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Abstract

Using a simulation based model, with the Black-Scholes framework for equity and
The LIBOR Market Model for interest rates, we study market risk in multi asset-
class portfolios, with static and dynamic weighting. The risk measures considered
are Value-at-Risk and Expected-Tail-Loss. The theoretical foundation is intro-
duced and imperfections in the models and their assumptions are pointed out.
The validity of the models and risk measures is tested using a backtesting proce-
dure against data ranging from September 1999 to September 2009, with particular
emphasis on the turbulent period of 2007 to September 2009. The results indicate
that the models perform slightly worse on the portfolio with the added complex-
ity of a dynamic weighting regime. No evidence of the models performing less
satisfactory under the latest financial turbulence is found.
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Chapter 1

Introduction

1.1 Background

The current financial crisis began with the breakdown in the US subprime mort-
gage market in July 2007. It started as a credit crisis, with the interbank credit
market drying up. And until September 2008 it was mainly a credit crisis, but the
collapse of the investment bank Lehman Brothers, 15th September was the start of
a downturn for the whole world-wide economy. During the past two years a large
number of banks has either been nationalized or filed for bankruptcy. The crisis
quickly evolved from an US mortgage crisis to a global financial crisis. And now
the markets are concerned about potential governmental bankruptcies in the EU
resulting in a collapse of the Euro. It is an ongoing crisis that we do not yet truly
understand the consequences of.

The area of financial risk management rapidly grew larger after the series of losses
due to derivatives in the 1990s. The concerns were that the technology behind even
more complex financial instruments had developed faster than the procedures con-
trolling them. In modern risk management today, risk measures has evolved from
just describing worst case scenarios of the risk held by traders and business units,
to be central in decisions made at every level of a financial institution. Risk mea-
sures as Value-at-Risk plays a pivotal role in the regulatory framework laid down
by the Basel Committee, determining the amount of buffer capital financial insti-
tutions are obligated to set aside. Earlier, portfolio management has been held
back by the lack of satisfactory risk measures. Hence, risk measures as Value-at-
Risk and Expected-Tail-Loss can be used to optimize portfolios and provide the
best tradeoff between risk and reward. In the light of the current financial crisis,
modern risk management can get a central part in dealing with moral-hazard prob-
lems in financial institutions. E.g. the performance-bonus systems for traders, the
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2 CHAPTER 1. INTRODUCTION

convex profit pattern in the payoff can lead to risky positions that are not in the
best interest of the institution. The system is similar to buying an option, where
the worst case is large losses, but only a lost job and a damaged reputation as a
consequence for the trader. As the best case, is huge profits leading to life long
wealth for the trader.1 The bonus systems has gotten a lot of attention by the
financial press and politicians, and a risk adjusted bonus system has been sug-
gested. Having satisfactory risk measures is the cornerstone in determining the
relationship between risk and reward.

1.2 Thesis Outline
This thesis consists of eight chapters. Chapter 2 describes financial risk and the
theoretical foundation of the two most common risk measures Value-at-Risk and
Expected-Tail-Loss. In chapter 3 and 4 we look at mathematical models to de-
scribe equity, interest rates and financial products belonging to equity and interest
rates. Chapter 6 describes the data used in this thesis and check some of the model
assumptions that are made in chapter 3 and 4 against historical data.

To evaluate our model we want to perform a backtesting. To do this we need
to define portfolios on which we test our model. In this thesis we are concerned
with market-risk resulting from changes in equity and interest rates. To keep our
work relevant in terms of real life markets, we want to analyze portfolios that
resemble those of real market participants. Given the products we analyze, it is
natural to take a closer look at the portfolios carried by life insurance companies.
Chapter 5 describes how we implement our risk estimations procedure and gives
a detailed description of the multi asset-class portfolios we consider in this thesis.
Our results are given in chapter 7 and in chapter 8 we present a conclusion and
possible extensions of the thesis.

1This in contrast to the system for risk managers which can be compared to selling an option.
At best, nothing happens, and the worst case is that they fail to detect a problem, and loose
their job.



Chapter 2

Financial Risk Management

The design and implementation of systems that identifies, measures and manage
financial risk are the core of financial risk management. Without satisfactory rou-
tines in risk management, firms can fail to identify risks that can lead to huge
losses and potential bankruptcy. To get an impression of what insufficient risk
management can lead to, one should look up the examples of Metallgesellschaft,
Orange County and Barings PLC. Financial risk is usually divided into four cat-
egories: market risk, credit risk, liquidity risk and operational risk. It should be
noted that these often overlap. Let us consider a rogue trader who holds large risky
positions, and then suffer large losses on the positions. The losses of the large risky
positions comes from market risk, but on the second hand some internal process
must have failed to let him take these positions. Hence, in this situation there is
overlap between market risk and operational risk. In this thesis we will consider
market risk. But for the sake of completeness we will give a short introduction to
the other types of risk.

Market Risk

Market risk, is risk resulting from movements in market prices or the volatility
of market prices. Market risk is measured as absolute risk, i.e. loss measured in
the relevant currency. Or as relative risk, i.e. loss relative to a benchmark index.
Market risk is often classified as directional and nondirectional risk. Directional
risk is the exposure to the direction of movements in financial variables, e.g. stock
prices and interest rates. Nondirectional risk involves nonlinear exposures and
exposures to hedged positions or to volatilities. Of the models for risk estimation,
the models for estimating market risk are the most developed.

3



4 CHAPTER 2. FINANCIAL RISK MANAGEMENT

Credit Risk

Credit risk arises when counterparties may not be willing, or able, to fulfill their
obligations. The effect is measured by the cost of replacing cash flows if the
other party defaults. Losses associated with credit risk can occur before an actual
default. This because the mark-to-market value of debt will change with credit
events, e.g. debt downgrades. This creates some overlap between market risk and
credit risk. One form of credit risk is settlement risk. This occurs when cash flows
are exchanged, but not simultaneously. Then it is a chance for one counterparty
to default, before both have made its payments. There are some examples of
credit risk, leading to legal risk. Because investors, that have lost money on a
transaction, often will try to turn to a court to make the trade invalid. However
the most important form of credit risk comes from lending out capital and holding
bonds. This situation arises when counterparties are not able to handle their
debt. Here the counterparty can take many forms, from homeowners (e.g. as in
the U.S. 2008-2009) to governments (e.g. as for Argentina 2002). In recent years
much work has been put into developing satisfactory models to estimate credit
risk. Famous models are CreditMetrics (by J.P. Morgan), the KMV model (now
owned by Moody’s) and CreditRisk+ (by Credit Suisse Financial Products).

Liquidity Risk

Liquidity risk takes two forms, asset liquidity risk and funding risk. Asset liquidity
risk arises when a transaction fails to be executed at prevailing market prices, due
to the size of the position relative to normal trading volume. This can be factored
loosely into VaR, by choosing the risk horizon greater than an orderly liquidation
period. Funding risk arises when one fails to meet obligated payments, which may
force early liquidation, and transforming paper losses into realized losses. This is
highly relevant for leveraged portfolios, which are subject to margin calls.

Operational Risk

Operational risk, is risk relating to unforeseen failures such as fraudulent activi-
ties, internal systems failures, natural phenomena or unexpected changes in legal
and regulatory environments. Some experts claims that operational risk is just
as significant as market risk. If we investigate some of the most recent and im-
portant banking problems, we find that operational risk often plays an important
role. However, to quantify operational risk is challenging and requires routines for
collection of internal data of losses due to operational risk. It can be impossible
for small institutions to collect sufficient data. Quantifying operational risk is still
in its infancy and the best protection against operational risk consists of strong
internal processes.
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2.1 Value-at-Risk (VaR)
VaR is a statistical measure of downside risk, based on current positions. It has
grown to be the industry standard in the field of Risk Management, since J.P.
Morgen introduced the new measure in the early 1990s. The greatest advantage
of VaR is that it summarizes risk in one easily understood number. VaR answers
the question: what is the greatest loss that can occur at a given confidence level
within a given time horizon? Let us define VaR in a formal fashion

VaRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}, (2.1.1)

where α is the given confidence level and L is the loss not exceeding l. According
to Jorion (2007), [10], these steps are required to calculate VaR

• Mark-to-market the current portfolio (e.g., $100 million).

• Measure the variability of the risk factor (e.g., 15% per annum).

• Set the time horizon, or the holding period (e.g., adjust to 10 trading days).

• Set the confidence level (e.g., 99%, which yields a 2.33 factor assuming a
normal distribution).

• Report the worst potential loss by processing all the preceding information
into a probability distribution of revenues, which is summarized by VaR (e.g.,
the worst loss over 10 trading days is $ 7 million at the 99 percent confidence
level).

Marking the positions to market should be done regardless of risk-measure and
accounting practice. It is the only technique that measures the current value of
assets and liabilities. There are many ways to measure the variability of the risk
factor, and it will be discussed later. A rule of thumb is that the time horizon
should represent the time needed to liquidate the portfolio, or hedge away the
market risk. Confidence levels are usually set to be between 95% and 99%. We
are most concerned of the tails of the loss distribution, i.e. relative high α values.
Seeing that it is challenging to estimate extreme rare events, it should not be chosen
too high either. Another approach that can be used by financial institutions is to
match confidence level to a wished credit rating.
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2.2 Expected Tail Loss (ETL)
Value-at-Risk does not give us any information of how severe the losses that occur
with probability (1 − α) can be. Let us consider two portfolios with the same
VaR estimates but different loss distributions, where one has heavier tails than
the other. It is then clear that these portfolios carry different risk, even with equal
VaR estimates. Expected tail loss (ETL) (also known as expected shortfall (ES),
conditional loss or conditional Value-at-Risk (CVaR)) answers the question: how
much can we loose if we are "hit" beyond VaR? ETL is thus concerned with the
distribution of the tails in the loss distribution. For a loss L with E(|L|) ≤ ∞
and cumulative distribution FL the expected tail loss at a given confidence level
α ∈ (0, 1) is formally defined as

ETLα = 1
1− α

∫ 1

α
qu(FL)du, (2.2.1)

where qu(FL) is the quantile function of the loss distribution FL. By noticing that
qu(FL) = VaRu(L) we can write equation (2.2.1) as

ETLα = 1
1− α

∫ 1

α
VaRu(L)du. (2.2.2)

ETL can be interpreted as the expected loss given that it exceeds VaR,

ETLα = E(L|L ≥ VaRα) = 1
1− αE(L;L ≥ qα(L)). (2.2.3)

2.3 Calculating the Risk Measures
There are several ways to calculate VaR, and we will only be implementing Monte-
Carlo valuations. But for the sake of completeness we will mention other possible
solutions.

2.3.1 Nonparametric Calculations
This is the most general method to calculate the risk measures. It makes no prior
assumption about the shape of the distribution of the risk factor. But instead
we use the empirical distribution of historical data. We then simulate losses by
drawing changes in the risk factor from our empirical distribution. Let us define
L̂m to be the resulting loss of a change in a risk factor in period m.

L̂m = −(f(t+ 1, zt + xm)− f(t, zt)) (2.3.1)
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If this is repeated n times we get a distribution of the portfolio loss. Then both
VaRα and ETLα can be calculated by empirical quantile estimation. This can be
summarized as:

• Draw n possible changes in the risk factor from the empirical distribution.

• Estimate the portfolio losses L̂t+1,1, . . . , L̂t+1,n, sort them.

• VaRα is then L̂t+1,α·n.

• ETLα is then found by averaging L̂t+1,α·n, . . . , L̂t+1,·n.

The greatest advantage of this model is that it does not assume anything about the
future distribution of returns. But this is also its largest drawback since it demands
a lot from the data set available. There is also no guarantee that historical returns
are satisfactory predictors of future returns.

2.3.2 Parametric Calculation
By assuming a distribution from the parametric family, e.g. the normal distribu-
tion, the VaR computation can be simplified considerably. The VaR can then be
derived directly from the standard deviation of the portfolio, by using a multiplica-
tive factor that corresponds to a given confidence level. The ETL can be measured
directly by equation (2.2.1). The name parametric derives from the involvement of
parameter estimation, e.g. the standard deviation and the mean of a probability
distribution. This method is simple and yields quite accurate measures of VaR
and ETL. Its largest drawbacks is whether the distribution assumption is realistic,
and the difficulties with parameter estimation.

2.3.3 Monte Carlo Simulation
Monte Carlo simulation is an extension of the parametric approach. We simulate
possible paths of market returns using stochastic models. This to build an em-
pirical distribution of future losses. Then the VaR quantile can be estimated by
sorting the M simulated losses, and pick element α ·M . ETL can be estimated
by finding the mean of the VaR quantile. With this approach we can deal with
non-linear securities. Flexibility is what makes Monte Carlo simulation the most
powerful approach in measuring VaR and ETL. A major drawback is the fact that
it can be computationally expensive.
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2.3.4 VaR and ETL as risk measures
According to Artzner et al (1999), [1], a risk measure, ρ(·) should satisfy these
properties:

• Monotonicity: For all X and Y with X ≤ Y , we have ρ(Y ) ≤ ρ(X). If a
portfolio has systematically lower returns than another, then its risk must
be higher.

• Translation invariance: For all real numbers α we have ρ(X+α) = ρ(X)−α.
Adding α cash to a portfolio should reduce the risk by α.

• Positive Homogeneity: For all α ≥ 0, ρ(αX) = αρ(X). Increasing the size
of a portfolio by a factor α should scale its risk by the same factor.

• Subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2). Merging portfolios cannot
increase risk.

A risk measure satisfying these four properties is coherent. Artzner et al (1999)
shows that general VaR fails to satisfy the last property, while ETL is a coherent
risk measure. We note that if VaR is calculated under a distribution for which all
prices are jointly normally distributed, then VaR do satisfy subadditivity.



Chapter 3

Equity Modeling

3.1 Equity
Equity represent the ownership of a small part of a company. This small part can
be a share, or any other security, that ensures its owner a part of the company.
This is a usual way for companies to raise capital. The owner of a share is re-
ferred to as a shareholder. The company is in reality selling off future profits. A
company’s purpose is often seen as to maximize the profit to its shareholders. By
paying dividends and reinvesting profit, one can achieve this. The latter to increase
the value of the company and its shares. If we take a look at charts describing
the history of share prices, we immediately see the resemblance to a random walk.
This is formalized by the efficient market hypothesis(EMH), first given by Fama
(1970), [5].

The EMH states that: the past history is fully reflected in the present price of
an asset, which does not hold any further information and that the market respond
immediately to new information about an asset.

A consequence of the EMH is that we cannot predict future asset prices, but
that does not mean that our models cannot tell us anything. If we want to model
the return of an asset, we would expect that investors want a time dependent
return on their investment. And from the EMH we would expect a random term
with some level of volatility. If we put this together in a mathematical sense we
get

dS

S
= µdt+ σdW (3.1.1)

where µ is the drift, σ the volatility and dW our random term represented by a
Wiener process. Now we have a simple random walk for modeling the return on
an asset.

9
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Fundamental Theorem of Asset Pricing

The fundamental theorem of asset pricing states that the opportunity of risk-
free instantaneous profit does not exist in the financial market. Also known as
the NFLVR Condition (No Free Lunch with Vanishing Risk). A good intuitive
explanation of this is given in Wilmott (1995), [21]. For a more formal proof see
F. Delbaen and W. Schachermayer (1994), [4].

3.2 Derivatives
Derivatives, or contingent claims, refers to a contract where one agrees on a future
exchange of cash or an underlying security. Thus, it is a financial instrument
that is derived from some underlying, e.g. an asset, index or interest rate. The
simplest examples of derivatives are the forward and futures contracts. A forward
contract is a contract where two parties agrees on exchange of an underlying at
a predetermined price at a future-date. In this derivative both parties has an
obligation to fulfill the terms given in the contract. There is also a counterparty
risk, i.e. it exists a risk of one party to default. A futures contract is basically
the same as a forward contract with some minor technical differences. Futures
are normally traded on an exchange and the change in a futures value is paid
every day. This eliminates the counterparty risk. But it can be shown, Shreve
(2004), [18], that when interest rates are nonrandom the futures price and the
forward price agrees. An option is a contract where its holder has the right, but
not the obligation, to take some action. E.g. sell or buy the underlying in the
future. On the other hand, the writer of an option have a potential obligation, e.g.
must buy or sell the underlying in the future. The writer must be compensated
for this obligation. This compensation is referred to as the price of the option.
The simplest forms of options comes in European and American versions. In
the European version the holder has the right to take some action at a future
predetermined date. As for the American version the holder has the right to take
some action at any time before a predetermined date. A swap is a contract on
exchanging cash flows in the future.

3.3 Hedging
Hedging is a term that one often runs into when dealing with finance. Most of the
time one wants to eliminate, or at least minimize the risk of an investment. One
can do this by making another investment that offsets your original risk exposure.
This is called hedging.
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Let us consider a simple example. The small transport company FastFish Lo-
gistics has made a three year deal with one of the largest supermarket chains in
Norway, to deliver fresh fish from northern Norway to the chain stores all around
the country. The payments are determined for all the three years the contract
is valid. Because of fierce competition from East European transport companies,
their margins are low. They are concerned about rising fuel prices leading to large
losses. Since they are not in the business of speculating in fuel prices, they want
to offset this risk. To do this, they assume that the price of fuel is correlated with
the oil price. Thus hedge by buying a call option on the oil price. If the prices
of oil and fuel then rises above a given level, they loose money in their business,
but gain money from the option contract. If the hedge is done correctly they will
not have lost (or gained) money. If the opposite happens, that oil and fuel prices
decrease, they will make a greater profit.

The above mentioned example is an example of using derivatives as an insur-
ance against unwanted risk. And that is the main purpose of derivatives, even
though they are also used for speculation.

3.4 The Black-Scholes Financial Market
In this thesis we will assume that equity evolves through time as described in the
Black-Scholes framework.

In the Black-Scholes framework we make some assumptions about the financial
market. Here we will present the most important ones mentioned in Wilmott
(2006), [19].
• The underlying follows a log-normal random walk.

• The risk-free interest rate and the volatility are deterministic.

• The underlying pays no dividends.

• Delta hedging is done continuously.

• There are no transaction costs.

• The market satisfy the NFLVR condition.
In this framework the financial market consists of only two traded assets; a numéraire
and one further asset. These follow the price process

dS0(t) = rS0(t)dt, S0(0) = 1,
dS1(t) = µS1(t)dt+ σS1(t)dW, S1(0) > 0.
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And the market contains no arbitrage opportunities. The price process of any
European derivative with payoff D = D(T ) and maturity T is then given by

VD(t) = E
Q̃

(exp(−r(T − t))D(T )), t ∈ [0, T ].

Let us consider an European call option. An European call option gives its holder
the right, but not the obligation to buy the underlying equity with current price
S(t) at a given date in the future known as the expiry date T to a given price,
known as the strike price X. Hence, the payoff function for an European call
option with expiry date T and strike price X is given by

D(T ) := (S(T )−X)+ (3.4.1)

An European put option gives its holder the right, but not the obligation to sell
the underlying equity with current price S(t) at a given date in the future, known
as the expiry date T , to a given price, known as the strike price X. Hence the
payoff function for an European put option with expiry date T and strike price X
is given by

D(T ) := (X − S(T ))+ (3.4.2)
Equation (3.4) is solved for an European call option with strike price X and expiry
date T by Black-Scholes equation

CallBS(t, T,X) = S(t)N(d1)− e−r(T−t)XN(d2), (3.4.3)

where

d1 =
ln
(
S(t)
X

)
+
(
r + 1

2σ
2
)

(T − t)
σ
√
T − t , d2 := d1 − σ

√
T − t,

and N(·) is the cumulative normal distribution.

The corresponding price of an European put option is given by

PutBS(t, T,X) = e−r(T−t)XN(−d2)− S(t)N(−d1). (3.4.4)

3.5 Simulation
When pricing options we know that we can do this under the risk-neutral measure.
Under the Equivalent Martingale Measure Q̃, let the following Black-Scholes model
be given

S0(t) = ert, S1(t) = s exp
((

r − σ2

2

)
t+ σWt

)
, 0 ≤ t ≤ T ∈ (0,∞), (3.5.1)
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for a Wiener process W and positive constants r, s and σ. If we are interested in
how the price of an equity will evolve in the future, we cannot simulate under the
risk-neutral measure. We can no longer assume that the drift equals the risk-free
interest rate, so we assume that the equity has a non-zero drift µ. Thus, when
simulating equity prices under the real measure we need to replace r with µ in
equation (3.5.1).

Valuation of derivatives using Monte-Carlo simulation can be summarized by these
steps

1. Simulate one random path of the underlying.

2. Calculate the cash flow(s)/payoff(s).

3. Discount each cash flow/payoff.

4. Repeat step 1-3 to get many sample cash flows/payoffs.

5. Calculate the mean of the sample cash flows/payoffs to get an estimate of
the expected value of the cash flow(s)/payoff(s).

Monte-Carlo simulation can be used to price a wide range of derivatives with
complex payoff functions. Including path-depended derivatives, derivatives with
more than one payoff through time and derivatives that depend on more than one
underlying. The largest drawbacks of valuation with Monte-Carlo simulation are
that it can be time consuming and hardware demanding and the convergence is
often slow.

3.6 Convergence
Let us consider a simple example of using Monte-Carlo simulations to price an
European put option. From equation (3.4.4) we can check how fast our simulated
solution converge to the analytical. This is done in figure 3.6.1. We observe that
they converge fast and reaches a relative constant level at approximately 15, 000
iterations. As we would expect the At-the-Money option converges faster than
the Deep-Out-of-the-Money option. This is because when the option is deep out
of the money we need large changes in the value of the underlying to get a non-
zero payoff, as we see of the deltas in table 3.6.2. Since large changes have a lower
probability, the proportion of non-zero payoffs in the simulation is small. We know
from the Law of Large Numbers [3], that the convergence, X̄N → µ is slower. In
table 3.6.1 the simulated and analytical prices of an European put option are given,
and we see that the error is small at 105 iterations.
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Figure 3.6.1: Relative error versus number of iterations for an European put op-
tion. At-the-Money(S = X), Out-of-the-Money(S = 1.1X) and Deep-Out-of-the-
Money(S = 1.3 ·X). Assuming r = 5%, T = 1 year and σ = 20%.
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Table 3.6.1: Simulated and analytical values of an European Put Option, with
strike price X = 50, time to maturity T − t = 1 year, interest rate r = 5% and
volatility σ = 20%. 1. At-the-Money, 2. Out-of-the-Money, 3. Deep-Out-of-the-
Money.

1.(S=X) 2.(S = 1.1X) 3.(S = 1.3X)
Analytical 2.786 1.392 0.281
104 Sim. 2.797 1.340 0.294
105 Sim. 2.794 1.395 0.275
106 Sim. 2.786 1.392 0.283

Table 3.6.2: The analytical deltas of the options simulated in figure 3.6.1 and table
3.6.1.

Derivative Delta
European Put At-the-Money(S = X) -0.363
European Put Out-of-the-Money(S = 1.1X) -0.204
European Put Deep-Out-of-the-Money(S = 1.3X) -0.048
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Chapter 4

Interest Rate Modeling

4.1 Interest Rates

Interest rates can be seen as the cost of borrowing money. This cost varies with
several factors: time to maturity, the credit worthiness of the borrower and de-
nominated currency. Interest rates are usually higher for longer maturities. This
is largely explained by the fact that investors are unwilling to lock capital for long
periods of time. Modeling interest rates is more complex than modeling equity.
Some of the reasons for this are that interest rates with different maturities are
highly correlated, they cannot become negative and they are often mean revert-
ing. Another problem that arises when we want to price interest rate derivatives,
is the fact that one cannot buy "one interest rate", like we can buy one asset. This
complicates how one can hedge away risk attached to interest rate derivatives.

4.1.1 The Term Structure of Interest rates

The "term structure of interest rates" or the "yield curve" is the dependence of
interest rates on time to maturity. In figure 4.1.1 the most common forms of the
yield curve are shown. The increasing, which is the most common form of the
yield curve, long term interest rates are higher than the short term rate, since it
should be more rewarding to tie money up for a long period of time than for a
short period of time. The decreasing and the humped yield curve are both typical
for periods when the short rate is high, but expected to fall. Let us define the
zero-coupon bond pricing formula

B(t, T ) = Ẽ
[
e−
∫ T
t
R(s)ds|F (t)

]
. (4.1.1)

17
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Figure 4.1.1: The most common shapes of the yield curve: increasing, decreasing
and humped.

Once the zero-coupon bond price has been computed, we can define the yield
between times t and T to be

Y (t, T ) = − 1
T − t logB(t, T ). (4.1.2)

From these equations we can determine the long rate once we have determined the
short rate.

4.2 One-Factor Interest Rate Models
The simplest models for fixed income markets begin with a stochastic differential
equation for the interest rate. e.g.,

dR(t) = β(t, R(t))dt+ γ(t, R(t))dW̃ (t), (4.2.1)

where W̃ is a Brownian motion under a risk-neutral probability measure Q̃. When
the interest rate is described by only one stochastic differential equation, as in this
section, the model is called an one-factor model. One important property of the
one-factor models is the mean reversion property; over time, interest rates seems to
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be drawn to a long-run average. The largest drawback of one-factor models is that
they cannot capture complicated yield curve behavior. They produce deterministic
shifts in the yield curve, but not changes in its slope or curvature.

4.2.1 Vasicek Model
In the model of Vasicek there is no time dependency in the parameters and the
resulting stochastic differential equation is,

dRt = λ(µ−Rt)dt+ σdW̃t. (4.2.2)

This simple model is mean reverting, which is sensible. However, a significant
drawback is that interest rates can become negative in the model. Since the model
is relative simple, there exists an explicit formula for many interest rate derivatives.
For example the price of a zero-coupon bond is given by

B(t, T ) = eα(t,T )−Rβ(t,T ) (4.2.3)

with

β(t, T ) = 1
λ

(1− e−λ(T−t))

α(t, T ) = 1
λ2 (β(t, T )− T + t)(λ2µ− σ2/2)− σ2

2λβ(t, T )2

4.3 Heath, Jarrow & Morton Model
In this section, we will summarize the Heath, Jarrow & Morton (HJM) model,
which is described in Wilmott (2006), [20]. Instead of modeling the short rate,
and then deriving the forward rates, the HJM is modeling the whole forward rate
curve. Since forward rates are observed in the markets, yield-curve consistency is
naturally contained in this model.

Forward Rate
Let F (t;T ) be the forward rate curve at time t. The price of a zero-coupon bond
at time t, with maturity T , is then given by

Z(t;T ) = e
∫ T
t
F (t;s)ds. (4.3.1)

In the HJM framework, we assume that a zero-coupon bond behaves according to
the SDE

dZ(t;T ) = µ(t;T )Z(t;T )dt+ σ(t, T )Z(t;T )dW. (4.3.2)
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From equation (4.3.1) we get

F (t;T )− ∂

∂T
logZ(t;T ).

If we differentiate this with respect to t and substituting (4.3.2) into (4.3.1) we get
an equation for the behavior of the forward curve

dF (t;T ) = ∂

∂T
(1
2σ

2(t, T )− µ(t, T ))dt− ∂

∂T
σ(t, T )dW. (4.3.3)

We get the spot interest rate from the forward rate with a maturity equal the
current date

r(t) = F (t; t).

Assume that today is t∗ and that we know the whole forward curve, F (t∗;T ). We
can then write the spot rate for any time in the future as

r(t) = F (t∗; t) +
∫ t

t∗
dF (s; t). (4.3.4)

If we substitute equation (4.3.3) into equation (4.3.4) and differentiate with respect
to time t we get a stochastic differential equation for the spot interest rate r. This
process turns out to be non-Markov, which means that the future process is not
just dependent on the current state, but it is path dependent. This has some
unfortunate consequences; the general HJM model needs an infinite number of
state variables to define the present state. I.e. if we write the HJM model as a
partial differential equation, we need an infinite number of independent variables.
This means that if we wish to price derivatives under the HJM model, we are
left with only two options: to build a tree structure, or to estimate the necessary
expectations by simulating the risk-neutral forward rates.

4.4 LIBOR Market Model
In this section we are going to take a closer look at the LIBOR market model
(LMM) which is described in Glasserman (2004), [7]. The LMM can be seen as
the discrete version of the HJM model. The strength of the LMM lies in the
fact that it models simple forward rates. These are observed in the markets.
Hence, yield curve fitting is naturally contained in this model. Actually, the term
"market model" refers to modeling based on observable market rates. An important
benchmark in the world of interest rates is the London Inter-Bank Offered Rates
(LIBOR). LIBOR is calculated by an average of rates offered by banks in the
London wholesale money market and it is also available with different maturities
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and currencies. Let L(0, T ) be the forward LIBOR rate, which is the rate set at
time 0 for the interval [T, T + δ]. The relationship between forward LIBOR rates
and bond prices is given by

L(0, T ) = B(0, T )−B(0, T + δ)
δB(0, T + δ) . (4.4.1)

It should be noted that we assume that the LIBOR rate is risk-free. If this is
not the case, (4.4.1) may not hold exactly. In the LMM we assume a fixed set of
maturities

0 = T0 < T1 < · · · < TM < TM+1.

This because many derivatives tied to LIBOR and swap rates are only sensitive to
a finite set of maturities, and we do not need to introduce a continuum to price
and hedge these derivatives. The lengths between tenor dates are given by

δi = Ti+1 − Ti, i = 0, . . . ,M.

To simplify notation we let Bn(t) = B(t, Tn) with n ∈ {1, 2, . . . ,M + 1}. Bn(t) is
then the price of a bond at time t, with maturity Tn. And Ln(t) is the forward rate
at time t for the accrual period [Tn, Tn+1]. Then the relationship between forward
LIBOR rates and bond prices are given by

Ln(t) = Bn(t)−Bn+1(t)
δnBn+1(t) , 0 ≤ t ≤ Tn, n = 0, 1, . . . ,M. (4.4.2)

By inverting this relationship we get

Bn(Ti) =
n−1∏

j=i

1
1 + δjLj(Ti)

, n = i+ 1, . . . ,M + 1. (4.4.3)

But this equation does not determine the bond prices for a date t, that is not a
tenor date. This because the forward LIBOR rates cannot determine the discount
factor for intervals shorter than the accrual periods. We get bond prices for all
dates by defining a function η : [0, TM+1) → {1, . . . ,M + 1}, where η(t) is the
unique integer satisfying Tη(t)−1 ≤ t ≤ Tη(t). I.e. η(t) gives us the next tenor date
at time t. Using this notation we get

Bn(t) = Bη(t)(t)
n−1∏

j=η(t)

1
1 + δjLj(t)

, 0 ≤ t ≤ Tn. (4.4.4)

Bη(t)(t) is the price of the bond associated with the shortest maturity, today.
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Spot Measure

We want a model where the behavior of the forward LIBOR rates are described
by a system of SDEs on the form

dLn(t)
Ln(t) = µn(t)dt+ σn(t)>dW (t), 0 ≤ t ≤ Tn, n = 1, . . . ,M, (4.4.5)

whereW is a d-dimensional Brownian motion. In the HJM setting the risk-neutral
numéraire, β(t) = exp(

∫ t
0 r(u)du), is used. But this will not be useful in the LMM

setting since we are trying to build a model based on simple observed interest
rates. Therefore a discrete spot measure numéraire is given by

B∗(t) = Bη(t)(t)
η(t)−1∏

j=0
[1 + δjLj(Tj)].

We call the bond price divided by the numéraire the deflated bond price

Dn(t) =


η(t)−1∏

j=0

1
1 + δjLj(Tj)




n−1∏

j=η(t)

1
1 + δjLj(t)

, 0 ≤ t ≤ Tn. (4.4.6)

We notice that the spot measure numéraire B∗ cancels Bη(t)(t) and we have an
expression defined only by the LIBOR rates. Since we require that the Dns are
positive martingales, some restrictions apply for equation (4.4.5). As shown in
Glasserman (2004), [7], the required drift parameter is

µn(t) =
n∑

j=η(t)

δjLj(t)σn(t)>σj(t)
1 + δjLj(t)

(4.4.7)

Forward Measure

We can formulate the LMM under the forward measure PM+1 for maturity TM+1
and use the bond BM+1 as the numéraire. The deflated bond price then becomes

Dn(t) =
M∏

j=n+1
(1 + δjLj(t)). (4.4.8)

We see that this expression only depends on the forward LIBOR rates. This leaves
us with the systems of SDEs given by

dLn(t)
Ln(t) = −

M∑

j=n+1

δjLj(t)σn(t)>σj(t)
1 + δjLj(t)

dt+ σn(t)>dWM+1(t), 0 ≤ t ≤ Tn, (4.4.9)

where WM+1 is a standard d-dimensional Brownian motion under PM+1.
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4.5 Interest Rate Derivatives

4.5.1 Interest Rate Swap
An interest rate swap is a contract where two parties agrees on exchanging cash
flows that are represented by the interest on a notional principal, N. One side pays
fixed interest rate and the other floating interest rate. The exchange of the fixed
and floating interest payments normally occur every six months. One important
factor is that the principal is not exchanged at maturity. In figure 4.5.1 we see an

   Swap 
Arranger

Euromarket

X(AAA) Y(A)

10 bp10 bp

FeeFee

LIBOR

9.5 %

LIBOR + 25 bp9 %

Bank
Loan

Figure 4.5.1: Illustration of an example swap with a swap dealer. Where two
parties with different credit ratings exchange fixed against floating interest rate.

illustration of an example swap. The fixed interest payments can be seen as a sum
of zero-coupon bonds. If the fixed rate is RS and δ is the time between payments,
the fixed payments becomes

RSδ
N∑

i=1
Z(t;Ti). (4.5.1)

Usually the fixed rate in the swap is chosen such that the swap has zero value to
both parties when the contract is set up. The fixed rate is then given by

RS = 1− Z(t;TN)
δ
∑N
i=1 Z(t;Ti)

. (4.5.2)

Swaps are very popular and extremely liquid instruments.

4.5.2 Swaptions
A swaption is an option on a swap. It has a strike rate RE, this is the fixed rate
that will be swapped against floating rate if the option is exercised. They exist in
both European and American versions. If one is long a call swaption,( also known
as a payer swaption) one has the right to become the fixed rate payer. And if
one is long a put swaption, (also known as a receiver option) one has the right to
become the payer of the floating leg.
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4.5.3 Caps and Floors
A cap is a contract that guarantees its holder that the otherwise floating rate will
not exceed a given level. A typical cap involves a given number of cash flows a
year. Each of these cash flows is called a caplet. One can analyze a caplet as an
European call option on the interest rate. Then the payoff is given by

N · δ(Rfloat −Rcap)+

The value of a caplet under the forward measure Pn+1, with maturity Tn+1 is given
by

Vn(0) = Bn+1En+1

[
δn(Ln(Tn)−K)+

Bn+1(Tn+1)

]
, (4.5.3)

with En+1 denoting expectation under the forward measure, Pn+1. SinceBn+1(Tn+1) ≡
1, does equation (4.5.3) only depend on the marginal distribution of Ln(TN). And
this distribution is the log-normal distribution when assuming deterministic volatil-
ity. Then from Glasserman (2004), [7] the Black caplet formula is given by

Vn(0) = δnBn+1(0) [Ln(0)Φ (d1)−RcapΦ (d2)] (4.5.4)

where

d1 =
log

(
Ln(0)
Rcap

)
+ σ2Tn

2

σ
√
Tn

andd2 =
log

(
Ln(0)
Rcap

)
− σ2Tn

2

σ
√
Tn

(4.5.5)

where Φ is the cumulative normal distribution. Equation (4.5.4) is useful to cal-
ibrate the LIBOR market model, by finding the implied volatilities. A floor is
analogue to a cap, except that the floor guarantees its owner that the interest rate
will not fall below a given level. A floor consists of a sum of floorlets. Hence the
payoff of a floorlet is given by

N · δ(Rfloor −Rfloat)+ (4.5.6)

A floorlet is similar to an European put option. And the Black formula for a
floorlet is given by

Vn(0) = δnBn+1(0) [−Ln(0)Φ (−d1) +RcapΦ (−d2)] (4.5.7)

An interest rate collar is a derivative that guarantees its owner that interest rates
will be between a lower and an upper bound. One can construct a collar by
combining a long position in a cap and a short position in a floor.
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4.6 Simulation
The power of the LIBOR market model lies in its practical implementation through
simulations. In the LMM we only consider a fixed set of maturities and we only
need to discretize the time axis. The time grid to simulate over becomes

0 = t0 < t1 < · · · < tm < tm+1.

For simplicity and computational speed we will choose the time steps to be the
tenor dates, i.e. we will simulate from one tenor date to another. We will also
choose constant volatilities σn. From equation (4.4.9) we know that simulation of
the forward LIBOR rate is a special case of simulation of a system of SDEs. Using
an Euler scheme to discretize equation (4.4.9) under the forward measure we get

L̂n(ti+1) = L̂n(ti) exp
((
µn(L̂(ti), ti)− 1

2σ
2
n

)
∆t+

√
∆tσnZ̃i+1

)
(4.6.1)

where ∆t = ti+1 − ti, Z̃ ∼ N(0,ρ) and

µn(L̂(ti), ti) = −
M∑

j=n+1

δjL̂j(ti)σnσj
1 + δjL̂j(ti)

(4.6.2)

note that µM ≡ 0. This means that we simulate LM without discretization error
under the forward measure PM+1. Another thing to notice is that Ln is close to
log-normal, when we have chosen σn to be constant. And equation (4.6.1) keeps
interest rates positive, which is preferable in an interest rate model. It is important
to realize that we do not intend to do perfect simulations; discretization errors will
be made. One consequence of this is that if we price caplets, the simulated price
will not converge exactly to the Black price. The size of this error is further
discussed in Glasserman (2004), [7]. To initialize the simulation we assume that
we are given bond prices or interest rates for maturities 1, . . . ,M . In the case of
given bond prices the initial forward LIBOR rate is given through

L̂n(0) = Bn(0)−Bn+1(0)
δnBn+1(0) , n = 1, . . .M. (4.6.3)

In the Euler scheme we have chosen, we approximate Ln by a geometric Brownian
motion over one time step. Since we have chosen constant volatilities, we would
expect Ln to be close to a log-normal distribution. In figure 4.6.1, we have investi-
gated this. And all the simulated forward rates seems to come from a log-normal
distribution. We observe that the density gets wider, i.e. the standard deviation
increase with time to maturity. This corresponds to the real world, since the rates
with longer time to maturity are more uncertain.
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Figure 4.6.1: Smoothed histograms of 106 simulations of the Forward Rates
L̂n(t), t = [1, . . . , 5], n = [1, . . . , 5]. The dashed line represent the initial for-
ward rate, Ln(0).

4.7 Model Calibration

There are several ways to calibrate the model. One way is to calculate the volatili-
ties and covariances from historical bond prices or interest rates. Another way is to
calculate the implied volatilities from the market price of At-the-Money caps, and
the covariances from swaption prices. Combining implied volatilities and historical
covariances, or the other way around, is also possible. However it is important to
notice that if we want the model to be market consistent, it should be calibrated
against derivatives. We should also notice that when pricing derivatives in illiquid
markets, it can be difficult to get a market consistent model. In the latest financial
crisis the trading volume of many interest rate derivatives plunged, making market
consistent pricing difficult.
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Drawing From a Multivariate Normal Distribution
To simulate from a multivariate normal distribution with mean 0 and correlation
matrix ρ̂ we do as follows:

1. Require ρ̂ to be positive definite. It is symmetrical by definition.

2. Calculate the Cholesky decomposition of ρ̂, that is, find an unique lower
triangular matrix that satisfies ρ̂ = LLT .

3. Draw a vector of independent normally distributed random variables, Z =
(Z1, . . . , ZM)T .

4. Then LZ ∼ N(0,ρ).

4.8 Pricing Derivatives
To price derivatives under the LIBOR market model we simulate paths of the
forward rates. Then, we sum the discounted payoffs according to

M∑

n=1
g(L̂(Tn)) ·BM+1(0)

M∏

j=n
(1 + δjL̂j(Tj)), (4.8.1)

where BM+1(0) is the current price of a bonds maturing at TM+1 and chosen as
the numéraire asset. In our case it is given by equation (4.4.3). Let us consider
the payoff functions to these derivatives

Swap
g(L̂(Tn)) = (L̂(Tn)−K), n = 1, . . . ,M, (4.8.2)

Cap
g(L̂(Tn)) = (L̂(Tn)−K)+, n = 1, . . . ,M, (4.8.3)

Floor
g(L̂(Tn)) = (K − L̂(Tn))+, n = 1, . . . ,M, (4.8.4)

where K is the fixed rate.

If we want to price all the three types of derivatives, we can use the cap-floor
parity to price one of the derivatives, to reduce the simulations time.

Value of Cap− Value of Floor = Value of Swap

By averaging independent replications of these equations we get an estimate for
the price of the derivatives.
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4.9 Convergence
Let us use the Libor Market Model to price a floorlet. We calibrate the model to
historical rates only. Since the analytical price of a floorlet is given by equation
(4.5.7) we can check how fast our simulation converges, as we did for the European
put option in chapter 3. In figure 4.9.1 the relative error of a simulation of different
floorlets are plotted against the number of iterations. We observe a large drop in
the relative errors during the first 1, 000 iterations and that they reach a relative
constant level at approximately 20, 000 iterations. We notice that the At-the-
Money floorlet converges faster than the Deep-Out-of-the-Money floorlet. This is
explained by the log-normal properties of the forward rate. The simulations does
not converge exactly to the Black-price, as previously noted, the size of this error
is discussed in Glasserman (2004), [7].

Figure 4.9.1: Relative error versus number of iterations of floorlets At-the-
Money(Rfloor = L5(0)), Out-of-the-Money(Rfloor = 0.9L5(0)) and Deep-Out-of-
the-Money(Rfloor = 0.7L5(0)). With five years to maturity on the five year LIBOR
forward rate.



Chapter 5

Implementation

5.1 Volatilities and Correlations
There are several ways to calibrate our models, depending on the setting, as men-
tioned briefly for interest rates in section 4.7. In this thesis we are going to
use the method of Exponential Weighted Moving Average(EWMA), suggested by
RiskMetricsTM - Technical Document (1996), [11]. But for the sake of completeness
we will mention other possibilities.

Simple Moving Average (SMA)
This is the traditional way to forecasting volatilities and correlations and relies
on that every historical return is equally weighted. The correlation matrix ρ,
is estimated from the correlation of the daily log-returns of our historical data.
Let Li(tk) denote the quoted price of asset i in our portfolio at tk. Let ri(tk) =
log

(
Li(tk+1)
Li(tK)

)
. Assuming 252 trading days per year, we calculate the covariance

matrix from the historical data

Σ̂ij = 252 1
N

N−1∑

k=1
(ri(tk)− µ̂i) (rj(tk)− µ̂j) , (5.1.1)

where N is the size of the data set and

µ̂i = 1
N − 1

N−1∑

k=1
ri(tk) = 1

N − 1 log
(
Li(tN)
Li(t1)

)
. (5.1.2)

Then the correlations are given by

ρ̂ij = Σ̂ij√
Σ̂iiΣ̂jj

. (5.1.3)

29
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The historical volatilities are given by

σ̂i =
√

Σii. (5.1.4)

Exponential Weighted Moving Average (EWMA)
This is the method used by RiskMetricsTM and the method we are going to use in
this thesis. The method has two important advantages over the equally weighted
method. First, volatility react faster to shocks in the market as recent data carry
more weight than data in the distant past. Second, following a shock, i.e. a large
return, the volatility declines exponentially as the weight of the large return falls.
As for the equally weighted we let Li(tk) denote the quoted price of asset i in
our portfolio at tk. Let ri(tk) = log

(
Li(tk+1)
Li(tk)

)
. We calculate the 1-day covariance

matrix forecast from the historical data

Σ̂ij = (1− λ)
N∑

k=1
λk−1(ri(tk)− µ̂i)(ri(tk)− µ̂j) (5.1.5)

where
µ̂i = 1

N − 1

N−1∑

k=1
ri(tk) = 1

N − 1 log
(
Li(tN)
Li(t1)

)
. (5.1.6)

An attractive feature of the EWMA estimator is that it can be updated recursively

Σ̂ij,t+1|t = λΣ̂ij,t|t−1 + (1− λ)ri(t) · rj(t) (5.1.7)

Then the correlation forecasts are given by

ρ̂ij,t+1|t = Σ̂ij,t+1|t√
Σ̂ii,t+1|tΣ̂jj,t+1|t

. (5.1.8)

The volatility forecasts are given by

σ̂i,t+1|t =
√

Σii,t+1|t (5.1.9)

Implied Volatilities
There is no guarantee that the historic volatilities and correlations will predict fu-
ture volatilities and correlations. In some settings we would like to have a forward
looking measure that accounts for the markets expectations. This is where implied
volatilities come to play. For equity we derive the implied volatility from options,
by inverting the Black-Scholes equation. For interest rates we derive the volatil-
ity from at-the-money caps, by inverting the Black formula. Covariances can be



5.2. WEIGHTING THE PORTFOLIO 31

Figure 5.1.1: Implied volatility and EWMA volatility measures compared to the
historical volatility.

derived from swaptions. It is important to notice that if we want our models to
be market consistent, they should be calibrated against derivatives. The largest
drawback with implied volatilities is that we need highly liquid markets to get
satisfactory estimates. In the latest financial crisis the trading volume of many
interest rate derivatives plunged, making market consistent pricing difficult.

We compare the EWMA and implied volatility measures by considering the S&P-
500 index. For the EWMA we use the equations above, with λ = 0.97, which is
recommended for monthly estimates. For the implied volatilities we consider the
Chicago Board Options Exchange Volatility Index (VIX), a popular measure of
the implied volatility of the S&P-500. From figure 5.1.1 we see that the estimates
have similar behavior, but that the implied volatility overestimates the volatility
most of the time. This can be seen as one way the market handles imperfections
in the Black-Scholes framework.

5.2 Weighting the Portfolio
Determine portfolio weights and which assets the portfolio should consist of is
the "more-than-full-time" job of extremely well paid fund managers. So it should
be clear that we need to limit our active management of the portfolio, to simple
and automated procedures. There are many ways to do this, and among the
most famous models are Modern Portfolio Theory (MPT), introduced by Harry
Markowitz (1952), [15] and the Capital Asset Pricing Model (CAPM) introduced
by Treynor, Sharpe, Lintner and Mossin1 which largely builds on the work done

1For a summary of the development of CAPM see French (2003), [6].
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by Markowitz. Since the asset classes that we will consider are very different i
nature, and the returns are not directly comparable, we need another model to set
the weights between asset classes.

5.2.1 Asset Class Weighting
Since we have a portfolio that in many ways resemblance a portfolio of a life
insurance company we have chosen to consider how Norway’s largest privately
owned life and pension insurance company weight their portfolio. And we have
build a model for weighting the different asset classes in our portfolio based on our
observations. For a more comprehensive description of the model see appendix A.
The proportion of equity in the portfolio is determined by

ŵeq(t) = 11.5440− 3.5784 · σeq(t) + 4.1051 · L1(t) % (5.2.1)

and the proportion of bonds is determined by

ŵb = 65.2476 + 5.2213 · σeq(t)− 2.4027 · L1(t) %, (5.2.2)

where σeq(t) is the EWMA estimate of the volatility of the S&P-500 at time t,
and L1(t) is the 1-Year US interest rate at time t. The proportion of the portfolio
invested in money market positions is given by

ŵmm = 100%− ŵeq − ŵb. (5.2.3)

In figure 5.3.1 we see the weighting of our portfolio for our ten years of data
described in chapter 6.

5.2.2 Modern Portfolio Theory(MPT)
The idea behind Modern Portfolio Theory is that we cannot select an asset in a
portfolio based on the history and expectation of the single asset alone. Rather
we have to consider how each asset performs relative to the rest of the portfolio.
Key concepts in MPT are risk adjusted return and correlations. Let the expected
return for asset i, µ̂i be given by equation (5.1.2) and the covariance between asset
i and j, Σ̂ij is estimated by equation (5.1.1). Let us also assume that the risk-free
rate for the given investment horizon is known. Now, consider a market consisting
of n risky assets, that we assign with weights w1, w2, . . . , wn such that∑n

i=1wi = 1.
This results in an expected return of the portfolio of

rp =
n∑

i=1
wiµ̂i, (5.2.4)
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Figure 5.2.1: Capital market line.

and the standard deviation of the portfolio given by

σp =
√√√√

n∑

i=1

n∑

j=1
wiwjΣij. (5.2.5)

In figure 5.2.1 we see the possible combinations of risk and expected return. If
we invest in risky assets alone, the efficient frontier is the optimal portfolio, given
a certain expected return µ̂. When we have the opportunity to borrow and lend
money at the risk-free rate rf , the optimal portfolio will be along the line, which is
a tangent to the efficient frontier. We are interested in the market portfolio which
is shown in the figure.

The problem of finding the market portfolio corresponds to maximizing the Sharp
Ratio (rp − rf )/σp. As shown by Luenberger (1998), [14] when negative weights
are allowed, i.e. short sale is permitted, this corresponds to solving a system of
linear equations. Define vector of weights v = (v1, . . . , vn)T and the excess return
vector r̂e = (µ̂1 − rf , . . . , µ̂n − rf )T . We then solve

Σ̂v = r̂e (5.2.6)
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for v. Then to get the normalized weights

wi = vi∑n
i=1 vi

. (5.2.7)

To avoid shorting and unlimited lending we will set all negative weights to zero
and normalize the non negative weights accordingly.

The Markowitz portfolio allocations are often found to be unrealistically extreme
and unstable. Because of this, we are going to consider an exponentially weighted
allocation, discussed by Maller et. al. (2005), [17]. I.e. we smooth out the changes
of the Markowitz weights by exponentially averaging them.

Wt = wt · (1− λ) + Wt−1 · λ (5.2.8)

where Wt is a vector of the exponential weighted allocations at time t and wt is
a vector of the Markowitz allocations given from equation (5.2.7) at time t. The
resulting weighting of the equity described in section 6.1 is given in figure 5.2.2

The largest drawback of MPT is that for estimating weights for N assets we need
N + N + N(N − 1)/2 input parameters, which all needs to be estimated. It is
therefore slow for large portfolios, and not necessarily accurate, since it depends
on how we estimate the parameters. Here the CAPM has a clear advantage over
MPT, fewer inputs makes it computationally faster and potential more accurate.

Figure 5.2.2: Simulated weighting of the equity during the last ten years.
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5.3 Resulting Portfolios
We will evaluate multi asset-class portfolios consisting of bonds, equity and money
market positions that are hedged with interest rate floors. Since bonds and deriva-
tives change their characteristics as they move to maturity we want to update the
portfolio after each time-period considered. We re-balance the portfolio after each
time period considered, both to keep the predetermined weights of the portfolio
and to keep equal time to maturity on bonds as well as equal time to maturity
on the derivatives. The interest rate floors will initially be Out-of-the-Money. We
assume that there are no transaction costs and that all assets are divisible.

5.3.1 Portfolio 1
We start by considering a multi asset-class portfolio, consisting of bonds, equity
positions and money market positions with corresponding interest rate floors. We
receive floating LIBOR rates on the money market positions. We choose a static
weighting of the portfolio, with resemblance an average portfolio of a Norwegian
life insurance company. The weights are chosen to be 45% zero-coupon bonds, 15%
equity equally distributed between the S&P-500 and OSEBX and 40% in money
market positions hedged with interest rate floors. This is summarized in table
5.3.1.

Table 5.3.1: The weighting in the portfolios.

Investment Portfolio 1 Portfolio 2
Zero Coupon Bonds 45 % ŵb(t)
5 year 45 % wb(t)

Equity 15 % ŵeq(t)
Standard & Poor 500 Index 7.5 % Markowitz
Oslo Stock Exchange Benchmark Index 7.5 % Markowitz

Money Market and Floors 40 % ŵmm(t)

5.3.2 Portfolio 2
Portfolio 2 is based on the same assumptions and asset classes. Only now we
will use the dynamic weighting regime between the asset classes, as described in
section 5.2.1. And we will use the Markowitz weights described in section 5.2.2 to
internally weight the equity. The portfolio weighting is summarized in table 5.3.1.
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How the asset-class weightings change through time is shown in figure 5.3.1, and
how the internal equity weightings change through time is shown in figure 5.2.2.

Figure 5.3.1: Simulated weighting of our portfolio during the last ten years.

5.4 Simulation and Pricing of the Portfolio
First we simulate the underlying risk factors, e.g. equity and interest rates, ∆t
into the future. Then we price the portfolio at time t+ ∆t, which can include the
pricing of derivatives. In these two steps we are basically doing the same things.
But there are some differences. First is the drift. When simulating one "real" time
step into the future we have to use the real drift. As for derivatives we remember
that we can use the risk-neutral drift. When we are pricing derivatives, we have
to repeat our simulations many times to get an expected value of the price. When
simulating the price of the underlying risk factor ∆t into the future, we use the
real drift, estimated from the historic data. When pricing derivatives we use the
risk-neutral drift.
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5.5 Flowchart

Figure 5.5.1: A flowchart describing the process.
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5.6 Implementation Error
Implementation errors can come from a number of sources, such as wrong data
input, making false assumptions and choices made by the professionals implement-
ing the model. This form of system risk is difficult to quantify and is often not
recognized by senior management who may take the model results as face value.
A lot of research has been put into how different models perform relative to each
other, [2], [8], [12], but it would be interesting to see how well different implemen-
tations of the same model perform against each other. In a paper by Marshall
and Siegel (1996), [16], eight different vendors who provides VaR software based
on the RiskMetricsTM approach, were given portfolios to come up with VaR esti-
mates. The similarity of the results produced by the vendors was closely tied to the
nature of the instruments in the portfolios. For FX forwards, money markets and
FRAs the estimates was close. However for non linear instruments as interest rate
derivatives and FX options the standard deviation as percentage of median of total
VaR was 21% and 25% respectively. It should then be clear that implementation
risk can be severe and should be considered when using VaR estimates.



Chapter 6

Data Analysis

Our data consists of 10 years with daily quoted equity prices of Oslo Stock Ex-
change Benchmark Index(OSEBX) and Standard & Poors 500 Index(S&P-500).
And 10 years of US interest rates with maturities {1y, 2y, 3y, 4y, 5y}.

6.1 Equity
In this section, we are going to look at the Black-Scholes Financial Market, where
we assume that the log-returns of an asset or index are realizations of a standard
normal distribution. We are going to investigate this assumption. If we look at
figure 6.1.1, we see that it varies how good the standard normal distribution fits the
data. We see that most of the time the model fits the data, but it underestimates
the density of large changes in the index prices. If we study the S&P-500-index,
we see that we have extreme log-return values larger than ±0.10, i.e. changes in
the price of ±10% a day. If we compare this to the fact that the greatest annual
change in the S&P-500-index during the last 20 years is −38.49%, we realize that
these values are extreme. Further, if we investigate figure 6.1.2, we notice that
the empirical distribution of the indexes has a steeper peak and "fatter tails"
than the normal distribution. The latter confirms our observation in figure 6.1.1,
that the normal distribution underestimates the number of extreme observations.
Another interesting thing to observe is how the volatility changes over time. If we
investigate figure 6.1.3, we can clearly detect that the volatility is not constant over
longer periods of time. However, if we look at shorter time intervals we notice that
an assumption of constant volatility can be reasonable. I.e. for short time equity
contracts, an assumption of constant volatility can be reasonable. The observation
of non-constant volatility leads us to think that the normality of the prices also
varies over time. Figure 6.1.3 indicate volatility clustering, which is common in
financial markets, i.e. large changes tends to be followed by large changes, and

39
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Figure 6.1.1: Quantile-quantile plots of the log-returns of the S&P-500 and OSEBX
for our 10 years with data.

small changes tends to be followed by small changes. Comparing the quantile-
quantile-plots in figure 6.1.4, one in the period from 09.15.2008, the day Lehman
Brothers filed for bankruptcy1, to 09.16.2009, the day Ben Bernanke, US Federal
Reserve chairman, said that the US recession was likely to be over. The other is
the period of 2004 to 2006. It is clear that in some periods of time the normal
distribution fits the data good and in other periods, not so good. Liquidity is also
a factor that should be considered, since we expect that normality is better in
liquid markets. The trading volume of S&P-500 is significantly higher than the
trading volume of Oslo Stock Exchange Benchmark Index(OSEBX). And if we
focus on the "normal" market conditions between 2004 and 2006 we can compare
the quantile-quantile-plot of S&P-500 with the quantile-quantile-plot of OSEBX
in the left side of figure 6.1.4. We observe a slightly better fit for the S&P-500
than for the OSEBX. Event though we should be careful to make any conclusions,
since there are other factors involved (e.g. OSEBX is heavily correlated with the
oil price), it definitively support our assumption.

1this day has by many been called the start of the current financial crisis, even though one
can argue that the problems started before this day



6.1. EQUITY 41

Log−Returns

F
re

qu
en

cy

−0.10 −0.05 0.00 0.05 0.10

0
20

60
10

0

S&P−500

Log−Returns

F
re

qu
en

cy
−0.10 −0.05 0.00 0.05 0.10

0
20

40
60

80

OSEBX

Figure 6.1.2: Histograms of the log-returns of S&P-500 and the OSEBX. Based on
our 10 years with data. Together with the normal distribution in gray, with mean
and variance calculated from historical data.
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Figure 6.1.3: Daily log-returns of S&P-500 and OSEBX from our 10 years with
data.
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Figure 6.1.4: Quantile-quantile-plot of the log-returns of S&P-500 and OSEBX un-
der the turbulent market conditions in the period from September 2008 to Septem-
ber 2009 (left) and normal market conditions, here illustrated by the period from
2004 to 2006 (right)
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6.2 Interest Rates
To get a first impression of our data and how our model simulate the interest rates
we consider figure 6.2.1. If we look at the simulated path2 we notice that the sim-
ulated rates are more ragged. Even though the rates have an internal correlation
structure, we do not force any constraints on how the yield curve should look like.
This is not a problem when pricing derivatives, since we are only interested in the
average behavior. If we are interested how the yield curve evolves through time
we have to use the HJM model. As for equity, we would expect that the volatility
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Figure 6.2.1: Historical forward rates(left) from five years back and one simulated
path of forward rates(right) five years into the future plotted against time and
time to maturity. NB: different scales on the interest rate axis.

only remains constant for short time intervals. This is investigated in figure 6.2.2.
As for equity we observe volatility clustering. Under the LMM we expect that
the residuals are multivariate normally distributed. And that each pair follows
a bivariate normal distribution. We are going to test for normality as described

2It is important to remember that this is only one possible simulated path and should only
be considered as an example of the behavior.
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Figure 6.2.2: Daily log-changes of our interest rates.

in Johnson and Wichern (2007), [9]. When we plot the residuals from rates with
different maturities against each other we would expect an elliptical form. This
is confirmed in figure 6.2.3. We can also construct a confidence ellipse for the
mean vector of the bivariate distributions. From the figure we observe that more
points than theoretical expected falls outside the confidence ellipse. In figure 6.2.5
histograms of the residuals are shown with the normal curve, and as for equity
we observe fatter tails and a steeper peak than the normal distribution suggests.
Since the volatility changes over time, we would like to investigate if the model fit
changes over time. In figure 6.2.4 we have investigated the residuals during the
period 2005-2007. We observe a significant better fit than in figure 6.2.3. In figure
6.2.3 we have 2520 observations, and would expect approximately 25 observations
to fall outside the ellipse, but observe far more. As for figure 6.2.4 we have 504
observations, and would expect approximately 5 observations to fall outside the
ellipse, which is not far from what observed.
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Figure 6.2.3: Residuals from the LMM of interest rates with different maturities
plotted against each other. For all 10 years with data. With a 99 % confidence
ellipse.
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Figure 6.2.4: Residuals from the LMM of interest rates with different maturities
plotted against each other. With a 99 % confidence ellipse. From the period of
2005-2007.
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Figure 6.2.5: Histograms of the residuals of the interest rates. Based on our 10
years with data. Together with the normal distribution in gray, with mean and
variance calculated from historical data.
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Chapter 7

Results

In this section we will test how well our model performs against historical data.
We will do a backtesting of the portfolios described in chapter 5.3 against the
data described in chapter 6. Model verification is an important part of the risk
management process. Backtesting is a well used method and is an important part
of the regulations given by the Basel Committee. Backtesting also allows the risk
managers to constantly improve their models, but at the same time one have to
be aware of the danger of over-fitting a model to historical data.

From the literature we expect that the backtesting yields more exceptions, i.e.
losses that are larger than the limit given by the risk measures, than what the
theoretical foundation predicts. This can be due to several reasons, e.g. model
imperfections, false assumptions and implementation errors.

7.1 Validation
As mentioned we would expect a higher exception frequency than the theoretical
foundation suggests. But how do we determine what is too high, or even too
low? The simplest method to verify accuracy is to set up a test along the lines of
Bernoulli trails. Under the null hypothesis that the model is correctly calibrated,
the number of exceptions follows a binomial probability distribution. One need to
balance type 1 errors, rejecting a correct model against type 2 errors, not rejecting
an incorrect model. To get a test that is said to be powerful, one would want to
set a low type 1 error rate and then have a test that creates a very low type 2
error rate. Kupiec (1995), [13] developed approximate 95% confidence regions for
such a test. An excerpt of the results is given in table 7.1.1. If we look at the
Basel (1996a) rules for backtesting, they define penalty zones which are reported
in table 7.1.2. It is only an incursion to the red zone that generates an automatic
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Table 7.1.1: 95% Nonrejection test confidence regions for the number of exceptions
N.

VaR Confidence Level T = 252 Days T = 510 Days T = 1000 Days
99 % N < 7 1 < N < 11 4 < N < 17
97.5 % 2 < N < 12 6 < N < 21 15 < N < 36
95 % 6 < N < 20 16 < N < 36 37 < N < 65

penalty. In the yellow zone it is up to the supervisor. One have to establish if the
results are due to a faulty model or bad luck. As stated in Jorion (2007), [10], it
is important to realize that regulators operate under constraints that differ from
those of financial institutions. The approach must be implemented at a broader
level, since they do not have access to detailed information about the models. With

Table 7.1.2: The Basel penalty zones for a VaR(99%) model over 250 trading days.

Zone Number of Exceptions Increase in k1
Green 0 to 4 0.00
Yellow 5 0.40

6 0.50
7 0.65
8 0.75
9 0.85

Red 10+ 1.00

the Expected Tail Loss measure we do not know exactly what to expect from the
frequency of losses exceeding the measure from its definition alone. But we do
expect that the tail distribution for the losses is right skewed. Thus should the
ETL measure be farther out in the tail than the median of the tail distribution.
Therefore, the losses exceeding ETL(α) should be less than (1-α)/2, which means
that less than 0.5% of the losses should exceed the ETL(99%).

7.2 Portfolio 1: A Static Weighted Multi Asset-
Class Portfolio.

In figure 7.2.1 we see the results from a backtesting of portfolio 1 against 10 years
of data. We notice that the risk measures adapt to the market quite well, i.e.
they responds quickly to changes in the volatility. Most of the time they predict

1k is a multiplicative factor to determine the market-risk charge. A larger k, means that one
have to set aside more capital.
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Figure 7.2.1: Backtesting of Portfolio 1. Loss is defined positive.

the potential losses well. As expected, the VaR and ETL do have slightly different
behavior, and the ETL catches more of the losses. Let us compare the results from
the backtesting of portfolio 1 against the guidelines given above. If we compare
figure 7.2.2 with table 7.1.1 we see that our VaR(99%) risk measure lies inside the
confidence interval in all the cases. If we compare it with the guidelines given by
the Basel Committee in table 7.1.2, we see that the VaR(99%) risk measure is in
the "green" zone in all the years tested, except the period 2004-2005, where it is just
inside the "yellow" zone. If we look at the whole period we see that the 99% VaR
quantiles are violated on average 1.03% of the days, compared to the theoretical
value of 1%. This is good. As previously discussed we do expect, on a theoretical
basis, that the ETL(99%) measure should be violated less than 0.5% of the days.
And we observe that it is violated on average 0.64% of the days, which is good.
As mentioned, under the null hypothesis, presuming that the model is correctly
calibrated, the number of exceptions follows a binomial probability distribution.
To compare behavior we can compare our cumulative VaR exceptions with one
randomly generated path using 2520 independently generated realizations from a
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Figure 7.2.2: Number of exceptions of VaR(99%) and ETL(99%).

Bernoulli distribution2. This is shown in figure 7.2.3. Even though we cannot
draw any conclusion by comparing it to one random path, we notice that they
have similar behavior. We might expect that our models would perform worse

Figure 7.2.3: The cumulative distribution of losses of portfolio 1 exceeding
VaR(99%) and ETL(99%). One random path of independent realizations of a
Bernoulli distribution.

in turbulent markets, than under normal market conditions. However, we cannot
find any evidence of this in our findings for this portfolio. On the contrary, the
only time the VaR(99%) measure made an incursion to the "yellow" zone of the
Basel guidelines was under normal market conditions in the period 2004-2005.

2The Bernoulli distribution is a special case of the Binomial distribution
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7.3 Portfolio 2: A DynamicWeighted Multi Asset-
Class Portfolio.

As for portfolio 1, we notice that the risk measures adapt to the market quite
well and predict the potential losses well, most of the time. Since the dynamically
weighting procedures adds complexity to the portfolio, and the model, and that it
consists of a slightly larger proportion of risky assets than portfolio 1, we expect a
more volatile portfolio, we also expect that the performance of the risk measures
is slightly worse than for the static portfolio. If we compare figure 7.3.1 with 7.2.1

Figure 7.3.1: Backtesting of Portfolio 2. Loss is defined positive.

we see that the dynamic portfolio is more volatile than the static one. As we did
for portfolio 1 we compare the results from the backtesting of portfolio 2 against
the guidelines given above. When we compare figure 7.3.2 against table 7.1.1 we
see that we have one observation that lies just outside the the confidence interval.
If we compare it with the guidelines given by the Basel Committee in table 7.1.2,
we see that the VaR(99%) risk measure made incursions to the "yellow" zone three
times. If we look at the whole period we see that the 99% VaR quantiles are
violated on average 1.67% of the days. We observe that the ETL(99%) measure
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Figure 7.3.2: Number of exceptions of VaR(99%) and ETL(99%).

is violated on average 1.19% of the days. As we did for portfolio 1 we compare
the cumulative VaR exceptions with one randomly generated path using 2520 in-
dependently generated realizations from a Bernoulli distribution. As mentioned,
we cannot draw any conclusions by comparing it to one random path, but here as
well we notice that they have similar behavior.

As for portfolio 1, we might expect that our models would perform worse in tur-
bulent markets, than under normal market conditions. But we cannot find any
evidence of this in our findings for this portfolio. On the contrary, the highest
number of exceptions were under normal market conditions in the period 2004-
2005. Because of the complexity the dynamic weighting regime adds to the model
and that it on average holds a slightly larger proportion of risky assets, we expect
a less satisfactory performance of the model and risk measures. This is confirmed,
both by higher portfolio volatility and the number of exceptions.
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Figure 7.3.3: The cumulative distribution of losses of portfolio 2 exceeding
VaR(99%) and ETL(99%). One random path of independent realizations of a
Bernoulli distribution.
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Chapter 8

Conclusion

In this thesis we have build a model to measure risk on multi asset-class portfolios
using Monte-Carlo simulations. For equity we have simulated the price changes
under the well known Black-Scholes framework. For interest rates we have used
the Libor Market Model. To capture the dynamics between the assets, we drew
the random terms in the models from a multivariate normal distribution. We
assumed that the covariance matrix is constant over the risk horizon. In the his-
torical data we observed properties that are not in line with the assumptions made
in our models. The normal distribution fails to describe the "fat tails" observed
in the distribution of log-returns, i.e. underestimates the probability of extreme
events. We assumed constant volatility, yet we observed volatility clustering, i.e.
large changes tends to be followed by large changes, and small changes tends to
be followed by small changes. We assumed constant covariance, but observed tail
dependence, i.e. in extreme events, correlations between assets seems to be higher.
Thus we can conclude that the model assumptions are not satisfactory at all times,
and may be especially poor during the turbulent period of 2007 to the present.

In order to be relevant in terms of real-life markets we consider portfolios that
resemble those of life insurance companies. One with static weighting, and one
that is dynamically weighted.

We have performed a backtesting on both of the portfolios against ten years of
data, from September 1999 to September 2009. This period includes the burst of
the dot-com bubble in the early 2000s, the current financial crisis and the period
of 2004 to 2007 with low and steady equity volatility. The results shows that the
portfolio losses exceed the estimated Value-at-Risk quantiles slightly more frequent
than the corresponding confidence level α predicts. I.e. theory predicts that the
VaR(α) should be violated (1-α) of the days. Where for our static portfolio the
99% VaR quantiles are violated on average 1.03% of the days. As for our dynam-
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ically weighted portfolio the violations occur more often, on average 1.67%.

From its definition alone, we do not know what to expect from the frequency
of losses exceeding the ETL measure. However, we expect that the tail distribu-
tion for the losses is right skewed, thus the ETL measure should be farther out
in the tail than the median of the tail distribution. Thus, the losses exceeding
ETL(α) should be less than (1-α)/2, which means that less than 0.5% of the losses
should exceed the ETL(99%). As for our static portfolio, the losses exceeding
ETL(99%) is on average 0.64% of the losses. For the dynamically weighted portfo-
lio the losses exceeding the ETL(99%) occur more often, on average 1.19% of the
losses exceeded the measure.

If we investigate the period after the Lehman Brothers collapse 15. September,
2008 we find strong indications on clustering between large losses. Actually all of
the VaR(99%) and ETL(99%) exceptions for the static portfolio in the period of
fall of 2008 - fall of 2009 occurred in a one month time-frame. We have similar
observations for the dynamic portfolio.

A priori, we expected that the number violations of the risk measures from the
backtesting of our portfolios would be significantly larger than theoretically ex-
pected and that the model would perform less satisfactory during the latest tur-
bulent period. However. for the static weighted portfolio, the number of violations
were not significantly higher than theoretically expected, and well inside the con-
fidence interval of a statistical test as well as the guidelines given by the Basel
Committee. For the dynamically weighted portfolio, the number of violations
were slightly higher than theoretically expected, and just outside the confidence
interval of a statistical test. It also made three incursions into the "yellow" zone
defined in the guidelines given by the Basel Committee. This indicate that the
added complexity with the dynamically weighting regime and the slightly larger
proportion of risky assets, result in a slightly less satisfactory model. Under the
latest turbulent period the model only performs slightly worse for both the port-
folios. Thus it seems like our model adapt to the changes in the market quite fast.
From this we conclude that as long we are aware of the weaknesses of the model,
it provides valuable measures even under turbulent market conditions.
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Further Work
We have only considered a risk horizon of one day, and we would expect that
the assumption of constant volatilities and correlations is reasonable with a short
horizon. We also assume that the EWMA method for estimating volatilities and
correlations adapts fast to changes in the market, when the horizon is short. Thus,
it would be interesting to investigate how well the model performs on a longer risk
horizon.
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Appendix A

A Model for Weighting the
Portfolio

Since we consider asset classes that are dominant parts of the portfolios held by
life insurance companies, it was natural to turn to them to see how they change
their portfolio weights trough time.

We have investigated how the portfolio weights changes through time for Nor-
way’s largest privately owned life and pension insurance company. The data is
collected from the company’s quarterly accounts. Originally does the life and pen-
sion insurance portfolios consist of more asset classes, but we only consider equity,
bonds and money market positions. The weights are normalized according to this.
As seen in figure A.0.1 the data ranges from fourth quarter of 2004 to third quarter
of 2009, with the second quarter of 2009 missing. As expected we observe that
the weightings change trough time. Since life insurance companies only can hold a

Figure A.0.1: Historical weighting of a life insurance portfolio.
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given amount of risk, we would expect that the weights depend on the volatility of
the equity marked. We would also expect that the weights depends on the interest
rate. To get an idea of how they behave with each other we will consider scatter-
plots of the asset-class-weights vs. volatility and interest rate. This is shown in
figure A.0.2. The plots indicate a linear relationship with volatilities and interest
rates for both equity- and bond-weights. As for money market weights we do not
observe any pattern. We would like a model that changes the portfolio accord-
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Figure A.0.2: Scatterplots of the asset-class-weights vs. volatility and interest rate.

ing to changes in the equity volatility and in the interest rate. For the equity and
bond-weights we will consider a multiple linear regression. Since our portfolio only
consists of three asset classes, and the weights need to sum up to 100 %, we only
need to model two of the weights. Then we choose the money market weight to
be given by

ŵmm = 100%− ŵeq − ŵb (A.0.1)

We fit the multiple linear regression models to the data using the statistical pro-
gramming language R. For both equity- and bond-weights we got a marginal better
fit in some areas by including the cross-terms between the volatility and the inter-
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est rate. To reduce the risk of overfitting the model to the data we choose not to
consider the cross-terms.

A.1 Equity Weights
From R we get the following model

ŵeq(t) = 11.5440− 3.5784 · σeq(t) + 4.1051 · L1(t) %, (A.1.1)

where σeq(t) is the EWMA estimate of the volatility of the S&P-500 at time t,
and L1(t) is the 1-Year US interest rate at time t. We can now do a basic analysis
of our model and its assumptions. Below is print out of a summary of the model
from R.

Call:
lm(formula = eq ~ vol + ir, data = data)

Residuals:
Min 1Q Median 3Q Max

-8.8117 -3.0306 -0.5919 2.9519 9.1930

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.5440 3.9256 2.941 0.00808 **
vol -3.5784 1.5277 -2.342 0.02962 *
ir 4.1051 0.7444 5.515 2.13e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

Residual standard error: 4.729 on 20 degrees of freedom
Multiple R-squared: 0.7805, Adjusted R-squared: 0.7586
F-statistic: 35.56 on 2 and 20 DF, p-value: 2.595e-07

We see that all the coefficients are significant 6= 0 at a 5% level. We see from the
R2
adj that approximately 75% of the equity weights are explained by the model.

The model assumes that the standardized residuals should be normally distributed,
this is confirmed by the quantile-quantile plot in the top-right in figure A.2.1. We
should observe homoscedasticity, i.e. that the variance of the residuals is constant.
Then we expect that the residuals are independent of the fitted values of the model,
i.e. we should not observe a pattern when plotting them against each other. We
do not find any pattern in the top-left of figure A.2.1.
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A.2 Bond Weights
From R we get the following model

ŵb = 65.2476 + 5.2213 · σeq(t)− 2.4027 · L1(t) %, (A.2.1)
where σeq(t) is the EWMA estimate of the volatility of the S&P-500 at time t, and
L1(t) is the 1-Year US interest rate at time t. As for the equity weighting model
we do a basic analysis of the model and its assumptions. First a print out of the
summary of the model.
Call:
lm(formula = bond ~ vol + ir, data = data)

Residuals:
Min 1Q Median 3Q Max

-7.410 -2.904 -1.476 4.422 11.164

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.2476 4.3252 15.086 2.17e-12 ***
vol 5.2213 1.6832 3.102 0.00562 **
ir -2.4027 0.8202 -2.930 0.00829 **
---
Signif. codes: 0 *** 0.001 ** 0.01

Residual standard error: 5.21 on 20 degrees of freedom
Multiple R-squared: 0.6667, Adjusted R-squared: 0.6334
F-statistic: 20 on 2 and 20 DF, p-value: 1.693e-05
We see that all the coefficients are significant 6= 0, at an 1% level. And we see from
the R2

adj that approximately 65% of the bond weights are explained by the model.
As for the equity weighting model we check for normality in the standardized
residuals and that the residual variance is constant. From bottom of figure A.2.1
we see that these assumptions seems valid.

A.3 Implemented Model
How does our weighting model perform when implemented in our risk-estimation
model. If we compare the simulated equity weights in figure A.3.1 with the histor-
ical weights in figure A.0.1, we see that our model replicate the historical weights
quite well. It produces a bit smoother results than observed in our data, but
describes the main trends well.
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Figure A.2.1: Top-left: The residuals vs. the fitted values of the equity weight-
ing model. Top-right: quantile-quantile plot of the standardized residuals of the
equity weighting model. Bottom-left: The residuals vs. the fitted values of the
bond weighting model. Bottom-right: quantile-quantile plot of the standardized
residuals of the bond weighting model.

Figure A.3.1: Simulated weighting of our portfolio. Dates matched those in figure
A.0.1
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