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Abstract

In this project we have �rst and foremost been comparing the performance of the ACER
method with the POT method in the prediction of extreme values from the heavy tailed
distributions; especially for data from the energy markets. The energy market is an ex-
citing dynamic market where small singularities can make large di�erences in the price.
Therefore it is very important and challenging to analyse and make predictions in this
market. We have also analysed a dataset which is not from the energy market, to compare
and see the main di�erences between the two markets. We have also taken in considera-
tion of removing the return value for the dates of maturity to see whether this will have
any in�uence on the results.

The main concept of the POT method is to �nd a threshold, u, and let the excesses
be distributed by the Generalised Pareto Distribution. Whilst for the ACER method, we
assume a speci�c shape of the tail, which in this project was of the kind Fréchet. We have
done this analysis for �ve di�erent data sets where two of them have been considered
with and without their expiration dates. We have also �ltrated the data sets with an
AR-GARCH �lter, and then used the POT and ACER on the residuals from the process.
We have found out that both methods are not greatly in�uenced by the �ltration, but we
see the tendency of the POT method predicting a heavier tail than the ACER method.
Further on, we can say that there are no signi�cant large e�ects of removing the return
values for the dates of maturity. Lastly, the data sets from the energy market prove
themselves much more heavy tailed than for the data set from Norsk Hydro.
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1 Introduction

Extreme Value Theory (EVT) is a branch within statistics that provides a framework in
the study of behaviour in the tail regions of a distribution, being extremely small or large
observations. EVT allows us to use the extremes to extrapolate the tails of a distribution
to parts of it that have not yet been observed in the empirical observations. In this way,
we can assess risk for highly unusual events, like for example 100-year winds, �oods or
extreme development in the �nancial markets. Since we are dealing with the extremes
of events, the observations will be sparse and therefore we must value the observations
we have. Classical EVT works often with block maxima or minima and �t them to the
generalised extreme value family. This method does not fully make use of the observa-
tions and is a wasteful approach. The general idea of the peaks over threshold (POT)
method is to work with the threshold excess over a certain threshold u. This method
makes better use of the data as we work with the distribution of the threshold excesses
rather than with the distribution of block maxima/minima. The average conditional
exceedance rate (ACER) method produce a class of functions, the ACER functions, that
is constructed in a way that they manage to capture the sub asymptotic behaviour of
the extreme value distribution.

In this master thesis, we have worked on comparing the two methods ACER (aver-
age conditional exceedance rate) and POT (peaks over threshold). These two methods
have been used to estimate return levels and tail quantiles for data sets mainly from
the energy market. We have also �ltrated the data sets with an AR-GARCH �lter, and
used the POT and ACER method to estimate in-sample and out-of-sample predictions
on the residuals. There are both positive and negative aspects when using both methods.
With the POT method the negative is the procedure for choosing a good threshold value,
whereas a bad choice that can lead to ad hoc results and conclusions. With the ACER
method, we have to assume a certain tail behaviour that are not necessary correctly
assumed. Another weakness with the POT method is that it assumes asymptotic char-
acteristics in the data sets, and there is no way to verify these assumptions. The positive
aspect with the POT method is the easily understood theory behind the analysis, while
with the ACER method we have the fact that this method makes a better use of the
given data during the analysis. Although there are both positive and negative sides with
the two methods, we have made an conclusion with regards to the data sets used in this
thesis. We have also analysed one data set from Norsk Hydro to compare another kind
of market to the ones from the energy markets.

In this master thesis, we have focused on the estimation of the positive tail. It does
not necessary mean that the positive tail quantile is more important than the negative
tail quantile. There are people interested in the extremely large increases as decreases
in the energy market. The treatment of the negative tail is analogue to the ones of the
positive tail, therefore we will concentrate on the positive tail in this thesis.
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2 Theory

The basic idea of extreme value theory is to build a model which can understand the
statistical behaviour of

Mn = max{X1, ..., Xn} (1)

where X1, ..., Xn is a sequence of independent random variables having a common distri-
bution function F . In theory, we can derive the distribution of Mn exactly for all n by
using the assumption of independency:

Prob{Mn ≤ η} = Prob{X1 ≤ η, ..., Xn ≤ η} = Prob{X1 ≤ η}···Prob{Xn ≤ η} = {F (η)}n
(2)

This is not useful when we do not know the distribution F . Also note that small errors
in the estimation of F (η) will lead to substantial errors in {F (η)}n. So even though the
possibility for estimating F is present, it is not always the best solution to do so.

2.1 The Generalised Extreme Value Distribution

The basic idea is to look at the behaviour of {F (η)}n when n → ∞. The di�culty of
the distribution of Mn degenerating to a point mass on the upper end-point of F when
{F (η)}n → 0 as n→∞, can be solved by doing a linear renormalisation of the variable
Mn

M∗n =
Mn − bn

an
(3)

It can then be shown by the extremal types theorem [4] that if there exist sequences of
constants {an > 0} and {bn} such that

P{M∗n ≤ η} → G(η) as n→∞ (4)

for a non-degenerate distribution function G, then G belongs to one of the following
families:

I : G(η) = exp
{
− exp

[
−
(η − b

a

)]}
, −∞ < η <∞; (5)

II : G(η) =

{
0, η ≤ b,
exp
{
− (η−ba )−α

}
, η > b;

(6)

III : G(η) =

{
exp
{
−
[
−
(
η−b
a

)]α}
, η < b,

1, η ≥ b,
(7)

for parameters a, b, α > 0. The distributions I, II and III are respectively the Gumbel,
the Fréchet and the Weibull distribution. These three extreme value distributions can
be written as the generalised extreme value (GEV) distribution
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G(η) = exp
{
−
[
1 + ξ

(η − µ
σ

)]−1/ξ}
(8)

de�ned on {η : 1+ξ(η−µ)/σ > 0}, where −∞ < µ <∞, σ > 0 and −∞ < ξ <∞. Note
that µ is the location parameter, σ is the scale parameter and ξ is the shape parameter.
The cases ξ > 0 and ξ < 0 corresponds respectively to the Fréchet and Weibull. When
ξ = 0 is interpreted as the limit of equation (8) as ξ approaches zero, and we have the
Gumbel family with the distribution function

G(η) = exp
[
− exp

{
−
(η − µ

σ

)}]
, −∞ < z <∞ (9)

2.2 Kurtosis and skewness

Kurtosis is a way to measure how an empirical data set of observations di�er from the
normal Gaussian distribution. Another way to describe it is that it is a measure of the
peakness of the probability distribution. The higher kurtosis, more of the variance is
a result of infrequent extreme deviations. In this project we have worked with excess
kurtosis. The di�erence between excess kurtosis and kurtosis is a shift in the scale
of measurement. The Gaussian distribution has kurtosis 0 when dealing with excess
kurtosis, while it has kurtosis 3 when dealing with kurtosis. Mathematically, the sample
excess kurtosis is de�ned as

Excess kurtosis =
1
n

∑n
i=1(xi − x̄)4

( 1
n

∑n
i=1(xi − x̄)2)2

− 3 (10)

where x1, ..., xn are the observations.

Skewness is a measure of the asymmetry of the probability distribution. A negative
skew-value indicates that the tail on the left side of the probability distribution density
function is heavier than the right side. A positive skew-value indicates that the tail on
the right side is heavier than the left side. The skew-value of zero means that the obser-
vations are relatively evenly distributed on both sides of the mean. Note that this does
not necessarily indicate a symmetric distribution. Since we are considering extremely
large positive changes, we will consider only the right side tail. The sample skewness is
de�ned as

Skew =
1
n

∑n
i=1(xi − x̄)3

( 1
n

∑n
i=1(xi − x̄)2)3/2

(11)

where x1, ..., xn are the observations. Both the kurtosis and skewness will tell us how
the empirical observations from the data sets behave in comparison to the Gaussian
distribution.
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2.3 Stationary processes

In the process of analysing the data, we must take in consideration if the data are
stationary or not. Much of our analysis with the peaks over threshold (POT) method
rest on the assumption that the observations are stationary. It is important that the data
are stationary if we are going to obtain consistent estimators. One way to tell whether a
data set is stationary is to plot the time series against time. If the graph crosses the mean
of the sample many times, there are a good chance that the data is stationary [2]. But
this de�nition is very vague. One can ask oneself what many times means. Therefore,
there are another way to look for stationarity. We can look at the development of the
standard deviation, σ, as the time progress. The sample standard deviation is de�ned as

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (12)

where we have the samples x1, ..., xn and x̄ is the mean of the samples. Then we can look
at the plot and see if there are any noticeable trends, blocks or other systematic trends.
We would like to have as less systematic trends as possible. We can also use methods like
Augmented Dickey-Fuller or Phillips-Perror test to look at the stationarity of the data
[1]. But we can not trust the results of the tests blindly.
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2.4 Peaks over threshold (POT)

The general idea of the peaks over threshold (POT) method is that if a block maxima
have approximately the distribution G from the expression

G(η) = exp
{
−
[
1 + ξ

(η − µ
σ

)]−1/ξ}
(13)

for some µ, σ > 0 and ξ. Then all the threshold excess can be accounted to be distributed
within the generalized Pareto distribution.

2.4.1 Generalized Pareto Family

Let X1, X2, ... be a sequence of independent random variables with common distribution
function F , and let

Mn = max{X1, ..., Xn}

Denote an arbitrary term in the sequence by X, and suppose that F satis�es (4), so that
for large n,

Pr{Mn ≤ η} ≈ G(η)

where G(η) is equal to equation (13). Then, for large enough u, the distribution function
of (X − u), conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ
(14)

de�ned on {y : y > 0 and (1 + ξy/σ̃) > 0}, where σ̃ = σ + ξ(u− µ).

In another words, this means that if a block maxima have approximating distribution
G, then the points above the threshold given by u have a corresponding approximate
distribution within the generalized Pareto family.

Thus the description of the stochastic behaviour of extreme events given by the con-
ditional probability can be approximated by

Pr{X − u > y|X > u} ≈ H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ
(15)

where u is the threshold and the modi�ed scale parameter σ̃ = σ + ξ(u− µ). The shape
parameter ξ is equal to that of the corresponding GEV distribution and it is invariant to
block size n. If ξ < 0 the distribution of threshold excesses has an upper limit of u− σ̃/ξ,
if else the upper limit is unbounded.
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2.4.2 Threshold selection

If we de�ne the observations x1, ..., xn, and proposing a threshold u, we then can write
the exceedances as {xi : xi > u}. We label these exceedances by x(1), ..., x(k), and de�ne
the threshold excesses even more speci�c as yj = x(j) − u for j = 1, ..., k. Taken in
consideration of the previous section, then the y's may be regarded as independent reali-
sations of a random variable whose distribution can be approximated by a member of the
generalised Pareto family. The intricate of the threshold choice is the inevitable give and
take relationship between bias and variance. Too low threshold is likely to violate the
asymptotic assumptions of the model, leading to bias. While too high threshold choice
can give large variance because we have very few excesses with which the model can be
estimated. Much of the data must then be discarded, and we get poor estimations of
the parameters from the GPD. Thus, we must �nd the lowest threshold for which the
threshold excesses �ts the GPD.

There are several methods for dealing with this problem of choosing the threshold, but
we are only going to look at two di�erent methods. One is an exploratory technique
carried out prior to model estimation, while the other is an assessment of the stability of
parameter estimates based on the �tting of models across a range of di�erent thresholds.

The �rst method is based on the mean of the GPD and lead to a mean residual life
plot which can give a direction of what level of threshold choice we should choose. The
�rst moment of the GPD can be expressed as

E[X] =
σ̃

1− ξ
=
σ + ξ(u− µ)

1− ξ
, ξ < 1 (16)

which is linear in u. We obtain the mean residual life plot if we plot the mean empirical
exceedance of the threshold against the threshold,

{(
u,

1

nu

nu∑
i=1

(x(i) − u)
)

: u < xmax

}
(17)

where x(1), ..., x(nu) is the ordered observations over threshold u. Con�dence intervals can
be added based on the approximation normality of sample means. The interpretation of
the plot is the fact that it is approximated linear in the area where the GPD is a good �t.
There can in fact be several di�erent areas where we see linearity, so the choice of picking
one can be di�cult not knowing which one to choose. It is also hard to distinguish the
�uctuations that are within the linear area from bigger and irrelevant �uctuations outside
the area. The con�dence intervals will grow as the larger the threshold becomes.

The threshold selection based on the second method is given by looking at the esti-
mated shape ξ and scale µ parameter. The shape parameter should be the same when
the GPD is applied. If we plot the estimated shape parameter against threshold, we can
look for areas where it is constant. As for the scale parameter σ̃ = σ+ ξ(u−µ), we must
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modify it: σ∗ = σ̃ − ξu. The modi�ed scale parameter is constant with respect to u.
This, with the �rst method, can help us to decide the threshold choice. Here we would
want to choose the smallest u for the area where the parameter estimates are constant
and where the mean residual life plot is linear. This gives us the opportunity to obtain
as much observations as possible taking account of the threshold.

2.4.3 Dependence and correlation

As mentioned before, the POT method is derived under the assumption of iid observa-
tions. One way to check for linear dependence is done with the use of the autocorrelation
function (ACF). For the data sets we have in this project, the ACF show that there are
minimal linear dependence in the data. This also indicates that there are low depen-
dence in general. One way dealing with dependence sequences is declustering. That is
identifying clusters of dependent observations by an empirical rule and only keeping each
cluster maxima. This have be done with the data sets, and the conclusion is that there
are no signi�cant di�erence in the results.

In this project, the package named POT in R has been used to perform the peaks over
threshold analysis [8].

2.4.4 Model checking

To evaluate the quality of a �tted generalised Pareto model, we can use probability plots,
quantile plots, return level plots and density plots. Assuming a threshold u and their
respectively excesses y(1) ≤ ... ≤ y(k), we get the probability plot by

{(i/(k + 1)), Ĥ(y(i)); i = 1, ..., k} (18)

where the estimated model

Ĥ(y) = 1− (1 +
ξ̂y

σ̂
)−1/ξ̂ (19)

where σ̂ and ξ̂ 6= 0 are the estimated scale and shape parameters. While the quantile
plot is constructed by

{Ĥ−1(i/(k + 1)), y(i); i = 1, ..., k} (20)

where

Ĥ−1(y) = u+
σ̂

ξ̂
[y−ξ̂ − 1] (21)

If the generalised Pareto model is a reasonable �t for modeling excesses of u, then the
probability plot and the quantile plots should show points that are approximately linear.
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The return level plot consists of points {(m, x̂m)} for large m values. x̂m is the esti-
mated m-observation return level and is de�ned as

x̂m = u+
σ̂

ξ̂
[(mζ̂u)ξ̂ − 1] (22)

where ζ̂u ≈ Pr{X > u}. For the case of ξ being equal to zero, we have the following
expression for the estimated m-observation return level

x̂m = u+ σlog(mζ̂u) (23)

In the world of �nancial modelling, we often work with the term value-at-risk (VaR). This
is de�ned as extreme quantiles of the daily returns, and the generalised Pareto thresh-
old model provides a direct method for the estimation of this parameter. Therefore the
return level plot can be seen as a graph of value-at-risk against risk on a convenient scale.

At last, we have the density function which can be compared to a histogram of the
threshold exceedances. Note that all of this above is based on the assumption that
ξ̂ 6= 0. The probability plot is the only one that has been used in the model checking
because the rest of the plots can often be regarded as ambiguous.
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2.5 Average conditional exceedance rates (ACER)

Until now, we have assumed independence while considering the problems with the POT
method. ACER is a method developed under the assumption that the data can be
dependent and non-stationary. Unlike the previous de�nition (2), we must express the
probability by

Prob(Mn ≤ η) = Prob(X1 ≤ η, ..., Xn ≤ η)

= Prob(Xn ≤ η|Xn−1 ≤ η, ..,X1 ≤ η)Prob(X1 ≤ η, ..,Xn−1 ≤ η)

=
n∏
j=2

Prob(Xj ≤ η|X1 ≤ η, ..., Xj−1 ≤ η)Prob(X1 ≤ η) (24)

Using a k-step memory, we can make the following assumptions for k=1:

Prob{Xj ≤ η|X1 ≤ η, ..., Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−1 ≤ η} (25)

and

Prob{Xj ≤ η|X1 ≤ η, ..., Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−2 ≤ η,Xj−1 ≤ η} (26)

for 2 ≤ j ≤ n on (25) and for 3 ≤ j ≤ n on (26), and so forth. Then we can generally
express the equation (24) as

Prob(Mn ≤ η) = P (η) ≈
n∏
j=k

Prob(Xj ≤ η|Xj−k+1 ≤ η, ...,Xj−1 ≤ η)

·Prob(Xk−1 ≤ η|X1 ≤ η, ..., Xk−2 ≤ η)

·Prob(X2 ≤ η|X1 ≤ η)Prob(X1 ≤ η)

=

n∏
j=k

(1− αkj(η))(1− αk−1,k−1(η)) · · · (1− α11(η)) (27)

where

αkj(η) = Prob(Xj > η|Xj−k ≤ η, ..., Xj−k+1 ≤ η), for 2 ≤ k ≤ j (28)

which denotes the exceedance probability conditioned on the k−1 previous non-exceedances.
Note that in the case of which k = 1, we have α1j(η) = Prob(Xj > η). Using the relations
(1 + x) ≈ ex if |x| << 1 we can derive the equation (27) to be

P (η) ≈ P2(η) = exp(−
n∑
j=2

α2j(η)− α11(η)) (29)

Preceding with the conditioning on two and three the previous observations, we get



10 2 THEORY

P (η) ≈ P3(η) = exp(−
n∑
j=3

α3j(η)− α22(η)− α11(η)) (30)

P (η) ≈ P4(η) = exp(−
n∑
j=4

α4j(η)− α33(η)− α22(η)− α11(η)) (31)

Since we are considering the most practical applications, when n >> 1 and k ≥ 2, we
get the simpli�ed expression

Pk(η) ≈ exp(−
n∑
j=k

αkj(η)) (32)

As mentioned previously, we can interpret αkj(η) to be the probability of the j'th obser-
vation exceeding the level of threshold η conditioned on the k − 1 previous observations
being under the threshold. Therefore we interpret

∑n
j=k αkj(η) as the expected number

of independent exceedances with level of threshold η and conditioned on the k − 1 pre-
vious non-exceeding observations.

The ACER function is de�ned as

εk(η) =
1

n− k + 1

n∑
j=k

αkj(η), k = 1, 2, ... (33)

In order to estimate the ACER functions, we can start by de�ning

Akj(η) = I{Xj > η,Xj−1 ≤ η, ...,Xj−k+1 ≤ η}, j = k, ..., n, k = 2, 3, ... (34)

Bkj(η) = I{Xj−1 ≤ η, ...,Xj−k+1 ≤ η}, j = k, ..., n, k = 2, 3, ... (35)

where I{·} is the indicator function. We can then use these de�nitions to express the
ACER function as

εk(η) = lim
n→∞

∑n
j=k Akj(η)∑n
j=k Bjk(η)

(36)

when we know for fact that αkj(η) = E{Akj(η)}/E{Bkj(η)} for j = k, ..., n, k = 2, 3, ....

The sample estimation of εk(η) can then be estimated by

ε̂k(η) =
1

R

R∑
r=1

ε̂k
(r)(η) (37)

where R is the number of realisations or samples and
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ε̂k
(r)(η) =

∑n
j=k A

(r)
kj (η)∑n

j=k B
(r)
jk (η)

(38)

for the r'th realisation. Then we use that lim
η→∞

n∑
j=k

Bjk(η) = n− k + 1, and get

ε̂k
(r)(η) =

∑n
j=k A

(r)
kj (η)

n− k + 1
(39)

To construct the con�dence intervals of the ACER function, we need to de�ne the ex-
pression for the estimated standard deviation

ŝk(η)2 =
1

R− 1

R∑
r=1

(ε̂k
(r) − ε̂k)2 (40)

The equation (40) leads to a fairly good approximation of the 95% con�dence interval
where the limits are set by

CI± = [ε̂k(η)− 1.96ŝk(η)/
√
R , ε̂k(η) + 1.96ŝk(η)/

√
R] (41)

Since we are working with data with a heavy-tailed distribution, we know that the
underlying asymptotic extreme value distribution here is of type Fréchet. This gives
the tail behaviour denoted by the equation (42) [7],

εk(η) ≈ qk(η)[1 + ξk(ak(η − bk)ck)]−1/ξk , η ≥ η1 (42)

where the function qk(η) is a weakly varying function compared to [1 + ξk(ak(η −
bk)

ck)]−1/ξk so it can be considered as a constant q (especially in the tail region), and
ak > 0, bk, ck > 0 and ξk > 0 are all constants dependent on k. Note that when ck = 1
and q = 1 it corresponds to the asymptotic limit, and then we have the Generalised
Extreme Value distribution. The parameters ck and q are also the sub-asymptotic pa-
rameters.

We can write equation (42) in an alternative form by introducing a new function dk(η):

εk(η) ≈ [1 + ξk(ak(η − bk)ck + dk(η))]−1/ξk , η ≥ η1 (43)

where the function dk(η) is weakly varying compared to ak(η− bk)ck . This written form
leads to easier estimation procedures and therefore can be preferred. Expression (42)
can be simpli�ed by setting γ = 1/ξ, ã = aξ and suppressing the k's, and we get the
following

ε(η) ≈ q[1 + ã(η − b)c]−γ (44)
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Taking the logarithm on both sides of equation (44) and moving the right side of the
expression to the left we get the basis of the mean square error which can be minimised,

F (ã, b, c, q, γ) =
n∑
j=1

wj |logε̂(ηj)− logq + γlog[1 + ã(ηj − b)c]|2 (45)

=
n∑
j=1

wj(yi − logq + γxi)
2 (46)

where yj = logε̂(ηj), xj = log(1 + ã(ηj − b)c), and wj = (logCI+(ηj)− logCI−(ηj))
−2 are

weighted factors that emphasise more on the reliable data points. CI± denotes the upper
and lower limit of the 95% con�dence interval. It is possible to put even more emphasis
or less emphasis on the di�erent data points by replacing the exponent -2 with another
number.

It is not always a trivial matter to minimise a function with �ve parameters. But in
this case, the optimisation will be much easier if we use

γ∗(ã, b, c) = −
∑n

j=1wj(xj − x̄)(yj − ȳ)∑n
j=1wj(xj − x̄)2

(47)

and

logq∗(ã, b, c) = ȳ + γ∗(ã, b, c)x̄ (48)

as estimators for γ and logq. Now we can minimise the function in equation (46) with
respect to three parameters rather than �ve. We can also use optimisation methods like
for example Levenberg-Marquardt least square optimisation method to estimate the �ve
parameters ã, b, c, q, γ.
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2.6 AR-GARCH model

In general, an auto regressive conditional heteroskedasticity (ARCH) model is used to
characterise an observed time series. They will model a time series much better in con-
sideration of great variance in the volatility. ARCH models assume the variance of the
current error term to be functions of the error terms of the previous period. If an auto
regressive moving average model (ARMA) is assumed for the error variance, the model
is a generalised autoregressice conditional heteroskedasticity (GARCH) model.

Therefore in this thesis, we use a AR-GARCH model to pre�lter the time series as done
by McNeil and Frey [6]. The use of an AR term and a GARCH term comes from the fact
that we would like to catch the strong patterns in the observations in the sense of season-
ality and signi�cant volatility clustering in the electricity data. An AR(k)-GARCH(p, q)
is an autoregressive model of order k with GARCH noise of order p, q can be written in
general as

rt = a0 +
k∑
i=1

airt−i + εt (49)

σ2t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (50)

where εt = σtηt and ηt ∼ IID(0, 1). Further on, ηt is usually Gaussian- or Student's
t-distributed, scaled to variance 1 and with υ degree of freedom. We have used a
GARCH(1,1) model to characterise the conditional volatility as a function of previ-
ous volatilities and return. While we have used an AR(5) part to modify the weekly
seasonality. We would like the AR-GARCH model in this thesis to look as follows:

rt = a0 +

5∑
i=1

airt−i + εt

σ2t = φ0 + φ1ε
2
t−1 + φ2σ

2
t−1 (51)

where σ2t is the conditional variance of εt. We would like to include the AR(5) term
because we have 5 observations in a week, representing the weekly seasonality. Although
we would like our model to look like the equation (51), we have situations where some
of the desired parameters are not signi�cant. This makes changes to our desired model
depending on the data set analysed. The parameters not mentioned in our model can be
signi�cant in some of the cases, but their role in the model will be unmentionable small
in the cases where they are not signi�cant.

We can also estimate the conditional tail quantiles, αt,p, by this general expression:
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αt,p = a0 +
k∑
i=1

airt−i + σtαp (52)

where a0+
∑k

i=1 airt−i and σt is the conditional mean and volatility from the AR-GARCH
model, and αp is the unconditional tail quantiles.

2.7 Tail-quantile estimation

The tail-quantile estimation is a way to evaluate a models out-of-sample performance.
This has been done by �rst dividing the observations in two equal parts; one estimation
period and one out-of-sample performance comparison. We roll one observation forward
for the estimation period till we reach the end of the dataset. In other words, we re-
estimate the models each day with the new observations. The standard residuals of the
estimation periods are then saved and are the basis for our out-of-sample predictions. We
make tail-quantile estimation for both the POT method and the ACER method to com-
pare the two methods. In this way, we have the out-of-sample performance comparison
part to compare the estimation results with. The code for the tail-quantile estimation is
seen in appendix A.
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3 Analysis of data

When we are doing the POT analysis we work with the log return of the data. To put it
simple, that is the logarithm of data today divided by yesterday. The main advantage by
doing this is that the logarithmic return (also known as the continuously compounded
return) is symmetric, while the arithmetic return is not: positive and negative percent
arithmetic returns are not equal. The analysis have also been done with a net simple
return instead of a logarithmic return. The net simple return is expressed as

Xt −Xt−1
Xt−1

(53)

We did not �nd any large and signi�cant di�erences between doing the analysis on the EL
ICE data set with the net simple returns and the log returns, and therefore the analysis
described in the thesis have been of the logarithmic kind.

The tail marker for the ACER method is set after inspecting the empirical ACER func-
tions plotted against scaled exceedances. We have also considered the fact that the pre-
dicted return value can or can not be sensitive to the choice of the tail marker. Therefore
we have checked the degree of sensitivity for the data sets by adjusting the tail marker
and looking for any considerable alteration in the predicted parameters. This we do to
verify the robustness of the predictions.

Also note that for both methods, we are checking the extrapolated ACER function and
POT �tted GPD with their respectively con�dence intervals down to a 10−6 level, the
level of interest. We do this because we want to highlight and stress the consequences
by predicting at a lower, but realistic, level.

When working with the energy market and pricing futures, we have to remove the re-
turn value for the dates of maturity. This return does not denote the di�erence in price
within a certain contract, but instead representing the price di�erence between two dif-
ferent contracts. For example, the date of maturity for the EL ICE market is the last
Thursday in each month. Unfortunately, because of the lack of feedback from the large
energy markets, we have only got hold of the dates of expiration for two of the data
sets; the EL ICE and the Coal ICE data set. Hopefully, this will give us some kind of
impression about how large an in�uence the removal of the expiration dates will have on
the results.

For the mean residual life plot and the plot of the estimated modi�ed scale and shape
parameter, we have made sure that the x-axis never spans over an interval where there
are less than approximately 1% of the total amount of observations. Because after that
point, it is not longer necessary to investigate the stability and progression of the thresh-
old value.

In the theory section, we have described the ACER parameters in equation (46). We
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see that some of the parameter is de�ned as greater than zero, but because of how the
ACER method have been programmed [5] these parameters are going to be negative in
the mentionings for the di�erent data sets in the following sections.

3.1 EL ICE with expiration dates

EL ICE describes the development on the electricity market in United Kingdom. We
look at monthly contracts which is liquid and available. The electricity futures contract
is a deliverable contract where the buyer is obliged to make or take delivery of electricity
to/from National Grid Transco in accordance with ICE Futures Europe regulations.
Further on, we look at the base load, which is the period the electricity is delivered from
12PM to 12PM the next day. We have observations 5 days a week from 14.09.2004 to
31.01.2011 except for holidays (1627 observations; over 6 years worth of observations).
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(a) The index of EL ICE from period 14.09.2004-
31.01.2011.

Time

Lo
g 

R
et

ur
n 

E
L 

IC
E

2004 2005 2006 2007 2008 2009 2010

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

(b) The log return of the EL ICE observations.

Figure 1: Index plot and log return plot of the observations for EL ICE

In �gure 1(a) and 1(b) we see the index and the log returns of the data set EL ICE. There
are presumably some incident causing the dramatic outcome after passing day number
1000 (approximately after 4 years). This can be seen clearly both in the index plot and
plot for the log returns. The plot for the autocorrelation function in �gure 2(a) shows
nearly close to zero autocorrelation in the data set, except for marginally larger values
between lag 20 and lag 25. We can also see how di�erent our data set varies from the
normal distribution in �gure 2(b). This can be underlined by the excess kurtosis value
for the log returns of 18.45. It is also worth mentioning that the skewness is 1.85, giving
us a slightly heavier right tail than the left tail.

To help us deciding a suitable threshold value u with the POT method, we look at
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(a) The autocorrelation function.

●
●

●
●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●
●

●
●●●

●●●
●

●

●
● ●

●
●●●

●

●

●

●

●
●●●

●●

●●

●
●

●●● ●

●

●
●

●

●
● ●

●
● ●

●● ●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●● ●
●

●
●

● ●
●

● ●

●

●

●

●
●

●

●

●
● ●

● ● ●●●● ●●
●●

●

●
●

●
●

●
●

●

●●
● ●●● ●●

●
● ●

●
●

●
● ●● ●● ●

● ●
●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●●●●

● ●●
●●

● ● ●

●

●
●

●

●

●

●

●
●

●

●● ●●●
●

●
●

●
●●

●
● ●

●

●●●

●

●●
●●● ●

●
●●

●

●●

●

●

●

●
●

●●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●●

●
●●

●
●

●

●

● ●

●

●

●●

●
●

● ●

● ●

●
●●

●

●●

●

●

●

●

●●

●

● ●
●● ●●

● ●

●

●

●

●●

●
●

●

●
●

●

●
● ● ●

●

●

●

●
● ●●●● ●●

●

●
● ● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

● ●

● ●●●
●

●●●

●

●●●●●
●●

●●
●●●

●

●
●●● ●

●
●

●●

●
●

●

●

●
●

● ●
●

●

●

●

●
●

●
● ●

●●

●

●● ●●
●●

●
●

●
●

●

●●

●

●
●●

●●
●

●
●

● ●
●

●

●

●●

●
●

●●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●●
●

●

●
●

●●

●●●
●

●

●

●
●

●

●●●

●●

●
●

●

●

●

●●

●
●

●●●

●
●

●

●

●

● ●
●

●●

●
●●

●
●

●
● ●

●●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●

●

●

●
●

●
●

● ●
●

●
●●●

●
●●

●
●●

●

●● ●●
●●●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●●

●

●
● ●●

● ●

●
●

●

●●

●
● ●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●●●

●

●
● ● ●●

● ● ●● ● ●●
●●

●
●●

●

●

●●
●●

●

●
● ●●

●

● ●● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●●
● ● ●

●

●

●

●
●● ●

●

●
● ●

●

●
●

● ●●●
●

●●

●

●
●●

●
● ●

● ●
●

●●
●

● ●

●
●●●●

●
●

●
●

●
● ●

●

●

●

●

●
●

●
●

●
●

● ●●● ●

●

●

●

●

●

●
●

●
●

● ●●
●

●

●●
●

●
●●●

●●
●

●

●●

●

●

●●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●● ●

●●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

●●

●
●

●

●
●

●●

● ●

●

●

●
●

●

●

●

●
●

●

●

●●●

● ●

●

●

● ●

●

●

●
●

●
●

●●
●

● ●

● ●

●

●

●

● ●
●

●
●

●

●
●●

●
● ●

●

●
●

●

●

●
●

●

●
●

● ●
●

●●
●

●●●
●

● ●

●
●

●

●

●●

●

●

●

●
●●

●
●

● ● ●
●

●
●●

●

●
●

●
●

●

●

●

●●

●

●
● ●

●
●

●
● ●

●
●

●●
● ●● ●

●● ●

●

● ●● ●●
●

●●
●●● ●● ●●

●
●

●
●

●

●
● ●●●●●●

●
●

●
●●●

●●
●

●●● ●
●

●

●

●

●●
● ●

●
●●

●
●

● ●
●

●

●●
●●●●●

●

●
●

●

●●
●● ●●

● ● ●
●●

● ●●

●

●

●●

●● ●

●
●●●

●

●

●●●●
●

●
●

●
●●

●
●●●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

● ●

●●

●●
●

● ●
●●

●●●
●

● ● ●●
●● ●● ●●●●

●●●
●

● ● ●

●
●

●
●●●●

● ●● ●●

●
●

●
●●

●
●

●
●

●
● ●

● ●

●

●

●

●

●●
●

●

●

●

●●

●
●●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●●

●●●
●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●●

●●
●●

●

●
●

●●●

●
●

●
●

●
●●●

●
●●

●

●

● ●
●

●
●

●
●

●
●

● ●
● ●

●

●
●

●●

●
●

● ●

●
●● ●●● ●●

●● ●
●

●
●

●

●

●
●

●●
● ●

●●
●

●●● ●● ● ●●●
●

●●
●●

●●
●

● ●●
●

●

●● ●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●●

●
●

●●
●●●

●●

●
●

●
●

●

● ●
●

●

●● ●● ●●
● ●●

●

●● ●

−3 −2 −1 0 1 2 3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(b) QQ-plot with the normal distribution repre-
sented as the line.

Figure 2: The autocorrelation function and the QQ-plot.

the mean residual plot in �gure 3(a) and the estimated modi�ed scale and shape param-
eter against di�erent choices of threshold values in �gure 3(b). We see that for the mean
residual plot shows linearity from 0 to 0.03, whilst �gure 3(b) shows a closely constant
modi�ed shape when the threshold is between 0 and 0.03, and the same applies for the
shape parameter. We see that there is no reason for not choosing the threshold 0.03. This
gives a modi�ed scale σ = 0.02332 and a shape ξ = 0.36328. We have 145 observations
above this threshold and this corresponds to 8.91% of the total amount of observations.
To check the quality of this model, we plot the probability plot in �gure 4(a) and we
see that linearity is fairly present. This is just an indication of the model's quality, we
can not rely fully on these plots to tell us whether a model is good or not. We can
look at the stability in �gure 4(b) where the standard deviation has been plotted against
time (months). It does not seem very stationary by looking at the plot. The standard
deviation has a high degree of variation and many peaks.

Continuing with the ACER analysis, we see from �gure 5(a), we have the �rst four
empirical ACER functions k = 1, 2, 3, 4. They will probably converge, so we usually
do not need more ACER functions than that. From this plot we also see that the �rst
ACER function is su�cient enough to use when estimating the parameters in equation
(46). The lower ACER function we use, the more of the data is utilised and the esti-
mates will have better accuracy. The parameters of the ACER function are ã = −5.0008,
b = 0, c = 0.7040, γ = −5.8701 and q = 0.6978. The return level is 2.26715 with the
95% con�dence intervals CI = [1.92249,2.64841] for the 10−6 level of interest. We have
de�ned γ = 1/ξ in an earlier section, but due to how the ACER code is developed we
have that γ = −1/ξ in this context.
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(a) The mean residual plot.
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Figure 3: The plots to help on the choice of threshold.
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Figure 4: Probability plot for threshold excess model �tted to EL ELICE data and
checking for stationarity.

Now we �ltrate this data set with an AR-GARCH �lter. The one used here is an AR(5)
and GARCH(1,1) model with the normal distribution as the conditioning distribution.
We would like to prefer that all of the parameters used in the �lter are signi�cant down
to a 0.05 level. The conditional distribution is chosen by looking at the signi�cance of
the parameters too, and are not necessary the normal distribution in every case. We see
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tervals respectively.

Figure 5: The EL ICE data analysis by the POT and ACER methods.

AR-GARCH parameters Estimates (std.error)

a0 1.056e-03 (6.223e-04).

a1 4.456e-02 (3.650e-02)..

a2 3.365e-03 (3.263e-02)..

a3 -6.932e-02 (2.967e-02)*

a4 9.748e-03 (3.148e-02)..

a5 7.357e-02 (2.990e-02)*

φ0 2.710e-07 (6.572e-07)..

φ1 1.750e-02 (1.032e-02).

φ2 9.824e-01 (9.995e-03)***

Table 1: Estimates of the AR-GARCH parameters for the full EL ICE data set with the
normal distribution as the conditional distribution with the respectively standard errors
in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1

from table 1 that the parameters who satisfy the 0.05 level signi�cant are a3, a5 and φ2.
The residuals of the EL ICE observations after �ltration is plotted in �gure 6(a). We
see that this �gure resembles the log return plot in �gure 1(b) with larger variations in
the �rst half of the observation period. From the QQ-plot in �gure 6(b), the residuals
seem to be as di�erent from the normal distribution as the log returns in the previous
case. It can be mentioned that the excess kurtosis is 18.04 and the skewness is 1.79.
Both values are very similar to the excess kurtosis and skewness of the log returns. The
autocorrelation function seen in �gure 3.1 shows as little correlation as for the log returns
of the EL ICE data set mentioned previously.
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The threshold choice is done as above, and we see from the mean residual plot in �gure
8(a) that there is a linear area from 0 to 0.04. From the �gure 8(b) we can see that the
estimated modi�ed scale and shape parameters are constant in the region around 0-0.03.
There are areas after the threshold value 0.04 that are linear and constant in these two
plots, but it is not likely that the threshold value is going to be set as high as that taken
in consideration of the fact that we would like to have as many observations above the
threshold as possible. After careful study, the choice fell on the threshold value, u = 0.02.
This decision leads to 224 observations above the threshold and that represents 13.77%
of the total amount of the observations. Then the value of the shape and scale parameter
are 0.01851(0.002114) and 0.40269(0.097156) with their respectively standard errors in
parenthesis.

To check this following model, we use the probability plot that was mentioned before
in a previous section. We see that there are some deviation from the linear line in the
probability plot in �gure 9(a), but these deviations are not serious enough for us to re-
consider our �tted model. For the stationarity check in �gure 9(b) we see that there is
some kind of consistency in the pattern of the standard deviation with exception of some
few tops which are higher than the others.
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Figure 6: The log return plot of the residuals and the QQ-plot for the EL ICE data set.

As done before, we now continue with the ACER analysis. From �gure 10(a) we see the
�rst four empirical ACER functions k = 1, 2, 3, 4. It is clearly that they converge, so we
use the �rst ACER function to estimate the parameters in the ACER analysis. From
�gure 10(b) we �nd the extrapolated ACER function in black and the POT �tted GPD
in blue with their con�dence intervals respectively. We see in �gure 5(b) that there are
larger di�erence between the extrapolated ACER function and the POT �tted GPD than
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Figure 7: The autocorrelation function.
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(b) The estimated modi�ed shape and scale pa-
rameter against the threshold.

Figure 8: The plots to help on the choice of threshold.

the previous case with the log returns. We also notice that the con�dence intervals of
the extrapolated ACER function are larger than for the previous case. The parameters
of the ACER functions are ã = −5.0101, b = 0, c = 0.6919, γ = −5.8372 and q = 0.7099.
The return level is 2.35922 with the 95% con�dence intervals CI = [0.976009, 5.08484]
for the 10−6 level of interest.
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(a) The probability plot.
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Figure 9: Probability plot for threshold excess model �tted to the residuals of the EL
ICE data and checking for stationarity.
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(a) The empirical ACER functions plotted
against scaled exceedances.
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Figure 10: The residuals of the EL ICE data analysis by the POT and ACER methods.
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3.2 EL ICE without expiration dates

The full dataset EL ICE without the returns from the last Thursday in every month
consists of 1520 observations. This slightly smaller dataset is analysed as before, and
we see in �gure 11(a) the index plotted against time. Both the full dataset and the
minimised one is plotted there as red and black respectively. We can see that there is a
great increase around the end of year 2007 and the start of year 2008 where the highest
value of the index is actually over three times the average mean of the whole dataset.
The log return of both sets are also plotted in 11(b).
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28.01.2011. Red:the full dataset. Black:the
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Figure 11: Index plot and log return plot of the observations for the minimised EL ICE
dataset.

The plot for the autocorrelation function in �gure 12(a) shows nearly close to zero auto-
correlation in the data set, so there are none concern about autocorrelation being present.
We can also see how di�erent our data set varies from the normal distribution in �gure
12(b). It can be mentioned that the excess kurtosis value of 10.87, and that the skewness
is 1.27 giving us a heavier right tail than left tail. The excess kurtosis is somewhat lower
here than for the full data set, 18.45 in comparison to 10.87, but the skewness has not
changed a lot. This previous mentioned change in the excess kurtosis can be because
the data set now has less observations than the full data set; 107 less observations to be
exact (6.6 %).

To help us deciding a suitable threshold value u with the POT method, we look at
the mean residual plot in �gure 13(a) and the estimated modi�ed scale and shape pa-
rameter against di�erent choices of threshold values in �gure 13(b). We see that for the
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Figure 12: The autocorrelation function and the QQ-plot.

mean residual plot shows linearity from 0 to 0.03, whilst �gure 13(b) shows a closely
constant modi�ed shape when the threshold is between 0 and 0.03, and the same applies
for the shape parameter. Then we have the interval where a suitable threshold can be
picked, but we do also need to see more closely how the estimates of the modi�ed scale
and shape parameter change with the threshold choice in table. We see that there is no
reason for not choosing the threshold 0.03. This gives a modi�ed scale σ = 0.07105 and a
shape ξ = 0.59635. We have 170 observations above this threshold and this corresponds
to 10.45% of the total amount of observations. To check the quality of this model, we
plot the probability plot in �gure 14(a) and we see that linearity is fairly present. We
can look at the stability in �gure 14(b) where the standard deviation has been plotted
against time (months). It does not look very stationary, but we can see the tendency of
stationary parts.

Continuing with the ACER analysis, we see from �gure 15(a), we have the �rst four
empirical ACER functions k = 1, 2, 3, 4. They will probably converge, so we usually
do not need more ACER functions than that. From this plot we also see that the �rst
ACER function is su�cient enough to use when estimating the parameters in the ACER
method. The lower ACER function we use, the more of the data is utilised and the esti-
mates will have better accuracy. The extrapolated ACER function and the POT �tted
GPD can be seen in �gure 15(b), and we see that they lie very close to each other and
therefore will produce similar estimations. The parameters of the ACER function are
ã = −5.0014, b = 0, c = 0.7564, γ = −6.9465 and q = 0.6533. The return level for the
ACER method is 1.23701 with the 95% con�dence intervals CI = [1.01605 , 1.36627] for
the 10−6 level of interest.
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Figure 13: The plots to help on the choice of threshold.
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Figure 14: Probability plot for threshold excess model �tted to the residuals of the EL
ICE data and checking for stationarity.

While doing the �ltration of this data set without the expiration dates with an AR-
GARCH �lter, we conclude that the best suitable model in this case consist of an AR(1)
part and a GARCH(1,1) part with a normal distribution as the conditioning distribution.
Seen in table 2 all the parameters are signi�cant except for a0 which is not signi�cant no
matter kind of conditional distribution being used. The residuals are plotted in �gure



26 3 ANALYSIS OF DATA

0 0.5 1 1.5 2 2.5 3 3.5

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

η/σ

lo
g 10

(ε
k)

 

 

k=1
k=2
k=3
k=4

(a) The empirical ACER functions plotted
against scaled exceedances.

0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

η/σ

lo
g 

ε(
η)

(b) The extrapolated ACER (black) function and
POT (blue) �tted GPD with their con�dence in-
tervals respectively.

Figure 15: The EL ICE data analysis by the POT and ACER methods.

16(a), and we notice that as before it looks the same as the log returns but these residuals
have de�nitely have di�erent characteristics because of the �ltration. In �gure 16(b) we
see that the residuals are quite di�erent from the normal distribution, as we have seen
in the case of the log returns. The excess kurtosis is 10.70 and the skewness is 1.19, and
are similar to the ones from the log return series. The autocorrelation function in �gure
3.2 shows no sign of large e�ects of autocorrelation.

AR-GARCH parameters Estimates (std.error)

a0 7.791e-04 (5.180e-04)..

a1 1.221e-01 (3.363e-02)***

φ0 3.632e-05 (7.597e-06)***

φ1 2.515e-01 (4.499e-02)***

φ2 7.495e-01 (3.540e-02)***

Table 2: Estimates of the AR-GARCH parameters for the reduced EL ICE data set with
the normal distribution as the conditional distribution with the respectively standard
errors in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1

The analysis for �nding the threshold value u is done as before. From the mean residual
plot in �gure 18(a) we see that there is a linear region between 0 and 0.04, and from �gure
18(b) the estimated modi�ed shape parameter and the scale parameter are constant in
the same region 0-0.04. Therefore, there is no reason for not choosing the threshold value
of 0.02 in this case also. This leads to 195 observations above the threshold and that
equals 12.83% of the total amount of observations. The estimated modi�ed shape param-
eter is then 0.01871(0.002133) and the estimated shape parameter is 0.26604(0.091514),
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(b) QQ-plot with the normal distribution repre-
sented as the line.

Figure 16: The log return plot of the residuals and the QQ-plot for the EL ICE data set
without the expiration dates.
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Figure 17: The autocorrelation function.

with the estimated standard errors in parenthesis respectively.

From �gure 19(a) we see estimated model plotted against the empirical observations,
and there is some deviation from the linear line around the area in the end. But overall,
it is a relatively good �t. The stationarity check in �gure 19(b) shows does not particu-
larly show consistency in the standard deviation with regards to time. These results are
very similar to the situation of the full data set with the expiration dates.



28 3 ANALYSIS OF DATA

0.00 0.02 0.04 0.06 0.08

0.
02

0.
03

0.
04

0.
05

0.
06

Mean Residual Life Plot

Threshold

M
ea

n 
E

xc
es

s

(a) The mean residual plot.
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Figure 18: The plots to help on the choice of threshold.
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(a) The probability plot.
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Figure 19: Probability plot for threshold excess model �tted to the residuals of the
reduced EL ICE data and checking for stationarity.

For the ACER analysis, we see in �gure 20(b) that the �rst four empirical ACER functions
converge in the tail. Therefore we use the �rst ACER function to estimate the parameters
in the ACER analysis. From the extrapolated ACER function in black and the POT �tted
GPD in blue with con�dence intervals in �gure 20(b) we see that again this plot is very
much the same as the previous plot done with the log returns. This can be supported
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POT (blue) �tted GPD with their con�dence in-
tervals respectively.

Figure 20: The residuals of the reduced EL ICE data analysis by the POT and ACER
methods.

by looking at speci�c return levels as we have done in the later section with comparisons
and further discussion. The parameters of the ACER function are ã = −5.0081, b = 0,
c = 0.7587, γ = −6.9326 and q = 0.6151. The return level is 1.22702 with the 95%
con�dence intervals CI = [0.601943, 1.96883] for the 10−6 level of interest.
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Figure 21: Index plot and log return plot of the observations for Coal ICE

The Coal ICE data set is Rotterdam monthly coal futures and spans over 4.5 years ap-
proximately with 1168 observations. The index plot for the Coal ICE data set is seen in
�gure 21(a). We see that there are a large increase in the index from year 2007 to 2008,
and after that there is a large fall in the index. We have seen that kind of behaviour
before, for example in the data set of EL ICE, and are likely caused by the �nancial crisis
in the 2007-2008 period. The log return of this data set can be seen in �gure 21(b). We
see that there are larger values around the area mentioned before. The autocorrelation
function seen in �gure 22(a) shows low presence of autocorrelation with the exception of
around lag 9. Even though an autocorrelation value of approximately 0.1 is larger than
the rest of the autocorrelation-values, it is not a large value seen in a bigger perspective.
We then treat this data set with no concern about autocorrelation being present. The
�gure in 22(b) shows how large a di�erence this data set is from the normal distribu-
tion. This is supported by the fact that the excess kurtosis is 30.37 and the skewness is
-1.26 of the log returns, which leads to an idea of this being a distribution with heav-
ier tail than the normal distribution and with a slightly heavier left tail than the right tail.

To �nd a suitable threshold value u using the POT method, we can look at the mean
residual plot in �gure 23(a) and the estimated modi�ed scale and shape parameter against
di�erent threshold values in �gure 23(b). The mean residual plot show linearity in the
area 0-0.02. But it is harder to see the linearity the further the threshold increases. The
areas where the estimated modi�ed scale parameter is constant are 0-0.02 and 0.02-0.04,
and for the estimated shape parameter are the areas 0.01-0.02 and 0.02-0.03. When con-
sidering the threshold within these areas and looking at the change in the parameters
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with their standard errors respectively, we choose our threshold value to be 0.015. As
mentioned before, we do not have many observations in this case in comparison to the
last case where we had 1627 observations in comparison to the 1168 observations with
Coal ICE. With the threshold value of 0.015, we have 121 observations above the thresh-
old. That represents 10.36 % of the total observations. The estimated modi�ed scale
parameter is 0.01273(0.001902) and the estimated shape parameter is 0.36214(0.125198)
with their respectively standard errors in parenthesis.
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(a) The autocorrelation function.
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(b) QQ-plot with the normal distribution repre-
sented as the line.

Figure 22: The autocorrelation function and the QQ-plot.

To check the model performance and quality, we look at the probability plot in �gure
24(a). Except for a part in the middle, the empirical data and the model align to a fairly
linear line. The stationarity in �gure 24(b) shows that the data set is not stationary.
The standard deviation, and thus the volatility, changes a lot with respect to time.

The plots for the ACER analysis can be seen in the �gures 25(a) and 25(b). We see
that the ACER functions plotted against the scaled exceedances shows that the �rst four
ACER functions converge, k = 1, 2, 3, 4, and thus we use the �rst ACER function in
the further analysis. We see that the POT �tted GPD predicts a heavier tail than the
extrapolated ACER function. The parameters of the ACER function are ã = −5.0011,
b = 0, c = 0.6306, γ = −7.4101 and q = 0.9892. The return level is 1.144 with the 95%
con�dence intervals CI = [0.903619,1.28721] for the 10−6 level of interest.

Now we are wondering whether if �ltrating the observations through an AR-GARCH
�lter will give a model who will capture the volatility better and therefore be a more
suitable model for predicting large price changes in the future. Therefore we now �ltrate
the Coal ICE data set through a GARCH(1,1) �lter with the conditional distribution
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(a) The mean residual plot.
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rameter against the threshold.

Figure 23: The plots to help on the choice of threshold.
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(a) The probability plot.
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(b) The development of the standard deviation
with respect to time (months).

Figure 24: Probability plot for threshold excess model �tted to Coal ICE data and
checking for stationarity.

as the normal distribution. The method for �nding the parameters in AR-GARCH is
as before described. None of the parameters are signi�cant for higher AR levels, so it
is simpler for us to choose the simplest model and that is with an AR(0) part. The
log return of the standard residuals of the Coal ICE observations can be seen in �gure
26(a). We see that in comparison to the log return of the data set, they are almost the
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same. The QQ-plot in �gure 26(b) is far from normal distributed, as in the case of the
log returns. This information can also be supplied with the excess kurtosis of 30.72 and
skewness of -1.15. In �gure 3.3 we see that the autocorrelation is negligible.
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(a) The empirical ACER functions plotted
against scaled exceedances.
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tervals respectively.

Figure 25: The Coal ICE data analysis by the POT and ACER methods.

AR-GARCH parameters Estimates (std.error)

a0 1.310e-03 (4.372e-04)**

φ0 1.087e-06 (3.315e-07)**

φ1 4.016e-02 (5.190e-03)***

φ2 9.653e-01 (3.095e-03)***

Table 3: Estimates of the AR-GARCH parameters for the full Coal ICE data set with
the normal distribution as the conditional distribution with the respectively standard
errors in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1

To decide upon the threshold, we look at the mean residual plot in �gure 28(a) and the
plot of the estimated modi�ed scale and shape parameter against the threshold in �gure
28(b). In the mean residual plot there are areas of linearity in 0-0.02 and 0.02-0.03. In
the plot of the estimated modi�ed scale and shape parameter against the threshold, we
see the estimated parameters are constant from 0 to 0.02 for both parameters. After
careful deliberation, the threshold value is chosen to be u = 0.01 with 169 observations
above the threshold (14.47%). This gives us the estimated modi�ed scale parameter
0.01078(0.001365) and the estimated shape parameter 0.38854(0.107468) with their re-
spectively standard deviations in parenthesis.

Now we perform a quality check on the model. For the probability plot seen in �g-
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Figure 26: The log return plot of the residuals and the QQ-plot for the residuals of the
Coal ICE data set.
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Figure 27: The autocorrelation function.

ure 29(a), we see that the empirical observations do correspond very well with the model
we have set up. From �gure 29(b) we check for stationarity. The residuals seem to be
more stationary in three di�erent parts in the plot, but the �gure does not show consis-
tency over the whole area as for the case with the Coal ICE data set before �ltration.

Continuing with the ACER analysis, we see from �gure 30(a) that the four �rst ACER
function converge so we only use the �rst ACER function to estimate the parameters
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(a) The mean residual plot.
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(b) The estimated modi�ed shape and scale pa-
rameter against the threshold.

Figure 28: The plots to help on the choice of threshold.

in the analysis. From �gure 30(b) we see that now the �gure looks much the same as
the one with the log returns. We can also notice that the con�dence intervals in this
last plot is larger than the previous plot. The parameters of the ACER functions are
ã = −5.0462, b = 0, c = 0.6268, γ = −7.0580 and q = 0.8096. The return level is 1.29243
with the 95% con�dence intervals CI = [0.565158, 2.52772] for the 10−6 level of interest.
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(a) The probability plot.

0 10 20 30

0.
01

0.
02

0.
03

0.
04

0.
05

Time

S
ta

nd
ar

d 
D

ev
ia

tio
n

(b) The development of the standard deviation
with respect to time (months).

Figure 29: Probability plot for threshold excess model �tted to the residuals of the Coal
ICE data and checking for stationarity.
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(a) The empirical ACER functions plotted
against scaled exceedances.
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Figure 30: The residuals of the Coal ICE data analysis by the POT and ACER methods.
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3.4 Coal ICE without expiration dates

Now we have done the analysis with the full Coal ICE data set, and we want to �nd out
if removing the expiration dates will have an e�ect on the results in the analysis. If there
are di�erences, we would also like to �nd out what di�erences there are and how large a
role do they play in the complete analysis.

The Coal ICE data set has date of expiration on the last Friday in every month. The
data set without the dates of expiration consists of 1101 observations. It can be men-
tioned that the maximum and minimum log return observation is 0.191 and -0.1655 for
the reduced data set, while being 0.191 and -0.2286 for the data set with the dates of
expiration. We can conclude with the fact that the maximum has not changes and there-
fore is not in�uenced by the removing the dates of expiration. But the largest minimum
is caused by the expiration date of the contract. One can also compare the log return
�gure 31(b) with the log return �gure 21(b) in last section. Even though the index plot
for this reduced data set in �gure 31(a) look quite similar to the one from the previous
section with the full data set for Coal ICE, we can see that the log return plots show
some large changes from the previous case with the full Coal ICE data set. Here we
see more clearly that the some of the largest values, both negative and positive, have
disappeared by removing the dates of expiration. This is more visible in this case of Coal
ICE in comparison to the case of EL ICE. But there are still very large log return values
around the area around year 2007-2008.
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(a) The Coal ICE data set. Red:the full data
set. Black:the data set without the last Friday in
every month.

Time

Lo
g 

R
et

ur
n 

C
oa

l I
C

E

2006 2007 2008 2009 2010

−
0.

15
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

(b) The log return of the reduced Coal ICE ob-
servations.

Figure 31: Index plot and log return plot of the observations for the reduced Coal ICE
data set.

It seems that the autocorrelation function in �gure 32(a) shows a larger correlation in this
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reduced data set than in the full data set seen in �gure 22(a). The largest autocorrelation
value in this case is around twice as large than the largest value in the previous section, 0.2
in comparison to 0.1. But although there are some larger values for the autocorrelation
around lag 10 and lag 25, there are no need to worry because the values are still quite
small when looking at the full picture. The excess kurtosis is 32.56 and the skewness is
0.76. This can be supported by the QQ-plot where the normal distribution is represented
as the black line in �gure 32(b).
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(a) The autocorrelation function.
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(b) QQ-plot with the normal distribution repre-
sented as the line.

Figure 32: The autocorrelation function and the QQ-plot.

Now we try to decide upon a suitable threshold value, u, with the POT method. First,
we look at the mean residual plot in �gure 33(a) and notice the areas where there are
linearity are around 0-0.02 and 0.02-0.04. Then we look at the plot for the estimated
modi�ed scale and shape parameter against di�erent choices of threshold values in �gure
33(b). For the estimated modi�ed scale parameter we can see areas where it is con-
stant from around 0 to 0.03, and for the estimated shape parameter from approximately
around 0 to 0.035. After looking at how the estimated parameters behave around the
before mentioned areas, we can choose a suitable threshold value. In this case, we have
chosen u = 0.01 which gives us 161 observations above threshold and that represents
14.62 % of the total observation. When there are so few observations in the �rst place,
then we have to try and conserve as much data as possible. This choice of threshold
gives the estimated modi�ed scale parameter σ = 0.009165(0.001114) and the estimated
shape parameter ξ = 0.281176(0.098886).

To check the quality of the model we have now formed, we can consider a probabil-
ity plot as in �gure 34(a). We see that the empirical observations and the model align
pretty well with the linear line. This is the best alignment till now, but we must not
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(a) The mean residual plot.
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Figure 33: The plots to help on the choice of threshold.

rely everything on this one method for checking the quality of a model. We see in �gure
34(b) that the data set does not likely seem to be stationary. There are large di�erences
in the standard deviation between the part in the middle and the parts around.

Continuing with the ACER analysis, we �rst look at the �gure 35(a) and see that the
four �rst ACER functions converge in the middle. Using the �rst ACER function in the
further analyse and estimation, we get the extrapolated ACER function and the GPD �t-
ted POT in �gure 35(b). We see that the aforementioned predicts a heavier tail than the
extrapolated ACER function. The parameters of the ACER function are ã = −1.0216,
b = 0.0018, c = 0.5610, γ = −26.7932 and q = 0.8798. The return level is 0.469174 with
the 95% con�dence intervals CI = [0.375111 , 0.531734] for the 10−6 level of interest.

Now we �ltrate the data set through an AR-GARCH �lter, as done in the previous
section for the EL ICE data set. We �nd out by looking at number of signi�cant param-
eters in the model which model we should use on this data set. The model used in this
case consists an AR(4) part and a GARCH(1,1) part with a normal distribution as the
conditioning distribution. We see from table 4 that every parameter are signi�cant down
to a 0.05 level except for a2 and a3. Let us now do the same analysis for the residuals
after �ltration seen in �gure 36(a). We notice that we used an AR(0)-GARCH(1,1) �lter
in the previous case when the data set had the dates of expiration, while this case we have
an AR(4)-GARCH(1,1) �lter. In �gure 36(b) gives us an impression of how di�erent this
data set of residuals is from the normal distribution. The excess kurtosis is 24.70 and
the skewness is -0.14. The autocorrelation function seen in �gure 3.4 shows larger values
than we have ever seen before in this thesis, but there is still no valid concern about au-
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tocorrelation at these levels. Declustering is one method to get rid of the autocorrelation,
if that should be needed.
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Figure 34: Probability plot for threshold excess model �tted to Coal ICE data and
checking for stationarity.
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Figure 35: The EL COAL data analysis by the POT and ACER methods.

Finding the threshold value, u, has been done as before. From the mean residual plot in
�gure 38(a) we see that there seems to be linearity in the area from 0 to 0.02. While from
the plot for the estimated modi�ed shape and scale parameter seen in �gure 38(b) shows
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AR-GARCH parameters Estimates (std.error)

a0 1.340e-03 (3.426e-04)***

a1 1.266e-01 (4.333e-02)**

a2 4.706e-02 (4.728e-02)..

a3 7.432e-02 (4.204e-02).

a4 -1.610e-01 (3.049e-02)***

φ0 4.234e-06 (1.284e-06)***

φ1 3.750e-01 (4.260e-02)***

φ2 7.561e-01 (1.889e-02)***

Table 4: Estimates of the AR-GARCH parameters for the reduced Coal ICE data set with
the normal distribution as the conditional distribution with the respectively standard
errors in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1
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(b) QQ-plot with the normal distribution repre-
sented as the line.

Figure 36: The log return plot of the residuals and the QQ-plot for the reduced Coal
ICE data set without the expiration dates.

that the parameters are approximately constant also in the area from 0 to 0.02. After
trying several possibilities for the threshold value we set the u to be 0.01. This gives
154 observations above the threshold, and that represents 13.99% of the total amount.
The modi�ed scale parameter is then estimated to be 0.008543(0.001108) and the shape
parameter is 0.346196(0.109587) with their standard errors in parenthesis.

To perform a quality check on this model we can consider the probability plot in 39(a).
The points seem to align very well with the linear line. We check for stationarity in
�gure 39(b), and conclude as before that there seems to be three parts where there are
stationarity but overall the residuals do not seem to be stationary.
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Figure 37: The autocorrelation function.
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(a) The mean residual plot.
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(b) The estimated modi�ed shape and scale pa-
rameter against the threshold.

Figure 38: The plots to help on the choice of threshold.

The ACER analysis shows that the �rst four ACER functions converge in the middle of
the plot in �gure 40(a), so we use the �rst ACER function to estimate the parameters in
the further ACER analysis. The extrapolated ACER function and the POT �tted GPD
can be seen in �gure 40(b). We see the POT �tted GPD estimates a much heavier tail
than the extrapolated ACER function. Although the plot seem very much alike the one
in �gure 35(b), we see that the extrapolated ACER function is closer to the POT �tted
GPD in the previous case. The con�dence intervals of the extrapolated ACER function
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Figure 39: Probability plot for threshold excess model �tted to the residuals of the
reduced Coal ICE data and checking for stationarity.

are also larger than the before. The parameters of the ACER function are ã = −5.0215,
b = 0, c = 0.7394, γ = −10.0474 and q = 0.6373. The return level is 0.452489 with the
95% con�dence intervals CI = [0.241724, 0.667962] for the 10−6 level of interest.
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Figure 40: The residuals of the reduced Coal ICE data analysis by the POT and ACER
methods.
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Figure 41: Index plot and log return plot of the observations for EL NP

The EL NP data set is NordPool monthly electricity futures from 07.04.2003 to 31.01.2011.
This represents 8 years with 1953 observations. The index plot of the EL NP data set
can be seen in �gure 41(a), and it is clearly that there are a few large �uctuations in the
index prices. The log return of the EL ICE index, seen in �gure 41(b), shows also some
large values. The autocorrelation function in �gure 42(a) shows no sign of large e�ects of
correlation. This data set is also very di�erent distributed in comparison to the normal
distribution, and that is seen in �gure 42(b). The excess kurtosis of 9.48 is not very large
in comparison to the other data sets and skewness of 0.89, but this is only some ways of
considering the di�erence between two distributions.

To �nd a suitable threshold value u using the POT method, we can look at the mean
residual plot in �gure 43(a) and the estimated modi�ed scale and shape parameter against
di�erent threshold values in �gure 43(b). The mean residual plot show linearity in the
areas 0-0.02 and 0.025-0.05. The areas where the estimated modi�ed scale parameter
is constant are 0-0.04, and for the estimated shape parameter are the areas 0-0.04 and
0.045-0.07. When considering the threshold within these areas and looking at the change
in the parameters with their standard errors respectively, we choose our threshold value
to be 0.03. Then we have 246 observations above the threshold. That represents 12.6%
of the total observations. The estimated modi�ed scale parameter is 0.02403(0.002197)
and the estimated shape parameter is 0.15538(0.066732) with their respectively standard
errors in parenthesis.

The diagnostic tools to check the quality of the �tted model can be the probability
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plot seen in �gure 44(a). We see that the �t is quite good except for a small area in the
middle. The stationarity plot in �gure 44(b) shows trends of stationarity, but it is hard
to say for sure whether the data set is stationary or not just from the plot.
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(a) The autocorrelation function.
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Figure 42: The autocorrelation function and the QQ-plot.
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Figure 43: The plots to help on the choice of threshold.

The plots for the ACER analysis can be seen in the �gures 45(a) and 45(b). We see
that the ACER functions plotted against the scaled exceedances shows that the �rst four
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(a) The probability plot.
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(b) The development of the standard deviation
with respect to time (months).

Figure 44: Probability plot for threshold excess model �tted to EL NP data and checking
for stationarity.

ACER functions converge fully all the way, k = 1, 2, 3, 4, and thus we use the �rst ACER
functions in the further analysis. We see that the POT �tted GPD predicts a slightly
heavier tail than the extrapolated ACER function in �gure 45(b), but the POT method
gives a much larger con�dence interval than the ACER method. The parameters of the
ACER function are ã = −5.0023, b = 0, c = 0.9773, γ = −9.2976 and q = 0.5301. The
return level is 0.618708 with the 95% con�dence intervals CI = [0.372341,0.841372] for
the 10−6 level of interest.

Now we take the data set and �ltrate it through an AR-GARCH �lter. In this case
we used an AR(0) part and a GARCH(1,1) part. One fact that has to be pointed out
in this case is that every parameter except a0 are signi�cant whether we choose the nor-
mal distribution, Student's t distribution or QMLE (which is also based on the normal
distribution) as the conditional distribution. The normal distribution has been chosen
as the conditional distribution though, because it gives the least amount of parameters
and therefore leads to an easier model. In �gure 46(b) we see how the residuals di�ers
from the normal distribution. The residuals from the log returns of the data set EL NP
is plotted in �gure 46(a). The excess kurtosis of the standard residuals is 9.48 and the
skewness is 0.89, and remains quite similar to the ones from the log returns. The auto-
correlation function can be seen in �gure 3.5 and we see that there are no large values
for the autocorrelation function.

To decide upon the threshold, we look at the mean residual plot in �gure 48(a) and the
plot of the estimated modi�ed scale and shape parameter against the threshold in �gure
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48(b). In the mean residual plot there are areas of linearity in 0-0.02, 0.03-0.05 and 0.05-
0.08. The estimated modi�ed scale parameter and the estimated shape parameter are
approximately constant around 0-0.04. After some deliberaton and further investigation,
the threshold value is chosen to be u = 0.03 with 238 observations above the threshold
(12.19%). This gives us the estimated modi�ed scale parameter 0.02457(0.002257) and
the estimated shape parameter 0.14625(0.066048) with their respectively standard devi-
ation in parenthesis. Doing the same quality check as before, we see in �gure 49(a) the
probability plot where the there is a pretty good �t besides some minor deviations. It
can almost seem to be some kind of a trend that the observations are above the linear
line in the �rst half and below the line in the last half of the plot. From �gure 49(b) we
see that the standard residuals seem to be stationary except for a few larger peaks.
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(b) The extrapolated ACER (black) function and
POT (blue) �tted GPD with their con�dence in-
tervals respectively.

Figure 45: The EL NP data analysis by the POT and ACER methods.

AR-GARCH parameters Estimates (std.error)

a0 5.937e-04 (6.420e-04)..

φ0 1.824e-05 (4.275e-06)***

φ1 8.080e-02 (1.057e-02)***

φ2 9.100e-01 (9.879e-03)***

Table 5: Estimates of the AR-GARCH parameters for the EL NP data set with the
normal distribution as the conditional distribution with the respectively standard errors
in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1

Continuing with the ACER analysis, we see from �gure 50(a) that the four �rst ACER
function fully converge so we only use the �rst ACER function to estimate the parameters
in the analysis. The plot with the extrapolated ACER function and the POT �tted GPD
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Figure 46: The log return plot of the residuals and the QQ-plot for the residuals of the
EL NP data set.
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Figure 47: The autocorrelation function.

seen in �gure 50(b) is almost exactly the same as the one for the log returns with the
POT �tted GPD predicting a slightly heavier tail than the extrapolated ACER function.
For all the other data sets, we have seen that the con�dence interval is larger for the
residuals than the ones for the log returns, but for in this case the con�dence intervals
looks quite alike. The parameters of the ACER functions are ã = −5.1112, b = 0,
c = 0.9780, γ = −9.2806 and q = 0.5140. The return level is 0.618314 with the 95%
con�dence intervals CI = [0.401198, 0.847774] for the 10−6 level of interest.
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Figure 48: The plots to help on the choice of threshold.
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(a) The probability plot.
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Figure 49: Probability plot for threshold excess model �tted to the residuals of the EL
NP data and checking for stationarity.
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Figure 50: The residuals of the EL NP data analysis by the POT and ACER methods.
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Figure 51: Index plot and log return plot of the observations for EL EEX

The EL EEX data set is monthly futures from Germany and spans over approximately
8 years with 2033 observations. The index plot for the EL EEX data set can be seen in
�gure 51(a). We see that there are some �uctuations and great variations in the data
set. Thus the log return plot in �gure 51(b) has some larger values than the rest. The
autocorrelation function seen in �gure 52(a) shows extremely small autocorrelation val-
ues for the EL EEX data set. This data set has the excess kurtosis of 28.53 and the
skewness of 1.59, and in �gure 52(b) can we see the di�erence in this data set compared
to the normal distribution.

Now we �nd a suitable threshold value by the POT method. We �rst consider at the
mean residual plot in �gure 53(a) and look for areas for where the plot is linear. It seems
to consist of two linear parts; one from 0 to 0.05 and the other from 0.05 and to the
end of the plot in this �gure. For the plot with the estimated modi�ed scale parameter
and the estimated shape parameter, we see areas where the parameters are constant
around 0-0.02 for the �rst mentioned and 0.02-0.05 for the last mentioned. The thresh-
old value of 0.02 seem to �t in this case. This threshold value gives 228 observations
above, which represents 11.21% of the total amount of observations. This leads to an
estimated modi�ed scale parameter 0.02636(0.00215) and an estimated shape parameter
0.43557(0.10401) with their respectively standard errors in parenthesis. The probability
plot seen in �gure 54(a) gives us the indication that the �tted model is pretty good. For
the stationarity check, we see in �gure 54(b) that the EL EEX data set is quite stationary.

The plots for the ACER analysis can be seen in the �gures 55(a) and 55(b). We see
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that the ACER functions plotted against the scaled exceedances shows that the �rst four
ACER functions converge, k = 1, 2, 3, 4, and thus we use the �rst ACER function in
the further analysis. We see that the POT �tted GPD predicts a heavier tail than the
extrapolated ACER function. The parameters of the ACER function are ã = −1.0105,
b = 0.0036, c = 0.5, γ = −12.4279 and q = 0.5178. The return level is 3.47428 with the
95% con�dence intervals CI = [1.7167,5.35344] for the 10−6 level of interest.
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(a) The autocorrelation function.
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sented as the line.

Figure 52: The autocorrelation function and the QQ-plot.

Doing the �ltration as before with an AR-GARCH �lter, we see that the residuals in
�gure 56(a). In this case we used an AR(1)-GARCH(1,1) �lter, and the student t-
distribution as the conditioning distribution. We see from table 6 that every parameter
is then signi�cant down to at least a 0.01 level. Note that the parameter υ is the degrees
of freedom in the Student's t distribution with mean equal 0 and variance equal 1.

In �gure 56(b), we see the di�erence between the standard residuals and the normal
distribution. Additional information are the excess kurtosis of 28.38 and the skewness
of 1.54. Even though these values are quite similar to the values for the original un�l-
tered data set, but we can have two very di�erent distributions despite the similar excess
kurtosis and skewness value as mentioned before. The autocorrelation function in �gure
57(a) shows very small values, even in comparison to the other data sets analysed after
doing the �ltration.

The threshold value, u, can be decided by looking at the mean residual plot in �gure
58(a) and the plot of the estimated modi�ed scale and shape parameter in �gure 58(b).
The mean residual plot has two areas of linearity, from 0 to 0.03 and from 0.03 to 0.06.
The estimated modi�ed scale is approximately constant from 0 to 0.02 and 0.02 to 0.04
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(a) The mean residual plot.
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(b) The estimated modi�ed shape and scale pa-
rameter against the threshold.

Figure 53: The plots to help on the choice of threshold.
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Figure 54: Probability plot for threshold excess model �tted to EL EEX data and check-
ing for stationarity.

while the estimated shape parameter seems to be constant from 0.02 to 0.03 and from
0.03 to 0.05. This leads to the choice of u = 0.02 as the threshold value. This gives 243
observations above the threshold and that represents 11.95% of the total amount of ob-
servations. This choice gives an estimated modi�ed scale parameter of 0.02393(0.002821)
and an estimated shape parameter of 0.47373(0.103904) with their respective standard
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Figure 55: The EL EEX data analysis by the POT and ACER methods.

errors in parenthesis. Performing a quality check on the model, we see that the proba-
bility plot in �gure 59(a) indicates a good �t. The stationarity of the standard residuals
can be checked in �gure 59(b), and we clearly see trends in the change of the standard
deviation and that can indicate that the residuals are stationary.

AR-GARCH parameters Estimates (std.error)

a0 -0.0011688 (0.0003019)***

a1 0.0594403 (0.0175041)***

φ0 0.0010863 (0.0003829)**

φ1 1.0000000 (0.3467539)**

φ2 0.5579110 (0.0542804)***

υ 2.0673956 (0.0242457)***

Table 6: Estimates of the AR-GARCH parameters for the EL EEX data set with the
Student's t distribution as the conditional distribution with the respectively standard
errors in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1

Continuing with the ACER analysis, we see from �gure 60(a) that the �rst four ACER
function fully converge all the way so we only use the �rst ACER function to estimate
the parameters in the analysis. From �gure 60(b) we see that now the POT �tted GPD
is estimating a heavier tail than the extrapolated ACER function, and with very much
larger con�dence intervals as the previous plot for the log returns. The parameters of the
ACER functions are ã = −1.1600, b = 0.0044, c = 0.5000, γ = −11.2456 and q = 0.5495.
The return level is 3.73041 with the 95% con�dence intervals CI = [1.90838, 5.49226] for
the 10−6 level of interest.
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Figure 56: The log return plot of the residuals and the QQ-plot for the residuals of the
EL EEX data set.
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Figure 57: The autocorrelation function.

Last, but not least, we have an alternative way of viewing the in-sample quantiles we get
from after �ltration. In �gure 61 we see the in-sample quantile plot on the log returns
of EL EEX with quantiles from the POT method. The 95%, 99%, 99.5% and 99.9%
quantiles are made from the standard residuals after the AR-GARCH �ltration. We can
see that the di�erent colours denoting the quantiles gives us the impression of where
the standard residuals predicts 95 percent of the observations should be within and so
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(a) The mean residual plot.
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Figure 58: The plots to help on the choice of threshold.
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Figure 59: Probability plot for threshold excess model �tted to the residuals of the EL
EEX data and checking for stationarity.

forth for the other percentiles. We notice that the green 99.5% quantile and the yellow
99.9% quantile are very close to each other, so it is very hard to seperate them from one
another. This is also done for the quantiles from the ACER method and this gives us
a plot that resembles the one with the quantiles from the POT method with marginal
di�erences. The quantile plot is an illustrative way of showing the quantiles, but it is
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Figure 60: The residuals of the EL EEX data analysis by the POT and ACER methods.
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Figure 61: The in-sample quantile plot on the log returns of EL EEX with quantiles from
the POT method. Red: 95%. Blue: 99%. Green: 99.5%. Yellow: 99.9%.

not very informative so thus we just add this example on the data set EL EEX as a
demonstration.
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3.7 Norsk Hydro

To compare the data sets we have from the di�erent energy markets in form of electricity
and coal data, we can analyse another kind of a market. Norsk Hydro is a Norwegian
company working with aluminium and renewable energy. We are looking at the value of
the company and therefore this represents a di�erent kind of a market than the energy
market (even though Norsk Hydro is operating within the �eld of energy production).
We have observations from 1997 to 2010 for Norsk Hydro, consisting of 3276 observations.
This is de�nitely the data set with the most observations. From the plot of the index of
Norsk Hydro in �gure 62(a), we see that the company has been experiencing a steady
upwards growth in the index since about 2003 and a heavy steep downwards fall in the
last years. This takes form of large values in the log return plots in �gure 62(b).
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(a) The index of Norsk Hydro from period
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Figure 62: Index plot and log return plot of the observations for the Norsk Hydro data.

It can be seen from the autocorrelation plot 63(a) that there should be no concern about
linear dependence in the time series, but we do see that for some very few observations
the autocorrelation is marginally signi�cant di�erent from zero. We can also see from the
normal quantile plot 63(b) that the tails of the observations di�ers somewhat in compar-
ison with the normal distribution. This can also be con�rmed by the excess kurtosis of
7.43. This value is not large in comparison to some of the energy market data sets. The
skewness is -0.13 and is closely to the normal distribution.

To decide the threshold value, we look at the mean residual plot 64(a) and look for
parts where there is linearity in the mean excess. We see that there is an approximately
linear part 0-0.02 and from 0.02-0.05. From the plot with the estimated scale and shape
parameter in �gure 64(b), the estimated shape parameter is most constant when the
threshold is 0.02-0.05. We want to choose an u that gives us most observations as pos-



3.7 Norsk Hydro 59

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Norsk Hydro

(a) The autocorrelation function for Norsk Hy-
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Figure 63: The autocorrelation function and the normal quantile plot for Norsk Hydro.
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Figure 64: The plots to help decide the threshold value.

sible, while at the same time the mean residual plot being approximately linear and the
estimated shape parameter being approximately constant in this threshold value. This
can be achieved with u = 0.02, and we have 468 of 3276 observations above this threshold.
We must mention that the number of observations above the threshold decline rapidly as
the threshold increases by 0.01 each time. This implies that only few of the observations
that can be regarded as extreme, and the lest is pretty 'normal' in comparison. This is
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also con�rmed by the low excess kurtosis number. From the probability plot 65(a) we see
that the linearity is pretty good in this case, but this does not give real cause for concern
about the quality of the model. The standard deviation plotted against time (months)
in �gure 65(b) show the values of the standard deviation to be quite stable except for
the very end of the period. This can indicate non-stationarity, but one can ask oneself
how big of a deal will the non-stationarity towards the very end of the period have to
say in the larger perspective.

●●●●●●●●
●●●●●
●●●
●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●●●●

●●●●●
●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●
●●●●
●●●●●●●●●●

●●●●
●●●●●●
●●●●●●●●

●●●
●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability Plot

Empirical

M
od

el

(a) The probability plot.

0 20 40 60 80 100

0.
02

0.
04

0.
06

0.
08

Time

S
ta

nd
ar

d 
D

ev
ia

tio
n

(b) The development of the standard deviation
with respect to time (months).

Figure 65: Probability plot for threshold excess model �tted to the Norsk Hydro data
and checking for stationarity.

For this data set we have used the �rst ACER function to estimate the parameters in
equation (46). From �gure 66(b) we see that the POT �tted GPD still predict a heavier
tail than the extrapolated ACER function. This can be caused by the fact the POT
method assumes stationarity, while the observations can be of the non-stationarity kind.
The much heavier tail predicted by the POT method can also come of the fact that the
ACER method puts weights on the observations, while the POT method does no such
thing. One other aspect is that the line of the graph looks almost linear, and therefore we
must really question our decision of the data being Fréchet rather being Gumbel where
ξ = 0. The ACER parameters are ã = −4.9909, b = 0.0053, c = 1.0503, γ = −17.8025
and q = 0.3962. The return level is 0.234155 with the 95% con�dence intervals CI =
[0.212583, 0.257145] for the 10−6 level of interest.

Now we do the AR-GARCH �ltration for the Norsk Hydro data set. After careful delib-
eration, we choose an AR(5) part and a GARCH(1,1) part. The conditional distribution
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is set to the Student's t distribution. From table 7 we see that all the parameters are
signi�cant down to a 0.05 level except for a1, a2 and a4. Note that the parameter υ is the
degree of freedom in the Student's t distribution with mean equal 0 and variance equal
1.

In �gure 67(a) we see the residuals of the log returns of the data set Norsk Hydro.
The residuals have much heavier tails than the normal distribution, seen in �gure 67(b),
as expected. The excess kurtosis is 7.62 and the skewness is -0.19. The autocorrelation
function in �gure 68(a) shows no validated concern of autocorrelation in the standard
residuals.
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Figure 66: The Norsk Hydro data analysed with ACER plotted against the POT analysis.

To decide upon the choice of threshold, we look at the mean residual plot in �gure 69(a)
and the plot of the estimated modi�ed scale and shape parameter against the thresh-
old in �gure 69(b). In the mean residual plot there is a pretty large area of linearity
in the ares 0.01-0.02 and 0.02-0.045. The estimated modi�ed scale parameter and the
estimated shape parameter is approximately constant around areas 0.01-0.02 and 0.025-
0.035. After some delibraton and further investigation of stability, the threshold value is
chosen to be u = 0.02 with 450 observations above the threshold (13.74%). This gives
us the estimated modi�ed scale parameter 0.01188(0.0008402) and the estimated shape
parameter 0.19986(0.0546044) with their respectively standard deviation in parenthesis.

Doing the same quality check of the model as before, we see in �gure 70(a) the probability
plot. It looks pretty good aligned with the linear line. From �gure 70(b) we see that the
standard residuals are stationary except for a large spike around the 90th month. With
the log returns being quite stationary, it is expected that the standard residuals will be
more stationary than before �ltration.
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AR-GARCH parameters Estimates (std.error)

a0 6.752e-04 (2.919e-04)*

a1 1.446e-02 (1.789e-02)..

a2 -5.057e-03 (1.786e-02)..

a3 -6.452e-02 (1.774e-02)***

a4 6.822e-03 (1.763e-02)..

a5 -3.475e-02 (1.755e-02)*

φ0 5.996e-06 (1.736e-06)***

φ1 7.924e-02 (1.157e-02)***

φ2 9.094e-01 (1.271e-02)***

υ 7.745e+00 (9.394e-01)***

Table 7: Estimates of the AR-GARCH parameters for the Norsk Hydro data set with
the Student's t distribution as the conditional distribution with the respectively standard
errors in parenthesis. Signif. codes: ***=0.001, **=0.01, *=0.05, .=0.1 and ..=1
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Figure 67: The log return plot of the observations and the QQ-plot for the residuals of
the Norsk Hydro data set.

Continuing with the ACER analysis, we see from �gure 71(a) that the four �rst ACER
function fully converge so we only use the �rst ACER function to estimate the parameters
in the analysis. From �gure 71(b) we see that the POT �tted GPD is estimating a heavier
tail than the extrapolated ACER function. This �gure looks very much the same as the
one for the log returns, except for a small change in where the functions intersect with the
x-axis. The parameters of the ACER functions are ã = −5.0320, b = 0.0022, c = 1.0952,
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Figure 68: The autocorrelation function.
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Figure 69: The plots to help on the choice of threshold.

γ = −20.1581 and q = 0.4435. The return level is 0.212439 with the 95% con�dence
intervals CI = [0.151133, 0.263334] for the 10−6 level of interest.
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Figure 70: Diagnostic plots for threshold excess model �tted to the residuals of the Norsk
Hydro data and checking for stationarity.
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Figure 71: The residuals of the Norsk Hydro data analysis by the POT and ACER
methods.
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4 Comparison and further discussion

In this section, we are going to put the performance of the individual data sets into
perspective and compare them in form of in-sample and out-of-sample predictions.

There are really three questions that need to be answered. The �rst question of an-
swering is: How is the energy market di�erent from other markets? Here we have made
the same analysis on a data set from Norsk Hydro to compare with the ones from the
energy market. The second is whether the removal of the dates of expiration have some-
thing to say for the outcome of the precision of the predictions. As mentioned before, we
have only got hold of the dates of expiration for two of the data sets; the EL ICE and the
Coal ICE data set. That should be enough to give us an impression of how large a role
the dates of expiration have for the predictions. The last, but not least, question when
using the POT and ACER method for analysing: Is the one better than the other in
producing better �ts and predictions? Further on, we would like to emphasise the main
di�erence between the two methods.

Before beginning the comparison for the data sets, we can say something generally about
the weaknesses and strengths of the POT and ACER method.

A weakness in the POT method is the di�culties during the process of �nding a suitable
and well performing threshold value u. It can be di�cult to look for linearity and areas
where the threshold is constant in the mean residual plot and the estimated scale and
shape against the threshold plot. If the plots are enlarged, we can see more irregularities
and thus making us doubt the previous choice of the threshold value before the enlarge-
ment. If we compress the plots, the curves can appear to be smoother than they really
are. So the arbitrariness of the choice of the threshold interval to be plotted can make
a big di�erence in the decision of the thresholds, and a badly suited threshold value can
lead to ad hoc results.

Another important weakness in the POT method is that it assumes asymptotic char-
acteristics in the data. It can be very hard to verify these assumptions. How large must
the threshold and the size of the data set be to satisfy the asymptotic assumptions? It is
extremely hard to say something speci�c about this. The POT method assumes not only
asymptotic characteristics, but it also assumes independence and stationarity among the
data. We can try to detect stationarity in the data sets by plotting the standard de-
viation plotted against time as seen in the last section. This problem can be dealt by
using an AR-GARCH model which can pick up the heteroskedasticity, similar to what
Byström had done in his report [3]. The ACER method catches the phases better than
the POT method, so the ACER method will not be so sensitive to stationarity. Although
the theory behind the peaks over threshold method is easily understood and executed in
real life, these weaknesses play a large role in the process of analysing data. The POT
method has also been explored more than the ACER method, and thus giving us more
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knowledge and empirical research about this method.

The weakness in the ACER method is the fact that we have to assume a certain tail be-
haviour that are not necessary correctly assumed. The theory behind the ACER method
is more complicated than the POT method, and thus more di�cult and time demanding
to execute in real life. The ACER method does make a much better use of the given data
during the analysis than the POT method by the fact that this class of functions is built
in a way that manages to capture the sub asymptotic behaviour of the extreme value dis-
tribution to some extent, and thus providing us with more accurate predictions in theory.
We see it in the plots of the extrapolated ACER function and POT �tted GPD with their
con�dence intervals respectively in the previous section that the con�dence intervals of
the ACER function is much smaller than the con�dence intervals of the POT �tted GPD.

For the POT method, it is also observed that the con�dence intervals increase as the
threshold increases. This is quite logical because as the threshold increases, the variance
will also increase due to the fewer exceedance observations. Thus leading to a larger con-
�dence interval. It is also observed that with increasing threshold value, the con�dence
interval also increases whereas the return level is stable.

Dataset Excess Kurtosis Skewness u

EL ICE 18.45 1.85 0.03

EL ICE reduced 10.87 1.27 0.03

EL COAL 30.37 -1.26 0.015

EL COAL reduced 32.56 0.76 0.01

EL NP 9.48 0.89 0.03

EL EEX 28.53 1.59 0.02

Norsk Hydro 7.43 -0.13 0.02

Table 8: A summary of the excess kurtosis, skewness and the threshold selection by the
POT method for the di�erent data sets BEFORE �ltration.

Dataset Excess Kurtosis Skewness u

EL ICE res. 18.04 1.79 0.02

EL ICE reduced res. 10.70 1.19 0.02

EL COAL res. 30.72 -1.15 0.01

EL COAL reduced res. 24.70 -0.14 0.01

EL NP res. 9.48 0.89 0.03

EL EEX res. 28.38 1.54 0.02

Norsk Hydro res. 7.62 -0.19 0.02

Table 9: A summary of the excess kurtosis, skewness and the threshold selection by the
POT method for the di�erent data sets AFTER �ltration.
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To answer our �rst question, we can take look at table 8 and 9. We see that for both the
log returns and the residuals after �ltration it is the data sets from the energy market who
has the largest excess kurtosis and skewness in comparison to the data set from Norsk
Hydro, even though for some of the data sets from the energy market the di�erence is
not very large. While for the index of the company Norsk Hydro may change for larger
in�uences, for example the company going public. We have also noticed when looking at
the plot with the extrapolated ACER function and the POT �tted GPD, the data sets
from the energy market estimates a much heavier tail than the data set from Norsk Hydro.

We have also done Ljung-Box test on the return series to test for the serial correlation
before and after �ltration, and on the squared returns to test for GARCH e�ects. This
is denoted by Q(.) and Q2(.) respectively. We have chosen Q(1), Q(3), Q(5) and Q(8) in
the comparison. In table 10 and 11 shows the Ljung-Box test on the log return series
and on the squared returns, and we see that almost every statistic shows signi�cance. In
table 12 and 13 we see that almost all of the statistics have lost their signi�cance after
�ltration. One exception is the Ljung-Box statistics on the residuals of the EL NP data
set. This can be caused by the fact that we used an AR(0) part in the �ltration, but
then again we have a data set which refutes this hypothesis since we also used an AR(0)
part on the Coal ICE data set and all of it's statistics are non-signi�cant after �ltration.
These results shows that most of the serial correlation and GARCH e�ects disappears
after doing an AR-GARCH �ltration.

Dataset Q(1) Q(3) Q(5) Q(8)

EL ICE 3.3761 10.6645* 11.659* 13.9176

EL ICE reduced 11.0139* 13.9404* 16.3573* 17.6996*

COAL ICE 2.7675 6.0286 13.7156* 15.7633*

COAL ICE reduced 2.524 3.8899* 13.8877* 14.2276*

EL NP 8.9842* 12.454* 21.3321* 24.4064*

EL EEX 5.1827* 7.6993 8.0396 11.3968

Norsk Hydro 5.6995* 8.411* 15.3449* 38.5298*

Table 10: Ljung-Box statistics on the log return series. The star, *, denotes signi�cance
of level 0.05.
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Dataset Q2(1) Q2(3) Q2(5) Q2(8)

EL ICE 5.5237* 7.5167 9.3241 10.6607

EL ICE reduced 27.2289* 55.341* 61.5301* 72.5855*

COAL ICE 40.4645* 41.0475* 46.5356* 48.4927*

COAL ICE reduced 5.3423* 10.8524* 23.1096* 46.7419*

EL NP 1.6045 2.7321 36.1181* 42.5802*

EL EEX 6.9813* 8.4339* 12.9718* 13.4546

Norsk Hydro 129.8152* 489.0329* 835.6988* 1258.251*

Table 11: Ljung-Box statistics on the log return series. The star, *, denotes signi�cance
of level 0.05.

Dataset Q(1) Q(3) Q(5) Q(8)

EL ICE res. 0.0778 0.157 0.895 6.0297

EL ICE reduced res. 0.1661 0.3645 2.8595 4.152

EL COAL res. 2.524 3.8899 13.8877* 14.2276

EL COAL reduced res. 1.1035 1.5822 1.7303 2.0274

EL NP res. 7.7629* 16.943* 20.5361* 22.6323*

EL EEX res. 0.0774 0.4431 0.539 1.4331

Norsk Hydro res. 0.1791 1.5207 2.7518 3.7993

Table 12: Ljung-Box statistics on the residuals. The star, *, denotes signi�cance of level
0.05.

Dataset Q2(1) Q2(3) Q2(5) Q2(8)

EL ICE res. 2.1872 2.9097 2.9554 3.2047

EL ICE reduced res. 0.0243 1.0583 2.0834 3.401

EL COAL res. 6.0737* 6.2836 6.347 6.6808

EL COAL reduced res. 0.0264 0.2427 0.6192 1.0057

EL NP res. 0.2866 2.2531 5.1283 7.0594

EL EEX res. 0.9638 2.6436 3.5905 5.639

Norsk Hydro res. 1.1926 4.439 5.1989 5.9658

Table 13: Ljung-Box statistics on the residuals. The star, *, denotes signi�cance of level
0.05.
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4.1 EL ICE

Let us �rst look at the data set EL ICE with the dates of expiration. For the in-sample
evaluation of the estimated tail quantiles in table 14, we see that both the POT and
ACER methods before and after �ltration make good estimations in the lower proba-
bilities 0.995 and 0.999. We also notice that the number of exceedances for the ACER
method before and after �ltration have not changed at all. This can imply that the ACER
method works better than the POT method despite serial correlations and GARCH ef-
fects. But this can just only apply for this data set, so we have to be hesitant to say
anything certain before looking at all of the data sets.

Probability Expected POT (deviation) ACER (deviation) POT res. ACER res.

0.95 81 80(-1) 78(-3) 80(-1) 78(-3)

0.99 16 20(+4) 18(+2) 19(+3) 18(+2)

0.995 8 9(+1) 9(+1) 9(+1) 9(+1)

0.999 2 1(-1) 1(-1) 1(-1) 1(-1)

Table 14: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the FULL EL ICE data set and the residuals of the EL ICE
data set with the number of deviations from the expected tail quantiles respectively in
brackets.

The in-sample evaluation done on the reduced of the EL ICE data set can be seen in
table 15. Without the dates of expiration, the number of exceedances for the reduced
EL ICE data set seem to be marginally better estimated by the ACER method than the
POT method. This applies both for the log return series and the residuals.

Probability Expected POT (deviation) ACER (deviation) POT res. ACER res.

0.95 76 77(+1) 77(+1) 80(+4) 80(+4)

0.99 15 19(+4) 17(+2) 18(+3) 15(0)

0.995 8 10(+2) 8(0) 9(+1) 9(+1)

0.999 2 2(0) 2(0) 2(0) 2(0)

Table 15: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the REDUCED EL ICE data set and the residuals of the EL
ICE data set with the number of deviations from the expected tail quantiles respectively
in brackets.

When looking at the return levels for the full EL ICE data set in table 16, we see
that there are more changes in the return levels with the POT method than with the
ACER method. This means that serial correlation and GARCH e�ects in�uence the
POT method more than the ACER method. The ACER return levels for both the log
returns and the residuals are slightly lower than the POT return levels. All these features
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mentioned for the full EL ICE data set applies also for the reduced EL ICE data set seen
in table 17. It must also be mentioned that the return levels for the reduced EL ICE
data set are smaller than the return levels for the full data set. For the 100 year return
level, the one for the reduced EL ICE data set is around half of the ones for the full EL
ICE data set. That makes sense because the residuals are smaller than the log returns
in the �rst place.

Years return level POT return level ACER return level POT2 return level ACER2

5 0.3216422 0.314226 0.3516183 0.314106

10 0.4235323 0.398456 0.4731911 0.400104

25 0.6043147 0.536854 0.6959477 0.542203

50 0.7871463 0.666254 0.9283848 0.675775

80 0.9400655 0.768326 1.127237 0.781536

100 1.022331 0.821322 1.235660 0.83657

Table 16: Out-of-sample return level table for the FULL EL ICE data set. Second and
third column for the data set before �ltration and fourth and �fth column for the data
set after �ltration (denoted by the su�x 2).

Years return level POT return level ACER return level POT2 return level ACER2

5 0.2210260 0.227203 0.2221483 0.224997

10 0.2748316 0.279398 0.2773259 0.276838

25 0.3626046 0.361438 0.3677753 0.358306

50 0.4443755 0.434915 0.4524423 0.431258

80 0.5088281 0.491119 0.5194078 0.487051

100 0.5422981 0.519773 0.5542542 0.515493

Table 17: Out-of-sample return level table for the REDUCED EL ICE data set. Second
and third column for the data set before �ltration and fourth and �fth column for the
data set after �ltration (denoted by the su�x 2).
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4.2 Coal ICE

When looking at the Coal ICE data set with it's dates of expiration, we notice that the
in-sample evaluation in table 18 indicates that the POT method on the log returns does
the best estimation of the number of exceedances. But overall we see that both method
do a good job in estimating the tail quantile, especially at the 0.99 level.

Probability Expected POT ACER POT res. ACER res.

0.95 58 57(-1) 57(-1) 57(-1) 57(-1)

0.99 12 12(0) 12(0) 12(0) 12(0)

0.995 6 6(0) 8(+2) 7(+1) 7(+1)

0.999 1 1(0) 2(+1) 1(0) 2(+1)

Table 18: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the FULL Coal ICE data set and the residuals of the Coal ICE
data set with the number of deviations from the expected tail quantiles respectively in
brackets.

The in-sample evaluation for the reduced Coal ICE data set in table 19 shows that none
of the two methods stand out in making better estimations. Both methods do a good
job in estimation the number of exceedances for the log returns and the residuals. The
largest deviance from the expected number of exceedances is in the 0.95 level.

Probability Expected POT ACER POT res. ACER res.

0.95 55 52(-3) 50(-5) 52(-3) 51(-4)

0.99 11 11(0) 9(-2) 10(-1) 11(0)

0.995 6 4(-2) 4(-2) 5(-1) 6(0)

0.999 1 1(0) 2(+1) 1(0) 2(+1)

Table 19: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the REDUCED Coal ICE data set and the residuals of the Coal
ICE data set with the number of deviations from the expected tail quantiles respectively
in brackets.

Looking at the return levels for the full Coal ICE data set in table 20, we see again that
the ACER return levels for the log returns and the residuals are more alike than the POT
return levels. Notice also that the ACER method predicts lower return levels than the
POT method. This also applies for the reduced Coal ICE data set seen in table 21. The
properties mentioned for the EL ICE data set in the previous section are also relevant
for this data set.
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Years return level POT return level ACER return level POT2 return level ACER2

5 0.1962524 0.175571 0.2043003 0.183066

10 0.2579979 0.221191 0.2729264 0.232937

25 0.3674506 0.295265 0.3972244 0.31478

50 0.478044 0.363648 0.5254766 0.391105

80 0.5704833 0.417062 0.6343111 0.451155

100 0.620193 0.444628 0.693367 0.482276

Table 20: Out-of-sample return level table for the FULL Coal ICE data set. Second and
third column for the data set before �ltration and fourth and �fth column for the data
set after �ltration (denoted by the su�x 2).

Years return level POT return level ACER return level POT2 return level ACER2

5 0.1294768 0.116613 0.1377790 0.107754

10 0.1640432 0.140667 0.1791255 0.129501

25 0.2222268 0.176621 0.2514717 0.162371

50 0.2781221 0.207136 0.3236521 0.190685

80 0.3231679 0.229535 0.3834346 0.211735

100 0.3468711 0.240669 0.4154083 0.222287

Table 21: Out-of-sample return level table for the REDUCED Coal ICE data set. Second
and third column for the data set before �ltration and fourth and �fth column for the
data set after �ltration (denoted by the su�x 2).
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4.3 EL NP

For the EL NP data set, the in-sample evaluation of the estimated tail quantiles can
be seen in table 22. We see that the estimations made are approximately equally good
with either the POT method or the ACER method. Both methods predicts number of
exceedances who are at most 3 away from the expected number.

We see in table 23 that in this case the POT return levels are similar whether it is
for the log returns or the residuals. This characteristic has applied for the ACER return
levels in the previous cases, but in this case it includes the POT return levels also. The
POT method estimates a slightly heavier tail than the ACER method, as for almost all
of the other data sets.

Probability Expected POT ACER POT res. ACER res.

0.95 98 99(+1) 97(-1) 99(+1) 97(-1)

0.99 20 17(-3) 17(-3) 17(-3) 17(-3)

0.995 10 9(-1) 11(+1) 9(-1) 11(+1)

0.999 2 3(+1) 4(+2) 4(+2) 4(+2)

Table 22: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the EL NP data set and the residuals of the EL NP data set
with the number of deviations from the expected tail quantiles respectively in brackets.

Years return level POT return level ACER return level POT2 return level ACER2

5 0.2135263 0.193818 0.2111951 0.193234

10 0.2519824 0.224481 0.2484531 0.223902

25 0.3096101 0.268853 0.3038745 0.268284

50 0.3589922 0.305575 0.3510201 0.305017

80 0.395634 0.332142 0.3858182 0.331593

100 0.4139898 0.34525 0.4031956 0.344707

Table 23: Out-of-sample return level table for the EL NP data set. Second and third
column for the data set before �ltration and fourth and �fth column for the data set
after �ltration (denoted by the su�x 2).

It is widely known that signi�cant in sample evidence of predictability does not guarantee
signi�cant out of sample predictability. But we conclude that results of in sample tests
of predictability will typically be more credible than results of out of sample tests. In the
tables for the return values, there are for mostly out-of-sample estimations. The out-of-
sample predictions are much more insecure than the in-sample predictions, because they
have to predict somewhere in the future with only a small observation sample as a basis.
In table 24 we have used half of the data set EL NP to do the tail-quantile forecasting as
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explained in the theory part of this thesis. This way of doing out-of-sample predictions
makes us capable of predicting quantiles for which we have real observations to compare
with. We see that both the POT and ACER method does a good job in predicting the
tail-quantiles, even though the POT method beats the ACER method marginally in the
0.99 and the 0.999 probability of prediction.

Note that the out-of-sample tail-quantile forecasting is done on the last three data sets;
the EL NP, EL EEX and the Norsk Hydro data set. This is because the EL ICE and the
Coal ICE data set are not well-behaved enough for doing the forecast.

Probability Expected prediction POT (deviation) prediction ACER (deviation)

0.95 49 49(0) 49(0)

0.99 10 10(0) 8(-2)

0.995 5 6(+1) 6(+1)

0.999 1 1(0) 0(-1)

Table 24: Out-of-sample tail-quantile forecasting with EL NP.
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4.4 EL EEX

For the in-sample evaluation with the data set EL EEX, we see in table 25 that neither
of the two methods before or after �ltration can be able to predict any closer to the
expected number at the lowest level of 0.999. For the rest of the probability levels, both
methods do a fairly good job in predicting the number of exceedances with the largest
deviation of 2 exceedances.

For the return levels seen in table 26, we see as before that the ACER return levels
for the log returns and the residuals are more similar than for the POT return levels.
One other feature is that the POT method estimates a heavier tail than the ACER
method. All this is familiar because of the previous data sets have the same features.

The out-of-sample tail-quantile seen in table 27 gives none of the two methods the ben-
e�t of being the best to estimate the number of exceedances. The ACER predictions are
marginally better than the ones from the POT method, and it can be mentioned that
the ACER predictions are spot on in the 0.99 and 0.995 probability level while the POT
predictions are only one exceedance from the expected number at level 0.995. For the
0.95 probability level, we see that both methods do a fairly bad job at estimating the
number of exceedance with a deviation of 11 with the POT method and 10 with the
ACER method.

Probability Expected POT ACER POT res. ACER res.

0.95 102 100(-2) 100(-2) 101(-1) 101(-1)

0.99 20 22(+2) 18(-2) 22(+2) 18(-2)

0.995 10 12(+2) 11(+1) 12(+2) 11(+1)

0.999 2 0(-2) 0(-2) 0(-2) 0(-2)

Table 25: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the EL EEX data set and the residuals of the EL EEX data set
with the number of deviations from the expected tail quantiles respectively in brackets.
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Years return level POT return level ACER return level POT2 return level ACER2

5 0.4842896 0.456578 0.5149872 0.468373

10 0.6692529 0.594039 0.727018 0.61166

25 1.017388 0.818847 1.138758 0.848235

50 1.390237 1.02665 1.593245 1.06904

80 1.715273 1.18862 1.99819 1.24238

100 1.894493 1.272 2.224388 1.33201

Table 26: Out-of-sample return level table for the EL EEX data set. Second and third
column for the data set before �ltration and fourth and �fth column for the data set
after �ltration (denoted by the su�x 2).

Probability Expected prediction POT (deviation) prediction ACER (deviation)

0.95 51 40(-11) 41(-10)

0.99 10 11(+1) 10(0)

0.995 5 6(+1) 5(0)

0.999 1 0(-1) 0(-1)

Table 27: Out-of-sample tail-quantile forecasting with EL EEX.
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4.5 Norsk Hydro

Last, but not least, we look at the Norsk Hydro data set. This is the only one which
is not from the energy market, and is used to look for eventual di�erences between the
energy market and other markets. The Norsk Hydro data set is the one with the most
observations, and therefore gives us the possibility to estimate the in-sample evaluation
of the estimated tail quantiles down to even lower probabilities. The in-sample evaluation
in table 28 shows that the POT method is clearly the better than the ACER method
to estimate number of exceedances. This is the case with both the log returns and the
residuals. We see that the largest deviation from the expected number of exceedances
with the POT method is 4, while the largest deviation with the ACER method is 10.
The largest deviances seem also to occur with the ACER method.

Probability Expected POT ACER POT res. ACER res.

0.95 164 160(-4) 154(-10) 162(-2) 154(-10)

0.99 33 32(-1) 36(+3) 31(-2) 37(+4)

0.995 16 16(0) 26(+10) 18(+2) 24(+8)

0.999 3 5(+2) 10(+7) 5(+2) 9(+6)

0.9995 2 2(0) 7(+5) 2(0) 6(+4)

0.9999 0 0(0) 3(+3) 0(0) 2(+2)

Table 28: In-sample evaluation (number of exceedances) of estimated tail quantiles at
di�erent probabilities for the Norsk Hydro data set and the residuals of the Norsk Hydro
data set with the number of deviations from the expected tail quantiles respectively in
brackets.

We might have presumed that doing the AR-GARCH �ltration will give better estimates
with the POT method, because the residuals after �ltration are more independent and
stationary than the log returns. We have not always seen better estimates with the POT
method after �ltration though. On the contrary the changes have been better, worse or
not changes at all in comparison to the log returns.

For the return levels seen in table 29 we see that many of the previously mentioned
features also apply the Norsk Hydro data set, like the ACER return levels being more
similar for the return levels of the residuals and the POT method predicting a heavier
tail than the ACER method.

The out-of-sample tail-quantile seen in table 30, we see the estimates are not specially
good in the two �rst probability levels for the POT method and the three �rst probability
levels for the ACER method. The deviations are 5 to 8, and that represents a great deal
since the number of exceedances is small too. For example makes the deviation of 6 up
for almost half of the number of exceedance of 14. Rest of the estimates are either spot
on or with a deviation of 1.
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Years return level POT return level ACER return level POT2 return level ACER2

5 0.1260668 0.0939669 0.1270485 0.0947087

10 0.1491534 0.104341 0.1517855 0.105617

25 0.1843875 0.118355 0.1902147 0.120451

50 0.2151299 0.129202 0.2243374 0.132003

80 0.2382403 0.136684 0.2503156 0.140008

100 0.2499078 0.140274 0.2635301 0.143858

Table 29: Out-of-sample return level table for the Norsk Hydro data set. Second and
third column for the data set before �ltration and fourth and �fth column for the data
set after �ltration (denoted by the su�x 2).

Probability Expected prediction POT (deviation) prediction ACER (deviation)

0.95 82 90(+8) 89(+7)

0.99 16 21(+5) 23(+7)

0.995 8 9(+1) 14(+6)

0.999 2 1(-1) 2(0)

Table 30: Out-of-sample tail-quantile forecasting with EL EEX.
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5.1 Conclusion

First, we answer the question about whether the dates of expiration in�uence the results.
It looks as though this does not have anything to say for the in-sample evaluation of the
estimated tail-quantiles other than resulting in lower return level values. We must remem-
ber that we have only done this analysis with the data sets EL ICE and Coal ICE. After
analysing several more data sets, then we can make more permanent and sure statements.

The data set from Norsk Hydro seems to be more well behaved than the other data
sets from the energy market. This is supported by the lower excess kurtosis and skew-
ness value, and the fact that the plot with the extrapolated ACER function and the POT
�tted GPD shows a less heavier tails than the ones from the energy market.

For our last question, we must �rst consider the di�erences between the peaks over
threshold (POT) method and average conditional exceedance rates (ACER) method.
The main di�erence between the methods are that the POT method takes asymptotic
assumptions in consideration during the analysis, and it also demands independence and
stationarity in the data. While for the ACER method, we have to assume a certain
shape/behaviour in the tail region. The length of the con�dence intervals for the POT
method is much larger than for the ACER method in the estimated return levels. For the
POT method the length of the con�dence intervals also increase with increasing threshold
value. One other di�cult aspect is the threshold selection when using the POT method.
Di�erent choice of threshold value can in�uence the estimated return values to a high
degree, while altering the tail marker slightly in the ACER method does not greatly
a�ect the estimated return levels.

One method that has been used to say something about the performance of the two
methods is an in-sample evaluation of the estimated tail quantiles with di�erent proba-
bilities, and comparing these numbers to the expected tail quantiles. This has lead to a
very ambiguous conclusion. Both the POT method and the ACER method have done a
relatively good job in predicting the tail quantiles. An other method that have been used
is an out-of-sample return level estimation. This has lead to the conclusion that the POT
method often �t a heavier tail than the ACER method. The ACER return levels are
also more similar before and after �ltration, both with the log returns and the residuals.
The last method that has been applied to the last three data sets, is an out-of-sample
tail-quantile forecast. This shows that both methods perform equally well in predicting
number of exceedances. So overall, there are no �rm evidence that one method performs
consistently better than the other.
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5.2 Further work

Further work with this topic can be to make a program that ables us to take away certain
parts in the AR-GARCH �lter. This makes us able to do the same kind of analysis with-
out so-called noise parts which can be non-signi�cant but still in�uence the model. One
other aspect that can be interesting is to make the out-of-sample tail-quantile estimates
more than just one day into the future.

It would also be very interesting to follow the development of the analysis if we had
even more observations. In this thesis the data set with the most observations is the
data set for Norsk Hydro with it's 3276 days of observations. We can for example use
a higher sampling frequency by using hourly observations instead of daily ones, or even
more drastic; using tick data sets. This will lead to data sets with more dependence
and correlation, and then maybe the POT method will be outperformed by the ACER
method.

We could also analyse more data sets from the energy market, to see if there are any
di�erences between coal, oil and electricity observations. Further on, we could have had
more data sets from other markets besides the energy market to examine the di�erences
in the markets even more.
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A Appendix A: Code

vectorize = function(data){

newdata = as.numeric(data$close)

newdata = newdata[length(newdata):1]

return(newdata)

}

logreturn = function(data){

logdata = rep(0,length(data))

logdata[1] = 0

for(i in 2:length(data)){

logdata[i] = log(data[i]/data[i-1])

}

return(logdata)

}

stat = function(data){

x = floor(length(data)/30

newarray = rep(0,x)

for(i in 0:x-1){

newarray[i+1] = sd(data[((i*30)+1):(30*(i+1))])

}

plot(newarray,type="l",xlab="Time",ylab="Standard Deviation")

return()

}

skew = function(x){

sk = (sum((x-mean(x))^3)/length(x))/((var(x)^(3/2)))

return(sk)

}

kurt = function(x){

ku = (sum((x-mean(x))^4)/length(x))/((var(x)^2)) - 3

return(ku)

}

confi = function(model){

pro = 0:100000/100000

x = matrix(0,nrow=99999,ncol=2)

for(i in 1:99999){

x[i,] = gpd.firl(model,prob=pro[i+1])
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}

return(x)

}

MODEL CHECKING FOR POT:

plots = function(data,u,sigma,xi){ #n=length(y)

n = sum(data>u)

y = rep(0,n)

H = rep(0,n)

Hinv = rep(0,n)

counter = 1

for(i in 1:length(data)){

if(data[i]>u){

y[counter] = data[i]-u

H[counter] = 1-(1+((xi*y[counter])/sigma))^(-1/xi)

# Hinv[counter] = u + ((sigma/xi)*(y[counter]^(-xi)-1))

counter = counter + 1

}

}

H2 = sort(H)

y2 = sort(y)

#Probability plot

plot((1:n)/(n+1),H2,xlab="Empirical",ylab="Model",

main="Probability Plot")

lines((0:10)/10,(0:10)/10,type="l")

#Quantile plot

#qq(u+((sigma/xi)*((((1:n)/(n+1))^(-xi))-1)),yx,xlab="Model",

ylab="Empirical",main="Quantile Plot")

##qq(MODELL)

#Density plot

#hist(y,breaks=100,xlab="x",ylab="f(x)",main="Density plot")

#lines((1:x0)/100,(1/sigma)*(1+(xi*(((1:x0)/100)-u))/sigma)

^(-(1/xi)-1),type="l")

return(H2)

}

outSaver <- function(y){ #y=dataset

n = length(y)

parameters = matrix(0,ncol=4,nrow=n/2)

for(i in 1:(n/2)){
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model = garchFit(formula = ~garch(1,1),data=y[i:((n/2)+i-1)],cond.dist='QMLE',

trace=FALSE)

resnavn = paste('residuals',i,'.txt',sep='')

signavn = paste('volatility',i,'.txt',sep='')

write.matrix(model@residuals,file=resnavn)

write.matrix(model@sigma.t,file=signavn)

parameters[i,] = as.numeric(model@fit$coef[1:4])

print(i)

}

write.matrix(parameters,file='arparameters.txt')

}

outPOT <- function(y){

n = length(y)

tsparam = read.table('arparameters.txt')

quantiles = matrix(0,ncol=4,nrow=(n/2))

probs = c(0.95,0.99,0.995,0.999)

for(i in 1:(n/2)){

resnavn = paste('residuals',i,'.txt',sep='')

signavn = paste('volatility',i,'.txt',sep='')

resi = read.table(resnavn)

vol = read.table(signavn)

stdres = resi/vol

gpdmod = fitgpd(stdres$V1,1)

uquan = qgpd(p=probs,loc=1,scale=as.numeric(gpdmod$param[1]),

shape=as.numeric(gpdmod$param[2]),lambda=1-gpdmod$pat)

tspar = as.numeric(tsparam[i,])

quantiles[i,] = tspar[1] + sqrt(tspar[2] + tspar[3]*(as.numeric(resi$V1[n/2]))^2 +

tspar[4]*(as.numeric(vol$V1[n/2]))^2)*uquan

}

for(i in 1:4){

print('Number of exceedances:')

print(sum(y[(n/2+1):length(y)]>quantiles[,i]))

}

return(quantiles)

}

outACER <- function(y,aq){
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n = length(y)

tsparam = read.table('arparameters.txt')

quantiles = matrix(0,ncol=4,nrow=n/2)

for(i in 1:(n/2)){

resnavn = paste('residuals',i,'.txt',sep='')

signavn = paste('volatility',i,'.txt',sep='')

resi = read.table(resnavn)

vol = read.table(signavn)

stdres = resi/vol

tspar = as.numeric(tsparam[i,])

quantiles[i,] = tspar[1] + sqrt(tspar[2] + tspar[3]*(as.numeric(resi$V1[n/2]))^2 +

tspar[4]*(as.numeric(vol$V1[n/2]))^2)*(as.numeric(aq[i,]))

}

for(i in 1:4){

print('Number of exceedances:')

print(sum(y[(n/2+1):length(y)]>quantiles[,i]))

}

return(quantiles)

}
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