ 0 the
solutions of these two equations have completely different behavior. This fact strongly
affects the numerical discretizations.
We consider the KdV equation

ut ` uux “ νuxxx, x P r0, 2πs, t P r0, 1s

with periodic boundary conditions, discretized by

Ut “ DpU.2q ` AU

where D and A are obtained applying central differences for the first and third derivative
in space on a uniform grid, with periodic boundary conditions, Ui « upxi, tq, U.2 “
diagpUqU denotes the component-wise square of U. The operator CpUq :“ DdiagpUq.
The spatial discretization is such that Δx “ 2π{31. In this experiment we verify that the
order of the various time-integrators predicted by the theory is observed also in practice.
We consider the following range of time-steps h “ 1{p24q, . . . , 1{p29q and the initial
condition u0 “ 1.5` cospxq. The results are reported in Figure 2.2 (a), (ν “ 0.05).
This test problem was proposed in [18] where a study of the performance of numerical

discretization of the KdV equation for different values of ν was considered. The solutions
of the PDE becomemore andmore oscillatory as ν decreases, requiring the use of tiny step-
sizes in time and space for the numerical discretizations. See also [12] for a study of the
small dispersion limit of the KdV equation. For small ν the use of up-winding techniques
for the KdV equation is not recommended [18], in fact such techniques introduce artificial
dissipation and fail to reproduce the oscillatory behavior of the solution.
The DIRK-CF methods are not structure preserving in time (symplectic, symmetric

or energy-preserving methods), but in our experiments they perform well compared to
their IMEX counterparts, and in general they might be cheaper to implement compared to
most structure preserving integrators. The amount of artificial dissipation introduced by
the proposed discretization of the KdV equation (central differences and DIRK-CF) is of
the order of the time integration and therefore small for high order DIRK-CF methods.
We think is possible to construct structure preserving methods belonging to the class of
methods presented in this paper, for similar ideas in the context of exponential integrators
see [5].
In this experiment the IMEXmethods of order 2 and 3 produce a bigger error compared

to the corresponding DIRK-CF methods. In Figure 2.2 (b) (ν “ 0.01) the numerical
solutions obtained by the IMEX3 method and the DIRK-CF3 method are compared to
the reference solution (denoted exact in the figure). The reference solution is computed
with the same discretization in space (Δx “ 2π{255). The time-integration is carried out
by the MATLAB function ode15s (with tolerances 10´10). The time interval is r0, 4s
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(a) (b)

Figure 2.2: KdV equation: space discretization by central differences. (a) Order test:
global error at t “ 1, for different values of the time step h. ν “ 0.05, x P r0, 2πs,Δx “ 2π

31 .
Dashed line DIRK-CF methods, dotted line IMEX methods, solid line: reference lines for
order 1, 2 and 3. Symbols: (o) order 1; (x) order 2, (+) order 2 of type L; diamonds (�)
order 3 and squares (˝) order 3 type G. (b) Comparison of IMEX3 and DIRK-CF3 for
the KdV equation: numerical solution at t “ 4 as a function of x P r0, 2πs, ν “ 0.01,
Δx “ 2π

255 , h “ 1
25 for DIRK-CF3 and h “ 1

26 for IMEX3.

and the time-step is h “ 1
26 for IMEX3 and h “ 1

25 for DIRK-CF3. Doubling the
size of the time-step the IMEX3 method becomes unstable. In general the DIRK-CF3
method performs better than the corresponding IMEX3 method in this experiment also
if we consider different values of ν or we increase the number of points in the spatial
discretization.

2.3.3 1D Viscous Burgers’ equation
In Figure 2.3, and 2.4 we consider

ut ` uux “ ν∇2u,

on r0, 1s with homogeneous Dirichlet BCs, integrated on r0, 1s. We plot the relative error
in the8-norm versus the viscosity. The error is computed as follows:

}U ´ Ure f }8
}Ure f }8 .

We discretize in space with a step Δx “ 1{81 and in time with h “ 1.8Δx. The
reference solution, Ure f , is obtained discretizing in space with Δ̃x “ 1{2592 while
the time integration of the discrete problem is performed in MATLAB by the built-in
function ode15swith absolute and relative tolerances 10´8. For small viscosity values the
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(a) (b)

Figure 2.3: upx, 0q “ sinpπxq, Δx “ 1{81, t “ 2, h “ 1.8Δx: viscosity ν on the x-axis
relative error y-axis, for IMEX, DIRK-CF and SL (semi-Lagrangian) methods with cubic
spline interpolation, (a) ν P r0.0001, 0.001s and (b) ν P r0.001, 0.01s. Dashed line DIRK-
CF methods, dotted line IMEX methods, solid line SL methods. Symbols: (o) order 1;
(x) order 2, (+) order 2 of type L; diamonds order 3 and squares order 3 type G. In these
experiments the characteristic velocity U ď 1 the Peclet number is Pe ď 1

81ν and the
Courant number is 1.8.

semi-Lagrangian (SL) methods outperform their DIRK-CF and IMEX counterparts. The
relative error of the Eulerian methods increases with decreasing viscosity (see Figure 2.3
(a)) some methods break down. Remarkably the second order semi-Lagrangian method
performs even better than the two third order methods. Figure 2.3 considers cubic spline
interpolation for the convecting vector field (using the routine spline of MATLAB) and
the evaluation of the initial solution at the departure points of the characteristics, while in
Figure 2.4 we used the built in MATLAB function pchip5 performing piecewise cubic,
monotonic interpolation. In these two experiments the characteristic velocity U ď 1 the
Peclet number is Pe “ UΔx

ν
ď 1

81ν and the Courant number is

h maxxPr0,1s |upxq|
Δx

“ 1.8.

The results are comparable in the two figures. The choice of the interpolation
method in the implementation of semi-Lagrangian methods is crucial for optimizing the
performance at low viscosities, but this issue will not be discussed in detail in this paper.

5For more details about these MATLAB functions we refer to the MATLAB online helpdesk.
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(a) (b)

Figure 2.4: upx, 0q “ sinpπxq, Δx “ 1{81, t “ 2, h “ 1.8Δx: viscosity ν on the
x-axis relative error y-axis, for IMEX, DIRK-CF and SL methods with piecewise cubic
monotonic interpolation, (a) ν P r0.0001, 0.001s and (b) ν P r0.001, 0.01s. Dashed line
DIRK-CF methods, dotted line IMEXmethods, solid line SL methods. Symbols: (o) order
1; (x) order 2, (+) order 2 of type L; diamonds order 3 and squares order 3 type G. In these
experiments the characteristic velocity U ď 1 the Peclet number is Pe ď 1

81ν and the
Courant number is 1.8.

2.3.4 Linear convection and convection-diffusion in 2D
In the next experiment we consider linear convection-diffusion on the squareΩ “ r´1, 1s2
with viscosity ν “ 10´4. We compare the performance of the Eulerian DIRK-CF3 method
and of its semi-Lagrangian version SL3 integrating on the time interval r0, 2πs using 40
time-steps (i.e. with step-size h “ 0.1571). The same test case has been considered in
[22].
The initial data is

upx, y, 0q “ e´rpx´x0q
2`py´y0q2s{2λ2 ,

with px0, y0q “ p´0.5, 0q, λ “ 1{8. The solution of this PDE is

upx, y, tq “ λ2

λ2 ` 2νt e
´rx̂2`ŷ2s{2pλ2`2νtq,

where x̂ “ x´ x0 cos t ´ y0 sin t, ŷ “ y` x0 sin t´ y0 cos t. The convecting vector field
is

Vpx, yq “
„

y
´x

j
.

We use a spectral Galerkin discretization in space based on polynomials of degree
p “ 16 on Gauss-Lobatto-Legendrenodes. In Figure 2.5 one can observe that the Eulerian
approach has a tendency of introducing spurious oscillations in the numerical solution
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(a) (b)

Figure 2.5: Linear convection-diffusion with spectral methods in two dimensions.
Semi-Lagrangian versus Eulerian method: (a) SL3 integration in time, the diffusion is
discretized on the GLL grid and the pure convection problems are approximated by the
exact computation of the characteristics trajectories and the interpolation on the GLL
nodes of the initial condition; (b) semi-discretization in space with a spectral Galerkin
method and time integration performed with the DIRK-CF3 method, the exponentials of
the convection operator are computed using the MATLAB built in function expm.

compared to the semi-Lagrangian method. The values of the relative error computed in
the L2 norm are of comparable size for the two approaches. We have an error of 0.0124 for
the semi-Lagrangian method and of 0.0263 for its Eulerian counterpart . The maximum
and minimum values of the numerical approximation are 0.8164 and ´0.0239 for the SL3
and 0.8324 and ´0.0500 for the DIRK-CF3. The maximum and minimum values of the
exact solution are 0.9225 and 0.

Conclusions
We presented a new class of integrators for convection-dominated problems with a
nonlinear convection term. The methods have good properties: they require the solution
of only one symmetric linear system per stage, they have good linear stability properties
and when implemented in a semi-Lagrangian fashion they do not produce numerical
dispersion. The methods have been tested preliminary on the viscous Burgers’ equation,
the KdV equation and with a linear two dimensional convection-diffusion equation. The
results are encouraging. A preliminary study of the order conditions has also been
presented.
A more general setting for the methods would consider

ϕi, j :“ expph
ÿ
k
αki, j,JCpYkqq ¨ ¨ ¨ expph

ÿ
k
αki, j,1CpYkqq,
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in the formulae of section 2. We have not fully explored this possibility yet, but we believe
that in such setting one should be able to design methods involving a smaller number of
exponentials per stage compared to the present case.
We wish to acknowledge the anonymous referees for useful comments and discussions.

2.4 Appendix

2.4.1 Commutator-free methods for integration of ODEs on mani-
folds

A set of vector fields tE1, . . .Edu on a manifoldM of dimension m ď d is a set of frame
vector fields if

TxM “ spantE1|x , . . . Ed|xu, @ x PM,
where TxM is the tangent space toM at the point x.
Given any vector field F onM we have

Fpyq “
dÿ
i“1
fipyqEipyq.

We denote with Fp the vector field

Fppxq “
dÿ
i“1
fippqEipxq

we say that Fp is the vector field F frozen at the point p.
GivenM a manifold with a set of frame vector fields, we can define intrinsic Runge-

Kutta like methods as follows:

Commutator-free method
p “ yn
for r “ 1 : s do
Yr “ exppřs

k“1 α
k
rJFkq ¨ ¨ ¨ exppřs

k“1 α
k
r1Fkqppq

Fr “ hFYr “ h
řd
i“1 fipYrqEi

end

yn`1 “ exppřs
k“1 β

k
JFkq ¨ ¨ ¨ exppřs

k“1 β
k
1Fkqp

Here n counts the number of time steps and h is the step-size of integration. The integrator
has s stages and parameters αkrl, β

k
l , r, k “ 1, . . . , s and l “ 1, . . . , J. Each new stage value

is obtained as a composition of J exponentials (i.e. exact flows) of linear combinations of
vector fields frozen at the previously computed stage values.
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In the following tableaus we report the coefficients of a method of order 3 and a method
of order 4. The method of order 3 requires the computation of one exponential of each
internal stage value and the composition of two exponentials for updating the solution.
In the order 4 method the first three stage values require one exponential each, while the
fourth stage and the solution update require two exponentials. So in both cases J “ 2.

0
1
3

1
3

2
3 0 2

3
1
3 0 0

´ 1
12 0 3

4

0
1
2

1
2

1
2 0 1

2

1 1
2 0 0

´ 1
2 0 1
1
4

1
6

1
6 ´ 1

12

´ 1
12

1
6

1
6

1
4

If the manifoldM is the general linear group GLpnq6 then the typical vector field takes
the form CpUqU where U P GLpnq and CpUq P glpnq7. The vector field frozen at P has
the form CpPqU and the exponential of such a vector field is given by the solution of the
differential equation

9Y “ CpPqY, Yp0q “ Y0,

i.e. Yphq “ expphCpPqqY0. So expphCpPqq is the matrix exponential of CpPq and Y0 is a
suitable initial condition.
The commutator-free methods were presented in [8] and are a generalization of the

methods proposed in [10]. The framework for constructing integration methods on
manifolds presented in this section was fist considered in [10].
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Chapter 1

Order conditions for the
semi-Lagrangian exponential
integrators

Abstract. Order conditions for the for the semi-Lagrangian Runge-Kutta
exponential integrators [Celledoni and Kometa, J. Sc. Comput, 2009] are
studied. In the latter paper it was shown that for a method of order 1 to 3, the
order conditions are a subset of order conditions for the commutator-free Lie-
group method (CF) and the parent partitioned Runge-Kutta method from which
it is derived. Here we further show that for methods of order 4 in this class,
there are extra coupling conditions. A new method is constructed and verified
numerically to be of order 4.

1.1 Introduction
Semi-Lagrangian methods have been shown [1, 2, 3] to play an important role in the
computation of flows of vector fields in exponential integrators designed for convection
dominated problems of the convection-diffusion type. In this paper we examine some of
the issues regarding the order conditions for the semi-Lagrangian exponential integrators,
starting with a preliminary work by the authors in [3].
Suppose from the semi-discretization of a convection-diffusion model one obtains an

ordinary differential equation (with initial data y0) of the form

yt “ Cpyqy` Ay, yp0q “ y0, (1.1.1)

with y “ yptq P RN for t P r0, T s. The N ˆ N matrices Cpyqand A represents the discrete
convection and linear diffusion operators respectively.
The methods then take the following general format
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Chapter 1. Order conditions for the semi-Lagrangian exponential integrators

for i “ 1 : s do

Yi “ ϕiyn ` hř
j ai, jϕi, jAY j,

ϕi “ exp
´
h

ř
k α

k
i,JCpYkq

¯
. . . exp

´
h

ř
k α

k
i,1CpYkq

¯
,

end

yn`1 “ ϕs`1yn ` hř
i biϕs`1,iAYi,

ϕs`1 “ exp
`
h

ř
k β
k
JCpYkq

˘
. . . exp

`
h

ř
k β
k
1CpYkq

˘
,

where ϕi, j “ ϕiϕ´1j , tai, j, biu are coefficients of a s´stage Runge-Kutta (RK) method and
α
j
i,l and β

j
l are coefficients of a commutator-free (CF) Lie group method (studied in [4, 6])

defined on a RK method with coefficients tâi, j, b̂iu such that

âi, j “
Jÿ
l“1
α
j
i,l, b̂i “

Jÿ
l“1
β
j
l . (1.1.2)

Thus given a partition RK method with Butcher tableaus

c A

b ,
ĉ Â

b̂
, (1.1.3)

we treat the diffusion with the s´stage RK method tA, b, cu (preferably implicit) and
the convection with a CF method based on the RK method tÂ, b̂, ĉu.
Note: Here and in the rest of the literature, we shall write

ř
j (without explicit limits

of summation) to actually mean
řs
j“1 .

In the study of the under conditionswe treat (for the sake of convenience) the numerical
solution yn`1 as an extra state value

Ys`1 “ ϕs`1yn ` h
ÿ
j
a jϕs`1, jAY j, as`1, j “ b j,

with

ϕs`1 “ expph
ÿ
k
αks`1,JCpYkqq . . . expph

ÿ
k
αks`1,1CpYkqq, αks`1,l “ βkl

and ϕs`1, j “ ϕs`1ϕ´1j .

1.2 Deriving the order conditions
A preliminary work on the order conditions had been carried out by the authors in [3].
However, for the sake of completion, we present the whole derivations in this paper.
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1.2. Deriving the order conditions

Taking the qth derivatives with respect to h of the exact solution to (1.1.1) and of the
stage values of the numerical solution we obtain the recursive formulas

ypqq “
q´1ÿ
k“0

ˆ
q´ 1
k

˙
dq´1´k

dhq´1´k
pCpyq ` Aq ypkq, (1.2.1)

Ypqqi “ ϕpqqi y0 ` q
ÿ
j
ai, j

q´1ÿ
k“0

ˆ
q´ 1
k

˙
ϕ
pq´1´kq
i, j AYpkqj . (1.2.2)

Order conditions for order p “ 1, 2, 3, . . . are recursively from the equations

Ypqqs`1|h“0 “ ypqq|h“0, q “ 0, 1, . . . , p. (1.2.3)

We often will simplify higher order conditions using conditions of lower order whenever
necessary. The computation of the derivatives of Yi requires the use of ϕi and ϕi, j and their
derivatives.
Now let us consider the matrix-valued functions,

Ci,J´l :“ h
ÿ
k
αki,J´lCpYkq, l “ 0, 1, . . . , J ´ 1,

and
C̃i,J´l :“ ´h

ÿ
k
αki,l`1CpYkq, l “ 0, 1, . . . , J ´ 1

We denote by Bi,J´l either of Ci,J´l or C̃i,J´l, for l “ 0, 1, . . . , J ´ 1, and consider

ψiphq :“ exppBi,Jq ¨ exppBi,J´1q ¨ . . . ¨ exppBi,1q.

Depending on the choice of Bi,J´l “ Ci,J´l or C̃i,J´l, we have ψi “ ϕi or ϕ´1i , respectively.
We will also make use of

ϕliphq :“ exppBi,Jq ¨ exppBi,J´1q ¨ . . . ¨ exppBi,J´lq.

We obtain1

9ψi “
J´1ÿ
l“0
Adψli

´
dexpBi,J´lp 9Bi,J´lq

¯
¨ ψi.

So we can write

9ψi “ S iphqψi with S iphq :“
J´1ÿ
l“0
Adψli

´
dexpBi,J´lp 9Bi,J´lq

¯
,

1We recall that dexpwpuq :“
ez´1
z

ˇ̌̌
z“adw puq “ u` 1{2!rw, us ` 1{3!rw, rw, uss ` . . . , adwpuq :“ rw, us (

matrix commutator of w and u) and Adψpuq :“ ψuψ´1.
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and as a direct consequence we have

ψ
prq
i “

r´1ÿ
k“0

ˆ
r ´ 1
k

˙ ˆ
dr´1´k

dhr´1´k
S iphq

˙
ψ
pkq
i . (1.2.4)

Now we have the following proposition for finding the derivatives of S iphq :
Proposition 1.2.1. Given that Z0 “ Z0phq and W “ Wphq are two matrix-valued
differentiable functions then

dr

dhr
AdWZ0 “ AdWZr, (1.2.5)

with
Zr “ rW´1 9W , Zr´1s ` 9Zr´1. (1.2.6)

The proof is by induction.
By differentiating from (1.2.6) we obtain

9Zr “ r 9W´1 9W `W´1 :W , Zr´1s ` rW´1 9W, 9Zr´1s ` :Zr´1, (1.2.7)

and using (1.2.6) and (1.2.7), assumingWp0q “ I, we obtain$’’’’’’’’’’’’’’’&’’’’’’’’’’’’’’’%

d
dh
AdWZ0|h“0 “ Z1p0q “ r 9Wp0q, Z0p0qs ` 9Z0p0q

9Z1p0q “ r´ 9Wp0q2 ` :Wp0q, Z0p0qs ` r 9Wp0q, 9Z0p0qs ` :Z0p0q
d2

dh2
AdWZ0|h“0 “ Z2p0q “ r 9Wp0q, Z1p0qs ` 9Z1p0q

9Z2p0q “ r´ 9Wp0q2 ` :Wp0q, Z1p0qs ` r 9Wp0q, 9Z1p0qs ` :Z1p0q
d3

dh3
AdWZ0|h“0 “ Z3p0q “ r 9Wp0q, Z2p0qs ` 9Z2p0q

...

(1.2.8)
Further assuming that Z0 “ dexp´Bp 9Bq for some matrix-valued function B “ Bphq,
expanding the right-hand side and differentiating we obtain$’’’’’’’’’’&’’’’’’’’’’%

Z0p0q “ 9Bp0q
9Z0p0q “ :Bp0q
:Z0p0q “ ;Bp0q ´ 1

2
r 9Bp0q, r 9Bp0q, :Bp0qss

;Z0p0q “ Bivp0q ´ r 9Bp0q, ;Bp0qs ` 1
2

r 9Bp0q, :Bp0qs
...

(1.2.9)
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We can now obtain derivatives of S i and ψi. By setting W “ ψli and B “ BJ´li we can
calculate the derivatives of S i using the steps in (1.2.5)-(1.2.9). We obtain$’’’’’’’’’’’’’’’’’’’’&’’’’’’’’’’’’’’’’’’’’%

S ip0q “
J´1ÿ
l“0

9BJ´li p0q,

dS i
dh

ˇ̌̌̌
h“0

“
J´1ÿ
l“0

J´l´1ÿ
r“0

pr 9BJ´ri p0q, 9BJ´li p0qs ` :BJ´li p0qq,

d2S i
dh2

ˇ̌̌̌
h“0

“ 2
J´1ÿ
l“0

J´l´1ÿ
r“0

r 9BJ´ri p0q, :BJ´li p0qs `
J´1ÿ
l“0

J´l´1ÿ
r“0

r :BJ´ri p0q, 9BJ´li p0qs`

`
J´1ÿ
l“0

p;BJ´ri p0q ´ 1
2

r 9BJ´li p0q, :BJ´li p0qsq,

...

(1.2.10)
Analogously the derivatives of S li :“

řJ´l´1
r“0 Adψri

´
dexpBi,J´rp 9Bi,J´rq

¯
are obtained as in

the forgoing formulae but substituting J´1 as upper index in the external summation with
J´ l´1. In Table 1.1 we report the values of the derivatives of ϕi and ϕ´1j at h “ 0, which
are obtained from (1.2.4) and (1.2.10) by recursion, starting with ψip0q “ I. In Table 1.2
we report the values of the derivatives of ϕi, j at h “ 0, which are obtained using Table 1.1
and the formula

ϕ
pmq
i, j “

mÿ
r“0

ˆ
m
r

˙
ϕ
pm´rq
i pϕ´1j qprq. (1.2.11)

The derivatives of Yi, reported in Table 1.3, are obtained using the results in tables 1.1 and
1.2, and the recursion formula (1.2.2), starting with Yip0q “ y0.

1.3 Order conditions for orders 1´ 3
We now present a detailed analysis for deriving the third order conditions.
From (1.2.4) we obtain that

9ϕip0q “
J´1ÿ
l“0

9Bi,J´lp0q “
J´1ÿ
l“0

9Ci,J´lp0q
J´1ÿ
l“0

ÿ
k
αki,J´lC “ p

ÿ
k
âi,kqC. (1.3.1)

Analogously one computes 9
ϕ´1j p0q. These expressions are reported in Table 1.1 and can

be used to obtain

9Yi|h“0 “ p
ÿ
k
âi,kqCy0 ` p

ÿ
k
ai,kqAy0 “ ĉiCy0 ` ciAy0, (1.3.2)
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see Table 1.3. Also from (1.2.1) we obtain

9yp0q “ Cy0 ` Ay0. (1.3.3)

Imposing 9Ys`1|h“0 “ 9yp0q we obtain the following order conditions for order 1,ÿ
k
âs`1,k “ 1,

ÿ
k
as`1,k “ 1.

These correspond to requiring that the two RK methods (1.1.3) are consistent.
For order 2 from (1.2.2) we have that

:Yi|h“0 “ ϕp2qi |h“0y0 ` 2
ÿ
j
ai, j

´
ϕ
p1q
i, j p0q ` ϕi, jp0qA 9Yjp0q

¯
with ϕi, jp0q “ I and ϕp1qi, j p0q “ 9ϕip0q ´ 9ϕ jp0q “ pĉi ´ ĉ jqC. Using 9Yjp0q from Table 1.3
we obtain

:Yi|h“0 “ ϕp2qi |h“0y0 ` 2
ÿ
j
ai, jppĉi ´ ĉ jqCAy0 ` ĉ jACy0 ` c jA2y0q. (1.3.4)

From (1.2.4) and (1.2.10) we obtain

ϕ
p2q
i |h“0 “ dS iphq

dh
ϕiphq|h“0 ` pS iphq2ϕiphqq|h“0

“ 2
ÿ
k
âi,kĉkC1pCy0q ` 2

ÿ
k
âi,kckC1pAy0q ` p

ÿ
j
âi, jq2C2,

(1.3.5)

reported in Table 1.1. Substituting the results in (1.3.4) we obtain

:Yi|h“0 “ p2
ÿ
k
âi,kĉkC1pCy0q ` 2

ÿ
k
âi,kckC1pAy0q ` c2i C2qy0`

2
ÿ
j
ai, jppĉi ´ ĉ jqCAy0 ` ĉ jACy0 ` c jA2y0,

(1.3.6)

reported in Table 1.3. Using (1.2.1) and substituting for 9yp0q from (1.3.3) we obtain
yp2q|h“0 “ C1p 9yp0qqy0 ` pC ` Aq2y0 “ C1ppC ` Aqy0qy0 ` pC ` Aq2y0, (1.3.7)

where C1pyqpwq is obtained by differentiating Cpyq such that

pC1pyqpwqqi, j :“
Nÿ
k“1

Bci, j
Byk pyqwk, ci, j “ pCpyqqi, j, y “ ry1, . . . , yNsT .

Taking i “ s ` 1 and matching coefficients in :Yi|h“0 and yp2q|h“0 we obtain the four
order conditions for order 2,
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1.3. Order conditions for orders 1´ 3

Table 1.1: Derivatives of ϕi and its inverse at h “ 0, where
ř
:“ řJ´1

l“0
řJ´l´1
r“0

ř
k

ř
m .

q ϕ
pqq
i p0q

0 I

1 Cĉi
2 2

ř
k âi,kC1pĉkCy0 ` ckAy0q ` ĉ2i C2

3

4
ř
αki,J´rα

m
i,J´lrC,C1pĉmC ` cmAqs ` 2řαki,J´rαmi,J´lrC1pĉkC ` ckAq,Cs `

´ řJ´1
l“0

ř
k α

k
i,J´l

ř
m α

m
i,J´lrC,C1pĉmC ` cmAqs`

3
řJ´1
l“0

ř
k α

k
i,J´lC

2pĉkC ` ckA, ĉkC ` ckAq`
6

řJ´1
l“0

ř
k α

k
i,J´l

ř
j âk, jC1pC1pĉ jC ` c jAqq ` 3řJ´1

l“0
ř
k α

k
i,J´lĉ

2
kC
1pC2q`

6
řJ´1
l“0

ř
k α

k
i,J´lpĉkck ´ ř

j ak, jĉ jqC1pCAq`
6

řJ´1
l“0

ř
k α

k
i,J´l

ř
j ak, jC1pApĉ jC ` c jAqq`

4ĉi
ř
k ai,kpC1pĉkC ` ckAqqC ` 2ĉi

ř
k ai,kCpC1pĉkC ` ckAqq ` ĉ3i C3

q pϕ´1j qpqqp0q
0 I

1 ´Cĉ j
2 ´2ř

k â j,kC1pĉkCy0 ` ckAy0q ` ĉ2jC2

3

4
ř
αkj,r`1α

m
i,r`1rC,C1pĉmC ` cmAqs ` 2řαkj,r`1αmi,r`1rC1pĉkC ` ckAq,Cs `

´ řJ´1
l“0

ř
k α

k
j,l`1

ř
r α

r
j,l`1rC,C1pĉrC ` crAqs`

´3řJ´1
l“0

ř
k α

k
j,l`1C

2pĉkC ` ckA, ĉkC ` ckAq
´6řJ´1

l“0
ř
k α

k
j,l`1

ř
j âk, jC1pC1pĉ jC ` c jAqq ´ 3řJ´1

l“0
ř
k α

k
j,l`1ĉ

2
kC
1pC2q`

´6řJ´1
l“0

ř
k α

k
j,l`1pĉkck ´ ř

j ak, jĉ jqC1pCAq`
´6řJ´1

l“0
ř
k α

k
i,l`1

ř
r ak,rC1pApĉrC ` crAqq`

4ĉ j
ř
k ai,kpC1pĉkC ` ckAqqC ` 2ĉ j

ř
k a j,kCpC1pĉkC ` ckAqq ` ĉ3jC3

ÿ
j
âs`1, jĉ j “ 1

2
,

ÿ
j
as`1, jc j “ 1

2
,

ÿ
j
as`1, jĉ j “ 1

2
,

ÿ
j
âs`1, jc j “ 1

2
.
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Table 1.2: Derivatives of ϕi, j at h “ 0.

q ϕ
pqq
i, j p0q

0 I

1 pĉi ´ ĉ jqC
2 2

ř
kpâi,k ´ â j,kqC1pĉkC ` ckAq ` pĉi ´ ĉ jq2C2

3

4
řJ´1
l“0

řJ´l´1
r“0 př

k α
k
i,J´r

ř
m α

m
i,J´l ´ ř

k α
k
i,r`1

ř
m α

m
i,l`1qrC,C1pĉmC ` cmAqs

`2řJ´1
l“0

řJ´l´1
r“0 př

k α
k
i,J´r

ř
m α

m
i,J´l ´ ř

k α
k
i,r`1

ř
m α

m
i,l`1qrC1pĉkC ` ckAq,Cs

´ řJ´1
l“0 př

k α
k
i,J´l

ř
m α

m
i,J´l ´ ř

k α
k
i,l`1

ř
m α

m
i,l`1qrC,C1pĉmC ` cmAqs`

3
ř
kpâi,k ´ â j,kqC2pĉkC ` ckA, ĉkC ` ckAq`

6
ř
kpâi,k

ř
m âk,m ´ â j,k

ř
m âk,mqC1pC1pĉmC ` cmAqq`

3
ř
kpâi,k ´ â j,kqĉ2kC1pC2q`

6
ř
kpâi,k ´ â j,kq

ř
m ak,mC1pApĉmC ` cmAqq`

4
ř
kpĉiâi,k ` ĉ jâ j,kqC1pĉkC ` ckAqC ` 2ř

kpĉiâi,k ` ĉ jâ j,kqCC1pĉkC ` ckAq`
pĉ3i ´ ĉ3jqC3 ` 3pĉiĉ2j ´ ĉ jĉ2i qC3 ´ 6ĉ j

ř
k âi,kC1pĉkC ` ckAqC`

´6ĉi
ř
k â j,kCC1pĉkC ` ckAq

Note: The matrix-valued functionC “ Cpyq and it’s derivatives are linear with respect
to y.
For order 3 we proceed as follows:

First from (1.2.1) we have

yp3q|h“0 “ C2py0qp 9yp0q, 9yp0qqy0 `C1py0qp:yp0qqy0 ` pCpy0q ` Aq3y0`
2C1py0qp 9yp0qqpCpy0q ` Aqy0 ` pCpy0q ` AqC1py0qp 9yp0qqy0,

(1.3.8)

where we have used C2pyqpw, zq obtained by differentiatingCpyq such that

pC2pyqqpw, zqqi, j :“
Nÿ
k“1

Nÿ
m“1

B2ci, j
BykBym pyqwkzm, ci, j “ pCpyqqi, j.

In short we will write C, C1, C2, . . . for Cpy0q, C1py0q, C2py0q, . . . respectively.
Substituting for 9yp0q and :yp0q from (1.3.3) and (1.3.7) respectively, we obtain
yp3q|h“0 “ C2ppC ` Aqy0, pC ` Aqy0qy0 `C1pC1ppC ` Aqy0qy0 ` pC ` Aq2y0qy0`

2C1ppC ` Aqy0qpC ` Aqy0 ` pC ` AqC1ppC ` Aqy0qy0 ` pC ` Aq3y0.
(1.3.9)
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1.3. Order conditions for orders 1´ 3

Table 1.3: Derivatives of Yi at h “ 0.

q Ypqqi p0q
0 y0
1 př

j âi, jqCy0 ` př
j ai, jqAy0

2
2

ř
j âi, jC1pĉ jC ` c jAqy0 ` ĉ2i C2y0`

2ĉiciCAy0 ´ 2př
j ai, jĉ jqCAy0 ` 2ř

j ai, jApĉ jC ` c jAqy0

3

4
řJ´1
l“0

řl
r“0

ř
k α

k
i,J´r

ř
m α

m
i,J´lrC,C1pĉmC ` cmAqsy0

`2řJ´1
l“0

řl
r“0

ř
k α

k
i,J´r

ř
m α

m
i,J´lrC1pĉkC ` ckAq,Csy0

´ řJ´1
l“0

ř
k α

k
i,J´l

ř
r α

r
i,J´lrC,C1pĉrC ` crAqsy0`

3
řJ´1
l“0

ř
k α

k
i,J´lC

2pĉkC ` ckA, ĉkC ` ckAqy0
`6řJ´1

l“0
ř
k α

k
i,J´l

ř
j âk, jC1pC1pĉ jC ` c jAqqy0`

3
řJ´1
l“0

ř
k α

k
i,J´lĉ

2
kC
1pC2qy0`

6
řJ´1
l“0

ř
k α

k
i,J´lpĉkck ´ ř

j ak, jĉ jqC1pCAqy0`
6

řJ´1
l“0

ř
k α

k
i,J´l

ř
j ak, jC1pApĉ jC ` c jAqqy0`

4ĉi
ř
k ai,kpC1pĉkC ` ckAqqCy0 ` 2ĉi

ř
k ai,kCpC1pĉkC ` ckAqqy0 ` ĉ3i C3y0

6
ř
k âi,kp

ř
j ai, jqC1pĉkC ` ckAqAy0 ` 3př

k âi,kq2p
ř
j ai, jqC2Ay0`

6
ř
k âi,kqp´ ř

j ai, jĉ jC2Ay0 ` ř
j ai, jCApĉ jC ` c jAqy0 ` 3ř

j ai, jĉ2jC
2Ay0´

6
ř
j ai, j

ř
k â j,kC1pĉkC ` ckAqAy0 ´ 6ř

j ai, jĉ jCApĉ jC ` c jAqy0`
6

ř
j ai, j

ř
m â j,mAC1pĉmC ` cmAqy0 ` 3ř

j ai, jĉ2jAC
2y0`

6
ř
j ai, jpĉ jc j ´ ř

m a j,mĉmqACAy0 ` 6ř
j ai, j

ř
m a j,mA2pĉmC ` cmAqy0

We now consider the third derivative of the numerical solution. From (1.2.2) we obtain

Yp3qi
ˇ̌̌
h“0

“ ϕp3qi
ˇ̌̌
h“0
y0 ` 3

ÿ
j
ai, j ϕ

p2q
i

ˇ̌̌
h“0
Ay0`

6
ÿ
j
ai, j ϕ

p1q
i

ˇ̌̌
h“0
A 9Yj|h“0 ` 3

ÿ
j
ai, jA :Yj

ˇ̌
h“0 .

(1.3.10)

We need to find ϕp3qi |h“0 via (1.2.4) using the expressions for ϕp2qi |h“0 and ϕp1qi |h“0 which
have already been found and reported in Table 1.1. Using earlier row entries of Table 1.1
and (1.2.11) we also compute ϕp2qi, j “ ϕip0q ` 2:ϕip0q 9

ϕ
´1
j p0q ` :

ϕ
´1
j p0q, reported in Table
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1.2.
From (1.2.4) it follows that

ϕ
p3q
i

ˇ̌̌
h“0

“ d2S i
dh2

ˇ̌̌̌
h“0

` 2 dS i
dh

ˇ̌̌̌
h“0
ϕ
p1q
i

ˇ̌̌
h“0

` S i|h“0 ϕp2qi
ˇ̌̌
h“0
. (1.3.11)

We obtain

ϕ
p3q
i

ˇ̌̌
h“0

“ d2S i
dh2

ˇ̌̌̌
h“0

`

2p2
ÿ
k
âi,kĉkC1pCy0q ` 2

ÿ
k
âi,kckC1pAy0qq

ÿ
k
âi,kC`

2
ÿ
k
âi,kCp

ÿ
k
âi,kĉkC1pCy0q `

ÿ
k
âi,kckC1pAy0qq `

ÿ
k
âi,kCp

ÿ
j
âi, jq2C2.

(1.3.12)
We have

9Ci,J´lp0q “
ÿ
k
αki,J´lC,

:Ci,J´lp0q “ 2
ÿ
k
αki,J´lC

1pĉkC ` ckAq,

;Ci,J´lp0q “ 3
ÿ
k
αki,J´lC

2pĉkC ` ck, ĉkC ` ckq `C1p:Ykp0qq.

(1.3.13)

We use (1.2.10) to find d2S i
dh2

ˇ̌̌
h“0
, setting Bi,J´l “ Ci,J´l, and using the derivatives

computed in (1.3.13) with :Ykp0q from Table 1.3.
Finally we get

d2S i
dh2

ˇ̌̌̌
h“0

“
J´1ÿ
l“0

lÿ
r“0

ÿ
k,m
αki,J´rα

m
i,J´lp4rC,C1pĉmC ` cmAqs ` 2rC1pĉkC ` ckAq,Csq`

3
J´1ÿ
l“0

ÿ
k
αki,J´lC

2pĉkC ` ckA, ĉkC ` ckAq`

6
J´1ÿ
l“0

ÿ
k, j
αki,J´lâk, jC

1pC1pĉ jC ` c jAqq`

3
J´1ÿ
l“0

ÿ
k
αki,J´lĉ

2
kC
1pC2q ` 6

J´1ÿ
l“0

ÿ
k
αki,J´lpĉkck ´

ÿ
j
ak, jĉ jqC1pCAq`

6
J´1ÿ
l“0

ÿ
k, j
αki,J´lak, jC

1pApĉ jC ` c jAqq ´
J´1ÿ
l“0

ÿ
k,r
αki,J´lα

r
i,J´lrC,C1pĉrC ` crAqs.

(1.3.14)
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Using (1.3.11) we obtain ϕp3qi p0q as reported in Table 1.1 and from (1.3.10) we obtain
Yp3qi p0q reported in Table 1.3.
By imposing Yp3qs`1|h“0 “ yp3q|h“0 we obtain the conditions for order 3 (recalling that

αks`1,J´l “ βk andřJ´1
l“0 β

k
J´l “ b̂k) reported in Table 1.4.

1.4 Extra coupling conditions for order 4
For methods of order up to 3, we observe that the order conditions form a subset of the
set of order conditions for the partitioned Runge-Kutta method and the commutator-free
methods. The set of order conditions for methods of order 4 is very large, and we do
not attempt to derive them here. Rather we investigate that there exist extra coupling
conditions that do not belong to the set of order conditions for the partitioned Runge-Kutta
method.
We consider coefficients of elementary differentials preceded by an A in both the

expressions for the fourth derivatives (q “ 4) of the exact and numerical solutions
(1.2.1) and (1.2.2) respectively. That means matching the terms in Ayp3q

ˇ̌
h“0 and

4
ř
i, j ai, jϕi, jp0qAYp3qj p0q, since ϕi, jp0q “ I.We obtain

Ayp3q
ˇ̌̌
h“0

“ A
”
C2pC,Cq `C2pC, Aq `C2pA,Cq `C2pA, Aq `C1pC1pCqq

`C1pC1pAqq `C1pC2q `C1pCAq `C1pACq `C1pA2q ` 2C1pCqC
` 2C1pCqA` 2C1pAqC ` 2C1pAqA`CC1pCq `CC1pAq ` AC1pCq
` AC1pAq ` pC ` Aq3

ı
y0.

(1.4.1)

Substitute for ϕi, jp0q and Yp3qj p0q in 4ř
j
ř
j ai, jϕ

p0q
i, j AY

p3q
j p0q, and select elementary

differentials whose coefficients contain the CF coefficients αks`1,J´l :“ βkJ´l. These include
ACC1pCqy0, ACC1pAqy0, AC1pCqCy0, AC1pAqCy0, arising from the terms

16
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lArC,C1pĉmC ` cmAqsy0`

8
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lArC,C1pĉkC ` ckAqsy0

´ 4
ÿ
jlrk
ai, jαkj,J´lα

r
j,J´lArC,C1pĉrC ` crAqsy0

` 16
ÿ
j,k
ai, jĉ jâ j,kAC1pĉkC ` ckAqCy0 ` 8

ÿ
j,k
ai, jĉ jâ j,kACC1pĉkC ` ckAqy0,

(1.4.2)

where ÿ
jlrk
:“

ÿ
j

J´1ÿ
l“0

lÿ
r“0

ÿ
k
. (1.4.3)
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Table 1.4: Conditions of order 3

condition elementary differential

co
m
m
ut
at
or
s

4
řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lĉm

2
řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lĉk´řJ´1

l“0
ř
k β
k
J´l

ř
r β
r
J´lĉr “ 0

,//.//- rC1pCq,Cs

4
řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lcm´

2
řJ´1
l“0

řl
r“0

ř
k β
k
J´r

ř
m β

m
J´lck´řJ´1

l“0
ř
k β
k
J´l

ř
r β
r
J´lcr “ 0

,///.///- rC1pAq,Cs

hi
gh
er
or
de
r

di
ff
er
en
tia
ls

3
ř
k b̂kĉ2k “ 1 C2pC,Cq

3
ř
k b̂kĉkck “ 1 C2pC, Aq

3
ř
k b̂kĉkc2k “ 1 C2pA, Aq

3
ř
k b̂kckĉk “ 1 C2pA,Cq

6
ř
k b̂k

ř
j âk, jĉ j “ 1 C1pC1pCqq

6
ř
k b̂k

ř
j âk, jc j “ 1 C1pC1pAqq

3
ř
k b̂kĉ2k “ 1 C1pC2q

6
ř
k b̂kpĉkck ´ ř

j ak, jĉ jq “ 1 C1pCAq
6

ř
k b̂k

ř
j ak, jĉ j “ 1 C1pACq

6
ř
k b̂k

ř
j ak, jc j “ 1 C1pA2q

pr
od
uc
ts
of

lo
w
er
or
de
r

di
ff
er
en
tia
ls

6
ř
k b̂kp

ř
j b jqĉk ´ 6ř

j b j
ř
k â j,kĉk “ 2 C1pCqA

6
ř
k b̂kp

ř
j b jqck ´ 6ř

j b j
ř
k â j,kck “ 2 C1pAqA

3´ 6ř
j b jĉ j ` 3ř

j b jĉ2j “ 1 C2A
6

ř
j b jĉ j ´ 6ř

j b jĉ2j “ 1 CAC
6

ř
j b jc j ´ 6ř

j b jĉ jc j “ 1 CA2

6
ř
j b j

ř
m â j,mĉm “ 1 AC1pCq

6
ř
j b j

ř
m â j,mcm “ 1 AC1pAq

3
ř
j b jĉ2j “ 1 AC2

6
ř
j b jpĉ jc j

ř
m a j,mĉmq “ 1 ACA

6
ř
j b j

ř
m a j,mĉm “ 1 A2C

6
ř
j b j

ř
m a j,mcm “ 1 A3

62



1.4. Extra coupling conditions for order 4

Comparing coefficients of elementary differentials

ACC1pCqy0, ACC1pAqy0, AC1pCqCy0, AC1pAqCy0
we obtain the order conditions

16
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lĉm ´ 8

ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lĉk

´ 4
ÿ
jlrk
ai, jαkj,J´lα

r
j,J´lĉr ` 8

ÿ
j,k
ai, jĉ jâ j,kĉk “ 1,

,///.///- (1.4.4)

16
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lcm ´ 8

ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lck

´ 4
ÿ
jlrk
ai, jαkj,J´lα

r
j,J´lcr ` 8

ÿ
j,k
ai, jĉ jâ j,kck “ 1,

,///.///- (1.4.5)

´ 16
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lĉm ` 8

ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lĉk

` 4
ÿ
jlrk
ai, jαkj,J´lα

r
j,J´lĉr ` 16

ÿ
j,k
ai, jĉ jâ j,kĉk “ 2,

,///.///- (1.4.6)

Simplifying (1.4.4)-(1.4.6) via the use of third order conditions we obtain the order
conditions

4
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lĉm ´ 2

ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lĉk ´

ÿ
jlrk
ai, jαkj,J´lα

r
j,J´lĉr “ 0,

(1.4.7)

4
ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lcm ´ 2

ÿ
jlrk

ÿ
m
ai, jαkj,J´rα

m
j,J´lck ´

ÿ
jlrk
ai, jαkj,J´lα

r
j,J´lcr “ 0,

(1.4.8)

where i “ s` 1 so that ai, j “ as`1, j “ b j, j “ 1, . . . , s.
Assuming that the RK tableaus (1.1.3) fulfill the order conditions for a classical

partitioned RK method of order 4, and that the b’s are different from the b̂’s, i.e., b j ‰ b̂ j
for some j “ 1, . . . , s, then the order conditions in (1.4.7)-(1.4.8) will result in a new or
extra set of coupling conditions (involving the α and β coefficients) for our method, which
are not included in the set of order conditions for the classical partitioned RK methods and
CF methods. This is not the case for orders 1 through 3 where all our order conditions are
only a subset of those for the partitioned RK and CF methods.
In figure 1.1(a) we have a numerical test showing the order in time for a fourth order

method (DIRK-CF4). This method is constructed using the additive partitioned IMEX RK
method of Kennedy and Carpenter [5] (here named as IMEX4) wherein we derive from
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(a) Order 4
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(b) Orders 1, 2, 3

Figure 1.1: Numerical order tests using Burgers’ equation, ut ` uux “ νuxx, on Dirichlet
homogeneous BCs, x P r0, 1s, ν “ 0.05, u0 “ sin πx, T “ 1,Δx “ 1{32. Plot of the
2´ norm error as a function of step size h “ 2´n, n “ 4, 5, . . . , 9. (a) Order test for the
fourth order DIRK-CF4 and IMEX4 (b)Order test for first order DIRK-CF1, second order
DIRK-CF2 and DIRK-CF2L, third order DIRK-CF3G.

the corresponding explicit tableau the commutator-free coefficients via (1.1.2) satisfying
the CF order conditions as given by Owren [6]. Using two exponentials in the last internal
stage and two exponentials in the update stage, these conditions are given by

1
6

ÿ
k
βk1ck ` 1

18
ÿ
k
βk2 “ 1

24
(1.4.9)

1
4

ÿ
k
βk1c

2
k ` 1

12
ÿ
k
βk2 “ 1

24
(1.4.10)

1
2

ÿ
j,k
βk1ak, jc j ` 1

12

ÿ
k
βk2 “ 1

24
(1.4.11)

1
2

ÿ
j,k
b jc jαkj,1ck ` 1

2
ÿ
i, j,k
biai, jc jαki,2 “ 1

24
. (1.4.12)

It is important to note, however, that our new method DIRK-CF4 automatically satisfies
the coupling conditions (1.4.7)-(1.4.8) as part of the partitioned RK order conditions since
in this choice of IMEX RK scheme the b’s and b̂’s are the same (see [5]). The figure also
shows a comparison between the DIRK-CF4 and its counterpart IMEX4. The numerical
experiment is performed on the viscous Burgers’ equation

ut ` uux “ νuxx
over a spatial domain p0, 1q with initial condition upx, 0q “ u0pxq “ sinpπxq, and
homogeneous Dirichlet boundary conditions. We integrate on the interval r0, T s (T “
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1, ν “ 0.05 in this case) with time steps in the range th “ 2´n|n “ 4, 5, . . . , 9u.
The spatial discretization is the standard centered differences on a uniform grid of mesh
step Δx “ 1{32. The error is measured as a grid-point error in the 2´norm, and the
reference (exact) solution is computed as in [3]. Figure 1.1(b) shows the numerical order
tests performed for some of the first to third order methods derived in [3].
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Chapter 4

Semi-Lagrangian multistep
exponential integrators for index
2 differential-algebraic systems

Abstract. Implicit-explicit (IMEX) multistep methods are very useful for the
time discretization of convection diffusion PDE problems such as the Burgers’
equations and the incompressible Navier-Stokes equations. In the latter as
well as in PDE models of plasma physics and of electromechanical systems,
semi-discretization in space gives rise to differential-algebraic (DAE) system of
equations often of index higher than 1. In this paper we propose a new class of
exponential integrators for index 2 DAEs arising from the semi-discretization of
PDEs with a dominating and typically nonlinear convection term. This class of
problems includes the incompressible Navier-Stokes equations. The integration
methods are based on the backward differentiation formulae (BDF) and they
can be applied without modifications in the semi-Lagrangian integration of
convection diffusion problems. The approach gives improved performance at
low viscosity regimes.

4.1 Introduction
We consider differential-algebraic equations (DAEs) of the form

9y “ Cpyqy` f py, zq,
0 “ gpyq, (4.1.1)

with consistent initial data ypt0q “ y0, zpt0q “ z0, where y “ yptq P Rn, z “ zptq P Rm,
for all t P rt0, T s; while f : Rn ˆ Rm Ñ R

n, g : Rn Ñ R
m, and C “ Cpyq : Rn Ñ R

nˆn

is a matrix-valued function of y. The notation 9y denotes the derivative with respect to
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t. DAEs of this type arise, for example, from the semi-discretization (in space) of PDE
models in plasma physics, and also of the incompressible Navier-Stokes equations. In this
case Cpyqy represents the nonlinear convection term, f py, zq represents the diffusion and
pressure terms and gpyq comes from the incompressibility constraint; f and g are both
linear in this case. Assuming (4.1.1) generally results from a convection diffusion PDE,
we will refer to the term Cpyqy as the convecting vector field or simply the convection
term.
The system of DAEs (4.1.1) is of differential index 2 if the functions f , g are sufficiently

differentiable and the matrix gy fz is nonsingular in a neighbourhood of the solution.
Here fz and gy denote Jacobian transformations of f and g. The algebraic part of (4.1.1)
represents the main constraint. A second (hidden) constraint,

gypyqpCpyqy ` f py, zqq “ 0, (4.1.2)

is given by differentiating the main algebraic constraint with respect to t. The variable
y is commonly referred to as the differential or state variable while the z-variable is the
algebraic or constraint variable or simply the Lagrange multiplier. For more details about
index 2 DAEs we refer to [17] for example.
Runge-Kutta (RK) methods have been considered for the time discretization of index 2

DAE systems (see [16, 2, 29, 17, 23, 24]). Some of these RK methods achieve high order
of convergence with comparatively little storage requirements and have good stability
properties. However, fully implicit RK methods generally have a drawback over the
IMEX1 or DIRK2 methods in terms of computational costs per time step. For reasons
of ease of implementation, we only wish to consider IMEX methods, whereby we treat the
nonlinear term Cpyqy explicitly and the term f py, zq implicitly as it may be stiff and linear
in some applications.
One-step IMEX methods for hyperbolic systems with relaxation have recently been

studied in [33] and applied to index-1 DAEs in [10]. In the framework of IMEX
one-step, exponential integrators, we have earlier considered DIRK-CF methods for
convection diffusion PDE problems [7]. These methods are based on commutator-free3
(CF) Lie group methods and are typically constructed from IMEX RK methods where the
implicit part is a DIRK method (see Appendix 4.5.3 for details on IMEX-CF exponential
integrators and DIRK-CF methods in particular). The main reason for developing this
type of methods is that they can be applied to the semi-Lagrangian numerical integration
of convection diffusion PDEs, achieving improved stability behavior in the small viscosity
limit.
When applied directly to problems of the type (4.1.1), the DIRK-CF methods can

however only give convergence of order 2. The same remains true when using IMEX
RK methods such as those in [3, 26]. DIRK methods for (4.1.1) may appear cheaper to

1Implicit-explicit (IMEX): Methods that treat, for example, the term Cpyqy explicitly and the remaining terms
implicitly.

2Diagonally implicit RK (DIRK): Implicit RK method with coefficients tai ju such that ai j “ 0 for all i ă j.
3using the terminology of [8]. See also Appendix 4.5.3 for further details.

70



4.1. Introduction

implement than fully implicit RK methods, but the order of convergence is greatly limited
by the stage order4. For example the DIRK methods with nonzero diagonal entries, e.g.
most of the methods in [1, 3], will give convergence of order at most 2 (see [16, p.18] and
[17, Lemma 4.4, Thm. 4.5, p.495-496]). All the DIRK methods in [26, 36, 27] have stage
order at most 2, thus they would lead to convergence of order at most 3 (according to [22,
Thm.5.2]).

On the other hand, linear k-step methods such as BDF methods, are known to give
convergence of order p “ k, for 1 ď k ď 6, in both variables (see for example [17,
VII.3]). They are also known to be A-stable for 1 ď k ď 2 and Apαq-stable for 3 ď k ď 6.
We however do not wish to treat the whole system implicitly. IMEX multistep methods
based on BDF schemes have been developed and applied for the time discretization of
convection diffusion PDE problems such as the Burgers’ equations (see for example [4])
as well as the incompressible Navier-Stokes equations (see [30, 25, 20, 34, 41, 14]).

We hereby propose a new class of exponential integrators for (4.1.1) based on the
backward differentiation formula (BDF). We name these methods BDF-CF for short.
They have about the same implementation ease as the DIRK-CF, and as such they can
be regarded as their multistep counterpart. Their main advantage compared to the DIRK-
CF is that they can achieve order of convergence higher than 2, when applied to (4.1.1)
both in the algebraic and differential variables.

The methods are a subclass of the IMEXmultistep methods and they are closely related
to the SBDF methods presented and studied in [4, 21]. Compared to these methods the
BDF-CF methods can be used without modifications in a semi-Lagrangian approach to
convection diffusion problems, whereby the exponentials must be realized as flows of pure
convection problems. The pure convection flows are typically implemented by tracing
characteristics, as in [35, 41, 7], or by computing more accurate approximations of the
pure convection flows as in [30, 40] (this can for example be achieved using an integration
method of higher order).

We recall that the concept of multistep exponential integrators is not new to this paper.
Explicit multistep exponential integrators have recently been studied for semilinear ODEs
with a linear stiff term and a nonlinear non stiff term, see [11, 5, 32]. These methods
require the computation of exponentials of the linear stiff term, and the obtained schemes
are fully explicit. If the nonlinear term represents convection and is in the form Cpyqy, the
methods we present here can also be applied to such ODEs, but our assumption is that the
problems are convection-dominated and therefore we treat the nonlinear term explicitly by
exponentials (or accurate solution of pure convection flows) and the linear term implicitly.
Commutator-free methods of multistep type were originally considered in [12].

4A RK method with coefficients tai j , bi, ciu, i, j “ 1, . . . , s, has (internal) stage order q, if q is the greatest
integer such that

řs
j“1 ai jc

k´1
j “ cki {k, i “ 1, . . . , s hold for all k “ 1, . . . , q.
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4.1.1 The BDF-CF methods
We define the k-step exponential BDF (or simply BDF-CF) method as follows: Given k
initial values y0, . . . , yk´1, find pyk, zkq such that

αkyk `
k´1ÿ
i“0
αiϕiyi “ h f pyk, zkq,

0 “ gpykq
(4.1.3)

where ϕi :“ exp
´řk´1

j“0 ai`1, j`1hCpy jq
¯
, i “ 0, . . . , k ´ 1, and ai j P R, i, j “ 1, . . . , k,

are coefficients of the method, while αi, i “ 0, . . . , k, are coefficients of the linear k-step
classical BDFmethod. The use of the functions ϕi (exact flows of the linearized convection
term) is introduced to obtain improved performance in the treatment of convection-
dominated problems. This idea was also found useful in the DIRK-CF methods [7]
and in the multirate methods for atmospheric flow simulation [40]. We also refer to the
methods as commutator-free (CF) multistep exponential integrators, since the flows of the
convecting vector fields do not contain matrix commutators. Thus the name BDF-CF is
used for the method (4.1.3). In a more general setting involving CF exponential integrators
[6], the functions ϕi would be defined as a composition of convection flows. However, in
the BDF-CF methods considered here single flows would suffice. More precisely we shall
write a k-order (typically k-step) method as BDFk-CF. The overall method is termed semi-
Lagrangian if we treat each flow, ϕiyi, in a semi-Lagrangian fashion [35, 41] (see also
[7, Sect.3.1]); and is found useful for the time integration of convection diffusion PDEs
and the Navier-Stokes equations. Nevertheless, the flows can also be computed using
other numerical methods such as the direct approximation of the matrix exponentials via
a Padé approximant or by using a Krylov subspace method [9, 19, 38, 31, 28]. The semi-
Lagrangian approach was shown [7] to be more stable and accurate than the latter two
methods, in the solution of convection-dominated convection-diffusion problems. In this
paper the semi-Lagrangian approach has been used in all numerical experiments involving
time dependent PDEs.
Assuming once again that the system (4.1.1) arises from the semi-discretization (in

space) of a PDE, then a close comparison of the BDF-CF methods with the operator-
integrating-factor (OIF) splitting methods of Maday et al. [30] (also
considered in [14]) will be as follows: The OIF states; find pyk, zkq such that

αkyk `
k´1ÿ
i“0
αiỹi “ h f pyk, zkq, gpykq “ 0, (4.1.4)

where αi are coefficients of the classical k´step BDF method, and ỹi are solutions of the
linearized pure convection problems

9̃y “ Cpỹpqỹ, t P pti, tkq, ỹptiq “ yi
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where ỹpptq is a pk´1q-degree polynomial interpolation/extrapolation of the initial values.
The BDF-CF methods are also stated as in (4.1.4), but the ỹi are computed in a different
way.
The rest of the paper is organized as follows. In Section 4.2 we present a derivation of

the new class of methods. In Section 4.3 we state some convergence results for the methods
and provide a numerical evidence for the convergence of methods up to order 4.We discuss
the stability of the methods in Section 4.4, making comparisons with some well-known
IMEX multistep methods in the literature (for example [4, 21]). Unless stated otherwise,
we shall say that a method has ‘order’ p to refer to the temporal order of convergence
of the method. Also we shall only consider constant time steps, which shall be written as
h :“ Δt. Given initial time t0,we shall write tn to denote time level n such that tn :“ t0`nh.
For a given field variable v “ vptq we denote the numerical approximation at time tn by
vn « vptnq. In general we shall use the notation } ¨ } for an arbitrary but well-defined norm
of a vector or function.

4.2 Construction of the methods
Given a discrete time interval t0, . . . , tK (with final time T “ tK) and initial data
y0, . . . , yk´1, 1 ď k ď K, we describe a k´step BDF-CF method as follows

Algorithm 4.1. BDF-CF method

for n “ k ´ 1 to K ´ 1 do
ϕi “ exp

´
h

řk
j“1 ai`1, jCpyn´k` jq

¯
, i “ 0, . . . , k´ 1,

αkyn`1 ` řk´1
i“0 αiϕiyn`1´k`i “ h f pyn`1, zn`1q,

0 “ gpyn`1q
end

where ai, j P R, i, j “ 1, . . . , k, are coefficients of the BDF-CF method and αi are
coefficients of the classical k´step BDF method. Thus one can represent a k´step BDF-
CF method in terms of its coefficients as in the following table

yn´k`1 a1,1 . . . a1,k
...

... . . .
...

yn ak,1 . . . ak,k
Cpyn´k`1q . . . Cpynq

So that for each n ě k ´ 1 the method solves for the unknown values, yn`1, zn`1, given the
initial values yn´k`1, . . . , yn. For reasons of convenience (but without loss of generality)
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we shall often drop the index n or simply treat the case with n “ k ´ 1 as in (4.1.3).
The first order (one-step) BDF-CF method is simply the semi-explicit backward Euler
method, obtained by choosing ϕ0 “ exp phCpynqq in Algorithm 4.1. We shall therefore
only consider k-step methods, for k ě 2.
For simplicity we shall restrict the analysis of the methods to an ODE of the form

9y “ Cpyqy` f pyq. (4.2.1)

Extension to the DAE (4.1.1) is more or less direct.
Let us denote the exact value at time t j by ŷ j :“ ypt jq, j “ 0, . . . k, and write

ϕ̂i :“ exp
´
h

řk´1
j“0 ai`1, j`1Cpypt jqq

¯
, i “ 0, . . . , k ´ 1. Also let 9̂y j, :̂y j, . . . denote the

derivatives with respect to the time variable.

4.2.1 Second order method (BDF2-CF)
The truncation error τ2phq for a two-step method is given by

1
h

„
3
2
ŷ2 ´ 2ϕ̂1ŷ1 ` 1

2
ϕ̂0ŷ0

j
“ f pŷ2q ` τ2phq. (4.2.2)

For a classical second order BDF method we have

1
h

„
3
2
ŷ2 ´ 2ŷ1 ` 1

2
ŷ0

j
“ Cpŷ2qŷ2 ` f pŷ2q ` Oph2q. (4.2.3)

Eliminate f pŷ2q from (4.2.2) and (4.2.3) and put τ2phq “ Oph2q to obtain
1
h

„
2ϕ̂1ŷ1 ´ 1

2
ϕ̂0ŷ0 ´ 2ŷ1 ` 1

2
ŷ0

j
´Cpŷ2qŷ2 “ Oph2q, (4.2.4)

which is a reasonable requirement for a second order method.
Putting

ŷ0 “ ŷ1 ´ h 9̂y1 ` Oph2q,
ŷ2 “ ŷ1 ` h 9̂y1 ` Oph2q,

we get via Taylor expansion (about t “ t1q
Cpŷ2qŷ2 “ Cpŷ1qŷ1 ` hCpŷ1q 9̂y1 ` hC1pŷ1qp 9̂y1qŷ1 ` Oph2q,
ϕ̂0ŷ0 “ ŷ0 ` a11hrCpŷ1q ´ hC1pŷ1qp 9̂y1qspŷ1 ` h 9̂y1q ` a12hCpŷ1qpŷ1 ` h 9̂y1q

`h
2

2
pa11 ` a12q2C2pŷ1qŷ1 ` Oph3q,

ϕ̂1ŷ1 “ ŷ1 ` a21hrCpŷ1q ´ hC1pŷ1qp 9̂y1qsŷ1 ` a22hCpŷ1qŷ1
`h

2

2
pa21 ` a22q2C2pŷ1qŷ1 ` Oph3q.

74



4.2. Construction of the methods

Substituting into (4.2.4) and comparing coefficients of like terms and powers of hwe obtain
the following order conditions on the coefficients for order 2

2pa21 ` a22q ´ 1
2

pa11 ` a12q ´ 1 “ 0,

´2a21 ` 1
2
a11 ´ 1 “ 0,

1
2

pa11 ` a12q ´ 1 “ 0,

pa21 ` a22q2 ´ 1
4

pa11 ` a12q2 “ 0.

(4.2.5)

Solving this system yields a one-parameter set of coefficients, illustrated in the following
table

yn´1 2p1` 2γq ´4γ
yn γ 1´ γ

Cpyn´1q Cpynq

from which we define the second order BDF2-CF methods as

3
2
yn`1 ´ 2ϕ1yn ` 1

2
ϕ0yn´1 “ h f pyn`1q, n ě 1, (4.2.6)

where ϕ0 “ exp p2p1 ` γqhCpyn´1q ´ 4γhCpynqq and ϕ1 “ exp pγhCpyn´1q ` p1 ´
γqhCpynqq. Applied to the DAE (4.1.1) we get

1
h

„
3
2
yn`1 ´ 2ϕ1yn ` 1

2
ϕ0yn´1

j
“ f pyn`1, zn`1q,

0 “ gpyn`1q.
(4.2.7)

Note that the value of the parameter γ can be arbitrarily chosen. However an optimal
choice is possible in the ODE case. For example, in BDF2-CF, the local truncation error
τ2phq can be minimized. We have from (4.2.2), using Taylor expansion about t “ t1, that

τ2phq “ h2

8
;̂y1 ´ h2a21

”
C1p:̂y1q `C2p 9̂y1, 9̂y1q ´CC1p 9̂y1q

ı
ŷ1

“ h2

2

”
a11pC1p:̂y1q `C2p 9̂y1, 9̂y1qqŷ1 ´ 4C2 9̂y1 ´ 2a11CC1p 9̂y1qŷ1

ı
“ h2

”
a11C1p 9̂y1q 9̂y1 `C:̂y1

ı
´ h2

2

´
f 1p:̂y1q ` f 2p 9̂y1, 9̂y1q

¯
,
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which implies that for some constant c

}τ2phq} ď ch2p1` |a11| ` |a21|q “ ch2p1` |γ| ` 2|1` 2γ|q.
Thus, the parameter γ can then be chosen so as to minimize p1 ` |γ| ` 2|1 ` 2γ|q. This
minimum is 32 and occurs at γ “ ´ 1

2

4.2.2 Third order method (BDF3-CF)
The truncation error τ3phq for a three-step method is given by

1
h

„
11
6
ŷ3 ´ 3ϕ̂2ŷ2 ` 3

2
ϕ̂1ŷ1 ´ 1

3
ϕ̂0ŷ0

j
“ f pŷ3q ` τ3phq. (4.2.8)

A classical third order BDF method will satisfy

1
h

„
11
6
ŷ3 ´ 3ŷ2 ` 3

2
ŷ1 ´ 1

3
ŷ0

j
“ Cpŷ3qŷ3 ` f pŷ3q ` Oph3q. (4.2.9)

Combining (4.2.8) and (4.2.9), and requiring that τ3phq “ Oph3q we get
1
h

„
3ϕ̂2ŷ2 ´ 3

2
ϕ̂1ŷ1 ` 1

3
ϕ̂0ŷ0 ´ 3ŷ2 ` 3

2
ŷ1 ´ 1

3
ŷ0

j
´Cpŷ3qŷ3 “ Oph3q. (4.2.10)

We put in (4.2.10)

ŷ0 “ ŷ1 ´ h 9̂y1 ` h2

2
:̂y1 ` Oph3q,

ŷ2 “ ŷ1 ` h 9̂y1 ` h2

2
:̂y1 ` Oph3q,

ŷ3 “ ŷ1 ` 2h 9̂y1 ` 2h2:̂y1 ` Oph3q,
and carry out a Taylor expansion (about t “ t1). Comparing coefficients of like terms and
powers of hwe obtain the order conditions for order 3, comprising of 10 linearly dependent
equations in 9 unknowns (see Appendix 4.5.2 ). Solving the system of equations in Maple
yields a three-parameter family of methods, illustrated in the following table

yn´2 33
2 ´ 9

4β´ 9γ ´18` 9α` 9
2β` 9γ 9

2 ´ 9α´ 9
4β

yn´1 3` 2α´ 1
2β´ 2γ β ´1´ 2α´ 1

2β` 2γ
yn α 1´ α´ γ γ

Cpyn´2q Cpyn´1q Cpynq

,

from which the third order BDF3-CF methods are defined for n ě 2.
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4.2.3 Fourth order method (BDF4-CF)
We determine the coefficients, tai ju, i, j “ 1, . . . , 4, for the fourth order method by
requiring that the equation

1
h

„
4ϕ̂3ŷ3 ´ 3ϕ̂2ŷ2 ` 4

3
ϕ̂1ŷ1 ´ 1

4
ϕ̂0ŷ0 ´ 4ŷ3 ` 3ŷ2 ´ 4

3
ŷ1 ` 1

4
ŷ0

j
´Cpŷ4qŷ4 “ Oph4q

(4.2.11)
is satisfied. Again using Taylor expansion and comparing coefficients of like terms we
obtain a 6-parameter set of coefficients given by

yn´3 4α´ 4σ´ 8` 12` γ` 2κ ´4α` 8´ 2γ´ 3κ´ 8` 4σ
yn´2 ´3β` 3α´ 3

2` 3
16γ ` 3

8 κ´ 3
4σ` 3

2 9β´ 9
2α´ 9

8´ 9
32γ ´ 9

32κ´ 9
8σ` 21

4

yn´1 α 2´ ´ σ´ α
yn β 1

4 ´ 3β` 1
2α` 1

8´ 3
32κ ´ 1

32γ´ 1
8σ

Cpyn´3q Cpyn´2q

. . .

γ κ

´9β` 9
4α` 9

4´ 9
16κ` 9

4σ´ 9
2

3
8` 3β´ 3

4α` 3
32γ` 15

32κ ´ 3
8σ` 3

4

σ 

3β´ 3
4α´ 3

4` 1
16γ ` 3

16κ ´β` 1
4α` 5

8´ 1
32γ ´ 3

32κ ` 1
8σ` 3

4

Cpyn´1q Cpynq

,

defining the fourth order method for n ě 3.
A similar procedure can be used to design BDF-CF methods of order up to 6. It is not

yet clear if one can obtain stable methods of order higher than 6 in this manner, since the
classical k-step BDF methods are only stable up to k ď 6.

4.3 Some Convergence Results for the BDF-CF methods
We shall follow the strategy used by Hairer et al. [16, 17] to justify the convergence of the
BDF-CF methods (4.1.3) when applied to the DAE (4.1.1). We begin with an existence
and uniqueness theorem similar to the one in [17, Thm3.1,p.482].

Theorem 4.3.1. Suppose that the initial values y j, z j, j “ 0, . . . , k´ 1, satisfy

y j ´ ypt jq “ Ophq, z j ´ zpt jq “ Ophq, gpy jq “ Oph2q. (4.3.1)
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Then the nonlinear system

αkyk `
k´1ÿ
i“0
αiϕiyi “ h f pyk, zkq,

0 “ gpykq
(4.3.2)

as in (4.1.3) with αk ‰ 0, has a solution for h ď h0. Furthermore, this solution is unique
and satisfies

yk ´ yptkq “ Ophq, zk ´ zptkq “ Ophq. (4.3.3)

The proof follows the pattern used by Hairer and Wanner [17, Thm3.1, p.482] with
minor modifications.

Proof. We set

η “ ´
k´1ÿ
i“0

αi

αk
ϕiyi, (4.3.4)

and define ζ close to zptkq such that
gypηqp f pη, ζq `Cpηqηq “ Ophq. (4.3.5)

We then replace h{αk by a new step size which we again denote by h, without loss of
generality. The system (4.3.2) becomes equivalent to

yk “ η` h f pyk, zkq,
0 “ gpykq,

(4.3.6)

which is the backward Euler method with initial data pη, ζq. Thus we can apply “Theorem
3.1” of [16, p.31] or [17, Thm.3.1,p.482] to conclude the proof. Therefore it only suffices
to show that

η´ yptkq “ Ophq, ζ ´ zptkq “ Ophq, gpηq “ Oph2q. (4.3.7)

(a) The first part of (4.3.7) follows by using that ϕiyi “ yi ` Ophq and řk
i“0 αi “ 0,

together with the assumptions in (4.3.1). Thus we get

η´ yptkq “ ´ 1
αk

k´1ÿ
i“0
αipϕiyi ´ yptkqq

“ ´ 1
αk

k´1ÿ
i“0
αipyi ´ yptkqq ` Ophq

“ ´ 1
αk

k´1ÿ
i“0
αirpyi ´ yptiqq ` pyptiq ´ yptkqqs ` Ophq.
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So that
η´ yptkq “ Ophq. (4.3.8)

(b) Lastly, using the constraint (4.1.2) and the fact that gy fz is invertible, we see (via
Taylor expansion) that

gypηqp f pη, ζq `Cpηqηq “ gypyptkqq fzpyptkq, zptkqq ¨ pζ ´ zptkqq ` Op}η´ yptkq}q.
(4.3.9)

Inserting (4.3.5) and (4.3.8) we get

ζ ´ zptkq “ Ophq.

(c) The proof of the third part of (4.3.7) follows exactly as in [17, Thm3.1,p.482].

�

The next theorem, which is proved exactly as in [17, Thm3.2, p.484], considers the
influence of perturbations in the application of BDF-CF methods to (4.1.1).

Theorem 4.3.2. Suppose yk, zk are given by (4.3.2) and consider perturbed values ŷk, ẑk
satisfying

αkŷk `
k´1ÿ
i“0
αiϕ̂iŷi “ h f pŷk, ẑkq ` hδ,

0 “ gpŷkq ` θ
(4.3.10)

where ϕ̂i :“ exp
´řk´1

j“0 ai`1, j`1hCpŷ jq
¯
, i “ 0, . . . , k ´ 1. In addition to the

assumptions of Theorem 4.3.1, suppose that for j “ 0, . . . , k´ 1,
ŷ j ´ y j “ Oph2q, ẑ j ´ z j “ Ophq, δ “ Ophq, θ “ Oph2q. (4.3.11)

Then, for h ď h0, we have the estimates$’’&’’%
}ŷk ´ yk} ď Const p}ΨΔY0} ` h}ΔZ0} ` h}δ} ` }θ}q ,

}ẑk ´ zk} ď Const
h

˜
k´1ÿ
j“0

}gypŷkqpϕ̂ jŷ j ´ ϕ jy jq} ` h}ΨΔY0} ` h}ΔZ0} ` h}δ} ` }θ}
¸

(4.3.12)
where

ΔY0 :“ pŷk´1 ´ yk´1, . . . , ŷ0 ´ y0qT , ΔZ0 :“ pẑk´1 ´ zk´1, . . . , ẑ0 ´ z0qT

ΨΔY0 :“ pϕ̂k´1ŷk´1 ´ ϕk´1yk´1, . . . , ϕ̂0ŷ0 ´ ϕ0y0qT ,
while

}ΨΔY0} :“ max
0ď jďk´1

}ϕ̂ jŷ j ´ ϕ jy j}, }ΔZ0} :“ max
0ď jďk´1

}ẑ j ´ z j}.
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4.3.1 Local error
Suppose we consider exact initial values y j “ ypt jq, z j “ zpt jq, j “ 0, . . . , k ´ 1, in the
BDF-CF formula (4.3.2) and also choose in (4.3.10) ŷ j “ ypt jq, ẑ j “ zpt jq, j “ 0, . . . , k.
Then we will have from (4.3.10) that θ “ 0, and by the construction of the BDF-CF
methods the truncation error gives δ “ Ophpq. Also, since we now have y j “ ŷ j, z j “ ẑ j
for j ă k, we get the following local error estimate, as a consequence of the estimates of
Theorem 4.3.2.

Theorem 4.3.3. Suppose that the BDF-CF method (4.3.2) applied to the DAE (4.1.1) has
a truncation error of order p (in the sense implied by (4.2.2)). Then its local error satisfies

yk ´ yptkq “ Ophp`1q, zk ´ zptkq “ Ophpq. (4.3.13)

4.3.2 Global Error
We observe that the convergence of the BDF-CF methods will require that the matrix-
valued functionCpyq is sufficiently smooth on the space spanned by the initial data at each
advancement in time.

Remark 4.3.4. We have the following remarks on the global convergence of the methods.

(a) The result in Theorem 4.3.3 is still obtainable if we replace the terms }ΨpŶ0 ´
Y0q} and }gypŷkqpϕ̂ jŷ j ´ ϕ jy jq}, j “ 0, . . . , k ´ 1, in (4.3.12) by the approximation
(linearization)

}gypŷkqpϕ̂ jŷ j ´ ϕ jy jq} ď }gypŷkqpŷ j ´ y jq} ` Oph}gypŷkqŷ j ´ y j}q,
}ΨΔY0} ď }ΔY0} ` Oph}ΔY0}q

(4.3.14)

where }ΔY0} :“ max
0ď jďk´1

}ŷ j´y j}. Such approximations are possible by using Taylor
expansion methods, which in turn depend on the smoothness of the function Cpyq.

(b) Using (4.3.14) appropriately we can follow the same proof as “Theorem 3.5” of [17,
p.486] to obtain the convergence of the BDF-CF applied to the index 2 DAE (4.1.1).
Thus according to “Theorem 3.5” of [17, p.486] we expect to get convergence of
order p “ k, for k ď 6, in both the algebraic and differential variables, upon applying
the k´step BDF-CF method as detailed out in Algorithm 4.1 on page 73. This is
investigated numerically in the following two subsections.

4.3.3 Numerical example
We consider the index 2 problem (see [18])$’&’%

9y1 “ y21 ` z` cos t ´ 1,
9y2 “ y21 ` y22 ´ sin t ´ 1,
0 “ y21 ` y22 ´ 1,

t P r1, 2s, (4.3.15)
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with the exact solution given by

y1ptq “ sin t, y2ptq “ cos t, zptq “ cos2 t. (4.3.16)

This DAE is comparable to (4.1.1) with y “ py1, y2qT , gpyq “ y21 ` y22 ´ 1,
Cpyq “

ˆ
y1 0
y1 y2

˙
, f “ f pt, y, zq “

ˆ
z` cos t ´ 1
´ sin t ´ 1

˙
.

We now solve (4.3.15) using each of the methods BDF1-CF, BDF2-CF (γ “ 0), BDF3-
CF (α “ β “ γ “ 0) and BDF4-CF (α “ β “ γ “ σ “  “ κ “ 0). Since the DAE
system is small, we have computed the matrix exponentials using MATLAB’s built in
expm function. We have used the exact solution (4.3.16) to find the starting values for the
multistep methods. The global error (in the discrete L2-norm, see Appendix 4.5.1) at time
T “ 2, is plotted as a function of time step h, taking h “ 1{2r, r “ 4, . . . , 11. As shown
in Figure 4.1, we observe that for k “ 1, . . . , 4, the method BDFk-CF gives convergence
of order p “ k in both the differential and algebraic variables y and z. This agrees with the
conclusion in Remark 4.3.4 for k ď 4.

4.3.4 Numerical test on Navier-Stokes
Next we consider the incompressible Navier-Stokes equations in R2,

ut ` pu ¨ ∇qu “ ´∇p̄` 1
Re
∇2u, in Ω,

∇ ¨ u “ 0, in Ω,
(4.3.17)
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Figure 4.1: Order of different BDF-CF methods to index 2 DAE (4.3.15). Errors are
measured (in the discrete L2-norm) at time T “ 2 as functions of time step h “ 1{2r, r “
4, . . . , 11.Methods of order 1, 2, 3, 4 are represented by circles (˝), squares (˝), triangles
(�) and diamonds (♦) respectively. (a) shows the errors in the differential variable y, while
(b) shows the errors in the algebraic variable z.
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with prescribed initial data and velocity boundary conditions. The constant Re is the
Reynolds number, x “ px1, x2qT P Ω Ă R2, t P r0, T s,while u “ upx, tq “ pu1, u2qT P R2
is the fluid velocity and p̄ “ p̄px, tq P R is the pressure.
For the spatial discretization we employ a spectral element method (SEM) based on a

standard Galerkin weak formulation and we use rectangular elements. The approximation
is done in PN ´ PN´2 compatible velocity-pressure discrete spaces, i.e., keeping the time
variable t fixed, we approximate the velocity by a N-degree Lagrange polynomial based
on Gauss-Lobatto-Legendre (GLL) nodes in each spatial coordinate, and the pressure by
pN ´ 2q-degree Lagrange polynomial based on Gauss-Legendre (GL) nodes. The discrete
spaces are spanned by tensor product polynomial basis functions. Amore vivid description
of this type of spatial discretization of Navier-Stokes is given by Fischer et al. [14]. The
result is a semi-discrete (time-dependent) system of equations

B 9y`Cpyqy` Ay´ DTz “ 0,
Dy “ 0

(4.3.18)

where y “ yptq P Rn, z “ zptq P Rm, represent the discrete velocity and pressure
respectively, while the matrices A, B,C,D,DT represent the discrete Poisson (negative
Laplace), mass, convection, divergence and gradient operators respectively. Meanwhile
the degrees of freedom m and n depend on the polynomial degree N, the dimension
of the computational domain (2 in our case) and the imposed boundary conditions. A
detailed description of these discrete operators can be found in [13, 14]. The system
(4.3.18) satisfies the requirements of the index 2 DAE (4.1.1), with f py, zq “ B´1pAy ´
DTzq, gpyq “ Dy, linear in their arguments. The matrix gy fz “ DB´1DT is invertible
since B is positive definite. In fact, given w P Rm, w ‰ 0, we have that

wT pgy fzqw “ pDTwqT B´1DTw ą 0,

making DB´1DT positive definite (assuming that the compatibility of the discrete spaces
makes DT to be of full rank). Thus the BDF-CF methods are applicable for the time
integration of (4.3.18). Application of a BDF-CF method will result in a discrete Stokes
system of equations that can be resolved via a block-LU decomposition (see [13]).
As a test example we consider the Taylor vortex problem [30, 37], with exact (analytic)

solution given by

u1 “ ´ cospπx1q sinpπx2q expp´2π2t{Req,
u2 “ sinpπx1q cospπx2q expp´2π2t{Req,
p̄ “ ´1

4
rcosp2πx1q ` cosp2πx2qs expp´4π2t{Req.

,///.///- (4.3.19)

In this example we have used Dirichlet boundary conditions on the spatial domain Ω “
r´1, 1s2, spectral element discretization (SEM) of order N “ 12 with Ne “ 4 rectangular
elements, and the time integration is done up to time T “ 1 using different constant step
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sizes h “ T{2r, r “ 4, . . . , 9. In our implementation of the semi-Lagrangian method the
work of tracking characteristics and making interpolations is done element-by-element as
in the SLSE methods of [41] (See also [15]). We have used the exact solution (4.3.19)
to find the starting values for the multistep methods. The error in both time and space is
measured. The error (at time T ) in the velocity is measured in the H1-norm and the error
in the pressure is measured in the L2-norm (see Appendix 4.5.1 for description of these
norms). Figure 4.2 shows the temporal orders of convergence obtained with the methods
BDF1-CF, BDF2-CF (with γ “ 1{3) and BDF3-CF (with α “ β “ γ “ 0) applied to the
semi-discrete incompressible Navier-Stokes problem (4.3.18). The Reynolds number used
is Re “ 2π2. The same example was also used to test the fourth order method, BDF4-CF
(not included in the figures), which showed a better overall convergence than the lower
order methods. In this case, however, the temporal error is no longer dominant over the
spatial error, and the overall error (both in time and space) is no longer monotonic with
respect to h. Figure 4.3 shows the spectral convergence in space.
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Figure 4.2: Temporal order test of different BDF-CF methods for the incompressible
Navier-Stokes. The Taylor vortex problem with Re “ 2π2 considered. We use Dirichlet
BCs on Ω “ r´1, 1s2 and SEM of order N “ 12 with Ne “ 4 uniform rectangular
elements. Errors are measured at time T “ 1 and plotted as functions of time step
h “ T{2r, r “ 4, . . . , 9. Methods of order 1, 2, 3 are represented by circles (˝), squares
(˝) and triangles (�) respectively. (a) The errors in the velocity measured in the H1-norm.
(b) The errors in the pressure measured in the L2-norm.
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Figure 4.3: Spectral convergence in space, verified using BDF4-CF with time step h “
T{28. The Taylor vortex problem with Re “ 2π2 considered. We use Dirichlet BCs on
Ω “ r´1, 1s2 and SEM with Ne “ 4 uniform rectangular elements. Errors are measured
at time T “ 1 and plotted as functions spectral order N “ 4, 6, 8, 10, on a semi-log scale.
Errors in the velocity are measured in the H1-norm and plotted using circles (˝) while
errors in the pressure are measured in the L2-norm and plotted using squares (˝).

4.4 Stability of the BDF-CF methods
We study the stability of the BDF-CF methods, and make some comparisons with the
IMEX multistep (SBDF) methods of Ascher et al. [4], also studied in [21].The following
remark shows a relation between the BDF-CF methods and the SBDF methods.

Remark 4.4.1. If we introduce linearizations of the form

exp phCpy0qq y1 « y1 ` hCpy0qy1
in the BDF-CF1, BDF-CF2 (with γ “ 0) and BDF-CF3 (with α “ 0, β “ 2, γ “ 1), we
obtain exactly the SBDF methods of Ascher et al. [4].

4.4.1 A nonlinear problem
The authors in [4] demonstrated the strong stability and time-step restrictions of the SBDF
methods among others, in the treatment of convection-diffusion problems with small
viscosity coefficients. An interesting observation is the improved stability of the BDF-
CF over the SBDF methods at smaller viscosities. We consider the Burgers’ equation in
1D

ut ` uux “ νuxx, x P p´1, 1q, t P p0, T s, (4.4.1)
with initial condition up0, xq “ sin πx, and homogeneous Dirichlet boundary conditions.
We discretize in space via the Gauss-Lobatto-Chebyshev spectral collocation method to
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4.4. Stability of the BDF-CF methods

obtain an ODE of the form (4.2.1). This same test problem was considered in [4]. In
Figure 4.4 we show the relative error5 in L8 grid-norm measured at time T “ 2 for a
range of viscosity parameters in the range 0.001 ď ν ď 0.1. For each time step h “
1{10, 1{20, 1{40, 1{80, we have used N “ 40 spatial nodes. The reference or “exact”
solution is computed for N “ 80 spatial nodes using MATLAB’s ode45 built in function,
with sufficiently small relative and absolute error tolerances. We have used ode45 to obtain
the starting values of each of the multistep methods. For BDF2-CF we used γ “ ´1,while
for BDF3-CF we used α “ 1, β “ ´13{2, γ “ 3.
An observation from Figure 4.4 reveals that the BDF-CF methods are numerical more

stable (and allow for larger time steps) than the SBDF methods. Unlike the BDF-CF
methods, the SBDF methods give unbounded solutions at smaller viscosity parameters,
especially as the Courant number increases with increasing time step h. The better
performance of the BDF-CF methods at low viscosities is believed to be due to the
(accurate) semi-Lagrangian computation of exponential flows (see also [7]).

4.4.2 Linear Stability
We now consider a linear stability analysis like the one done in [4], whereby we apply the
methods to a simple problem of the type

9y “ pλ` ı̂υqy, (4.4.2)

where λ, υ P R, and ı̂ is the unit imaginary number satisfying ı̂2 “ ´1. Notice that (4.4.2)
is equivalent to (4.2.1) withCpyq “ ı̂υI and f pyq “ λy, where I denote the identity matrix.
Let ω :“ pλ ` ı̂υqh P C, and let ωr and ωi denote the real and imaginary parts of

ω respectively, suppressing the dependence on h. Applying the SBDF2 method to (4.4.2)
yields the characteristic polynomial

Φpτ;ωq :“ p3 ´ 2ωrqτ2 ´ 4p1` ı̂ωiqτ ` 2ı̂ωi ` 1;
meanwhile the BDF2-CF method has characteristic polynomial

Φpτ;ωq :“ p3´ 2ωrqτ2 ´ 4eı̂ωiτ` e2ı̂ωi .
The stability region is then given by the set

S :“ tω P C : |maxtτ : Φpτ;ωq “ 0u| ď 1u
In Table 4.1 we write down the characteristic polynomials of the second to fourth order
BDF-CF and SBDF methods. Figure 4.5 shows the stability regions (shaded gray) for
these SBDF and BDF-CF methods. Also included in this figure is a comparison with
some second, third and fourth order methods of Hundsdorfer and Ruuth [21], namely,
IMEX-Shu (3,2), IMEX-TVBo(3,3), and IMEX-TVB(4,4). The latter methods have been
shown [21] to have very good linear stability and optimal damping properties.

5relative to the exact solution
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Figure 4.4: Burgers’ equation over a range of viscosity parameters. We use Dirichlet
BCs on the domain r´1, 1s; N “ 40. Relative errors (in the L8-norm) are plotted at
time T “ 2 as functions of viscosity ν P t0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.1u, for
time steps h “ 1{10, 1{20, 1{40, 1{80. SBDFk and BDFk-CF represent k order methods.
SBDFmethods are represented by dashed (´´) lines, and BDF-CF methods by solid lines.
Methods of order k “ 1, 2, 3 are represented by circles (˝), squares (˝) and triangles (�)
respectively

We observe from Figure 4.5 that all the BDF-CF methods are A-stable. This is clearly
not the case with the other methods. In particular the BDF2-CF has characteristic roots
given by

τ1,2 “ eı̂ωir2˘
a
1` 2ωrs{p3´ 2ωrq,

and it is easy to show that for ωr ď 0 we have |2˘ ?
1` 2ωr | ď |3´ 2ωr |, which implies

that |τ1,2| ď 1. In fact, given ωr “ ´r, r ě 0,

|2˘
a
1` 2ωr | “ |2˘

?
1´ 2r| ď 2`

a
|1´ 2r|.
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Table 4.1: Characteristic polynomials for BDF-CF and SBDF methods

order BDF-CF

2
` 3
2 ´ ωr

˘
τ2 ´ 2eı̂ωiτ` 1

2e
2ı̂ωi

3
` 11
6 ´ ωr

˘
τ3 ´ 3eı̂ωiτ2 ` 3

2e
2ı̂ωiτ´ 1

3e
3ı̂ωi

4
` 25
12 ´ ωr

˘
τ4 ´ 4eı̂ωiτ3 ` 3e2ı̂ωiτ2 ´ 4

3e
3ı̂ωi ` 1

4e
4ı̂ωi

order SBDF

2
` 3
2 ´ ωr

˘
τ2 ´ 2p1` ı̂ωiqτ` 1

2 p1` 2ı̂ωiq
3

` 11
6 ´ ωr

˘
τ3 ´ 3p1` ı̂ωiqτ2 ` 3

2 p1` 2ı̂ωiqτ ´ 1
3 p1` 3ı̂ωiq

4
` 25
12 ´ ωr

˘
τ4 ´ 4p1` ı̂ωiqτ3 ` 3p1` 2ı̂ωiqτ2 ´ 4

3 p1 ` 3ı̂ωiq ` 1
4 p1` 4ı̂ωiq

For 0 ď r ď 1{2,

2`
a
|1´ 2r| “ 2`

?
1´ 2r ď 3 ď 3` 2r “ |3´ 2ωr |;

and for r ą 1{2,

2`
a
|1´ 2r| “ 2`

?
2r ´ 1 ď 2` 2r ď 3` 2r “ |3´ 2ωr |.

On the other hand, the SBDF and IMEX-TVB methods are only Apαq-stable, in the
sense of [17, Definition2.1,p.250], with 0 ă α ă 900 (see Figure 4.5). The SBDF4 shows
even smaller stability region than the methods of lower order in its class.
We can thus conclude that for a linear convection-diffusion problem with constant

coefficients and diffusion parameter ν ą 0, the time-step restrictions due to stability are
much more relaxed in the BDF-CF methods than for the SBDF, both in the cases of small
and large ν. The SBDF methods pose even more severe time-step restrictions for small ν.
This is evident from the stability regions plotted in Figure 4.5.

Conclusion
We have derived new exponential multistep methods based on the BDF schemes. The
methods can achieve order of convergence higher than 2 when applied to index 2 DAEs.
The methods have good linear stability properties. The numerical experiments reveal that
the methods are suitable for convection-dominated convection-diffusion problems when
implemented in a semi-Lagrangian fashion.
The framework we propose does not depend on the type of spatial discretization

involved, however it is important to choose spatial discretization methods that would give
rise to ODEs/DAEs with large but sparse convection operators, because this will ease the
computation of the exponential flows.
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Figure 4.5: Stability domainsS Ă C (shaded gray) for some SBDF and BDF-CF methods.
Also included (third row) are some IMEX multistep methods by Hundsdorfer et al. [21].
Each domain S (partly shown) is unbounded and includes the whole negative real axis,
and part/whole of the imaginary axis.

For example when using the SEM or other domain decomposition strategies for the
space discretization, one would distribute the work of computing the exponentials on
different processors while storing the information relative to the convection operator
locally. In our implementation we use a semi-Lagrangian approach, adopting the
techniques of [41] for the computation of the characteristics.
It is evident that standard IMEX methods require a smaller cost per step as the

convection is treated explicitly. On the other hand a proper comparison of IMEX versus
semi-Lagrangian methods should take into account that the latter allow the use of larger
time steps, at least for certain viscosity ranges. Our Navier-Stokes experiments are based
on the SEM spatial discretization, and we have not yet explored all the possibilities for an
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efficient approximation of the exponentials in this setting. To draw definite conclusions
about this comparison is premature at this stage.
The convergence of the methods has been verified numerically on a Navier-Stokes

problem. An interesting future work will be to analyze or investigate the Courant-
Friedrichs-Lewy (CFL) condition in the limiting case as the viscous term vanishes.
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4.5 Appendix

4.5.1 Definition of norms
For a square-integrable (respectively H1) function u : ΩÑ Rn, whereΩ Ă Rm is bounded
and connected, the L2-norm (} ¨ }L2 ) and the H1-norm (} ¨ }H1 ) are defined by

}u}L2 :“
#

nÿ
i“1

ż
Ω

u2i dΩ

+1{2
, (4.5.1)

}u}H1 :“
#

nÿ
i“1

ż
Ω

pu2i ` ∇ui ¨ ∇uiq dΩ
+1{2
. (4.5.2)

In the spectral element approximations the continuous integrals of numerical solutions are
accurately computed using Gauss quadrature rules.
Given a vector y “ py1, . . . , yKqT P RK , the discrete L2-norm (} ¨ }2) and the L8

grid-norm (} ¨ }8) are defined by

}y}2 :“
#

Kÿ
j“1
y2j

+1{2
, }y}8 :“ max

1ď jďK
|y j|. (4.5.3)

4.5.2 Order conditions for order 3method BDF3-CF

3pa31 ` a32 ` a33q ´ 3
2

pa21 ` a22 ` a23q ` 1
3

pa11 ` a12 ` a13q “ 1,

3pa31 ` a32 ` a33q ´ 1
3

pa11 ` a12 ` a13q “ 2,
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3pa33 ´ a31q ´ 3
2

pa23 ´ a21q ` 1
3

pa13 ´ a11q “ 2,

3pa31 ` a32 ` a33q ` 1
3

pa11 ` a12 ` a13q “ 4,

3pa31 ` a33q ´ 3
2

pa21 ` a23q ` 1
3

pa11 ` a13q “ 4,

3pa33 ´ a31q ´ 1
3

pa13 ´ a11q “ 4,

3pa31 ` a32 ` a33q2 ´ 3
2

pa21 ` a22 ` a23q2 ` 1
3

pa11 ` a12 ` a13q2 “ 0,

3pa31 ` a32 ` a33q2 ´ 1
3

pa11 ` a12 ` a13q2 “ 0,

3pa31 ` a32 ` a33q3 ´ 3
2

pa21 ` a22 ` a23q3 ` 1
3

pa11 ` a12 ` a13q3 “ 0,

3pa31 ` a32 ` a33qpa33 ´ a31q ´ 3
2

pa21 ` a22 ` a23qpa23 ´ a21q

`1
3

pa11 ` a12 ` a13qpa13 ´ a11q “ 0.

4.5.3 DIRK-CF methods and commutator-free methods
We consider vector fields F on Rd, to be smooth functions assigning to each point y P Rd
a tangent vector at y. The vector field F can be expressed in coordinates as

Fpyq “
dÿ
i“1
fipyq B

Byi

ˇ̌̌̌
y
,

to emphasize the fact that Fpyq is a tangent vector [39], fipyq are the components of the
tangent vector and B

Byi

ˇ̌̌
y
is the canonical basis of the tangent space to Rd at y.

The flow at time t of F through the point y0 is denoted by

yptq “ exppt Fqy0, (4.5.4)

where yptq satisfies the differential equation
9yiptq “ fipyptqq, i “ 1, . . . , d, ypt0q “ y0.

The Lie bracket of two vector fields, F and G (or commutator) is a third vector field
obtained by applying first F to G as a differential operator, and then subtracting the result
of applyingG to F. This leads to

rF,Gs :“
dÿ
j“1

dÿ
i“1

ˆ
fi

Bg j
Byi ´ gi

B f j
Byi

˙ B
By j .
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For vector fields F andG such that»—– f1pyq
...

fdpyq

fiffifl “ A y,

»—– g1pyq
...

gdpyq

fiffifl “ B y

where A and B are dˆ d matrices, the Lie bracket of vector fields is the vector field rF,Gs
with components C y and C “ BA ´ AB is the matrix commutator of B and A. The
composition of the flows of two vector fields F and G can be expressed as the flow of a
third vector field defined by means of a series of iterated Lie brackets of the two vector
fields F andG.
The set of vector fields on Rd , written XpRdq, forms a Lie algebra.
A set of vector fields tE1, . . . ,Emu, d ď m, is a set of frame vector fields on Rd if

R
d “ spantE1|x , . . . Em|xu, @ x P Rd.

Given any vector field F P XpRdq we have

Fpyq “
mÿ
i“1
fipyqEipyq.

We denote by Fp the vector field

Fppxq “
mÿ
i“1
fippqEipxq

and we say that Fp is the vector field F frozen at the point p.
We define Runge-Kutta commutator-free methods [12, 8] for approximating the flow

(4.5.4) as follows:

Algorithm 4.2. Commutator-free method

p “ yn
for r “ 1 : s do

Yr “ exp
`řs

k“1 α
k
rJFk

˘ ¨ ¨ ¨ exp `řs
k“1 α

k
r1Fk

˘
p

Fr “ hFYr “ h
řm
i“1 fipYrqEi

end

yn`1 “ exp
`řs

k“1 β
k
JFk

˘ ¨ ¨ ¨ exp `řs
k“1 β

k
1Fk

˘
p
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Here n counts the number of time steps and h is the step-size of integration. The integrator
has s stages and parameters αkrl, β

k
l , r, k “ 1, . . . , s and l “ 1, . . . , J. Each new stage value

is obtained as a composition of J exponentials (i.e. exact flows) of linear combinations of
vector fields frozen at the previously computed stage values. In the case Eipyq “ B

Byi the
commutator-free methods reduce to the usual Runge-Kutta methods and the exponentials
are simple translations in Rd. Note that composition of exponentials can be replaced by
truncated series of repeated commutators, but this is not always preferable from the point
of view of computational complexity.»—– f1pyq

...

fdpyq

fiffifl “ Ay`Cpyqy.

We denote by IMEX-CF an IMEX Runge-Kutta method where the implicit part is a usual
implicit Runge-Kutta method applied to Ay and the explicit part is a commutator-free
method applied to Cpyqy. We choose the set of frame vector fields Eipyq with components
Ei y, where Ei, i “ 1, . . . , d2, is any fixed basis of the vector space of d ˆ d matrices. This
implies that the vector field corresponding to Cpyqy frozen at p has components Cppqy.
The IMEX-CF method has the form reported in Algorithm 4.3 (see e.g.[7]). The method
is easy to implement when the coefficients tai j, bi, ciu, i, j “ 1, . . . , s, define a DIRK
method. In this case we denote the method by DIRK-CF. When applied to problems of the
type (4.1.1) the constraints, gpYiq “ 0, gpyn`1q “ 0, could be enforced via a projection
technique as in [30, 2, 29, 17].

Algorithm 4.3. IMEX-CF method

for i “ 1 to s do

ϕi “ exp
`
h

ř
k α

k
iJCpYkq

˘ ¨ . . . ¨ exp `
h

ř
k α

k
i1CpYkq

˘
,

Yi “ ϕiyn ` hř
j ai jϕiϕ

´1
j AY j,

end

ϕs`1 “ exp
`
h

ř
k β
k
JCpykq

˘ ¨ . . . ¨ exp `
h

ř
k β
k
1Cpykq

˘
,

yn`1 “ ϕs`1yn ` hř
i biϕs`1ϕ

´1
i AYi,
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Chapter 5

On discontinuous Galerkin
methods and commutator-free
exponential integrators for
advection problems

Abstract. Discontinuous Galerkin (DG) finite-element methods are well-known
to be suitable for solving convection-dominated convection diffusion problems.
High order Runge-Kutta methods such as the RKDG and SSP methods
have been developed and tested to work quite well for convection-dominated
problems(see e.g., Cockburn & Shu (2001), Gottlieb et al. (2001,2009)).
An issue of concern remains the strong CFL restrictions on the discretization
parameters. Restelli et al. (2006) proposed combining the DG methods with the
semi-Lagrangian methods in what they called semi-Lagrangian discontinuous
Galerkin (SLDG) methods. Proposed implementations of the SLDG methods
however suffer from limited spatial accuracy as opposed to the RKDG methods.
We hereby propose a method in the framework of Lie-group exponential
integrators (see Cellodoni et al. [6, 5]), that uses a modified version of the SLDG
method as a building block for computing compositions of convection flows and
maintain the good properties of the DG formulations.

5.1 Introduction

We study advection problems of the form

ut ` V ¨ ∇u “ 0, (5.1.1)
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where u “ upx, tq P R is an unknown scalar field dependent on space and time variables
x and t respectively, while (in a more general setting) V “ Vpu, x, tq P Rd, d “ 1, 2 or 3,
represents a given advection velocity. The equation is treated over a bounded uniform
domain px, tq P Ω ˆ p0, T q Ă R

d ˆ R with suitably prescribed initial and boundary
conditions on u. We denote by subscript-t the partial derivative with respect to time; ∇¨
is the divergence operator with respect to x. Equation (5.1.1) is said to be in advective or
Lagrangian form. Throughout the rest of the paper we assume that the advection velocity
V is divergence-free (i.e. ∇ ¨V “ 0). Under this assumption (5.1.1) becomes equivalent to
the conservative form

ut ` ∇ ¨ pVuq “ 0. (5.1.2)

The form (5.1.2) is suitable for formulating discontinuous Galerkin methods, while (5.1.1)
allows for the use of traditional semi-Lagrangian methods.
Discontinuous Galerkin (DG) finite-element methods are well-known to be suitable for

solving convection-dominated convection diffusion problems. This is due to their ability
to admit solution profiles with jump or contact discontinuities. High order methods such
as the Runge-Kutta discontinuous Galerkin (RKDG) and the strong stability-preserving
(SSP) methods have been developed and tested to work quite well for the treatment of
hyperbolic conservation laws (see e.g.,[8, 12, 11]). However the CFL restriction on the
discretization parameters is still an issue of concern especially for methods with high
temporal order. Nevertheless, the high spatial accuracy and high level of parallelism of
these methods remain attractive from a numerical point of view. Semi-Lagrangian (SL)
methods on the other hand are well known to be very efficient and accurate (see for
example [15, 9] and references therein). The SLDG methods of Restelli et al. [19] aim at
combining the good properties of both the SL and DG methods. Such methods were found
useful for applications in nonhydrostatic atmospheric modelling. Implementations of the
SLDG methods however suffer from low spatial accuracy as opposed to RKDG methods.
In this paper we study the relations between commutator-free Lie-group exponential

integrators (CF) of Celledoni et al. [6] and the semi-Lagrangian discontinuous Galerkin
methods (SLDG) presented in [19] for advection problems. We reformulate the CF
methods using the SLDG method as a building block for computing the pure convection
flows. When compared to RKDG methods of high temporal order, the new formulation
allow for the use of larger Courant numbers. The spatial discretization is based on high
order Gauss-Lobatto-Legendre (GLL) polynomial approximations. The SLDG component
is thus modified to maintain this high spatial accuracy. Numerical experiments are
presented both for 1D and 2D advection problems to demonstrate the performance of the
new methods.
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5.2 Discontinuous Galerkin methods for hyperbolic
conservation laws

Following the recipes of Cockburn and Shu [8] for the spatial discretization of (5.1.2) one
obtains a semi-discrete system of ODEs.

ut ` ∇ ¨ f puq “ 0, x P Ω, t ą 0, (5.2.1)

with prescribed boundary conditions and initial data u0. We observe that f puq :“ Vu, in
relation to (5.1.2).

5.2.1 Weak formulation on a broken Sobolev space
Consider a finite element discretization of (5.2.1) in which Ω is subdivided into Ne
subdomains (or “elements”) denoted by K :“ Ω j, j “ 1, . . . ,Ne. Further assume that
the functions u and f puq “ p f ˝ uqpxq are smooth on Ω. We multiply (5.2.1) by a test
function v and integrate by parts over a subdomain K to obtainż

K
utv, dx´

ż
K
f puq ¨ ∇v dx`

ż
BK
f puq ¨ nKv ds “ 0, (5.2.2)

where nK is the outward unit normal on the subdomain boundary BK. The goal, however,
is to allow for functions u that admit jump discontinuities at the element boundaries BK,
and have a certain amount of regularity within the interior of each element. The space
described by such functions is referred to as the ‘broken’ Sobolev space in the DG literature
(see for example [16, 2, 13]).
Now let u be a function in a broken Sobolev space H1 :“ H1pΩq (functions with H1

regularity in each element K). Note that for such u the flux function f puq is well-defined on
Ω except (possibly) at the element boundaries, where u may have a jump discontinuity. To
remove this ambiguity the restriction of f puq on the nodal points is replaced by a function
f̂ puq, also known as the numerical flux function. The function f̂ puq can be seen as a well-
defined (single-valued) approximation to f puq. It is defined such that

f̂ puqˇ̌
BK :“ f̂ pu´, u`q, and f̂ puqˇ̌

K :“ f puq, (5.2.3)

where for each s P BK, u`psq denotes the value of the trace of u on K and u´psq denotes
the value of the trace of u on the neighbouring element K´ having s P BK´. The function
f̂ p¨, ¨q can be defined in several ways. For example, in the case of locally conservative
schemes, it can represent a Godunov, Lax-Friedrichs, Ösher-Enquist, or an upwind flux
function (see [8]). Two important requirements for the definition of f̂ p¨, ¨q include
(a) Consistency: f̂ pv, vq “ f pvq, for any v;
(b) Monotonicity: f̂ pv, ¨q is non-decreasing, while f̂ p¨, vq is non-increasing (a necessary

requirement for constructing monotone schemes).
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Now summing (5.2.2) over all elements and introducing the numerical flux function at
element boundaries, we get the following weak formulation:
Find u P H1 :“ H1pΩq such that, for t ą 0,ÿ

K

ż
K

putv´ f puq ¨ ∇vq dx`
ÿ
K

ż
BK
f puq ¨ nKv ds “ 0, for all v P H1. (5.2.4)

5.2.2 The discrete weak formulation on a piece-wise polynomial space
Let T :“ Th denote a triangulation of the domainΩ (i.e., the set of all elements ofΩ) with
a mesh parameter given by h “ max

KPT
diampKq ( or h “ max

KPT
|K| in 1D). A simple discrete

finite dimensional subspace of the broken H1 space is given by

Vph :“ tv P L2 : vˇ̌K P PppKq, @K P Thu,

i.e. Vph consist of piecewise polynomials of degree p, possibly discontinuous across
subdomain boundaries. Unless, not obvious, we shall henceforth suppress the writing
of the superscript p in Vph .
An approximation for u in the discrete subspace Vh is sought for via the discrete weak

formulation (related to (5.2.4)), namely: Find uh P Vh such that, for t ą 0,ÿ
K

ż
K

puh,tv´ f puhq ¨ ∇vq, dx`
ÿ
K

ż
BK
f̂ puhq ¨ nKv ds “ 0, for all v P Vh, (5.2.5)

where uh,t :“ Buh
Bt .

Basis functions for Vh can be chosen as functions ϕmK “ ψmK ¨χK , m “ 0, . . . , p, K P Th
where χK denotes the characteristic function on K, and ψmK , m “ 0, . . . , p represent the
basis functions for PppΩ jq. For example, affine map of Lagrange interpolation polynomials
based on Gauss-Legendre (GL) nodes in a reference domain Ω̂.
The resulting semi-discrete system assembled over all elements, would give rise to a

system of ODEs of the form1

9y “ Cpyqy` r̂pyq, (5.2.6)

where y P RN (N “ computational degrees of freedom), and Cpyq is a matrix-valued.
Meanwhile r̂pyq is a vector representing interelement contributions resulting from the
numerical flux terms in (5.2.5), and Cpyqy represents elemental contributions. The
representation in (5.2.6) is obtainable, for example, in the semi-discretization of the
Burgers’ equation.
Suitable and popular time integration schemes for solving such ODE system are the

TVD methods of Cockburn and Shu [20, 8], also known as the RKDG method. Applying
the Lie-group commutator-free exponential integrators (CF) [6] for such ODE system is

1Here we have, for simplicity, suppressed the dependence of the solution y “ yptq on mesh parameter h.
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not immediate, due to the presence of an extra flux term. We therefore interpret the
CF methods within the DG framework in a way that permits the evaluation of flows
(“exponentials”) of convecting vector fields in a manner similar to the SLDG schemes
[19].

5.3 Semi-Lagrangian DG schemes and Commutator-free
exponential integrators

Our goal in this section is to derive a suitable Semi-Lagrangian scheme in the DG
setting for numerically computing the flows (exponentials) of frozen vector fields in CF
integrators [6].

5.3.1 The semi-Lagrangian discontinuous Galerkin (SLDG) methods
Suppose Th is a triangulation of Ω into elements K, and let Vh denote the corresponding
DG FEM space on Th. Then the SLDG method for approximating the solution of (5.1.1)
(or equivalently (5.1.2)) over one time step rtn, tn`1s,with step size Δt :“ tn`1´ tn, follows
the discrete weak formulation:
Given initial data unh P Vh, find un`1h P Vh such that for each K P Thż

K
un`1h v dx “

ż
K
unhv dx`

ż Δt
0

ż
K

rEnτunhsṼ ¨ ∇v dxdτ

´
ż Δt
0

ż
BK

rEnτunhsṼ ¨ nKv dsdτ, for all v P Vh,
(5.3.1)

where rEnτunhspxq denotes the time evolution operator of uh from time level tn to time level
tn ` τ, defined such that

uhpx, tn ` τq “ rEnτunhspxq :“ uhpχptn ` τq, tnq,

χ being the solution of the ODE

dχptq
dt

“ Ṽpχptqq, t P ptn, tn ` τq, given χptnq “ x. (5.3.2)

Ṽ is an approximation of V that ensures the numerical flux conservation2 across
interelement boundaries. In order to achieve this, the authors of [19] proposed choosing
Ṽ as the projection of V on Raviart-Thomas FEM elements of lowest order. This however
limits the spatial accuracy of the method. For the time integrals they used a quadrature
with intermediate time nodes given such that τ R t0,Δtu, e.g., the midpoint rule. This
way any further ambiguity with evaluating the flux at interelement boundaries is avoided

2numerical fluxes are single-valued on interlement boundaries
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(at least for nonzero advecting velocity). A suitable numerical flux limiter is also used to
ensure the monotonicity or positivity of the overall scheme.
The SLDG has been recently developed by Qiu and Shu [17] with essential

modifications being the exact implementation of the evolution operator Enτunh. Also the
Divergence Theorem is used to evaluate the last two integrals in (5.3.1), and only Gauss
quadratures and nodes are used (as opposed to Raviart-Thomas elements). The SLDG
methods in [17] are further extended for the numerical treatment of the Vlasov-Poisson
equations.
Inspired by pioneering work on DG methods for linear advection problems based on

the upwind principle [18, 14] we make the following modifications to the SLDG (5.3.1):
Find un`1h P Vh such that for each element K,ż

K
un`1h v dx “

ż
K
unhv dx`

ż Δt
0

ż
K

rEnτunhsV ¨ ∇v, dxdτ

´
ż Δt
0

ż
BK

{rEnτunhsV ¨ nKv dsdτ, for all v P Vh,
(5.3.3)

where in xp¨q we consider the upwind values of uh at element boundaries. The upwinding
principle is also proposed in [17]. Other approximations for the numerical fluxes includes
those mentioned in Section 5.2.1 and are generally acceptable. However, for the sake of
simplicity, we use the upwinding principle. Also this choice, as opposed to low order
Raviart-Thomas approximations, does not destroy the high spatial accuracy obtainable via
the DG methods.

5.3.2 Commutator-free Lie group method
Semi-Lagrangian commutator-free Lie group methods (or exponential integrators) are
known to be very accurate for approximating linear pure convection problems and have
good performance in convection-dominatedproblems [3, 4, 5]. We intend to use the SLDG
scheme (5.3.3) as a building block for computing exponentials in the commutator-free
methods.
Now suppose unh P Vh. Then for x P K, we have the following algorithm:

Algorithm 5.1. Commutator-free method.

w0h “ unhpxq
for i “ 1 : s do

Ui “ exp
´řs

j“1 α
J
i jF j

¯
¨ ¨ ¨ exp

´řs
j“1 α

1
i jF j

¯
w0

Fi “ ΔtFUi “ ΔtVi ¨ ∇
end for
un`1h “ exp

´řs
j“1 β

J
j F j

¯
¨ ¨ ¨ exp

´řs
j“1 β

1
jF j

¯
w0

where Vi denotes the value of V at the intermediate time tin “ tn ` ciΔt. Meanwhile Fi
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represent vector fields frozen at stage values Ui, and tαli j, βlju, i, j “ 1, . . . , s, l “ 1, . . . , J
are coefficients of the CF method, typically constructed out of s-stage Runge-Kutta
methods with coefficients tai j, bi, ciu, i, j “ 1, . . . , s (see [6] for details).

We write 3 F̂il “ řs
j“1 α

l
i jF j, i “ 1, . . . , s ` 1, choosing αls`1, j :“ βlj. Then on each

element K the flow
wih “ exp

`
F̂il

˘
w0h (5.3.4)

would be approximated via the SLDG scheme (5.3.3) as follows

1
Δt

ż
K

`
wih ´ w0h

˘
v dx “

sÿ
j“1
αli j

ż
K

rEnτ jw0hsV j ¨ ∇v dx

´ αli j
ż
BK

{rEnτ jw0hsV j ¨ nKvpsq ds, for all v P Vh,
(5.3.5)

where τ j “ c jΔt. The formula (5.3.5) is adapted from (5.3.3) by replacing the integral over
the time interval with the quadrature rule dictated by the CF method.
Generally in the DG as well as the SLDG methods a flux-limiter is being introduced

at each time step to preserve the monotonicity or positivity of the solution. This has not
been exploited in our numerical examples, since the problems considered are linear, and
the solution and advecting velocities are fairly smooth. For more discussion on the use of
flux-limiters in the context of DG methods we refer to [8, 21].

5.4 Numerical results

5.4.1 Pure advection in 1D
To show the stability of the new SLDG methods over RKDG methods, we consider the
constant advection of the Gaussian cone in 1D described by

ut ` aux “ 0, x P Ω :“ p´1, 1q, t ą 0, (5.4.1)

where a “ 2, and the initial data and exact solution are given by the equation

upx, tq “ expp´px´ x0 ´ atq2{2λ2q,
with λ “ 1

8 , x0 “ 0. We use periodic boundary conditions. The spatial discretization is
carried out using the discontinuous Galerkin method with Ne “ 10 elements and Gauss-
Lobatto-Legendre (GLL) quadratures of polynomial degree p. Integration is done up to
final time T “ 1, using nsteps time steps corresponding to a Courant numberCr (see [10]).
We compare the performance of the SLDGmethod with RKDGmethod at various Courant
numbers (Cr). For the RKDGmethod we have used the Godunov-typeflux approximation.
Both methods are constructed out of the third order RK method described by the Butcher
tableau (see e.g. [8, 21])

3For an explicit method, this sum depends on previously computed frozen vector fields Fj , j ă i.
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All errors are measured in an element-wise relative L2-norm, that is,

}u´ uexact}L2pΩq “
dř

K
ş
Kpu´ uexactq2ř
K

ş
K u

2
exact

The results shown in Table 5.1 clearly reveals that the SLDG methods perform better than
the RKDG methods at higher Courant numbers. The RKDG methods become unstable at
Courant numbers higher than 1. The SLDG method on the other hand loses some accuracy
at lower Courant numbers. This is as a result of accumulation of the SL interpolation
error as we take many time steps. A remedy to this is to us higher order interpolation. In
Table 5.2 we have again compared the two methods at a fixed Courant number Cr « 0.25
but different values of polynomial degree p. Both methods exhibit spectral (spatial) order
of convergence. Notice that since this Courant number is small, the SLDG only begins to
out-perform the RKDG at larger values of p (in this case p ą“ 10), where SL interpolation
errors are minimal.
Also shown in Figure 5.1 are results obtained with CF time integrators (CF122 and

CF233) based on second and third order explicit Runge-Kuttamethods (respectively) taken
from [1], and the Euler method (CF111). The CF122 method is based on the midpoint rule.
Integration is done upto a final time T “ 1, and in each case the number of time steps used
is Nsteps “ 400 which corresponds to a Courant number Cr « 0.5. We notice the the
CF111 method leads to numerical damping (error “ 1.50 ˆ 10´1 ), but the second and
third order methods CF122 and CF233 yield accurate results (error “ 2.00 ˆ 10´3 and
8.38 ˆ 10´6 respectively). The CF111, CF122 and CF233 are constructed out of explicit
Runge-Kutta methods with Butcher tableaus given respectively as follows

0 0
1 ,

0
1
2

1
2

0 1
,

0
γ γ

1´ γ γ ´ 1 2p1´ γq
0 1

2
1
2

,

where γ “ p3` ?
3q{6 (see [1]).

5.4.2 Pure advection in 2D
We now consider the 2D test problem of [7], which involves the advection of a passive
tracer in a nondivergent deformational flow. The equation is given by

ut ` V ¨ ∇u “ 0, in Ω “ p0, 1q ˆ p0, 1q, (5.4.2)
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Table 5.1: Results for the 1D advection problem for the RKDG and SLDGmethods, using
various Courant numbers Cr; p “ 8,Ne “ 10, T “ 1.

Cr nsteps Δt Relative error (L2)

RKDG SLDG
0.10 1996 0.0005 1.1699ˆ 10´6 2.5513ˆ 10´5
0.25 799 0.0013 1.3736ˆ 10´5 1.7444ˆ 10´5
0.50 400 0.0025 1.0924ˆ 10´4 5.9188ˆ 10´6
0.75 267 0.0037 3.6679ˆ 10´4 4.0203ˆ 10´6
1.00 200 0.0050 1.3536ˆ 10´3 1.1646ˆ 10´5
1.25 160 0.0063 8 7.3864ˆ 10´6
1.49 134 0.0075 8 3.2610ˆ 10´4

Table 5.2: Results for the 1D advection problem for the RKDG and SLDGmethods, using
various polynomial degrees p; Courant numbersCr « 0.25,Ne “ 10, T “ 1.

p Cr nsteps Δt Relative error (L2)
RKDG SLDG

1 0.25 40 0.0250 7.3567ˆ 10´1 1.1407ˆ 100
2 0.25 80 0.0125 2.0851ˆ 10´1 4.1497ˆ 10´1
4 0.23 250 0.0040 5.1525ˆ 10´3 3.8406ˆ 10´2
6 0.24 500 0.0020 8.0856ˆ 10´5 9.1899ˆ 10´4
8 0.25 800 0.0013 1.3685ˆ 10´5 1.7460ˆ 10´5
10 0.25 1250 0.0008 3.5815ˆ 10´6 2.8314ˆ 10´7
12 0.24 1750 0.0006 1.3052ˆ 10´6 3.6590ˆ 10´9

where upx, tq represents the scalar field variable and (with x :“ px1, x2q) the velocity field
is given as

Vpx, tq “
„
sin2pπ x1q sinp2π x2q cospπ t{5q

´ sin2pπ x2q sinp2π x1q cospπ t{5q
j
.

The boundary condition is homogeneous Dirichlet and the initial data is

upx, 0q “ 1` cospπ rq
2

, with r :“ rpxq “ min

¨̋
1, 4

dˆ
x1 ´ 1

4

˙2
`

ˆ
x2 ´ 1

4

˙2‚̨.
We solve this problem using the CF233 method. The spatial domain is sub-divided

into Ne “ 10ˆ 10 “ 100 elements. The fourth order explicit Runge-Kutta method is used
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Figure 5.1: SLDG methods with p “ 8, Ne “ 10 for Gauss cone advection in 1D, using
first, second and third order time integrators CF111, CF122 and CF233. The exact solution
is represent by the solid curve. The respective errors in the relative L2 norm are 1.50 ˆ
10´1, 2.00ˆ 10´3, 8.38ˆ 10´6.Meanwhile T “ 1, nsteps “ 400 and Cr « 0.5

to solve accurately the characteristic equation (5.3.2). The initial cone is swirled around in
the anti-clockwise direction, being deformed in the process, until it comes to a stationary
position at time t “ 2.5. It is then driven in the reverse direction so that at time t “ 5 the
initial cone is being re-formed. Therefore the exact solution at time t “ 5 coincides with
the initial data. The results are shown in Figure 5.2.
We start by using Ne “ 10 ˆ 10 elements with polynomial degree p “ 10 in each

element (see first column in Figure 5.2). The time step chosen here is Δt “ 1{120 which
corresponds to a Courant number of Cr “ 2.5253. The results show some overshoots and
undershoots in the solution. Also the exact solution is not fully recovered. The L2-error
obtained in the case is 0.0063. Next we use a refined mesh, by choosing p “ 15 and
Ne “ 10 ˆ 10. The time step used here is Δt “ 1{240 which corresponds to a Courant
nmber ofCr “ 2.7370.The solution is greatly improved (see second column in Figure 5.2).
We obtain an error of 0.0019 in this case. We also observed that at these choice of Courant
numbers the RKDG schemes were unstable.

Conclusion
We have established a relation between the SLDG methods and the commutator-free (CF)
methods for solving linear advection problems with divergence-free velocities. We have
also shown (via numerical experiments) that the methods have better stability at high
Courant numbers than the RKDG methods, and maintain the good spatial accuracy of DG
methods. The model problems considered contain advection velocities that are constant
or dependent on both time and space. The main advantage of the CF methods is that
they provide routines for accurate approximations of linear pure advection.We believe that
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(d) p “ 15, t “ 2.5
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Figure 5.2: Tracer advection in 2D using CF233. In the first column, p “ 10. In the
second column, p “ 15. The number of elements used in both case is Ne “ 10ˆ 10. First
row: solution contours at t “ 2.5; Second row: solutions at t “ 2.5; third row: solution
contours at t “ 5. Contour levels: ´36 to 36 by 18.

these preliminary results are promising and that it is worth pursuing the study of the SLDG
combined with CF methods in the case where the advection term is nonlinear. This idea,
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however, has not been investigated here. Applications to nonlinear convection-diffusion
models would also be of interest. A recent study on this is the work of Qiu and Shu in [17]
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Chapter 6

Semi-Lagrangian exponential
integrators for the incompressible
Navier-Stokes equations

Abstract. Direct applications of high order DIRK-CF methods as presented in
[7] to the incompressible Navier- Stokes equations were found to yield a loss
in order of convergence. The DIRK-CF methods are exponential integrators
arising from the IMEX Runge-Kutta techniques proposed in [1], and are semi-
Lagrangian when applied to convection diffusion equations. As discussed in
[17], inappropriate implementation of projection methods for incompressible
flows can lead to a loss in the order of convergence. In this paper we recover the
full order of the IMEX methods using projections unto the space of divergence-
free vector fields and we discuss the difficulties encountered in using similar
techniques for the semi-Lagrangian DIRK-CF methods. We finally assess the
performance of the semi-Lagrangian DIRK-CF methods for the Navier-Stokes
equations in convection-dominated problems.

6.1 Introduction
Consider the incompressible Navier-Stokes equations

ut ` u ¨ ∇u “ ν∇2u´ ∇p (6.1.1)
∇ ¨ u “ 0, (6.1.2)
u|BΩ “ 0, (6.1.3)

here u “ upx, tq on the cylinder Ω ˆ r0, T s is the velocity filed (Ω Ă Rd and d “ 2, 3),
subjected to the incompressibility constraint (6.1.2), p “ ppx, tq is the pressure and plays
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the role of a Lagrange multiplier, and ν is the kinematic viscosity of the fluid. We consider
no slip or periodic boundary conditions

u|BΩ “ ub, (6.1.4)
u periodic. (6.1.5)

In the case of no slip boundary conditions we will also use that ub ¨ n “ 0 where n
is the unit normal to the boundary BΩ. For no slip boundary conditions we will mostly
consider the case

ub “ 0. (6.1.6)

The variables pu, pq are sometimes called primitive variables and the accurate approxima-
tion of both these variables is desirable in numerical simulations.
In this paper we study semi-Lagrangian discretization methods in time to be used in

combination with high order spatial discretizations of the Navier-Stokes equations, like
for example spectral element methods. High order methods are particularly interesting in
cases when highly accurate numerical approximations of a given flow case are required.
A relevant situation is the direct numerical simulation of turbulence phenomena (DNS), as
pointed out for example in [23].
The methods we consider here are implicit-explicit methods of Runge-Kutta type

which we named DIRK-CF, and they have been proposed in [6, 7]. These methods
arise from IMEX techniques proposed in [2, 1]. In addition to being implicit-explicit
the methods are semi-Lagrangian and they show improved performance in convection-
dominated problems. So far the case of linear and nonlinear convection diffusion equations
have been considered.
It is our goal in this paper to further investigate the extension of these methods to the

incompressible Navier-Stokes equations and to asses their performance. Given a time-
stepping technique, a very used approach to adapt the method to the incompressible
Navier-Stokes equations is by means of projections. The primary example of this
technique, and most famous projection method for the incompressible Navier-Stokes
equations is the Chorin’s projection method, proposed by Chorin in [9, 10] and Témam
[22]. Chorin’s method is a version of the implicit Euler integration method adapted to the
Navier-Stokes equations.
The study of the temporal order of this method was considered in [20, 21] and it

revealed order one for the velocity and only 1
2 for the approximation of the pressure.

This and similar order reduction phenomena are typical of projection methods for Navier-
Stokes equations and must be handled properly to achieve higher order. Lately a better
understanding of the issues of order reduction in a variety of projection methods, and
remedies to this problem appeared in [19, 3, 17].
We consider projection methods for IMEX Runge-Kutta schemes as a staring point

to discuss the extension of the methods of [7] to the Navier-Stokes equations. In this
preliminary work we explain some of the difficulties encountered in the case of the
semi-Lagrangian methods, spectral element space discretizations and the Navier-Stokes
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equations. We obtain methods of IMEX type which show up to third order temporal
accuracy in the velocity and first order in the pressure. The semi-Lagrangian methods
achieve up to second temporal order in the velocity.
In section 6.2 we consider appropriate projections to be used in the reformulation of our

methods in the context of Navier-Stokes equations, including some relevant background
material. In section 6.3 we discuss implicit-explicit methods, and the semi-Lagrangian
methods named DIRK-CF and their extensions to Navier-Stokes equations. Section 6.4 is
devoted to numerical experiments. In this section we provide numerical verification of the
temporal order of the methods; we illustrate the benefits of the proposed semi-Lagrangian
methods in the case of convection-dominated problems; we also devote this section to the
description of the implementation details behind our numerical results.

6.2 Projection methods for the incompressible Navier-
Stokes equations

6.2.1 Leray projector
According to the Helmholtz decomposition of vector fields, w P pL2pRdqqd can be
decomposed into a curl-free and a divergence-free part:

w “ ∇φ` v, ∇ ¨ v “ 0. (6.2.1)

We are interested in such decomposition on bounded domains Ω, taking into account
boundary conditions. We consider a projection on the subset of the space of divergence
free vector fields, with prescribed boundary conditions on BΩ:

H “ tv P pL2pΩ,Rdqqd |∇ ¨ v “ 0, v|BΩ “ bcu, P :W Ă pL2pΩ,Rdqqd Ñ H,

and W Ă pL2pΩ,Rdqqd an appropriate subset of pL2pΩ,Rdqqd , here the boundary
conditions (bc) are either periodic or n ¨ v|BΩ “ 0.
So P is such that

Ppwq “ v, (6.2.2)
satisfying the conditions

∇ ¨ v “ 0, v|BΩ “ bc. (6.2.3)
Assuming w satisfies boundary conditions compatible with v (say w periodic or with no
slip boundary conditions), we can take P to be the Leray projector [14]. This projector is
constructed by taking v as

Ppwq “ v “ w´ ∇φ,
where φ is the solution of the Poisson equation

∇2φ “ ∇ ¨ w (6.2.4)

and boundary conditions for φ either periodic or Neumann:

0 “ n ¨ v|BΩ “ n ¨ w|BΩ ´ n ¨ ∇φ|BΩ . (6.2.5)
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6.2.2 Incompressible Navier-Stokes and projections
In general, taking the divergence of the momentum equation, (6.1.1), we obtain a Poisson
equation for the pressure

∇2p “ ∇ ¨ pνΔu´ u ¨ ∇ uq. (6.2.6)

When u is space-periodic, i.e. (6.1.5), the pressure p is fully defined in terms of the
velocity field u and the periodicity condition. In the case of no slip boundary conditions,
(6.1.4) and (6.1.6), solving the Poisson equation for p by imposing

Bp
Bn “ νΔu ¨ n,

on the boundary, fully determines the pressure. In both cases we can write p “ ψpuq, [14].
We can then eliminate the pressure from the momentum equation and obtain

ut ´ νΔu` u ¨ ∇ u` ∇p “ ut ´ νΔu ` u ¨ ∇ u` ∇ψpuq “ 0.

We observe that for u satisfying the Navier-Sokes equations (6.1.1-6.1.3) we have

Ppuq “ u, Pputq “ ut, Pp∇pq “ 0,

and we can rewrite the Navier-Stokes equations as

ut “ PpνΔu ´ u ¨ ∇ u´ ∇pq. (6.2.7)

An alternative formulation [14] is

ut “ νPpΔuq ´ Ppu ¨ ∇ uq, (6.2.8)

where the two projections correspond to two different Poisson problems which have both
periodic or Neumann boundary conditions to be imposed on corresponding Lagrangian
multipliers.
In the context of IMEX and semi-Lagrangian Runge-Kutta time integration methods,

the formulation (6.2.8) seems to be the most appropriate. The intention is to apply different
Runge-Kutta coefficients to the convection operator and the diffusion operator. However
non-trivial complications arise when discretizing in space.
After spatial discretizations of type spectral-Galerkin or spectral element methods, we

obtain a system of differential-algebraic equations of the type:

B 9y “ A y`Cpyq y´ DTz, Dy “ 0, (6.2.9)

which should be satisfied with appropriate boundary conditions. Here A is the discrete
Laplacian, B is the mass matrix, Cpyq is the discrete convection operator, D is the discrete
divergence and DT is the discrete gradient. The numerical solution y « u includes
values pertaining to boundary nodes, and the discrete operators are sized accordingly. The
intention is to impose the boundary conditions directly on the numerical approximation
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y. Boundary conditions are not inbuilt in (6.2.9) as in the case of finite differences
discretizations, and are enforced by applying an operator Rb to the numerical solution.
If D is full rank, the Lagrangian multiplier z in (6.2.9) can be obtained by solving the

linear system
DB´1DT z “ DAy` DCpyqy, (6.2.10)

but such z is not necessarily satisfying the boundary conditions satisfied by the pressure
in (6.2.6) deduced from (6.1.1), and similarly 9y is not satisfying the boundary conditions
satisfied by ut in (6.1.1). Assuming Π denotes the projection on the space of discrete
divergence free vector fields, regardless of boundary conditions, this gives

Π B´1pAy`Cpyqyq “ B´1pAy`Cpyqy´ DTzq (6.2.11)

and z the solution of (6.2.10), we can introduce the discrete analogs to (6.2.7) and (6.2.8)
simply as

9y “ Π B´1pA y`Cpyq yq,
and

9y “ Π B´1pA yq ` ΠpCpyq yq.
Applying Runge-Kutta methods, IMEX methods or semi-Lagrangian exponential inte-
grators to these equations will produce approximations of u which are divergence free,
but do not, in general, satisfy the desired boundary conditions. Trying to enforce
boundary conditions by using instead projections Π̃ mapping Ay and Cpyqy into the
space of divergence free vector fields with appropriate boundary conditions, turns out
to be ill-conditioned. Another inconvenience coming from the type of discretizations
considered in this work, is that the pressure is not defined on boundary nodes and the
boundary conditions cannot be imposed on the pressure (as assumed for the solution of the
Poisson equations pertaining to P). The only acceptable alternative is to impose boundary
conditions directly on the numerical approximations of the solution, i.e. the stage values of
the Runge-Kutta method. We then obtain that the boundary conditions satisfied by ut are
respected at the discrete level only for some appropriate, numerical, discrete derivatives.
In the next section we will show how this is handled successfully in the case of IMEX

methods.
The relation between (6.1.1), (6.2.8) and (6.2.7) in terms of the corresponding

Lagrangian multipliers might be important in order to obtain accurate approximations of
the pressure. For example in the periodic case we get

PpΔuq “ Δu ñ u ¨ ∇ u` ∇ψpuq “ Ppu ¨ ∇ uq
but in the no-slip case this is not so.
We however always have

u ¨ ∇ u` ∇ψpuq “ pI ´ PqpνΔuq ` Ppu ¨ ∇ uq,
here I denotes the identity operator.
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6.3 High order implicit-explicit and semi-Lagrangian
methods of Runge-Kutta type

6.3.1 IMEX Runge-Kutta
We consider IMEX methods with a DIRK (diagonally implicit Runge-Kutta) implicit part
to be applied to the diffusion operator and an appropriate explicit part to be used for the
convection operator. Applied to (6.1.1) the projected IMEX methods are

Ui “ Ppun ` Δt
i´1ÿ
j“1

pai, jpΔU j ´ ∇Pjq ´ ãi, jU j ¨ ∇U jq ` Δtai,iΔUiq, i “ 1, . . . , s

and Pi is the Lagrangianmultiplier to be used to perform the projectionP. We assume both
the Runge-Kutta methods with coefficients tai, jui, j“1,..,s and tãi, jui, j“1,..,s respectively, are
stiffly accurate, so, un`1 “ Us. To obtain the fully discrete version of the methods we
apply them first to the equation (6.2.9) and obtain:

BYi “ Byn `Δt
i´1ÿ
j“1

rai, jpAYj ´DTZjq ´ ãi, jCpYjqYjs ` Δt ai,ipAYi ´DTZiq, i “ 1, . . . , s

with the constraint DYi “ 0. We next apply the operator Rb enforcing boundary conditions
on Yi, and finally we solve the following linear system for Yi and Zi,

RbpB´ Δt ai,iAqYi ` Δt ai,iRbDTZi “ RbpByn ` Δt
i´1ÿ
j“1

rai, jpAYj ´ DTZjq ` ãi, jCpYjqYjsq

DYi “ 0.

The solution of such linear system is obtained by a Schur-complement approach and the
inversion of the discrete Helmholtz operator

RbpB´ Δt ai,iAq
by applying a preconditioned conjugate gradient algorithm. We obtain that yn`1 “ Ys
is the approximation of the velocity field at time tn`1 and Zs is the corresponding
approximation of the pressure.

6.3.2 Semi-Lagrangian IMEX Runge-Kutta
We here consider a second ordermethod presented in [7] in the case of convection diffusion
equations. We refer to [7] for the general formulation of these methods, which are named
DIRK-CF. We apply the method to (6.2.9), the first stage is

Y1 “ yn, Z1 “ 0, ϕ1 “ I.
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Defining ϕ2 “ exppΔt ã2,1CpY1qq the second stage is

Y2 “ ϕ2ryn ` Δt a2,1ϕ´11 B´1pAY1 ´ DTZ1qs ` Δta2,2B´1pAY2 ´ DTZ2q,

with DY2 “ 0. The term DTZ1 “ 0. We now multiply both sides by B and apply Rb to
obtain a linear system for Y2 and Z2. This linear system is

RbpB´ Δt a2,2AqY2 ` Δt a2,2RbDTZ2 “ RbBϕ2pyn ` Δt a2,1B´1AY1q,
DY2 “ 0.

We interpret the ϕ1w as the transport of w along the flow of the vector field Y1.
At the third stage, we define ϕ3 “ exppΔt ã3,1CpY1q ` Δt ã3,2CpY2qq and write

Y3 “ ϕ3ryn ` Δt a3,1ϕ´11 B´1pAY1 ´ DTZ1q ` Δt a3,2ϕ´12 B´1pAY2 ´ DTZ2qs
` Δta3,3B´1pAY3 ´ DTZ3q,

with DY3 “ 0. After applying Rb we obtain the linear system

RbpB´ Δt a3,3AqY3 ` Δt a3,3RbDTZ3 “ RbBϕ3pyn ` Δt a3,1B´1AY1
`Δt a3,2ϕ´12 B´1pAY2 ´ DTZ2qq,

DY3 “ 0.

We finally take yn`1 “ Y3. This approach to enforce boundary conditions for the DIRK-
CF methods is the straightforward counterpart of the approach used for IMEX methods in
the previous section, and leads to methods with temporal order at most 2 in the velocity.
We were unable to obtain order three or more with this technique.

6.4 Numerical experiments

For the numerical experiments we shall employ a spectral element method (SEM) based
on the standard Galerkin weak formulation as detailed out in [13]. We use a rectangular
domain consisting of Ne uniform elements. The approximation is done in PN ´ PN´2
compatible velocity-pressure discrete spaces, i.e., keeping the time variable t fixed, in each
element we approximate the velocity by a N-degree Lagrange polynomial based on Gauss-
Lobatto-Legendre (GLL) nodes in each spatial coordinate, and the pressure by pN ´ 2q-
degree Lagrange polynomial based on Gauss-Legendre (GL) nodes. The discrete spaces
are spanned by tensor product polynomial basis functions. The resulting discrete system
has the form (6.2.9). We begin by describing some key implementation issues involved in
the numerical experiments.
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6.4.1 Implementation issues
Pressure-splitting scheme

This scheme is used to enhance solving the linear Stokes systems [12] occurring at each
stage of an IMEX or DIRK-CF method. Suppose

1
γΔt

BYi ´ AYi ´ DTZi “ Bŷn

DYi “ 0
(6.4.1)

represents a linear Stokes system arising from stage i of a first or second order IMEX
or DIRK-CF method applied to (6.2.9), where γ is a parameter of the method. Here the
variable ŷn incorporates the explicit treatment of the convection, the initial data and vector
fields at earlier stages. The splitting scheme (irrespective of boundary conditions) is done
in the following steps:

Step 1: 1
γΔt BŶi ´ AŶi ´ DT pn “ Bŷn

Step 2: DTB´1Dδpi “ ´ 1
γΔt DŶi

Step 3: Yi “ Ŷi ´ γΔtB´1DTδpi, Zi “ pn ` δpi.
Step 1 is an explicit approximation of the stage value of the velocity using the initial
pressure. This approximation is not divergence-free. Step 2 and 3 are thus the projection
steps which enforce the divergence-free constrain and correct the velocity and pressure.
Note that this approximation introduces a truncation error of order 3, and is thus sufficient
for methods order up to 2 (see e.g.[12]). Solving (6.4.1) directly would lead to solving
equations with the operator DTHD (with H :“ 1

γΔt B` A) for the pressure. However, the
cost of inverting DTH´1D is much higher than for inverting DT B´1D in Step 2, since B is
usually diagonal or tridiagonal an easier to invert than H. This explains the main advantage
for using the pressure-splitting schemes in the numerical computations. We have exploited
this advantage in the numerical experiments in sections 6.4.4 and 6.4.5.

Boundary conditions

We illustrate the strategy for implementing the boundary conditions in the context of
spectral element methods. Let Rp represent a periodic boundary operator, defined such
that for a given vector y in the solution space or space of vector fields, Rpy is periodic.
Each stage of an IMEX or DIRK-CF method applied to (6.2.9) can be expressed in the
form (6.4.1). Multiplying the first equation of (6.4.1) by Rp we obtain the system

HYi ´ RpDTZi “ RpBŷn
DYi “ 0

(6.4.2)
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where H :“ Rpp 1
γΔt B ´ Aq. The matrix H results from the discrete Helmholtz operator

and is symmetric positive-definite (SPD); the mass B is diagonal and SPD, and thus easy
to invert. The entire system (6.4.2) forms a symmetric saddle system, which has a unique
solution for Yi provided D is of full rank. The choice of spatial discretization method
provides a full-rank matrix D. The system (6.4.2) can be solved by a Schur-complement
approach and the pressure-splitting scheme.
The treatment of Dirichlet boundary conditions is very similar and we refer to [12] for

further details. In the experiments reported in this paper, no special treatment has been
taken to enforce pressure boundary conditions, since the discrete pressure space is not
explicitly defined on discretization nodes on the boundary.

6.4.2 Temporal order tests for the IMEX methods

We investigate numerically the temporal order of convergence of some IMEX-RKmethods
as described in section 6.3.1. The methods considered here are the second and third order
IMEX-RK schemes with stiffly-accurate and L-stable DIRK parts [1]. We refer to them as
IMEX2L and IMEX3L respectively. They are given by the Butcher tableaus in Tables 6.1
and 6.2 where γ “ p2´ ?

2q{2 and δ “ 1´ 1{p2γq.
In the first example we consider the Taylor vortex problem with exact solution and

initial data given by

Table 6.1: IMEX2L: γ “ p2 ´ ?
2q{2 and δ “ 1´ 1{p2γq

0
γ γ

1 1´ γ γ

1´ γ γ

,

0
γ γ

1 δ 1´ δ
δ 1´ δ 0

Table 6.2: IMEX3L

1
2

1
2

2
3

1
6

1
2

1
2 ´ 1

2
1
2

1
2

1 3
2 ´ 3

2
1
2

1
2

3
2 ´ 3

2
1
2

1
2

,

0
1
2

1
2

2
3

11
18

1
18

1
2

5
6 ´ 5

6
1
2

1 1
4

7
4

3
4 ´ 7

4
1
4

7
4

3
4 ´ 7

4 0
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$’’’&’’’%
u1 “ ´ cospπx1q sinpπx2q expp´2π2t{Req,
u2 “ sinpπx1q cospπx2q expp´2π2t{Req,
p “ ´1

4
rcosp2πx1q ` cosp2πx2qs expp´4π2t{Req,

(6.4.3)

writing Re “ 1{ν for the Reynolds number, and u :“ pu1, u2q, x :“ px1, x2q. The boundary
condition is doubly-periodic on the domain x1, x2 P r´1, 1s, and we choose Re “ 2π2.
For the spatial discretization we use a spectral method of order N “ 12, and the time
integration is done up to time T “ 1. For each step size Δt “ T{2k, k “ 1, . . . , 6, the
error between the numerical solution and the exact PDE solution (at time T ) are measured
in the L2-norm, for both the velocity and pressure. The results for both the IMEX2L and
IMEX3L show a temporal convergence of order 2 and 3 respectively (see Figure 6.1).
Similar experiments are carried out for the test problem [18] with exact solution given

by $’&’%
u1 “ π sinp2π x2q sin2pπ x1q sin t,
u2 “ ´π sinp2π x1q sin2pπ x2q sin t,
p “ cospπ x1q sinpπ x2q sin t,

(6.4.4)

for x1, x2 P r0, 1s and t P r0, T s, with T “ 1. A corresponding forcing term is added to
(6.1.1) for a given Reynolds number. In this test case we have used Re “ 100. This time
the boundary condition used is homogeneous Dirichlet. The results are shown in Figure
6.2.
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Figure 6.1: Order of convergence of the IMEX2L and IMEX3L. Test problem: Taylor
vortex (6.4.3); Re “ 2π2, T “ 1, N “ 12, Ne “ 1, Ω “ r´1, 1s2, h “ Δt “ T{2k, k “
1, . . . , 6. bc: periodic. (a) velocity error: IMEX2L (slope “ 2.0154), IMEX3L (slope
“ 2.9250); (b) pressure error: IMEX2L (slope“ 1.2773), IMEX3L (slope“ 1.2711).
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Figure 6.2: Order of convergence of the IMEX2L and IMEX3L. Test problem:(6.4.4);
Re “ 100, T “ 1, N “ 16, Ne “ 1, Ω “ r0, 1s2, h “ Δt “ T{2k, k “ 4, . . . , 9. bc:
homogeneous Dirichlet. (a) velocity error: IMEX2L (slope “ 1.7908), IMEX3L (slope
“ 2.9669); (b) pressure error: IMEX2L (slope “ 1.0140), IMEX3L (slope“ 1.0132).

6.4.3 Temporal order tests for the DIRK-CF methods

Using the IMEX2L and IMEX3L methods, we construct two DIRK-CF methods, namely,
DIRK-CF2L and DIRK-CF3L, of classical orders 2 and 3 respectively. DIRK-CF2L is
applied to (6.2.9) following the algorithm discussed in section 6.3.2. For DIRK-CF3L
we use a similar algorithm at each stage, but an extra update stage added, followed by
a projection step to enforce the divergence-free condition. We obtain second order for
DIRK-CF2L, but DIRK-CF3L suffer a loss in order (see Figure 6.3). The flows of the
convecting vector fields are computed in a semi-Lagrangian fashion. We believe that the
implementation of the boundary conditions alongside the projections is still not very clear
from a numerical point of view. The test problem used is the Taylor vortex problem (6.4.3)
with doubly-periodic domain x1, x2 P r´1, 1s, and we choose Re “ 2π2. For the spatial
discretization we use a spectral method of order N “ 12, and the time integration is done
up to time T “ 1. For each step size Δt “ T{2k, k “ 4, . . . , 9, the velocity error between
the numerical solution and the exact PDE solution (at time T ) is measured in the L2-norm.
Meanwhile the pressure error shows first order of convergence (see Figure 6.3b).
The numerical experiments presented in sections 6.4.4 and 6.4.5 illustrate the

potentials of the semi-Lagrangian exponential integrators [7] for the treatment of
convection-dominated problems. We consider two examples involving high Reynolds
incompressible Navier-Stokes models. These examples are the shear layer roll-up problem
[4, 11, 13], and the 2D lid-driven cavity problem (see [16, 5] and references therein). The
second order semi-Lagrangian DIRK-CF2L method (named SL2L in [7]) is used in each
of these experiments. The pressure-splitting technique [12] (discussed in section 6.4.1) is
applied to solve the discrete linear Stokes system that arises at each stage of the DIRK-CF
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Figure 6.3: Order of convergence of the DIRK-CF2L and DIRK-CF3L. Test problem:
Taylor vortex (6.4.3); Re “ 2π2, T “ 1, N “ 12, Ne “ 1, Ω “ r´1, 1s2, h “ Δt “
T{2k, k “ 4, . . . , 9. bc: periodic. (a) velocity error: DIRK-CF2L (slope“ 2.0243), DIRK-
CF3L (slope “ 2.000); (b) pressure error: DIRK-CF2L (slope “ 0.9734), DIRK-CF3L
(slope “ 0.8919).

method. The semi-Lagrangian schemes associated to the DIRK-CF method are achieved
by tracking characteristics and interpolating as in [15].
The results reported in both sections 6.4.4 and 6.4.5 indicate that the semi-Lagrangian

exponential integrators permit the use of large time step sizes and Courant numbers.

6.4.4 Lid-driven cavity flow in 2D

We consider the 2D lid-driven cavity problem on a domain px1, x2q P Ω :“ r0, 1s2 with
initial data u “ pu, vq “ p0, 0q and constant Dirichlet boundary conditions

u “
#
1 on upper portion of BΩ
0 elsewhere on BΩ , v “ 0 on BΩ. (6.4.5)

In Figure 6.4 (cf. page 127) we demonstrate the performance of the second order
DIRK-CF method (SL2L, by the nomenclature of [7]). Spectral element method (see
[13]) on a unit square domain r0, 1s2 with Ne “ 10 ˆ 10 uniform rectangular elements
and polynomial degree p “ 10 is used. The specified Reynolds numbers considered are
Re “ 400, 3200.A constant time step size, Δt “ 0.03, is used, corresponding to a Courant
number of Cr « 9.0911.
The time integration steps are done until a steady-state solution is attained. A pressure-
splitting projection technique [12] is applied to solve each linear Stokes system arising at
each stage of the DIRK-CF method. The semi-Lagrangian exponentials in the DIRK-CF
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method are solved by tracking characteristics and interpolating as in [15]. In Figure 6.4c-
d we plot the streamline contours of the stream functions, choosing contour levels as in
[5]. Meanwhile in Figures 6.4a-b plots of the centerline velocities (continuous line, for
Re “ 400, dashed line, for Re “ 3200) show a good match with those reported in [16]
(plotted in red circles). The results in Figure 6.5 show the evolution of the center velocity
(at Re “ 400) up to steady state. It can be observed from this figure that steady state is
attained at time t « 40.At steady state the relative error (L2-norm) between the velocity at
a given time and the velocity at the preceding time has decreased to Op10´8q. The results
also match with those of [23].

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

u

y

Re=400
Re=3200
Ref

(a) center line velocity u

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

v

Re=400
Re=3200
Ref

(b) center line velocity v

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) stream function (Re “ 400)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) stream function (Re “ 3200)

Figure 6.4: Results of a second order DIRK-CF method for the 2D lid-driven cavity
problem. We have px1, x2q P r0, 1s2; Ne “ 10ˆ 10, N “ 10, Δt “ 0.03, Cr “ 9.0911. In
blue continuous line (our numerical solution); in red circles (˝, reference solution [16]).
(a) Horizontal velocity component u along the vertical center line (x “ 0.5), (b) Vertical
velocity component v along the horizonal center line (y “ 0.5), (c) Streamline contours of
the solution for Re “ 400, (d) Streamline contours of the solution for Re “ 3200.
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Figure 6.5: Results of a second order DIRK-CF method for the 2D lid-driven cavity
problem. We have px1, x2q P r0, 1s2; Ne “ 10 ˆ 10, p “ 10, Δt “ 0.03, Cr “
9.0911, Re “ 400. (a) Evolution of the horizontal velocity component u at the domain
center (x “ 0.5, y “ 0.5): t P p0, 112.08q, (b) Evolution of the vertical velocity component
v at the domain center (x “ 0.5, y “ 0.5): t P p0, 112.08q.

6.4.5 Shear layer roll-up problem
We now consider the shear layer problem [4, 11, 13] on a domain Ω :“ r0, 1s2 with initial
data u “ pu, vq given by

u “
#
tanhpρpx2 ´ 0.25qq for x2 ď 0.5
tanhpρp0.75´ x2qq for x2 ą 0.5

, v “ 0.05 sinp2π x1q (6.4.6)

which corresponds to a layer of thickness Op1{ρq. Doubly-periodic boundary conditions
are applied.
In Figure 6.6 we demonstrate the performance of various second order methods

including two DIRK-CF methods (SL2 & SL2L, by the nomenclature of [7]) and a second
order semi-Lagrangian multistep exponential integrator (named BDF2-CF2, in [8]). The
results are obtained at time t “ 1.5, using a filter-based spectral element method (see
[13]) with Ne “ 16ˆ 16 elements and polynomial degree N “ 8. The specified Reynolds
number is Re “ 105, while ρ “ 30 and time step sizes used are Δt “ 0.002, 0.005, 0.01
corresponding to a Courant numbers of Cr « 0.6393, 1.5981, 3.1963 respectively. The
filtering parameter used in each experiment is α “ 0.3 (see for example [13]). However,
the time step size and Courant number are up to about 10 times larger than that report in
[13]. The initial values for the BDF2-CF are computed accurately using the second order
DIRK-CF (SL2L) with smaller steps. The results are qualitatively comparable with those
in [11, 13].
In Figure 6.7 we demonstrate the performance of the second order DIRK-CF method

(SL2L). The results are obtained at times t “ 0.8, 1.0, 1.2 and 1.5 respectively, using
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Figure 6.6: Results of second order DIRK-CF methods (SL2 & SL2L) and BDF2-CF
method for the shear layer roll-up problem. We have px1, x2q P r0, 1s2; Ne “ 16ˆ16, N “
8. (filtering, α “ 0.3), ρ “ 30, Re “ 105. Vorticity contours (-70 to 70 by 15) of the
solution at time t “ 1.5.

spectral element method (without filtering) with Ne “ 16 ˆ 16 elements and polynomial
degree N “ 16. The specified Reynolds number is Re “ 105, while ρ “ 30. The time step
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Figure 6.7: Results of second order DIRK-CF method (SL2L) for the shear layer roll-
up problem. We have px1, x2q P r0, 1s2; Ne “ 16 ˆ 16, p “ 16, Δt “ 0.01, Cr “
11.9250, ρ “ 30, Re “ 105. Vorticity contours (-70 to 70 by 15) of the solution at time
(a) t “ 0.8, (b) t “ 1.0, (c) t “ 1.2, (d) t “ 1.5.

size used is Δt “ 0.01, corresponding to a Courant number of Cr « 11.9250. This time
step size is 10 times larger than that report in [13]. Again the results are well comparable
to those in [11, 13].
Finally in Figure 6.8 we demonstrate the performance of the second order DIRK-CF

method (SL2L) for the “thin” shear layer roll-up problem, so defined for ρ “ 100. The
results are obtained at times t “ 0.8, 1.0, 1.2 and 1.5 respectively, using spectral element
method (without filtering) with Ne “ 16 ˆ 16 elements and polynomial degree N “ 16.
The specified Reynolds number is Re “ 40, 000. The time step size used is Δt “ 0.01,
corresponding to a Courant number of Cr « 11.9250. The results are well comparable to
those in [11, 13], except that we used 10 times the step size in time.
The results reported both in this section and section 6.4.4 indicate that the semi-

Lagrangian exponential integrators permit the use of large time step sizes and Courant
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Figure 6.8: Results of second order DIRK-CF method (SL2L) for the “thin” shear layer
roll-up problem. We have px1, x2q P r0, 1s2; Ne “ 16 ˆ 16, p “ 16, Δt “ 0.01, Cr “
11.9250, ρ “ 100, Re “ 40, 000. Vorticity contours (-36 to 36 by 13) of the solution at
time (a) t “ 0, (b) t “ 0.8, (c) t “ 1.0, (d) t “ 1.2.

numbers.

Conclusion
We have derived projection methods based on IMEX Runge-Kutta schemes and semi-
Lagrangian exponential integrators (DIRK-CF) for the incompressible Navier-Stokes
equations. These methods have been shown to perform well in the case of periodic
and no-slip boundary conditions. Using model problems in 2D with high Reynolds
number, we have demonstrated the performance of the DIRK-CF methods for convection-
dominated problems. The IMEX methods show up to third order of convergence in the
velocity. However, the DIRK-CF methods only show up to second order. Proper ways
of implementing the projections alongside the boundary conditions for the DIRK-CF
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methods are still to be investigated further. We believe this would help recover the full
order of the methods.
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