
Master of Science in Mathematics
December 2011
Idar Hansen, MATH

Submission date:
Supervisor: 

Norwegian University of Science and Technology
Department of Mathematical Sciences

Homology Theory from the Geometric
Viewpoint

Olav Brautaset





Idar, en stor takk til deg for våre ukentlige møter, dine fantastiske forelesninger, og for
ditt smittende engasjement for faget.

Tone, du er den som betyr aller mest. Takk for at du alltid passer på meg.





Abstract. Given a multiplicative cohomology theory, h∗, represented by a spectrum, E,
we define its associated geometric homology theory, hgeo∗ , by means of bordism. Restricted
to CW pairs, we show how hgeo∗ is naturally equivalent to h∗, the homology theory asso-
ciated to E. This was done by M. Jakob in the paper [Jak00], and we give an exposition
following his approach. We also consider a naturally occurring cap product.





Introduction. In 1982, P. Baum and R. G. Douglas presented the paper K Homology
and Index Theory, [BD82], there introducing a geometric description of K-homology—the
spectrally defined homology theory associated to (complex) K-theory. Their version of
K-homology resembles K-theory as well as oriented bordism and is in some sense a fusion
of these. Given a space X, one considers the set of triples of the form (M,E, f), whereM
is a closed Spinc-manifold, E is a complex vector bundle overM , and where f : M → X is
a continuous map. A suitable equivalence relation is defined on such triples, extending the
traditional bordism relation on singular manifolds (M,f). There is the obvious disjoint
union of triples. This operation passes on to the set of equivalence classes, which by that
becomes an abelian group.

This construction would turn out to be applicable to more than K-theory. In the triple
(M,E, f), the vector bundle E may be regarded as an element of K∗(M). In his paper
A Bordism-Type Description of Homology, [Jak98], M. Jakob shows how the description
of Baum and Douglas generalizes to a great range of multiplicative cohomology theories.
Suppose given a multiplicative cohomology theory h∗ represented by a spectrum. For
a pair of spaces, (X,A), Jakob considers triples (M,x, f), for which M is a compact,
h-oriented manifold, x is an element of h∗(M), and where f : (M,∂M) → (X,A) is a
continuous map. Under a suitable equivalence relation, generalizing that of Baum and
Douglas, this becomes an abelian group as above. This evolves to geometric homology,
hgeo∗ , a homology theory defined on topological pairs. Restricted to CW pairs, hgeo∗ is
naturally equivalent to the spectrally defined homology theory, h∗. Jakob published a
second version, [Jak00], which is our approach to the subject.

Terminology. Certain categories have been given names.

• Ab∗
Graded abelian groups with graded group homomorphisms.

• Top
Topological spaces with continuous maps. Synonymous names for objects are space,
topological space.

• Top2

Pairs of topological spaces and subspaces with continuous maps of pairs. Synony-
mous names for objects are pair, topological pair, pair of spaces.

• CW
CW complexes with continuous maps. Synonymous names for objects are CW
space, CW complex.

• CW2

Pairs of CW complexes and subcomplexes with continuous maps of pairs. Syn-
onymous names for objects are CW pair, pair of CW spaces, pair of CW
complexes.



We write pt for the generic one-point space. Disjoint union of spaces X and Y is denoted
X t Y . For a space X, we define X+ := X t pt.

Homology and cohomology theories are always assumed to be additive. Moreover,
we do not include the axiom of dimension.

When we speak of a manifold M , we shall assume the following.

• M is real and smooth (C∞-differentiable).

• M has a finite number of connected components, but we will allow the components’
dimensions to vary.

• M has a boundary ∂M (possibly empty), and we have ∂M ⊆ M as a smooth
submanifold.

• M = ∅ is regarded to be a manifold of any dimension.

By submanifold we mean imbedded submanifold, i.e. the image of some smooth imbed-
ding. All imbeddings are assumed to be smooth. Being locally Euclidean, the connected
and path-connected components of a manifold coincide, and components will therefore
be used. By an n-manifold M , we mean a manifold whose components all have the
the same dimension n. We may then write Mn. When necessary, single- and multi-
dimensional will be used to distinguish the two cases. Throughout, vector bundles
are assumed to be real. As with manifolds, we also allow a vector bundle to have varying
rank on its different components.
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1 PRELIMINARIES

Throughout this text, we shall let h∗ be a fixed, multiplicative cohomology theory on
CW2 represented by an Ω-spectrum, E. To E, there is the associated homology theory,
h∗. We shall postpone the definitions of these terms to Chapter 3, and we use h∗ for now
without further discussion.

In this chapter, we give the notion of h-orientations on vector bundles and manifolds,
before defining the Gysin homomorphism in cohomology and demonstrating some of its
basic properties.

1.1 Defining orientations on vector bundles and manifolds

Definition. n-dimensional Euclidean half-space is

H
n :=

{
(x1, . . . , xn) ∈ Rn | x1 ≥ 0

}
⊆ Rn.

As a submanifold, we identify Rn−1 = ∂Hn ⊆ Hn and have the following imbedding
theorem:

Theorem (Imbedding). Let M be a compact manifold. Then for some n, there is an
imbedding

(M,∂M) ↪→ (Hn,Rn−1).

More frequently, we shall be using imbeddings M ↪→ Rn obtained by composing with the
standard inclusion Hn ↪→ Rn.

Theorem (Collaring). Let M be a manifold. Then there is an imbedding

f : ∂M × [0, 1) ↪→M

such that f(x, 0) = x for every x ∈ ∂M .

Such an imbedding, as well as its image, is referred to as a collar onM . When identifying
diffeomorphic manifolds, we may assume f is an inclusion map, i.e. ∂M × [0, 1) ⊆ M as
an open neighborhood of ∂M .
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Definition. SupposeM and N are manifolds. We write τM and τN for their respective
tangent bundles. Let f : M ↪→ N be an imbedding. Identifying τM as a subbundle of
f∗τN , we define the normal bundle of f to be the quotient bundle

νf := f∗τN
/
τM .

Remark. This makes νf ↓ M a smooth vector bundle. If M and N are of constant
codimension, then rank νf = dimN − dimM . The sequence

0→ τM → f∗τN → νf → 0
is exact. Moreover, manifolds being paracompact, the sequence splits. When N is a
Euclidean space, we thus get that τM ⊕ νf is trivial.

The following theorem can be found in [Hir76].

1.3Theorem. Let Mn be a compact manifold. Then (M,∂M) has the homotopy type
of a CW pair.

Suppose given a continuous map of compact manifolds. Then a choice of CW represen-
tatives and homotopy equivalences defines a homotopy class of maps between the repre-
sentatives. Passing to the homotopy category of CW pairs, this becomes independent of
the choice of representatives and a functorial assignment. In homology and cohomology,
we may therefore treat compact manifolds as if they were CW pairs. This we shall use
freely. For the following, we refer to [Hus75].

Definition. Suppose ξ is a vector bundle with a metric, ξ having total space E and
base space X. Then the associated disk and sphere bundle of ξ are the fiber bundles
with respective total spaces

DE :=
{
x ∈ E

∣∣ ||x|| ≤ 1
}
, SE :=

{
x ∈ E

∣∣ ||x|| = 1
}
,

and base space X, denoted Dξ and Sξ. The Thom space of ξ is the pointed quotient
space

Th ξ := DE/SE.

Most often, we shall use the same notation π for the projections of SE, DE and E onto
X.

Given two metrics on ξ, the fiber bundle equivalence Dξ
∼=−→ D′ξ, on the total spaces

locally given by
(x, v) 7→ (x, ||v||

||v||′
v), v ∈ π−1(x),

allows us to identify Dξ and D′ξ in a canonical way. This identifies the associated sphere
bundles as well. We shall only consider vector bundles ξ over manifolds and CW spaces.
These base spaces are paracompact and hence admit partitions of unity and thus metrics
on ξ. Also, we note that Th ξ is independent of this metric. The passing from vector
bundles to Thom spaces can be made covariantly functorial. Given a bundle map ξ → η,
the Thom functor induces the pointed map Th ξ → Th η. This we shall be using freely.
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We note that for a vector bundle over a CW space, the associated Thom space is a CW
space as well.

Definition. Let X be a compact manifold or a CW space and let ξ = E ↓ X be a
vector bundle of rank n. Then a Thom class of ξ is an element u ∈ h̃n(Th ξ) which on
each fiber of ξ is pulled back to an h̃0(S0)-module generator

i∗x(u) ∈ h̃n(DEx/SEx) ∼= h̃n(Dn/Sn−1) ∼= h̃n(Sn) ∼= h̃0(S0).
Now, let ξ = E ↓ X be a vector bundle, not necessarily of constant rank on different
components. Let tEk ↓ tXk be the component decomposition of ξ, ξk = Ek ↓ Xk,
rk := rank ξk. Then an h-orientation of ξ is a class u ∈ h̃∗(Th ξ) such that

• u is non-zero only in dimensions rk,

• for each k, the restriction uk ∈ h̃rk(Th ξk) is a Thom class of ξk.

Such a class will also be referred to as a Thom class. If a Thom class exists, ξ is said to
be h-orientable. ξ is h-oriented when a choice of Thom class is made. Most often, we
will suppress the prefix h when speaking of orientations.

Remark. [Dye69] is our main reference for orientations of vector bundles and manifolds.
However, note how our definition of a Thom class differs from the one found there. We
do not require the restriction of a Thom class to correspond to 1 ∈ h̃0(S0), but only to
some h̃0(S0)-module generator. This is essential to us as we shall be needing that −u is
a Thom class whenever u is.

1.4 Lemma. Let M be a compact manifold and let fi : M ↪→ Rki be two imbeddings of
M , i = 1, 2. Then there are integers ai yielding a bundle isomorphism νf1⊕a1 ∼= νf2⊕a2.

Proof. For any imbedding f in Euclidean k-space, we have the canonical bundle iso-
morphism νf ⊕ τM ∼= k: By definition, at each fiber, νf is the linear quotient of Euclidean
(tangent) space and a tangent space of M . Thus—νf being the orthogonal complement
at each fiber—this isomorphism is evident. We get

νfi ⊕ τM ∼= ki

=⇒ νf1 ⊕ k2 ∼= νf1 ⊕ νf2 ⊕ τM ∼= νf2 ⊕ k1.

Having fixed a manifold M as base space, two vector bundles are called stably isomor-
phic when they become isomorphic by adding suitable trivial bundles. This defines an
equivalence relation on bundles over M . The lemma above shows that any two normal
bundles are stably isomorphic. Hence all normal bundles belong to the same equivalence
class. We call this class the stable normal bundle of M . We also have the notion of a
stable orientation class giving an orientation to the stable normal bundle:
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1.5 Proposition. Let M be a compact n-manifold and let u1 ∈ h̃k1(Th ν1) be an orien-
tation of the normal bundle ν1 of some imbedding f1. Then if ν2 is the normal bundle of
some other imbedding f2, u1 determines in a unique way an orientation u2 ∈ h̃k2(Th ν2)
of ν2.

Proof. The two imbeddings may be composed with standard imbeddings of Euclidean
spaces to give two new imbeddings, i1 ◦ f1 and i2 ◦ f2, into the same Rn+l. When l is
chosen sufficiently high, these imbeddings are isotopic, i.e. homotopic through imbeddings.
The new normal bundles, ν′1 and ν′2, are thus isomorphic. Each standard imbedding of
Euclidean spaces yields the addition of a trivial bundle to the normal bundle:

ν′1
∼= ν1 ⊕ (l − k1), ν′2

∼= ν2 ⊕ (l − k2).
Hence we get ν1 ⊕ (l − k1) ∼= ν2 ⊕ (l − k2). Passing to Thom spaces, we get

Th(ν1 ⊕ (l − k1)) ≈ Th(ν2 ⊕ (l − k2)).
Even more, this homeomorphism can be chosen so that it preserves disks, and as such
it is unique up to isotopy: cf. [Dye69] section D.1. Hence the induced isomorphism in
cohomology is uniquely determined.

When ξ ↓ X and η ↓ Y are vector bundles, so is (ξ × η) ↓ (X × Y ), and one has the
canonical homeomorphism Th(ξ×η) ≈ Th ξ∧Th η. Letting Y = pt, η = 1 and identifying
ξ ⊕ 1 ↓ X with (ξ × 1) ↓ (X × pt), the homeomorphism becomes Th(ξ ⊕ 1) ≈ Σ Th ξ. We
get

h̃k1(Th ν1) ∼= h̃l(Σl−k1 Th ν1)
∼= h̃l(Th(ν1 ⊕ (l − k1)))
∼= h̃l(Th(ν2 ⊕ (l − k2)))
∼= h̃l(Σl−k2 Th ν2)
∼= h̃k2(Th ν2),

and thus we have defined an element u2 ∈ h̃k2(Th ν2) corresponding to u1 via the given
isomorphisms. u2 is now seen to be an orientation of ν2, as the Thom map in the middle
is disk preserving and the suspension isomorphism commutes with induced maps.

If M instead is multi-dimensional, the exact same argument applies by isomorphisms of
graded cohomology groups. Taking M to be an n-manifold as we have done, carrying out
the proof is more illustrative exposing the cohomology dimensions in question.

From the proposition above, we conclude that it makes sense speaking of an orientation
of the stable normal bundle of the compact manifold M : If u is an orientation of one
normal bundle, then to any other normal bundle, there is the corresponding orientation.
Hence we say that u is an orientation of the stable normal bundle if it is an orientation
of the normal bundle of some imbedding M ↪→ Rk. On the stable normal bundle, we
identify corresponding orientations of normal bundles coming from different imbeddings.
This justifies the following definition.
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Definition. An h-manifold is a pair (M,u), where M is a compact manifold and u is
an orientation of its stable normal bundle. We write M for (M,u), and we say that M is
oriented by u. If M is an h-manifold oriented by u, we write M− for the h-manifold M
oriented by −u.

We now have a conflict regarding notation. However, with no risk of confusion, we shall
proceed speaking of a manifold of dimension n as an n-manifold.

We give a trivial but important example of an h-manifold: Every imbedding of the empty
set into Euclidean space yields the same normal bundle, namely the empty set. The Thom
space of this normal bundle reads ∅/∅ = pt. It is vacuously verified that 0 ∈ h̃∗(pt) = 0
is a Thom class of this empty bundle, ∅, and clearly there can be no other. Thus there is
precisely one orientation making ∅ an h-manifold, and we will assume this structure on
∅ hereafter.

1.2 Induced orientations

If M is an h-manifold, it imposes a canonical orientation on its boundary, ∂M , as well as
on any codimension zero submanifold B ⊆M :

First, let Mn be an h-manifold. Choosing an imbedding f : (M,∂M) ↪→ (Hn+k,Rn+k−1),
we get normal bundles νf ↓ M and νf |∂M ↓ ∂M , both of rank k. Composing f with
the inclusion Hn+k ↪→ Rn+k also yield normal bundles, naturally identified with νf and
νf |∂M . Thus the orientation of M determines a Thom class u ∈ h̃∗(Mνf ) orienting νf .
Restricting the total space of νf to ∂M yields the bundle νf |∂M ↓ ∂M . By the collaring
theorem, we can assume νf |∂M = νf |∂M ↓ ∂M . Hence νf |∂M → νf is a bundle inclusion
map:

νf |∂M νf

∂M M

Passing to Thom spaces, we get the disk preserving map Th νf |∂M → Th νf . It induces
hk(Th νf ) → hk(Th νf |∂M ), evidently taking Thom classes to Thom classes. The image
of u in hk(Th νf |∂M ) is thus an orientation of νf |∂M , making ∂M an h-manifold. Again,
this does not depend on the choice of imbedding.

Now let Bn ⊆ Mn be a submanifold. The imbeddings Bn ↪→ Mn ↪→ Rn+k yield rank k
normal bundles, with νB → νM a bundle inclusion map:

νB νM

B M
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The fiber over x in νB is the fiber over x in νM , and hence a Thom class orienting νM
restricts to a Thom class orienting νB .

The two cases easily extend to the general setting: When M is a multi-dimensional
h-manifold, an orientation is imposed on its boundary—resp. on its codimension zero
submanifold—componentwise, in the obvious fashion.

Definition. If i : M ↪→ M ′ is a codimension zero imbedding of h-manifolds, a choice
of imbedding M ′ ↪→ Rk gives rise to a bundle inclusion map νi(M) ↪→ νM ′ of normal
bundles. νi(M) also being a normal bundle of M via i, we say that the imbedding i is
orientation preserving if the orientation ofM agrees with the orientation νi(M) inherits
from νM ′ .

Remark. We shall from this point always assume that imbeddings and submanifolds
of codimension zero h-manifolds preserve orientations.

Now let (M1, u1) and (M2, u2) be h-manifolds. We want to assign an orientation to their
disjoint union:

First we let M1 and M2 have the common dimension n. We can assume fi : Mi ↪→ Rn+k

are disjoint imbeddings of M1 and M2 such that ui ∈ h̃k(Th νfi). We get the imbedding
f1 t f2 : M1 t M2 ↪→ Rn+k. Identifying νf1tf2 = νf1 t νf2 ↓ M1 t M2, we have the
canonical isomorphisms

h̃k(Th νf1tf2) ∼= h̃k(Th νf1 ∨ Th νf2) ∼= h̃k(Th νf1)⊕ h̃k(Th νf2).

These give the element u1 t u2 ∈ h̃k(Th νf1tf2) corresponding to

(u1, u2) ∈ h̃k(Th νf1)⊕ h̃k(Th νf2).
The first isomorphism is the induced map of a disk preserving homeomorphism. The
second isomorphism is on each summand the induced map of the inclusion in the wedge
sum, again preserving disks. Hence u1 t u2 is a Thom class.

If M1 and M2 instead have dimensions n1 and n2, the isomorphisms

h̃∗(Th νf1tf2) ∼= h̃∗(Th νf1 ∨ Th νf2) ∼= h̃∗(Th νf1)⊕ h̃∗(Th νf2)
again give the orientation u1 t u2 of M1 t M2. Now we extend componentwise when
M1 and M2 are general h-manifolds. Thus we have a canonical h-orientation u1 t u2 on
M1 tM2, making (M1 tM2, u1 t u2) an h-manifold.

Remark. Let ξ ↓ X and η ↓ Y be vector bundles and ξ f−→ η a bundle map. The fibers
over x ∈ X, f(x) ∈ Y , may be regarded as vector bundles ξx ↓ {x}, ηf(x) ↓ {f(x)}. ξ → η
restricts to the linear map ξx → ηf(x), which we consider to be a bundle map covering
{x} → {f(y)}. This setting makes the Thom functor more applicable.



1.2. Induced orientations 9

When ξ and η are oriented vector bundles over the same base space, there is a canonical
orientation on their sum ξ ⊕ η:

Let uξ ∈ h̃∗(Th ξ) and uη ∈ h̃∗(Th η) be respective Thom classes for the vector bundles
ξ ↓ X and η ↓ X. ξ⊕ η is the pullback bundle of ξ× η via the diagonal map X → X×X.
Hence ξ ⊕ η → ξ × η is a bundle map, inducing Th ξ ⊕ η → Th ξ ∧ Th η on Thom spaces
when identifying Th ξ × η with Th ξ ∧ Th η. We have the diagram

h̃∗(Th ξ)⊗ h̃∗(Th η) h̃∗(Th ξ ∧ Th η) h̃∗(Th ξ ⊕ η)

h̃∗(Th ξx)⊗ h̃∗(Th ηx) h̃∗(Th ξx ∧ Th ηx) h̃∗(Th(ξ ⊕ η)x) .

∧

∧

The left-hand square commutes by naturality of the reduced external product, while the
right-hand square is induced by a commutative square of Thom spaces. As the diagram
commutes, uξ ⊗ uη gives a Thom class in h̃∗(Th ξ ⊕ η), i.e. an orientation of ξ ⊕ η.

Even more, if ξ and η are vector bundles over X such that ξ and ξ⊕ η are oriented, then
η has a unique orientation such that the orientations of ξ and η induce that of ξ ⊕ η
(cf. [Dye69]).

1.6 Lemma. Suppose f : X → Y is a map and ξ ↓ Y an h-vector bundle. Then the
pull-back bundle f∗ξ ↓ X of ξ along f becomes an h-vector bundle in a canonical way.

Proof. We have the bundle map

f∗ξ ξ

X Y .
f

For each x ∈ X, this restricts to a (linear) bundle map (f∗ξ)x → ξf(x), as remarked
above. These give commutative squares of bundle maps. Applying the functors Th
and h̃∗ successively yield commutative diagrams of Thom spaces and their corresponding
cohomology groups

Th(f∗ξ)x Th ξf(x)

Th f∗ξ Th ξ ,

h̃∗
(

Th ξ
)

h̃∗
(

Th f∗ξ
)

h̃∗
(

Th ξf(x)
)

h̃∗
(

Th(f∗ξ)x
)

,
∼=

the vertical maps in the left-hand diagram being the inclusions. The isomorphism to the
right follows from the identification (f∗E)x = {x} ×Ef(x) in the total space of f∗ξ. The
following diagram commutes by the naturality of the reduced external product.
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h̃0(S0)⊗ h̃∗(Th ξf(x)) h̃∗(Th ξf(x))

h̃0(S0)⊗ h̃∗(Th(f∗ξ)x) h̃∗(Th(f∗ξ)x)

∼=

∧

∧

Let u ∈ h̃∗(Th ξ) be the Thom class of ξ. Now the corresponding class in h̃∗(Th f∗ξ) is
seen to be a Thom class of f∗ξ, since its restriction to any h̃∗(Th(f∗ξ)x) is an h̃0(S0)-
module generator by the last diagram.

Now we let M be an h-manifold and ξ a smooth h-vector bundle over M . We show
how the total spaces of the disk and sphere bundles Dξ and Sξ become h-manifolds in a
natural way:

Let π : E →M be the (smooth) projection of ξ. First of all, there are smooth metrics on
ξ. This makes DE and SE (smooth) submanifolds of E. Again, this is independent of
the choice of metric, now up to canonical diffeomorphism. And since M is compact, so
are DE and SE.

Since M is an h-manifold and τM ⊕ νM is trivial for some imbedding M ↪→ Rk, τM has
a canonical orientation as an h-vector bundle. Thus ξ ⊕ τM ↓ M gets an orientation,
and by the lemma above, so does π∗(ξ ⊕ τM ) ↓ E. From the canonical isomorphism
π∗(ξ ⊕ τM ) ∼= π∗ξ ⊕ π∗τM , we obtain a short exact sequence of vector bundles over E
(cf. [Lan02]),

0→ π∗ξ → τE → π∗τM → 0.
We restrict the bundles in the sequence to DE, preserving exactness. The zero-section
M → DE in Dξ gives the injective bundle map τM ↪→ τDE , which again gives a splitting
π∗τM |DE → τDE of the new short exact sequence. This determines an isomorphism

τDE ∼= π∗(ξ ⊕ τM )|DE ,
making DE an h-manifold.

SE sits inside the boundary of DE as a codimension zero submanifold, by that inheriting
an orientation.

We shall always assume this orientation on the associated disk bundle—resp. sphere
bundle—whenever we speak of a smooth h-vector bundle having an h-manifold as base
space.

1.3 The Gysin homomorphism

Remark. Given a compact manifold Mn, there is a bijective correspondence between
its orientations and its fundamental classes [M,∂M ] ∈ hn(M,∂M). When M is given an
orientation, we thus speak of the fundamental class ofM . This readily generalizes to multi-
dimensional h-manifolds. When [M,∂M ] is the fundamental class of M , −[M,∂M ] =
[M−, ∂M−] is the fundamental class of M−.
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For the remark and the next three results, we refer to [Swi75].

1.7Proposition. Suppose M is an h-manifold and that [M,∂M ] ∈ h∗(M,∂M) is its
fundamental class, with [∂M ] ∈ h∗(∂M) the associated fundamental class of ∂M . Then

∂[M,∂M ] = [∂M ],
where ∂ is the boundary homomorphism in the long exact sequence associated to the pair
(M,∂M).

1.8Proposition. Suppose C is a closed h-manifold and that M ⊆ C is a codimension
zero submanifold. We write [C] for the fundamental class of C, and [M,∂M ] for the
fundamental class of M corresponding to the orientation M inherits from C. Then we
have

i∗[C] = j∗[M,∂M ],

where i∗, j∗, are the maps induced by the inclusions

(C,∅) i
↪−→ (C,C − intM)

j
←−↩ (M,∂M).

Theorem (Poincaré duality). Let Mn be an h-manifold and [M,∂M ] ∈ hn(M,∂M)
the fundamental class of M . Then the maps

DM : hk(M)
∼=−→ hn−k(M,∂M),

D̂M : hk(M,∂M)
∼=−→ hn−k(M),

each given by x 7→ x ∩ [M,∂M ], are isomorphisms.

Next, we define the Gysin homomorphism associated to a continuous map of oriented
manifolds. This map and maps similar to it go by various names and descriptions, e.g.
Umkehr maps and transfers. In [Dye69], there is a construction of an Umkehr map in
terms of a Thom collapsing map and Thom isomorphisms. For the Gysin map we are
about to define, we shall be deducing several properties. The Gysin map seems to share
these properties with the Umkehr map, and there is much speaking in favor of the two
maps being equal. According to Jakob, [Wür71] proves that this is the case. We will not
rely on this fact, but bear it in mind for the following discussion: The construction of
the Umkehr map has the advantage of avoiding homology groups entirely, being a strict
composition of homomorphisms in cohomology. Our purpose of involving the Gysin map
in the first place is to be able to describe the dual homology theory h∗ associated to
h∗ in another way. The use of the Gysin map may therefore seem a bit odd; indeed,
by definition, it factors through homology groups of the homology theory we are trying
to describe. Using instead the Umkehr map would eliminate this oddity, which is the
approach of [Jak00]. Nevertheless, we shall stick to the Gysin map. This is partly because
it is cleaner, in some sense, and more comprehensible with respect to computations, and
partly to do things in a way different than that of [Jak00].
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Definition. Let f : (Mm, ∂M)→ (Nn, ∂N) be a continuous map of h-manifolds. Then
we define the map f! as the composition making the following diagram commute:

hk(M) hk+n−m(N)

hm−k(M,∂M) hm−k(N, ∂N)

f!

f∗

DM D−1
N

We call f! the Gysin homomorphism induced by f .

More generally, let f : (M,∂M) → (N, ∂N) be a continuous map between two multi-
dimensional h-manifolds. Of course, each component of M is mapped to a component of
N . Hence we extend the Gysin homomorphism componentwise to the map f! : h∗(M)→
h∗(N) in the obvious manner: We write M = tMk and N = tNk for the component
decompositions, with f = tfk such that f restricts to fk : Mk → Nk. With xk ∈ h∗(Mk),
we have fk!(xk) ∈ hr(Nk) for some r. Then with the corresponding x = txk ∈ h∗(M),
we define

f!(x) =
(
t fk

)
!

(
t xk

)
:= tfk!(xk) ∈ h∗(N).

Immediate from this definition, we have that the Gysin construction is (covariantly)
functorial in the sense f!g! = (fg)!. We also note the homotopy invariance.

Remark. When a square of groups and homomorphisms commutes up to sign, we shall
say that it commutes with sign s if multiplying some map in the square by the sign
s makes it commutative. In the following proposition, we determine the sign with which
the square commutes. This sign we shall be needing at a later point.

1.10 Proposition. Let Mm and Nn be h-manifolds and f : (Mm, ∂M) → (Nn, ∂N)
a continuous map. We write ∂f : ∂M → ∂N for the restriction. The following diagram
commutes with sign (−1)n−m.

hk(M) hk(∂M)

hk+n−m(N) hk+n−m(∂N)

i∗M

i∗N

f! (∂f)!
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Proof. There is the diagram

hm−k(M,∂M) hm−k−1(∂M)

hk(M) hk(∂M)

hk+n−m(N) hk+n−m(∂N)

hm−k(N, ∂N) hm−k−1(∂N)

∂

i∗M

i∗N

∂

− ∩ [M,∂M ] ∼=

f!

− ∩ [N, ∂N ] ∼=

− ∩ [∂M ]∼=

(∂f)!

− ∩ [∂N ]∼=

f∗ (∂f)∗

.

By the definition of the Gysin map, the left- and right-hand parts both commute, and
naturality of ∂ gives ∂ ◦ f∗ = (∂f)∗ ◦ ∂. We now consider the top square of the diagram.
We have ∂[M,∂M ] = [∂M ] ∈ hm−1(∂M). Then by XIII §7(d) of [Mas91], this square
commutes with sign (−1)k. Likewise, the bottom square commutes with sign (−1)k+n−m.
The four isomorphisms now imply that the middle square commutes with sign (−1)n−m.

Definition. For pairs (X,A) and (X,B), we write (X;A,B) and refer to it as a triad.
A map of triads f : (X ′;A′, B′)→ (X;A,B) is a map f : X ′ → X for which f(A′) ⊆ A
and f(B′) ⊆ B. A full triad is a triad for which X = A ∪ B. A full triad is called
excisive with respect to h∗ if the inclusion (A,A∩B) ↪→ (X,B) induces an isomorphism

h∗(A,A ∩B)
∼=−→ h∗(X,B).

Remark. Let M ⊆ C be a compact, codimension zero submanifold, where C is a
closed h-manifold. Then C− intM ⊆ C is also a compact, codimension zero submanifold.
Moreover, ∂(C − intM) = ∂M = M ∩ (C − intM).

The following lemma now follows from the more general case of full CW triads always
being excisive (cf. [Swi75]). Such an isomorphism will be referred to as excision.

1.11 Lemma. Let Mn ⊆ Cn be a compact codimension zero submanifold of the closed
h-manifold C. Then the map

h∗(M,∂M)
∼=−→ h∗(C,C − intM),

induced by the inclusion, is an isomorphism.
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For a triad (X;A,B), the cap product

∩ : h∗(X,A)⊗ h∗(X,A ∪B)→ h∗(X,B)
is defined whenever the full triad (X×B∪A×X;X×B,A×X) is excisive. We note that
this is so for the respective cases A = ∅, B = ∅, as (X×B;X×B,∅), (A×X;∅, A×X)
respectively yield isomorphisms

1: h∗(X ×B,∅)
∼=−→ h∗(X ×B,∅), 0: h∗(∅,∅)

∼=−→ h∗(A×X,A×X).
For all this and the next proposition, we refer to [Swi75].

1.12Proposition. Suppose f : (X ′;A′, B′) → (X;A,B) is a map of triads such that
(X ×B ∪A×X;X ×B,A×X) is excisive. Then for x′ ∈ h∗(X ′, A′ ∪B′), the following
diagram commutes

h∗(X ′, A′) h∗(X,A)

h∗(X ′, B′) h∗(X,B) ,

− ∩ x′ − ∩ f∗(x′)

f∗

f∗

i.e. for any x ∈ h∗(X,A), we have the equality

f∗(f∗(x) ∩ x′) = x ∩ f∗(x′).

1.13 Lemma. For any pair (X,B) and elements x ∈ h∗(X), y ∈ h∗(X), the inclusion
j : (X,∅) ↪→ (X,B) gives

j∗(x ∩ y) = x ∩ j∗(y),
i.e. we have the following commutative diagram

h∗(X)

h∗(X) h∗(X,B) .

− ∩ y

j∗

− ∩ j∗(y)

Proof. As noted above, the previous proposition applies to the triads

(X ′;A′, B′) := (X,∅,∅), (X;A,B) := (X;∅, B).
The identity map on X restricts to j : (X,∅) → (X,B). This gives the commutative
diagram

h∗(X,∅) h∗(X,∅)

h∗(X,∅) h∗(X,B) ,

− ∩ y − ∩ j∗(y)

1

j∗

and the result follows.
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1.14 Lemma. Let Mn ⊆ Cn be a compact codimension zero submanifold of the closed
h-manifold C. Then the following diagram commutes.

hk(C) hk(M)⊕ hk(C − intM)

hn−k(M,∂M)⊕ hn−k(C − intM,∂M)

kn−k(C) hn−k(C, ∂M)

i∗ ⊕ j∗

l∗

∼= DC

∼= DM ⊕DC−intM

∼= i′∗ + j′∗

Proof. The maps induced by the inclusions I ′, I, J ′ and J give the composition maps

I∗
−1I ′∗ : hn(C) I′∗−→ hn(C,C − intM) I∗

−1

−−−→ hn(M,∂M),

J∗
−1J ′∗ : hn(C) J′∗−→ hn(C,M) J∗

−1

−−−→ hn(C − intM,∂M).
Here, I∗ and J∗ are excisions. In terms of the fundamental class [C] of C, the fundamental
classes of M and C − intM are by Proposition 1.8 given by

[M,∂M ] = I∗
−1I ′∗[C], [C − intM,∂M ] = J∗

−1J ′∗[C].
We see that the inclusions I ′ and J ′ each factor through the pair (C, ∂M), and we define
new inclusions,

(C,∅)

(C,C − intM) (C, ∂M) (C,M) .

I′

l
J′

I′′ J′′

The following diagram clearly commutes, the maps J ′′∗ i′∗ and I ′′∗ j′∗ respectively factoring
through hn(M,M) and hn(C − intM,C − intM), thus being zero.

hn(M,∂M)⊕ hn(C − intM,∂M)

hn(C, ∂M) hn(C,C − intM)⊕ hn(C,M)

i′∗ + j′∗

∼=
∼= I∗ ⊕ J∗

I′′∗ ⊕ J
′′
∗

The sum of the induced inclusions i′∗ + j′∗ is part of the Mayer-Vietoris sequence of the
full excisive triad (C;M,C − intM) (cf. [Swi75]). As M ∩ (C − intM) = ∂M , this is an
isomorphism. By the triangle above, the composition
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hn(C, ∂M) I′′∗⊕J
′′
∗−−−−→ hn(C,C − intM)⊕ hn(C,M)

I∗
−1 ⊕ J∗−1

−→

hn(M,∂M)⊕hn(C − intM,∂M) i′∗+j′∗−−−−→ hn(C, ∂M)

is therefore the identity map on hn(C, ∂M). We get

i′∗[M,∂M ] + j′∗[C − intM,∂M ] = i′∗I∗
−1I ′∗[C] + j′∗J∗

−1J ′∗[C]
= i′∗I∗

−1I ′′∗ l∗[C] + j′∗J∗
−1J ′′∗ l∗[C]

= (i′∗ + j′∗)(I∗−1 ⊕ J∗−1)(I ′′∗ ⊕ J ′′∗ )l∗[C] = l∗[C].

From Proposition 1.12—resp. Lemma 1.13—we have the equalities (the first equality also
for j′, j)

i′∗(i∗(x) ∩ [M,∂M ]) = x ∩ i′∗[M,∂M ], x ∩ l∗[C] = l∗(x ∩ [C]).
We can now see that the two ways around the initial diagram are the same,

(i′∗ + j′∗)(DM ⊕DC−intM )(i∗ ⊕ j∗)(x)
=i′∗(i∗(x) ∩ [M,∂M ]) + j′∗(j∗(x) ∩ [C − intM,∂M ])
=x ∩ i′∗[M,∂M ] + x ∩ j′∗[C − intM,∂M ]
=x ∩ l∗[C] = l∗(x ∩ [C]) = l∗DC(x).

1.15 Corollary. Let Mn ⊆ Cn be a compact codimension zero submanifold of the
closed h-manifold C. Then the following diagram commutes.

hk(C) hk(M)

hn−k(M,∂M)

kn−k(C) hn−k(C,C − intM)

∼= DC

∼= DM

∼=

Proof. Beginning with the commutative diagram of the previous lemma, we attach
the group hn−k(C,C − intM).
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hk(C) hk(M)⊕ hk(C − intM)

hn−k(M,∂M)⊕ hn−k(C − intM,∂M)

kn−k(C) hn−k(C, ∂M) hn−k(C,C − intM)

i∗ ⊕ j∗

l∗ k∗

∼= DC

∼= DM ⊕DC−intM

∼= i′∗ + j′∗

k∗i
′
∗ + k∗j

′
∗

The map k∗j
′
∗ factors through hn−k(C − intM,C − intM) = 0, thus being zero. The

result follows.

1.16 Proposition. Let f : C → C ′ be a map of closed h-manifolds and let M ⊆ C and
M ′ ⊆ C ′ be compact, codimension zero submanifolds. If f restricts to fM : (M,∂M) →
(M ′, ∂M ′) on M and to fC−intM : (C − intM,∂M)→ (C ′− intM ′, ∂M ′) on C − intM ,
then the following diagram commutes.

h∗(C) h∗(C ′)

h∗(M) h∗(M ′)

f!

fM!

i∗ i′∗

Proof. The result follows from proving commutativity of the dashed square in the
following diagram.

h∗(C) h∗(C ′)

h∗(C) h∗(C ′)

h∗(M)⊕ h∗(C − intM) h∗(M ′)⊕ h∗(C ′ − intM ′)

h∗(M,∂M)⊕ h∗(C − intM,∂M) h∗(M ′, ∂M ′)⊕ h∗(C ′ − intM ′, ∂M ′)

h∗(C, ∂M) h∗(C ′, ∂M ′)

f∗

f!

fM! ⊕ f
C−intM
!

fM∗ ⊕ f
C−intM
∗

f∗

DC

∼=

i∗ ⊕ j∗ i′∗ ⊕ j′∗

DM ⊕DC−intM∼=

DC′

∼=

DM′ ⊕DC′−intM′∼=

∼= ∼=

By definition of the Gysin homomorphisms, the upper square and the lower middle square
commute. The squares on the left- and right-hand sides commute by Lemma 1.14, where
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the isomorphisms on the lower corners are addition of the maps induced by inclusions.
Finally, the square at the bottom commutes by inspection. The different isomorphisms
in the diagram now impose commutativity on the dashed square.



2 GEOMETRIC HOMOLOGY

Given a pair of spaces, (X,A), we define the set hgeo∗ (X,A)—geometric homology of
(X,A) associated to h∗. We get the covariant functor hgeo∗ : Top2 → Ab∗ by endowing
each hgeo∗ (X,A) with an addition, before verifying that hgeo∗ satisfies the axioms of a
homology theory.

2.1 Triples and equivalence relations

Notation. For an inclusion map i : X ↪→ Y , we often write

y|X := i∗(y) ∈ h∗(X)
for the restriction of y to h∗(X).

Remark. We shall be using the phrase straightening the angle for the procedure
described in [Con79] to give a smooth structure to certain topological manifolds.

For the following definition, we stress that h-manifolds in general are required to be
compact.

Definition. For (X,A) ∈ Top2, we define Λ(X,A) to be the set of all (M,x, f) such
that

• M is an h-manifold,

• x ∈ h∗(M) is a cohomology element,

• f : (M,∂M)→ (X,A) is a continuous map,

• for each component Mk ⊆M , the inclusion pulls x back to a homogeneous element
xk := i∗k(x) ∈ h∗(Mk),

• for all components Mk of M satisfying xk 6= 0, the number dimMk − dim xk is the
same.

An element (M,x, f) ∈ Λ(X,A) is called a triple in (X,A). When the pair (X,A) is
understood, we simply call it a triple.
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If (M,x, f) is a triple with x 6= 0, we define

dim(M,x, f) := dimMk − dim xk,

where Mk is any component of M where we have xk 6= 0. This we call the dimension
of the triple. We have to treat triples with x = 0 as a special case: Analogous to
the dimension of the empty set, we let a triple on the form (M, 0, f) have any finite
dimension.

Remark. Concerning manifolds, we alert the reader that the notation Mk will be used
in two different ways. Sometimes Mk will denote some component of a manifold M , and
sometimes the subscript k will be used to index a collection of (not necessarily connected)
manifolds. The latter is the case in the next definition. The analogous ambiguity applies
to cohomology elements denoted xk. However, this will in each case be made clear or will
follow from context.

Definition. Two triples (M1, x1, f1) and (M2, x2, f2) in (X,A) are bordant if there
exists a triple (W, y, F ) in (X,X) such that

• M1 tM−2 ⊆ ∂W as a codimension zero submanifold,

• y|M1 = x1 and y|M2 = x2,

• F |M1 = f1 and F |M2 = f2,

• F
(
∂W − (M1 tM2)

)
⊆ A.

This defines the relation bordism on Λ(X,A). We shall denote it by the symbol B. We
also refer to the triple (W, y, F ) itself as a bordism, and in the case above, (W, y, F ) is
said to give a bordism between (M1, x1, f1) and (M2, x2, f2).

Remark. In (X,A), we stress that a bordism (W, y, F ) is an element of Λ(X,X), not
of Λ(X,A). Of course, if it were to lie in Λ(X,A), the fourth condition above would be
vacuous.

We have writtenM1tM−2 ⊆ ∂W , while we actually mean i(M1tM−2 ) ⊆ ∂W ; the image of
some orientation preserving imbedding, i. Suppressing the imbedding from our notation
is a mild sin, which we will allow. We also stress that imbeddings and submanifolds of
codimension zero h-manifolds are assumed to preserve orientations.

To ease notation, we shall throughout identify triples (M,x, f) and (M ′, x′, f ′) when
there exists an orientation preserving diffeomorphism ϕ : (M,∂M) → (M ′, ∂M ′) such
that ϕ∗(x′) = x and f ′ϕ = f . Such triples are especially identified under the bordism
relation.
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2.1 Proposition. The bordism relation, B, is an equivalence relation.

Proof. We rely on the methods found in [Con79].

(Reflexivity.) Two copies of (M,x, f) are bordant via (M × I, π∗(x), f̂π), as

M tM− ⊆ (M × {0}) ∪ (M− × {1}) ∪ (∂M × I) = ∂(M × I).

Here, f̂π : (M × I, ∂(M × I))→ (X,X) is the map obtained from

fπ : (M × I, ∂M × I) π−→ (M,∂M) f−→ (X,A).
Also, M × I has been given a smooth structure by straightening the angle, and it is an
h-manifold in a canonical way.

(Symmetry.) If (W, y, F ) is a bordism between (M1, x1, f1) and (M2, x2, f2), then
(W−, y, F ) is a bordism between (M2, x2, f2) and (M1, x1, f1).

(Transitivity.) Let (W12, y12, F12) and (W23, y23, F23) be consecutive bordisms of
(M1, x1, f1), (M2, x2, f2) and (M3, x3, f3). We choose collars on W12 and W−23 and obtain
a smooth structure on

W := W12 ∪M2 W
−
23

by straightening the angle. By requiring that W12 ↪→ W and W−23 ↪→ W are orientation
preserving imbeddings, a unique orientation is imposed on W . Since ∂W12 − intM2 and
∂W−23 − intM2 both imbed in ∂W , we have

M1 tM−3 ⊆ ∂W.
The maps F12 and F23 agree on M2, and so they piece together to give the continuous
map F : W → X. Now, f2(∂M2) ⊆ A, and hence F

(
∂W − (M1 tM3)

)
⊆ A.

To the full excisive triad (W ;W12,W23), there is the associated Mayer-Vietoris sequence
(cf. [May99])

. . .→ h∗(W )→ h∗(W12)⊕ h∗(W23)→ h∗(M2)→ . . . .

The homomorphism to the right maps the element (y12, y23) ∈ h∗(W12) ⊕ h∗(W23) to
y12|M2 − y23|M2 = x2 − x2 = 0. Exactness thus yields an element y ∈ h∗(W ) such that
y|W12 = y12 and y|W23 = y23. This implies y|M1 = x1 and y|M3 = x3.

Hence (W, y, F ) is a bordism between (M1, x1, f1) and (M3, x3, f3).

By taking h∗ to be singular cohomology with integral coefficients, an h-oriented vector
bundle of rank k is just an ordinary SO(k)-vector bundle. A single-dimensional h-manifold
M is thus a compact manifold which is oriented in the traditional sense. Let (X,A) be a
pair and f : (M,∂M)→ (X,A) a continuous map. As defined in [Con79], (M,f) is then
a singular manifold in (X,A). There is a natural way of regarding (M,f) as an element
of Λ(X,A), namely via the correspondence (M,f) 7→ (M, 1, f). We note how bordant
singular manifolds (in the sense of [Con79]) are taken to bordant triples. That is, our
notion of bordism may be seen as a generalization of the classical one.
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Remark. From this point forward, our language will be less formal regarding vector
bundles. Specifically, we will most often use the projection or the total space and speak
of these as the vector bundle itself.

We shall now define another relation on Λ(X,A). Let (M,x, f) be a triple in (X,A). If
π : E → M is a smooth h-vector bundle, then the restrictions π : D(E ⊕ 1) → M and
π : S(E ⊕ 1) → M are smooth fiber bundles. Now let s : M → S(E ⊕ 1) be a smooth
section. Then

(S(E ⊕ 1), s!(x), fπ)

is also a triple in (X,A). This is clear from the definition of the Gysin homomorphism:
The restriction s!(x)k of s!(x) to any component S(E ⊕ 1)k ⊆ S(E ⊕ 1) yields the same
difference dimS(E⊕1)k−dim s!(x)k, namely dim(M,x, f). (We inspect this more closely
in Proposition 2.2 below.) The following is therefore well-defined.

Definition. Let (M,x, f) be a triple in (X,A) and π : E → M a smooth h-vector
bundle. We let s : M → S(E ⊕ 1) be the section given by x 7→ (0Ex , 1R). Now

(S(E ⊕ 1), s!(x), fπ)
is said to be a sphere triple of (M,x, f). If one triple is a sphere triple of the other,
they are S-related. This will be referred to as sphere bundle modification.

As opposed to bordism, S is by no means an equivalence relation: There is no vector
bundle E such that S(E ⊕ 1) = pt. Hence the triple (pt, 0, c) in (pt,∅) is not S-related
to itself, and so the S-relation is not even reflexive.

Notation. We use the symbols ∼B and ∼S between triples which are respectively B-
and S-related.

Definition. We let BS be the equivalence relation generated by B and S, i.e. the
smallest such containing both of them. To be precise, (M,x, f) and (M ′, x′, f ′) are BS-
related if and only if there for some n exist triples (Mi, xi, fi), 1 ≤ i ≤ n, such that

(M,x, f) = (M1, x1, f1),
(Mi, xi, fi) ∼Ri (Mi+1, xi+1, fi+1),
(Mn, xn, fn) = (M ′, x′, f ′),

each Ri being either B or S. We then write (M,x, f) ∼BS (M ′, x′, f ′). By construction,
this is an equivalence relation, and we let [M,x, f ] denote the class of triples BS-related
to (M,x, f).

Remark. As we will be using ∼B, ∼S and ∼BS , we stress that B and BS are equivalence
relations, whereas S only is a symmetric relation.

One might ask whether the relation BS is strictly larger than B, i.e. if there exist non-
bordant triples that are BS-related. In any case, an affirmative answer will be given at a
later point.
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2.2 Defining hgeo∗ —geometric homology

Definition. The dimension of [M,x, f ] ∈ Λ(X,A)
/
∼BS is

dim[M,x, f ] := dim(M,x, f).

The dimension of the equivalence class of a triple is well-defined, as the following propo-
sition shows. For the proof, we note that functoriality of the Gysin construction implies
that the induced map s! of a section s is a monomorphism, as we have

1 = 1! = (πs)! = π!s! : h∗(M) s!−→ h∗(S(E ⊕ 1)) π!−→ h∗(M).
The statement that dim(M,x, f) is equal to dim(M ′, x′, f ′) shall be interpreted as true
if either x or x′ is zero.

2.2 Proposition. The dimension of a triple is a BS-invariant, i.e.

(M,x, f) ∼BS (M ′, x′, f ′)⇒ dim(M,x, f) = dim(M ′, x′, f ′).

Proof. It suffices to show this when (M,x, f) ∼R (M ′, x′, f ′), where R is either sphere
bundle modification or bordism. As commented above, we may assume x, x′ 6= 0:

• Let (M ′, x′, f ′) = (S(E ⊕ 1), s!(x), fπ) be a sphere triple of (M,x, f). Denote by
Mk a component of M where the restriction of x is non-zero, and let S(E ⊕ 1)k
be the corresponding component of S(E ⊕ 1). We write i for both inclusions. By
assumption, the restriction xk := i∗(x) ∈ h∗(Mk) of x is homogeneous, hence so is
sk!(xk) ∈ h∗(S(E ⊕ 1)k). Not being concerned about the potential commutativity
of

h∗(M) h∗(Mk)

h∗(S(E ⊕ 1)) h∗(S(E ⊕ 1)k) ,

i∗

i∗

s! sk!

this diagram shows that sk!(xk) and s!(x)k := i∗s!(x) are of the same dimension:
They are both non-zero, and by definition, s! shifts the dimension of x component-
wise agreeing with sk! on Mk.
Thus we get

dim(M ′, x′, f ′) = dimS(E ⊕ 1)k − dim s!(x)k
= dimE|Mk

− dim sk!(xk)
= dimE|Mk

−
(

dim xk + dimE|Mk
− dimMk

)
= dimMk − dim xk

= dim(M,x, f).

• Let (W, y, F ) be a bordism between (M,x, f) and (M ′, x′, f ′). Pick components
Mk ⊆ M and M ′k′ ⊆ M ′ on which x and x′ are non-zero. We write Wk ⊆ W and
Wk′ ⊆ W for the components corresponding to Mk ⊆ ∂(Wk) and Mk′ ⊆ ∂(Wk′),
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and we write yk ∈ h∗(Wk) and yk′ ∈ h∗(Wk′) for the restrictions of y ∈ h∗(W ).
This gives

dim(M,x, f) = dimMk − dim xk

= dim ∂(Wk)− dim yk

= dim(W, y, F )− 1
= dim ∂(Wk′)− dim yk′

= dimM ′k′ − dim x′k′

= dim(M ′, x′, f ′).

Notation. For any pair (X,A), we write

ef : (∅,∅)→ (X,A)
for the empty-function.

Remark. Let i : S1 ↪→ D2 be the inclusion. Now 1 ∈ H0(D2) restricts to 1 ∈ H0(S1),
where H∗ is singular cohomology with integral coefficients. This makes (D2, 1, 1) a bor-
dism between (S1, 1, i) and (∅, 0, ef) in (D2,∅). We have dim(S1, 1, i) = 1, while the
triple (∅, 0, ef) is of any dimension. Our remark is that this does not conflict with the
previous definition or proposition: Since [S1, 1, i] = [∅, 0, ef], we have that [S1, 1, i] is of
any dimension, and especially of dimension dim[S1, 1, i] = dim(S1, 1, i) = 1.

In the following definition, the proper name for hgeo∗ would be geometric h-homology.
However, the cohomology theory h∗ being implicit, the h is left out.

Definition. For each (X,A) ∈ Top2, we define the sets

hgeod (X,A) :=
{

[M,x, f ] ∈ Λ(X,A)
/
∼BS

∣∣ d = dim[M,x, f ]
}
,

hgeo∗ (X,A) :=
∐
d∈Z

hgeod (X,A).

The assignment (X,A) 7→ hgeo∗ (X,A) we denote by hgeo∗ and refer to is as geometric
homology.

For an element [M,x, f ] ∈ hgeod (X,A), we will also write [M,x, f ] ∈ hgeo∗ (X,A) for its
image via the natural inclusion hgeod (X,A) ↪→ hgeo∗ (X,A).

2.3 Group structure on hgeo∗ (X,A)

In time, hgeo∗ will become a full-fledged homology theory. The first step is to give
hgeod (X,A) the structure of an abelian group by endowing it with an addition, reading

[M,x, f ] + [N, y, g] = [M tN, x t y, f t g].
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Here, x t y ∈ h∗(M t N) is the element corresponding to (x, y) ∈ h∗(M) ⊕ h∗(N) via
the canonical isomorphism. M t N has been given an orientation from M and N as
described earlier. The symbol of disjoint union suggests a functorial nature, on maps
f : (M,∂M) → (X,A) and g : (N, ∂N) → (X,A) yielding f t g : (M t N, ∂(M t N)) →
(X t X,A t A). Nevertheless, to ease notation we shall instead use a slight deviation:
We compose the suggested map with the obvious projection (X t X,A t A) → (X,A).
Hence, disjoint union on maps shall mean

f t g : (M tN, ∂(M tN))→ (X,A).

In order to show addition being well-defined, we first need some technical results:

2.3 Lemma. Let (N, y, g) ∼S (M,x, f) in (X,A). Then there are normal bundles νN
and νM and sphere triples

(S(νN ⊕ 1), sN !(y), gπN ) ∼S (N, y, g),
(S(νM ⊕ 1), sM !(x), fπM ) ∼S (M,x, f),

such that there is a bordism

(S(νN ⊕ 1), sN !(y), gπN ) ∼B (S(νM ⊕ 1), sM !(x), fπM ).

Proof. Let (N, y, g) = (S(E ⊕ 1), s!(x), fπ) be a sphere triple of (M,x, f). We choose
an imbedding iN : N ↪→ Hn−1 ↪→ Hn and get another imbedding, iM : M s

↪−→ N
iN
↪−→ Hn.

νN and νM denoting the normal bundles of N,M ↪→ Hn−1, the normal bundles of iN and
iM thus are νN ⊕ 1 and νM ⊕ 1. We take the disk bundles D(νN ⊕ 1) and D(νM ⊕ 1) to
be closed tubular neighborhoods in Hn and take the radius of D(νM ⊕ 1) small enough
to get the subset

D(νM ⊕ 1) ⊆ D(νN ⊕ 1)− S(νN ⊕ 1).

We have the following diagram:

D(νM ⊕ 1) D(νN ⊕ 1)

S(νM ⊕ 1) S(νN ⊕ 1)

M N

⊆ ⊆

⊆

π′M π′N

πMsM πN sN

π

s

i

For t ∈ I and x ∈ S(νM ⊕ 1), by tx we mean multiplication of x by t in the fiber over
πM (x) in νM ⊕ 1. Hence we have tx ∈ D(νM ⊕ 1) ⊆ D(νN ⊕ 1). Also, π′M (tx) = πM (x)
for all t ∈ I. Defining the map

H : S(νM ⊕ 1)× I →M, (x, t) 7→ ππ′N (tx),
we get

H(x, 0) = ππ′N (0x) = π′M (0x) = πM (x), H(x, 1) = ππ′N (x) = ππ′N i(x).
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H being a homotopy, we have

πM ' ππ′N i : S(νM ⊕ 1)→M.

Thus (S(νM ⊕ 1)× I, p∗sM !(x), fH) is a bordism giving

(S(νM ⊕ 1), sM !(x), fπM ) ∼B (S(νM ⊕ 1), sM !(x), fππ′N i).
We now show there is another bordism,

(S(νM ⊕ 1), sM !(x), fππ′N i) ∼B (S(νN ⊕ 1), sN !(y), gπN ).
Define

K := D(νN ⊕ 1)−
(
D(νM ⊕ 1)− S(νM ⊕ 1)

)
.

Since D(νM ⊕ 1) ⊆ D(νN ⊕ 1)− S(νN ⊕ 1), we have

S(νN ⊕ 1) t S(νM ⊕ 1)− ⊆ ∂K.
Also, ∂K −

(
S(νN ⊕ 1) t S(νM ⊕ 1)

)
⊆ D(ν∂N ⊕ 1). So for the map fππ′N |K : K → X,

we have

fππ′N |K(∂K − S(νN ⊕ 1) t S(νM ⊕ 1))
⊆fππ′N (D(ν∂N ⊕ 1)) ∪ fπ′M (D(ν∂M ⊕ 1))
⊆fπ(∂N) ∪ f(∂M) ⊆ A.

We see that fππ′N |K restricts to gπN = fππN on S(νN ⊕ 1) and to fππ′N i on S(νM ⊕ 1),
as required.

Finally, we show there is an element of h∗(K) which restricts to sM !(x) ∈ h∗(S(νM ⊕ 1))
and to (sNs)!(x) = sN !(y) ∈ h∗(S(νN ⊕ 1)): We define a map

S : (M × I, ∂(M × I))→ (K, ∂K)
given by (p, t) 7→ t · sM (p) + (1 − t) · (sNs)(p) (addition and multiplication in νN ⊕ 1).
Note that S restricts to sNs on M × {0} and to sM on M × {1}. We have the diagram

h∗(M × I) h∗(∂(M × I)) h∗(M tM)

h∗(K) h∗(∂K) h∗(S(νN ⊕ 1) t S(νM ⊕ 1)) ,

S! (∂S)! (sNs t sM )!

the unlabeled arrows being restriction maps induced by the inclusions. The right-hand
square commutes by Proposition 1.16. Since the left-hand square commutes up to sign on
each component ofM (Proposition 1.10), so does the diagram. The inclusion i : MtM ↪→
M × I induces the map i∗ : h∗(M × I)→ h∗(M tM). The diagram

M × {0} ∪M × {1} M × {1} ∪M × {0}

M × I
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commutes up to homotopy, and we thus get

im i∗ =
{
u t u ∈ h∗(M tM) | u ∈ h∗(M)

}
.

From this we see there is an element x′ ∈ h∗(M × I) such that

(sNs t sM )!(i∗(x′)) = (sNs)!(x) t sM !(x) = sN !(y) t sM !(x).
To x′, there is an associated element x′′ ∈ h∗(M × I) (by adjusting signs) such that the
restriction of S!(x′′) ∈ h∗(K) is sN !(y) t sM !(x).

This makes the triple (K,S!(x′′), fππ′N |K) a bordism, giving

(S(νM ⊕ 1), sM !(x), fππ′N i) ∼B (S(νN ⊕ 1), sN !(y), gπN ).
Connecting the two bordisms, we finally have

(S(νM ⊕ 1), sM !(x), fπM ) ∼B(S(νM ⊕ 1), sM !(x), fππ′N i)
∼B(S(νN ⊕ 1), sN !(y), gπN ).

2.4 Proposition. Let (M,x, f) ∼BS (M ′, x′, f ′). Then there are normal bundles νM
and νM ′ and bordant sphere triples

(S(νM ⊕ 1), s!(x), fπ) ∼B (S(νM ′ ⊕ 1), s′!(x′), f ′π′)
of (M,x, f) and (M ′, x′, f ′), respectively.

Proof. First, let (W, y, F ) be a bordism for (M,x, f) ∼B (M ′, x′, f ′). For simplicity,
we assumeW , M andM ′ to be single-dimensional. This gives n := dimM = dimM ′. By
the collaring theorem, there is an imbedding (W,∂W ) ↪→ (Hk+n+1,Rk+n) such that the
restriction of its normal bundle νW ↓ W to ∂W is the normal bundle of the imbedding
∂W ↪→ Rk+n. Hence we have the bundle inclusion maps νMtM ′− → ν∂W → νW :

νMtM ′− ν∂W νW

M tM ′− ∂W W

Using instead the imbedding

(W,∂W ) ↪→ (Hk+n+1,Rk+n) ↪→ (Hk+n+2,Rk+n+1),
we get the bundle inclusion maps of normal bundles νMtM ′− ⊕ 1→ ν∂W ⊕ 1→ νW ⊕ 1.
Thus we have

S(νM ⊕ 1) t S(νM ′ ⊕ 1)− = S(νM ⊕ 1) t S(νM ′− ⊕ 1)
= S(νMtM ′− ⊕ 1)
⊆ S(ν∂W ⊕ 1)
= ∂S(νW ⊕ 1)
⊆ S(νW ⊕ 1).
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We see that (S(νW ⊕ 1), sW !(y), Fπ) is a bordism between (S(νM ⊕ 1), sM !(x), fπ) and
(S(νM ′ ⊕ 1), sM ′ !(x′), f ′π), since

∂S(νW ⊕ 1)− (S(νM ⊕ 1) t S(νM ′ ⊕ 1))
= S(ν∂W ⊕ 1)− (S(νM ⊕ 1) t S(νM ′ ⊕ 1))
= S(ν∂W−(MtM ′) ⊕ 1)

gives

Fπ
(
∂S(νW ⊕ 1)− (S(νM ⊕ 1) t S(νM ′ ⊕ 1))

)
= F (∂W − (M tM ′)) ⊆ A.

So when (M,x, f) and (M ′, x′, f ′) are bordant—with bordism (W, y, F )—there is an
imbedding of W in Euclidean half-space whose normal bundle νW ⊕ 1 again gives rise
to a bordism between sphere triples of (M,x, f) and (M ′, x′, f ′). For simplicity, we have
shown this when M and M ′ are n-manifolds. The same argument applies componentwise
in the multi-dimensional case.

Now to the general setting of this proposition: Let (M,x, f) ∼BS (M ′, x′, f ′). There is
a finite sequence of triples between (M,x, f) and (M ′, x′, f ′), each pair of consecutive
triples being bordant or sphere related. As bordant and sphere related triples both give
rise to bordant sphere triples (cf. Lemma 2.3), we imbed all the manifolds participating in
the sequence into the same Euclidean half-space to obtain a sequence of bordant sphere
triples from their normal bundles. The imbeddings must be done in the appropriate way:

For each pair of consecutive bordant triples, we imbed the manifold of a bordism triple as
described here. For a pair of consecutive sphere related triples, we imbed the manifold of
the sphere triple and imbed its base space as described in the proof of the previous lemma
(i.e. via the section). For each pair of consecutive triples in the chain, the imbedding of
its manifold must be disjoint from the other imbeddings. Except for M and M ′, each
manifold participating in the chain is therefore imbedded twice. Now the sphere triples
associated to the normal bundles of these imbeddings are all bordant.

Remark. Note that the triple (∅, 0, ef) only has one sphere triple, namely (∅, 0, ef)
itself. Thus any triple which is BS-related to (∅, 0, ef), has a sphere triple bordant to
(∅, 0, ef).

2.5 Lemma. For triples (M,x, f), (M,y, f) in (X,A), we have

[M tM,x t y, f t f ] = [M,x+ y, f ].

Proof. Let (M,∂M) i
↪−→ (Hk−2,Rk−3) ↪→ (Hk−1,Rk−2) ↪→ (Hk,Rk−1) be an imbedding

followed by the two standard inclusions. The normal bundle of i we denote by νi, and by
νM the normal bundle of the composition of i with the first inclusion. The normal bundle
of the total imbedding then becomes νM ⊕ 1, and we have νM = νi ⊕ 1.
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We define two sections,
s, s′ : M → νM ⊕ 1 :

In 1, we let s and s′ both be the zero-section, and in νM they are the respective sections

M → νi ⊕ 1 = νM , x 7→ (0,±1
2).

s and s′ are disjoint imbeddings ofM in (the total space of) νM⊕1, giving normal bundles
νs⊕1 and νs′⊕1 by the construction of s and s′. Their disk bundles we take small enough
to be disjoint and to get

D(νs ⊕ 1), D(νs′ ⊕ 1) ⊆ D(νM ⊕ 1)− S(νM ⊕ 1).

Note that since the sections are

s, s′ : M → νi ⊕ 1⊕ 1, x 7→ (0,±1
2 , 0),

the projection D(νM ⊕ 1)→M restricts to D(νs ⊕ 1)→M and D(νs′ ⊕ 1)→M on the
respective subsets. We have the h-manifold

W := D
(
νM ⊕ 1

)
−
((
D(νs ⊕ 1)− S(νs ⊕ 1)

)
t
(
D(νs′ ⊕ 1)− S(νs′ ⊕ 1)

))
,

with
S(νM ⊕ 1) t

(
S(νs ⊕ 1) t S(νs′ ⊕ 1)

)− ⊆ ∂W
and

∂W −
(
S(νM ⊕ 1) t S(νs ⊕ 1) t S(νs′ ⊕ 1)

)
⊆ (νM ⊕ 1)|∂M .

There are sections

σ : M → S(νM ⊕ 1), x 7→ (0π−1(x), 1),
σs : M → S(νs ⊕ 1), x 7→ (0π−1

s (x), 1),

σs′ : M → S(νs′ ⊕ 1), x 7→ (0π−1
s′

(x), 1).

We write πW : W → M for the restriction of π : νM ⊕ 1 → M to W . We are about to
show there is a bordism

(S(νM ⊕ 1), σ!(x+ y), fπ)
∼B (S(νs ⊕ 1) t S(νs′ ⊕ 1), σs!(x) t σs′ !(y), fπs t fπs′).

The bordism triple is (W, z, fπW ), where z ∈ h∗(W ) an element which we now describe.
We define two maps,

S, S′ : (M × I, ∂(M × I))→ (W,∂W ),
where S is given by (x, t) 7→ t · σ(x) + (1− t) · σs(x), and S′ in the similar way, replacing
σs with σs′ . The multiplication and addition are vector space operations taking place in
νM ⊕ 1 in the fiber over x. We have

S(x, 0) = 0 · σ(x) + 1 · σs(x) = σs(x),
etc. Note that S avoids S(νs′⊕1) and that S′ avoids S(νs⊕1). In the following diagrams,
we will write σs—resp. σ—for the restriction of S to M × {0}—resp. to M × {1}—and
similarly for the restrictions of S′.
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In the following diagram, the vertical arrows are maps induced by inclusions, while the
remaining two unlabeled arrows to the left are induced by projections.

h∗(M) h∗(M × I) h∗(W )

h∗(∂(M × I)) h∗(∂W )

h∗(M × {1}) h∗(S(νM ⊕ 1))

S! + S′!

(∂S)! + (∂S′)!

σ!

The diagram commutes up to sign by Proposition 1.10 and Proposition 1.16. The compo-
sition with the diagonal arrow from h∗(M) is the actual σ!, and hence there is an element
z ∈ h∗(W ) which restricts to σ!(x+ y) in h∗(S(νM ⊕ 1)).

In the following diagram, the unlabeled arrows are maps induced by inclusions. The
isomorphism to the lower right is excision, and the pentagon thus commutes by Corol-
lary 1.15. The map

∂̂S : ∂(M × I)→ ∂W − intS(νs′ ⊕ 1)

is the co-restriction of ∂S. This exists since S avoids S(νs′ ⊕ 1). The long exact sequence
of the pair (∂W, ∂W − intS(νs′ ⊕ 1)) gives the zero-map in the triangle. The diagram
commutes, and so the composition map on the top is zero.

h∗(∂(M × I)) h∗(∂W ) h∗(S(νs′ ⊕ 1))

h∗(∂(M × I)) h∗(∂W ) h∗(S(νs′ ⊕ 1), ∂S(νs′ ⊕ 1))

h∗(∂W − intS(νs′ ⊕ 1)) h∗(∂W, ∂W − intS(νs′ ⊕ 1))

D∂(M×I)∼= D∂W∼= DS(ν
s′⊕1)∼=

(∂S)!

(∂S)∗

(∂̂S)∗ ∼=

0

Likewise, the map

h∗(∂(M × I)) (∂S′)!−−−−→ h∗(∂W )→ h∗(S(νs ⊕ 1))
is zero. Together with Proposition 1.16, this makes the lower square in the following
diagram commutative.
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h∗(M) h∗(M × I) h∗(W )

h∗(∂(M × I)) h∗(∂W )

h∗(M × {0})⊕ h∗(M × {0}) h∗(S(νs ⊕ 1))⊕ h∗(S(νs′ ⊕ 1))

S! + S′!

(∂S)! + (∂S′)!

σs! ⊕ σs′ !

Again, it is really the composition from h∗(M) which is the map σs! ⊕ σs′ !. Above we
saw there was an element z ∈ h∗(W ) coming from h∗(M) restricting to σ!(x + y) ∈
h∗(S(νM ⊕1)). The commutativity of the lower square in the current diagram shows that
the same z ∈ h∗(W ) also restricts to

(σs!(x), σs′ !(y)) ∈ h∗(S(νs ⊕ 1))⊕ h∗(S(νs′ ⊕ 1)),
and therefore to

σs!(x) t σs′ !(y) ∈ h∗(S(νs ⊕ 1) t S(νs′ ⊕ 1)).

The bordism

(S(νM ⊕ 1), σ!(x+ y), fπ)
∼B (S(νs ⊕ 1) t S(νs′ ⊕ 1), σs!(x) t σs′ !(y), fπs t fπs′)

is now evident.

2.6 Proposition. On hgeod (X,A), the operation

[M,x, f ] + [N, y, g] := [M tN, x t y, f t g]
is well-defined.

Proof. We have to check that

(M ′, x′, f ′) ∼BS (M,x, f), (N ′, y′, g′) ∼BS (N, y, g),
yield

(M ′ tN ′, x′ t y′, f ′ t g′) ∼BS (M tN, x t y, f t g).

This follows from the following three cases.

• Suppose we have

(M ′, x′, f ′) ∼B (M,x, f), (N ′, y′, g′) ∼B (N, y, g),
with respective bordisms (V, a, F ) and (W, b,G).
Now (V tW,a t b, F tG) is a bordism giving

(M ′ tN ′, x′ t y′, f ′ t g′) ∼B (M tN, x t y, f t g).
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• Suppose we have

(M ′, x′, f ′) ∼B (M,x, f), (N ′, y′, g′) ∼S (N, y, g).

By Lemma 2.3, there are sphere triples

(S(νN ′ ⊕ 1), s′!(y′), g′π′) ∼S (N ′, y′, g′),
(S(νN ⊕ 1), s!(y), gπ) ∼S (N, y, g),

and a bordism

(S(νN ′ ⊕ 1), s′!(y′), g′π′) ∼B (S(νN ⊕ 1), s!(y), gπ).

Over M , there is the product vector bundle of rank zero, 0 ↓ M . We make the
identification S(0⊕ 1) = M tM and thus obtain the sphere triple

(M tM,x t 0, fπ t fπ) ∼S (M,x, f).
The vector bundle 0 t νN ↓M tN then gives rise to the sphere triple

(M tM t S(νN ⊕ 1), x t 0 t s!(y), fπ t fπ t gπ)
∼S(M tN, x t y, f t g).

By the identity bordism on (M tM,xt0, fπtfπ) together with the bordism given
by the lemma, we have a bordism

(M tM t S(νN ′ ⊕ 1), x t 0 t s′!(y′), fπ t fπ t g′π′)
∼B (M tM t S(νN ⊕ 1), x t 0 t s!(y), fπ t fπ t gπ).

Reversing our steps, we now have the sphere triple

(M tM t S(νN ′ ⊕ 1), x t 0 t s′!(y′), fπ t fπ t g′π′)
∼S (M tN ′, x t y′, f t g′).

By the bordism (M ′, x′, f ′) ∼B (M,x, f) and the identity bordism on (N ′, y′, g′),
we have

(M tN ′, x t y′, f t g′)
∼B (M ′ tN ′, x′ t y′, f ′ t g′).

In summary, we obtain

(M tN, x t y, f t g)
∼S (M tM t S(νN ⊕ 1), x t 0 t s!(y), fπ t fπ t gπ)
∼B (M tM t S(νN ′ ⊕ 1), x t 0 t s′!(y′), fπ t fπ t g′π′)
∼S (M tN ′, x t y′, f t g′)
∼B (M ′ tN ′, x′ t y′, f ′ t g′).

• Suppose we have sphere triples

(M ′, x′, f ′) ∼S (M,x, f), (N ′, y′, g′) ∼S (N, y, g).
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By Lemma 2.3, there are sphere triples

(S(νM ′ ⊕ 1), sM ′ !(x′), f ′π) ∼S (M ′, x′, f ′),
(S(νM ⊕ 1), sM !(x), fπ) ∼S (M,x, f),

resp.

(S(νN ′ ⊕ 1), sN ′ !(y′), g′π) ∼S (N ′, y′, g′),
(S(νN ⊕ 1), sN !(y), gπ) ∼S (N, y, g),

and bordisms

(S(νM ′ ⊕ 1), sM ′ !(x′), f ′π) ∼B (S(νM ⊕ 1), sM !(x), fπ),
resp.

(S(νN ′ ⊕ 1), sN ′ !(y′), g′π) ∼B (S(νN ⊕ 1), sN !(y), gπ).

By the evident sections

sM ′ t sN ′ : M ′ tN ′ → S((νM ′ t νN ′)⊕ 1),
sM t sN : M tN → S((νM t νN )⊕ 1),

we thus obtain

(M ′ tN ′, x′ t y′, f ′ t g′)
∼S (S((νM ′ t νN ′)⊕ 1), (sM ′ t sN ′)!(x′ t y′), (f ′ t g′)π)

= (S(νM ′ ⊕ 1) t S(νN ′ ⊕ 1), sM ′ !(x′) t sN ′ !(y′), f ′π t g′π)
∼B (S(νM ⊕ 1) t S(νN ⊕ 1), sM !(x) t sN !(y), fπ t gπ)

= (S((νM t νN )⊕ 1), (sM t sN )!(x t y), (f t g)π)
∼S (M tN, x t y, f t g).

Alternating the apostrophe marks in the six past lines, yield

(M ′ tN, x′ t y, f ′ t g)
∼BS (M tN ′, x t y′, f t g′)

as well.

Having established that [M,x, f ] + [N, y, g] := [M t N, x t y, f t g] is well-defined, we
proceed to show that this makes hgeod (X,A) an abelian group:

2.7 Proposition. hgeod (X,A) is an abelian group under the operation +.

Proof. First of all, it is clear that + is commutative. Next, we note that [∅, 0, ef] ∈
hgeod (X,A) for any d. If we write p : M×{0} →M for the projection, we have the equality
(M t ∅, x t 0, f t ef) = (M × {0}, p∗(x), fp). This we naturally identify with the triple
(M,x, f), and we obtain

[M,x, f ] + [∅, 0, ef] = [M t∅, x t 0, f t ef] = [M,x, f ].
In other words, [∅, 0, ef] is a neutral element with respect to +.
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Now let [M,x, f ] ∈ hgeod (X,A). The triple (M × I, π∗(x t x), (f t f)π) in (X,X) is a
bordism between the triples (M tM−, xtx, f t f) and (∅, 0, ef) in (X,A). With respect
to +, [M−, x, f ] is thus an inverse element of [M,x, f ], as we have

[M,x, f ] + [M−, x, f ] = [M tM−, x t x, f t f ] = [∅, 0, ef].

2.8Corollary. hgeo∗ (X,A) is a graded, abelian group by formally extending + on each
hgeod (X,A).

Being the neutral element, we write

0 := [∅, 0, ef]
for the zero-class in hgeo∗ (X,A). Because of this, we shall speak of (∅, 0, ef) as the null-
triple, and any triple bordant to it we will say is null-bordant. We emphasize that
this term only applies to bordism, i.e. a triple may represent the zero-class without being
null-bordant.

In fact, any triple (N, 0, g) in (X,A) represents the zero-class: Let νN ↓ N be a normal
bundle. We have S(νN ⊕ 1) ⊆ ∂D(νN ⊕ 1). Now,

∂D(νN ⊕ 1) = S(νN ⊕ 1) ∪D(νN |∂N ⊕ 1)
gives

gπ
(
∂D(νN ⊕ 1)− S(νN ⊕ 1)

)
⊆ gπ

(
D(νN |∂N ⊕ 1)

)
= g(∂N) ⊆ A.

Hence (D(νN ⊕1), 0, gπ) is a bordism between (S(νN ⊕1), 0, gπ) and (∅, 0, ef). This gives

(N, 0, g) ∼S (S(νN ⊕ 1), 0, gπ) ∼B (∅, 0, ef),
i.e. [N, 0, g] = 0.

The following example is a short digression. It gives the affirmative answer to a previously
formulated question.

Example. Let H∗ be singular cohomology with integral coefficients. CP 2 is closed and
(H-)orientable. Choosing an orientation of CP 2 and a map g : CP 2 → X, we get the
triple (CP 2, 0, g) in (X,∅). Since CP 2 is not the boundary of any compact manifold,
(CP 2, 0, g) is not null-bordant in (X,∅). Hence (CP 2, 0, g) and (∅, 0, ef) are BS-related,
but not B-related. This shows that the two equivalence relations B and BS in general are
different.

Looking back to the proof of the proposition above, it is also natural to define

−[M,x, f ] := [M−, x, f ].

Lemma 2.5 gives
[M,x, f ] + [M,−x, f ] = [M,x− x, f ] = 0,

yielding [M,−x, f ] = −[M,x, f ] as well.
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Definition. A single-dimensional triple is a triple (M,x, f) such that M is single-
dimensional.

Remark. The difference in dimension of the manifold and the cohomology element of a
triple is by definition constant between components. So for any single-dimensional triple,
the cohomology class is homogeneous.

2.9 Lemma. Each element in hgeod (X,A) is the class of a single-dimensional triple.

Proof. Let [N, y, g] ∈ hgeod (X,A). If y = 0, then [N, y, g] = 0 = [∅, 0, ef] and we are
done. So we may assume y 6= 0. We imbed N in some Euclidean n-space to obtain the
normal bundle ν ↓ N . Then S(ν ⊕ 1) is an h-manifold of dimension n. By the standard
section s : N → S(ν ⊕ 1), we obtain [N, y, g] = [S(ν ⊕ 1), s!(y), gπ].

This shows that any element in hgeo∗ (X,A) can be written as a sum

[M1, x1, f1] + . . .+ [Mr, xr, fr]
such that each Mi is single-dimensional, the xi are homogeneous and no two [Mi, xi, fi]
are of the same dimension.

Remark. At this point, a natural question arises regarding triples. It seems possi-
ble that it would be sufficient to only consider the subset of Λ(X,A) containing single-
dimensional triples. Addition of two classes of triples could be defined in a similar way as
above, by first choosing representative triples with manifolds being of the same dimension.
Regretfully, this idea will not be pursued.

2.4 The homology theory hgeo∗

We now go on to show that we have the covariant functor hgeo∗ : Top2 → Ab∗.

2.10 Lemma. If ϕ : (X,A)→ (Y,B) is a map of pairs, then the induced map

ϕ∗ : hgeod (X,A)→ hgeod (Y,B),
given by [M,x, f ] 7→ [M,x, ϕf ], is a well-defined group homomorphism.

Proof. First we show that the assignment is well-defined: Let (M,x, f) and (M ′, x′, f ′)
be two triples representing the same class in hgeod (X,A). As usual, we can assume that ei-
ther (M,x, f) and (M ′, x′, f ′) are bordant or that (M ′, x′, f ′) is a sphere triple of (M,x, f):

• Let (M,x, f) ∼B (M ′, x′, f ′). Then there exists a bordism (W, y, F ) between them,
and clearly (W, y, ϕF ) is a bordism between (M,x, ϕf) and (M ′, x′, ϕf ′).

• Let (M ′, x′, f ′) = (S(E ⊕ 1), s!(x), fπ) be a sphere triple of (M,x, f). Then
(M ′, x′, ϕf ′) = (S(E ⊕ 1), s!(x), ϕfπ) is a sphere triple of (M,x, ϕf).
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Hence (M,x, ϕf) and (M ′, x′, ϕf ′) are BS-related whenever (M,x, f) and (M ′, x′, f ′) are,
and so the assignment is well-defined.

Now

ϕ∗([M,x, f ] + [M ′, x′, f ′]) = ϕ∗[M tM ′, x t x′, f t f ′]
= [M tM ′, x t x′, ϕ(f t f ′)]
= [M,x, ϕf ] + [M ′, x′, ϕf ′]
= ϕ∗[M,x, f ] + ϕ∗[M ′, x′, f ′]

shows that ϕ∗ is a group homomorphism.

The ϕ∗ : hgeod (X,A)→ hgeod (Y,B) extend linearly to become a graded (degree zero) group
homomorphism ϕ∗ : hgeo∗ (X,A) → hgeo∗ (Y,B). It is clear that we have (ϕγ)∗ = ϕ∗γ∗
for composition maps and that 1∗ = 1. With the assignment ϕ 7→ ϕ∗, hgeo∗ becomes a
covariant functor.

Before showing that hgeo∗ is a homology theory, we recall the axioms. We exclude the
dimension axiom of Eilenberg and Steenrod, but include additivity.

First, let R : Top2 → Top2 be the restriction functor defined by

R(X,A) = (A,∅),
R(f : (X,A)→ (Y,B)) = f |(A,∅) : (A,∅)→ (B,∅).

Definition. A homology theory is a covariant functor

k∗ : Top2 → Ab∗
together with a degree −1 natural transformation

∂ : k∗ → k∗ ◦R
satisfying the following:

• Homotopy invariance.
ϕ1 ' ϕ2 : (X,A)→ (Y,B) implies ϕ1∗ = ϕ2∗ : k∗(X,A)→ k∗(Y,B).

• Long exact sequence.

For every pair (X,A), the inclusions (A,∅) i
↪−→ (X,∅)

j
↪−→ (X,A) induce a long exact

sequence

. . .
∂(X,A)−−−−→ kn(A,∅) i∗−→ kn(X,∅) j∗−→ kn(X,A)

∂(X,A)−−−−→ kn−1(A,∅) i∗−→ . . . .

• Excision.
Let (X,A) be a pair of spaces and U ⊆ X a subspace such that Ū ⊆ intA. Then
the inclusion of pairs induces an isomorphism

i∗ : k∗(X − U,A− U)
∼=−→ k∗(X,A).
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• Additivity.
For any collection of pairs (Xα, Aα)α, the inclusions

iα : (Xα, Aα) ↪→ (
⊔
Xα,

⊔
Aα)

give an isomorphism∐
α

iα∗ :
∐
α

k∗
(
Xα, Aα

) ∼=−→ k∗
(⊔

Xα,
⊔
Aα
)
.

Remark. There is also the notion of homology theories on CW pairs, being functors

k∗ : CW2 → Ab∗
satisfying axioms similar to those above. We shall thus be referring to homology theories
on Top2 and CW2, respectively.

We write x|∂M ∈ h∗(∂M) for the restriction of x ∈ h∗(M). When f : (M,∂M)→ (X,A)
is a map, we take its restriction from M to ∂M and its co-restriction from X to A to
obtain the map ∂f : (∂M,∅) → (A,∅). In the case of x = 0, dim x is not defined, and
we shall then understand (−1)dim xx|∂M to be zero.

Definition. For each pair (X,A) ∈ Top2 and n ∈ Z, the boundary homomorphism
in geometric homology is the map

∂ : hgeon (X,A)→ hgeon−1(A,∅),
[M,x, f ] 7→ [∂M, (−1)dim xx|∂M , ∂f ],

where (M,x, f) is any single-dimensional triple representing the class [M,x, f ].

2.11 Proposition. The boundary homomorphism is a well-defined homomorphism.

Proof. First of all, Lemma 2.9 and its preceding remark ensures that every class can be
represented by a single-dimensional triple, and that the cohomology class of such a triple
always is homogeneous. Also, it is clear that we have (∂M, (−1)dim xx|∂M , ∂f) ∈ Λ(A,∅),
and n = dimM − dim x implies

dim ∂M − dim(−1)dim xx|∂M = (dimM − 1)− dim x = n− 1.
Hence we have

[∂M, (−1)dim xx|∂M , ∂f ] ∈ hgeon−1(A,∅).

We must show that any two BS-related, single-dimensional triples remain BS-related
under the assignment (M,x, f) 7→ (∂M, (−1)dim xx|∂M , ∂f). The two following cases
show that this is true for single-dimensional triples which are bordant—resp. related by
sphere bundle modification. As soon as these two cases have been established, the proof
is completed by a short argument showing that the same is true for BS-related triples.

• Let (W, y, F ) be a bordism between two single-dimensional triples (M,x, f) and
(M ′, x′, f ′). We view M tM ′− as imbedded in ∂W . We define

K := ∂W − int(M tM ′−),
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which is seen to be an h-manifold with boundary ∂K = ∂M t ∂M ′−. From
F : (W,∂W )→ (X,A), we obtain the map

F |K : (K, ∂K)→ (A,A).
Further, it may very well be the case that we have dim x 6= dim x′, i.e. y non-
homogeneous. We denote the components of ∂K by (∂K)i and the corresponding
components of ∂M and ∂M ′ by (∂M)i and (∂M ′)i. This gives

(∂M)i t (∂M ′)−i ⊆ (∂K)i.
For each i, y|K ∈ h∗(K) restricts to the homogeneous element y|Ki ∈ h∗(Ki). We
may thus define

ŷ|K :=
⊔

(−1)dim y|Ki y|Ki ∈ h∗
(⊔

Ki

)
.

This element restricts to

(−1)dim x|(∂M)ix|(∂M)i ∈ h
∗((∂M)i

)
, (−1)dim x′|(∂M′)ix′|(∂M ′)i ∈ h

∗((∂M ′)i).
Since x and x′ by assumption are homogeneous, we have dim x|(∂M)i = dim x and
dim x′|(∂M ′)i = dim x′ for all i. Hence (K, ŷ|K , F |K) gives the bordism

(∂M, (−1)dim xx|∂M , ∂f) ∼B (∂M ′, (−1)dim x′x′|∂M ′ , ∂f ′).

• Let (S(E ⊕ 1), s!(x), fπ) be a sphere triple of (M,x, f), E and M of dimensions n
and m. We want to show(

∂S(E ⊕ 1), (−1)dim s!(x)s!(x)|∂S(E⊕1), ∂(fπ)
)
∼S

(
∂M, (−1)dim xx|∂M , ∂f

)
.

Restricting E ↓ M—resp. s : M → S(E ⊕ 1)—gives the vector bundle ∂E ↓ ∂M—
resp. the section ∂s : ∂M → S(∂E ⊕ 1). Thus we have the sphere triple(

S(∂E ⊕ 1), (∂s)!((−1)dim xx|∂M ), (∂f)π
)
∼S

(
∂M, (−1)dim xx|∂M , ∂f

)
.

It is clear that S(∂E ⊕ 1) = ∂S(E ⊕ 1) with (∂f)π = ∂(fπ). By Proposition 1.10,
the diagram

hk(M) hk(∂M)

hk+n−m(S(E ⊕ 1)) hk+n−m(∂S(E ⊕ 1))

i∗M

i∗N

s! (∂s)!

commutes up to sign, specifically (∂s)!i
∗
M = (−1)n−mi∗Ns!.

k := dim x gives dim s!(x) = k + n−m, and so

(∂s)!((−1)dim xx|∂M ) = (∂s)!((−1)ki∗M (x))
= (−1)k+n−mi∗Ns!(x)
= (−1)dim s!(x)s!(x)|∂S(E⊕1).
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Hence we have shown

(∂S(E ⊕ 1), (−1)dim s!(x)s!(x)|∂S(E⊕1), ∂(fπ))
= (S(∂E ⊕ 1), (∂s)!((−1)dim xx|∂M ), (∂f)π)
∼S (∂M, (−1)dim xx|∂M , ∂f).

Now let (M,x, f) ∼BS (M ′, x′, f ′), both triples single-dimensional. By Proposition 2.4,
we have the sequence

(M,x, f) ∼S (S(E ⊕ 1), s!(x), fπ) ∼B (S(E′ ⊕ 1), s′!(x′), f ′π′) ∼S (M ′, x′, f ′),
where E and E′ are normal bundles. All of these triples are then single-dimensional. The
two cases we have just shown thus apply successively to the sequence. We obtain

(∂M, (−1)dim xx|∂M , ∂f)
∼S (∂S(E ⊕ 1), (−1)dim s!(x)s!(x)|∂S(E⊕1), ∂(fπ))

∼B (∂S(E′ ⊕ 1), (−1)dim s′!(x
′)s′!(x′)|∂S(E′⊕1), ∂(f ′π′))

∼S (∂M ′, (−1)dim x′x′|∂M ′ , ∂f ′).
The assignment

[M,x, f ] 7→ [∂M, (−1)dim xx|∂M , ∂f ]

is thus seen to be well-defined.

Finally, we show that ∂ is a homomorphism: Given two triples representing two classes,
we may imbed their two manifolds in the same Euclidean n-space. The two normal
bundles are then both of dimension n. Associated sphere triples represent the two initial
classes, and both of their manifolds have dimension n. If in addition the two classes are
of equal dimension, then so are the homogeneous cohomology classes of the new triples.
As both + and ∂ are independent of choices of representing triples, we may assume that
our triples have the mentioned properties. That is, M and M ′ are n-manifolds, and thus
dim x = dim x′:

∂([M,x, f ] + [M ′, x′, f ′])
=∂[M tM ′, x t x′, f t f ′]

=[∂(M tM ′), (−1)dim xtx′(x t x′)|∂(MtM ′), ∂(f t f ′)]

=[∂M t ∂M ′, (−1)dim xx|∂M t (−1)dim x′x′|∂M ′ , ∂f t ∂f ′]

=[∂M, (−1)dim xx|∂M , ∂f ] + [∂M ′, (−1)dim x′x′|∂M ′ , ∂f ′]
=∂[M,x, f ] + ∂[M ′, x′, f ′].

Remark. From now on, we will implicitly assume (M,x, f) to be single-dimensional
whenever a class [M,x, f ] is arbitrarily chosen.
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For a map ϕ : (X,A)→ (Y,B), we have

∂(ϕ∗[M,x, f ]) =[∂M, (−1)dim xx|∂M , ∂(ϕf)]
=[∂M, (−1)dim xx|∂M , ϕ|A∂f ]
=(ϕ|A)∗∂[M,x, f ],

and so the following diagram commutes.

hgeon (X,A) hgeon−1(A,∅)

hgeon (Y,B) hgeon−1(B,∅)

∂

∂

ϕ∗ (ϕ|A)∗

Let n be fixed. We have defined ∂ for each pair (X,A). Referring to the axioms of a
homology theory, ∂ should properly have been denoted ∂(X,A). The collection of all these
boundary homomorphisms constitutes a transformation of functors hgeon → hgeon−1 ◦ R.
These we will also denote by ∂. As the diagram above commutes for each map ϕ, ∂ is a
natural transformation.

We are now ready to verify the four axioms which make hgeo∗ : Top2 → Ab∗ (together with
∂) a homology theory.

2.12 Proposition (Homotopy invariance). Let

ϕ0 ' ϕ1 : (X,A)→ (Y,B)
be homotopic maps. Then they induce the same map

ϕ0∗ = ϕ1∗ : hgeo∗ (X,A)→ hgeo∗ (Y,B)
in geometric homology.

Proof. We show ϕ0∗ = ϕ1∗ : hgeod (X,A)→ hgeod (Y,B). Then the general result follows
by linearity.

Let H : (X × I, A × I) → (Y,B) be a homotopy between ϕ0 and ϕ1. Given a triple
(M,x, f) in (X,A), we get the triples (M,x, ϕ0f) and (M,x, ϕ1f) in (Y,B). We show
how the homotopy gives rise to a bordism between them.

From the composition

H ◦ (f × 1) : (M × I, ∂M × I) f×1−−−→ (X × I, A× I) H−→ (Y,B),
we obtain the map

F : (M × I, ∂(M × I))→ (Y, Y ).

Letting π : M × I →M denote the projection, we have the triple

(M × I, π∗(x), F ) ∈ Λ(Y, Y ).
For i = 0, 1, we have

F (x, i) = H(f(x), i) = ϕif(x),
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and we identify M with M × {i} to obtain F |M×{i} = ϕif . Thus (M × I, π∗(x), F ) is a
bordism between (M,x, ϕ0f) and (M,x, ϕ1f), noting that

F (∂(M × I)−M tM−) ⊆ F (∂M × I) = H(f(∂M)× I) ⊆ B.
The result follows.

We proceed to show that any pair of spaces gives rise to a long exact sequence in geometric
homology. First, we shall have three lemmas.

2.13 Lemma. Let (M,x, f) be a triple in (X,A). If M ′ ⊆M is a compact, codimension
zero submanifold such that

f(M − intM ′) ⊆ A,
then there is a bordism

(M,x, f) ∼B (M ′, x|M ′ , f |M ′).

Proof. ∂M ′ ⊆ M − intM ′ makes (M ′, x|M ′ , f |M ′) a triple in (X,A). We see that
(M × I, π∗(x), fπ) gives the bordism

(M ′, x|M ′ , f |M ′) ∼B (M,x, f) :
We haveM ′tM− ⊆M tM− ⊆ ∂(M×I). π∗(x) restricts to x|M ′ and x, and fπ restricts
to f |M ′ and f . Also, ∂(M × I) = (∂M × I) ∪ (M tM−) gives

fπ
(
∂(M × I)− (M ′ tM−)

)
⊆ fπ

(
∂M × I

)
∪ fπ

(
(M tM−)− (M ′ tM−)

)
= f(∂M) ∪ f(M −M ′) ⊆ A.

2.14 Lemma. Let ϕ∗ : hgeon (X,A) → hgeon (Y,B) be an induced map. Then any element
of kerϕ∗ is the class of a triple (M,x, f) in (X,A) such that (M,x, ϕf) in (Y,B) is
null-bordant.

Proof. Let [N, y, g] ∈ kerϕ∗. Since (N, y, ϕg) ∼BS (∅, 0, ef), the remark succeeding
Proposition 2.4 states there then is a sphere triple (S(E ⊕ 1), s!(y), ϕgπ) of (N, y, ϕg) in
(Y,B) which is null-bordant.

(M,x, f) := (S(E ⊕ 1), s!(y), gπ) ∼S (N, y, g)
yield [M,x, f ] = [N, y, g].

2.15 Lemma. Any element in the kernel of ∂ : hgeon (X,A) → hgeon−1(A,∅) is the class of
a triple (M,x, f) in (X,A) such that (∂M, (−1)dim xx|∂M , ∂f) in (A,∅) is null-bordant.

Proof. Let [N, y, g] ∈ ker ∂ ⊆ hgeon (X,A), i.e.

∂[N, y, g] = [∂N, (−1)dim yy|∂N , ∂g] = 0 ∈ hgeon−1(A,∅).
By the remark succeeding Proposition 2.4, there is a null-bordant sphere triple(

S(ν∂N ⊕ 1), (∂s)!((−1)dim yy|∂N ), (∂g)π
)
∼S

(
∂N, (−1)dim yy|∂N , ∂g

)
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in (A,∅), with ν∂N ↓ ∂N the normal bundle of an imbedding ∂N ↪→ Rk. By the collaring
theorem, this can be taken to be the restriction of an imbedding (N, ∂N) ↪→ (Hk+1,Rk)
such that νN ↓ N restricts to ν∂N ↓ ∂N . Now we can identify S(ν∂N ⊕1) and ∂S(νN ⊕1),
and we have (∂g)π = ∂(gπ). Also, ∂s : ∂N → S(ν∂N⊕1) can be taken to be the restriction
of s : N → S(νN ⊕ 1). The sphere triple(

M,x, f
)

:=
(
S(νN ⊕ 1), s!(y), gπ

)
∼S

(
N, y, g

)
gives (

∂M, (−1)dim xx|∂M , ∂f
)

=
(
∂S(νN ⊕ 1), (−1)dim s!(y)s!(y)|∂S(νN⊕1), ∂(gπ)

)
=
(
S(ν∂N ⊕ 1), (∂s)!((−1)dim yy|∂N ), (∂g)π

)
,

where we have
(−1)dim s!(y)s!(y)|∂S(νN⊕1) = (∂s)!((−1)dim yy|∂N )

from Proposition 1.10. Hence
(
∂M, (−1)dim xx|∂M , ∂f

)
is null-bordant.

2.16 Proposition (Long exact sequence). For every pair (X,A), the inclusions

(A,∅) i
↪−→ (X,∅)

j
↪−→ (X,A)

induce a long exact sequence

. . .
∂−→ hgeon (A,∅) i∗−→ hgeon (X,∅) j∗−→ hgeon (X,A) ∂−→ hgeon−1(A,∅) i∗−→ . . . .

Proof. We start by showing that the sequence is a complex.

• j∗i∗ factors through hgeon (A,A), which is seen to be zero:
Any triple (M,x, f) in (A,A) is null-bordant, with bordism (M×I, π∗(x), fπ). This
is evident from fπ(M × I − (M t∅)) ⊆ fπ(M × I) ⊆ A.

• Let [M,x, f ] ∈ hgeon (X,∅). f(∂M) ⊆ ∅ implies ∂M = ∅. Thus we have

(∂M, (−1)dim xx|∂M , ∂(jf)) = (∅, 0, ef),
as the null-triple is the only triple with the empty set as manifold. And so

∂j∗[M,x, f ] = [∂M, (−1)dim xx|∂M , ∂(jf)] = [∅, 0, ef] = 0 ∈ hgeon−1(A,∅).
Hence ∂j∗ = 0.

• Let [M,x, f ] ∈ hgeon (X,A). Then

i∗∂[M,x, f ] = [∂M, (−1)dim xx|∂M , i(∂f)] ∈ hgeon−1(X,∅).

We view f as a map (M,∂M) → (X,X) and get that (M, (−1)dim xx, f) gives the
bordism (∂M, (−1)dim xx|∂M , i(∂f)) ∼B (∅, 0, ef).
Hence i∗∂ = 0.
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We finish the proof by showing the three opposite inclusions, i.e. image containing kernel.

• Let [M,x, f ] ∈ ker i∗ ⊆ hgeon (A,∅), i.e.

i∗[M,x, f ] = [M,x, if ] = 0 ∈ hgeon (X,∅).
By Lemma 2.14, we may assume that (M,x, if) is null-bordant. Let (W, y, F ) ∈
Λ(X,X) be such a bordism. F (∂W −M) ⊆ ∅ gives ∂W = M . Hence

F (∂W ) = F (M) = if(M) ⊆ i(A) = A,

which gives us the map F : (W,∂W )→ (X,A). Furthermore,

dimW − dim(−1)dim xy = 1 + dimM − dim x = n+ 1.
Evidently, we have

[W, (−1)dim xy, F ] ∈ hgeon+1(X,A).

(∂W, (−1)2 dim xy|∂W , ∂F ) = (M,x, f) now gives

∂[W, (−1)dim xy, F ] = [∂W, (−1)2 dim xy|∂W , ∂F ] = [M,x, f ] ∈ hgeon (A,∅).
Hence im ∂ ⊇ ker i∗.

• Let [M,x, f ] ∈ ker j∗ ⊆ hgeon (X,∅), i.e.

j∗[M,x, f ] = [M,x, jf ] = 0 ∈ hgeon (X,A).
By Lemma 2.14, we may assume that (M,x, jf) is null-bordant. Let (W, y, F ) ∈
Λ(X,X) be such a bordism. Then we have the triple

(∂W −M,y|∂W−M , F |∂W−M ) ∈ Λ(A,∅) :
f : (M,∂M) → (X,∅) yields ∂M = ∅. Since M ↪→ ∂W is a codimension zero
imbedding of closed manifolds, M is the union of components of ∂W . The same is
then true for its compliment, making ∂W −M a closed manifold with the canonical
orientation from ∂W . (W, y, F ) being a bordism, we have F (∂W −M) ⊆ A. Hence
we have the map F |∂W−M : (∂W −M,∅)→ (A,∅). Also,

dim(∂W −M)− dim y|∂W−M = dimM − dim y|M = dimM − dim x = n.

This shows that (∂W −M,y|∂W−M , F |∂W−M ) is a triple in (A,∅), as asserted. It
has dimension n, and so

[∂W −M,y|∂W−M , F |∂W−M ] ∈ hgeon (A,∅).

From (∂W −M)tM = ∂W ⊆ ∂W and with F agreeing with iF |∂W−M on ∂W −M
and with f on M—it is clear that (W, y, F ) also gives a bordism

(∂W −M,y|∂W−M , iF |∂W−M ) ∼B (M,x, f).
Now we have

i∗[∂W −M,y|∂W−M , F |∂W−M ] = [M,x, f ] ∈ hgeon (X,∅).
Hence im i∗ ⊇ ker j∗.
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• Let [M,x, f ] ∈ ker ∂ ⊆ hgeon (X,A), i.e.

∂[M,x, f ] = [∂M, (−1)dim xx|∂M , ∂f ] = 0 ∈ hgeon−1(A,∅).
By Lemma 2.15, we can assume that (∂M, (−1)dim xx|∂M , ∂f) is null-bordant, and
we let (W, y, F ) ∈ Λ(A,A) be a null-bordism. F (∂W − ∂M) ⊆ ∅ then gives B :=
∂M = ∂W . We take M and W− to have collars ∂M × [0, 1) and ∂W− × (−1, 0]
and glue M and W− together along their common boundary, B. We obtain the
smooth, closed manifold

M ∪B W−.

(Cf. [Hir76].) Since M and W− have orientations agreeing on B, they impose an
orientation on M ∪B W− by requiring the natural imbeddings to be orientation
preserving.

We identify B, M and W with their respective images in M ∪BW− via the natural
imbeddings. The union of the collars of M and W is the open neighborhood B ×
(−1, 1) of B in M ∪B W−. In M ∪B W−, we also have the open neighborhoods

M ∪ (∂W × (−1, 0]) ⊇M, W ∪ (∂M × [0, 1)) ⊇W,
which cover M ∪B W−, and their intersection reads(

M ∪ (∂W × (−1, 0])
)
∩
(
W ∪ (∂M × [0, 1))

)
= B × (−1, 1).

This gives the Mayer-Vietoris sequence (cf. [May99])

. . .→ hn(M ∪B W−) α−→ hn(M ∪ (∂W × (−1, 0])) ⊕ hn(W ∪ (∂M × [0, 1)))
β

−→

hn(B×(−1, 1))→ . . . ,

where the maps are α(z) = (i∗(z), j∗(z)), β(x, y) = k∗(x) − l∗(y), with i, j, k, l
being the obvious inclusions. We have the diagram

hn(M ∪ (∂W × (−1, 0]))⊕ hn(W ∪ (∂M × [0, 1))) hn(B × (−1, 1))

hn(M)⊕ hn(W ) hn(B × {0}) ,

β

β̂

∼= ∼=

with β̂ defined like β, and the isomorphisms being induced by inclusions. The
underlying diagram of inclusion maps commutes, hence so does this. We shall
identify B × {0} ≈ B. (W, y, F ) being a null-bordism for (∂M, (−1)dim xx|∂M , ∂f),
we have y|∂W = y|∂M = x|∂M , i.e.

β̂(x, y) = x|B − y|B = 0.
The elements

x′ ∈ h∗
(
M ∪ (∂W × (−1, 0])

)
, y′ ∈ h∗

(
W ∪ (∂M × [0, 1))

)
,

corresponding to x ∈ h∗(M), y ∈ h∗(W ), thus give

β(x′, y′) = 0.
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By exactness of the Mayer-Vietoris sequence and commutativity of the diagram
above, there is an element z′ ∈ h∗(M ∪B W−) such that α(z′) = (x′, y′). Clearly,
the restriction of z′ to h∗(M)⊕h∗(W ) factors via α, and so z′ restricts to x ∈ h∗(M),
y ∈ h∗(W ).
The maps f and F agree on B, and so they define a map

(f, F ) : (M ∪B W−,∅)→ (X,∅).
This gives us [M ∪B W−, z′, (f, F )] ∈ hgeon (X,∅).
M ⊆M ∪B W− is a compact, codimension zero submanifold with

j(f, F )(M ∪B W− − intM) = jF (W ) = F (W ) ⊆ A.
Since (M,x, f) = (M, z′|M , j(f, F )|M ), Lemma 2.13 gives

j∗[M ∪B W−, z′, (f, F )] = [M ∪B W−, z′, j(f, F )] = [M,x, f ] ∈ hgeon (X,A).
Hence im j∗ ⊇ ker ∂.

We have shown exactness at hgeon (A,∅), hgeon (X,∅) and hgeon (X,A), and so we have the
long exact sequence of geometric homology groups.

2.17 Proposition (Excision). Let (X,A) be a pair of spaces and let U ⊆ X be a
subspace such that Ū ⊆ intA. Then the inclusion of pairs induces an isomorphism

i∗ : hgeo∗ (X − U,A− U)
∼=−→ hgeo∗ (X,A).

Proof. For a fixed n, we show that

i∗ : hgeon (X − U,A− U)
∼=−→ hgeon (X,A)

is surjective and injective, respectively. We comment that each case immediately reduces
to a pure problem of bordism, and there is little parting this proof from the standard
proof of excision in classical bordism.

• Let [M,x, f ] ∈ hgeon (X,A). We use the triple (M,x, f) in (X,A) to find a triple in
(X − U,A− U) which becomes bordant to (M,x, f) when included in (X,A).
Ū ⊆ intA gives disjoint, closed subsets f−1(Ū) and f−1(X − intA) of M . There is
a smooth, real-valued function γ : M → [0, 1] and a t ∈ [0, 1] such that

sup γ(f−1(X − intA)) < t < inf γ(f−1(Ū))

and making M̂ := γ−1([0, t]) ⊆ M a compact, topological submanifold of codimen-
sion zero. M̂ can be given a smooth structure by straightening the angle (cf. Lemma
3.1. in [Con79]). This makes M̂ ⊆ M a (smooth) submanifold (cf. [Buc]), and it
thus inherits a canonical orientation from M . We have

f−1(X − intA) ⊆ M̂, f(M̂) ⊆ X − Ū , ∂M̂ ⊆ γ−1({t}) ∪ ∂M.

Thus
f(∂M̂) ⊆ f(γ−1({t})) ∪ f(∂M) ⊆ (intA) ∪A ⊆ A,
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and so f(M̂) ⊆ X − Ū gives f(∂M̂) ⊆ A− Ū ⊆ A−U . From this, there is the map

f |
M̂

: (M̂, ∂M̂)→ (X − U,A− U),
which gives

[M̂, x|
M̂
, f |

M̂
] ∈ hgeon (X − U,A− U).

Since f−1(X − intA) ⊆ M̂ ⊆ M and f(∂M̂) ⊆ A, we have f(M − int M̂) ⊆ A. So
by Lemma 2.13,

i∗[M̂, x|
M̂
, f |

M̂
] = [M̂, x|

M̂
, if |

M̂
] = [M,x, f ] ∈ hgeon (X,A).

Hence i∗ is an epimorphism.

• Let [M,x, f ] ∈ ker i∗. By Lemma 2.14, we can assume that (M,x, if) in (X,A) is
null-bordant. Write (W, y, F ) for such a null-bordism. We use (W, y, F ) in (X,X)
to find a new triple in (X−U,A−U) which is bordant to (M,x, f). The new triple
is then seen to be null-bordant, completing the proof.
Ū ⊆ intA gives disjoint, closed subsets F−1(Ū) and F−1(X − intA) of W . By the
same argument as above, there is a compact, codimension zero submanifold Ŵ of
W such that

F−1(X − intA) ⊆ Ŵ , Ŵ ∩ F−1(Ū) = ∅.

This gives us the map F |
Ŵ

: (Ŵ , ∂Ŵ )→ (X − U,X − U) and thus the triple

(Ŵ , y|
Ŵ
, F |

Ŵ
) ∈ Λ(X − U,X − U).

M ∩ ∂Ŵ and f−1(Ū) are disjoint, closed subsets of M . Again, there is a compact,
codimension zero submanifold M̂ of M satisfying M ∩ ∂Ŵ ⊆ M̂ ⊆ M as well as
M̂ ∩ f−1(Ū) = ∅.
We have

M ∩ F−1(X −A) = ∂W ∩ F−1(X −A) = ∂Ŵ ∩ F−1(X −A),

so M ∩ ∂Ŵ ⊆ M̂ ⊆M implies M̂ ∩ F−1(X −A) = M ∩ F−1(X −A). The explicit
construction of M̂ (cf. [Con79]) now ensures

∂M̂ ∩ F−1(X −A) = ∂M ∩ F−1(X −A) = ∅,

and hence we have f(∂M̂) = F (∂M̂) ⊆ A. This gives the map

f |
M̂

: (M̂, ∂M̂)→ (X − U,A− U).

Also, f(M−M̂) ⊆ A−U follows fromM ∩F−1(X−A) = M̂ ∩F−1(X−A) together
with M̂ ⊆ M ⊆ f−1(X − U). Hence the triples (M,x, f) and (M̂, x|

M̂
, f |

M̂
) are

bordant in (X − U,A− U) by Lemma 2.13.

We have essentially replaced (M,x, f) with (M̂, x|
M̂
, f |

M̂
) in (X − U,A − U), the

important difference being that the image of M̂ is disjoint from Ū , not just from U .
Now we have the disjoint, closed subsets M̂ ∪ F−1(X − intA) and F−1(Ū) of W .
Once again, there is a compact, codimension zero submanifold W̃ of W such that
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M̂ ∪ F−1(X − intA) ⊆ W̃ ⊆W and W̃ ∩ F−1(Ū) = ∅. The latter gives

(W̃ , y|
W̃
, F |

W̃
) ∈ Λ(X − U,X − U).

This is a null-bordism for (M̂, x|
M̂
, f |

M̂
), seen as follows:

A point lying on the boundary of a manifold must necessarily also lie on the bound-
ary of any codimension zero submanifold which contains that point. So the inclu-
sions M̂ ⊆ W̃ and M̂ ⊆M ⊆ ∂W give

M̂ ⊆ W̃ ∩ ∂W ⊆ ∂W̃ .

W̃ ∩ F−1(X − A) = W ∩ F−1(X − A), together with the construction of W̃ as an
inverse image of a real-valued function (cf. [Con79]), ensures

∂W̃ ∩ F−1(X −A) = ∂W ∩ F−1(X −A).

Hence F (∂W − M̂) ⊆ A gives F |
W̃

(∂W̃ − M̂) ⊆ A. Moreover, F (W̃ ) ⊆ X −U , and
so we have F |

W̃
(∂W̃ − M̂) ⊆ A− U . Also, (F |

W̃
)|
M̂

= f |
M̂

and (y|
W̃

)|
M̂

= x|
M̂
.

In summary,
(M,x, f) ∼B (M̂, x|

M̂
, f |

M̂
) ∼B (∅, 0, ef).

Thus ker i∗ = 0, making i∗ a monomorphism.

2.18 Proposition (Additivity). Let (Xα, Aα)α be a collection of pairs of spaces. The
inclusions iα : (Xα, Aα) ↪→ (tXα,tAα) give an isomorphism∐

α

iα∗ :
∐
α

hgeo∗ (Xα, Aα)
∼=−→ hgeo∗ (tXα,tAα),

([Mα, xα, fα])α 7→ [tMα,txα,tiαfα].

Proof. The assignment is described only for a sum of homogeneous elements in some
fixed degree, but is understood to be extended linearly. Any element of

∐
α h

geo
n (Xα, Aα)

is on the form ([Mα, xα, fα])α—with [Mα, xα, fα] non-zero only for finitely many α—and
we may therefore assume that the union tMα is finite and thus compact (each class
being zero may be represented by the null-triple). Since addition in hgeo∗ (tXα,tAα)
is well-defined, the same is therefore true for the assignment above. This is clearly a
homomorphism. We define the inverse map:

Let [M,x, f ] ∈ hgeon (tXα,tAα). Since M is compact, it can be written as a finite union
of its components, M = tMk. We define (Xk, Ak) ∈ (Xα, Aα)α by f(Mk) ⊆ Xk.
This gives the decomposition (M,x, f) = (tMk,txk,tfk), where xk ∈ h∗(Mk) and
fk : (Mk, ∂Mk)→ (Xk, Ak) are the natural restrictions. Finiteness now gives

([Mk, xk, fk])k ∈
∐
k

hgeon (Xk, Ak).

Hence the assignment
[tMk,txk,tfk] 7→ ([Mk, xk, fk])k

followed by the natural inclusion∐
k

hgeon (Xk, Ak) ↪→
∐
α

hgeon (Xα, Aα)
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is readily seen to describe an inverse homomorphism to
∐
α iα∗.

Remark. A pair (K,L), withK compact and L ⊆ K closed, is referred to as a compact
pair. A homology theory k∗ on Top2 is said to have compact support if it satisfies the
following: For every pair (X,A) and for each element z ∈ kn(X,A), there is a compact
pair (K,L) ⊆ (X,A) such that z is in the image of k∗(K,L)→ k∗(X,A).

Referring to [Spa66], this is equivalent to the following: Let {(Kα, Lα)}α be the system
of compact pairs contained in (X,A), directed by inclusions. This gives the system
{k∗(Kα, Lα)}α, directed by the maps induced by inclusions. Then

colim
α

k∗(Kα, Lα) ∼= k∗(X,A).

By construction, so to speak, we see that hgeo∗ has compact support: Suppose given a pair
(X,A) and an element [M,x, f ] ∈ hgeon (X,A). Let us write f as the composition map

f : (M,∂M) f̂−→ (f(M), f(∂M)) i
↪−→ (X,A).

M and ∂M being compact Hausdorff spaces, it is clear that (f(M), f(∂M)) ⊆ (X,A) is
a compact pair. Now [M,x, f ] is in the image of i∗, as we have

[M,x, f̂ ] ∈ hgeon (f(M), f(∂M)),

with i∗[M,x, f̂ ] = [M,x, f ] ∈ hgeon (X,A).



3 NATURALLY EQUIVALENT HOMOLOGY THEORIES

From the cohomology theory h∗ on CW2, we have constructed the homology theory hgeo∗ on
Top2. We explain how the spectrum representing h∗ gives rise to h∗—the dual homology
theory that we already have encountered several times. In parts of this chapter, we restrict
hgeo∗ from Top2 to being a homology theory on CW2. We shall see that the two homology
theories hgeo∗ and h∗ then coincide. That is, on CW pairs, the homology groups correspond
in a well-behaved way with respect to induced maps and boundary homomorphisms.

3.1 Spectra and (co)homology theories

Definition. Let k∗ and k′∗ be homology theories on CW2 with boundary homomor-
phisms ∂ and ∂′. We say that

T : k∗ → k′∗

is a natural transformation of homology theories if T is a natural transformation
such that the diagram

kn(X,A) kn−1(A,∅)

k′n(X,A) k′n−1(A,∅)

∂(X,A)

∂′(X,A)

T(X,A) T(A,∅)

commutes for each n and for every pair (X,A).

When a natural transformation of homology theories is an equivalence, we say that the
two homology theories are equivalent.

3.1Theorem. Let k∗ and k′∗ be homology theories on CW2 and let

T : k∗ → k′∗

be a natural transformation of homology theories. If

T(pt,∅) : k∗(pt,∅)
∼=−→ k′∗(pt,∅)

is an isomorphism, then T is an equivalence.
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Definition. A spectrum is a collection E = (En, σn)n∈Z of pointed CW complexes
En and basepoint preserving maps σn : ΣEn → En+1.

In the next definition, we will use the following, where C and Σ are the reduced cone
and suspension functors, respectively: When (X,A) is a pointed CW pair, we have the
projections

p : X ∪ CA→ (X ∪ CA)/X
q : X ∪ CA→ (X ∪ CA)/CA,

the latter being a homotopy equivalence. We make the two identifications ΣA = (X ∪
CA)/X and X/A = (X∪CA)/CA. Choosing a homotopy inverse q−1 then gives the map

pq−1 : X/A→ ΣA.

Definition. Let E = (Er, σr)r be a spectrum. Then for each n and for each CW pair
(X,A), we define the group

kn(X,A) := colim
r

[Sn+r, Er ∧ (X/A)],

where the colimit is taken over the direct system[
S
n+r f−→ Er ∧ (X/A)

]
7→
[
S
n+r+1 1−→ S

1 ∧ Sn+r 1∧f−−→ S
1 ∧ Er ∧ (X/A) σr∧1−−−→ Er+1 ∧ (X/A)

]
.

For each r, there is a homomorphism

∂r : [Sn+r, Er ∧ (X/A)]→ [Sn+r, Er+1 ∧ (A/∅)]
given by[

S
n+r f−→ Er ∧ (X/A)

]
7→
[
S
n+r f−→ Er ∧ (X+/A+) 1∧pq−1

−−−−−→ Er ∧ ΣA+
1−→ ΣEr ∧A+

σr∧1−−−→ Er+1 ∧A+
]
.

Here we have identified X/A = X+/A+ and A/∅ = A+. The diagram

[Sn+r, Er ∧ (X/A)] [Sn+r+1, Er+1 ∧ (X/A)]

[Sn+r, Er+1 ∧ (A/∅)] [Sn+r+1, Er+2 ∧ (A/∅)]

∂r ∂r+1

commutes for each r. By the universal property of direct limits, the collection of ∂r then
induces a map, the boundary homomorphism

∂ : kn(X,A)→ kn−1(A,∅).

This makes k∗ := (kn)n (together with the boundary homomorphisms) a homology theory
on the category of CW pairs (cf. [May99]). We refer to it as the homology theory
associated to E.
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When Y is a based space, ΩY denotes the space of loops in Y, i.e. the function space
of based maps S1 → Y given the compact-open topology. In the category of based
spaces, every map f : ΣX → Y has an adjoint map, adj(f) : X → ΩY . When identifying
ΣX = S1 ∧X, this map is given by adj(f)(x)(t) := f(t ∧ x).

Definition. An Ω-spectrum is a spectrum (En, σn)n such that for each n, the adjoint
map adj(σn) : En → ΩEn+1 is a homotopy equivalence.

There is also k∗, the cohomology theory associated to a spectrum, now on the category
of finite CW pairs. The construction is similar to the one above. When E is not only
a spectrum, but an Ω-spectrum, k∗ extends to a homology theory on all CW pairs. By
a theorem due to E. H. Brown, every cohomology theory k∗ on CW pairs is represented
by an Ω-spectrum. Such a spectrum is unique in the following sense: Two Ω-spectra
representing k∗ give rise to naturally equivalent homology theories.

3.2 Identifying hgeo∗ and h∗ on CW2

Throughout this section, we restrict hgeo∗ to a homology theory on CW2. We shall define
a natural transformation of homology theories

ψ : hgeo∗ → h∗

which will be an equivalence, i.e. an isomorphism on each CW pair.

For an h-manifold M , we write

DM : h∗(M)
∼=−→ h∗(M,∂M)

for the Poincaré duality isomorphism.

3.2 Proposition. The map

ψ(X,A) : hgeo∗ (X,A)→ h∗(X,A), [M,x, f ] 7→ f∗DM (x),
is a well-defined homomorphism.

Proof. We show the proposition for ψ(X,A) : hgeok (X,A)→ hk(X,A). Then the general
result follows by linearity. We shall abbreviate ψ(X,A) to ψ.

• Let (S(E ⊕ 1), s!(x), fπ) be a sphere triple of (M,x, f). In the diagram

h∗(S(E ⊕ 1)) h∗(S(E ⊕ 1), ∂S(E ⊕ 1))

h∗(X,A)

h∗(M) h∗(M,∂M)

s! s∗ π∗

DM

DS(E⊕1)

f∗

(fπ)∗

,
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the appropriate sub-diagrams commute, and a short chase readily gives

(fπ)∗(DS(E⊕1)(s!(x))) = (fπ)∗(s∗(DM (x))) = f∗(DM (x)).

• Let (M ′, x′, f ′) and (M,x, f) be bordant of dimension k, (W, y, F ) a bordism. We
can assume M ′ and M are of dimension n, yielding x′ and x of dimension n − k.
The multi-dimensional case will follow by linear extension. We have the following
diagram:

hn−k(W ) hn−k(∂W ) hn−k(M ′ tM−)

hn−k(∂W − int(M ′ tM−))

hk(M ′ tM−, ∂(M ′ tM−))

hk(∂W − int(M ′ tM−), ∂(M ′ tM−))

hk+1(W,∂W ) hk(∂W ) hk(∂W, ∂(M ′ tM−))

hk(W ) hk(X) hk(X,A) .

∂

F∗

∼= DW ∼= D∂W

∼= DM′tM− ⊕D∂W−int(M′tM−)

∼= i∗ + j∗

0 (F |∂W )∗

⊕

⊕

The upper left-hand square commutes up to sign, and the remaining two squares
and triangles commute. Especially, the upper right-hand square commutes by
Lemma 1.14. Further, the composition map

hk(∂W − int(M ′ tM−), ∂(M ′ tM−))→ hk(X,A)
is zero. This is clear since F (∂W − (M ′ tM−)) ⊆ A and F (∂(M ′ tM−)) ⊆ A give
a factorization through hk(A,A) = 0. The vertical map on the right-hand side of
the diagram is therefore

hn−k(M ′ tM−)
DM′tM−−−−−−−→ hk(M ′ tM−, ∂(M ′ tM−)) (f ′tf)∗−−−−−→ hk(X,A).

The long exact sequence of the pair (W,∂W ) gives the zero-map at the lower left.
Since x′ t x = y|M ′tM , we thus get (f ′ t f)∗DM ′tM−(x′ t x) = 0.

The lower horizontal map being addition, the following diagram commutes by defi-
nition:

hn−k(M ′)⊕ hn−k(M−) hn−k(M ′ tM−)

hk(M ′, ∂M ′)⊕ hk(M−, ∂M−) hk(M ′ tM−, ∂(M ′ tM−))

hk(X,A)⊕ hk(X,A) hk(X,A) .

∼=

∼=

∼= DM′ ⊕DM−

f ′∗ ⊕ f∗

∼= DM′tM−

(f ′ t f)∗
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Since we have

DM−(x) = x ∩ [M−, ∂M−] = x ∩ −[M,∂M ] = −(x ∩ [M,∂M ]) = −DM (x),
the last diagram gives us

0 = (f ′ t f)∗DM ′tM−(x′ t x) = f ′∗DM ′(x′) + f∗DM−(x) = f ′∗DM ′(x′)− f∗DM (x).

This shows that the assignment [M,x, f ] 7→ f∗DM (x) is well-defined. The following makes
it a homomorphism:

Let [M,x, f ] and [M ′, x′, f ′] be elements of hgeok (X,A). Now we have

ψ([M,x, f ] + [M ′, x′, f ′]) =ψ[M tM ′, x t x′, f t f ′]
=(f t f ′)∗DMtM ′(x t x′)
=f∗DM (x) + f ′∗DM ′(x′)
=ψ[M,x, f ] + ψ[M ′, x′, f ′].

The collection of ψ(X,A) will constitute the natural transformation of homology theories
ψ. To show ψ is an equivalence, we shall be needing a geometric variant of Poincaré
duality: For an h-manifold N , there is the isomorphism

Dgeo
N : h∗(N)

∼=−→ hgeo∗ (N, ∂N)
given by the following theorem:

3.3 Theorem (Poincaré Duality). Let N be an h-manifold of dimension n. Then
the maps

Dgeo
N : hk(N)→ hgeom−k(N, ∂N), x 7→ [N, x, 1]

dgeoN : hgeom−k(N, ∂N)→ hk(N), [M,x, f ] 7→ f!(x)

are well-defined isomorphisms, inverse to each other.

Proof outline. The map Dgeo
N is clearly well-defined, and it is a homomorphism by

Lemma 2.5. We only check that the map dgeoN is a well-defined homomorphism. It is then
trivially verified that the composition dgeoN Dgeo

N is the identity on hk(N). For a proof of
the reversed composition being the identity on hgeom−k(N, ∂N), cf. [Jak00].

• Let (S(E⊕1), s!(x), fπ) be a sphere triple of (M,x, f) in (N, ∂N). πs = 1: M →M
gives

(fπ)!(s!(x)) = (fπs)!(x) = f!(x).

• Let (M ′, x′, f ′) and (M,x, f) be bordant, with bordism (W, y, F ). As usual, we can
assume M ′ and M m-dimensional such that x′ and x are of dimension k. We must
show

f ′! (x′)− f!(x) = 0.
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The argument is very similar to the corresponding part of the proof of Proposi-
tion 3.2, and we reuse the diagram found there with only a few modifications at the
bottom:

hk(W ) hk(∂W ) hk(M ′ tM−)

hk(∂W − int(M ′ tM−))

hm−k(M ′ tM−, ∂(M ′ tM−))

hm−k(∂W − int(M ′ tM−), ∂(M ′ tM−))

hm−k+1(W,∂W ) hm−k(∂W ) hm−k(∂W, ∂(M ′ tM−))

hm−k(W ) hm−k(N) hm−k(N, ∂N)

hn−m+k(N)

∂

F∗

∼= DW ∼= D∂W

∼= DM′tM− ⊕D∂W−int(M′tM−)

∼= i∗ + j∗

0 (F |∂W )∗

∼= DN
−1

⊕

⊕

This setting differs from the proof of Proposition 3.2 only in that the codomain
of F now is the h-manifold N . The same argument applies here to the vertical
composition map (*) on the right: The homomorphism vanishes on the second
summand, as the map

hm−k(∂W − int(M ′ tM−), ∂(M ′ tM−))→ hm−k(N, ∂N)
factors through hm−k(∂N, ∂N) = 0. Thus (*) is the Gysin homomorphism

(f ′ t f)! : hk(M ′ tM−)→ hn−m+k(N).
Again the diagram commutes up to sign, and thus any composition map hk(W )→
hn−m+k(N) in the diagram is zero. By the bordism, we have x′ t x = y|M ′tM , and
so

(f ′ t f)!(x′ t x) = 0.

Finally, the inverted Thom class orienting M− gives rise to a change of sign in the
ordinary Poincaré duality map, yielding

0 = (f ′ t f)!(x′ t x) = f ′! (x′)− f!(x).

The map
dgeoN : hgeom−k(N, ∂N)→ hk(N), [M,x, f ] 7→ f!(x),

is therefore well-defined.

(f ′ t f)! : hk(M ′ tM)→ hn−m+k(N)
gives (f ′ t f)!(x′ t x) = f ′! (x′) + f!(x), and dgeoN is by that seen to be a homomorphism.
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Now [Jak00] shows that [M,x, f ] = [N, f!(x), 1] in the sense that the composition

Dgeo
N dgeoN : hgeom−k(N, ∂N)→ hk(N)→ hgeom−k(N, ∂N),

[M,x, f ] 7→ f!(x) 7→ [N, f!(x), 1],
is the identity map.

Remark. We shall write Dgeo
N
−1 instead of dgeoN for the inverse of Dgeo

N .

3.4 Theorem. The transformation

ψ : hgeo∗ → h∗,

given by
ψ(X,A)[M,x, f ] = f∗DM (x),

is a natural transformation of homology theories.

Proof. Proposition 3.2 shows that ψ is a well-defined transformation. Let

ϕ : (X,A)→ (Y,B)
be a map. We need only check that the following two diagrams commute:

hgeok (X,A) hgeok (Y,B)

hk(X,A) hk(Y,B)

ϕ∗

ϕ∗

ψ(X,A) ψ(Y,B)

hgeok (X,A) hgeok−1(A)

hk(X,A) hk−1(A)

∂geo

∂′

ψ(X,A) ψ(A,∅)

The diagram to the left readily commutes by

ϕ∗(ψ[M,x, f ]) = ϕ∗f∗DM (x) = ψ[M,x, ϕf ] = ψ(ϕ∗[M,x, f ]).
In the diagram to the right, we have labeled the boundary homomorphisms ∂geo and ∂′
to reserve ∂ for the boundary operation on manifolds. The two ways around the diagram
respectively give

∂′ψ(X,A)[M,x, f ] = ∂′f∗DM (x) = (∂f)∗∂′DM (x)
and

ψ(A,∅)∂
geo[M,x, f ] = ψ(A,∅)[∂M, (−1)dim xx|∂M , ∂f ] = (∂f)∗D∂M ((−1)dim xx|∂M ).

Equality follows from the diagram found in the proof of Proposition 1.10, assuming M
and x being of dimensions n and n− k:

hn−k(M) hn−k(∂M)

hk(M,∂M) hk−1(∂M)

i∗

∂′
DM D∂M
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The diagram commutes with sign (−1)n−k, which gives

∂′DM (x) = (−1)dim xD∂M (x|∂M ) = D∂M ((−1)dim xx|∂M ).

3.5 Theorem. The natural transformation of homology theories

ψ : hgeo∗ → h∗

is an equivalence.

Proof. Let N be an h-manifold. Then ψ(N,∂N) is composition of the two Poincaré
duality isomorphisms in the diagram

h∗(N)

hgeo∗ (N, ∂N) h∗(N, ∂N) .
ψ(N,∂N)

Dgeo
N
−1

∼=

DN

∼=

This is clear, since [M,x, f ] ∈ hgeo∗ (N, ∂N) gives

ψ(N,∂N)[M,x, f ] = f∗DM (x) = DNf!(x) = DND
geo
N
−1[M,x, f ]

by the definition of f!. The special case (N, ∂N) = (pt,∅) now yields the isomorphism

ψ(pt,∅) : hgeok (pt,∅)
∼=−→ hk(pt,∅).

By Theorem 3.1, ψ is then an equivalence.



4 THE GEOMETRIC CAP PRODUCT

Until now, we have let h∗ be a multiplicative cohomology theory on CW pairs. However,
we could just as well have let h∗ be a multiplicative cohomology theory on all pairs of
spaces whose restriction to CW pairs was represented by an Ω-spectrum. This shall be
our setting in this chapter.

For either A or B empty, we shall see that the homology theory hgeo∗ : Top2 → Ab∗ and
the cup product

∪ : h∗(X,A)⊗ h∗(X,B)→ h∗(X,A ∪B)

can be used to define the geometric cap product,

h∗(X,A)⊗ hgeo∗ (X,A ∪B)→ hgeo∗ (X,B),
a pairing which very much resembles a cap product. We demonstrate some of its basic
properties. When restricted to CW pairs, this essentially is the spectrally defined cap
product.

4.1 Defining the geometric cap product

On the category of CW pairs, we have the natural equivalence of homology theories

ψ : hgeo∗ → h∗.

For each h-manifold N , ψ therefore defines an isomorphism

D̂geo
N : h∗(N, ∂N)

∼=−→ hgeo∗ (N)
by imposing commutativity on the diagram

hk(N, ∂N)

hgeon−k(N) hn−k(N) .

D̂geo
N

D̂N∼=

ψN

∼=

This, we also refer to as Poincaré duality. To display the dimension shifts in (co)homology,
we have in the diagram let N be of dimension n.
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We thus have two Poincaré duality isomorphisms involving geometric homology:

Dgeo
N : h∗(N)

∼=−→ hgeo∗ (N, ∂N),

D̂geo
N : h∗(N, ∂N)

∼=−→ hgeo∗ (N).

Trying to imitate traditional Poincaré duality, we would like to have a product such
that Dgeo

N and D̂geo
N both are given by multiplication with a fixed (fundamental) class of

hgeo∗ (N, ∂N). We will define the geometric cap product to obtain this. First we fix some
notation.

Definition. Let M be an h-manifold. We shall write

M := M ∪∂M M−

for the double of M , i.e. M tM− with the pairwise identification of boundary points
along ∂M and ∂M−. Collars on M and M− give a smooth structure on M , and an
orientation is imposed by requiring orientation preserving imbeddings of M and M−.

We identifyM with its imbedded image onto the first copy ofM in its double, and we write
I : M ↪→ M for the inclusion. There is also the natural projection 1: M → M . When
f : M → X is a map, we compose with the projection to obtain f : M 1−→M

f−→ X.

Remark. The notation 1 for the projection map is chosen so that the identity map
f = 1: M →M gives f = 1: M →M .

Note that when C is a closed h-manifold and f : C → X is a map, we have

C = C t C−, f = f t f.
By construction, M is closed. This yields

M = M tM−.

We also note that the composition M I
↪−→M

1−→M is the identity on M .

Definition. When M is an h-manifold, we have the inclusions

I : (M,∂M)→ (M,M−), J : (M,∅)→ (M,M−).
I being an excision map, we define the homomorphism

∪ : h∗(M,∂M)⊗ h∗(M)→ h∗(M)
to be the composition

h∗(M,∂M)⊗ h∗(M) ∪−→ h∗(M,∂M) I∗−1

−−−→ h∗(M,M−) J∗−−→ h∗(M).

Remark. One should be aware that the symbol ∪ is not intended to represent a cup
product. The construction is an intermediate step to what will be the geometric cap
product defined below. The choice of notation ∪ will then become clear.
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4.1 Proposition. Let the maps

I : M →M, J : M →M,

respectively be the inclusion and the identity. I and J shall also represent the evident
inclusions of pairs whose induced maps are found in the diagram. The diagram commutes.

h∗(M,∂M)⊗ h∗(M)

h∗(M,∂M) h∗(M,M−) h∗(M)

h∗(M) h∗(M) h∗(M)

I∗

∼=
J∗

I∗ J∗ = 1

− ∩ [M,∂M ]∼= − ∩ J∗[M ] − ∩ [M ]∼=

∪
∪

Proof. By Proposition 1.8, we have

I∗[M,∂M ] = J∗[M ].
The commutativity of the two squares is therefore immediate from Proposition 1.12. The
triangle at the top commutes by the definition of ∪.

The proposition gives an alternative description of ∪, namely as the composition

h∗(M,∂M)⊗ h∗(M) ∪−→ h∗(M,∂M) D̂M−−→ h∗(M) I∗−→ h∗(M)
D
M
−1

−−−−→ h∗(M).
Depending on the circumstances, we shall be using either composition more convenient
in computations involving the map ∪.

Remark. When C is a closed h-manifold, the following diagram commutes

h∗(C)⊗ h∗(C) h∗(C)⊕ h∗(C−)

h∗(C)

∪

∪ 1⊕ 0

when identifying h∗(C) = h∗(C)⊕ h∗(C−).

The next proposition is known as the projection formula. We shall only be needing its
corollary.

4.2 Proposition. Let f : (M,∂M) → (N, ∂N) be a continuous map, where M and N
are h-manifolds. For x ∈ h∗(N) and y ∈ h∗(M), we have

f!(f∗(x) ∪ y) = x ∪ f!(y).
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Proof. The properties of the cap and cup products give

DNf!(f∗(x) ∪ y) = f∗DM (f∗(x) ∪ y)
= f∗(f∗(x) ∩DM (y))
= x ∩ f∗DM (y)
= x ∩DNf!(y)
= DN (x ∪ f!(y)).

Replacing f by s, y by 1 and x by π∗(x), πs = 1 immediately gives the following.

4.3Corollary. Let M be an h-manifold and let π : S(E⊕ 1)→M be a the projection
of a sphere bundle. If s : M → S(E ⊕ 1) is a section, then for x ∈ h∗(M), we have the
equality

s!(x) = π∗(x) ∪ s!(1).

We shall soon see that the two products below coincide where they are both defined, i.e.
for A = ∅. We therefore do not use distinct notations and shall write z ∩ [M,x, f ] for
both products.

Definition. For (X,A) ∈ Top2, we define the geometric cap products

∩ : hk(X)⊗ hgeon (X,A)→ hgeon−k(X,A),
z ⊗ [M,x, f ] 7→ [M,f∗(z) ∪ x, f ]

and

∩ : hk(X,A)⊗ hgeon (X,A)→ hgeon−k(X),
z ⊗ [M,x, f ] 7→ [M,f∗(z) ∪ x, f ].

4.4 Proposition. The geometric cap products are well-defined.

Proof. We begin with the upper product.

• Let (S(E⊕1), s!(x), fπ) be a sphere triple of (M,x, f) in (X,A). Also, let z ∈ hk(X).
Now (S(E ⊕ 1), (fπ)∗(z)∪ s!(x), fπ) is a sphere triple of (M,f∗(z)∪ x, f), since we
have

s!(f∗(z) ∪ x) = π∗(f∗(z) ∪ x) ∪ s!(1)
= π∗f∗(z) ∪ π∗(x) ∪ s!(1)
= (fπ)∗(z) ∪ s!(x).

• For z ∈ hk(X), let (M ′, x′, f ′) and (M,x, f) in (X,A) be bordant, (W, y, F ) a
bordism. We see that (W,F ∗(z) ∪ y, F ) is a bordism between (M ′, f ′∗(z) ∪ x′, f ′)
and (M,f∗(z) ∪ x, f).
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This shows that the assignment

(z, [M,x, f ]) 7→ [M,f∗(z) ∪ x, f ]
is well-defined on the cross product hk(X)×hgeon (X,A). Here, it is seen to be biadditive,
yielding the homomorphism on the tensor product. We do the computations.

(z + z′) ∩ [M,x, f ] = [M,f∗(z + z′) ∪ x, f ]
= [M,f∗(z) ∪ x+ f∗(z′) ∪ x, f ]
= [M,f∗(z) ∪ x, f ] + [M,f∗(z′) ∪ x, f ]
= z ∩ [M,x, f ] + z′ ∩ [M,x, f ],

z ∩ ([M,x, f ] + [M ′, x′, f ′]) = [M tM ′, (f t f ′)∗(z) ∪ (x t x′), f t f ′]
= [M tM ′, (f∗(z) ∪ x) t (f ′∗(z) ∪ x′), f t f ′]
= z ∩ [M,x, f ] + z ∩ [M ′, x′, f ′].

Now to the second product,

∩ : hk(X,A)⊗ hgeon (X,A)→ hgeon−k(X),
z ⊗ [M,x, f ] 7→ [M,f∗(z) ∪ x, f ].

• Let (S(E ⊕ 1), s!(x), fπ) be a sphere triple of (M,x, f) in (X,A). Also, let z ∈
hk(X,A). We show that (S(E ⊕ 1), (fπ)∗(z) ∪ s!(x), fπ) is a sphere triple of
(M,f∗(z) ∪ x, f).
First of all, we see that when E is an h-vector bundle over M , this makes E an
h-vector bundle over M . (Even though E is not compact and so not an h-manifold,
we still use the notation E for the double of E.) It is a vector bundle, as ∂E ⊆ E
precisely is the fibers over ∂M . Now E gets an orientation from E and E−, the
inclusions of fibers E ↪→ E, E− ↪→ E, being bundle inclusion maps. Now we identify
S(E ⊕ 1) = S(E⊕1). Letting π also denote the projection S(E ⊕ 1)→M , we have
fπ = fπ.
We let s̃ : M → S(E ⊕ 1) denote the evident section coming from s : M → S(E⊕1).
We would like to show

s̃!
(
f∗(z) ∪ x

)
= (fπ)∗(z) ∪ s!(x).

This follows from commutativity of the following diagram, mapping the element
f∗(z)⊗ x from the upper left-hand to the lower right-hand corner. We write S for
S(E ⊕ 1) in the diagram.

h∗(M,∂M)⊗ h∗(M) h∗(M,∂M) h∗(M) h∗(M) h∗(M)

h∗(S, ∂S)⊗ h∗(S) h∗(S, ∂S) h∗(S) h∗(S) h∗(S)

π∗ ⊗ s! π∗(−) ∪ s!(1) s∗ s̃∗ s̃!

∪

∪

D̂M

D̂S

I∗

I∗

D
M
−1

D
S
−1

We begin by checking that the left-hand square commutes,

π∗(x) ∪ s!(y) = π∗(x) ∪ π∗(y) ∪ s!(1) = π∗(x ∪ y) ∪ s!(1).
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For the next square, we have

D̂S(π∗(x) ∪ s!(1)) = π∗(x) ∩DSs!(1)
= π∗(x) ∩ s∗DM (1)
= π∗(x) ∩ s∗[M,∂M ]
= s∗(s∗π∗(x) ∩ [M,∂M ])
= s∗(x ∩ [M,∂M ])

= s∗D̂M (x).

Commutativity of the two rightmost squares is evident from s̃I = Is : M → S and
the definition of s̃!.

• For z ∈ hk(X,A), let (M ′, x′, f ′) and (M,x, f) in (X,A) be bordant, and let
(W, y, F ) be a bordism. We show there is a bordism between (M ′, f ′∗(z) ∪ x′, f ′)
and (M,f∗(z) ∪ x, f) in (X,∅).

We define
B := ∂W − int(M ′ tM−).

This makes W ∪B W− an h-manifold by straightening the angle, with M ′ tM− =
∂(W ∪B W−) (cf. [Dav]). We have the commutative diagram

h∗(W,∂W ) h∗(W ∪B W−,W−) h∗(W ∪B W−)

h∗(M,∂M) h∗(M,M−) h∗(M) ,

I∗−1 J∗

where the horizontal maps to the left are inverse excision maps. (We have the
similar diagram for M ′.) Writing p for the projection W ∪BW− →W , we see that
(W ∪B W−, J∗I∗−1(F ∗(z) ∪ y), Fp) is a bordism.

Thus the assignment is well-defined on the cross product. Showing biadditivity goes
as the similar computations above, since ∪ is additive in each argument of the tensor
product.

Remark. For (M,x, f) a triple in (X,∅), M is closed. For any z ∈ h∗(X), the two
previous remarks then give

[M,f∗(z) ∪ x, f ] = [M tM−, (f∗(z) ∪ x) t 0, f t f ]
= [M,f∗(z) ∪ x, f ] + [M−, 0, f ]
= [M,f∗(z) ∪ x, f ].

Thus the two geometric cap products coincide on h∗(X) ⊗ hgeo∗ (X). We may therefore
speak of the geometric cap product hereafter.
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4.2 Poincaré duality

4.5 Theorem. For any h-manifold N , each of the Poincaré duality isomorphisms

Dgeo
N : h∗(N)

∼=−→ hgeo∗ (N, ∂N),

D̂geo
N : h∗(N, ∂N)

∼=−→ hgeo∗ (N),
is by the geometric cap product given by

x 7→ x ∩ [N, 1, 1].

Proof. The first map is trivially verified: For x ∈ h∗(N), we get

x 7→ x ∩ [N, 1, 1] = [N, 1∗(x) ∪ 1, 1] = [N, x, 1] = Dgeo
N (x).

The second map is defined to be

D̂geo
N := ψN

−1D̂N .

Hence the result follows by showing that the diagram commutes.

h∗(N, ∂N)

hgeo∗ (N) h∗(N)

− ∩ [N, 1, 1]
D̂N∼=

ψN

∼=

We recall that ψN is given by [M,y, g] 7→ g∗DM (y). For any x ∈ h∗(N, ∂N) we thus get

ψN (x ∩ [N, 1, 1]) = ψN [N, x ∪ 1, 1]
= 1∗DN (x ∪ 1)

= 1∗DN (DN
−1I∗D̂N (x ∪ 1))

= (1I)∗D̂N (x) = D̂N (x).

4.3 Properties of the geometric cap product

With the geometric cap product established and having shown it solves the initial Poincaré
duality problem, we close this chapter by considering properties that a cap product should
have. First we give two lemmas.

4.6 Lemma. Let M be an h-manifold, x ∈ h∗(M,∂M) and y, z ∈ h∗(M). Then we have

(x ∪ y) ∪ z = x ∪ (y ∪ z).
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Proof. Associativity of the cup product immediately gives

(x ∪ y) ∪ z = DM
−1I∗D̂M ((x ∪ y) ∪ z)

= DM
−1I∗D̂M (x ∪ (y ∪ z))

= x ∪ (y ∪ z).

4.7 Lemma. The diagram commutes, giving the equality

x ∪ y = J∗I∗−1(x) ∪ 1∗(y).

h∗(M,∂M)⊗ h∗(M) h∗(M,M−)⊗ h∗(M) h∗(M)⊗ h∗(M)

h∗(M,∂M) h∗(M,M−) h∗(M)

∪ ∪ ∪

I∗−1 ⊗ 1∗ J∗ ⊗ 1∗

I∗−1 J∗

Proof. The right-hand square commutes by naturality of the cup product. The left-
hand square is the same as the left-hand square in the following diagram.

h∗(M,∂M)⊗ h∗(M) h∗(M,M−)⊗ h∗(M) h∗(M,∂M)⊗ h∗(M)

h∗(M,∂M) h∗(M,M−) h∗(M,∂M)

∪ ∪ ∪

I∗−1 ⊗ 1∗ I∗ ⊗ I∗

I∗−1

∼=
I∗

∼=

Also here, the right-hand square commutes by naturality of the cup product. Note that
the compositions at the top and at the bottom are the respective identity maps. The
left-hand square therefore commutes since the lower right-hand I∗ is an isomorphism.

4.8 Proposition. For 1 ∈ h∗(X), [M,x, f ] ∈ hgeo∗ (X,A), we have

1 ∩ [M,x, f ] = [M,x, f ].

Proof.
1 ∩ [M,x, f ] = [M,f∗(1) ∪ x, f ] = [M, 1 ∪ x, f ] = [M,x, f ].

4.9 Proposition. Let ϕ : (X,A) → (Y,B) be a map of pairs. For any [M,x, f ] ∈
hgeo∗ (X,A), the following diagram commutes

h∗(X,A) h∗(Y,B)

hgeo∗ (X) hgeo∗ (Y ) .

− ∩ [M,x, f ] − ∩ ϕ∗[M,x, f ]

ϕ∗

ϕ∗
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That is, for any y ∈ h∗(Y,B), we get the equality

ϕ∗(ϕ∗(y) ∩ [M,x, f ]) = y ∩ ϕ∗[M,x, f ].

Proof. Since we have written ϕ for the map (X,∅)→ (Y,∅) as well, we have ϕf = ϕf
and thus

ϕ∗(ϕ∗(y) ∩ [M,x, f ]) = ϕ∗[M,f∗ϕ∗(y) ∪ x, f ]
= [M, (ϕf)∗(y) ∪ x, ϕf ]
= y ∩ [M,x, ϕf ]
= y ∩ ϕ∗[M,x, f ].

Remark. For the other variant of the geometric cap product above, the analogous result
holds. The proof is essentially the same.

4.10 Proposition. The diagram commutes.

hk(X)⊗ hgeon (X,A) hgeon−k(X,A)

hk(A)⊗ hgeon−1(A) hgeon−k−1(A)

i∗ ⊗ ∂ (−1)k∂

∩

∩

Proof. For z ∈ hk(X), [M,x, f ] ∈ hgeon (X,A), let j : ∂M ↪→ M denote the inclusion.
We get

(∂f)∗i∗(z) ∪ x|∂M = j∗f∗(z) ∪ j∗(x)
= (f∗(z) ∪ x)|∂M ,

and thus

i∗(z) ∩ ∂[M,x, f ] = i∗(z) ∩ [∂M, (−1)dim xx|∂M , ∂f ]
= [∂M, (∂f)∗i∗(z) ∪ (−1)dim xx|∂M , ∂f ]
= [∂M, (−1)dim x(f∗(z) ∪ x)|∂M , ∂f ]
= (−1)dim f∗(z)[∂M, (−1)dim f∗(z)+dim x(f∗(z) ∪ x)|∂M , ∂f ]
= (−1)dim z∂

(
[M,f∗(z) ∪ x, f ]

)
= (−1)k∂

(
z ∩ [M,x, f ]

)
.

We now consider the diagram in the next proposition. When commutative, it expresses
the equality

(z ∪ y) ∩ x = z ∩ (y ∩ x).

If we replace hgeo∗ by h∗ in the diagram, the cap products are defined when the triads
(X;A ∪ B,C), (X;A,C) and (X;B,A ∪ C) obey certain conditions. The diagram then
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commutes. We have already been making use of this equality several times, e.g. in con-
nection with Poincaré duality maps where we encounter the ordinary, non-geometric cap
product.

We have only been able to define the geometric cap product

h∗(X,A)⊗ h∗(X,A ∪B)→ h∗(X,B)
for either A or B empty. The diagram below is therefore not always meaningful, so in the
proposition we must restrict ourselves to spacial cases where the geometric cap product
is defined.

4.11 Proposition. In the three respective cases

B = C = ∅, A = C = ∅, A = B = ∅,

the following diagram is commutative.

h∗(X,A)⊗ h∗(X,B)⊗ hgeo∗ (X,A ∪B ∪ C) h∗(X,A)⊗ hgeo∗ (X,A ∪ C)

h∗(X,A ∪B)⊗ hgeo∗ (X,A ∪B ∪ C) hgeo∗ (X,C)

1⊗ ∩

∩

∪ ⊗ 1 ∩

Proof. In each of the three cases, we choose an element

z ⊗ y ⊗ [M,x, f ] ∈ h∗(X,A)⊗ h∗(X,B)⊗ hgeo∗ (X,A ∪B ∪ C).

B = C = ∅ :

h∗(X,A)⊗ h∗(X)⊗ hgeo∗ (X,A) h∗(X,A)⊗ hgeo∗ (X,A)

h∗(X,A)⊗ hgeo∗ (X,A) hgeo∗ (X)

1⊗ ∩

∩

∪ ⊗ 1 ∩

By Lemma 4.6, we have(
f∗(z) ∪ f∗(y)

)
∪ x = f∗(z) ∪

(
f∗(y) ∪ x

)
.

This gives

z ∩ (y ∩ [M,x, f ]) = z ∩ [M,f∗(y) ∪ x, f ]
= [M,f∗(z) ∪ (f∗(y) ∪ x), f ]
= [M, (f∗(z) ∪ f∗(y)) ∪ x, f ]
= [M,f∗(z ∪ y) ∪ x, f ]
= (z ∪ y) ∩ [M,x, f ].

A = C = ∅:
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h∗(X)⊗ h∗(X,B)⊗ hgeo∗ (X,B) h∗(X)⊗ hgeo∗ (X)

h∗(X,B)⊗ hgeo∗ (X,B) hgeo∗ (X)

1⊗ ∩

∩

∪ ⊗ 1 ∩

The two ways around the diagram respectively give

z ∩ (y ∩ [M,x, f ]) = z ∩ [M,f∗(y) ∪ x, f ]

= [M,f
∗(z) ∪ (f∗(y) ∪ x), f ],

(z ∪ y) ∩ [M,x, f ] = [M,f∗(z ∪ y) ∪ x, f ]
= [M, (f∗(z) ∪ f∗(y)) ∪ x, f ].

Commutativity thus follows by demonstrating the equality

f
∗(z) ∪

(
f∗(y) ∪ x

)
= f∗(z ∪ y) ∪ x

in h∗(M).
We observe that the following diagram commutes, the upper and lower square each
commutative by naturality of the cup product and the middle square by Lemma 4.7.

h∗(X)⊗ h∗(X,B) h∗(X,B)

h∗(M)⊗ h∗(M,∂M) h∗(M,∂M)

h∗(M)⊗ h∗(M,M−) h∗(M,M−)

h∗(M)⊗ h∗(M) h∗(M)

∪

∪

∪

∪

f∗ ⊗ f∗

1∗ ⊗ I∗−1

1∗ ⊗ J∗

f∗

I∗−1

J∗

Hence we have
f
∗(z) ∪ J∗I∗−1f∗(y) = J∗I∗−1f∗(z ∪ y).

This gives the asserted equality by

f
∗(z) ∪

(
f∗(y) ∪ x

)
= f

∗(z) ∪
(
J∗I∗−1(f∗(y) ∪ x)

)
= f

∗(z) ∪ J∗I∗−1f∗(y) ∪ 1∗(x)
= J∗I∗−1f∗(z ∪ y) ∪ 1∗(x)
= J∗I∗−1(f∗(z ∪ y) ∪ x

)
= f∗(z ∪ y) ∪ x,

where we have used Lemma 4.7 twice.

A = B = ∅:
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h∗(X)⊗ h∗(X)⊗ hgeo∗ (X,C) h∗(X)⊗ hgeo∗ (X,C)

h∗(X)⊗ hgeo∗ (X,C) hgeo∗ (X,C)

1⊗ ∩

∩

∪ ⊗ 1 ∩

The computation is straightforward,

z ∩ (y ∩ [M,x, f ]) = z ∩ [M,f∗(y) ∪ x, f ]
= [M,f∗(z) ∪ f∗(y) ∪ x, f ]
= [M,f∗(z ∪ y) ∪ x, f ]
= (z ∪ y) ∩ [M,x, f ].

The next theorem shows that the natural equivalence ψ is well-behaved with respect to
the geometric and the non-geometric cap products. We elaborate on this in the succeeding
remark.

4.12 Theorem. The diagrams commute.

h∗(X)⊗ hgeo∗ (X,A) hgeo∗ (X,A)

h∗(X)⊗ h∗(X,A) h∗(X,A)

∩

∩

1⊗ ψ(X,A)∼= ψ(X,A)∼=

h∗(X,A)⊗ hgeo∗ (X,A) hgeo∗ (X)

h∗(X,A)⊗ h∗(X,A) h∗(X)

∩

∩

1⊗ ψ(X,A)∼= ψ(X,A)∼=

Proof. We do the respective calculations,

ψ(X,A)(y ∩ [M,x, f ]) = ψ(X,A)[M,f∗(y) ∪ x, f ]
= f∗DM (f∗(y) ∪ x)
= f∗

(
(f∗(y) ∪ x) ∩ [M,∂M ]

)
= f∗

(
f∗(y) ∩ (x ∩ [M,∂M ])

)
= y ∩ f∗(x ∩ [M,∂M ])
= y ∩ f∗DM (x)
= y ∩ ψ(X,A)[M,x, f ],
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ψ(X,A)(y ∩ [M,x, f ]) = ψ(X,A)[M,f∗(y) ∪ x, f ]
= f∗DM (f∗(y) ∪ x)
= f∗DMDM

−1I∗DM (f∗(y) ∪ x)
= (fI)∗

(
(f∗(y) ∪ x) ∩ [M,∂M ]

)
= f∗

(
f∗(y) ∩ (x ∩ [M,∂M ])

)
= y ∩ f∗DM (x)
= y ∩ ψ(X,A)[M,x, f ].

Remark. For a pair of spaces (X,A), hgeo∗ (X,A) may be regarded as a graded left
module over the ring h∗(X), with the left multiplication from h∗(X) being the geometric
cap product. This follows from the propositions 4.8 and 4.11. Restricting to CW pairs,
we also get the similar interpretation of h∗(X,A) as a graded left h∗(X)-module. The
upper diagram in the theorem above now makes

ψ(X,A) : hgeo∗ (X,A)
∼=−→ h∗(X,A)

a natural, graded h∗(X)-module isomorphism for any CW pair (X,A). Hence one can
simply use the diagrams in the theorem to define the geometric cap product if confining
oneself to CW pairs.
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