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Abstract
The heterogeneous multiscale method (HMM) was proposed by E and Engquist
in [1] and is considered to be an efficient method for problems with multiple time
scales. We give a short introduction to the HMM for multiscale problems in gen-
eral, before we restrict our work to HMM schemes developed for stiff ODEs, based
on results found by Engquist et al. [2, 3]. HMM provides an efficient and system-
atic way to move between the macroscopic and microscopic model in a problem
having multiscale physics. By taking advantage of scale separation in multiscale
problems, the HMM approximates the macroscopic variables of the solution with-
out fully resolving the microscopic solution. This introduces computational savings
as the total number of evaluations needed for convergence are significantly reduced.

We test the features of the HMM on the spinning top. The governing equations
of the top produces a highly oscillatory solution as the top spins fast. Despite this
fast oscillating nature, we would intuitively expect some slow behavior of the top,
for instance the inclination from the vertical axis or the circulation of the top
around the vertical axis. We find a set of slow variables of the spinning top, and
show that the HMM provides an accurate solution of the macroscopic variables
of the top, with a significant gain in computational cost compared to standard
solvers.

We also study the spinning top subjected to a vibrational external force and
find a set of slow variables, which can be approximated accurately with HMM.
Finally, we find an averaged equation to the spinning top subjected to a vertical
vibrating force. This analysis is based on the Modulated Fourier expansion and
inspired by the work of Sanz-Serna in [4].

The work of this thesis is an extension of the semester project [5], and we
emphasize that the theory part of this thesis is partially from this work.
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1 Introduction
Computer simulations and mathematical modeling have increasingly grown to be
an important and efficient tool in science and engineering. While the demand
for more accurate solutions is growing, the complexity of problems is increasing
simultaneously, and leads to even more complex mathematical modeling. An ex-
ample is new technologies involving creation of structures at the scales of atoms
and molecules and require a detailed insight of physics at small scales. Such new
sciences are highly dependent on computational modeling.

However, a detailed model of the small scales, here referred to as the mi-
croscales, is seldom enough. Very often it is the physics at the larger scales, or
the macroscales, which is of interest. Problems containing multiple scales are
considered to have multiphysics and require multiscale modeling considering both
the behavior at microscales and at macroscales, as the macroscopic behavior is
strongly affected by the properties of the microscales.

In physics and chemistry we find that almost all problems have multiple scales.
An example is the dynamics of a fluid, which are described by different physical
laws at each scale: Quantum mechanics models the behavior at the smallest scale,
molecular dynamics and kinetic theory describe the processes of the fluid at nano-
and micrometer scales, while continuum theory is applied at the largest scale. The
different theories at different scales are a general trend in many areas of sciences
and lead to an urgent need for multiscale modeling techniques for development of
new technologies.

The traditional approach of solving systems at different scales is to construct
analytical or empirical explicit equations providing the information we need at one
scale. In this way, the other scales are eliminated. Examples of well known analyt-
ical techniques are Fourier analysis, the averaging method and the homogenization
method. Other mathematical techniques have been developed in the recent years,
but they all seem to be limited when it comes to practical use. Thus, empirical
techniques have been important when describing models at small scales. An ex-
ample of this is the use of the viscosity-parameter in the Navier-Stokes equation,
which provides an empirical description of the molecular details of the fluid. An-
other example is the empirical potentials that model the forces between atoms in
molecular dynamics. Such empirical approximations of small-scale behavior are
used everywhere in science and allow us to use a simplified theory.

However, these methods lack information on how the microscale structures
affect the system at macroscale level. This has motivated the development of
several numerical methods in the last decade, most of them providing a detailed
solution of fine scale problems. Such traditional multiscale methods are the Multi-
grid method, domain decomposition and the multiresolution methods. As these
methods provide a full representation of the fine scale problem, they give an over-
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whelming computational cost when it comes to practical use, and more efficient
methods are strongly requested.

This has led to a new class of multiscale methods that are developed to re-
duce the computational complexity. Specifically, the new methods are designed to
satisfy a minimum requirement:

cost of multiscale method
cost of microscale solver � 1, (1)

[6]. A common feature for all these methods is that they take advantage of the
separation of scales which occurs in many problems, and in this way become much
more efficient than solving the fine scale problem. There are several kinds of mul-
tiscale techniques of this class. One example is the Quasi-continuum method [7],
which in its simplest version models atomistic systems without explicitly treating
every atom in a problem. The basic idea of these multiscale methods is the follow-
ing: We are given a system which can be described by a microscopic model and a
microscopic state variable u. The microscopic model is too costly to solve in full
detail, as we are only interested in the behavior at a larger scale, here called the
macroscale. The macroscale motions are described by the state variable U and
the two variables are connected by the relation Qu = U , where Q is a compression
operator. The challenging part of these methods is the evaluation of U , which is
usually not explicitly defined and must be provided by extracting necessary data
from the microscale model.

Methods constructed in this way have grown rapidly in popularity. Since they
only consider the microscale model locally to extract information for the macro-
scopic state they fulfill the minimum requirement (1) and are much more efficient
than the methods that provide the fine scale model globally. Emerging from all the
different approaches of multiscale methods, the need of a systematic technique that
can be applied to a wide variety of applications has evolved. A proposal of a rigid
method was made in [1], called the heterogeneous multiscale method (abbreviated
HMM). This method intends to be a general framework for multiscale methods,
relying on existing numerical methods, and providing mathematical theory for sta-
bility and accuracy. The method is heterogeneous, which essentially means that
the problems can exhibit multiphysics and be described by different mathematical
models at different scales. This is in contrast to the multigrid method, which uses
the same mathematical model at the micro- and macroscales. The heterogeneous
multiscale method has turned out to be a useful framework and is used in several
applications. We will now introduce the fundamental properties and the structure
of this method.
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Figure 1: Scheme of the macroscopic and microscopic computational domains. a)
Schematics of HMM solver for spatial computational domains, y-space represents the
microscopic domain b) Schematics of HMM solver for problems in time, the lower axis
represents the microscopic grid with time steps h.

1.1 The HMM Framework

The HMM strategy is based on combining different models at different scales, with
the goal of accurately approximating the macroscopic state of the system. This
is done by working with a macroscopic grid that resolves the large scale of the
problem. The process consists of two main components. The first is a macro-
solver solving the scheme for U . The second is a procedure for estimating the
missing data from the microscale model. The estimation of the effects from the
microscale model has to be restricted such that the estimation is consistent with
the macroscale model. This is often the challenging part of the algorithm, and
is highly problem dependent. The general algorithm is described in [6] by the
following steps at time tn:

1. Reconstruction: From Un, construct un such that Qun = Un. This recon-
struction is not unique, and dependent on the problem.

2. Microscale simulation: Evolve the microscale model with initial data u(x, tn) =
un(x). The microscale solution should be consistent with the local macro-
scopic state.

3. Data processing: Extract the macroscale data needed from the microscale
data, provided by a microscopic simulation. This usually involves averaging
in time/space
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Depending on what type of problem we are looking at, we select an appropriate
macroscale scheme. When a macroscopic model is not fully known, the missing
data is extracted from the microscale model. For example, if the problem is vari-
ational, we need to approximate the effective stiffness matrix for the macroscale
model. This can be done by solving the microscale problem for a small subdomain
of the global computational domain. For dynamic problems we estimate the effec-
tive force or the fluxes based on the following procedure: The microscopic state
is reconstructed from the macroscale variables at each time step. A microsimula-
tion with microscopic step sizes is done, and provides an estimated force which is
used to update the macroscopic state at the next macroscopic time step. Figure 1
illustrates the schematics of these procedures.

As mentioned previously, the key of the HMM is to take advantage of special
features in a problem. One such feature is scale separation in time and in this thesis
we will study the HMM for stiff ordinary differential equations (ODEs) involving
different, well separated, time scales. We will consider dynamical problems where
a macroscopic model exist for a set of macroscopic variables. But the macroscale
model is not defined explicitly and necessary macroscale data need to be extracted
from the microscale model.

In such problems one may only be interested in the slow dynamics of the
system, i.e. at the larger time scales of the problem. But stiff ODEs may exhibit
an oscillatory nature or fast converging transients, which cannot be neglected
because they are affecting the macroscale behavior of the system. HMM applied
to these problems has been studied in [2, 3, 8, 4, 9, 10], and is considered to give a
significant improvement in terms of computational complexity compared to more
traditional methods.

The study of the HMM applied on stiff ODEs will be illustrated by using the
example of a simple child’s toy: the spinning top. The motions of a spinning top
have a highly oscillatory nature, which demands a high computational cost when
solving the problem numerically. At a first glance, however, the top seems to have
a slowly changing macroscopic behavior. As the top is given a high initial spin, the
top’s movement are consisting of some fast, and some slow motion. The challenge
is to extract the macroscopic behavior from the full model of the spinning top,
and still preserve the behavior at the smallest timescales, such as the high spin
velocity, which prevents the top from falling down. The HMM applied to such a
multiscale problem maintains the interaction between the microscopic and macro-
scopic motion of the problem and still evaluates the solution of the macroscopic
behavior with high computational savings when compared to standard solvers.

The setup of this paper is as follows: In section 2 we will present HMM for
stiff ODEs. We apply HMM to the inverted pendulum, which is a common test-
problem for HMM [8, 4, 11]. This example will serve to explain the main idea of
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the method. In section 3 we introduce a multiscale method for highly oscillatory
ODEs introduced in [2], which is using the concept of slow variables. In section 3
we introduce the dynamics of the rigid body and the spinning top.

We apply the HMM to the spinning top in section 5 and present the numerical
results. At last we consider the spinning top subjected to an external force in
section 6 and 7. In section 6 we apply HMM to the spinning top influenced by
a large valued, vibrating force. In section 7 we find an averaged equation of the
spinning top subjected to a vertical vibrating force by using modulated Fourier
expansions, inspired by the work of Sanz-Serna [4]. Conclusions and summary of
the thesis are found in section 8.
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2 HMM for Stiff Ordinary Differential Equations
The content of this section is a presentation of work of Engquist and Tsai in [3]
and [6], where they develop the HMM framework for ordinary differential equations
containing different time scales, and is partially from the more extensive summary
in [5].

Stiff Ordinary Differential Equations. We define a stiff system as

du

dt
= fω(u, t), u(0) = u0, (2)

where u : R+ 7→ Rd. Here ω is considered to be a large valued parameter, and
characterizes the separation of time scales in the problem. The stiffness of the
problem is often related to the eigenvalues λ(j)(t), 1 ≤ j ≤ d, of the Jacobian of fω.
Essentially there are two types of stiff problems, both having solutions varying on
the ω−1 time scale: One is the dissipative problems with fast converging transients,
having the property Reλ(j) � 0. The second one is the oscillatory problems with
rapid oscillations on the ω−1 time scale, where Reλ(j) = 0.

An example of a stiff system is the nonlinear model system u(t) = (x(t), y(t))
described by the equations

ẋ = ωf(x, y, t),
ẏ = g(x, y, t),

where f and g are smooth functions. In this setting, x is called the fast variable,
while y is the slow variable of the system.

As for general multiscale problems, there exist traditional methods for solving
stiff systems, both analytical and numerical. An example of analytical techniques
is perturbation methods, which approximate an analytical solution to stiff ODEs.
These mathematical techniques are often difficult to apply in practice, and require
extensive algebraic manipulations for most problems. On the other hand, numer-
ical methods for stiff ODEs suffer from high computational costs when we require
accuracy and stability of the numerical approximation. The number of time steps
needed for convergence on a larger time scale can be extremely large. Explicit
methods for stiff problems require step sizes of order ω−1, which leads to a mini-
mum of O(ω) operations. Implicit methods turn out to achieve optimal complexity
for the dissipative case, but their shortcomings appear when they are applied to
oscillatory problems as they usually need O(ω) time steps for convergence.

Stiff systems have motivated the development of several numerical methods
aiming to lower the computational cost. A detailed review of numerical methods
for stiff problems can be found in [12]. The advantages of the HMM in this
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Figure 2: The figure illustrates the time steps taken by the HMM scheme. At the n’th
step, (2) is evaluated for a short time η with step size h. This is used to evaluate F in (3),
and then take a big step of size H. a) Evaluation of the micro-variables in the interval
[tn, tn+η] and F evaluated at tn+ δt∗, where δt∗ = η/2. b) Microscopic evaluation both
backward and forward in time, in [tn − η/2, tn + η/2] and F evaluated at tn.

setting, are that these methods offer solutions to both oscillatory and dissipative
problems. The gain in computational complexity is strongly related to the time
duration of the micro evolutions, which usually is much smaller relative to the
global computational domain. As long as this time duration is bounded by Cωα,
where α < 1, the HMM is guaranteed to gain computational cost [3].

2.1 The HMM Scheme
The general structure of the HMM assumes there exists an "effective" system

dU

dt
= F (U, t), (3)

that is derived from (2) as ω → ∞ such that the derivatives of F are bounded
independently of ω. The right hand side, F (U, t), is not directly used in the
algorithm, but calculated via the numerical solution of (2). The algorithm consists
of a macro-scheme solving (3) for U , and a micro-scheme solving (2) for evaluating
the effective force F . This procedure is illustrated in Figure 2, which shows the
relation between the solver at the macroscale grid (upper axis) and the microscale
grid (lower axis). The downward arrows represent a reconstruction from the macro-
variable U to the micro state un(tn) at the time tn. Evaluation of un(t) is done by
solving (2) for a time interval η on the microscale grid. The upward arrows indicate
the evaluation of the effective force F from the data processed in the micro-solver.
This force is found by averaging the forces fω(un, t) with a compactly supported
kernel K.
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Algorithm 1 HMM solver for stiff ODEs

1. Force estimation:

(a) Reconstruction: at tn, u0 = RUn.
(b) Microsimulation: Solve

dun
dt

= fω(un, t), un(tn) = u0,

for t ∈ [tn, tn + η].
(c) Averaging:

i. Estimate force:

F (tn + δt∗) ∼ f̄(tn + δt∗) = K ∗ fω(un).

ii. Compression:
U∗ = Q[un].

2. Macrostep: Compute Un+1 at tn+1 using {U j}nj=0, {f̄(tn)}nj=0 and U∗, F (tn+
δt∗).

3. Repeat.

Two different HMM schemes are depicted in Figure 2, and we notice that F
is approximated at the center of the fine scale interval in both schemes. This
requires the kernel K to be symmetric. We could also have approximated F at the
beginning time of each fine scale calculation by using an asymmetric kernel, which
is convenient for dissipative systems. However, a symmetric kernel is preferable as
it gives more accurate approximations to the averages [3]. Averaging using kernels
will be discussed further in section 2.2.

The complete HMM scheme is described by the steps in Algorithm 1 [3]. Notice
that the microsimulation in step 1 (b) is done in the interval t ∈ [tn, tn + η], where
η denotes the length of the microscopic evaluation. In many problems, such as
Hamiltonian systems, one can solve (2) both backward and forward in time in the
interval t ∈ [tn − η/2, tn + η/2], as illustrated in Figure 2 b). In our examples we
will only consider Hamiltonian systems and thus approximate the effective force
in the interval [tn − η/2, tn + η/2] using a symmetric kernel. The reconstruction
and compression operator R and Q in step 1 (a) and 1 (c) are often chosen to be
the identity operator, I. In this paper we will also consider the case where R 6= I
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and Q 6= I.
Following the usual notation, we call a method HMM-X-y, where X is the

macro-solver in step 2 and y is the micro-solver in step 1 (b). An example is
HMM-VE-rk4, which uses a Störmer-Verlet scheme in step 2 and the fourth order
Runge-Kutta method as micro-solver. We will now discuss the averaging done in
step 1 (c) of Algorithm 1.

2.2 Approximation of Effective Force
We assume that a microsimulation is performed in the interval t ∈ [tn − η/2, tn +
η/2], corresponding to step 1 (b) of the algorithm, and we obtain the micro-
variables un(t). According to step 1 (c) of the algorithm, these values are used to
evaluate the effective force F by averaging over the forces fω(un(t), t), for simplicity
now referred to as fω. This averaging is motivated by analytic averaging techniques
[3]: By defining the effective force of the system as

F (t) = lim
δ→0

[
lim
ω→∞

1
δ

∫ t+δ

t
fω(τ)dτ

]
, (4)

we let s be the largest integer such that∣∣∣∣∣ dpdtpF (t)
∣∣∣∣∣ ≤ C for 0 ≤ p ≤ s, (5)

where C is a constant independent of ω. Then we say that F is slowly varying.
The goal is to find an appropriate approximation to the average in (4). Let the
kernel K be defined as ∫ 1

−1
K(t)trdt =

{
1, r = 0
0, 1 ≤ r ≤ p, (6)

and let Kη denote the scaling of the kernel,

Kη(t) := 1
η
K

(
t

η

)
.

It can be shown that the convolution Kη ∗ fω approximates (4),

(Kη ∗ fω)(t) = (Kη ∗ (F + gω))(t) −→ F (t) as ω −→∞, (7)

in the cases where gω vanishes exponentially or oscillates. For a detailed discussion
and proofs, see [3]. Thus approximation by averaging with kernels applies to stiff
problems in (2), and we can estimate the effective force F by the convolution

F (t) = (Kη ∗ fω)(t) =
∫ t+η/2

t−η/2
Kη(s− t)fω(un(s), s)ds. (8)
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Figure 3: a) The symmetric kernel Kexp(1) with support on [−1, 1]. b) The symmetric
kernel Kexp(2) with support on [−1, 1]. c) An asymmetric kernel with support on [−1, 0]
for dissipative systems.

This corresponds to step 1 (c) of Algorithm 1.
For the HMM schemes illustrated in Figure 2, a symmetric kernel should be

used to evaluate F in the center of the time interval for each microscale evolution.
A typical choice is the exponential kernels

Kexp(1)(t) = C1 exp
( 5
t2 − 1

)
and Kexp(2)(t) = C2 exp

(
5

4(t2 − 1)

)
, (9)

where C1 and C2 are the normalization constants. In Figure 3 these kernels are
depicted. The figure also illustrates an example of an asymmetric kernel, which is
used in the averaging of the force in dissipative systems.

2.3 Accuracy and Stability of HMM for ODEs
The local error of HMM stems from two sources: The error related to the accuracy
of the macroscale scheme and the error related to the approximation of the force
F . If we denote the error related to approximation of F as εHMM, we can express
the local error as En = εmacro + εHMM. This leads to the following theorem [6]:

Theorem 1. HMM is stable if the macroscale solver is stable and there exists a
constant C such that

|En| ≤ C(Hk+1) + εHMM (10)

for n ≤ N , (N = T/H), where k is the order of the macroscale solver.

While the error related to the macro-solver is straightforward to find by using
existing error bounds for numerical solvers, the approximation of εHMM is rather
nontrivial. First of all, it consists of both numerical and analytical error. The
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analytical error is due to the approximation of the force found by (8). The nu-
merical error consists of both the error from the microsimulation in step 1 (b) of
Algorithm 1 and the numerical approximation of the force, step 1 (c). In addition,
we often have an error related to the reconstruction and compression operations.
A detailed review of the error for some basic HMM schemes for both dissipative
and oscillatory systems is given in [3].

2.4 Test Example: The Inverted Pendulum

Figure 4: The inverted pendulum attached to a motor vibrating in the y-direction.

The following test problem considers the inverted pendulum depicted in Figure 4.
The inverted pendulum is usually unstable as its equilibrium is located at the top
of the rod, but the bob can be stabilized in the special case where the pendulum
is subject to a vertical force.

For simplicity we consider a light rod of length l with a point mass at the end.
The equation of the inverted pendulum subjected to a vertical force is given as

lq̈ = (g + a(t)) sin q, (11)
where g, l and q denote the constant of gravity (g > 0), the length of the rod
and the angle between the upward vertical axis respectively. The force is given
by a(t), which is a sinusodial acceleration given by a(t) = vmaxω cos(ωt). Here
a(t) > 0 when the acceleration points upwards. vmax is the maximum velocity of
the pivot, v(t) = vmax sin(ωt). The constant ω � 1 describes the large valued
frequency of scale O(ω) and results in a fast vibration of the pivot at microscale,
which stabilizes the bob at macroscale. We convert the system (11) into a first
order autonomous system of the form

dp

dt
= l−1(g + a(t)) sin q, dq

dt
= p. (12)
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Figure 5: The behavior of q and dq/dt and their corresponding averaged solution Q and
P (red line) with ε−1 = 200.

Figure 5 shows the solution of p(t) and q(t) for the frequency ω = 200. We
observe that the fast oscillations with frequency O(ω) in the solution of p(t) cause
the pendulum to oscillate slowly around the stable equilibrium q(t) = 0. Indeed,
the angular velocity q(t) exhibits an averaged solution that varies slowly, with
small oscillations of angular frequency O(ω) and amplitude O(ω−1).

Averaged Equations. An averaged equation of (11) is found in [4], and is given
as

dP

dt
=
(
g

l
− v2

max
2l2 cosQ

)
sinQ, dQ

dt
= P, (13)

where Q and P are the averaged solutions of the system in (11). The solution of
this system approximates the solution of (12) except from an O(ω−1) remainder
[4]. This system is independent of ω and can be solved accurately with relatively
few time steps by any standard numerical solver, in contrast to the original stiff
system in (12). This will be used as a reference solution, and we will also use the
relation

p(t) = P (t) + l−1vmax sin(ωt) sinQ(t) +O(ω−1),
q(t) = Q(t) +O(ω−1) (14)

which is the relation between the original variables (p, q) and the averaged vari-
ables P and Q

The HMM Scheme. The system in (12) will from now be referred to as the
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Algorithm 2 HMM Solver for the Inverted Pendulum

1. Initial conditions: Given Q0 = Q(0), P0 = Q̇(0), t0 = 0, set n = 0 and
P̂0 = P0.

2. Force estimation:

(a) Microevolution:
i. Reconstruction: Set initial data to

pn(tn) = P̂n + vmax

l
sin(ωtn) sinQn,

qn(tn) = Qn

(17)

ii. Microintegration: Solve (12) in the interval t ∈ [tn− η/2, tn + η/2].
(b) Averaging:

Fn = 2
η

∫ tn+η/2

tn−η/2
K

(
s− tn
η/2

)
f(qn(s), ωs;ω)ds, (18)

3. Macrostep: Evolve the macro-variables Qn+1 and Pn+1.

microscale system, in compact form given as

dp

dt
= f(q, ωt;ω), dq

dt
= p. (15)

The corresponding macroscale system is given as

dP

dt
= F (Q), dQ

dt
= P, (16)

where Q and P are the solutions of the macroscale system and F is the averaged
force from the microscale system acting on the large scale system.

We will now solve this system using the HMM-framework: The macroscale
system (16) is solved by numerical integration with step size H, referred to as the
macrointegration, for t ∈ [0, T ]. The effective force F is found numerically using
a microintegrator with step size h on the original system (15). The macro-solver
sampling times are denoted t1, t2, . . . , tN , where N = T/H. Numerical solutions
of the macro and micro-variables at time tn are given as Pn, Qn, pn and qn. The
complete HMM scheme is described by Algorithm 2 and in what follows we will
discuss this algorithm in more detail.
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Figure 6: The behavior of Q and P in t ∈ [0, 6]. H = 1/20. The solid line shows the
solution of the averaged equation (13) and the dotted line shows the HMM approximation
of the solution of (11).

The reconstruction in step 2 (a) of the algorithm takes advantage of the modu-
lated Fourier expansions of p(t) and q(t): In order to relate the micro and macro-
variables the initial values (pn(tn), qn(tn)) are set equal to the approximation (14),
with the predictor P̂n = Pn−1 + HFn−1. The evaluation of the solution (pn, qn)
in step 2 (a) is found by using Störmer-Verlet or the fourth order Runge-Kutta
method as microintegrator in the interval [tn − η/2, tn + η/2].

In step 2 (b) of the algorithm, Fn is the approximation to F (Qn). The kernel
used in the averaging is the symmetric exponential kernel Kexp(1) defined in (9),
where C1 is chosen such that ∫ 1

−1
K(t)dt = 1.

In practice we can either compute Fn using the trapezoidal rule with step size h,
or evaluate the contribution of Fn in each step of the microintegration.

In step 3 of the algorithm we are using Störmer-Verlet as macrointegrator,
given as

HMM-VE-*
Given Pn, Qn, for n = 0,1,2, . . .

Pn+1/2 = Pn + H

2 Fn
Qn+1 = Qn +HPn+1/2

Pn+1 = Pn+1/2 + H

2 Fn+1.
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Numerical Results. We have applied the HMM to the inverted pendulum equa-
tions (15) with parameters l = 0.2m, g = 9.81m/s2, vmax = 4m/s and ω = 106.
Figure 6 shows the evolution of the numerical solution (Pn, Qn) and the solution
of the averaged equations (13), (P (tn), Q(tn)), for t ∈ [0, 6] using the initial condi-
tions q(0) = 0, p(0) = −5. Here we used the scheme HMM-VE-ve with H = 1/20,
h = 2π/(15ω) and η = 40 ·2π/ω, which corresponds to a microintegration spanned
over 40 fast periods.

Complexity. The HMM requires a total of 104 operations in the evaluation,
compared to a standard solver, which would need a total of 106 operations when
ω = 106. This corresponds to computational savings of 102. In fact, we find that
the error is almost constant as ω increases (with the same values of H), and leads
to computational savings of 104 when ω = 108.
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3 HMM Based on Slow Variables for Highly
Oscillatory ODEs

For the inverted pendulum problem we had to relate the micro and macro-variables
of the solution by analytical techniques (by the predictor from the averaged equa-
tions). Very often the micro-variables, which originates from the original equation
(2), do not coincide with the variables that describe the slow motions of the sys-
tem. This is one of the difficult aspects using HMM for oscillatory ODEs. In [2]
they propose a class of HMM algorithms where the need of an analytic relation
between the micro and macro-variables is bypassed: The effective slow behavior of
highly oscillatory ODEs is found by utilizing a set of slow variables of the system.
The next section will summarize some results of [2].

Consider an ODE system of the general form

ẋ = ωf(x) + gx, x(0) = x0, (19)

where ω is considered to be large and x = (x1, x2, . . . , xd) ∈ Rd. The solution
for a fixed ε and x0 is x(t;ω,x0) and for simplicity denoted x(t). We consider
solutions in a bounded domain D ⊂ Rd and in a bounded interval t ∈ [0, T ], where
T is independent of ω. As we study the long time properties of (19), by following
the slow dynamics of the system, we need to distinguish between fast and slow
variables of the system. For the variables in (19), the slow variables are defined as
a set of functions whose time derivatives are bounded with a constant independent
of ω. In the inverted pendulum problem we could easily identify the slow variables
of the system just by looking at the problem and its behavior. The slow variables
are in many cases not clearly defined and need to be extracted from a system of
fast variables.

3.1 Fast and Slow Dynamics
We say that a real valued smooth function (variable) α(x) is slow with respect to
(19) if there exists a nonempty open set A ⊂ Rd such that

max
x0∈A, t∈[0,T ]

∣∣∣∣∣ ddtα(x(t;ω,x0))
∣∣∣∣∣ ≤ C0,

where C0 is a constant independent of ω. Otherwise, α(x) is considered to be fast.
An example of slow variables in the action angle variable in a Hamiltonian system.
The integrals of the trajectories α(x) are also slow, and are called slow observables.
This means that if α(x) is an integrable function with respect to time, then

α̃(t) =
∫ t

0
α(x)(s)ds
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is slow, since |dα̃/dt| ≤ C0 for some constant C0. Slow observables can also
be obtained using convolution with compactly supported kernels, as we will take
advantage of in the following algorithm of this section.

We will now denote the set of slow variables as ξ(t) := ξ(x(t)). As any function
of slow variables is also slow, it is convenient to look for functionally independent
slow variables. Consider the set of slow variables ξ = (ξ1, ξ2, . . . , ξr). In order
to ensure that ξk ∈ ξ, k = 1, . . . , r, are functionally independent, we require
that ∇ξ1,∇ξ2, . . . ,∇ξr are linearly independent in A. The dimension of the slow
variables, r, is bounded by d, and we will look for the maximum number, r, of
functionally independent slow variables.

In [2] it is shown that if a sufficient number of slow variables are approximated
accurately, they are effectively closed, and any other smooth slow variable is ap-
proximated accurately. An averaging principle is used to prove that the evolution
of ξ(t), with initial condition x0, is well approximated by the effective equation

ξ̇ = F (ξ), ξ(0) = ξ0 = ξ(x0), (20)

for large ω and t ∈ [0, T ]. This corresponds to the effective equation (3) for our
stiff system (2). Note that even though ξ is slow, ξ̇ is not necessarily slow, but
it is bounded independent of ω. As before, we do not assume that the effective
equation (20) is explicitly known. Indeed, the HMM algorithm approximates this
assumed effective equation by numerical solutions of (19) in short time intervals
of the computational domain [0, T ].

3.2 The Algorithm
We suppose that ξ = (ξ1, ξ2, . . . , ξr) are the slow variables of (19). The macro-
solver sample times are denoted t1, t2, . . . , tN , where N = T/H, and the corre-
sponding solution at time tn is x(tn) = xn. The numerical algorithm is almost
identical to the algorithm in section 2.1 except for changes related to the intro-
duced slow variables. The macro-solver integrates the effective equation (20) by
solving the original system (19) in a short time interval with initial conditions
xn. Instead of averaging over ẋ as in Algorithm 1, an averaging over the time
derivatives of ξ is done, found by the usual approximation

ξ̇(t) ∼ (Kη ∗ ξ̇)(t) =
∫ t+η/2

t−η/2
Kη(s− t)ξ̇(s)ds. (21)

Here Kη(·) is the compactly supported (scaled) kernel defined in section 2.2. After
this approximation, we can evolve the original variables xn+1 using the macro-
solver. In order to take a step with the new variables, say x(t+H) = x(t) + ∆x,
we have to ensure that the new variables are consistent with the approximated ξ̇.
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Algorithm 3 HMM Solver for Highly Oscillatory ODEs

1. Initial conditions: x(0) = x0 and n = 0.

2. Force estimation:

(a) Microsimulation: Solve (19) in [tn−η/2, tn+η/2] with initial conditions
x(tn) = xn.

(b) Averaging: Approximate ξ̇k(tn) by (Kη ∗ ξ̇k)(tn), k = 1, . . . , r.

3. Reconstruction: Update xn+1.

(a) Solve
δn · ∇kξ(xn) = (Kη ∗ ξ̇k)(tn), k = 1, . . . , r

for F̃n with least squares.
(b) Update xn+1 (forward Euler example):

xn+1 = xn +Hδn.

4. Repeat step 2-3 until tn = T .

This is done by a second order estimate of ∆x, the least square solution1 of the
linear system

∆x · ∇ξ(xn) = H · (Kη ∗ ξ̇)(t).

Here ∇ξ(xn) is a matrix where the k’th row is the partial derivatives ∇ξk. The
complete HMM scheme is described by the steps in Algorithm 3.

In [2] they use a numerical process in their algorithm to identify the slow
variables ξ. This step is skipped in our algorithm, as we assume the slow variables
are already found analytically for our test problems.

Notice that the micro-solver in step 2 (a) is only invoked whenever the time
derivative of a slow variable, ξk, needs to be approximated. This means if ξk ∈ x
is slow, then ξ̇k is already known from the original system (19). An example is the
slow variable q from the inverted pendulum example, which is directly solved by
the macro-solver. The time derivative ξ̇k in step 2 (b) is found by using the chain
rule, setting ξ̇k = ∇ξk · ẋ. In the following we will introduce an example of this
algorithm applied on a highly oscillatory ODE.

1This could be solved with higher accuracy and in [9] they extend this algorithm with higher
order estimates of ∆x.
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4 The Spinning Top
The spinning top, also called the Lagrangian top, is the model of a simple child’s
toy. The spinning top has probably been around for centuries and the motion of
the top has made both children and adults curious about it’s underlying nature.
We will give a brief introduction to rigid body dynamics, which finally leads us to
the mathematical model of the spinning top.

4.1 Rigid Body Dynamics

e1 e2

e3

ξ2

ξ1

ξ3

Figure 7: The rigid body with illustration of the spatial coordinate system (e1, e2, e3)
and the body coordinate system (ξ1, ξ2, ξ3).

A rigid body is thought of as a body for which the distances between the points
of the body are fixed as the body moves. One simple example is a box, with fixed
distances between the corners of the body. We will consider the free rigid body
anchored at the origin with no external forces acting.

The dynamics of the rigid body is usually described in body coordinates, which
is a set of coordinates following the motion of the body. To get a better idea
of what the body coordinates actually are describing, we need to go back to the
coordinate axes we are usually concerned with. If we let (e1, e2, e3) ∈ R3 be the
basis of the fixed space (see Figure 7), then the coordinates of a particle in space
can be described by x = (x1, x2, x3) ∈ R3. These are called spatial coordinates,
and describe the motion of the particle relative to the fixed coordinate system. We
can now define a new time-dependent coordinate system (ξ1, ξ2, ξ3) ∈ R3 defined
by ξi = R(t)ei for i = 1, 2, 3, so that ξi is attached to the body. Then the body
coordinates of a vector in R3 describe the motion relative to the new reference
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coordinates, ξi [13].

Euler’s Rigid Body Equations. The rotation of a rigid body can be described
by Euler’s equations. This equation is found from the Lagrangian of the rigid body,
and by defining the two variables, angular velocity, Ω, and angular momenta,
Π = IΩ, where I are the moments of inertia. We get the following equations
describing the rigid body motions:

Π̇ = Π×Ω. (22)

Here Π = (Π1,Π2,Π3) and Ω = (Ω1,Ω2,Ω3) are the angular momenta and angular
velocity in body coordinates [13]. We have the relation Πi = IiΩi, i = 1, 2, 3, where
I = diag(I1, I2, I3) are the moments of inertia and describe the mass distribution
of the body. Note that (22) describes a free body, with no external forces acting
on the dynamics. In what follows we will consider the rigid body in a gravitational
field.

The Heavy Top. The rigid body with a fixed point in a gravitational field
is called a heavy top. The equations of motion are more complex as we need to
consider the effect of the gravity dragging the body downwards. The effect of
gravity can be assessed if we introduce a new variable Γ that keeps track of the
gravity vector as seen from the body: We let Γ represent the direction of unit
vector along the Oz-axis as seen from the body [13] and the equations of motion
become

Π̇ = Π×Ω +MglΓ× χ

and
Γ̇ = Γ×Ω,

whereM is the mass of body and g is the acceleration of gravity. The constant unit
vector χ is a vector along the line which connects the fixed point of the body (the
origin) to the center of mass of the body. The line segment along χ to the center
of mass is of length l. Throughout this thesis, we will restrict our attention to the
spinning top, which is an axially symmetric rigid body in a uniform gravitational
field.

4.2 The Spinning Top
Consider the motion of a spinning top, also called the Langrangian top, which is
an axially symmetric rigid body with the center of mass on the axis of symmetry,
χ = (0, 0, 1). This also means that the moment of inertia I1 = I2. Writing out the
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M = mass of the body

g = gravity

l = length to the center of mass from the origin

Ω = angular velocity

k
Γ

g

Ω

equations for the heavy top we get the equations of motion

Π̇1 = I2 − I3

I2I3
Π2Π3 +MglΓ2, Γ̇1 = Γ2Π3

I3
− Γ3Π2

I2
,

Π̇2 = I3 − I1

I1I3
Π1Π3 −MglΓ1, and Γ̇2 = Γ3Π1

I1
− Γ1Π3

I3
,

Π̇3 = 0, Γ̇3 = Γ1Π2

I2
− Γ2Π1

I1
.

(23)

Note that the symmetry causes the angular momenta around the vertical (body)
axis to be constant, since Π̇3 = 0. This variable also represents the spin of the top
(Ω3 is the angular velocity around the vertical direction of the top), and thus Π3
is a conserved quantity. Another conserved variable is the hamiltonian

H(Π,Γ) = 1
2Π ·Ω +MglΓ · χ, (24)

which is the total energy of the top. In addition the Lagrangian top possesses
two conserved quantities. Namely the projection of the angular momenta on the
gravity vector, Π ·Γ, and the norm of the gravity vector, ‖Γ‖2. In total this gives
us four conserved quantities. We shall focus on the top spinning fast, such that
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the body is stable and prevented from falling down.

The Fast Top. In [14] they consider the fast top as a top where the kinetic en-
ergy of the rotation is large compared to the potential energy of the top. From the
Hamiltonian in (24) the total potential energy is given by MglΓ3, where |Γ3| ≤ 1.
Since the kinetic energy from the spin is I3Ω2

3/2, this leads to the criteria

Π2
3 � 2MglI3 (25)

for the initial spin. In Marsden and Ratiu [13] they prove a similar condition for
the stable top by the following theorem:

Theorem 2 (Heavy Lagrange Top Stability Theorem). An upright spinning La-
grange top is stable, provided that the angular velocity is strictly larger than 2

√
MglI1/I3.

It is unstable if the angular velocity is smaller than this value.

Figure 8: Precession, nutation and rotation of the spinning top.

Precession, Nutation and Rotation. In order to understand the physics of the
spinning top we step back from the rigid body equations for a moment, and rather
think of the behavior of the top, as we would intuitively expect it to be. Imagine
you are placing the top on the ground and giving the top a high initial spin.
You observe how the top spins fast, but you can also observe a slow circulation
around the vertical axis (in the spatial stationary coordinate system, see Figure
7). This circulation is the azimuthal motion of the top and is called precession.
The precession is described in spherical coordinates by ϕ̇, where ϕ is the azimuth
angle, which describes the rotation around the vertical axis.

Together with the precession we observe a wobbly motion of the top: We start
spinning the top in an initial inclination θ0 from the vertical upright position,
where θ is the angle with respect to the vertical axis in spherical coordinates.
But the inclination θ changes as the top precesses around the vertical axis. This
periodical motion is called nutation and is described by θ̇.
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Figure 9: The conversion from the stationary frame (ex, ey, ez) to the moving frame by
performing three rotations: 1. Through an angle ϕ around the ez. 2. Through an angle
θ around eN . 3. Through an angle ψ around the e3 axis.

In fact, the motion of the top can be completely described by the rotation
around its own axis, nutation and precession. The three motions of the top are
depicted in Figure 8. These motions can be described by the Euler angles, as we
now will introduce.

The Euler Angles of the Spinning Top. The Euler angles introduce another
way to describe the orientation of a rigid body. The movement of the spinning top
can be described as a composition of three rotations with respect to the spatial
coordinate system, (ϕ, θ, ψ), and their derivatives, (ϕ̇, θ̇, ψ̇). The orientation and
definition of the three angles can bee seen in Figure 9. We refer the reader to the
book by Arnold [14] or Marsden [13] for a more involved description of the Euler
angles.

In [14] they derive the Lagrangian function in terms of the Euler angles and
their derivatives to be

L = I1

2 (θ̇2 + ϕ̇2 sin2 θ) + I3

2 (ψ̇ + ϕ̇ cos θ)2 −Mgl cos θ,

which are the kinetic energy of the system, minus the potential energy of the
system. Once the Lagrangian is known, the equations of motions are obtained as
the Euler-Lagrange equations. This means that we set

∂L
∂ϕ

= d

dt

(
∂L
∂ϕ̇

)
,

∂L
∂θ

= d

dt

(
∂L
∂θ̇

)
and ∂L

∂ψ
= d

dt

(
∂L
∂ψ̇

)
, (26)

in order to find the differential equations for ϕ, θ and ψ.

Expression of Π and Γ in Terms of Euler Angles. In order to find the
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relation between the angular momenta, Π, and the gravity vector, Γ, and the Eu-
ler angles we would like to express the transformation from the spatial coordinate
system to the body coordinate system, i.e. from the basis (e1, e2, e3) to the basis
(ξ1, ξ2, ξ3). Assume that x = (x1, x2, x3) and ζ = (ζ1, ζ2, ζ3) describe a vector in
respectively the basis (e1, e2, e3) and (ξ1, ξ2, ξ3). Then the transformation matrix
P , such that ζ = Px is given as

P =

 cosψ cosϕ−cosθ sinϕ sinψ cosψ sinϕ+cosθ cosϕ sinψ sinθ sinψ
− sinψ cosϕ−cosθ sinϕ cosψ − sinψ sinϕ+cosθ cosϕ cosψ sinθ cosψ

sinθ sinϕ − sinθ cosϕ cosθ

 .
As mentioned previously, the time-dependent basis (ξ1, ξ2, ξ3), is defined by ξi =
R(t)ei, i = 1, 2, 3, so that ξ1, ξ2 and ξ3 move attached to the body. We can
express the angular momenta in terms of (ϕ, θ, ψ) and (ϕ̇, θ̇, ψ̇) by noticing that
R(t) is equal to P T [13]:

Π1
Π2
Π3

 =

I1 sin θ sinψ I1 cosψ 0
I2 sin θ cosψ −I2 sinψ 0
I3 cos θ 0 I3


ϕ̇θ̇
ψ̇

 (27)

We can also express the motion of the vector Γ in terms of Euler angles by observing
that the last column of the matrix P transforms the unit vector along the Oz-axis,
which gives the relation Γ1

Γ2
Γ3

 =

sin θ sinψ
sin θ cosψ

cos θ

 . (28)

We can now substitute the expression of the gravity vector Γ in terms of the Euler
angles into (27), and formulate the angular momenta Π by

Π1
Π2
Π3

 =

I1Γ1 I1Γ2/ sin θ 0
I2Γ2 −I2Γ1/ sin θ 0
I3Γ3 0 I3


ϕ̇θ̇
ψ̇

 . (29)

By inversion of this matrix the transformation from (ϕ̇, θ̇, ψ̇) to (Π1,Π2,Π3) is
given as

ϕ̇θ̇
ψ̇

 = 1
Γ2

1 + Γ2
2

 Γ1/I1 Γ2/I2 0
−Γ1Γ3/I1 −Γ2Γ3/I2 (Γ2

1 + Γ2
2)/I3

Γ2 sin θ/I1 −Γ1 sin θ/I2 0


Π1

Π2
Π3

 . (30)
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4.3 The Fast Spinning Top
We will consider the fast spinning top by using the criterion in (25). This means
that we restrict the angular momentum Π3 to be much larger than

√
2MglI3. By

defining the variable Π̂3 =
√

2MglI3 and let Π3 = ωΠ̂3, we choose ω sufficiently
large to ensure the criterion Π3 �

√
2MglI3 is fulfilled. In this way we can observe

the behavior of the top as we increase ω. We rewrite the equations of motion from
(23) by replacing Π3 with ωΠ̂3, and get

Π̇1 = ω
I2 − I3

I2I3
Π2Π̂3 +MglΓ2, Γ̇1 = ω

Γ2Π̂3

I3
− Γ3Π2

I2
,

Π̇2 = ω
I3 − I1

I1I3
Π1Π̂3 −MglΓ1, and Γ̇2 = Γ3Π1

I1
− ωΓ1Π̂3

I3
,

Π̇3 = 0, Γ̇3 = Γ1Π2

I2
− Γ2Π1

I1
.

(31)

We solve the system in (31) numerically in the time interval [0, T ] by a fourth
order Runge-Kutta (from now on referred to as RK4) scheme in order to see how
the variables behave. The norm of the gravity vector, ‖Γ‖2, was set to be equal
to one by using the initial value Γ0 = (0, sin(0.2), cos(0.2))T . The initial angular
momenta of the top were Π0 = (0, 0, ωΠ̂3)T . The geometry of the top were chosen
to imitate a circular cone, see Figure 10. The mass was M = 5, height equal
to one and radius 0.4. The moments of inertia with the chosen parameters are
I = (3.12, 3.12, 0.24) and the center of mass of the circular cone is located at the
vertical axis, positioned at 3/4 h from the tip (the origin). Thus the length from
the fixed point at the origin to the center of mass is l = 0.75. The gravity field was
g = 9.81. In Figure 11 the numerical solution of Π and Γ is plotted for T = 0.1,
using RK4 with step size 10−5 for the modest value ω = 100.

Time Scales of The Spinning Top. The fast oscillating nature of the spin-
ning top is easily seen Figure 11. But different motions are observed at different

h

r

I3 = 3
10

Mr2

I1 = I2 = 3
5
M( r

2

4
+ h2)

Figure 10: Moments of inertia for a circular cone with mass M , radius r and height h.
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Figure 11: The solution of the spinning top with initial spin Π3 = ω
√

2MglI3, ω = 100
solved with fourth order Runge-Kutta with step size 10−5. We observe that the angular
momenta Π1 and Π2, along with Γ1 and Γ2, are highly oscillatory with frequency of
order ω. The variable Γ3 is oscillating slowly with a frequency of order ω/10.

time scales: At the scale ω−1 we observe an oscillatory behavior of the variables
Π1, Π2, Γ1 and Γ2. The variable Γ3 oscillates slowly at the time scale 10 · ω−1,
while Π3 remains constant, as expected. As we increase ω, the frequency of Π1,
Π2, Γ1, Γ2 and Γ3 are increasing proportionally to ω: The angular momenta Π1
and Π2 are oscillating with frequencies of order ω and amplitudes of order 10/ω.
The solutions of Γ1 and Γ2 oscillate with frequencies of order ω, while the ampli-
tudes remain constant of order 10−1. The variable Γ3 is changing slowly and has
a frequency of order ω/10.

Numerical solutions of the spinning top require an overwhelming computa-
tional cost using standard solvers, as for instance RK4. For ω = 100, an accurate
solution can only be obtained by using a step size of order ω−2 with RK4. As we
increase the size of ω, we would need a minimum of ω2 operations in order to solve
the full system accurately, causing a high computational cost as ω → ∞. In this
setting the HMM could be used to reduce the computational cost substantially by
eliminating the need of the full representation of the problem and rather solve the
system for some slow constituents of the system in (31).

The Slow Variables of the Fast Spinning Top. Although the top seems
to have a fast varying nature, there are still some quantities that we would expect
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to behave slowly as the spin of the top is increased. Our goal is now to extract the
slow behavior of the fast spinning top. The slowly changing variables of the system
can then be approximated accurately using the multiscale method considered in
section 3.

In order to analyze the fast and slowly changing variables of the top, we turn
to the differential equation in (31). From the set of equations, we can easily see
that the variables Π1, Π2, Γ1 and Γ2 are determined to vary fast as ω increases.
This is also the behavior we have found numerically (see Figure 11). However, it
is possible to extract some slow behavior from the system in (31).

Remember that a slowly changing variable has a derivative which is bounded
independent of ω (see section 3.1). Keeping this in mind, we can find some slowly
changing quantities from (31). Two slow variables can be found directly from
these equations: The derivative of Γ3 is a function of Π1, Π2, Γ1 and Γ2, and we
have found numerically that these variables are bounded as ω →∞ (Π1 and Π2 are
proportional to 1/ω and Γ1 and Γ2 are constant), while the derivative of Π3 is zero.
Another slow variable is identified by observing that d/dt(Π2

1 +Π2
2) = Mgl(Π1Γ2−

Π2Γ1), which is bounded independently of ω. We identify the remaining slow
variables in the same manner, resulting in the five variables

ξ1 = Π3

ξ2 = Γ3

ξ3 = Π2
1 + Π2

2

ξ4 = Γ2
1 + Γ2

2

ξ5 = Π1Γ1 + Π2Γ2.

(32)

Remarks on The Choice of Slow Variables. There are two things to be
aware of when we determine the slow variables: The first thing to notice is that
the set of slow variables ξ needs to be functionally independent, which also im-
plies that the rows (or columns) of ∇ξ are linearly independent. This needs to
be valid for the chosen set of slow variables (32), and we check if this condition
is fullfilled by an inspection of the Jacobian matrix ∇ξ. We find that the rows of
the Jacobian are linearly independent except for at the surface Π1/Γ1 = Π2/Γ2,
or equivalently, Π1/Π2 = Γ1/Γ2. This will however not lead to problems when it
comes to numerical evaluations.

Another aspect we need to consider when choosing the slow variables is to
ensure that the solution of ξk gives non-zero values of F (ξk). This is not necessarily
valid with our choice of slow variables, unless we choose the initial values of the
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system in (31) carefully: With the starting values Π0 = (0, 0, ωΠ̂3)T and Γ0 =
(0, sin(0.2), cos(0.2))T the microsimulation in the first step of the macrosolver (see
step 2 a in Algorithm 3) gives symmetric solutions of the variables Π and Γ.
Thus the slow variables from the microsimulation also become symmetric.2 This
is resulting in anti-symmetric derivatives of the slow variables, and thus leading to
the approximate force F̃ (ξ) = 0. Hence, we need to choose the initial conditions
to give a non-symmetric solution of ξ.

2If X1 and X2 are symmetric, then X1 +X2 and X2
1 are also symmetric.
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5 The Fast Spinning Top and HMM

The solution of the slow variables in (32) of the fast spinning top is obtained by
using Algorithm 3. An outline of the procedure is described more extensive in
Algorithm 4. We will now discuss the algorithm in detail.

Algorithm 4 HMM solver for the slow variables of the spinning top

1. Initial conditions: Given (Π0,Γ0) = (Π(0),Γ(0)), tn and n = 0.

2. Predict the fast variables Π, Γ by[
Π̂
Γ̂

]n
=
[

Π
Γ

]n
+Hδn−1.

(At n = 0 the prediction is Π̂
0 = Π0 and Γ̂

0 = Γ0).

3. Force estimation:

(a) Microsimulation: Solve (31) for the variables Π and Γ in [tn− η/2, tn +
η/2] with initial conditions Π̂ and Γ̂.

(b) Averaging: Approximate the derivatives of ξ2, ξ3, ξ4 and ξ5:

F̃ (ξi) = ξ̇i(tn) ∼ (Kη/2 ∗ ξ̇i)(tn), i = 2, 3, 4, 5.

4. Reconstruction:

(a) Solve 
∇ξ2(tn)
∇ξ3(tn)
∇ξ4(tn)
∇ξ5(tn)

 · δn(Π,Γ) =


ξ̇2(tn)
ξ̇3(tn)
ξ̇4(tn)
ξ̇5(tn)


for F̃n with least squares.

(b) Update Π and Γ: [
Π
Γ

]n+1

=
[

Π
Γ

]n
+Hδn(Π,Γ).

5. Repeat step 2-4 until tn = T .
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The HMM Scheme. The system in (31) will from now on be referred to as
the microscale system, in compact form given as

Π̇ = f(Π,Γ), Γ̇ = g(Π,Γ). (33)

The macroscale system, containing the slow variables in (32), is given as

ξ̇ = F (ξ). (34)

We remark that we do not solve for ξ1 = Π3 in practice, since we already know
that this is a constant, thus the remaining slow variables to solve are ξ2, ξ3, ξ4 and
ξ5. The estimated force F (ξ) is found by a microsimulation of the original system
in (31) using a numerical solver with step size h in a small interval η (step 3 (a)
of the algorithm). For this purpose we use a Störmer-Verlet like scheme, given as

Πn+1/2 = Πn + h

2f(Πn,Γn)

Γn+1 = Γn + hg(Πn+1/2,Γn)

Πn+1 = Πn + 1 + h

2f(Πn+1/2,Γn+1), (35)

or the fourth order Runge-Kutta scheme (for a detailed description of this inte-
grator see [12] page 28-30). In step 3 (b) of the algorithm we approximate the
derivatives of the macroscale system in (34) by a convolution with the exponential
kernel Kexp(2) given in (9)3. In practice, the convolution is done either by using
the trapezoidal rule with step zize h, or evaluate the contribution to F (ξ) in each
step of the microintegration.

At last, in step 4 of the algorithm, we need to address the force to the original
variables in (33). This is done by solving the linear system ∇ξ · δn = ξ̇ with least
squares and updating the variables Π and Γ by using the macrointegrator (step
4 b). This integration is performed using Forward Euler or Leapfrog integration
with step size H, given as

HMM-FE-*
Given Πn,Γn, for n = 0,1,2, . . .[

Π
Γ

]n+1

=
[

Π
Γ

]n
+Hδn(Π,Γ).

3We also used the kernelKexp(1) given in (9), but the results withKexp(2) gave better estimates
(smaller error).
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Figure 12: The HMM approximation (×) of the slow variables for ω = 103 plotted with
the solution of the slow variables obtained by Matlab’s ODE45 (gray line).

HMM-LF-*
Given Πn,Γn, for n = 0,1,2, . . .[

Π
Γ

]n+1

=
[

Π
Γ

]n−1

+ 2Hδn(Π,Γ).

5.1 Numerical Results
The numerical solution of the slow variables of (31) is evaluated using the proce-
dure in Algorithm 4. The parameters used in the numerical evaluations areM = 5,
l = 0.75, g = 9.81 and I = (3.12, 3.12, 0.24). As discussed in section 4.3, the so-
lution of F (ξ) becomes zero with the initial values Γ = (0, sin(0.2), cos(0.2))T and
Π0 = (0, 0, ωΠ̂3)T . This problem is avoided by letting the angular momentum Π1
have an initial value a bit larger than zero, for example Π1 = 1/ω. The initial
value Π0 = (1/ω, 0, ωΠ̂3)T leads to a nonzero F (ξ).

Figure 12 shows the approximated solution using the HMM scheme with T =
0.01, H = T/60 ≈ 1.67 · 10−4, h = 10−6 and η = 10h. Note that the microin-
tegration is done in an interval of length 10h, which is only 6% of the length of
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Figure 13: Errors in ξ3 as a function of 1/H for ω = 103. The convergence of the first
order scheme HMM-FE-rk4 and HMM-FE-ve are shown in the plot to the left. The
convergence of the Leapfrog schemes HMM-LF-rk4 and HMM-LF-ve are shown in the
plot to the right. The O(H) behavior of the schemes stagnates as H gets small enough.

the large scale time step H. The HMM requires in total 600 operations in the
evaluation with this choice of parameters, compared to RK4 which would require
an amount of 104 operations in order to give an accurate solution. The solution is
compared to the solution obtained with Matlab’s solver ODE45, which is almost
exact (except for an error 10−16). From now on this solution will be referred to as
the exact solution.

Error of the HMM Scheme. The local error is found from the estimate
in (10), which gives the local truncation error of En = O(Hk+1 + εHMM), where
k is the order of the macrointegrator. The error of εHMM consists of four main
sources [2]: The first source is the analystical error from the force approximation
in (8). The second error contribution is the error related to the microintegration,
used to find the approximate variables Πn and Γn. The two last contributions are
the error from using the quadrature rule to estimate the force F (ξ), and the error
due to the inaccurate slow variables. Altogether εHMM can be expressed as

εHMM = εforce + εmicro + εquad + εslow (36)

In the proceeding, we will consider the error metric of the numerical approximation
as the maximum in the interval t ∈ [0, 0.01] of the error |ξni − ξi(tn)| 4, where ξni is

4It would have been more convenient to consider at the relative error |ξn
i − ξi(tn)|/|ξi(tn)|, as

the values of the slow variables are small. However, since our intention is to examine the error
behavior as H and h are changing, this does not affect the analysis.
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10−6 and 10−7 using the scheme HMM-LF-rk4.

the numerical solution and ξi(tn) is the exact solution at the time tn = nH.
Figure 13 shows the error of ξ3 as a function of the macro scale step size H

using Forward Euler or Leapfrog integration as macrointegrators. The parameters
that were used are h = 10−6 and η = 10h or 50h. We compare the error of using
both the Störmer-Verlet scheme in (35) and RK4 as microintegrators.

The figure shows that the error is decreasing as we decrease H, but converges
to a value as H gets small enough. The error in HMM-LF-* are converging faster
to this value, as this method performs better than HMM-FE-* for larger values of
H. The O(H) dependence of HMM-LF-* is not shown here, but is illustrated in
Table 1 and will be discussed subsequently.

The flattening shown in Figure 13 is a consequence of the error related to HMM,
εHMM, which becomes dominant as H decreases. The local error of the HMM
scheme can thus be formulated as En ≤ C max{Hk+1, εHMM}, for some C > 0
[2]. The starting point of this the flattened error behavior is strongly dependent
on the microintegrator: The flattening of the error with RK4 as microintegrator
is delayed, especially by using η = 10h. However, this could be fixed easily by
choosing a smaller step size h in the microintegrator.

Another important observation in Figure 13 is the dependence on the time
interval η. The error increases as we increase the interval of the force estimation,
which may not be what we would expect intuitively. The dependence on η is
shown in Figure 14 for different values of step sizes h. The optimal choice of η is
almost independent of H (this has been tested numerically), but as we decrease h,
we could get better results by increasing η. According to the figure, the optimal
length of the microintegration is η = 16h.
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Table 1: Error of the slow variable ξ3 the interval t ∈ [0, 0.01] for ω = 103, 104, 105, using
HMM-LF-rk4.The micro step size is h = 10/ω2 and η = 10h.

ω = 103 ω = 104 ω = 105

H Steps Error H Steps Error H Steps Error
T/40 400 2.19(-5) T/400 4000 2.64(-6) T/4000 40 000 3.85(-7)
T/80 800 5.90(-6) T/800 8000 9.45(-7) T/8000 80 000 2.65(-7)
T/160 1600 2.25(-6) T/1600 16000 3.49(-7) T/16000 160 000 2.29(-7)
T/320 3200 1.06(-6) T/3200 32000 1.86(-7) T/32000 320 000 1.59(-7)

Figure 15 shows the error of ξ3 as a function of the microscale step size h using
the Leapfrog integrator as macrointegrator. The plot shows the same behavior as
in the previous error plot (13): The error is flattened out as h decreases, and this
error is not overcome by decreasing h. Again, this is a result of the combinations
of error sources in the HMM scheme, the error related to the macrointegration
are dominating the error En. We also observe that the accuracy of ξ3 using RK4
as microintegrator is much better for larger values of h. The same behavior is
observed with Forward Euler as macrointegrator.

A scaling of the errors can be done, by balancing the two errors εmacro and
εHMM, to a prescribed accuracy ∆. This has been done in [2], and we refer the
reader to this article for a detailed description.
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Computational Complexity. Table 1 shows the error of ξ3 using the scheme
HMM-LF-rk4 with ω = 103, 104 and 105. The error possess an O(H) behavior,
until the error εHMM is dominating. We need to emphasize that the behavior of
the slow variables are not independent of ω: We observed that the slow variables
oscillate with a frequency ω/10 (see Figure 12). This means that we need to adjust
the step sizes H and h as ω increases in order to maintain an accurate solution.
However, this will not lead to much more effort for the microsimulation, as the
interval η is adjusted by h: The interval length η = 10h is enough to get accu-
rate solutions. Thus the only increasing computational cost originates from the
macrosolver.

From the table, it is easy to see the computational gain by using HMM. For
ω = 103 and H = T/160, the HMM produces an error of size 10−6 with only 1600
microsteps. A standard solver, for instance RK4, would need a minimum of 105

microsteps to evaluate an accurate solution. As we increase ω, the computational
savings are more significant. For ω = 105 we would need a total of O(107) opera-
tions to evaluate the solution using RK4, while the HMM needs a total of O(104)
operations to get an accurate solution, leading to computational savings of O(103).
The error of the remaining slow variables behave in the same way as for ξ3, and
will not be further discussed here.
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Another aspect of the HMM is the good preservation of the conserved quan-
tities. Remember that the spinning top possesses four conserved quantities: the
Hamiltonian given in (24), the projection of the angular momenta on the gravity
vector, Π ·Γ, and lastly the norm of the gravity vector, ‖Γ‖2. Figure 16 shows the
error of the conserved quantities with ω = 103 and T = 1. Notice that the number
of microsteps taken in this interval is only 6 · 104.

5.2 Precession, Nutation and Rotation of the Spinning Top
Another way to describe the dynamics of the fast spinning top is through the
Euler angles, described in section 4.2. The orientation of the top is given by the
three angles (ϕ, θ, ψ), and their derivatives (ϕ̇, θ̇, ψ̇). In section 4.2 we found
the relation between the Euler angles and the angular momenta Π and the gravity
vector Γ, see (29) and (30). This transformation can be written in compact form as
(Π1,Π2,Π3)T = A(ϕ̇, θ̇, ψ̇)T , and visa versa, (ϕ̇, θ̇, ψ̇)T = A−1(Π1,Π2,Π3)T , where
A is the transformation matrix in (29).

In this way, we can evaluate the Euler angles from the solution of Π and Γ of
(31). The behavior of (ϕ̇, θ̇, ψ̇) is found by numerical simulation using RK4, and
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Figure 18: Plot of the solutions for the Euler angles in the (ϕ, θ)-plane, showing the
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we observe that (ϕ̇, θ̇, ψ̇) changes slowly compared to the fast oscillations of Π and
Γ. The choice of slow variables of the previous section is not unique: we can let
(ϕ̇, θ̇, ψ̇) be slow variables of the problem in (31), and impose the new set of slow
variables:

ξ1 = Π3

ξ2 = Π2
1 + Π2

2

ξ3 = ϕ̇

ξ4 = θ̇

ξ5 = ψ̇.

(37)

We use the procedure in Algorithm 4 and find the approximate solution of the
new set of slow variables. The parameters M , g, l, I and the initial values Π0

and Γ0 are the same as in the previous section. Figure 17 shows the solution with
T = 0.01, H = T/60, h = 10−6 and η = 300h = 3 · 10−5. Note that the HMM
solver needs an microintegration interval of length 300h to get an accurate solution
when using the new set of slow variables. In addition, the solution is more sensitive
to the step size h, which needs to be of order 10−7 to achieve good results.

This choice of slow variables is demanding more computational effort in the
evaluation than with the previous choice of slow variables (32). But we know that
when the maximum set of slow variables (d − 1 is the maximum set of slow vari-
ables, where d is the dimension of our original variables in (31)) are approximated
accurately, then any other slow variable is automatically approximated. Thus, we
rather approximate the solution of (ϕ̇, θ̇, ψ̇), and (ϕ, θ, ψ), by using the first choice
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of slow variables in (32), leading to a reduced number of computational operations
[2], [10].

Figure 18 shows the evolution of θ, the inclination form the z-axis, as a function
of ϕ, the azimuth, for ω = 103, 104 and 105. Note the different behavior of the
inclination, the nutation is increasing as ω increases. The precession gets smaller
as ω increases, causing a slowly changing azimuth.

We remark that this is only an alternative way to approximate the Euler angles.
The solution of these variables can be obtained more efficiently by the differential
equation originating from the Euler-Lagrange equations in (26).
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Figure 19: The solution of the spinning top subjected to an external force a(t) =
ω cos(ωt) for ω = 103.

6 Vibrational Forces on the spinning top
We want to extend the equations in (31) by adding an external force to the top.
We let the force be time-dependent and directed in a direction perpendicular to
the vertical axis of the top, making the motion unstable as we spin the top. This
can be described by changing the differential equations for the angular momenta
in (31) to

Π̇1 = I2 − I3

I2I3
Π2Π3 +MglΓ2 + a(t),

Π̇2 = I3 − I1

I1I3
Π1Π3 −MglΓ1,

Π̇3 = 0, (38)

where Γ̇ remains as in (31). The force is described by a(t) and is only affecting
the derivative of Π1, thus the force will be directed perpendicular to the vertical
axis of the top.

The stable solution of the top is not affected by the external force unless the
force is sufficiently large. To test this, we let a(t) be a small oscillating force and
solve the system in (38) using ODE45 with ω = 103 (we use the initial conditions
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Figure 20: The HMM approximation (×) of the slow variables for ω = 103 plotted with
the solution of the slow variables obtained by RK4 (gray line) for T = 0.02.

from the previous section). This leads to a solution almost identical to the solution
in Figure 11. In fact, we find that the vibrational force needs to be very large in
order to perturb the stable solution of the top (this has also been tested numerically
by increasing a(t)). The stability of the top can however be overcome if we let

a(t) = ωcos(ωt), (39)

which leads to leads to a significant change to the solution of (38). Figure 19
shows the approximated solution of Π and Γ for ω = 103 with the updated system
in (38) using Matlab’s ODE45. We observe that the solution of Π1, Π2, Γ1 and Γ2
oscillate fast, but the solution of Π2 seems to exhibit slowly varying constituents
in addition to the fast oscillating behavior.

Slow Variables. The impact of the force a(t) in (39) leads to a disturbed solu-
tion of the spinning top. In Figure 19 we observed an underlying slowly changing
nature of Π2 and we would expect that the system in (38) exhibits some slow
behavior.

The choice of slow variables from the previous section ((32) and (37)) are not
slow constituents of the new system in (38), and we need to define a new set of
slow variables by considering the effect of the external force. A new set of slow
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Figure 21: The long time HMM approximation of ξ2 and ξ3 for ω = 103.

variables can be found by analyzing the equations of motions (38) and finding
the slow constituents numerically. We find the following set of slowly changing
variables:

ξ1 = Π3

ξ2 = Π1 − sin(ωt)
ξ3 = Π2 + cos(ωt)
ξ4 = Γ2

1 + Γ2
2

ξ5 = θ = cos−1(Γ3). (40)

We applied Algorithm 4 and found the numerical approximation of the slow vari-
ables using HMM. Figure 20 shows the solution with T = 0.02, H = T/300,
h = 10−7 and η = 5h. The HMM solution is compared to the numerical solu-
tion found by using RK4 with step size 10−7 as Matlab’s ODE45 failed to give
accurate solutions of the variable ξ4 (even with the error tolerance set to 10−17).
The solution of the slow variables ξ2 and ξ3 using HMM seems to be very good
approximations (this is also illustrated in Figure 21), but the inclination θ and
ξ4 = Γ2

1 + Γ2
2 are not approximated accurately. This error is not overcome as we

increase η, or decrease h and H. We remark that this error is of order 10−4, and
may be a result of the aggregated error from the microsimulation and estimation
of the force F (ξ).

Despite the error in the solution of ξ4 and ξ5, the variables ξ2 and ξ3 are
approximated very well. Figure 21 shows the long time solution of the HMM
approximation, compared to the solution using ODE45 (the evaluation of ξ2 and
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ξ3 using RK4 takes too long with ω = 103). With T = 0.1, H = T/1500, h = 10−7

and η = 5h, the HMM only requires a total of 104 steps to get an accurate solution
of ξ4 and ξ5. Solving the system with RK4 is computationally demanding as we
need a step size of order 10−7, leading to a total of 106 operations to evaluate the
solution for the time T = 0.1.
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7 Averaged Equations of the Spinning Top
Subjected to Vertical Vibration

We shall consider the slowly spinning top with initial spin Π3 = 10Π̂3. This means
that the top is no longer prevented from falling down. We learned from section 2.4
that the inverted pendulum is stabilized as we expose the pendulum to a highly
oscillatory vertical vibration. Thus, we would intuitively expect the same behavior
as we apply a similar kind of force on the spinning top.

The vibrating force results in the following equations of the spinning top:

Π̇ = Π×Ω +M(g + a(t))lΓ× χ
Γ̇ = Γ×Ω, (41)

where a(t) = Aω cos(ωt). This system exhibit a solution that is a superposition
of a slowly varying solution, also called the averaged solution, and rapid oscillations
of frequency ω (see Figure 22 and 23). The solution of Π has fast oscillations
with amplitudes of order 1, while the solutions of Γ has amplitudes of order ω−1.
Inspired by the analysis done by Sanz-Serna in [4], we want to present the spinning
top equations influenced by an external force, as an averaged equation.

For further analysis, we consider the spinning top equations (41) written in the
format

π̇ = f1(π,γ) + h(γ)ωeiωt + cc
γ̇ = f2(π,γ)

(42)

where π and γ are the exact solutions. The notion cc means the "complex conju-
gate of the preceding term".

The corresponding modulated Fourier expansion of (42) is given as

π(t) = Π(t) +
∑

0<|k|<N
eikωtz(k)(t),

γ(t) = Γ(t) +
∑

0<|k|<N
eikωtx(k)(t),

(43)

where Π and Γ are averaged variables of order 1. The coefficients z(k) and x(k) are
called the modulation functions and are, in contrast to standard Fourier expansion,
time-dependent. An important property of Π, Γ and the modulation functions are
the fact that they, along with all their derivatives, are bounded independently of
ω. Moreover, the modulation functions are determined to be z(k) = O(ω−k+1) and
x(k) = O(ω−k), for |k| = 1, 2, . . .. (This can be verified by observing the behavior
of the solution in Figure 23 and by examination of the expression in (42)). This
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Figure 22: The solution of the averaged system in (48) (red line) plotted with the exact
solution (blue line) for ω = 102, A = 10.

concludes that the only oscillating terms in the Fourier expansions (43) are the
exponential functions eikωt, |k| = 1, 2, . . ..

The first terms of the modulated Fourier expansion (43) are

π(t) = Π(t) + z(1)(t)eikωt + cc + z(2)(t)eikωt + cc + · · · ,
γ(t) = Γ(t) + x(1)(t)eikωt + cc + x(2)(t)eikωt + cc + · · · .

(44)

In order to find an averaged solution of (44) we need to derive the differential
equation for the averaged variables Π and Γ. This can be done by recursively
determine the modulation functions of the modulated Fourier expansion (43). As
in the analyzis of Sanz-Serna, [4], we do this step-by-step, starting with the coef-
ficients z(1) and x(1), respectively of order 1 and ω−1.

First step. We compare the ansatz in (44) to the first equation in (42) and
get

iωz(1)eiωt = h(Γ)ωeiωt +O(1).
Thus, the first modulation function may be written as

z(1) = ia

−Γ2
Γ1
0

+O(ω−1), (45)

where a is the constant MAl/2. This shows that the components with frequency
ω and amplitude O(1) of the angular momentum π is dependent on the variation
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Figure 23: The solution of the averaged system in (48) (red line) plotted with the exact
solution (blue line) for ω = 103, A = 10.

of Γ1 and Γ2.

Second step. We now use (45) in the second equation of (42), which gives

Γ̇ + iωx(1)eiωt = f2(π,γ) +O(ω−1)
= f2(Π + z(1)eikωt + cc,Γ) +O(ω−1).

By equating the terms involving eiωt, the leading order equations for x(1) reads

x(1) = ω−1a

 −Γ1Γ3/I2
−Γ2Γ3/I1

Γ2
1/I2 − Γ2

2/I1

+O(ω−2). (46)

Thus the components with frequency ω of Γ, are only dependent on Γ itself. We
have now obtained an O(ω−1) estimate of π, and an O(ω−2) estimate of γ, leading
us to the new misson; finding the O(ω−1) components of π.

Third step. In order to find the modulated Fourier expansion up to order ω−2,
we proceed by again considering the first equation in (42). By substitution of the
ansatz (44), applying the modulation functions (45) and (46), we get

f1(π,γ) + h(γ)ωeiωt + cc = f1(Π + z(1)eikωt + cc,Γ + x(1)eikωt + cc) +O(ω−1).
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This should now be compared to the ansatz

Π̇ + iωz(1)eiωt + cc + z′(1)
eiωt + cc+ 2iωz(2)ei2ωt +O(ω−1),

which leads us to an O(ω−2) estimate of the solutions of (42),

π = Π +

−iaΓ2 + ω−1a(Γ1Π3/I3 − Γ3Π1/I1)
iaΓ1 + ω−1a(Γ2Π3/I3 − Γ3Π2/I2)

0

 eiωt + cc

+


i
2ω
−1a2Γ2Γ3/I1

i
2ω
−1a2Γ1Γ3/I2

0

 e2iωt + cc +O(ω−2)

γ = Γ +

 −ω−1aΓ1Γ3/I2
−ω−1aΓ2Γ3/I1)

ω−1a(Γ2
1/I2 − Γ2

2/I1)

 eiωt + cc +O(ω−2).

(47)

This process may be repeated in order to find the modulation functions up to any
desired order of ω−1. Further calculations of the modulation functions will not
be pursued here, but we will rather use these calculations to find the differential
equations for the slowly varying averaged variables Π and Γ.

Averaged differential equations. We now have enough information about the
modulation functions to derive an averaged equation of the system in (42). This
is done by equating the ansatz (47) to the first equation in (44), and then retain
only the non-oscillatory terms of the derivatives dπ/dt and dγ/dt, i.e:

π̇ = f1(Π,Γ) +

−2a2(Γ2Γ3/I1)
2a2(Γ1Γ3/I2)

0

+ (· · · )eiωt + cc + (· · · )e2iωt + cc + · · ·

γ̇ = f2(Π,Γ) + (· · · )eiωt + cc + (· · · )e2iωt + cc + · · · .
This expression of π̇ is compared to the expansion in (44), which determines the
average equations at leading order to be

Π̇ = f1(Π,Γ) +

−2a2(Γ2Γ3/I1)
2a2(Γ1Γ3/I2)

0

+O(ω−2)

Γ̇ = f2(Π,Γ) +O(ω−2).
By insertion of the constant a from equation (42), we get

Π̇ = Γ× I−1Π + MglΓ× χ +

−MA/2(Γ2Γ3/I1)
MA/2(Γ1Γ3/I2)

0

+O(ω−2)

Γ̇ = Γ× I−1Π + O(ω−2).

(48)
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Figure 22 and 22 shows the solution for the averaged system with ω = 102 and
ω = 103. The initial values were Γ0 = (0, sin(0.2), cos(0.2))T , Π0 = (0, 0, 10Π̂3)T .
The parameters used in the evaluation was M = 5, I = (3.12, 3.12, 0.24) and
l = 0.74.
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8 Conclusions
We have studied the properties of the heterogeneous multiscale method for stiff
ordinary differential equations. HMM allows us to move between the macroscopic
and microscopic models, and to take advantage of scale separation in problems
for improving efficiency. The main idea is to integrate an averaged equation for
slow constituents of the problem, eliminating the need of a full solution on the
fine scale grid. In this way HMM is able to use larger time steps and reduce the
computational complexity compared to standard solvers.

We found however, that a relation between the micro and macro-variables needs
to be established, for instance in the inverted pendulum example. The algorithm
proposed in [2] bypasses the problem of relating the microscopic variables to the
macroscopic variables by utilizing a set of slow variables.

HMM was successfully applied to the fast spinning top by extracting the slow
constituents of the system. It turned out that the top had a slowly varying nature
in addition to its highly oscillatory components. Even though this slow behavior
was dependent on the fast spin ω, the HMM approximated the solution efficiently
compared to standard solvers. The macroscale behavior was captured well by the
HMM and the method showed a significant gain in computational complexity.

For the problems investigated here, the HMM correctly approximates variables
that are slow with respect to the systems dynamics. However, the method requires
us to define a set of slow variables, and that these are the variables we want to
approximate. The fast varying variables are not approximated in the evaluation.

Finally, we found an averaged equation of the spinning top subjected to a ver-
tical force. The averaged equation was found by an analysis using the Modulated
Fourier expansion, and approximated the averaged behavior accurately.
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