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��������� �� c�θ� ��$�$�� � ��	 �$�� �X �n ���	�� %�����	��� ���� ���������
������� �� ��$����� �	
������ �$�� ��� ��������� �	� $���� �� X ��� n ���
�������� ��� 	��� �

�������� �� 
������� ��������� &���� c�θ� �� � �������� �� θ
�� �� ��� �� ��������� �� ���������� ��� ���	��#��� �������� �$��� ��	� ��
������ ��� 	��� 
���	������
%����
� ��� 	��� ��		�� �'�	
� ���� ����������  !"� �� ��� (���� 	���)

��	�� ����� *���� (���� ��� 
�������� ��� ��� ���� ��	� �� +,-.� /�� ���� xi

��
������ � ���� �� � 2 ��	������� ������ ��� �� X � �0, 1�) �� ���� xi �� �
������ $������� /�� N �� � ���� ����� ������������ �����	) ��� ��� ��������� ��
���� ���� xi ��� ��� ���� ����� �		������� ��0����� �� ��� C ���� ����	�� ���
��� �� � 
���� �� ����� ��0����� �� ���� ������ 1������� ��� ����������� 
����
�� i � j) �� ��� ����� ��� ������������ �� (���� 	��� ��)

p�x�θ� � 1

c�θ� exp
�
θ
�
i�j

I�xi � xj�
�
, �.�

����� I�xi � xj� �� ��� ��������� �������� ���� �� 1 �� xi � xj ��� 0 ����������
����) �� � ��������� �� � ���� ��� 1) ���� ���� �� ���� �� ���� ��� $��� 1
�� ��� 2�� ��3������ ��� ��������� ��� �� �����	���� �� ��� 
���	���� θ� 4
$��� ��� θ ���� �� #��� �� ��$� 	��� ����� ����#������ ���� � ���� $��� ���
θ �� ��$� ����#������ ���� ���� ����� ��	������ �� ��� $���� 4� �����������
������� �� ��� (���� 	��� �� ��� �'������� �� � 
���� ���������� 
����	�����
4���	� ��� (���� 	��� �� ������ �� � ������ ����� ��� $���� �� ��� ��������
��� ��$��� (� ��� ������ ���� ���� ������ ��� ���� �������$�� �'
��� � ����
�� ��� ������ �� ��� ������ �� �� ���5����� �� ��� $���� �� ��� ���������  ���

�������) �� ��� ������ ���� �������� ����) ��� 	������ ������������ �� � ���� ��
��� ������ ����� �� ���5����� �� ��� $���� �� ��� ��������� 4� �� ����� ���)
���� �� ���� ��� ��� $���� �� θ ���� � �� ���� 6������� $���6) θ��������� (� ���
�� ����� ���� ��� ��� (���� 	��� ������ �� �� �.�) θ�������� � log�1�	

2� 
 0.88�
4������ ��	
�) ��� (���� 	��� �� ��������� ���� �� � ��	��� �� �����

���������	
 �	��� ��	�� ���
�
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� 	���� �*!7 �) ��� ������	�� ��� %������� �+,,8�
��� !����� �� �� �-99:�) ����� ������� �� �� ��� p� 	���) �� � 	��� ��� ����������
��� ��������� �� �������� ��� �� 	��� ���� �� ����� ������� �������� ;�������
��� ������� �������� �� ��$� �� ���������� ���
� ���������� �� m ������ *���
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��� ��� ����� �� ����� �� � ��� ����� ���� �� �� 	����
����	���� �� ��� ������� � ���� ������ �� m�m ��������� ����� y� ����
���� �� ��� ����� yij �������� �� ���� ��� ����� ����� yij � 1 �� ��� ���� ��
�� ��� yij � 0 �� �� �� ���� �� ��������� � ���� �� ���� ��������� 	� �� ���� ��
������� �� ��� �������� �� ��� ��������� ����� �� 0� yii � 0 �� ��� i � �1, . . . ,m��
 ��� ���� y 
��� 	� �������� ��� ���� 
� ����	� ���� n � m�m� 1��2 	����
����	���� !�� �"#$ 
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��� θ � �θ1, . . . , θk� �� �� ����� ��������� c�θ� �� ��� ������(��� ��������
��� si�y� �� ���� ��)����� ���������� !�� �������� ������� �� ���� � ��)�����
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�� ������ ��� ������ ������� �� ��� ���������

4�� x � �x1, . . . , xn�� xi � X � 	� � ����� �� ������� ����	���� N � �1, . . . , n�
��� ��� �� ������� ��� q�x� ��� ��+������(�� �����	����� �� x� �� 
��� ��� ���
�������� xΛ � �xi : i � Λ�� .� � �����	����� p�x� � 1
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����� ��� ���� Li ��� ��	
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����� �� ������ cn � c #��������
� c1, . . . , cn �
� ������� ��� ��� �
 ��� ����
��$�����

�n
i�1 �X ��Li��1 ����������
� ���� ����������
 ���� �� �� �� ������ �� ���

��
�����
�� %������������ p�xi�xi�1:n	 ��
���
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	ci�1�xLi�1��i�1�	
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����� ���%��� ���� ��� �����������

��� �'���
�� �� ��� ��������� �� ������ ��%�
�� �
 ���  ���� �� r #�
�����

��� (��
� ����� �
 � u � v ������� �
� ������ � ��)������%����� ������
� ��
��� 
���� �
� u � v (
 ���� ���� �� ����� ������� L1 � �1, 2, u  1�� L2 �
�2, 3, u  1, u  2�� L3 � �3, 4, u  1, u  2, u  3� �
� �� �
 ��� ���� �� Li

����� �% �� u  1 �
� ����� r � u  1 (
 %������� ���� ��������� ��� ���������
�� �������� ����� u � 20 ��� ��� (��
� ����� (� ��� *+, ��� � 
�����������
������ ���� ������ 
������������ ���� ���� ������� �������� ��� ���� �� ��� �������
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 ��
���

��� -+.* ����� �� �
 �)��%�� �� � ����� �� *+,� ����� ��� ��������
�������� ��������� �� %����� ������ /����� �� �� � � ���%� ���� m 
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��� n � m�m � 1��2 ����� ��������	�� 
� y � �y1, . . . , yn�� ���� 	�� ����� ���
�����
��� �� 	��� ����� � ������ ���� �� ����� ������ L1 	� ���	��� 1 ��� 	��
������� �� ��� ����� 	��	 ����� � ���� ��	� y1� 	��� �L1� � 1 � 2�m � 2�� �� 	��
�������� �� ������ ���� 	��	 2 � L1� �� 	��� ��	 �L2� � 2�m� 2� � �m� 3�� ���
	��� ���	����� ������� ������� �� 	�� �������� �� 	�� ������ ����� �� �� ��� 	�
���	����� 	�� ������ 	�� ��� �� ��� ��	� ��� ���	���� 	�� ����� ����� �� � ��		����
	��	 ����� ��� ��
�	��	��� ������ �� �������	��� c� ���� ����� ��� � ���� 	�

� ���������� ��!����	�� ����  �"� ��#��� �� ��		�����

����������	�
� ��������

$ ������%&������ ����	��� �� � ����	��� f : 	0, 1
n � R� � ����� � ���	��
�� n 
����� �����
��� x � �x1, . . . , xn�� � ������%&������ ����	��� �������	�� �
���� ����� 	� ���� ���#����	��� �� x� $� �'����� �� ���� � ����	��� ����� 
�
�	�	��	���� ��	� ���� 	�� �'�����	��� �����
��� ��� 
������ (� ����� �'����� �
������%&������ ����	��� �� � ���	 �� 2n ������	�� ����� ���� ��������� )�		���
N � 	1, . . . , n
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����� βΛ ��� ���� ������ ���2����	� ����� �� ����� 	� �� ��	����	����� 3�	� 	��	
�� �������� ��������	��� � ������%&������ ����	��� �� 	��� ������ �	��� ��0�����
2n 	����� ����� � ������%&������ ����	��� f�x� �� ��� ����������� �������	�
	�� ��	����	���� βΛ 
� ������	��� f�x� ��� ��!����	 ���#����	���� �� x� )�		���
xΛ � �x1, . . . , xn�� ����� xk � 1 �� k � Λ ��� xk � 0 �� k � Λ� �� #��	 �������	�
	�� ���� ����� ��	����	��� β��

β� � f�x��. *+4/

3�'	 �� ��� �������	� ��� 	�� #��	 ����� ��	����	�����
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���� ���� ��	 �
� ��	 ���	� �	��	� ��� ���� �	� �������� 
��� ������ ������
������ �	�� �	��	� �� �����	�� ���� �� �����	� �� ��	 ���� ���� �� ���	�
��� ����	� ���	�	�� �	���� �	� ���� ����	 �� ����� � ��� ����

! ��	 ����������� ��� 	"���	� ��	�	��	� �� ���� ��	��� ��	 ������ ��� ����
��� ��� �		� ��	 ����� 
�	� �	�	����# ��	 �#������� ��� �	���� �	� 
	 ��	� ��
�� ������	 �� 	"�	�� ��� ������ ��	 �#������� �� ����	 ���	 #	�	�� �����	�	
�������������$ ���� �� ���	%� �������	� �� ���� �$ ��� ���	 ��� 	"�	���	��� ���	
�		� ��� �� �	�� ����� �� #	�	�� ��	 ������������ ��� #��
� ������	���� 
�	�
��	 ����	��	� ��	 ����	� �� ����� �� ��	 ���	 ��� ��
 �� 	"�	�� ��	 �#�������
�� ����	 ���� �� ��� � ������ ����� ���� ���� �	 �� ���	�	����# ��	� ��� �����	�
����� ��
	�	��

���� � ������	� �� �����"������� �� ������ ������ ������ �	��� ��	 �����
��� ��	 �����"������� �� ��	 ���
���&����
��� �#������� !� 
	 ���	 �����	�
���$ 
�	��	� ���� �#������ �� ������������� ����	 �	�	��� �� ��	 �#$ r$ ��
��	 ���	 �� �� ����	� ��� '�� ��'� �� �����	� ���� �	������� ��	 �#������ ��
 ���	 ��� �����	�$ ������� ���������# �� � 20 ��
�� ��	 ��	� �	���� ��� ��&
���"������� �� ��	 ���
��#� ��	 ���� �	����# c1 �� cn �� ()*+ ��� ��	 �� �	
���	���� ��������� �� ��	 ��' ��	 ��	���&,��	�� ��������� ��� �� ���� ��� �	
�	��	�	��	� �� �� ()-+� !������# 
	 �� ����$ 
	 ��� ��	� ���� �	��� �� ��	 ���
�� ()-+$ ���� ��	 ���	� ���� ���	 �����	�	� ε$ �����# ��	 ��������� ����	&
���	 �� ��	 ���
���&����
��� �#������� �� ���� �� ���	 ����������	�$ �� �	���	�
��	 ������ �� ����������� ��� �����#	 �	 ���	� ��� ��	 �#������ ��� ��
�
��	 ���
���&����
��� �#������ �� �	 ����	� �� ��'� �� ��#	� #����� ���� ��
���� �	��	� �� �����"����	 ��'� �� �	�� ��	 �#������ � ����	� �� ���	�	��
���	���� 	"�	���	��� 
	�	 ���� ���� �����	� �	��� 
��� ��	 ����# ���	 �� 
	
�� ��'� 
��� ��#	� �	�#���������� ��	 ���	� �� ���� � �	��	�	��� ��� ����
����	� ���	��� �� �����������# �� �����"����	 ��'$ ���
��# ���	 
��� 
���
����#��� ��������	�$ �� 
	 �� ��� ���� �		���# 
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Abstract

In this paper we propose computationally feasible approximations to binary Markov
random fields. The basis of the approximation is the forward-backward algorithm.
The exact forward-backward algorithm is computationally feasible only for fields de-
fined on small lattices. The forward part of the algorithm computes a series of joint
marginal distributions by summing out each variable in turn. We represent these joint
marginal distributions by interaction parameters of different orders. The approxima-
tion is defined by approximating to zero all interaction parameters that are sufficiently
close to zero. In addition, an interaction parameter is approximated to zero whenever
all associated lower level interactions are (approximated to) zero. If sufficiently many
interaction parameters are set to zero, the algorithm is computationally feasible both
in terms of computation time and memory requirements. The resulting approximate
forward part of the forward-backward algorithm defines an approximation to the in-
tractable normalizing constant and the corresponding backward part of the algorithm
defines a computationally feasible approximation to the Markov random field. We
present numerical examples demonstrating the quality of the approximation.

The Supplemental Material for this article, which is available online, includes R
and C code for the proposed recursive algorithms.

Key words: approximate inference, autologistic model, forward-backward algorithm, Ising
model, Markov random field, recursive computation.

1 Introduction
In this paper we consider computational problems related to inference in binary Markov
random fields (MRF). An example is for an observed binary image x to find the maximum
likelihood estimator �θ for a parameter vector θ in a specified parametric family p�x�θ�
of binary MRFs. Alternatively, x is a latent unobserved variable and a y is observed
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with assumed distribution p�y�x, θ�. Again the maximum likelihood estimator for θ and
potentially also for x is of interest. The latter problem can also be formulated in a Bayesian
setting. For this let p�y�x, θ� be as above, let p�x�θ� be an MRF prior for x and assume
a prior p�θ� for θ. The interest is typically in the posterior distribution for θ or x. The
problem in these situations is that the MRF p�x�θ� includes a computationally intractable
normalizing constant. This makes both numerical optimization and standard Markov chain
Monte Carlo (MCMC) algorithms infeasible. See Møller et al. (2006) and Murray (2007)
for similar problems for other model classes.

Strategies for dealing with intractable normalizing constants proposed in the literature
can be categorized into three groups. The first is to replace the intractable constant with
an approximation. For MRFs Besag (1974) defines a pseudo-likelihood function as a prod-
uct of full conditionals and estimates θ when x is observed by maximizing this function. In
Rydén and Titterington (1998) the same pseudo-likelihood function is used as an approx-
imation to the exact likelihood in a Bayesian setting. Heikkinen and Högmander (1994)
and Huang and Ogata (2002) define alternative pseudo-likelihood functions. Friel and Rue
(2007) and Friel et al. (2009) define approximations based on exact calculations for smaller
lattices by the so called forward-backward algorithm (Künsch, 2001; Scott, 2002; Pettitt
et al., 2003). Results for smaller lattices are glued together to give approximative results for
larger lattices. However, this is only feasible for MRFs with very small neighborhoods, as
otherwise exact computations are infeasible even for small lattices. The second approach
is to estimate the intractable normalizing constant using MCMC samples. Geyer and
Thompson (1995) run an MCMC chain for a specific value of θ, θ0, use this to estimate the
normalizing constant for θ close to θ0, and perform numerical optimization on the resulting
estimated likelihood function. Tjelmeland and Besag (1998) use this strategy to find the
maximum likelihood estimator for a binary MRF. Gelman and Meng (1998) run indepen-
dent MCMC chains for several θ values, use this to estimate the normalizing constant as a
function of θ, and run MCMC for p�x, θ�y� with the normalizing constant replaced by this
estimate. Møller et al. (2006) use a third strategy to cope with an intractable normalizing
constant in a Bayesian problem. An auxiliary variable Metropolis–Hastings algorithm is
defined where the intractable normalizing constant cancels from the Metropolis–Hastings
ratio. However, the algorithm requires exact sampling from p�x�θ� and to obtain good
mixing an approximation to p�x�θ� without an intractable normalizing constant must be
available, see also Murray (2007).

In the present article we define a deterministic approximation to p�x�θ� where the
normalizing constant is easily computable. Our solution is thereby within the first class
discussed above, but it can also be applied in the construction of Møller et al. (2006). As
in Friel and Rue (2007) and Friel et al. (2009), our starting point is the exact forward-
backward algorithm. The forward part of this algorithm computes a series of joint marginal
distributions by summing out each variable in turn. We represent the joint marginal distri-
butions by interaction parameters of different orders. We approximate to zero interaction
parameters that are close to zero. In addition, an interaction parameter is approximated
to zero if all associated lower level interactions are (approximated to) zero. If sufficiently
many interactions are set to zero, the algorithm is feasible both in terms of computation
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time and memory requirements. The approach does not require exact computations on
smaller lattices, so it can be used also for MRFs with somewhat larger neighborhoods.

The paper is organized as follows. In Section 2 we discuss how functions of binary vari-
ables can be represented by interaction parameters, and define a canonical representation
of functions with a Markov property. In Section 3 we relate this to binary MRFs. The
exact forward-backward algorithm for MRFs is specified in Section 4.1, and in Section 4.2
we introduce our approximation scheme. In Section 5 we briefly discuss how our strategy
can be generalized to fields with more than two classes. In Section 6 we present results
for two example MRFs, and in Section 7 we discuss a real data Bayesian example. Finally,
Section 8 provides conclusions.

2 Canonical representation
In this section we first define how a function of binary variables can be represented by
interaction parameters. Next, we limit the attention to functions with a Markov property
and introduce a canonical representation for such functions.

2.1 Interaction parameters

Let S be a finite set of n � �S� elements. To each k � S we associate a binary variable
xk � �0, 1� and let x � �xk, k � S� � Ω � �0, 1�n. We also use the standard notations
xΛ � �xk, k � Λ� and x�Λ � xS�Λ for Λ � S, and x�k � xS��k� for k � S. There is then a
one-to-one relation between the sample space Ω and the power set of S, P�S� � �Λ�Λ � S�.
Corresponding to an x � Ω we have the set Λ � �k � S�xk � 1� � P�S� and corresponding
to a set Λ � P�S� we have the vector χ�Λ� � �I�k � Λ�, k � S�, where I�	� is the
indicator function. Any function U�x�, x � Ω can then be represented by a set of interaction
parameters �βU�Λ�,Λ � P�S�� defined by

U�x� �
�

Λ�P�S�
βU�Λ�

�

k�Λ

xk. (1)

Clearly U�x� is uniquely given by �βU�Λ�,Λ � P�S��. To see how �βU�Λ�,Λ � P�S�� is
uniquely given by U�x�, insert x � χ�Λ� in (1) for a Λ � P�S� and solve for βU�Λ� to get

βU�Λ� � U�χ�Λ�� 

�

A�Λ

βU�A�. (2)

Thereby βU�Λ� can be computed recursively, first computing βU��� � U�χ����, then
βU��k�� for all k � S, then βU�Λ� for all Λ � S with �Λ� � 2 and so on. A direct implemen-
tation of (2) is, however, computationally inefficient as it requires repeated calculations
of the the same sum, see Appendix A for a computationally more efficient variant. The
number of elements in �βU�Λ�,Λ � P�S�� is 2n, so to represent a function as described here
is in practice only feasible for small values of n. In the next section we consider functions
with a Markov property, where fewer interaction parameters are necessary to represent a
function.
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2.2 Markov property for functions of binary variables

Let S be as above. Following Besag (1974) we define neighborhood and clique systems for
S.

Definition 1. A collection N � �N1, . . . , Nn� is a neighborhood system for the set S if
Nk � S��k� for all k � S, and k � Nl � l � Nk for all distinct pairs k, l � S. If k � Nl for
k, l � S we say that k and l are neighbors.

Definition 2. A set Λ � S is said to be a clique if k � Nl for all distinct pairs k, l � Λ.
We let C denote the set of all cliques.

Toy example: If S � �1, 2, 3, 4� one may have N1 � �2, 3�, N2 � �1, 3�, N3 � �1, 2, 4�
and N4 � �3�, in which case we get C � ��, �1�, �2�, �3�, �4�, �1, 2�, �1, 3�, �2, 3�, �3, 4�,
�1, 2, 3��.

Definition 3. A function of binary variables, U	x
, x � �0, 1�n, is said to have a Markov
property with respect to a neighborhood system N if it can be written in the form

U	x
 �
�

Λ�C
VΛ	xΛ
, (3)

where C is the set of all cliques and VΛ	xΛ
 is an arbitrary function of xΛ. In particular
V� equals a constant.

In the following we assume U	x
 to have a Markov property with respect to a given neigh-
borhood system N . One should note that U	x
 then corresponds to an energy function of
a binary MRF with respect to N , see for example Besag (1974), Kindermann and Snell
(1980) or Cressie (1993). We return to this correspondence in Section 3, but first we
consider how the Markov property induces vanishing interaction parameters.

Theorem 1. Let U	x
 have a Markov property with respect to a neighborhood system N ,
let C be the set of all cliques corresponding to N , and let �βU	Λ
,Λ � P	S
� be given by
(1). Then βU	Λ
 � 0 for all Λ � C.

A proof of the theorem is given in Appendix B. To find the interaction parameters of U	x

we thereby only need to compute βU	Λ
 for Λ � C. Moreover, the number of terms in
the sum in (1) can clearly be reduced by excluding terms that correspond to interaction
parameters equal to zero. In the following we replace (1) by what will be our canonical
representation of U	x
,

U	x
 �
�

Λ�BU

βU	Λ

�

k�Λ

xk, where BU �
�

Λ�P�S�:βU �Λ��0

P	Λ
. (4)

By Theorem 1 we have BU � C. Thus, to find our canonical representation of a given U	x

we must first recursively compute βU	Λ
 for all cliques Λ � C, and use these values to find
BU and form βU � 	βU	Λ
,Λ � BU
.
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Figure 1: The unweighted graph G�BU� for the toy example.

Toy example (cont.): Let S, N and C be as in the toy example above. Moreover let
βU�Λ� � 0 for Λ � ��1, 2�, �1, 3�, �2, 3�, �3, 4�� and let βU��1, 2, 3�� � 0. Then BU � ��,
�1�, �2�, �3�, �4�, �1, 2�, �1, 3�, �2, 3�, �3, 4��. Note that here BU does not depend on the
value of βU�Λ� for Λ � ��, �1�, �2�, �3�, �4��.

As also seen in the toy example, we clearly may have βU�Λ� � 0 for some Λ � BU . We
include these ’zero terms’ in our representation of U�x� because having BU as a union of
power sets simplifies our recursive algorithms discussed in Sections 4.1 and 4.2.

As illustrated for the toy example in Figure 1, the elements in BU can be organized into
a directed acyclic graph with one vertex for each set Λ � BU and where the descendents of a
vertex Λ are all proper subsets of Λ. A corresponding vertex-weighted graph can be defined
by storing the elements of �βU�Λ�,Λ � BU� in their respective vertices. We denote these
unweighted and weighted graphs by G�BU� and G�BU , βU�, respectively. In the following
we use vertex-weighted graphs to define and implement our recursive algorithms, whereas
we use the corresponding unweighted graphs to illustrate the procedures.

One should note that if we have two functions of binary variables represented by
vertex-weighted graphs, the vertex-weighted graph representation of the sum of the two
functions is easy to find. For example, let the vertex-weighted graph representations of
U1�x�, x � �xk, k � S� and U2�xA�, xA � �xk, k � A� where A 	 S be G�BU1 , βU1� and
G�BU2 , βU2�, respectively. Assume we want to “update” the graph G � G�BU1 , βU1� to be-
come a representation of U�x� � U1�x�
U2�xA�. One should then first visit all the vertices
of G�BU2 , βU2�, from the bottom to the top. When visiting Λ � BU2 there are two possi-
bilities, either there is a vertex Λ also in the graph G, or there is not. If there is a vertex
Λ also in G, one should add βU2�Λ� to the current weight of this vertex. If there is not a
vertex Λ in G, one should insert a vertex Λ in G, with associated edges, and initialize the
weight of this new vertex to βU2�Λ�. When all vertices of G�BU2 , βU2� have been visited, the
resulting graph G is a representation of U�x�. However, it may include vertices with zero
weight that should not be included according to (4). To get the canonical representation
one must therefore once more traverse the vertices in G that have a corresponding vertex
in G�BU2 , βU2�, now from top to bottom, to remove any such superfluous vertices (and
associated edges). The computational complexity of the whole updating procedure for G
is clearly proportional to the number of vertices in G�BU2 , βU2�.

We end this section by noting that if we have a vertex-weighted graph G�BU , βU� repre-
senting a function U�x�, for example obtained as a sum of two functions as discussed above,

5



it follows directly that U�x� has a Markov property with respect to the neighborhood sys-
tem N � �N1, . . . , Nn� where Nk � �l � S��k���k, l� � BU�. Moreover, this neighborhood
system is minimal for U�x� in the sense that U�x� has a Markov property with respect to
a neighborhood system N � �N1, . . . , Nn� if and only if Nk 	 �l � S��k���k, l� � BU� for
all k � S.

3 Binary Markov random fields
For a general introduction to MRFs, see for example Besag (1974), Kindermann and Snell
(1980) or Cressie (1993). Here we give just a brief introduction to binary MRFs to facilitate
our development of exact and approximate recursive algorithms in the next section.

Let x � �xk, k � S� � Ω � �0, 1�n be a vector of binary variables. Then x is a binary
MRF with respect to a neighborhood system N if p�x� 
 0 for all x � Ω, and the full
conditionals, p�xk�x�k�, fulfil the Markov property

p�xk�x�k� � p�xk�xNk
� for all k � S. (5)

The positivity condition p�x� 
 0 for all x � Ω clearly gives that p�x� can be expressed as

p�x� � c exp ��U�x�� , (6)

where c is a normalizing constant and U�x� is called the energy function. The Hammersley–
Clifford theorem (Besag, 1974; Clifford, 1990) gives that the most general form for U�x� is
given by (3). Thus, a vertex-weighted graph G�BU , βU� representing U�x� can also be used
to represent the corresponding p�x�.

4 Recursive computations
Let S � �1, . . . , n�, let x � �x1, . . . , xn� be a binary MRF with respect to a neighborhood
system N , and let p�x� � c exp��U�x�� be the corresponding joint distribution. Assuming
U�x�, and thereby also p�x�, to be represented by a vertex-weighted graph G�BU , βU�, we
discuss in the next section how to decompose p�x� into the product

p�x� � p�x1�x�1�p�x�1� (7)

with a vertex-weighted graph representation for each of the two factors. This process can
be iterated, next decomposing p�x�1� � p�x2�x��1,2��p�x��1,2��, and so on. Finally this
gives

p�x� �

�
n�1�
k�1

p�xk�xk�1, . . . , xn�

�
p�xn�, (8)

where each factor is represented by a vertex-weighted graph. In particular, the factor p�xn�
is represented by a graph with only two vertices, � and �n�. The normalizing constant c of
p�x� is included also in p�xn� and thereby this constant can be evaluated from the obvious
restriction p�xn � 0�  p�xn � 1� � 1. Moreover, simulation from p�x� is straightforward
by a backward pass, first simulating xn from p�xn�, next xn�1 from p�xn�1�xn� and so on.
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(a) G1�BU� (b) G�1�BU� (c) G�P�N1��

Figure 2: Unweighted graphs derived from G�BU� shown in Figure 1.

4.1 Exact computations

To obtain the vertex-weighted graph representations of p�x1�x�1� and p�x�1� from the
corresponding representation of p�x�, one should first split the graph G�BU , βU� into two
subgraphs G1�BU , βU� and G�1�BU , βU�, where the first contains all vertices Λ � BU with
1 � Λ, and the remaining vertices are included in G�1�BU , βU�. Figures 2(a) and (b) show
the corresponding unweighted graphs G1�BU� and G�1�BU� for the toy example. Note that
the split can be done by starting at the vertex �1� in G�BU , βU� and successively traverse
nodes upwards while cutting loose the graph G1�BU , βU�. The computational complexity
of the operation is proportional to the number of vertices in the resulting G1�BU , βU�. As
discussed above, the vertices of G�BU , βU� is a union of power sets, and this property is
inherited by G�1�BU , βU�, but not by G1�BU , βU�. Still, however, we can, and will, use
G1�BU , βU� to represent a probability distribution.

From (4) and the assumed Markov property in (5) we readily get

p�x1�x�1� � p�x1�xN1�	 exp

�



�
Λ�BU :1�Λ

βU�Λ�
�
k�Λ

xk

�
(9)

and recognize the vertex-weighted graph G1�BU , βU� as a representation of this full condi-
tional. To get the graph representation of p�x�1� is less immediate. Let U�1�x�1� denote
the energy function of p�x�1�, i.e. p�x�1� � c exp�
U�1�x�1��. Thus we have

U�1�x�1� � 
 ln

�
� �

x1��0,1�

exp

�


�

Λ�BU

βU�Λ�
�
k�Λ

xk

��� . (10)

Splitting the inner sum into a sum of two sums, one sum over the vertices in G1�BU , βU� and
one sum over the vertices in G�1�BU , βU�, and using that the latter sum is not a function
of x1, we get

U�1�x�1� �

	 �
Λ�BU :1�Λ

βU�Λ�
�
k�Λ

xk



�

	

 ln

�
1� exp

�



�
Λ�BU :1�Λ

βU�Λ�
�
k�Λ

xk

��

. (11)
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1. Split the graph G�BU , βU� into the two subgraphs G1�BU , βU� and
G
�1�BU , βU�. Store the first of these as a representation of the full con-

ditional p�x1�x�1�.

2. Use the algorithm i Appendix A to compute recursively the interaction
parameters for all Λ � P�N1� of the second term in (11) and form the
corresponding canonical representation.

3. Using the procedure discussed in Section 2.2, form the canonical repre-
sentation of U

�1�x�1�, and thereby also of p�x
�1�, by adding the canon-

ical representations of the two terms in (11).

Figure 3: Algorithm for generating vertex-weighted graph representations of p�x1�x�1� and
p�x

�1� from the corresponding representation of p�x�.

We see that here U
�1�x�1� is given as a sum of two functions, a situation discussed in

Section 2.2. The first term is a function of x
�1 and is in the canonical form. The second

term is a function of xN1 and is not yet in the canonical form. To get the canonical form
for U

�1�x�1� as discussed in Section 2.2 one must thereby first find the canonical form
for the second term in (11). As this function has no known Markov property, interaction
parameters must be computed for all Λ � P�N1�. The computational complexity of this
operation is clearly given by the number of elements in P�N1�. We denote the resulting
vertex-weighted graph representation of U

�1�x�1� by G�BU
�1 , βU

�1�. The total algorithm
is summarized in Figure 3. One should note that the resulting p�x

�1� is a binary MRF
with S � �2, . . . , n� and a new neighborhood system. From the vertex-weighted graph
representation of p�x

�1�, the (minimal) neighborhood system for p�x
�1� can be found as

discussed in Section 2.2.
As the computational complexity of finding the decomposition (7) is given by the size

of P�N1�, i.e. exponential in �N1�, this is only feasible when the number of neighbors is
reasonably low. When iterating the procedure we do not have general results for the cost
of the algorithm. Next we propose a computationally cheaper, but approximate version of
the algorithm.

4.2 Approximate recursive computations

The exact algorithm described above is not computationally feasible when the number of
neighbors is large. There are two problems. First, in Item 2 of Figure 3, it requires too
much computation time to compute the necessary interaction parameters. Second, even
if it had been feasible to compute all interaction parameters, it would require too much
computer memory to store them all.

When computing interaction parameters of frequently used MRFs (small enough to

8
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Figure 4: The interaction parameter values in a typical iteration of the recursive algorithm
for an Ising model. In lexicographical order the six plots show histograms of the interaction
parameters for sets Λ with �Λ� � 1, 2, 3, 4, 5 and 6, respectively. Note the difference in
horizontal scale.

allow exact computations) we observe that most values are very close to zero. For example,
for an Ising model Figure 4 shows the computed interaction parameters in a typical iteration
of the recursive algorithm. For each r � 1, 2, 3, 4, 5 and 6 the figure shows one histogram
for interaction parameters for sets Λ with �Λ� � r. In Item 2 of Figure 3, a natural
approximation strategy is therefore, for some threshold ε, to approximate an interaction
parameter to zero whenever its absolute value is less than of equal to ε. This solves the
memory problem, but not the computation time problem as still all interaction parameters
have to be computed in order to decide which to store and which to ignore. To cope also
with the computation time problem we assume that the interaction parameter for a set Λ
is close to zero whenever the interaction parameters for all A � Λ with �A� � �Λ� � 1 are
close to zero. Note that this is a frequently used assumption in statistics, a higher order
effect can be present only if at least one corresponding lower order effect is present. We
have checked this assumption in several frequently used MRFs without finding cases where
it is violated, but one can clearly construct cases where the assumption is incorrect. Using
this assumption in Item 2 of Figure 3 we approximate the interaction parameter of a Λ
to zero, without computing its value, whenever the interaction parameters of all children
vertices of Λ are (approximated to) zero.

The two approximation rules given above define our approximation. The corresponding
algorithm is equal to the exact version in Figure 3 except that in Item 2 only some of
the interaction parameters are computed and stored. Thus, the joint distribution p�x�
is decomposed into the exact full conditional p�x1�x�1� and an approximation �pε�x�1� of
p�x

�1�. In the next step, �pε�x�1� is decomposed into �pε�x2�x��1,2��, which of course is only
an approximation to p�x2�x��1,2��, and after new approximations �pε�x��1,2��. Ultimately
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we end up with an approximate version of (8),

p�x� � �pε�x� � p�x1�xl, l � 2, . . . , n�

�
n�1�
k�2

�pε�xk�xl, l � k � 1, . . . , n�

� �pε�xn�. (12)

The normalizing constant of p�x� can be approximated by the normalizing constant of�pε�x� and approximate samples from p�x� can be generated by sampling from �pε�x�. We
end this section by three remarks concerning the approximative algorithm just defined.

Remark 1. The focus when defining the approximation is to make it computationally
feasible to decompose p�x� into p�x1�x�1� and �pε�x�1�. However, approximating interaction
parameters to zero also introduces conditional independence to �pε�x�1� that is not present in
the corresponding exact p�x�1�. This becomes computationally beneficial in later iterations
of the recursive algorithm.

Remark 2. The approximate recursive algorithm is effectively dividing the elements of
the set P�N1� into three groups. The first consists of sets Λ for which we compute the
interaction parameters, find their values to be large and thereby store them in memory.
The second group contains the sets Λ for which we compute interaction parameters and
find their values to be small. The third group consists of the remaining sets Λ, for which
we do not compute the interaction parameters. When the number of elements in N1 is large
it is essential for the algorithm to be feasible that most interaction parameters end up in
the third group.

Remark 3. The quality of the approximation and the computation time and memory re-
quirements for the approximate algorithm clearly depend on the threshold value ε. How
small ε needs to be to give reasonable approximations must be explored empirically. In
Section 6 we report our experience with both this and the associated computer resources
required for some frequently used binary MRFs. One should note that we have defined the
approximation so that the algorithm is exact for ε � 0.

5 Beyond binary fields
The focus of this paper is binary MRFs. In this section, however, we briefly discuss how the
above algorithms can be generalized to handle discrete MRFs with more than two possible
values. Thus, in this section we let the distribution of interest be pz�z� � c exp��Uz�z�	
where z � �z1, . . . , zn� 
 �0, 1, . . . , K�1	n. There are two natural strategies for generalizing
the above algorithm to this situation. The first is to start by representing Uz�z� by a
generalized version of (1),

Uz�z� �
�
Λ�S

βUz�Λ, zΛ�
�
k�Λ

zk. (13)

Thus, instead of having only one interaction parameter for a set Λ we now have �K � 1��Λ�

interaction parameters associated to Λ. Again the interaction parameters can be computed
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Figure 5: Two undirected graphs defining neighborhood systems. Two nodes are neighbors
if and only if an edge is connecting them. A pairwise interaction, binary field which is
Markov with respect to one of these neighborhood systems can be very efficiently handled
by the exact algorithm described in Section 4.1. (a) A chain graph and (b) a somewhat
more complex graph.

recursively and approximations following the same ideas as discussed in Section 4.2 can be
defined.

The second strategy to cope with more than two possible values is to map pz�z� over
to a corresponding binary problem px�x�. For example, if we have K � 3 or 4 classes, each
variable zk can be represented by two binary variables xk1 and xk2.

6 Simulation examples
In this section we consider a number of binary MRFs and discuss the feasibility of our algo-
rithms for these models. We first consider models where the exact algorithm is especially
efficient. In particular we discuss how the exact algorithm reduces to the famous forward-
backward algorithm when the field is Markov with respect to a neighborhood system de-
fined by a chain graph. Finally we consider the autologistic model on a two dimensional
rectangular lattice, where the exact algorithm is feasible only for small lattices.

6.1 Models where the exact algorithm is particularly efficient

Let S � �1, . . . , n� and assume x to be a binary MRF with respect to the neighborhood
system defined by the chain graph in Figure 5(a), i.e. N1 � �2�, Nk � �k � 1, k � 1� for
k � 2, . . . , n� 1, and Nk � �k � 1�. The most general form of the energy function is then

U�x� � α0 �
n�

k�1

αkxk �
n�1�

k�1

βk,k�1xkxk�1, (14)

where α0, α1, . . . , αn and β1,2, . . . , βn�1,n are model parameters. Note that in particular
the hidden (binary) Markov chain, see for example Künsch (2001), can be formulated in
this form. The pairwise interaction parameters β1,2, . . . , βn�1,n are then related to the
Markov prior, whereas the αi’s are functions of both the prior and observed data. It is
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Figure 6: The graph G�BU� for the energy function (14) if βk,k�1 � 0 for all k � 1, . . . , n�1.

easy to see that for this model the exact algorithm is equivalent to the efficient forward-
backward algorithm, again see Künsch (2001). To see what makes the algorithm so efficient
for this model we have to look at the graph G�BU� and how this develops when running
the iterations. The function (14) is already in the canonical form (4) so βU��� � α0,
βU��k�� � αk for k � 1, . . . , n and βU��k, k 	 1�� � βk,k�1 for k � 1, . . . , n � 1. If none of
the βk,k�1’s are equal to zero the graph G�BU� becomes as shown in Figure 6. In the first
iteration of the recursive algorithm, when summing out x1, we get that G1�BU� includes
only the two vertices �1� and �1, 2� and thereby N1 � �2� and P�N1� � ��, �2��. In
turn this gives that BU

�1 is of the same form as the original BU . Thereby, the situation
repeats when summing out x2, x3 and so on. What is important for the efficiency is that all
distributions p�x�1�, p�x��1,2��, . . . are pairwise interaction models. For this to be the case
the neighbor set N1, and corresponding sets in later iterations, must never contain more
than two elements. In fact, this implies that for the current model the exact algorithm is
equally efficient if marginalizing out the variables in a different order.

The requirement that N1, and corresponding sets in later iterations, contains at most
two elements is fulfilled also for other models than just (14). By drawing up the rele-
vant graphs it is easy to check that for a suitable ordering of the variables, any pairwise
interaction, binary field that are Markov with respect to a neighborhood system defined
by a graph without loops, i.e. a tree, fulfils the requirement. Moreover, even for graphs
that contain loops the corresponding pairwise interaction MRF may fulfil the formulated
condition. An example of this with n � 11 is shown in Figure 5(b). Drawing up the
relevant graphs, one can again check that it works in this case. However, if we add an
edge between 2 and 3 the set requirement is no longer satisfied, not even after a reordering
of the variables. We do not have an easy to check criterion for undirected graphs that
can characterize the set of MRFs that fulfil the requirements. However, our discussion
here demonstrates that the exact recursive algorithm is highly efficient for a larger class of
models than where the forward-backward algorithm is typically used today. Moreover the
algorithm may of course be highly efficient even if the neighborhood sets contain slightly
more than two elements.
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6.2 The autologistic model

The autologistic model was first introduced in Besag (1974). A binary field x � �x1, . . . , xn�
is an autologistic model with respect to a given neighborhood system N � �N1, . . . , Nn�
if the energy function can be expressed as (4) with BU � ��, �1�, . . . , �n�� � ��k, l��l 	
Nk, k, l � 1, . . . , n�, i.e.

U�x� � βU��� 

n�

k�1

βU��k��xk 

1

2

n�

k�1

�

l�Nk

βU��k, l��xkxl. (15)

Strictly speaking the models in Section 6.1 are thereby autologistic models. However, the
term is usually reserved for models defined on a rectangular lattice, and from now on
we limit the attention to such models. Thus, consider a u � v rectangular lattice and
number the lattice nodes from one to n � uv in lexicographical order. Except when many
of the βU��k, l��’s are equal to zero, the autologistic model does not fall into the set of
models that can be handled efficiently by the exact algorithm as discussed above. The
algorithms in Pettitt et al. (2003), Reeves and Pettitt (2004) and Friel and Rue (2007)
are essentially the same as our exact algorithm. They conclude that for a model with a
first order neighborhood system the algorithm is computationally feasible only when the
number of columns, v, is less than or equal to 20. The number of rows, u, can be large. For
larger neighborhoods the lattice size that is feasible by the exact algorithm is even smaller.
In the following we evaluate empirically the approximation quality and computation time
of the approximate algorithm of Section 4.2 for some autologistic models.

6.3 The Ising model

We first consider the Ising model, i.e. an autologistic model with a first order neighborhood
system (Besag, 1986). The energy function can be defined as

U�x� � �
θ

2

n�

k�1

�

l�Nk

I�xk � xl�. (16)

Using that for binary variables we have I�xk � xl� � xkxl
�1�xk��1�xl�, this can easily
be rewritten to the form in (15) and gives

βU��� � �
θ

2

n�

k�1

�Nk�,

βU��k�� � �Nk�θ, for k � 1, . . . , n, (17)
βU��k, l�� � �2θ, for l 	 Nk, k, l � 1, . . . , n.

We first consider the approximation quality for a small 15 � 15 lattice, for which exact
computations are feasible. For each θ � θtrue � 0.4, 0.6 and 0.8 we generate an exact
sample x from the Ising model and thereafter, separately for each of the three realizations,
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Table 1: Results for the Ising model on 15� 15 lattice: For realizations x generated from
the Ising model for each of the parameter values θtrue � 0.4, 0.6 and 0.8, values of d0�ε, x�
for the 15� 15 lattice. Results are given for different values of ε, for the pseudo likelihood
and block pseudo likelihood approximations, and for two variants of RDA (Friel et al.,
2009).

15� 15 lattice
ε�θtrue 0.4 0.6 0.8
10�1 1.49 � 10�1 1.87 � 10�1 6.70 � 10�1

10�2 8.12 � 10�3 1.07 � 10�1 1.15 � 10�1

10�3 3.20 � 10�3 2.61 � 10�2 1.15 � 10�1

10�4 1.57 � 10�3 9.60 � 10�3 4.42 � 10�2

10�5 3.47 � 10�4 2.35 � 10�3 3.22 � 10�3

10�6 3.32 � 10�5 2.44 � 10�4 1.92 � 10�4

pl 1.60 � 10�1 1.19 � 10�1 8.82 � 10�1

block-pl 1.77 � 10�1 1.11 � 10�1 9.81 � 10�2

RDA-5 4.71 � 10�5 2.21 � 10�3 6.93 � 10�2

RDA-10 2.41 � 10�5 3.91 � 10�5 3.67 � 10�3

consider the resulting posterior distribution for θ given x, i.e. p�θ�x�. As prior for θ we
adopt a uniform (improper) distribution on �0,	�. We compute the exact posteriors (i.e.
ε � 0) and corresponding approximations �pε�θ�x� for ε � 10�s, s � 1, 2, 3, 4, 5 and 6. More
precisely, we compute p�θ�x� and �pε�θ�x� for a mesh of θ values and use interpolating spline
for ln p�θ�x� and ln �pε�θ�x�, respectively, to interpolate the results. Finally, we numerically
evaluate

d0�ε, x� �

�
�

0

��pε�θ�x� 
 p�θ�x�� dθ (18)

for each realization x and value ε, see the results in Table 1. In all three cases we see
that the approximation is not very accurate for ε � 10�1, but becomes very good for
smaller values of ε. Not surprisingly, smaller values of ε is necessary to obtain a good
approximation when θtrue is larger. For comparison we also compute the same quantities
when using the pseudo likelihood approximation to p�θ�x�, for a pseudo block likelihood
approximation with 15�5 blocks, and for two reduced dependence approximations (RDA),
see Friel et al. (2009). Recalling that we are considering a u�v lattice, the RDA computes
exact normalizing constants for r � v sublattices, where r � u. We try the approximation
for r � 5 and r � 10. The results are again given in Table 1 and we see that except for the
larger values of ε, the results for �pε�θ�x� are much better than for the pseudo likelihood and
pseudo block likelihood approximations. The results for RDA are comparable to �pε�θ�x�
for ε � 10�6. To get a visual impression of the accuracy of the approximations, Figure
7 gives, for the θtrue � 0.8 case, the exact p�θ�x� and the approximations �pε�θ�x� for the
various values of ε.
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Figure 7: Results for the Ising model on a 15 � 15 lattice: p�θ�x� (solid) and �pε�θ�x� for
ε � 10�1 (dotted) , 10�2 (dashed), 10�3 (dot-dashed) and 10�4 (long dashed). With the
resolution used here the approximations for ε � 10�5 and 10�6 are visually indistinguishable
from the exact p�θ�x�.

Next we repeat the same exercise for a 100� 100 lattice. Then the exact posteriors are
not available, so instead of d0�ε, x� we consider

d�ε, x� �

� �

0

���pε�θ�x� � �pε�10�θ�x��� dθ (19)

for the same values of θtrue and ε as in the 15 � 15 lattice case. The results are again
summarized in Table 2. For the θtrue � 0.8 case, the computer resources required to
compute �pε�θ�x� for ε � 10�5 and 10�6 are very large, so we did not run these cases. In
the evaluation of the pseudo likelihood, pseudo block likelihood and RDA approximations
we compute the difference to �pε�θ�x� with ε � 10�6. For the pseudo block likelihood we
use blocks of size 100 � 5 and for RDA we again consider r � v sublattices for r � 5 and
r � 10. As one would expect, the approximations are less accurate for the 100�100 lattice
than for the 15 � 15 lattice. However, for the θtrue � 0.4 and 0.6 cases, the results for the
smaller values of ε clearly indicate good approximations. For θtrue � 0.8 the results are
much less favorable. The results for RDA are again comparable to the results for �pε�θ�x�
for ε � 10�6, whereas the results for the pseudo likelihood and pseudo block likelihood
approximations are again much less favorable.

We also evaluated our approximation by estimating the mean acceptance probability
of an independent proposal Metropolis–Hastings algorithm with target distribution p�x�
and proposal distribution �pε�x�. For each of θ � 0.4, 0.6 and 0.8 we generated 1 000
independent realizations from p�x� by the coupling from the past algorithm (Propp and
Wilson, 1996) and for various values of ε, 1 000 realizations from the approximation �pε�x�.
We then estimated the mean acceptance probability by taking the mean of the 1 000 000
acceptance probabilities generated by combining each of the 1 000 realizations from p�x�
with each of the 1 000 realizations from �pε�x�. The results are shown in Figure 8(a), where
the solid, dotted and dashed curves are for θ � 0.4, 0.6 and 0.8, respectively. Again we
have no available results for small values of ε when θ � 0.8 because the computations
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Table 2: Results for the Ising model on 100 � 100 lattice: For realizations x generated
from the Ising model for each of the parameter values θtrue � 0.4, 0.6 and 0.8, values of
d�ε, x� for the 100� 100 lattice. Results are given for different values of ε, for the pseudo
likelihood and block pseudo likelihood approximations, and for two variants of RDA (Friel
et al., 2009).

100� 100 lattice
ε�θtrue 0.4 0.6 0.8
10�1 3.98 � 10�1 2.00 2.00
10�2 1.70 � 10�1 9.02 � 10�1 1.64
10�3 6.44 � 10�2 4.44 � 10�2 1.11
10�4 1.16 � 10�2 2.46 � 10�2 NA
10�5 3.45 � 10�3 2.85 � 10�3 NA
pl 6.26 � 10�1 4.35 � 10�1 NA

block-pl 8.63 � 10�2 2.82 � 10�1 NA
RDA-5 3.29 � 10�3 5.13 � 10�3 NA
RDA-10 3.29 � 10�3 3.47 � 10�3 NA

required too much computation time. Consistent with what we saw in Table 1 and 2 we
find that the approximation is indeed very good for ε � 10�4 for θ � 0.4 and 0.6, whereas
for θ � 0.8 we do not get good approximations within reasonable computation time. One
should note that unlike �pε�x�, the pseudo likelihood, pseudo block likelihood and RDA
approximations are not proper distributions, so a corresponding evaluation of these is not
possible.

Above we have evaluated the approximation quality as a function of θ and ε. To
evaluate the usefulness of the approach one also needs to consider the computation times
required. The computations involved can be divided into 1) what is necessary to establish
the approximation and 2) the additional time required to generate one realization from the
approximation or to evaluate a corresponding likelihood for a given x. For our implemen-
tation and a 100 � 100 lattice, Table 3 shows computation times for �pε�x� and RDA. We
do not give computation times for the pseudo likelihood and pseudo block likelihood ap-
proximations as the inferior approximation quality for these methods makes such numbers
less interesting. In the original definition of RDA in Friel et al. (2009), RDA is defined for
a stationary MRF and this makes the approximation especially efficient. Stationarity can
also be used to define a more efficient version of our approximation. If the target distribu-
tion p�x� is defined on a regular lattice, the parameters βU�Λ� are stationary and we are
summing out the variables in the lexicographical order, we quickly get into an essentially
stationary phase after having summed out the first few lines of variables. Thus, in this case
we only need to sum out in detail the first few lines and the last one. However, we find it
more interesting to study the computational efficiency of the algorithms without requiring
stationarity, so for both �pε�x� and RDA the figures in Table 3 are for implementations
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Figure 8: Results for (a) the Ising and (b) the 5 � 5 neighborhood models on 100 � 100
lattices: Estimated acceptance rates as a function of ε for an independent proposal
Metropolis–Hastings algorithm with target distribution p�x� when the corresponding ap-
proximation �pε�x� is used as proposal distribution. In (a) the solid, dotted and dashed
curves show results for θ � 0.4, 0.6 and 0.8, respectively, whereas in (b) the solid and
dashed curves show results for θ � 0.1 and 0.15, respectively.

Table 3: Results for the Ising model on a 100 � 100 lattice: Computation time used
to establish the approximations �pε�x� and RDA, and the additional time necessary to
evaluate the likelihood for a new data set or (for �pε�x�) to generate one realization from
the approximate distribution. The numbers are computation times in seconds on a machine
with an Intel Quad-Core X5365 3.0Hz cpu.

Time to establish approximation Additional time per realization
ε�θ 0.4 0.6 0.8

10�1 0.11 0.12 0.19
10�2 0.19 0.39 2.32
10�3 0.82 3.83 60.01
10�4 2.38 27.89 5 640.50
10�5 15.21 279.00 370 303.80
10�6 41.27 1 948.37 NA

RDA-5 19.0 19.0 19.0
RDA-10 1620.00 1620.00 1620.00

ε�θ 0.4 0.6 0.8
10�1 0.07 0.06 0.05
10�2 0.09 0.12 0.21
10�3 0.17 0.41 1.52
10�4 0.27 1.10 34.56
10�5 0.68 3.70 921.93
10�6 1.14 11.52 NA

RDA-5 0.13 0.13 0.13
RDA-10 0.13 0.13 0.13
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not assuming stationarity. Recalling that �pε�x� for θ � 0.4 and 0.6 gave very good ap-
proximations for ε � 10�4, we see that these approximations are also efficiently available,
especially for θ � 0.4. For θ � 0.8 the situation is less favorable and whether or not the
approximation is of any use here depends on the problem of interest. By construction, the
RDA computation times do not vary with θ, and the time to evaluate a realization neither
varies with level of approximation. Comparing the computation times to establish approx-
imations for �pε�x� and RDA we see that the computation times are comparable for similar
approximation qualities when θ � 0.4 and 0.6. For θ � 0.8 the results are of less interest
as no good approximations are produced in this case. The computation times to evaluate
the likelihood for an additional data set is typically lower for RDA than for �pε�x�, but as
one can not generate realizations from the RDA model these figures are of less interest for
RDA than for �pε�x�.

6.4 A pairwise interaction 5� 5 neighborhood model

Next we consider an autologistic model on a rectangular 100 � 100 lattice with a 5 � 5
neighborhood. We adopt torus boundary conditions so all nodes have 24 neighbors. We
consider the locations of the nodes to be positioned from 1 to 100 along each coordinate
axis and let D�k, l� denote the Eucledian distance between nodes k and l. The energy
function we consider can then be expressed as

U�x� � �
θ

2

n�

k�1

�

l�Nk

I�xk � xl�

D�k, l�
. (20)

We consider the model for θ � 0.1 and 0.15, and again apply our approximate recursive
algorithm for various values of ε. To evaluate the quality of the resulting approximations we
report the mean acceptance probability of an independent proposal Metropolis–Hastings
algorithm, corresponding to what we did for the Ising model above. The results are given
in Figure 8(b), and Table 4 gives corresponding computation times. We do not include
results for the pseudo likelihood, pseudo block likelihood and RDA approximations. The
inferior results for the pseudo likelihood and pseudo block likelihood approximations for the
simple Ising model make these approximations less interesting for this more complicated
model, whereas RDA is not defined for torus boundary conditions and it is not clear how
to generalize the approximation strategy to this situation.

7 A Bayesian model for presence/absence of deer
In this section we reconsider a dataset of census counts of red deer in the Grampians
Region of north-east Scotland. Our intention is to demonstrate how the proposed approx-
imation scheme can be used to analyze such data, not to present a full analysis of the
given dataset. A thorough description of the dataset can be found in Buckland and Elston
(1993) and Augustin et al. (1996). Following these two articles we reduce the counts to

18



Table 4: Results for the pairwise interaction 5 � 5 neighborhood model on a 100 � 100
lattice: Computation time used to establish the approximation �pε�x� and the additional
time necessary for generating one realization from the approximate distribution. The
numbers are computation times in seconds on a the same machine as specified in the
caption of Table 3.

Time to establish approximation Additional time per realization
ε�θ 0.10 0.15

10�1 0.65 0.62
10�2 1.57 2.63
10�3 37.73 104.66
10�4 402.82 2 085.03
10�5 2 741.99 61 086.34
10�6 32 478.77 NA

ε�θ 0.10 0.15
10�1 0.30 0.19
10�2 0.34 0.24
10�3 0.54 0.95
10�4 2.56 7.57
10�5 8.10 73.60
10�6 36.30 NA

Figure 9: Data for presence/absence of deer in the Grampians Region of Scotland. Left:
Observed presence (white)/absence (black) of red deer in 1 km squares. Middle: Altitude
covariate (dark for low values). Right: Mires covariate (dark for low values)
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presence/absence data in 1 km squares, see Figure 9. We define the response variable xk

to be 0 if deer are absent from square k and 1 if deer are present. In a regression model
where observed presence/absence in regions are assumed independent, Buckland and El-
ston (1993) found four covariates to be significant, namely altitude, mires and the Cartesian
coordinates easting and northing. In our analysis we use these four variables to form 14
potential covariates, namely the four variables themselves after standardizing them to have
zero mean and unit standard deviation, each of the four standardized variables squared,
and all pairwise products. Including also a potential covariate constantly equal to 1, we
get a total of 15 potential covariates. Allowing each of these covariates to be included or
excluded from the model we obtain 215 � 32 768 possible covariate sets, which we number
from 1 to 32 768. For each s � �1, . . . , 32 768� we adopt an autologistic model similar to
Hoeting et al. (2000),

p�x�θ, s, ϕs�� exp

�
θ

2

n�
k�1

�
l�Nk

I�xk � xl� 	
n�

k�1

�
xk

ν�s��
i�1

ϕs
iz

s
ki

��
, (21)

where ν�s� is number of covariates in covariate set number s, and ϕs � �ϕs
1, . . . , ϕ

s
ν�s��

and zsk � �zsk1, . . . , z
s
k,ν�s�� are the corresponding parameter vector and vector of covariates

for cell number k, respectively. We adopt (21) as likelihood. As our focus is mainly to
demonstrate how our approximation can be used to analyze the given data, we adopt a
simple uniform prior for s. Following Hoeting et al. (2000) we use for θ a broad gamma
prior with mean 2
3 and standard deviation

�
2
9, and given s we assume independent

normal priors with zero mean and variance 20 for each component in ϕs. The resulting
posterior is

p�θ, s, ϕs�x��p�x�θ, s, ϕs�p�θ�p�s�

ν�s��
i�1

p�ϕs
i �s�, (22)

where one should remember that the likelihood factor includes an intractable normalizing
constant which is a function of the model parameters. We approximate the posterior by
replacing the likelihood with the corresponding approximation �pε�x�θ, s, ϕs�, and try both
ε � 10�3 and 10�4. We simulate from the approximate posterior by a reversible jump
algorithm (Green, 1995). In each iteration we either, with probability 0.5, propose a new
value for one of the current parameters or, with probability 0.25 for each, propose to add
a new covariate or to remove one of the current covariates. When a potential new value is
to be sampled for ϕi, say, we generate this from a N�ϕi, 0.1

2� distribution. To propose to
remove one covariate we simply draw at random from the current set of covariates what
covariate to remove. Finally, to propose to add a new covariate we draw at random what
covariate to include from the covariates that are not included in the current model, and
sample the corresponding potential parameter value from its prior distribution.

We run the algorithm for 1 000 000 iterations for each of the two ε values. Except for
Monte Carlo error we found no difference in the results of the two runs. In the following we
report results for the ε � 10�3 run. From a visual inspection of the trace plots we concluded
that our simple proposal distributions give a Markov chain with reasonable convergence
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Figure 10: Deer example: Estimated marginal posterior distributions for the spatial in-
teraction parameter θ and the parameters associated to the eight covariates with highest
posterior probabilities for being included in the model. The posterior probability for being
included in the model is given in parenthesis. The histograms shown estimate the marginal
posterior distributions given that the covariate is included in the model.

and mixing properties. Better tuning of the proposal variances is clearly possible, but this
is a tedious and time consuming process with the number of parameters we have, so we did
not try this. The algorithm seem to converge in less than 50 000 iterations. We also run the
algorithm with different initial states, but found no indication of convergence problems.
The acceptance rates, after convergence, for the random walk, add a new covariate, and
remove a covariate proposals are 0.74, 0.10 and 0.10, respectively.

The posterior gives significant probability to a large number of the possible covariate
sets. The most probable covariate set has probability 4.6% and includes seven covariates,
namely the constant, altitude, altitude squared, mires, the product of altitude and mires,
northing, and mires squared. The same seven covariates have posterior marginal prob-
abilities larger than a half for being included in the model, see Figure 10. Most of the
posterior probability is given to covariate sets close to the most probable one. Letting A0

be the most probable set of covariates and A an arbitrary other covariate set, one can
for example see this by summing the posterior probabilities for all covariate sets A for
which ��A�A0� � �A0�A�� � q. For q � 1, . . . , 5 this gives 0.19, 0.43, 0.68, 0.85 and 0.95,
respectively. The posterior mean of the spatial interaction parameter θ is 0.31, see Figure
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10 for probability histograms of the simulated values for both θ and eight other model
parameters. The spatial interaction is weak, but clearly significant. To further study the
importance of spatial interaction we also tried a similar non-spatial model, i.e. with θ � 0.
This gives a very different distribution for some of the regression coefficients. For example,
the posterior probabilities for easting and easting squared to be included in the model are
both estimated to 1.00 in the non-spatial model, whereas the corresponding figures in the
spatial model are 0.49 and 0.33, respectively.

8 Closing remarks
Using a canonical representation of binary MRFs we define exact and approximate recursive
algorithms for this model class. The exact algorithm is essentially the same as in Reeves
and Pettitt (2004) and Friel and Rue (2007). What is new is to combine the canonical
representation and the recursive scheme, which enables us to define the corresponding
approximative recursive algorithm by thresholding small interaction parameters to zero.
It is not obvious that this will produce a good approximation. Moreover, so far we do
not have theoretical results available for the quality of the approximation. Thereby it is
essential to explore the quality of the approximate algorithm empirically, as we have done
in a number of simulation examples. In particular we obtained accurate approximations
for the popular Ising model.

Our examples demonstrate that the procedure we propose is feasible in situations of
practical importance. However, the results also show the limitations of the approach. For
example, our approximation procedure is not feasible for the Ising model with θ � 0.8
unless one is willing to do a lot of computations. We have also tested our procedure on
models not discussed in this paper, including higher order interaction MRFs (Descombes
et al., 1995; Tjelmeland and Besag, 1998) and hidden MRF models. What is important
for the practicality of the approximate algorithm seems not to be the interaction level, but
the degree of correlation between variables in p�x�.

Some examples of how the approximation can be applied are given in the examples. In
a model with few parameters, the likelihood function or the posterior distribution can be
explored as in Section 6 by substituting the likelihood by an approximation. For a likelihood
function with a larger number of parameters this is computationally infeasible, but then
MCMC can be used to explore the (approximate) posterior distribution. The example in
Section 7 demonstrates this for a stochastic number of parameters. The approximation can
also be applied to cope with hidden MRFs by combining the approximation with the trick
detailed in Section 3.2 of Friel and Rue (2007). The (approximate) posterior can again be
explored deterministically if the dimension of the parameter space is low, or by an MCMC
procedure if the model has many parameters.

Our setup can be modified in several ways. First, we use basis functions fΛ�x� ��
i�Λ xi, Λ � P�S� to define a canonical representation. One may imagine other basis

functions. What is important for the efficiency of the algorithm is that the corresponding
parameters βU�Λ� can be efficiently computed and that most of these parameters can be

22



ε � 10�2 ε � 10�4

θ � 0.4
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Figure 11: Conditional dependence structure for �pε�xk�xl, l � k � 1, . . . , n� corresponding
to an Ising model when variables of summed out in the lexicographical order. Results of
shown for a k well away from lattice borders and for two values of θ and two values of ε.
The node k is black and other nodes that influence �pε�xk�xl, l � k � 1, . . . , n� are shaded.

approximated to zero. Second, by maximizing over each variable in turn instead of summing
them out, one may define approximate variants of the Viterbi algorithm (Künsch, 2001).
Third, as discussed in Section 6.3, a more efficient version of our algorithm can be defined
whenever p�x� is defined on a regular lattice, the parameters βU�Λ� are stationary and the
variables are summed out in the lexicographical order. Last, in all our examples we are
summing out the lattice variables in the lexicographical order. In simulations not reported
here we have also tried other orderings of the variables, including orderings based on the
multigrid (Goodman and Sokal, 1989) and divide and conquer (Golub and van Loan, 1996;
Rue, 2001) ideas, but we have so far not been able to identify better summing orders than
the lexicographical one. Still, however, we suspect that better summing orders exist.

It should be noted that the approximate distribution �pε�x� is a partially ordered Markov
model (POMM), see Cressie and Davidson (1998). The induced partial ordering can be
studied by looking at �pε�xk�xl, l � k � 1, . . . , n�. This distribution is only a function of a
subset of xl, l � k � 1, . . . , n, partly because of the Markov property of p�x� and partly
as a result of the approximations. Summing out the variables in an Ising model in the
lexicographical order, Figure 11 shows the set of variables that �pε�xk�xl, l � k�1, . . . , n� is
a function of for a node k well away from lattice borders. Results are shown for two values
of θ and two values of ε. Corresponding to what is intuitively reasonable, the approximate
conditional distribution is a function of nodes that are close to k, and it becomes a function
of more variables when θ increases or ε decreases. Even though our �pε�x� is formally a
POMM, the procedure we propose to construct the POMM is very different from what is
discussed in Cressie and Davidson (1998). Our approximation algorithm is automatically
finding a suitable partial ordering that fits to the p�x� of interest, whereas in Cressie and
Davidson (1998) the partial ordering is a priori specified.
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SUPPLEMENTAL MATERIALS

R and C code for the recursive algorithm: R-package containing code to run the ex-
act and approximative recursive algorithms proposed in the article. (GNU zipped
tar file)
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A Efficient recursive computation of �βU�Λ�,Λ � P�S��

To see how to compute the interaction parameters �βU�Λ�,Λ � P�S�� efficiently, define
γ0�Λ� � βU�Λ� for all Λ � P�S� and

γg�Λ� �
1

g

�

k�Λ

γg�1�Λ��k�� for g � 1, . . . , �Λ�,Λ � P�S���	�. (23)

In the graph G�P�S��, γ1�Λ� is then the sum of the interaction parameters of the children
of the vertex Λ, γ2�Λ� is the the sum of the interaction parameters of the grandchildren of
Λ and so on. Thereby we get

βU�Λ� � U�χ�Λ�� 


�Λ��

g�1

γg�Λ�. (24)

Thus, to calculate the interaction parameters one should visit all the vertices in G�P�S��
sequentially from the bottom to the top. When visiting a vertex Λ one should first compute
and store γg�Λ� for g � 1, . . . , �Λ� using (23) and thereafter compute and store γ0�Λ� �
βU�Λ� by (24).

B Proof of Theorem 1
By assumption the function U�x� can be written as in (3). Moreover, from our discussion in
Section 2.1 it follows that each function VΛ�xΛ� can be expressed in terms of corresponding
interactions parameters, i.e.

VΛ�xΛ� �
�

A�P�Λ�

βVΛ
�A�
�
k�A

xk. (25)

Inserting (25) in (3), changing the order of summation, and using that whenever a set
Λ � C we also have that A � C for any subset A � Λ, we get

U�x� �
�
A�C

� �
Λ�C:A�Λ

βVΛ
�A�
�
k�A

xk

�
. (26)

Thus, we have shown that U�x� can be expressed as

U�x� �
�

A�P�S�

βU�A�
�
k�A

xk, (27)
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where
βU�A� �

� �
Λ�C:A�Λ βVΛ

�A� if A � C,
0 otherwise. (28)

We see that (27) is in the canonical form (4). Moreover, from the discussion in Section 2.1
we know that the values of the interaction parameters are uniquely given by (4). Thus,
from (28) we have that βU�Λ� � 0 for all Λ � C.
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Abstract

The p* model is widely used in social net-
work analysis. The likelihood of a network
under this model is impossible to calculate
for all but trivially small networks. Vari-
ous approximation have been presented in
the literature, and the pseudolikelihood ap-
proximation is the most popular. The aim
of this paper is to introduce two likelihood
approximations which have the pseudolikeli-
hood estimator as a special case. We show,
for the examples that we have considered,
that both approximations result in improved
estimation of model parameters with respect
to the standard methodological approaches.
We provide a deterministic approach and also
illustrate how Bayesian model choice can be
carried out in this setting.

1 Introduction

Many probability models have been developed in order
to summarise the general structure of networks. For
example, the Bernoulli random graph model (Erdös
and Rényi, 1959) assumes that edges are considered
independent of each other; the p1 model (Holland and
Leinhardt, 1981) assumes independent edge variables.
The Markov random graph model (Frank and Strauss,
1986) assumes that each pair of edges is conditionally
dependent given the rest of the graph. The family of
p∗ or exponential random graph models (Wasserman
and Pattison (1996), see also Robins et al. (2007) for
a recent review) is a generalisation of the latter model
and is thought to be a flexible way to model the com-
plex dependence structure of network graphs. The p∗

model is arguably the most widely used model in social
network analysis.

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

Despite this popularity, the main drawback to the p∗

model is that the likelihood is generally unavailable,
since it involves a summation over 2m(m−1)/2 terms for
a network with m nodes. Clearly the size of this sum-
mation grows super-exponentially with m. For this
reason various approximations have been presented in
the literature. The most widely used approximation
is the pseudolikelihood estimator (Strauss and Ikeda,
1990) which dates back to (Besag, 1974). It is well un-
derstood that this approximation can give poor perfor-
mance, for example in the context of the autologistic
distribution (Friel et al., 2009). However no formal as-
sessment of the performance the pseudolikelihood es-
timator in the context of the p∗ model has yet been es-
tablished, and a partial aim of this paper is to address
this problem. The main contribution of this paper is
to introduce and investigate the use of two likelihood
approximations which have the pseudolikelihood esti-
mator as a special case.

We consider a deterministic simulation-free inference
approach, avoiding the need for Markov chain Monte
Carlo methods, along the lines of Rue et al. (2009).
Essentially, the dimension of the parameter space is
usually quite small, often with 5 or less parameters.
Therefore evaluating the unnormalised posterior dis-
tribution on a fine grid is possible. An advantage
of this approach is that estimates of posterior model
probabilities are then available for all models nested
within a model of maximal dimension using a grid eval-
uated for the model of maximal dimension.

There are other approaches which one could take to
carry out inference for the p∗ model, using simulation
methods, for example. A popular choice in this set-
ting is the Monte Carlo MLE approach of Geyer and
Thompson (1992). This involves an importance sam-
pling estimator of a ratio of normalising constants for
the different parameter values of the p∗ model. This
method turns out to be quite difficult to implement
– it involves drawing graphs from the likelihood with
pre-specified initial parameters. However the choice
of initial parameters is crucial, since a poorly chosen
initial parameters, lying in the degenerate region of
the parameter, for example, may result in simulated
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graphs which are empty or full. This in turn impacts
negatively on the parameter estimation.

The paper is organised as follows. In section 2 we in-
troduce the exponential random graph model. The
new likelihood approximations are outlined in Sec-
tion 3. While Section 5 demonstrates their perfor-
mance in a number of examples, where we consider
not only posterior estimation but also Bayesian model
choice. Finally Section 6 offers some conclusions and
discusses possible improvements to the methodology.

2 The exponential random graph
model

Consider a random adjacency matrix Y representing
a graph on m nodes. It can be defined by the set {Yij :
i = 1, . . . ,m; j = 1, . . . ,m} where the dyad Yij = 1 if
the pair (i, j) is connected, and Yij = 0 otherwise. The
diagonal entries of y take the value 0. The edges in
the graphs could be either directed on undirected. In
this study we have chosen to only look at undirected
graphs, but similar techniques could be established for
directed graphs as well. Let Y denote the set of all
possible graphs on n nodes and let y be a realisation
of Y . The p∗ model writes the probability distribution
of Y as

π(y|β) = exp{βts(y)}
z(β)

(1)

where s(y) is a known vector of sufficient statistics, for
example,

s1(y) =
∑

i<j yij , number of edges,

s2(y) =
∑

i<j<k yikyjk, number of two-stars,

s3(y) =
∑

i<j<k<l yilyjlykl, number of three-stars,

s4(y) =
∑

i<j<k yjkyikyij number of triangles.

Finally β are model parameters corresponding the col-
lection of sufficient statistics. Formally the p∗ model
is a Markov random field, where two edges are neigh-
bours of one another if they share a common node. A
graph with m nodes contains n = m(m − 1)/2 edges,
each of which can take values 0 or 1. Thus Y contains
2n possible undirected graphs and the normalising con-
stant z(β) =

∑
y∈Y exp{βts(y)} is consequently ex-

tremely difficult to evaluate for all but trivially small
graphs.

2.1 Model degeneracy

Model degeneracy is an important issue concerning p∗

models and was largely treated in Handcock (2003)
and more recently in Rinaldo et al. (2009). The term
degeneracy refers to the fact that for a network with

a given number of nodes, there are so-called degener-
ate regions of the parameter space from which simu-
lated networks will be either empty or full (complete).
In fact, the non-degenerate region is typically a very
thin region in the parameter space. Model degeneracy
presents a considerable challenge for parameter esti-
mation. Consider the mean parameterisation for the
p∗ model defined by μ = E[s(y)]. Let C be the con-
vex hull of the set {s(y) : y ∈ Y}, ri(C) its relative
interior and rbd(C) its relative boundary. It turns out
that if μ(θ) is close to rbd(C), that the model places
most of the probability mass on graphs belonging to
the set deg(Y) = {y ∈ Y : s(y) ∈ rbd(C)}. It is also
known that the MLE exists if and only if s(y) ∈ ri(C)
and if it exists it is unique. In the context of the like-
lihood approximations which we present in the next
Section, it will be important to examine whether the
corresponding approximate posterior distribution sup-
ports parameter values in the degenerate region.

3 Likelihood approximations

In this section we introduce three likelihood approx-
imations for the p∗ model. Suppose that the col-
lection of all possible dyads have been ordered as
(y1, y2, . . . , yn). From this point onward, for ease of
notation, we will denote each dyad by a single in-
dex. We will also use the notation y1:i to denote
the edges {y1, . . . , yi} and y−i to denote the edges
{y1:i−1, yi+1:n}.

3.1 Maximum pseudolikelihood estimation
(MPLE)

A standard approach to approximate the distribution
of a Markov random field is to use a pseudolikeli-
hood approximation, first proposed in Besag (1974)
and adapted for social network models in Strauss and
Ikeda (1990). This approximation consists of a prod-
uct of easily normalised full-conditional distributions

π(y|β) ≈ πpseudo(y|β)

=
n∏

i=1

π(yi|y−i, β)

=

n∏
i=1

π(yi = 1|y−i, β)
yi[

1− π(yi = 0|y−i, β)
]yi−1 . (2)

The basic idea underlying this method is the assump-
tion of weak dependence between the variables in the
graph so that the likelihood can be well approximated
by the pseudolikelihood function. This leads to a fast
estimation, and can be implemented using standard
generalised linear model software. Nevertheless this
approach turns out to be generally inadequate since
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it only uses local information whereas the structure of
the graph is affected by global interaction.

3.2 Maximum block-pseudolikelihood
estimation (MBPLE)

An obvious extension to the pseudolikelihood estima-
tor is the block-pseudolikelihood estimator. The MB-
PLE relies on the same idea, but evaluates the full
conditional of blocks of variables rather than the full
conditionals of single variables.

π(y|β) ≈ πblockpseudo(y|β) =
B∏

b=1

π(yb|y−b, β), (3)

for some partitioning of the dyads into B disjoint
groups of size b, such that

⋃B
b=1 yb = y and

⋂B
b=1 yb =

∅. Assuming the largest of the blocks contains no
more than roughly 20 dyads we calculate each full con-
ditional. This approximation is also quite fast, and at-
tempts to capture larger interactions within the graph.
Note that similar block pseudolikelihood approxima-
tions have been considered in the context of hidden
binary Markov random fields, see Rydén and Titter-
ington (1998) and Friel et al. (2009), where superior
performance of the block pseudolikelihood estimators
was observed.

3.3 Relaxed dependence approximation
(RDA)

The joint distribution of y can be written as

p(y|β) = p(y1:b|yb+1:n, β)

n−1∏
i=b+1

p(yi|yi+1:n, β)p(yn|β).

The RDA, in essence, attempts to approximate the
distribution of p(yi|yi+1:n, β). First, notice that

p(yi|yi+1:n, β) =
p(y1:i−1, yi|yi+1:n, β)

p(y1:i−1|yi:n, β)
=

p(yĀi |yi+1:n, β)

p(yĀi |yi:n, β) ×
p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

(4)

where Ai = {Ai
1, . . . , A

i
b−1} ⊂ {1, . . . , i − 1}, Āi =

{1, . . . , i − 1} \ Ai and y−{A} = y \ yA, for i = b +
1, . . . , n−1. We introduce an approximation to (4) by
writing

p(yi|yi+1:n, β) ≈
p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

(5)

Similarly, we approximate

p(yn) ≈
p(yAn , yn|y−{An,n}, β)

p(yAn |y−{An}, β)
. (6)

Here we define a block of size b to be the set {yAi , yi},
for i = b+ 1, . . . , n. We further denote a block of size
1 to correspond to Ai = ∅, and in this instance, (5)
and (6) reduce to

p(yi|yi+1:n, β) ≈ p(yi|y−{i}, β)
and

p(yn|β) ≈ p(yn|y−{n}, β),
respectively.

Plugging (5) and (6) into (4) yields the approximation

p(y1, . . . , yn|β) ≈p(y1:b|yb+1:n, β)

n−1∏
i=b+1

p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

× p(yAn , yn|y−{An,n}, β)
p(yAn |y−{An}, β)

. (7)

In effect, (5) and (6) assume that

p(yAi , yi|y−{Ai,i}, β)
p(yAi |y−{Ai}, β)

= 1, i = b+ 1, . . . , n− 1 (8)

and
p(yĀn |β)

p(yĀn |yn, β) = 1, (9)

respectively.

Finally, a nice property of our approximation is that it
can be seen as a natural expansion of the pseudolike-
lihood approximation, which corresponds to a block
size of 1. Note that an estimator similar to RDA has
been explored in the context of binary Markov random
fields on the lattice Friel et al. (2009), and has been
implemented in a variational Bayes setting in McGrory
et al. (2009).

3.3.1 Ordering the dyads and selecting each
blocks

The RDA and MBPLE approaches require that the n
dyads in y follow some index ordering. Moreover, for
the RDA approach, there is a need to choose, for each
i = b+ 1, . . . , n, the set yAi

⊂ {y1, . . . , yi−1} of dyads
in block {yAi , yi}. It is unclear to us how to provide
guidance for the former requirement. We are able to
offer some guidance as to how the set of dyads yAi

is chosen, however. Our intuition is that each block
should consist of as many dyads from {y1, . . . , yi−1}
which share a common node with yi, since these are
the dyads which most influence yi. If there are more
than b− 1 dyads in {y1, . . . , yi−1} sharing a node with
yi, then b− 1 such dyads are chosen uniformly at ran-
dom. While if there are less than b−1 dyads sharing a
common node with yi, each of these are selected, and
the remainder chosen uniformly at random from the
set of dyads not sharing a common node with yi.
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4 Monte Carlo approaches

An alternative to approximating the likelihood is to
try to estimate the true posterior distribution. This
is the approach taken by the Monte Carlo maximum
likelihood (MC-MLE) algorithm introduced by Geyer
and Thompson (1992). This algorithm has been widely
used to carry out maximum likelihood estimation for
the p∗ model. A key identity is the following

z(β)

z(β0)
= Ey|β0

[
q(y|β)
q(y|β0)

]

=
∑
y

q(y|β)
q(y|β0)

q(y|β0)

z(β0)

≈ 1

m

m∑
i=1

exp
{
(β − β0)

ts(yi)
}

where β0 is fixed set of parameter values, and Ey|β0

denotes an expectation taken with respect to the dis-
tribution π(y|β0). In practice this ratio of normalis-
ing constants is approximated using graphs y1, . . . ,ym

sampled via MCMC from the stationary distribution
defined by β0 and importance sampling. This yields
the following approximated log likelihood ratio:

l̂β0(β) ≈ l(β0) + (β − β0)
ts(y)−

log

[
1

m

m∑
i=1

exp
{
(β − β0)

ts(yi)
}]

. (10)

This is then viewed as a function of β, and its max-
imum value serves as a Monte Carlo estimate of the
MLE.

A crucial aspect of this algorithm is the choice of β0.
Ideally β0 should be very close to the maximum like-
lihood estimator of β. In fact l̂β0

(β) is very sensitive
to the choice of β0. A poorly chosen value of β0 may
lead to an objective function (10) that cannot even be
maximised, see Handcock (2003).

In pratice, β0 is often chosen as the maximiser of (2),
although this itself maybe a very biased estimator. In-
deed, (10) may also be sensitive to numerical instabil-
ity, since it effectively computes the ratio of a nor-
malising constant, but it is well understood that the
normalising constants can vary by orders of magnitude
with θ.

5 Examples

In this section we consider two real dataset to test
and compare the different methods introduced in the
previous section. For each example we choose to fit
the same model as was introduced in section 2. For
both datasets our goal is to gather information about

the posterior distribution of β, using our likelihood
approximations, p̃(y|β),

p(β|y) ∝ p(y|β)p(β) ≈ p̃(y|β)p(β). (11)

We do this by proceeding in the following manner.
First we locate the mode of the posterior distribution
by plugging our approximate likelihood function com-
bined with an uninformative prior into a black-box op-
timiser. Once the mode is located we design a grid sur-
rounding the mode and evaluate an approximate un-
normalised posterior distribution (the right hand side
of (11)) at each grid point. This allows us to produce
numerical approximations to marginals, means, vari-
ances and other aspects of the posterior distribution.
We also want to ensure that our approximations have
not moved us into parameter space that produces de-
generate graphs. So once the posterior is calculated we
sample 500 values for β from the posterior. We then
use the ergm package for R (Hunter et al., 2008) to
simulate a graph from each of these sets of parameters
and study the resulting graphs to check for degener-
acy. For both the RDA and blockpseudo the blocksize
is critical, the bigger the blocks, the better we expect
our approximation to be, but at the price of increased
run-time, also, avaliable memory restricts us to blocks
of size ≤ 20. As mentioned earlier, a block size of 1 is
equivalent to standard pseudolikelihood.

5.1 Molecule example

Our first example examined the dataset illustrated in
figure 1.

Figure 1: Molecule graph.

The graph consists of 20 nodes in a quite sparse con-
figuration, which gives us a dataset of 190 variables.
In figure 2 we have plotted the approximate posterior
mode returned from the optimisation algorithm for the
RDA and blockpseudo approach, with blocksizes rang-
ing from 1 to 18 for the rda and 1 to 16 for blockpseudo.
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Figure 2: Molecule dataset: Approximate maximum a posteriori parameters estimates for β1, β2, β3 and β4,
plotted from left to right for blocksizes from 1 to 16 (blockpseudo) and 1 to 18 (rda). The black dotted line
represents the blockpseudo approach while the red stapled line represents the RDA approximation. The horizontal
black line represents the pseudolikelihood approximation, while the horizontal purple stapled line represents an
MC-MLE approximation method.
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Figure 3: Molecule dataset: Approximate posterior marginals for β1, β2, β3 and β4 using the RDA approximation.
The red dotted line represents the mean and the black dotted lines indicate distances of two posterior standard
deviations from the mean.
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The vertical line is placed at the value for blocksize 1,
which represents the pseudolikelihood approximation.
As we can see the RDA and blockpseudo seem to give
similar parameter estimates (with the exception of β4)
and each parameter estimate is quite different from
the pseudolikelihood estimator. The purple stapled
line represents an estimate returned by an MC-MLE
method. We note that this comes closer to the ap-
proximations returned by the RDA and blockpseudo.
The posterior distribution of β was next evaluated in a
grid surrounding the mode of the RDA approximation
with a blocksize of 10. The grid contained 25 points
in each dimension. Figure 3 shows the approximate
marginal distributions p(βi|y) with means and credi-
ble intervals, calculated from the full posterior distri-
bution. Note that parameter estimates for pseudolike-
lihood and MC-MLE found using the ergm package
gave rise to realisations that are almost all degener-
ate. By constrast realisations conditional on param-
eters from the posterior were not degenerate, being
neither complete or empty.

We also estimate the marginal distribution of the data.
Recall that in equation (11) the normalizing constant
is the approximate marginal likelihood of y. Hence we
can estimate the marginal likelihood of our data by
completing the finite sum over the parameters,

p(y) ≈ p̃(y) =
∑
β1

∑
β2

∑
β3

∑
β4

p̃(y|β)p(β). (12)

Here, recall that the summands on the right hand side
of (12) are available and therefore an estimate of the
marginal likelihood results from summing these over
all grid points, β. The grid computed for the satu-
rated model can then be used to estimate the marginal
likelihood for any model nested within the saturated
model, by simply setting those parameter values which
are not included in the model to zero. This was then
done for all 15 different model configurations contain-
ing at least one parameter. Assigning equal weights to
each of the models the posterior model probabilities
can be estimated as,

p̃(mi|y) = p̃(y|mi)p(mi)∑
j p̃(y|mj)p(mj)

i = 1, . . . , 15. (13)

The models with highest posterior model probabil-
ity turned out to be the saturated model, the model
containing the parameters {β2, β3, β4} and the model
containing the parameters {β1, β2, β4}, these achieved
probabilities 0.64, 0.14 and 0.11 respectively.

5.2 Karate example

For our second example we studied the dataset illus-
trated in figure 4.

Figure 4: Karate graph.

This graph is larger than the previous example and
consists of 34 nodes in a not so sparse configuration,
which gives us a dataset of 561 variables. In figure 5
we have plotted the approximate posterior mode re-
turned from the optimisation algorithm for the RDA
and blockpseudo approach, with blocksizes ranging
from 1 to 16. As in the plot in the previous example
the vertical line is placed at the value for blocksize 1,
which represents the pseudolikelihood approximation.
The RDA and blockpseudo seem to return slightly,
but not entirely dissimilar parameter estimates and
again each parameter estimate is quite different from
the pseudolikelihood estimator. We evaluated the pos-
terior distribution of β as in the previous example with
a grid surrounding the mode of the RDA approxima-
tion with a blocksize of 10. The grid contained 20
points in each dimension. Figure 6 shows the approxi-
mate marginal distributions p(βi|y) with means and
credible intervals, calculated from the full posterior
distribution. As for the previous example, parame-
ter estimates for pseudolikelihood and MC-MLE found
using the ergm package gave rise to realisations that
are almost all degenerate. By constrast realisations
conditional on parameters from the posterior based on
RDA and block pseudolikelihood were not degenerate,
being neither complete or empty. Exactly as in the
molecule example we also estimate the marginal dis-
tribution of the data. The two models with highest
posterior model probability turned out to be the sat-
urated model and the model containing the parame-
ters {β1, β2, β3}, these achieved probabilities 0.705 and
0.236 respectively.

6 Discussion

Despite the widespread use of the p∗ model in social
network analysis, the inferential methods used to ser-
vice this model are lacking in many respects. The ap-
proximations which we have outlined in this paper ad-
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Figure 5: Karate dataset: Approximate maximum a posteriori parameters estimates for β1, β2, β3 and β4, plotted
from left to right for blocksizes from 1 to 16. The black dotted line represents the blockpseudo approach while
the red stapled line represents the RDA approximation. The horizontal black line represents the pseudolikelihood
approximation, while the horizontal purple stapled line represents an MC-MLE approximation method.
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dress this issue. Both of these approximations extend
the standard pseudolikelihood approximation. Our
approximations can be considered as composite like-
lihood approximations, where the composite factors in
the likelihood involve at most 20 dyad variables. Com-
posite likelihood methods are popular in the statis-
tics literature, for example Heagerty and Lele (1998),
Cox and Reid (2004), and the theory surrounding such
methods is well established. However composite like-
lihoods have received relatively little attention in the
Bayesian literature, and future work in this directions
would be useful.

As mentioned in section 3, it is unclear how to choose
an index ordering of the dyads for RDA and blockpseu-
dolikelihood. However for the RDA approach, we be-
lieve that including as many as of the dyads which
share a common node with yi, represents a reasonable
way to select composite blocks.

We note that our inference methods for the p∗ model
provide an appealing simulation-free alternative to the
usual Markov chain Monte Carlo approaches. In par-
ticular our methods can be considered as an inference
machine for these types of model providing the end
user with the possibility to explore probabilistic un-
certainty for the model parameters and also for the
uncertainty estimates for the model itself. Finally, we
are currently automating our computer code to pro-
vide the end user with a suite of routines to carry out
the inference tasks outlined in this paper.
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An approximate forward-backward algorithm
applied to binary Markov random fields
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Abstract

In this report we propose a new approximate version of the well known forward-
backward algorithm and use this to perform approximate inference on Markov random
fields. We construct the approximate forward-backward algorithm by adapting ap-
proximation results for pseudo-Boolean functions. By using an approximation of the
energy function which minimizes the error sum of squares we construct a forward-
backward algorithm which is computationally viable. We also show how our ap-
proach gives us upper and lower bounds as well as an approximate Viterbi algorithm.
Through two simulation examples and a real data example we demonstrate the accu-
racy and flexibility of the algorithm.

Key words: Markov random fields, pseudo-Boolean functions, forward-backward algorithm,
approximate inference

1 Introduction
In statistics in general and perhaps especially in spatial statistics we often find ourselves
with distributions known only up to an unknown normalization constant. Calculating this
normalizing constant typically involves high dimensional summation or integration. This
is the case for the class of discrete distributions known as discrete Markov random fields
(MRF).

A common situation in spatial statistics is that we have some unobserved latent field x
for which we have noisy observations y. We model x as an MRF with unknown parameters
θ around which we want to do inference of some kind. If we are Bayesians we could
imagine adding some prior for our parameters θ and studying the posterior distribution
p�θ�y�. A frequentist approach could involve finding a maximum likelihood estimator for
our parameters. Independently or in combination with these investigations we might want
to perform simulations and generate samples from p�x�θ� for some values of θ. Without
the normalizing constant however, all these become non-trivial tasks.
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There are a number of techniques that have been proposed to overcome this prob-
lem. The normalizing constant can be estimated by running Markov chain Monte Carlo
(MCMC) which can then be combined with various techniques to produce maximum like-
lihood estimates, see for instance Geyer and Thompson (1992), Gelman and Meng (1998)
and Gu and Zhu (2001). Other approaches take advantage of the fact that exact sampling
can be done, see Møller et al. (2006). In the present report however, we focus on the
class of deterministic methods, where by deterministic we mean that repeating the esti-
mation process yields the same estimate. In Reeves and Pettitt (2004) the authors devise
a computationally efficient algorithm for handling so called general factorisable models of
which MRFs are a common example. This algorithm, which we refer to from here on as
the forward-backward algorithm, grants a large computational saving in calculating the
normalizing constant by exploiting the factorisable structure of the models. For MRFs
defined on a lattice this allows for calculation of the normalizing constant on lattices with
up to around 20 rows for models with first order neighborhoods. In Friel and Rue (2007)
and Friel et al. (2009) the authors construct approximations for larger lattices by doing
computations for a number of sub-lattices using the algorithm in Reeves and Pettitt (2004).

The energy function of an MRF is an example of a so called pseudo-Boolean function.
In general, a pseudo-Boolean function is a function of the following type, f : �0, 1�n � R.
A full representation of a pseudo-Boolean function requires 2n terms. Finding approximate
representations of pseudo-Boolean functions that require fewer coefficients is a well stud-
ied field, see Hammer and Holzman (1992) and Grabisch et al. (2000). In Hammer and
Rudeanu (1968) the authors show how any pseudo-Boolean function can be expressed as
a binary polynomial in n variables. Tjelmeland and Austad (2010) expressed the energy
function of MRFs in this manner and by dropping small terms during the forward part of
the forward-backward algorithm constructed an approximate MRF.

Our approach and the main contribution of this report is to apply and modify methods
from pseudo-Boolean function approximation to design an approximate forward-backward
algorithm. By approximating the binary polynomial representing the distribution before
summing out each variable we get an algorithm less restricted by the correlation structure
of the model, thus capable of handling MRFs defined on large lattices and MRFs with
larger neighborhood structures. For the MRF application this approximation defines an
approximate MRF for which we can calculate the normalizing constant or evaluate the
likelihood as well as generate realizations. With our approach to approximating MRFs we
also show how we can construct upper and lower bounds for the normalizing constant, and
thus the likelihood, as well as construct an approximate Viterbi algorithm, see Künsch
(2001).

The report has the following layout. In Section 2 we formally introduce pseudo-Boolean
functions and their polynomial representation and show some results for approximative
representations. Section 3 details the forward-backward algorithm for calculating the nor-
malizing constant and likelihood for an MRF, using the notation established in Section 2.
Then in Section 4 we show how we can modify approximation results for pseudo-Boolean
functions to construct our approximative forward backward algorithm. In Section 5 we
extend this to the Viterbi algorithm. Section 6 includes a number of examples demonstrat-

2



ing the accuracy of our new approximations. Finally in Section 7 we include some closing
comments and conclusions.

2 Pseudo-Boolean functions
In this section we introduce pseudo-Boolean functions and discuss various aspects of ap-
proximating pseudo-Boolean functions using the results of Hammer and Holzman (1992)
and Grabisch et al. (2000). We end the section by showing how we can calculate the
approximation for a particular design of the approximating function.

2.1 Definitions and notation

Let x � �x1, . . . , xn� � Ω � �0, 1�n be a vector of binary variables and let N � �1, . . . , n�
be the corresponding list of indices. Then for any subset Λ � N we associate an incidence
vector x of length n whose kth element is 1 if k � Λ and 0 otherwise. We refer to an element
of x, xk, as being "on" if it has value 1 and "off" if it is 0. A pseudo-Boolean function f , of
dimension dim�f� � n, is a function that associates a real numbered value to each vector,
x � �0, 1�n, i.e f : �0, 1�n � R. The simplest representation of a pseudo Boolean function is
simply a list, using some ordering, of the 2n values we associate with the incidence vectors.
Hammer and Rudeanu (1968) showed that any pseudo-Boolean function can be expressed
uniquely as a binary polynomial,

f�x� �
�

Λ�N

βΛ
�

k�Λ

xk, (1)

where βΛ are real coefficients which we refer to as interactions. We define the degree of
f , deg�f� as the degree of the polynomial and call xk a nuisance variable if f�x1, . . . , xk �
0, . . . , xn� � f�x1, . . . , xk � 1, . . . , xn� for all x�k, where x�k � �x1, . . . , xk�1, xk�1, . . . , xn�.
Note that xk being a nuisance variable is equivalent to βΛ � 0 for all Λ where k � Λ.

In general the representation of a function in this manner requires 2n coefficients. In
some cases one or more βΛ might be zero and in this case a reduced representation of the
pseudo-Boolean function can be defined by excluding some or all the terms in the sum in
(1) where βΛ � 0. Thus we get,

f�x� �
�

Λ�S

βΛ
�

k�Λ

xk, (2)

where S is a set of subsets of N at least containing all Λ � N for which βΛ 	 0. We say
that our representation of f is dense if for all Λ � S all subsets of Λ are included in S. The
minimal dense representation of f is thereby (2) with,

S � �λ � N : βΛ 	 0 for some Λ 
 λ�. (3)

Throughout this report we restrict the attention to dense representations of pseudo-Boolean
functions. Note however that some of the theorems below are valid also without this
restriction.
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Figure 1: DAG representation of the pseudo-Boolean function in (4). Nodes can be thought
of as either representing the set of interactions S or the set of states Ω.

Before we proceed further we introduce a small example to illustrate some properties
and notation regarding pseudo-Boolean functions. We will refer to this example to illustrate
properties of pseudo-Boolean functions throughout the report. Let n � 3, so N � �1, 2, 3�
and assume that all interactions are non-zero so S � ��, �1�, �2�, �3�, �1, 2�, �1, 3�, �2, 3�, �1
, 2, 3�� and,

f�x1, x2, x3� � β�� β1x1� β2x2� β3x3� β12x1x2� β13x1x3� β23x2x3� β123x1x2x3. (4)

We have found that when working with pseudo-Boolean functions, it is useful to visualize
the set S as a directed acyclic graph (DAG). Each node λ in the graph represents an
interaction βλ and each node has a vertex connecting it to all nodes where �Λ� � �λ� 	 1
and Λ 
 λ, see Figure 1. We refer to these nodes as the children of λ and the nodes Λ � λ,
such that �Λ� � �λ� � 1, as the parents of λ. Note that the number of children of each node
will be equal to �λ� and the number of parents of each node will be equal to n	�λ�, assuming
the interaction parameters of all parents to be non-zero. The graph representation of our
example function (4) can be seen in Figure 1. It can also be useful to think of the graph in
Figure 1 as representing the set Ω, each node λ in this case representing the configuration
of x where xk � 1 if k � λ and xk � 0 otherwise. So for instance node �1, 2� represents
the state x � �1, 1, 0�. We must note an important difference between representing the set
S and the set Ω in this manner. The set S will not necessarily include all λ  N , thus
the graph need not be full as in Figure 1. If β123 where zero for instance, then the node
�1, 2, 3� would not be present. This will never be the case if we let the graph represent Ω.
For this set we, for obvious reasons, always include all configurations of x.

We now introduce some notation we need later in the report. We define the subset
Sλ as the set Sλ � �Λ � S : λ  Λ�. Think of this as all interactions that include the
interaction λ. Using the graph representation of S, Sλ consists of all nodes starting at node
λ and moving up in the graph. So, in our example, S�1,2� � ��1, 2�, �1, 2, 3��. Equivalently

4



for the set Ω, we define the subset Ωλ as the set Ωλ � �x � Ω : xk � 1, �k � λ�. So this
is the set of all x where a given selection of xk are on. Using the graph representation, we
again find these nodes by starting at node λ and moving up. For our example function we
have for instance Ω�1,2� � ��1, 1, 0�, �1, 1, 1��. We later also need the complements of these
two subsets, Sc

λ � S�Sλ and Ωc
λ � Ω�Ωλ. Lastly we define S0

λ � �Λ � S : λ � Λ � ��
and Ω0

λ � �x � Ω : xk � 0, �k � λ�. If we think of the sets Sλ and Ωλ as the sets where
λ is on, then S0

λ and Ω0
λ are the sets where λ is off. Again, using our example we have for

instance S0
�1,2� � ��, 3� and Ω0

�1,2� � ��0, 0, 0�, �0, 0, 1��. Note that in general Sc
λ 	 S0

λ and
equivalently Ωc

λ 	 Ω0
λ.

2.2 Approximating pseudo-Boolean functions

Since for a general pseudo-Boolean function, the number of interactions in our repre-
sentation grows exponentially with the dimension n, it is natural to ask if we can find
an approximate representation of the function that reduces the number of interactions
required for storage. We could choose some set S̃ 
 S to define our approximation,
thus choosing which interactions to leave, S̃, and which to remove, S�S̃. For a given S̃
our interest lies in the best such approximation according to some criteria. We define
AS̃�f�x�� � f̃�x� �

�
Λ�S̃ β̃

Λ
�

k�Λ xk as the operator which returns the approximation
that, for some given approximation set S̃, minimizes the error sum of squares (SSE),

SSE�f, f̃� �
�
x�Ω

�
f�x�  f̃�x�

�2
. (5)

We find the best approximation by taking partial derivatives with respect to β̃λ for all λ � S̃
and setting these expressions equal to zero. This gives us a system of linear equations,

�
x�Ωλ

f̃�x� �
�
x�Ωλ

��
Λ�S̃

β̃Λ
�
k�Λ

xk

�
�
�
x�Ωλ

f�x�, � λ � S̃. (6)

Existence and uniqueness of a solution is assured since we have �S̃� linearly independent
equations and �S̃� unknown variables. Clearly if S̃ � S, then the best approximation is the
function itself, f̃�x� � f�x�.

It is common practice in statistics and approximation theory in general to approximate
higher order terms by lower order terms. A natural way to design an approximation would
be to let S̃ include all interactions of degree less than or equal to some value k. In Hammer
and Holzman (1992) the authors focus on approximations of this type and proceed to
show how the resulting system of linear equations through clever reorganization can be
transformed into a lower triangular system. They solve this for k � 1 and k � 2 as well
as proving a number of useful properties. Grabisch et al. (2000) proceed to solve this for
a general value of k.

In the present report we consider a similar design of the set S̃, namely the case where
S̃ is a dense subset of S. So if λ � S̃, then all Λ � λ must also be included in S̃.
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Figure 2: Left: DAG representation of the pseudo-Boolean function defined over the set
S̃ � ��, �1�, �2�, �3�, �1, 3�, �2, 3��. Right: Distribution of the error f�x�� f̃�x� when S �
��, �1�, �2�, �3�, �1, 2�, �1, 3�, �2, 3�� and S̃ � ��, �1�, �2�, �3�, �1, 3�, �2, 3��. For states
represented by a red node f�x� � f̃�x� � β12

22
while for states represented by a blue node,

f�x� � f̃�x� � �β12

22
.

Although this may at first sound restrictive we will see that it is not inhibitive for our
application on MRFs later in the report. Consider our example in (4). We could choose
S̃ � ��, �1�, �2�, �3�, �1, 3�, �2, 3��, see the DAG representation to the left in Figure 2.
Clearly the approximation using all interactions up to degree k is a special case of our
class of approximations. Our motivation for studying this particular design of S̃ will
become clear as we study the forward-backward algorithm. We now proceed to prove some
useful properties of this approximation. Note that the first two theorems where proved
in Hammer and Holzman (1992) (using different proofs), and the proofs and theorems are
valid for our class of approximations as well. We include these theorems here with proofs
for completeness and insight.

Theorem 1. The above approximation AS̃�f�x�� is a linear operator, i.e. for any con-
stants a, b � R and pseudo-Boolean functions g�x� and h�x� defined over S, we have that
AS̃�ag�x� 	 bh�x�� � aAS̃�g�x�� 	 bAS̃�h�x��.

Proof. Let f̃�x� � AS̃�f�x��, g̃�x� � AS̃�g�x�� and h̃�x� � AS̃�h�x��. We show the theorem
by inserting f�x� � ag�x� 	 bh�x� and f̃�x� � ag̃�x� 	 bh̃�x� in (6),

�

x�Ωλ

f̃�x� �
�

x�Ωλ

�
ag̃�x� 	 bh̃�x�

�
�
�
x�Ωλ

f�x� �
�
x�Ωλ


ag�x� 	 bh�x�� , � λ � S̃.
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This is clearly satisfied if we require,
�

x�Ωλ

g̃�x� �
�

x�Ωλ

g�x�, � λ � S̃,

�

x�Ωλ

h̃�x� �
�

x�Ωλ

h�x�, � λ � S̃.

Each of these systems of equations contains �S̃� equations and �S̃� variables and thus have a
unique solution. Since we know that (6) has a unique solution, this completes the proof.

Since each interaction term in a pseudo-Boolean function is a pseudo-Boolean function
in itself, this theorem is important because it means that we can approximate a pseudo-
Boolean function by approximating each of the interaction terms involved in the function
individually. Also, since the best approximation of a pseudo-Boolean function is itself, we
only need to worry about how to approximate the interaction terms we want to remove.
Theorem 2. Assume we have two approximations of f�x�, AS̃�f�x�� and A ˜̃S

�f�x��, such

that ˜̃S � S̃ � S. Then A ˜̃S
�AS̃�f�x��� � A ˜̃S

�f�x��.

Proof. Let f̃�x� � AS̃�f�x�� �
�

Λ�S̃ β̃
Λ
�

k�Λ xk and ˜̃f�x� � A ˜̃S
�f�x�� �

�
Λ� ˜̃S

˜̃βΛ
�

k�Λ xk.
Again, we prove the theorem by studying the equations that specify the solutions. For
f̃�x� � AS̃�f�x�� we have,

�

x�Ωλ

AS̃�f�x�� �
�

x�Ωλ

f�x�, � λ � S̃. (7)

Correspondingly, for A ˜̃S
�f̃�x�� we get,
�

x�Ωλ

A ˜̃S
�f̃�x�� �

�

x�Ωλ

f̃�x�, � λ � ˜̃S. (8)

Since f̃�x� � AS̃�f�x�� and ˜̃S � S̃ we can combine (7) and (8) to get,
�

x�Ωλ

A ˜̃S
�f̃�x�� �

�

x�Ωλ

f̃�x� �
�

x�Ωλ

AS̃�f�x�� �
�

x�Ωλ

f�x�, � λ � ˜̃S. (9)

This is the same set of equations as for A ˜̃S
�f�x��, so since the solution exist and is unique,

we get the same approximation.

This theorem shows that an iterative scheme for calculating the approximation is pos-
sible. The next two theorems show useful properties regarding the error introduced by the
approximation.
Theorem 3. Assume again that we have two approximations of f�x�, AS̃�f�x�� and A ˜̃S

�f�x��,

such that ˜̃S � S̃ � S. Letting f̃�x� � AS̃�f�x�� and ˜̃f�x� � A ˜̃S
�f�x��, we then have

SSE�f, ˜̃f� � SSE�f, f̃� � SSE�f̃ , ˜̃f�.
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Proof. Expanding SSE�f, ˜̃f� �
�

x�Ω

�
f�x� � ˜̃f�x�

�2
we get,

�
x�Ω

�
f�x� � ˜̃f�x�

�2
�
�
x�Ω

�
f�x� � f̃�x� � f̃�x� � ˜̃f�x�

�2

�
�
x�Ω

�
f�x� � f̃�x�

�2
�
�
x�Ω

�
f̃�x� � ˜̃f�x�

�2
�
�
x�Ω

�f�x� � f̃�x���f̃�x� � ˜̃f�x��

� SSE�f, f̃� � SSE�f̃ , ˜̃f� �
�
x�Ω

�f�x� � f̃�x��f̃�x� �
�
x�Ω

�f�x� � f̃�x�� ˜̃f�x�.

To prove the theorem it is sufficient to show that,�
x�Ω

�f�x� � f̃�x��f̃�x� �
�
x�Ω

�f�x� � f̃�x�� ˜̃f�x� � 0. (10)

First recall that we from (6) know that,�
x�Ωλ

�
f�x� � f̃�x�

�
� 0, � λ � S̃. (11)

Also, since ˜̃S � S̃, �
x�Ωλ

�
f�x� � f̃�x�

�
� 0, � λ � ˜̃S. (12)

We study the first term,
�

x�Ω�f�x� � f̃�x��f̃�x�, expand the expression for f̃�x� outside
the parenthesis and change the order of summation,

�
x�Ω

�f�x� � f̃�x��f̃�x� �
�
x�Ω

�
�f�x� � f̃�x��

�
Λ�S̃

β̃Λ
�
k�Λ

xk

	

�
�
Λ�S̃



β̃Λ
�
x�Ω

��
k�Λ

xk�f�x� � f̃�x��

	�

�
�
Λ�S̃



β̃Λ

�
x�ΩΛ

�
f�x� � f̃�x�

��

� 0,

where the last transition follows from (11). Using (12) we can correspondingly show that�
x�Ω�f�x� � f̃�x�� ˜̃f�x� � 0.

The next Theorem gives some useful insight into how we can calculate SSE�f, f̃�.
Theorem 4. Given a pseudo-Boolean function f�x� and an approximation f̃�x� constructed
as described, the error sum of squares can be written as,

�
x�Ω

�
f�x� � f̃�x�

�2
�

�
Λ�S�S̃



βΛ

�
x�ΩΛ

�f�x� � f̃�x��

�
(13)
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Proof. We study the error sum of squares,
�

x�Ω

�
f�x� � f̃�x�

�2
�
�
x�Ω

�
�f�x� � f̃�x��f�x�

�
�
�
x�Ω

�
�f�x� � f̃�x��f̃�x�

�

�
�
x�Ω

��
Λ�S

βΛ�f�x� � f̃�x��
�
k�Λ

xk

�
�
�
x�Ω

��
Λ�S̃

β̃Λ�f�x� � f̃�x��
�
k�Λ

xk

�

�
�
Λ�S

βΛ

� �
x�ΩΛ

�f�x� � f̃�x��

�
�
�
Λ�S̃

β̃Λ

� �
x�ΩΛ

�f�x� � f̃�x��

�
.

The second sum is always zero by (12). Since S̃ � S. The first sum can be further split
into two parts,

�
Λ�S

βΛ

� �
x�ΩΛ

�f�x� � f̃�x��

�
�
�
Λ�S̃

βΛ

� �
x�ΩΛ

�f�x� � f̃�x��

�
�
�

Λ�S�S̃

βΛ

� �
x�ΩΛ

�f�x� � f̃�x��

�
,

(14)
where once again the first sum is zero.

Note that this theorems tells us that the error can be expressed as a sum over the β’s
that we remove when constructing our approximation. Also, note the special case where
we assume S̃ � S�λ, i.e we remove only one interaction βλ. Then,

�
x�Ω

�
f�x� � f̃�x�

�2
� βλ

� �
x�Ωλ

�f�x� � f̃�x��

�
. (15)

With these theorems in hand we can go from S to S̃ by removing all nodes in S�S̃.
Theorems 1 and 2 allow us to remove these interactions iteratively one at a time. We
start by removing the interaction (or one of, in the case of several) βλ with highest degree
and approximate it by the set containing all Λ � λ. In other words, if the interaction has
degree k � �λ� we design the k� 1 order approximation of that interaction term. Grabisch
et al. (2000) gives us the expression for this,

β̃Λ �

�
βΛ � ��1��λ��1��Λ�

�
1
2

��λ���Λ�
βλ 	Λ � λ,

βΛ 	Λ 
 λ.
(16)

We then proceed iteratively until we reach the set of interest S̃.
Returning to our example in (4), let ˜̃S � ��, �1, �2, �3, �1, 3, �2, 3, so we want to

remove interactions �1, 2, 3 and �1, 2. We want to approximate f�x� by,

˜̃f�x1, x2, x3� �
˜̃β� � ˜̃β1x1 �

˜̃β2x2 �
˜̃β3x3 �

˜̃β13x1x3 �
˜̃β23x2x3. (17)

We accomplish this by first removing β123 and getting a temporary approximation,

f̃�x1, x2, x3� � β̃� � β̃1x1 � β̃2x2 � β̃3x3 � β̃12x1x2 � β̃13x1x3 � β̃23x2x3, (18)
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and then removing β̃12. Removing β123 and β̃12 is done by calculating the second and first
order approximations respectively. We get these directly from (16),

AS̃�β
123x1x2x3� �

1

8
β123 �

1

4
β123x1 �

1

4
β123x2 �

1

4
β123x3

�
1

2
β123x1x2 �

1

2
β123x1x3 �

1

2
β123x2x3,

A ˜̃S
�β̃12x1x2� � �

1

4
β̃12 �

1

2
β̃12x1 �

1

2
β̃12x2.

Thus our full approximative pseudo-Boolean function becomes,

˜̃f�x1, x2, x3� �

�
β� �

1

4
β12

�
�

�
β1 �

1

2
β12

�
x1 �

�
β2 �

1

2
β12

�
x2

�

�
β3 �

1

4
β123

�
x3 �

�
β13 �

1

2
β123

�
x1x3 �

�
β23 �

1

2
β123

�
x2x3.

The next theorem shows us how the approximation error is distributed among the different
x � Ω.

Theorem 5. Given the approximation AS̃�f�x�� � f̃�x�, when S�S̃ � λ the error becomes,

f�x� � f̃�x� � ��1��λ��
�

k�λ xk
βλ

2�λ�
. (19)

Proof. Using (16) we can rewrite the error,

f�x� � f̃�x� �
�
Λ�S

βΛ
�
k�Λ

xk �
�
Λ�S̃

β̃Λ
�
k�Λ

xk

� βλ
�
k�λ

xk �
�
Λ�S̃

�
�βΛ � β̃Λ�

�
k�Λ

xk

�

� βλ
�
k�λ

xk �
�

Λ�S̃:Λ�λ

�
��1��λ���Λ�

�
1

2

��λ���Λ�
βλ
�
k�Λ

xk

�

� βλ
�
k�λ

xk �
βλ

2�λ�

�
Λ�S̃:Λ�λ

�
��1��λ���Λ�2�Λ�

�
k�Λ

xk

�
.
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Clearly, x is either in Ωλ or x is in Ωc
λ. Checking the first case first, x � Ωλ,

f�x� � f̃�x� � βλ �
βλ

2�λ�

�

Λ�S̃:Λ�λ

�
��1��λ���Λ�2�Λ�

�

�
βλ

2�λ�

�
Λ�S̃:Λ�λ

�
��1��λ���Λ�2�Λ�

�

�
βλ

2�λ�

�λ��
�Λ��0

��
�λ�

�Λ�

�
��1��λ���Λ�2�Λ�

�

�
βλ

2�λ�
,

where we have used that,
n�

k�0

�
n

k

�
an�kbk � �a� b�n. (20)

If x � Ωc
λ, then one or more of xk for k � λ are off. Denote Λ� � λ as the interaction with

the highest degree that remains on, and note that this will be unique. We can then write,

f�x� � f̃�x� �
βλ

2�λ�

�
Λ�S̃:Λ�Λ�

�
��1��λ���Λ�2�Λ�

�

�
βλ

2�λ�

�Λ���
�Λ��0

��
�Λ��

�Λ�

�
��1��λ���Λ�2�Λ�

�

� ��1��λ���Λ
�� β

λ

2�λ�

�Λ���
�Λ��0

��
�Λ��

�Λ�

�
��1��Λ

����Λ�2�Λ�
�

� ��1��λ���Λ
�� β

λ

2�λ�

� ��1��λ��
�

k�λ xk
βλ

2�λ�
.

This proves the theorem.

To illustrate this result, let S � 	
, 	1�, 	2�, 	3�, 	1, 2�, 	1, 3�, 	2, 3�� and S̃ � 	
, 	1�,
	2�,	3�,	1, 3�, 	2, 3��, so S�S̃ � 	1, 2�. The distribution of the error is illustrated on the
right in Figure 2.

As the absolute value of the error is the same for all states, if we sum the squared error
over all states we get,

SSE�f, f̃� � 2n
�
βλ

2�λ�

�2

. (21)
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We note that these results are in agreement with Theorem 4 since �Ωλ� � 2n��λ�. For our
example in (17) with S�S̃ � ��1, 2�, �1, 2, 3��, the errors for removing the nodes will be,

�

x�Ω

�
β123x1x2x3 � Ã�β123x1x2x3�

�
�
�
x�Ω

�
1

8
β123

�
� 8

�
β123

8

�2

,

�
x�Ω

�
β̃12x1x2 �

˜̃A�β̃12x1x2�
�
�
�
x�Ω

�
1

4
β̃12

�
� 8

�
β̃12

4

�2

.

And since β̃12 � β12 	 1
2
β123 the total error becomes,

�
x�Ω

�
f�x� � ˜̃f�x�

�2
� 8

�
β123

8

�2

	 8

�
β̃12

4

�2

� 8

�
β123

8

�2

	 8

�
β12

4
	

β123

8

�2

. (22)

Studying the error gives some insight into what the approximation does. The error from
removing each node is spread as evenly as possible among the other states. We can think
of the approximation as distributing the interactions we want to remove among the inter-
actions we want to keep.

2.3 Second order interaction removal

In this section we discuss pseudo-Boolean function approximation for a specific choice
of S̃, which is of particular interest for the forward-backward algorithm. We show how
we can construct a new way of solving the resulting system of equations and term this
approximation the second order interaction removal (SOIR) approximation.

Assume we choose S̃ � Sc
�i,j�. In other words we want to remove all interactions involv-

ing both i and j and approximate these by all lower order interactions. Using Theorem
1 we can redefine f�x� to contain only the interactions βΛ where Λ 
 S�i,j�, since we only
need to focus on the interactions we want to remove. Thus,

f�x� �
�

Λ�S�i,j�

βΛ
�
k�Λ

xk � f̃�x� �
�
Λ�S̃

β̃Λ
�
k�Λ

xk, (23)

and as before we know that to minimize the error sum of squares, the approximation must
fulfill (6). We could of course proceed as in the previous section, iteratively removing one
interaction at the time until we reach our desired approximation. We here illustrate a
slightly different approach which takes advantage of the particular structure of S̃. This
allows us to calculate the approximation even faster than before, and it also, as we will
see, gives us an explicit expression for the error. We will see in Section 2.4 how this in turn
allows us to construct upper and lower bounds for pseudo-Boolean functions.
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We rewrite the error f�x� � f̃�x�,

f�x� � f̃�x� �
�

Λ�S�i,j�

βΛ
�
k�Λ

xk �
�
Λ�S̃

β̃Λ
�
k�Λ

xk

�
�

Λ�S�i,j�

�
��βΛxixj � �β̃Λ��i,j� � β̃Λ��i�xj � β̃Λ��j�xi�

� �
k�Λ��i,j�

xk

�
� . (24)

The easiest way to convince ourselves that we can always organize the terms in this manner
is to observe that every Λ � S�i,j� contains both i and j, thus for each of these interactions
there will be a unique triplet of interactions in S̃, βΛ��j� including i but not j, βΛ��i�

including j but not i and βΛ��i,j� that contains neither. Since S̃ is chosen to be the
complement of S�i,j� and S is dense, our approximation set contains all these triplets.

To ease the notation we define,

ΔfΛ�xi, xj� � βΛxixj � �β̃Λ��i,j� � β̃Λ��i�xj � β̃Λ��j�xi�, � Λ � S�i,j�. (25)

Next we insert our expression for f�x� � f̃�x� into (6) and switch the order of summation,

�
x�Ωλ

	
f�x� � f̃�x�



�
�
x�Ωλ

�
� �

Λ�S�i,j�

�
�ΔfΛ�xi, xj�

�
k�Λ��i,j�

xk

�
�
�
�

�
�

Λ�S�i,j�

�
� �

x�Ωλ

�
�ΔfΛ�xi, xj�

�
k�Λ��i,j�

xk

�
�
�
�

�
�

Λ�S�i,j�

�
� �

x�Ωλ��Λ��i,j��

ΔfΛ�xi, xj�

�
� � 0, � λ � S̃. (26)

We now proceed to show that we can find a solution satisfying the equations in (26) where
each of the sums

�
x�Ωλ��Λ��i,j��

ΔfΛ�xi, xj� is zero. Obviously for each Λ the function
ΔfΛ�xi, xj� only has four possible values, ΔfΛ�xi � 0, xj � 0�, ΔfΛ�xi � 1, xj � 0�,
ΔfΛ�xi � 0, xj � 1� and ΔfΛ�xi � 1, xj � 1�. Thus the sum,

�
x�Ωλ��Λ��i,j��

ΔfΛ�xi, xj�,
simply includes each of these values multiplied by the number of times they occur. We
now study more closely in what combinations they can occur. Note that obviously Λ�	i, j

never contains i or j. Consider first the case where λ and thereby λ � �Λ�	i, j
� does not
contain i or j, then,

�
x�Ωλ��Λ��i,j��

ΔfΛ�xi, xj� �
�Ωλ��Λ��i,j���

4
�ΔfΛ�xi � 0, xj � 0� �ΔfΛ�xi � 1, xj � 0�

�ΔfΛ�xi � 0, xj � 1� �ΔfΛ�xi � 1, xj � 1��. (27)
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Next assume λ� �Λ��i, j�� contains i but not j, then,

�

x�Ωλ��Λ��i,j��

ΔfΛ�xi, xj� �
�Ωλ��Λ��i,j���

2

�
ΔfΛ�xi � 1, xj � 0� 	ΔfΛ�xi � 1, xj � 1�

�
.

(28)
Similarly if λ� �Λ��i, j�� contains j but not i, then,

�
x�Ωλ��Λ��i,j��

ΔfΛ�xi, xj� �
�Ωλ��Λ��i,j���

2

�
ΔfΛ�xi � 0, xj � 1� 	ΔfΛ�xi � 1, xj � 1�

�
.

(29)
The final case is the case where λ � �Λ��i, j�� contains both i and j. However this last
instance will never occur in our setting, since any interaction containing i and also j is
removed from the graph and thus is not in S̃. We can now reach the conclusion that if we
require,

ΔfΛ�xi � 0, xj � 0� 	ΔfΛ�xi � 1, xj � 0�	

ΔfΛ�xi � 0, xj � 1� 	ΔfΛ�xi � 1, xj � 1� � 0, (30)
ΔfΛ�xi � 1, xj � 0� 	ΔfΛ�xi � 1, xj � 1� � 0, (31)
ΔfΛ�xi � 0, xj � 1� 	ΔfΛ�xi � 1, xj � 1� � 0, (32)

for all Λ 
 S�i,j�, the sums in (27), (28) and (29) will all be zero for all λ 
 S̃ as well.
Thus, we have fulfilled equation (26) and found our approximation. There exist a solution
that satisfies equations (30), (31) and (32), since, as functions of the parameters βΛ, these
are three linearly independent equations and ΔfΛ�xi, xj� is a function of three parameters,
βΛ��i,j�, βΛ��i� and βΛ��j�. We once again take a look at our simple example to help illustrate
this result. As before let f�x� be defined as in (4) and let our approximation set of interest
be S̃ � ��, 1, 2, 3, �1, 3�, �2, 3��, so we are removing the second order interaction β12. As
we know we only need to focus on the interactions we want to remove, it is sufficient to
focus on,

f�x� � β12x1x2 	 β123x1x2x3. (33)

We now reorganize our equations
�

x�Ωλ
�f�x� � f̃�x�� in the following manner,

�
x�Ωλ

f�x� � ˜f�x�

�
�
x�Ωλ

�
�β12x1x2 � β̃� � β̃1x1 � β̃2x2� 	 �β123x1x2 � β̃3 � β̃13x1 � β̃23x2�x3

�

�
�
x�Ωλ

�
Δf 12�x1, x2� 	Δf 123�x1, x2�x3

�

�
�
x�Ωλ

Δf 12�x1, x2� 	
�

x�Ωλ�3

Δf 123�x1, x2�,
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which has to be zero for all λ � S̃. For Λ � �1, 2�, (30), (31) and (32) become,

4β̃� � 2β̃1 � 2β̃2 � β12,

2β̃� � 2β̃1 � β̃2 � β12,

2β̃� � β̃1 � 2β̃2 � β12.

For Λ � �1, 2, 3� we get,

4β̃3 � 2β̃13 � 2β̃23 � β123,

2β̃3 � 2β̃13 � β̃23 � β123,

2β̃3 � β̃13 � 2β̃23 � β123.

Solving these two systems of equations yields our approximation. The important conclusion
from all of this, is that solving our linear system of equations in (26) is equivalent to solving
equations (30), (31) and (32). This in turn is equivalent to approximating a second order
interaction by its two first order children, and their mutual zero order child. So instead of
solving one big system, we can solve a number of very small systems. Thus we can write
up what the approximation is in general,

β̃Λ��i,j� � �
1

4
βΛ,

β̃Λ�i �
1

2
βΛ, (34)

β̃Λ�j �
1

2
βΛ,

for all Λ � S�i,j�. This solution corresponds to the solution we would get using the iterative
scheme of the previous section, but it is much faster to calculate and also has the advantage
of giving us a nice explicit expression for the error. Inserting (34) into (25) we get an
expression for the function ΔfΛ�x1, x2�,

ΔfΛ�x1, x2� � �x1x2 �
1

4
�

1

2
xj �

1

2
xi�β

Λ. (35)

Inserting this in (24) we get

f�x� � f̃�x� � �xixj �
1

4
�

1

2
xj �

1

2
xi�
�

Λ�S�i,j�

�
�βΛ

�
k�Λ��i,j�

xk

�
� . (36)

Note that the absolute value of the parenthesis outside the sum is always 1
4

and thus the
absolute value of f�x� � f̃�x� does not depend on xi or xj. Using (36) we can also find an
expression for the error sum of squares,

SSE�f, f̃� �
�
x�Ω

�f�x� � f̃�x��2 �
1

4

�
x�Ω�i,j�

�
� �

Λ�S�i,j�

βΛ
�

k�Λ��i,j�

xk

�
�

2

. (37)
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Another useful observation gained from (36) is that we can easily construct an upper bound
for the maximum error,

max
x

�f�x� � f̃�x�� �
1

4

�

Λ�S�i,j�

�βΛ�, (38)

which of course also allows us to give a maximum bound for the error sum of squares,

SSE�f, f̃� � 2n�4

�
� �

Λ�S�i,j�

�βΛ�

�
�

2

. (39)

To help understand the error function in (36) we expand our small example. Assume we
expand n from 3 to 4, however we still want S̃ to be S̃ � S�S�1,2�. Let the graph in Figure
3 represent the states Ω. When we calculate our approximation we then get the following
distribution of the error,

f�x� � f̃�x� � �
1

4
β12, 	 x 
 Ω0

�3,4�.

f�x� � f̃�x� � �
1

4
�β12 � β123�, 	 x 
 Ω0

�4��Ω
0
�3,4�.

f�x� � f̃�x� � �
1

4
�β12 � β124�, 	 x 
 Ω0

�3��Ω
0
�3,4�.

f�x� � f̃�x� � �
1

4
�β12 � β123 � β124 � β1234�, 	 x 
 Ω�3,4�.

This is illustrated by the colors in the graph in Figure 3. The four sets above are represented
by red, blue, yellow and green respectively. Note also that for each of these sets f�x�� f̃�x�
summed over the respective set is zero, as it should be.

2.4 Upper and lower bounds for pseudo-Boolean functions

In this section we construct upper and lower bounds for pseudo-Boolean functions. These
upper and lower bounds will be linked to a given approximation AS̃�f�x��, in the sense
that we want our upper and lower bound functions, fU�x� and fL�x� respectively, to be on
the form,

fU�x� �
�
Λ�S̃

βΛ
U

�
k�Λ

xk, (40)

and
fL�x� �

�
Λ�S̃

βΛ
L

�
k�Λ

xk. (41)

In other words, we want the functions to be defined over a given set S̃ similar to the approx-
imations in the previous section. One way of doing this is to start with our approximation
and modifying it to get upper and lower bounds. We do this for general approximations
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Figure 3: Graph representation of Ω when the dimension of the pseudo-Boolean function
is n � 4. Colors illustrate the distribution of the absolute value of the error �f�x� � f̃�x��,
when S̃ � S�S�1,2�. States for which the nodes have the same color have the same absolute
value error.
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of pseudo-Boolean functions as well as the pairwise interaction approximation described in
the previous section.

For a general pseudo-Boolean function we have shown how we can remove interactions
iteratively until we reach our approximation set of interest S̃. We have also shown how
each time we remove an interaction βλ we introduce an error in all states x � Ω,

f�x� � f̃�x� � �
βλ

2�λ�
. (42)

Thus, if we define,

fU�x� � f̃�x� �

����
βλ

2�λ�

���� , (43)

fL�x� � f̃�x� �

����
βλ

2�λ�

���� , (44)

we clearly ensure that fL�x� � f�x� � fU�x� for all x � Ω. Note that this change only
influences the zero order interaction. It corresponds to adding or subtracting a term to the
zero order interaction, depending on whether we are constructing upper or lower bounds
respectively. This means we are essentially introducing no new computational cost. With
this we can construct an iterative scheme just like in Section 2.2, adding or subtracting
a term to the zero order interaction for each interaction we remove. In general though,
when removing several interactions we would expect to be able to design tighter bounds by
looking at the total error after removing all the interactions and then constructing upper
and lower bounds rather than iteratively creating upper and lower bounds for each step.
We will study how this can be done for the SOIR approximation.

Assume we have an approximation of f�x�, f̃�x� � AS̃�f�x�� with S̃ as defined in
Section 2.3. We would like to define our upper and lower bounds as fU�x� � f̃�x� � g�x�
and fL�x� � f̃�x��h�x�, such that fL�x� � f�x� � fU�x�, where g�x� and h�x� are defined
over the same set of interactions S̃ as f̃�x�. A natural approach would be to attempt the
same technique as we used for the single interaction removal, adding the absolute value of
the error 	f�x� � f̃�x�	. Taking the absolute value of our expression in (36) we get,

	f�x� � f̃�x�	 �

������
�xixj �

1

4
�

1

2
xj �

1

2
xi�

�
Λ�S�i,j�

�
�βΛ

�
k�Λ��i,j�

xk

�
�
������

�
1

4

������
�

Λ�S�i,j�

�
�βΛ

�
k�Λ��i,j�

xk

�
�
������
, (45)

We could then define, g�x� � 	f�x� � f̃�x�	 and h�x� � �	f�x� � f̃�x�	. These are clearly
valid upper and lower bounds, and also 	f�x� � f̃�x�	 is independent of xi and xj, so
we will not be introducing any interactions involving both i and j. However there is
no guarantee that we can represent 	f�x� � f̃�x�	 over our original approximation set S̃.
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�f�x��f̃�x�� is a pseudo-Boolean function and could in general be of full degree. Thus if the
dimension is too high we might not be able to represent it. The dimension of �f�x�� f̃�x��
is ��Λ � S�i,j� : �Λ� � 3��. In other words dim��f�x� � f̃�x��� is equal to the number of
parents of interaction βij. We could of course simply expand S̃ to include the necessary
missing interactions. Our primary requirement on S̃ was that it should not include any
interactions involving i and j which is obviously fulfilled. In the appendix we show how
the upper and lower bounds defined by g�x� � �f�x�� f̃�x�� and h�x� � ��f�x�� f̃�x�� are
in fact optimal if our only requirement on S̃ is that it should not include any interactions
involving i and j.

Of course, expanding S̃ could defeat the purpose of our approximative representation
altogether. If the dimension of �f�x� � f̃�x�� is too large we might run into trouble as
representing �f�x�� f̃�x�� will require 2dim��f�x��f̃�x��� coefficients. It is entirely possible that
�S̃� 	 �S�, which deems the approximative representation worthless. We therefore need
to come up with another way of constructing upper and lower bounds. We observe the
following,

�f�x� � f̃�x�� �
1

4

������
�

Λ�S�i,j�

�
�βΛ

�
k�Λ��i,j�

xk

�
�
������



1

4

�
Λ�S�i,j�

�
��βΛ�

�
k�Λ��i,j�

xk

�
� . (46)

So if we define,

g�x� �
1

4

�
Λ�S�i,j�

�
��βΛ�

�
k�Λ��i,j�

xk

�
� ,

h�x� � �
1

4

�
Λ�S�i,j�

�
��βΛ�

�
k�Λ��i,j�

xk

�
� ,

fU�x� and fL�x� are clearly valid upper and lower bounds. Also, g�x� and h�x� are already
represented by binary polynomials over sets contained within S̃. These are the bounds we
apply in the Section 6.

3 MRFs and the forward-backward algorithm
Here we give a short introduction to binary MRFs. We explain how the forward-backward
algorithm can be applied to this class of models and point out its computational limitation.
For a general introduction to MRFs see Besag (1974) or Cressie (1993) and for more on
the properties of MRFs and pseudo-Boolean functions see Tjelmeland and Austad (2010).
For more on the forward-backward algorithm and applications to MRFs see Reeves and
Pettitt (2004) and Friel and Rue (2007).
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3.1 Binary Markov random fields

Assume we have a vector of n binary variables x � �x1, . . . , xn� � Ω � �0, 1�n, N �
�1, . . . , n�. Let N � �N1, . . . ,Nn� denote the neighborhood system where Nk denotes the
set of indices of nodes that are neighbors of node xk. As usual we require a symmetrical
neighborhood system, so if i � Nj then j � Ni, and by convention a node is not a neighbor
of itself. Then x is a binary MRF with respect to a neighborhood system N if p�x� � 0
for all x � Ω and the full conditionals p�xk�x�k� have the Markov property,

p�xk�x�k� � p�xk�xNk
� 	 x � Ω. (47)

where xNk
� �xi : i � Nk�. We define a clique Λ to be a set Λ 
 N such that for all i and j

in Λ, i � Nj. We say that a clique is a maximal clique if it is not a subset of another clique.
The set of all the maximal cliques we denote by C. The Hammersley-Clifford theorem, see
Besag (1974) and Clifford (1990), tells us that we can express the distribution of x either
through the full conditionals in (47) or through clique potential functions,

p�x� �
1

c
exp�U�x�� �

1

c
exp

��
Λ�C

UΛ�xΛ�

�
, (48)

where c is a normalizing constant, UΛ�xΛ� is a potential function for a given clique Λ and
xΛ � �xi : i � Λ�. U�x� is commonly referred to as the energy function. From the previous
section we know that U�x� is a pseudo-Boolean function and can be expressed as,

U�x� �
�
Λ�N

βΛ
�
k�Λ

xk �
�
Λ�S

βΛ
�
k�Λ

xk, (49)

where S is defined as in (3). For a given energy function U�x�, the interactions βΛ can be
calculated recursively by evaluating U�x�. We will see later that it is important that we
only represent the pseudo-Boolean function by the non-zero coefficients, as a full represen-
tation would for practical applications require far too many terms. For more details on the
relationship between the neighborhood system and the set S we refer the reader to Tjelme-
land and Austad (2010). Briefly summarized, xi and xj being neighbors is equivalent to
there existing at least one Λ 
 N with �i, j� 
 Λ and βΛ � 0.

3.2 The forward-backward algorithm

As always the problem when evaluating the likelihood or generating samples from MRFs is
that c is a function of the model parameters and in general unknown. Calculation involves
a sum over 2n terms,

c �
�
x�Ω

exp �U�x�� �
�
x�Ω

exp

��
Λ�S

βΛ
�
k�Λ

xk

�
. (50)

The forward-backward algorithm, see Reeves and Pettitt (2004) and Friel and Rue (2007),
calculates the sum in (50) by taking advantage of the fact that we can calculate this sum
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more efficiently by factorizing the un-normalized distribution. We now cover this recursive
procedure.

Clearly we can always split the set S into two parts, S�i� and Sc
�i� where as before

Sc
�i� � S�S�i�. Thus we can split the energy function in (49) into a sum of two sums,

U�x� �
�

Λ�Sc
�i�

βΛ
�
k�Λ

xk �
�

Λ�S�i�

βΛ
�
k�Λ

xk. (51)

Note that the first sum contains no interaction terms involving xi. Letting x�i � �x1, . . . ,
xi�1, xi�1, . . . , xn�, we note that this is essentially equivalent to factorizing p�x� � p�xi�x�i�
p�x�i�, since

p�xi�x�i�� exp

�
� �

Λ�S�i�

βΛ
�
k�Λ

xk

�
�. (52)

By summing out xi from p�x� we get the distribution of p�x�i�. Taking advantage of the
split in (51) we can write this as,

p�x�i� �
�
xi

p�x� �
1

c
exp

�
� �

Λ�Sc
�i�

βΛ
�
k�Λ

xk

�
��

xi

exp

�
� �

Λ�S�i�

βΛ
�
k�Λ

xk

�
�. (53)

The sum over xi can be expressed as the exponential of a new binary polynomial, i.e.

exp

� �
Λ�Ni

β̌Λ
�
k�Λ

xk

�
�
�
xi

exp

�
� �

Λ�S�i�

βΛ
�
k�Λ

xk

�
�, (54)

where the interactions β̌Λ are iteratively calculated by evaluating the sum over xi in (54),
see Tjelmeland and Austad (2010). Note that this new function is a pseudo-Boolean func-
tion potentially of full degree. The number of non-zero interactions in this representation
could be up to 2�Ni�. Summing out xi leaves us with a new MRF with a new neighborhood
system. This is the first step in an iterative procedure for calculating the normalizing
constant c. In each step we sum over one of the remaining variables by splitting the energy
function as above. Repeating this procedure until we have summed out all the variables
naturally yields the normalizing constant.

The computational bottleneck for this algorithm occurs when representing the sum in
(54). Assume we have summed out variables x1:i�1 � �x1, . . . , xi�1�, have an MRF with
a neighborhood system Ň � �Ňi, . . . , Ňn	 and want to sum out xi. If Ňi is too large
we run into trouble with both memory and computation time when representing the sum
corresponding to (54) since this may require up to 2Ňi interaction terms. In models where
Ňi increases as we sum out variables the exponential growth causes us to run into problems
very quickly. As a practical example of this consider the Ising model defined on a lattice.
Assuming we sum out variables in the lexicographical order, the neighborhood will grow
to the number of rows in our lattice. This thus restricts the number of rows in the lattice
to 
 20 for practical purposes.
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4 An approximate forward-backward algorithm
In this section we apply the approximation results of Section 2 to the forward-backward
algorithm described in the previous section to devise an approximate forward-backward
algorithm. We then show how this approach can be extended to acquire upper and lower
bounds for the approximate forward-backward algorithm.

4.1 Constructing the approximate forward-backward algorithm

To create an algorithm that is computationally viable we must seek to control �Ňi� � ηi as
we sum out variables. If this neighborhood becomes too large, we run into problems both
with memory and computation time. Our idea is to construct an approximate representa-
tion of the MRF before summing out each variable. The approximation is chosen so that
ηi � ν, where ν is an input to our algorithm. Given a design for the approximation we
then want to minimize the error sum of squares of our energy function.

Assume we have an MRF and have (approximately) summed out variables x1:i�1, so we
currently have an MRF with a neighborhood structure Ň and energy function Ǔ�xi:n� ��

Λ�Š β̌
Λ
�

k�Λ xk, so,
c �

�

xi:n

exp
�
Ǔ�xi:n�

�
. (55)

If ηi is too large we run into problems when summing over xi. Our strategy for overcoming
this problem is to first create an approximation of the energy function Ǔ�xi:n�,

Ǔ�xi:n� �
�

Λ�Š

β̌Λ
�

k�Λ

xk � Ũ�xi:n� �
�

Λ�S̃

β̃Λ
�

k�Λ

xk. (56)

We control the size of ηi, by designing our approximation set S̃ and thus the new approx-
imate neighborhood Ñ in such a way that �Ñi� � η̃i � ν. Assuming we can do this, we
could construct an approximate forward-backward algorithm where we check the size of
the neighborhood ηi before summing out each variable. If this is greater than some given
ν we approximate the energy function before summation. This leaves two questions; how
do we choose the set S̃ and how do we define the approximation?

The two questions are obviously linked, however we start by looking more closely at
how we may choose the set S̃. Our tactic is to reduce ηi by one at the time. To do this we
need to design S̃ in such a way that i and some node j are no longer neighbors. Doing this
is equivalent to requiring all interactions β̃Λ, involving i and j to be zero. As before we
denote the subset of all interactions involving i and j as Š�i,j� � Š. We then construct our
approximation set as in Section 2.3, defining S̃ � Š�Š�i,j�. Our approximation is defined by
the equations corresponding to (6) and using the results from Section 2.3, the solution is
easily available. We can then imagine a scheme where we reduce ηi one at a time until we
reach our desired size ν. This leaves the question of how to choose j. One could calculate
the SSE for all possibilities of j and choose the value of j that has the minimum SSE.
However this may be computationally expensive in some cases. We propose instead to
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calculate the upper bound for the maximum error given by (38) and choose j based on
the smallest maximum error upper bound. Our experience for all of the models we have
studied is that this yields the same choice of j as the true SSE.

Note that Theorem 2 means that after reducing ηi by ηi � ν our approximation is still
optimal for a given selection of j’s. However there is no guarantee that our selection of j’s
is optimal. It is possible that if we looked at the error from reducing ηi by more than one
at the time we might get a different optimal set of j’s.

Using this approximate forward-backward algorithm we are defining an approximate
MRF through a series of approximate conditional distributions,

p̃�x� � p̃�x1�x2:n� . . . p̃�xn�1�xn�p̃�xn�, (57)

which is in fact a new MRF in itself. One of the aspects we wish to investigate in the
results section is to what extent this distribution can mimic some of the attributes of the
original MRF.

4.2 Bounds for the approximate forward-backward algorithm

It may be of interest to construct upper and lower bounds for the likelihood of an MRF.
Acquiring bounds for our algorithm is useful for quantifying the approximation error. Using
the results of Section 2.4 we can now easily construct an algorithm for this.

One way of finding an upper bound for the likelihood is to find a lower bound for the
normalizing constant. If we can construct cL � c, then clearly pU�x� �

1
cL
exp�U�x�� �

1
c
exp�U�x�� � p�x�. Our point of origin for finding cL is the approximate forward-backward

algorithm described in the previous section. Each iteration of this algorithm consists of two
steps. In the first step the energy function is replaced by an approximate energy function.
In the second step we sum over the chosen variable. To construct upper and lower bounds
we simply change step one. Instead of replacing the energy function by an approximation
we replace it with the upper and lower bounds found in Section 2.4.

Remark 1. We use the same criteria for determining which second order interaction to
remove in each step in the upper and lower bound algorithm as in the approximate forward-
backward. Although this was shown to be a good tactic for the approximation approach,
there is no reason as to why this should be optimal for constructing upper and lower
bounds, but we have been unable to come up with better schemes.

Remark 2. It should be noted that the approximation does not need to remain within the
upper and lower bounds. In Section 6.1 we will see examples of this.

5 An approximate Viterbi algorithm
In this section we show how our approximate forward-backward algorithm can be modified
to construct an approximate Viterbi algorithm. We briefly discuss the Viterbi algorithm
and show how the approximation is constructed as well as find upper and lower bounds.
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5.1 Constructing the approximate Viterbi algorithm

The Viterbi algorithm seeks to find a state xmax and its associated value p�xmax�, with the
property that p�xmax� � p�x� for all x � Ω and p�xmax� � p�x� for at least one value of x.
Note that p�x� need no longer be a distribution. It relies on the model being factorisable
in the same manner as the forward-backward algorithm and proceeds in exactly the same
way, except instead of sequentially summing out variables, it takes the maximum. Assume
that we have taken the maximum over x1:i�1, so we have,

max
x1:i�1

�p�x�� � exp�Ǔmax�xi:n�� � exp

��
Λ�Š

β̌Λ
�
k�Λ

xk

�
, (58)

and now want to take the maximum over xi i.e, maxxi
�exp�Ǔmax�xi:n���. As with the

forward-backward algorithm the Viterbi algorithm takes advantage of the splitting of U�x�
in (51) to get,

max
xi

�exp�Ǔmax�xi:n��� � exp

�
� �

Λ�Šc
�i�

β̌Λ
�
k�Λ

xk �max
xi

�
� �

Λ�Š�i�

β̌Λ
�
k�Λ

xk

	


�
�. (59)

As with the forward-backward algorithm the max term in the exponential can be rep-
resented by a new binary polynomial and the process can be repeated iteratively until
we have taken the maximum over all the variables. This yields the maximum value of
p�xmax�. The argument xmax can be found by a backward pass, as in the forward-backward
algorithm.

We construct an approximate Viterbi algorithm in the following manner. Recall that
our approximate forward-backward algorithm consisted of two steps in each iteration, ap-
proximate the energy function and sum over a variable. To get an approximate Viterbi
algorithm we simply replace step number two. Instead of summing over a variable we take
the maximum over a variable.

5.2 Bounds for the approximate Viterbi algorithm

Just as with the forward-backward algorithm we can use our results for upper and lower
bounds for pseudo-Boolean functions to find upper and lower bounds for p�xmax�. Instead
of approximating the energy function before taking the maximum over each variable we
replace it with an upper or lower bound. Finding an upper bound for the maximum value
of a function in this manner can be of interest for instance for the rejection sampling
algorithm as we will see later in Section 6.2

6 Results
In this section we present a number of examples to test our approximation. The value of
our algorithm parameter ν obviously influences the time it takes to run the calculations and
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how well we approximate the distribution of interest. Our goal in this section is primarily
to investigate how this accuracy versus computation time relationship develops, but we also
attempt to demonstrate the flexibility of our approximation in handling different types of
problems and models, as we feel this is one of the greatest strengths of our approach.

We begin with a simple example using the Ising model, where we use our approximation
to evaluate posterior distributions and later calculate upper and lower bounds. We then
proceed to use our upper and lower bounds in combination with the approximate Viterbi
algorithm to construct a rejection sampling algorithm for the Ising model using our ap-
proximation as a proposal distribution. Finally we proceed to a larger example involving
reversible-jump Markov chain Monte Carlo (RJMCMC), using a data set of census counts
of red deer in the Grampians Region of north-east Scotland.

All examples where run on a machine with an Intel Quad-Core Q9550 2.83GHz cpu.

6.1 Ising model example

In this section we apply our approximation to the Ising model on a square lattice, see
Besag (1986). This is an MRF where the energy function can be expressed as,

U�x� � θ
�

i�j

I�xi � xj�, (60)

where the sum is over all first order neighborhood pairs and θ is a model parameter.
I�xi � xj� is the indicator function and takes value 1 if xi � xj and 0 otherwise. The value
of θ controls how strong the interactions are between nodes in the lattice. With a low
value of θ we would expect realizations to look noisy, while a high value of θ will give large
areas of the same value. Representing the Ising model as a binary polynomial is done by
recursively calculating the interactions. This gives us a model with first and second order
interactions, for details on how this is done see Tjelmeland and Austad (2010).

The goal of this first example is simply to evaluate how well our approximation works in
terms of some measure of accuracy versus run time. To do this we use the following scheme,
first we simulate a perfect sample from the Ising model using coupling from the past, see
Propp and Wilson (1996), for a given parameter θtrue. Then, treating our realization as
data we approximate the posterior distribution for θ, p�θ�x��p�x�θ�p�θ�, by replacing the
likelihood with our approximation for a given value of ν, p̃ν�x�θ� and using an improper
uniform prior. We do this for θtrue � 0.4, 0.6 and 0.8, and for two square lattices of
dimensions 15�15 and 100�100, respectively. We let our algorithm parameter ν take values
from 2 through to 13. For the 15�15 lattice we can calculate the exact posterior distribution
and compare with our approximation. Note that performing an exact evaluation of the
posterior for the 15 � 15 lattice is equivalent to ν � 15. We calculate the posterior
in a regularly spaced mesh of θ values and use interpolating splines to interpolate the
results. This is done for both the exact algorithm and using our approximation. We then
numerically evaluate the integral

D15�ν, x� �

�
�

0

�p�θ�x� � p̃ν�θ�x��dθ, (61)
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θ � 0.4 θ � 0.6 θ � 0.8 t
ε � 0.001 0.751368101 2.10248497 15.09297
ν � 2 14.409427206 56.58591888 253.06337 0.01124228
ν � 3 1.108607538 20.62895721 185.87015 0.01387182
ν � 4 0.450648842 10.02418249 159.21355 0.02204446
ν � 5 0.390888291 9.03403984 134.23162 0.03710029
ν � 6 0.539101884 3.09247293 103.32444 0.07013128
ν � 7 0.256395124 2.88674328 70.23284 0.14840200
ν � 8 0.173243954 0.59501500 67.70975 0.32226900
ν � 9 0.079860112 0.25796856 44.78233 0.71145130
ν � 10 0.030442210 0.39202281 41.06546 1.49160500
ν � 11 0.026948158 0.14442855 36.72234 3.89972400
ν � 12 0.021497266 0.01606258 19.77851 9.31453700
ν � 13 0.009940589 0.02520535 12.31064 21.61825000

Table 1: Values of the integrated error D15�ε � 0.001, x� for approximation of Tjelmeland
and Austad (2010) and D15�ν, x� for various values of ν. Associated run times (in seconds)
for a single evaluation of the likelihood are given in the column on the right. Note that
run time is not given for D15�ε � 0.001, x� since this varies for different values of θ.

to measure how well our approximation works. For the 100�100 lattice an exact evaluation
of the posterior is not available, so to evaluate how well the approximation does, we study
how it changes as we increase ν by calculating,

D100�ν, x� �

�
�

0

�p̃ν�1�θ�x� � p̃ν�θ�x��dθ. (62)

If this value is sufficiently small we interpret it as a sign that our approximation is close
to the exact solution. In Tjelmeland and Austad (2010) the authors demonstrated that
their approximation performed well against methods such as pseudo-likelihood and block-
pseudo likelihood and was competitive compared with the RDA approximation in Friel
et al. (2009). We compare our approximation to the one in Tjelmeland and Austad (2010).

Results for the 15�15 lattice are visualized in Figure 4 and values for D15�ν, x� presented
in Table 1 along with associated run times. Figure 5 and Table 2 present the results for
the 100 � 100 lattice. We also include the approximation from Tjelmeland and Austad
(2010), seen as the red dotted curve as seen in Figures 4 and 5. As we would expect a
larger value for ν tends to give a better approximation, although it is worth noting that
exceptions exist. Also, getting a good approximation is harder for larger values of θ as
this means the interactions in the model are stronger. We can see that for θtrue � 0.4,
we seem to get quite good approximations even for very small values of ν. The case of
θtrue � 0.8 is much harder though, and here only the larger values of ν seem to give good
approximations. The run-time plots in the lower right of Figures 4 and 5 nicely illustrate
an important difference between the approximation in Tjelmeland and Austad (2010) and
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Figure 4: Exact posterior distributions p�θ�x� (thick continuous black curve), approxima-
tions with ν � 2 up to ν � 13 (dashed curves moving from right to left for increasing
value of ν) and the approximation of Tjelmeland and Austad (2010)(dashed red curve).
Results for θtrue � 0.4 (upper left), θtrue � 0.6 (upper right) and θtrue � 0.8 (lower left) on
the 15� 15 lattice. Bottom right plot shows the run-times in seconds as a function of θ for
the exact run (thick top line), the approximation of Tjelmeland and Austad (2010)(dashed
red curve) and the various approximations, ν � 2 to ν � 13, black lines from bottom to
top respectively. Note that for θtrue � 0.4 and θtrue � 0.6 the dashed red curve is visually
indistinguishable from the other curves.
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Figure 5: Approximations with ν � 2 up to ν � 13 (dashed curves moving from right to left
for increasing value of ν) and the approximation of Tjelmeland and Austad (2010)(dashed
red curve). Results for θtrue � 0.4 (upper left), θtrue � 0.6 (upper right) and θtrue � 0.8
(lower left) on the 100 � 100 lattice. Bottom right plot shows the run-times in seconds
as a function of θ for the approximation of Tjelmeland and Austad (2010)(dashed red
curve) and the various approximations, ν � 2 to ν � 13, black lines from bottom to top
respectively.
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θ � 0.4 θ � 0.6 θ � 0.8 t
ν � 2 88.6347 191.0028 295.8912 1.0001
ν � 3 7.5723 38.5417 143.1385 1.0670
ν � 4 4.2302 21.2625 101.4102 1.4402
ν � 5 1.8341 11.7719 88.5960 2.1802
ν � 6 0.1457 0.3696 44.1358 4.1627
ν � 7 0.5383 5.6674 36.5903 8.5760
ν � 8 0.0604 0.5028 27.2425 18.1769
ν � 9 0.0707 0.2876 6.2459 32.1511
ν � 10 0.03706 0.58005 12.1156 83.6642
ν � 11 0.0031 0.3836 2.8092 198.9024
ν � 12 0.0181 0.2239 1.2727 490.0662

Table 2: Values of the integrated error D100�ν, x� for various values of ν. Associated run
times (in seconds) for a single evaluation of the likelihood are given in the column on the
right.

our approximation. As we can see the run-time of p̃ν�θ�x� is constant as a function of
θ. This is because we through ν define the maximum computational cost of running the
approximation. This does not change dynamically as θ changes, unlike the approximation
in Tjelmeland and Austad (2010). As we can see from the plot, once θ becomes large
enough, the run time for the approximation in Tjelmeland and Austad (2010) explodes.
This is due to the interactions becoming so strong that the approximation is unable to
remove any. Although this is a nice property in the sense that it allows the approximation
to adapt dynamically to the model, it does mean that there are models for which the
algorithm will not work. It also means that it can be hard to predict the run-time in
advance. We note that the run-times for the new approximation roughly goes as 2ν . This
is to be expected since increasing ν by one doubles the size of our approximate pseudo-
Boolean energy function. Our approximation also seems to do considerably better than the
approximation in Tjelmeland and Austad (2010) for the case of θtrue � 0.8 on the 100�100
lattice. Here the approximation in Tjelmeland and Austad (2010) breaks down, while our
approximation seems to work satisfactorily.

We can also use our approximation to get estimates of the normalizing constant for the
Ising model. Doing this on a lattice of θ values and using interpolating splines we can get
a smooth approximation of c as a function of θ, c̃ν�θ�. For the 15� 15 lattice we can then
compare our approximation to the truth. This can be particularly useful in illustrating
how well the approximation works for increasing values of θ. The log ratio, log

�
c�θ�
c̃ν�θ�

�
, as

function of θ is plotted in Figure 6 for ν � 2 up to ν � 13 as well as for the approximation
in Tjelmeland and Austad (2010) c̃ε�θ�, again represented as a red dotted curve. This gives
a decent indication of where the approximation works well. Note how the approximation in
Tjelmeland and Austad (2010) converges to 0.6931 � log�2� as θ increases. This happens
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Figure 6: log�c�θ�� � log�c̃ν�θ�� for ν � 2 up to ν � 13� (black dotted curves moving from
left to right for increasing value of ν) as well as log�c�θ�� � log�c̃ε�θ�� for ε � 0.001 (dotted
red curve). Results are shown for values of θ between 0 and 2 on a 15� 15 lattice.

because a high θ means all the probability is focused on the configurations where all nodes
are either 1 or 0, and the approximation puts all probability on the configuration where
all nodes are 0. We also notice that it seems like our approximation usually supplies an
underestimate of c.

Finally we have tested the upper and lower bounds derived in Section 2.4. As with the
approximation we have generated a new realization from the model which we treat as data
using θtrue � 0.4, 0.6 and 0.8. We calculate upper and lower bounds for the normalizing
constant cU�θ� and cL�θ� for a fine mesh of θ’s between 0 and 2. Then for each of the
values of θtrue we can calculate the un-normalized likelihood and combine with cU�θ� and
cL�θ� to get upper and lower bounds for the likelihood pU�θ�x� and pL�θ�x�. We have done
this for ν � 6, 10 and 13 and the results are plotted in Figure 7. The stapled curves
show the upper and lower bounds for log�p�θ�x�� while the continuous curve represents
the associated approximative log-likelihood, log�p̃ν�θ�x��. As we can see we get reasonably
tight bounds for θtrue � 0.4 and 0.6 while for the case of θtrue � 0.8 the bounds are wider.
Note that for larger values of θ in the θtrue � 0.8 case, the approximation does not lie inside
the upper and lower bound. We could imagine using these bounds to get intervals for a
maximum likelihood estimator or the mode of the posterior distribution. Since we know
that max

θ
�p�θ�x�� 	 max

θ
�pL�θ�x�� and since p�θ�x� 
 pU�θ�x� for all x we get an interval

which we know must contain the true maximum. We could imagine a scheme where we
start with a small value of ν to get a wide interval for the maximum. We then increase the
value of ν and get upper and lower bounds within this interval and use this to shrink the
interval. This is then repeated until the interval is sufficiently tight.
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Figure 7: Approximate log-likelihood functions (continuous curves) for ν � 6 (blue), ν � 10
(purple) and ν � 13 (red), for θtrue � 0.4 (left), θtrue � 0.6 (middle) and θtrue � 0.8 (right)
for the Ising model on a 100�100 lattice. Upper and lower bounds are given by the stapled
curves.

6.2 Rejection sampling example

In Section 5.2 we showed how we can find upper and lower bounds for the mode of a
function by combining our upper and lower bounds for pseudo-Boolean functions with the
Viterbi algorithm. With this in hand we can construct a rejection sampling algorithm to
generate perfect samples from a given distribution. We should point out that there are
several perfect samplers out there, many of which perform better than the algorithm we
are about to present, in particular for models like the Ising model. Still, however, we think
the rejection sampling algorithm is an interesting application of the approximate Viterbi
algorithm. In particular, our perfect sampler may be of interest for settings where a large
number of samples are required. Once the initial precomputations are done, generating
samples is done very quickly using our algorithm. For a detailed description of the rejection
sampling algorithm we refer the reader to Ripley (1987). A short summary goes as follows.
Assume we wish to sample from a distribution p�x� � 1

c
exp�U�x��. We generate a proposal

using a proposal distribution q�x� and calculate the acceptance probability,

α�x� �
1

k

p�x�

q�x�
�

1

ck

exp�U�x��

q�x�
�

1

k�

exp�U�x��

q�x�
, (63)

where k� � ck is chosen such that k� � exp�U�x��
q�x�

for all x. We then accept the proposal
with probability α�x�. This is repeated until we reach the desired number of samples. The
difficulty is of course to find a sufficiently tight bound k� to get an acceptable acceptance
rate. Choosing our approximation as our proposal distribution, q�x� � p̃ν�x�, we need to
find k�, such that k� � r�x� � exp�U�x��

p̃ν�x�
. Using our algorithm for upper and lower bounds

for the Viterbi algorithm in Section 5.2 we can find k� � r̃U�x̃max� � r�xmax�.
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Figure 8: Estimated acceptance probabilities as a function of θ for the rejection sampling
algorithm when sampling from an Ising model on a 100 � 100 lattice. Three values for ν
were tested, ν � 6 (blue), ν � 10 (purple) and ν � 13 (red).

Two things are important for us to achieve a high acceptance rate. Firstly the function
r�x� must be reasonably "flat", i.e r�xmax� � r�x� should be reasonable small for all x,
and second, our upper bound needs to be sufficiently tight. We would expect r�x� to be
reasonably constant as a function of x since, r�x� � 1

c̃
exp�U�x� � Ũ�x��. We have pointed

out how our approximation attempts to spread the error U�x� � Ũ�x� evenly among all
states x, thus we would expect this function to be reasonably uniform. We have tested our
perfect sampler by using it to generate samples from the Ising model on a 100�100 lattice
for a fine mesh grid of θ values between 0 and 1. For each value of θ we generated 100
proposals and used this to estimate the acceptance rate. Once again we did this for ν � 6,
10 and 13� and plotted the average acceptance rates as a function of θ, as seen in Figure 8.
As expected we can see that the acceptance rate drops as θ increases. With ν � 13 we get
a high acceptance rate almost up to θ � 0.6. We believe the reason the acceptance rate
drops is primarily because the bounds for r�x� become to weak.

6.3 Red Deer example part 1

In this section we present a Bayesian analysis of a data set of census counts of red deer
in the Grampians Region of north-east Scotland. Our primary purpose for including this
section is to demonstrate the flexibility and applicability of our approximation and as such
this will not be a full analysis of the given data set. A full description of the data set can
be found in Augistin et al. (1996) and Buckland and Elston (1993).

The data are presented in Figure 9 and represent presence or absence of red deer. A
lattice has been laid over the region of interest and the data reduced to presence or absence
in each of our n grid cells. We denote the data y � �y1, . . . , yn� and let yi � 1 indicate
presence and yi � 0 indicate absence of deer. In each location i we have four covariates
denoted zij, j � 1, .., 4. These are altitude and mires, as seen in Figure 9, and Cartesian
coordinates easting and northing respectively. These have all been standardized to have
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Figure 9: Red deer data set. Left plot shows presence/absence of reed deer, white indicating
presence (yi � 1) and black representing absence (yi � 0). Middle plot shows altitude
covariate, white indicating high altitude and black indicating low altitude. Right plot
shows mires covariate, again with white indicating a high value and black indicating a low
value.

zero mean and unit standard deviation.
Our goal is to do model choice as well as investigate posteriors for this data set. All

four covariates can be either included or excluded from our model giving 24 possible com-
binations. We also consider 2 spatial models as well. The first model, denoted S1 is an
MRF with a 2� 2 clique, giving us the following likelihood function,

p1�y�θ
S1 , θC , z� �

1

c
exp

��
C�C

UC�yC , θ
S1� �

N�
i�1

4�
j�1

zijθ
C
j

�
, (64)

where θS1 are our spatial parameters, θC � �θC1 , θ
C
2 , θ

C
3 , θ

C
4 � are our covariate parameters

and UC�yC , θ
S1� assigns the associated clique potential to the configuration yC . Assuming

our clique potentials to be translation and rotation invariant we get 6 classes of clique con-
figurations, see Figure 10. We define θS6 � 0, this then leaves us with 5 spatial parameters,
θS1 � �θS1

1 , θS1
2 , θS1

3 , θS1
4 , θS1

5 �. The second spatial model S2, is the Ising model with a trend
term, giving us the following likelihood function,

p2�y�θ
S2 , θC , z� �

1

c
exp

�
θS2
1

2

�
i�j

I�yi, yj� � θS2
2

n�
i�1

yi �
N�
i�1

4�
j�1

zijθ
C
j

�
. (65)

Excluding a covariate from the model is obviously equivalent to setting θCj � 0. To explore
the posterior distribution as well as decide which model best fits the data we use a reversible
jump Markov chain Monte Carlo algorithm (RJMCMC), see Green (1995). Following
Tjelmeland and Austad (2010), we adopt wide independent priors for our parameters. For
the components of θS1 and θC and for θS2

2 we use independent normal priors with zero
mean and variance 20. For θS2

1 we use a gamma prior with mean 2
3

and variance 2
9
. Thus

our posterior for S1 becomes,

p1�θ
S1 , θC �y, z��p1�y�θ

S1 , θC , z�
5�

i�1

p�θS1
i �

4�
i�1

p�θCi �, (66)
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Figure 10: Classes of clique configurations for a translation and rotation invariant 2 � 2
clique. Each column includes the configurations of the clique represented by the associated
parameter. Each gridcell is either 1 (white) or 0 (black).

where p�θS1
i � and p�θCi � are the normal priors defined above. For S2 our posterior becomes,

p2�θ
S2 , θC �y, z��p2�y�θ

S2 , θC , z�pg�θ
S2
1 �p�θS2

2 �
4�

i�1

p�θCi �, (67)

where pg�θ
S2
1 � is the gamma prior defined above. To evaluate the likelihood we replace

p1�y�θ
S1 , θC , z� and p2�y�θ

S2 , θC , z� by our approximations p̃1�y�θS1 , θC , z� and p̃2�y�θ
S2 , θC , z

�. In each iteration of our sampler we perform one of four proposals. With probability
0.2, we remove one of the currently active covariates j, assuming all covariates are not
off. The second proposal, again with probability 0.2, is to activate one of the currently
inactive covariates j, assuming that all covariates are not on. The third proposal does not
propose to change the model, but only change one of the parameters. With probability
0.5 we propose to change one of the spatial parameters or one of the covariate parameters
(chosen uniform at random) by adding to the current value a value u drawn from a normal
distribution with zero mean and variance 0.12. The last proposal, with probability 0.1, is to
propose to switch spatial model from Sk to S�k�1�. When we add a new covariate we propose
a new value for the covariate by sampling from the prior. Likewise, when we switch spatial
models we propose new values for the spatial parameters by sampling from the priors.
We ran the algorithm for 200000 iterations, repeating the run for different starting values
of parameters and different starting models. To ensure that our approximation was not
influencing results too much we used different values of ν and compared the results. Testing
values of ν up to 10, we found that for nu � 6 there was no discernable difference in the
results. The results presented from here on are for ν � 6. In our runs we found that the
algorithm would never switch from the MRF model to Ising model, but when started with
the Ising model would switch to the MRF model and not switch back. We thus concluded
that the data clearly prefer spatial model S1 and re-ran the algorithm using only spatial
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Figure 11: Trace plot for a RJMCMC run using spatial model S1, from top to bottom, left
to right, the first five plots show the spatial parameters �θS1

1 , θS1
2 , θS1

3 , θS1
4 , θS1

5 � followed by
covariate parameters �θC1 , θ

C
2 , θ

C
3 , θ

C
4 � for altitude, mires easting and northing respectively.

Average value after a burn-in of 50000 iterations is represented by the red line and listed
next to the parameter names.

model S1. Trace plots from one such run can be seen in Figure 11. The acceptance rate
for the run presented in Figure 11 was 0.193. Counting the number of occurrences of each
covariate set we found that four different models made up 0.99 of the occurrences, they
can be seen in Table 3. To see how well our model fits the data it can be interesting to
sample sets of parameters from our RJMCMC run and use these parameters to simulate
from the model in (64). We generated 9 such simulations, presented in Figure 12. As we
can see, the model seems to capture the spatial patterns present in the data. The slight
clumping as seen in the data seems to be present in the simulations as well. We also note,
both from the simulations in Figure 12 and the trace plots in Figure 11 that the spatial
terms of the model seem to catch much of the information in the data. If the covariates
were more important we would expect the simulations to more closely resemble the data
in where the deer occur. We ran the RJMCMC chain several times and these runs indicate
a convergence after approximately 50000 iterations. The results presented in this report
represent the last run that was performed.
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Altitude Mires Easting Northing Frequency
� � 0.440
� � � 0.359
� � � 0.099
� � � � 0.091

Sum 0.990

Table 3: Frequency of occurrences for the four most occurring covariance sets. An �
indicates that the associated parameter is present in the model.

Figure 12: 9 realizations from p2�y�θ
S2 , θC , z� for values of θS2 and θC sampled from the

RJMCMC run (discounting a burn-in of 50000 iterations).
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6.4 Red Deer example part 2

As a further test of our approximation we also considered another approach to the data.
We can view our data y, not as true locations of red deer, but merely observations of some
latent field x representing the true presence or absence of red deer. Pursuing this line
of thought we introduce a probability P of observing deer, given the presence of deer, so
p�yi � 1�xi � 1� � P and subsequently p�yi � 0�xi � 1� � 1 � P . Note that if deer is
not present there is no chance that any will be observed, so p�yi � 1�xi � 0� � 0 and
p�yi � 0�xi � 0� � 1. We model x as an MRF,

p�x�θS1 , θC , z� �
1

c
exp

��
C�C

UC�xC , θ
S1� �

N�

i�1

4�

j�1

zijθ
C
j

�
, (68)

while the distribution of y now conditional on x becomes,

p�y�x,P� �
n�

i�1

p�yi�xi,P�. (69)

Our interest is still in the posterior distribution of the parameters given the data, were P
is now a new parameter to which we assign a uniform prior. We can write the posterior as,

p�θS1 , θC ,P �y, z��p�y�x,P�p�x�θS1 , θC , z�
�5

i�1 p�θ
S1
i �
�4

i�1 p�θ
C
i �

p�x�y, θS1 , θC ,P , z�
. (70)

The distribution p�x�θS1 , θC , z� is the MRF in (68) while p�x�y, θS1 , θC ,P , z� is essentially
an MRF conditional on observations. Since we could not observe deer if no deer were
actually present, if yi � 1, then xi must be 1 as well. This means a number of xi’s are no
longer considered variables, but instead set equal to 1. Clearly,

p�x�y, θS1 , θC ,P , z��p�x�θS1 , θC , z�p�y�x,P�

� exp

��
C�C

UC�xC , θ
S1� �

N�
i�1

4�
j�1

zijθ
C
j �

n�
i�1

log�p�yi�xi,P��
�
,

where we note that this includes a normalizing term dependent on y. As before we apply
our approximation to get an approximate posterior,

p̃�θS, θC ,P �y, z��p�y�x,P�p̃�x�θS1 , θC , z�
�5

i�1 p�θ
S1
i �
�4

i�1 p�θ
C
i �

p̃�x�y, θS, θC ,P , z�
. (71)

We should note the choice for x when evaluating this. Obviously if we did an exact
evaluation the choice of x would not matter, however since the error of our approximation
might be different for different values of x, the choice of x could influence the results. In
our algorithm we have simply generated a realization of x from p̃�x�y, θS, θC , z�, using our
approximation, and used this value when evaluating the posterior. Our experience is that
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Figure 13: Trace plot for a RJMCMC run using spatial model S1 and including the ob-
servation probability P , from top to bottom, left to right, the first five plots show the
spatial parameters �θS1
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for altitude, mires easting and northing respectively. Average value after a burn-in of 50000
iterations is represented by the red line and listed next to the parameter names.

0 50000 100000 150000 200000

0.
2

0.
4

0.
6

0.
8

1.
0

P (0.331)

Figure 14: Trace plot for P for RJMCMC run using spatial model S1 with probability of
observing deer P .
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Altitude Mires Easting Northing Frequency
� � � � 0.230
� � � 0.127

� � 0.121
� � � 0.120

Sum 0.598

Table 4: Frequency of occurrences for the four most occurring covariance sets using the
observational probability P . An � indicates that the associated parameter is present in
the model.

this works quite well. As before we ran the algorithm for 200000 iterations, trace plots for
the spatial and covariate parameters can be seen in Figure 13, while a trace plot for P can
be seen in Figure 14 The acceptance rate for the run presented in Figures 13 and 14 was
0.079. A count of the top four models is presented in Table 4. The top four models made
up a total of 0.598 of the model occurrences. As in the previous section we tested how well
our model fits the data by sampling sets of parameters from our RJMCMC run and using
these parameters to simulate from our model. This was done by first simulating x from
p�x�θS, θC , z� and then simulating y from p�y�x,P�. We generated nine such simulations,
presented in Figure 15. As we can see from the trace plots and the lower acceptance rate,
the introduction of P makes it harder for our algorithm to move around in the distribution.
There also seems to be a greater variance in the parameters. This could be attributed to P
settling around such a low value (0.331). A low value for P means more uncertainty around
our observations and allows for a greater variation in the fitted model. This is also reflected
in the model choice part of our algorithm as the four top models only made up about 60%
of the occurrences. The realizations in Figure 15 do not seem entirely unreasonable, so the
model is capturing some of the information in the data. The low value of P might seem a
bit unrealistic, so one should perhaps reconsider the model. Again however, our primary
purpose with this example is not to do a full analysis, but demonstrate applications.

7 Closing remarks
In this report we have shown how we can derive an approximate forward-backward al-
gorithm by studying how to approximate the pseudo-Boolean energy function during the
summation process. This approximation can then be used to work with statistical models
such as MRFs. It allows us to produce approximations of the normalizing constant and
likelihood as well as realizations, from models that would normally be too computationally
heavy to work with directly. We have demonstrated the accuracy of the approximation
through simple experiments with the Ising model, demonstrated some of its flexibility by
applying our approximation to a real life data set as well as constructed a rejection sam-
pling algorithm. We round off now with some possible future extensions as well as some
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Figure 15: Nine realizations from p�y�x,P� where x is simulated from p�x�θS, θC , z� for
values of θS, θC and P sampled from the RJMCMC run (discarding a burn-in of 50000
iterations).

closing remarks.
The approximation we have defined was inspired by the work in Tjelmeland and Austad

(2010) and there are many parallels between the two. There the authors represented the
energy function as a binary polynomial and dropped small interactions while running the
forward-backward algorithm. This worked quite well, but had the drawback that for models
with too strong interactions the approximation would either include too many terms and
thus explode in run-time, or if the ε parameter was set low enough to run the algorithm,
exclude so many of the interactions that the approximation became uninteresting. In a
sense the work in this report has been an effort to deal with this issue. The construction
of the algorithm allows a much more direct control over the run time. Also, by not just
dropping small terms, but approximating the pseudo-Boolean function in such a way that
we minimize the error sum of squares we manage to get better approximations of the
models with stronger interactions. This also means that our approximation is even better
suited for models with larger neighborhoods, although, there is definitely still room for
improvement in these hard cases.

In our setting the sample space of our pseudo-Boolean function has a probability mea-
sure on it, however in our discussion of approximating pseudo-Boolean functions we have
considered each state in the sample space as equally important. Assuming we are inter-
ested in approximating the normalizing constant, this is probably far from optimal and is
reflected in our results. As we can see for the Ising model our approximation works better
the smaller the interaction parameter θ. Our initial approximation attempts to spread the
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error of removing interactions as evenly as possible among the states. Ideally, we would
like to have small errors in states with a corresponding high probability, and larger errors
in states with low probability. To get this approximation we could minimize a weighted
error sum of squares function,

WSSE�f, f̃� �
�

x�Ω

��
f�x� � f̃�x�

�2

w�x�

�
, (72)

where for the weight function w�x� we use the un-normalized probability distribution
exp�f�x��. Note that our current implementation is equivalent to letting w�x� be a uni-
form distribution. This problem has also been studied in the literature, see for instance
Ding et al. (2008, 2010). However, unlike the unweighted case an explicit solution is not
readily available for a probability density like the MRF. The iterative method of removing
interactions does not work here, nor can we group the equations like we do with the SOIR
approximation. We can proceed as before and take partial derivatives with respect to β̃λ

for all λ � S̃ to get the system of equations,
�
x�Ωλ

w�x�f̃�x� �
�
x�Ωλ

w�x�f�x� � λ � S̃. (73)

The computational cost of solving this linear system will be considerably higher than before,
however this may be compensated for by a more accurate approximation. In particular in
cases where the uniform assumption is very poor, we believe this trade off will be worth it.
A second tactic available is to use an approximate distribution as weights instead of the
full MRF. Ding et al. (2008) show how solutions exist for simple distributions and these
might still capture where we want to minimize the error to get a good approximation.
Depending on the distribution this might be a tactic worth pursuing as well.

We should note that the approximate forward-backward algorithm, defined in this re-
port, applied to MRFs defines a probability distribution p̃ν�x� and is an MRF in itself.
In fact it is an example of a partially ordered Markov model (POMM), see Cressie and
Davidson (1998). In this respect we can think of the approximation as a dynamic way
of fitting POMMs to a general MRF. This is different from the treatment of POMMs in
Cressie and Davidson (1998) where the partial ordering is specified by the user.

In our examples we have tested values for our algorithm parameter ν up to ν � 13.
As ν defines the size of Ňi it should be perfectly plausible to run the algorithm for values
up to ν � 20, which should give some improved results over ν � 13. We have neglected
to demonstrate this here due to time constraints. It should also be mentioned that in
our examples we have neglected to take advantage of a technique that can be used when
summing out variables in a lexicographical order on a lattice. When the parameters βλ

are stationary we very quickly approach a stationary phase after summing out the first
few columns. Thus we only really need to sum out the first few columns and the last,
see Pettitt et al. (2003) for a demonstration of this technique. This could give substantial
gains in run-time, particularly for the 100� 100 lattice.
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One of the nice properties of our approximation is its flexibility for handling many types
of models. We could apply it to larger neighborhood structures or more special types of
MRFs such as Bayesian networks.

In Section 2.3 we showed how we could go from removing just one interaction βλ at
the time in Section 2.2 to removing sets of interactions Sλ, simultaneously. This gave the
advantage of faster computations, but more importantly a better understanding of how
the error was distributed. That in itself was interesting, but it also allowed us to find
better upper and lower bounds. The next step would be to consider removing all the
interactions needed to reduce �Ňi� to ν at once. This might lead to a better understanding
of the approximation, which again might lead to better upper and lower bounds or ways
of improving the approximation itself.
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A Optimal bounds for pseudo-Boolean functions
This section extends the work presented in Section 2.4. We show how a certain design
of upper and lower bounds for pseudo-Boolean functions is optimal in the sense that it
minimizes the error sum of squares. The term optimal must be used with some care
however, as clearly our bounds are optimal with respect to the chosen representation set
S̃. For this section we define S̃ by the following, it must be dense and is not allowed to
contain any of the interactions in S�i,j�, but otherwise can be chosen freely. So it may
contain interactions not originally in S. As such it could be that �S̃� � �S�, making the
bounds somewhat meaningless. None the less, we feel there is some insight to be gained
from this discussion. Before we begin we present a theorem which we will need later in the
discussion.
Theorem 6. Let f�x� be a pseudo-Boolean function f�x� �

�
Λ�S β

Λ
�

k�Λ xk with the
property that βΛ � 0 for all Λ � S�i,j�. In other words there are no interactions involving
both i and j. Then for any configuration of x��i,j�,

f�xi � 0, xj � 0, x��i,j�� � f�x1 � 1, x2 � 1, x��i,j��

� f�x1 � 1, x2 � 0, x��i,j�� � f�x1 � 0, x2 � 1, x��i,j��.

Proof. Since βΛ � 0 for all Λ � S�i,j� we can always rewrite f�x� as follows,

f�x� �
�

Λ�S�i,j�

�
��βΛ��i,j� � βΛ��j�xi � βΛ��i�xj�

�
k�Λ��i,j�

xk

�
� . (74)

Thus,

f�xi � 0, xj � 0, x��i,j�� � f�x1 � 1, x2 � 1, x��i,j�� �

�
�

Λ�S�i,j�

�
��βΛ��i,j��

�
k�Λ��i,j�

xk

�
��

�
Λ�S�i,j�

�
��βΛ��i,j� � βΛ��j� � βΛ��i��

�
k�Λ��i,j�

xk

�
�

�
�

Λ�S�i,j�

�
��βΛ��i,j� � �βΛ��i,j� � βΛ��j� � βΛ��i��

�
k�Λ��i,j�

xk

�
�

�
�

Λ�S�i,j�

�
��βΛ��i,j� � βΛ��i��

�
k�Λ��i,j�

xk

�
��

�
Λ�S�i,j�

�
��βΛ��i,j� � βΛ��j��

�
k�Λ��i,j�

xk

�
�

� f�x1 � 1, x2 � 0, x��i,j�� � f�x1 � 0, x2 � 1, x��i,j��.
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This proves the theorem.

Assume we have an approximation of f�x�, AS̃�f�x�� � f̃�x� with the requirement that
S̃ should not contain any interactions involving both i and j. The goal is to construct
optimal upper and lower bounds, i.e.

fU�x� � argmin�SSE�f, fU��, such that fU�x� � f�x� � x � Ω, (75)

and
fL�x� � argmin�SSE�f, fL��, such that fL�x� � f�x� � x � Ω. (76)

We define our upper and lower bounds as f�U�x� � f̃�x� � g�x� and f�L�x� � f̃�x� � h�x�,
where g�x� � 	f�x� 
 f̃�x�	 and h�x� � 
	f�x� 
 f̃�x�	. To prove that these bounds are
optimal, we will show that for any pseudo-Boolean function �f�x� �

�
Λ�S̃

�βΛ
�

k�Λ xk such
that �f�x� � f�x� 
 f�U�x�, SSE�f, f�U� � SSE�f, f�U � �f�, except when �f�x� � 0, where the
two are equal. Since SSE�f, f�U � �f� �

�
x�f�x�
f�U�x��

2�
�

x�
�f�x��2�2

�
x

�f�x��f�U�x�


f�x��, it is sufficient to show that
�

x
�f�x��f�U�x� 
 f�x�� � 0. We start by studying

f�U�x� 
 f�x�, inserting our expression for the error from (36) we get,

f�U�x� 
 f�x� � 	f�x� 
 f̃�x�	 
 �f�x� 
 f̃�x��

�
1

4

������

�

Λ�S�i,j�

�
�βΛ

�
k�Λ��i,j�

xk

�
�
������� �xixj �

1

4
�

1

2
xj �

1

2
xi�

�
Λ�S�i,j�

�
�βΛ

�
k�Λ��i,j�

xk

�
� .

To study this expression more closely we first consider an x��i,j� where�
Λ�S�i,j�

	
βΛ



k�Λ��i,j� xk

�
� 0. Then,

f�U�x� � f�x� �

�
0 xi � 0, xj � 0� xi � 1, xj � 1,

2�f�x� � f̃�x�� xi � 1, xj � 0� xi � 0, xj � 1.
(77)

Equivalently, for an x��i,j�, for which
�

Λ�S�i,j�

	
βΛ



k�Λ��i,j� xk

�
	 0 we get,

f�U�x� � f�x� �

�
0 xi � 1, xj � 0� xi � 0, xj � 1,

2�f�x� � f̃�x�� xi � 0, xj � 0� xi � 1, xj � 1
.
(78)

Note that this means that for half of the configurations of x � Ω, f�U�x� � f�x� is zero. We
define,

Ω0 � �x : f�U�x� � f�x� � 0
. (79)

Ω1 � �x : f�U�x� � f�x� � 2�f�x� � f̃�x��
. (80)

Note that Ω0  Ω1 � Ω and �Ω0� � �Ω1�. Using (79) and (80) we get,
�
x�Ω

�f�x��f�U�x� � f�x�� � 2
�
x�Ω1

�f�x��f�x� � f̃�x��, (81)
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since f�U�x� � f�x� � 0 for all x � Ω0. The function �f�x��f�x� � f̃�x�� clearly has no
interactions involving both i and j since �f�x� is defined over the set S̃, which is designed
not to include any interactions involving both i and j, and �f�x� � f̃�x��, see (24), is
independent of xi and xj and includes no interactions with either i or j. Thereby Theorem
6 applies to �f�x��f�x�� f̃�x��. All terms in the sum

�
x�Ω1

�f�x��f�x�� f̃�x�� can be grouped
into groups of two terms that are either

�f�xi � 0, xj � 0, x��i,j���f�xi � 0, xj � 0, x��i,j�� � f̃�xi � 0, xj � 0, x��i,j���

� �f�xi � 1, xj � 1, x��i,j���f�xi � 1, xj � 1, x��i,j�� � f̃�xi � 1, xj � 1, x��i,j���, (82)

or,

�f�xi � 1, xj � 0, x��i,j���f�xi � 1, xj � 0, x��i,j�� � f̃�xi � 1, xj � 0, x��i,j���

� �f�xi � 0, xj � 1, x��i,j���f�xi � 0, xj � 1, x��i,j�� � f̃�xi � 0, xj � 1, x��i,j���, (83)

depending on x��i,j�. Theorem 6 means that the sum in (82) is equal to the sum in (83).
Thus since Ω1 � Ωc

0,
�

x�Ω1

�f�x��f�x� � f̃�x�� �
�

x�Ω0

�f�x��f�x� � f̃�x��. (84)

Combining (81) and (84) we have that,
�

x�Ω

�f�x��f�U�x� � f�x�� � 2
�

x�Ω1

�f�x��f�x� � f̃�x�� � 2
�

x�Ω0

�f�x��f�x� � f̃�x�� � 0,

since �f�x� � 0 for all x � Ω0. Therefore f�U�x� � fU�x�, and through a similar argument
f�L�x� � fL�x�.
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