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Abstract

In recent years, stochastic partial differential equations (SPDEs) have been shown
to provide a useful way of specifying some classes of Gaussian random fields.
The use of an SPDE allows for the construction of a Gaussian Markov random
field (GMRF) approximation, which has very good computational properties, of
the solution. In this thesis this kind of construction is considered for a specific
spatial SPDE with non-constant coefficients, a form of diffusion equation driven
by Gaussian white noise.

The GMRF approximation is derived from the SPDE by a finite volume
method. The diffusion matrix in the SPDE provides a way of controlling the
covariance structure of the resulting GMRF. By using different diffusion matri-
ces, it is possible to construct simple homogeneous isotropic and anisotropic fields
and more interesting inhomogeneous fields.

Moreover, it is possible to introduce random parameters in the coefficients of
the SPDE and consider the parameters to be part of a hierarchical model. In
this way one can devise a Bayesian inference scheme for the estimation of the
parameters. In this thesis two different parametrizations of the diffusion matrix
and corresponding parameter estimations are considered.

The results show that the use of an SPDE with non-constant coefficients
provides a useful way of creating inhomogeneous spatial GMRFs.
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Chapter 1

Introduction

The construction of spatial models based on Gaussian Markov random fields di-
rectly from the conditional distributions can be an effective tool, but is not always
easy to achieve. When constructing spatial models, one often wants to introduce
parameters and hyperparameters which control the local or global behaviour in
some way. This can be a difficult task since the conditional distributions must
give valid joint distributions for all legal parameter choices. A second problem is
that the model should be consistent in the sense that when the distances between
the positions decrease, the model should approach some continuous model.

Lindgren and Rue (2008) demonstrated that by specifying second-order ran-
dom walk as the solution of a stochastic differential equation and approximating
the solution with a Gaussian Markov random field, one gets a spatially consis-
tent model for second-order random walk. This type of construction was later
extended to the very useful class of Matérn fields in Lindgren et al. (2011). This
showed that the combination of stochastic differential equations and Gaussian
Markov random fields could be a useful tool for creating consistent models.

In this thesis this kind of construction is done for a stochastic differential
equation with non-constant coefficients. The goal is to introduce parameters
in the coefficients of the stochastic differential equation and to study how the
Gaussian Markov random field approximation can be used to do inference on
these parameters.

The thesis starts with basic theory on Gaussian Markov random fields and
stochastic differential equations in Chapter 2. The chapter serves as a short
introduction to each of the concepts and contains definitions and results that are
needed in the later chapters.

Chapter 3 covers the actual construction of the Gaussian Markov random field
approximation. This includes the discretization by a finite volume method and
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2 CHAPTER 1. INTRODUCTION

the resulting precision matrix. The chapter ends with some examples of homo-
geneous and inhomogeneous random fields constructed with the approximation.

In Chapter 4 the Gaussian Markov random field from Chapter 3 is used to
construct an inference scheme for parameters in the coefficients of the stochastic
differential equation. In addition, different parametrizations of the coefficients of
the stochastic differential equation are discussed and the corresponding results
are shown.

The thesis ends with discussion of the results and the relevance for spatial
modelling in Chapter 5 and conclusions and some remarks on possible further
work in Chapter 6.



Chapter 2

Theory

This chapter introduces the two fundamental theoretical parts on which the rest of
the chapters depend, the stochastic differential equations used to model Gaussian
fields and the Gaussian Markov random fields used to do computations with the
models.

2.1 Gaussian Markov random fields

2.1.1 Definition
A Gaussian Markov random field can be seen as a way of emphasizing the condi-
tional independence structure of a Gaussian random field on a finite set of points.
Gaussian random fields are usually defined through their finite dimensional dis-
tributions.

Definition 2.1.1 (Gaussian random field (GRF)). Let D ⊂ Rn, then the random
field {x(t) : t ∈ D} is said to be a Gaussian random field if for all m ∈ N for all
choices of points t1, . . . , tm ∈ D, (x(t1), . . . , x(tm)) has a multivariate Gaussian
distribution.

From this definition one can see that the defining property of a GRF is that
all finite dimensional distributions of the field are multivariate Gaussian. For a
Gaussian field on a finite set, this means that the joint distribution of all the
variables is a multivariate Gaussian distribution. This distribution can be char-
acterized by its mean µ and its covariance matrix Σ. However, in the setting of
Gaussian Markov random fields, the precision matrix Q = Σ−1 is a more useful
matrix than the covariance matrix. The reason for this is that the off-diagonal
elements of the precision matrix characterizes the conditional dependence prop-
erties of the distribution.

3



4 CHAPTER 2. THEORY

Theorem 2.1.1 (Conditional independence and the precision matrix). Let the
set V = {1, 2, . . . , n} and let x be a Gaussian field on V with mean µ and precision
matrix Q > 0. Then for i 6= j, x(i)|{x(k) : k ∈ V − {i, j}} is independent of
x(j)|{x(k) : k ∈ V − {i, j}} if and only if Qi,j = 0.

Proof. Can be found in Rue and Held (2005, Theorem 2.2).

Loosely speaking, a Gaussian Markov random field is a multivariate Gaussian
distribution that satisfy a certain conditional independence structure. To make
this more rigorous the concept of a graph is needed. For the purpose of this
thesis all graphs are finite and unordered unless otherwise specified, and a graph
is defined to have these properties. Since the graph is finite, its vertices can
without loss of generality be numbered from 1 to n, where n is the number of
vertices.

Definition 2.1.2 (Graph). A graph is an ordered pair G = (V, E) comprising a
finite set V of vertices and a set E of edges, where E is a set of unordered pairs
of elements of V. If V = {1, 2, . . . , n}, the graph is called a labelled graph.

Visually, one can think of this kind of graph as a set of n points with a line
between two points, i and j, if and only if {i, j} ∈ E . Let x have a multivariate
Gaussian distribution with mean µ and precision matrix Q. Then one can define
a conditional independence structure on x from a graph by demanding xi and
xj conditionally independent if and only if there is no edge between vertex i and
vertex j. Theorem 2.1.1 shows that this condition can be specified through the
non-zero elements of Q.

Definition 2.1.3 (Gaussian Markov random field (GMRF)). A random vector
x ∈ Rn is called a Gaussian Markov random field with respect to a labelled graph
G = (V, E) with mean µ and precision matrix Q > 0, if and only if its probability
density is of the form

π(x) =
1

(2π)n/2
|Q|1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
, (2.1)

and for all i 6= j, Qi,j 6= 0 if and only if {i, j} ∈ E .

Since it is cumbersome to always talk about the graph and the graph can be
directly inferred from the non-zero elements of the precision matrix, the graph is
suppressed in the notation unless it is explicitly needed.

Note that Definition 2.1.3 only allows Q > 0, which is the requirement for
a proper distribution. It is useful to also allow positive semi-definite matrices,
which are not positive definite. This gives improper distributions for which the
probability density function in Equation (2.1) is not applicable. The problem is
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that there are certain linear combinations of the variables that have unbounded
variance. This means that it is not meaningful to sample from the distribution
unless one conditions on that the linear combinations with unbounded variance
have some fixed values. This is not a problem if the distribution is part of some
model in which the final distributions become proper when conditioned on the
observations.

From the definition of GMRFs one can show that a GMRF satisfies certain
Markov properties. The first one is used explicitly in the definition of a GMRF,
namely the pairwise Markov property. There are two other types of Markov
properties that are also useful. The following theorem from Rue and Held (2005,
Theorem 2.4) shows that they are equivalent for a GMRF.

Theorem 2.1.2 (Markov properties of a GMRF). Let x be a GMRF with respect
to the graph G = (V, E) and let ne(i) denote the set of neighbours of i. In addition,
use the notation xA = {xi : i ∈ A} and x−A = {xi : i ∈ V −A} for A ⊂ V. Then
the following are equivalent.

(i) The pairwise Markov property:
xi|x−{i,j} is independent of xj |x−{i,j} if {i, j} ∈ E and i 6= j.

(ii) The local Markov property:
xi|xne(i) is independent of x−{i,ne(i)}|xne(i) for all i ∈ V.

(iii) The global Markov property:
xA|xC is independent of xB |xC for all pairwise disjoint sets A,B,C ⊂ V,
where C separates A and B, and A and B are non-empty.

These Markov properties show that the graph gives a useful way of visualizing
the conditional dependencies in the GMRF. These properties do not require the
knowledge of the actual values of the elements of the precision matrix, only the
knowledge of which elements are non-zero, i.e. the graph of the GMRF. Figure 2.1
illustrates each of the Markov properties in Theorem 2.1.2.

2.1.2 Numerical benefits

The main reason that GMRFs are used in this thesis is that the problems con-
sidered result in spatial GMRFs with each variable only conditionally dependent
on the variables closest to itself. This in turn means that the precision matrix is
very sparse, and in comparison the covariance matrix is (typically) dense. The
sparseness of the precision matrix can be exploited to do both simulations from
the GMRF and calculations of the probability density much faster than based on
the dense covariance matrix. Additionally, it also requires less memory to store
a sparse matrix than a dense matrix.
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(a) Pairwise Markov property. (b) Local Markov property.

(c) Global Markov property.

Figure 2.1: Illustration of different Markov properties. (a) The two grey nodes
have no direct edge and are independent given the black nodes. (b) The grey
node and the white nodes are independent given the neighbours of the grey node
(the black nodes). (c) The two collections of grey nodes are independent given
the black nodes which separate them.
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One general way to do a simulation from a GMRF is to first calculate the
Cholesky decomposition of the precision matrix, and then use the Cholesky factor
to transform a standard multivariate Gaussian variable into the correct distribu-
tion. Theorem 2.1.3 shows that a simulation can be found by solving a lower
triangular linear system of equations. The proof of the theorem is omitted, but
only requires that one verifies that the mean and the covariance are correct.

Theorem 2.1.3 (Simulation). Let x be a GMRF with mean µ and precision
matrix Q > 0, and let L be the Cholesky factor of Q. Then

LT(x− µ) ∼ N (0, I).

This means that the complexity of finding the Cholesky factor and the com-
plexity of solving the linear system determine the total complexity of doing a
simulation. The Cholesky decomposition is the most expensive of these two,
and the more efficiently one can do this step, the more efficiently one can do
simulations. If the precision matrix is dense, the complexity of the Cholesky
decomposition is O(n3), where n is the dimension of the distribution. This is
also the general complexity when using a dense covariance matrix. This becomes
very expensive for the type of dimensions that is used in this thesis, therefore one
should rather take advantage of the sparseness of the precision matrix. A second
point is that the space complexity for dealing with a dense matrix is O(n2), which
may be larger than the available memory on the computer for the size of n that
is needed.

A very nice property of the Cholesky decomposition is that the Cholesky factor
usually is sparse if the original matrix is sparse. In fact, if a matrix is banded,
then the Cholesky factor is banded with the same (lower) bandwidth. Further,
one can also make statements in the case that the matrix is sparse, but not
banded. See Rue and Held (2005, Section 2.4) for details. The important point is
that one can implement algorithms that are faster than for dense matrices. For
the spatial GMRFs the computational complexity is typically O(n3/2), which is
a significant gain from the dense matrices.

One point that should be noted is that when working with precision matrices,
one no longer has the marginal properties of the distribution directly available as
for the covariance matrices. Thus computations are required to find, for example,
marginal variances. It turns out that one can take advantage of the sparseness
of the precision matrix also in this case. See Gelfand et al. (2010, Chapter 12)
for further details.

Note that the implementation of Cholesky factorization of sparse matrices is
a well known problem in numerics and that there exist libraries that do this. The
same is true for sparse matrix operations such as addition and multiplication.
The calculation of the marginal variances as presented in Gelfand et al. (2010,
Chapter 12), however, has to be implemented.
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2.2 Stochastic differential equations

2.2.1 Preliminaries

To talk about stochastic differential equations, it is necessary to introduce the
concepts of stochastic processes and the calculus associated with these processes.
In addition, the concept of a generalized stochastic process is briefly mentioned
due to the very important generalized stochastic process called white noise. This
is not an extensive introduction and most of the details are skipped. Since only
Gaussian processes are needed in the thesis, this discussion is limited to these.
Additionally, only real-valued stochastic processes are considered.

A Gaussian stochastic process is simply another name for a Gaussian random
field. However, for the calculus setting that is considered here, the random field
has to be indexed by a set on which it is meaningful to do calculus. Without
dwelling on what this actually means, it can be sets like Rn or [0, 1]n, for some
n > 0. In short, things that it is possible to do calculus on for deterministic
functions.

If one ignores the sample path properties of a Gaussian stochastic process, it
is uniquely defined by the mean value of the Gaussian variable at each position
and the covariance between any pair of Gaussian variables.

Definition 2.2.1 (Covariance and mean value functions). Let {u(t) : t ∈ E} be
a Gaussian stochastic process, then the function c : E × E → R defined by

c(t, s) = Cov[u(t), u(s)]

is called the covariance function of the process and the function m : E → R
defined by

m(t) = E[u(t)]

is called the mean value function of the process.

Since these functions define all mean values and covariances, they uniquely
define all finite dimensional distributions of the Gaussian stochastic process. If
the domain of the stochastic process is obvious from the context, the stochastic
process {u(t) : t ∈ E} is simply called the stochastic process u.

It is possible to introduce different types of calculi, for example, from sample
path properties or from quadratic mean properties. As mentioned above, the
sample path properties of a Gaussian stochastic process is not determined by
the finite dimensional distributions. In particular, one can construct a Gaussian
stochastic process with continuous sample paths and one with discontinuous sam-
ple paths, but both with the same covariance function and mean value function.
Loosely speaking, one can call these processes different versions of each other and
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always “select” the one with continuous sample paths if it exists. For example,
when a Wiener process is used, it is always the continuous version.

However, as the quadratic mean version of integration and differentiation is
used in what follows, this is not a big concern. Differentiation can be defined as
for deterministic functions, only using a different sense of convergence.

Definition 2.2.2 (Quadratic mean derivative). Let {u(t) : t = (t1, · · · , tn) ∈
Rn} be a Gaussian stochastic process. Then the Gaussian stochastic process
{yi(t) : t ∈ Rn} is a quadratic mean derivative of u with respect to ti if

yi(t) = lim
h→0

u(t+ hei)− u(t)

h
, ∀ti ∈ R,

where ei is the vector with 1 at position i and 0 at all other positions and the
limit is taken in quadratic mean.

The covariance functions and the mean value functions of the resulting Gaus-
sian fields can easily be calculated. The mean value functions of the deriva-
tives are simply the corresponding derivatives of the mean value function of
the stochastic process. For the covariance functions and cross-covariance func-
tions see Abrahamsen (1997, p. 22) for references. The results in Abrahamsen
(1997, p. 22) can be summarized in a theorem.

Theorem 2.2.1 (Covariance and cross-covariance of derivatives). Let {u(t) : t =
(t1, · · · , tn) ∈ Rn} be a Gaussian stochastic process with covariance function c.
Then the following hold

(i)

Cov

[
u(t),

∂u

∂si
(s)

]
=

∂c

∂si
(t, s), i = 1, . . . , n.

(ii)

Cov

[
∂u

∂ti
(t),

∂u

∂sj
(s)

]
=

∂2c

∂ti∂sj
(t, s), i, j = 1, . . . , n.

This theorem indicates that there is going to be a problem if the covariance
function is not sufficiently differentiable, because the covariance function as de-
fined in the theorem fails to exist. It can in fact be shown that a process, with
mean 0, is quadratic mean differentiable if and only if the covariance function is
sufficiently differentiable. See Abrahamsen (1997, Theorem 2.4). It is not stated
as a theorem here, as it is also meaningful to consider derivatives that are not
regular stochastic processes.

The next part of quadratic mean calculus that is needed is integration. There
exist more advanced types of constructions of integrals and there are some re-
marks about this in Section 2.2.5, but the type of integrals that are needed can be
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constructed in the same way as for deterministic integrals. Assume for simplicity
that the mean value functions of the processes are 0.

Let u be a stochastic process on Rn and let A ⊂ Rn, then integrals such as∫
A

g(t)u(t) dt,

where g and the covariance function of u satisfy certain conditions, can be eval-
uated as usual Riemann integrals.

Theorem 2.2.2 (Quadratic mean integration). Let {u(t) : t ∈ E ⊂ Rn}, where
E = [0, A1]×· · ·×[0, An] for positive constants A1, . . . , An, be a Gaussian stochas-
tic process with covariance function c and mean 0. Then if c is continuous and
g : E → R is such that

Q1 =

∫
E

∫
E

g(t)g(s)c(t, s) dtds <∞, (2.2)

then the integral

J1 =

∫
E

g(t)x(t) dt

exists as a quadratic mean limit of the usual construction of the Riemann integral
for deterministic functions and

J1 ∼ N (0, Q1).

Proof. A partition of E can be constructed from a partition of each interval [0, Ai]
into Pi by taking

P = {I1 × · · · × In : I1 ∈ P1, . . . , In ∈ Pn}.

Based on this partition one gets a sum

J =
∑
α∈P

g(tα)x(tα)M(α),

where tα is any point in α and M(α) is the volume of α. To show convergence
of J1 in quadratic mean, one must show that for any sequence of partitions
{P(i)}∞i=1 where the diameter of the largest element tends to zero and for any
choice of points tiα in the elements of the partitions, the quadratic mean limits
of the resulting sums tend to the same random variable.

Take any such sequence {P(i)}∞i=1 and any choice of points in the elements of
the partitions and write the corresponding sums as

J (i) =
∑

α∈P(i)

g(tiα)x(tiα)M(α), i = 1, 2, . . . .
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From the Loève criterion this sequence converges to some random variable in
quadratic mean if and only if E[J (m)J (n)] converges to some finite limit. Writing
out the expression for the expected value gives

E[J (m)J (n)] = E

 ∑
α∈P(m)

∑
β∈P(n)

g(tmα )g(tnβ)u(tmα )u(tnβ)M(α)M(β)


=

∑
α∈P(m)

∑
β∈P(n)

g(tmα )g(tnβ)c(tmα , t
n
β)M(α)M(β).

(2.3)

But this sequence is approximating the integral in Equation (2.2) and since the
partition size tends to 0 when n and m tends to infinity, this must converge to
Q1. Thus J (n) converges to some random variable for any sequence of partitions
when n tends to infinity.

Put m = n in Equation (2.3) and again this sum converges to Q1, but it must
also converge to the variance of J1. This means that

J1 ∼ N (0, Q1).

This means that these type of integrals can be evaluated by the deterministic
integral in Equation (2.2). This theorem used a box set for the integration, but
can be extended to more general sets.

2.2.2 Gaussian white noise
The theory in the previous section defines differentiation for Gaussian stochas-
tic processes which have covariance functions that are sufficiently differentiable.
But it is desirable to extend what is meant by differentiation to also allow for
differentiation of processes that do not have derivatives in the usual sense.

The perhaps most important example is the standard Wiener process, W , on
R. It has almost surely unbounded variation on any interval and is almost surely
nowhere differentiable. But it is still desirable to give meaning to something like∫ b

a

f(t)
dW

dt
(t) dt,

where a < b and f is a deterministic function. It is useful to give it an inter-
pretation as a weak derivative. In the case of the standard Wiener process, the
derivative can be interpreted through a Riemann-Stieltjes integral∫ b

a

f(t)
dW

dt
(t) dt =

∫ b

a

f(t) dW (t), (2.4)
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which is meaningful in quadratic mean sense even though W is (almost surely)
not of bounded variation. Thus one can think of the derivative of the Wiener
process as a distribution valued stochastic processes even though the process is
not differentiable in the usual sense. These type of stochastic processes are called
generalized stochastic processes.

The most important generalized stochastic process is the white noise process.
It can not be defined through its finite dimensional distributions, as the point-
wise evaluations needed to define these are not meaningful. It is necessary to
describe its effect on sets, specifically sets which have a meaningful measure of
“size”. Adler and Taylor (2007, Theorem 1.4.3) shows that the following defines
a valid stochastic process.

Definition 2.2.3 (Gaussian white noise). Let (E, E , ν) be a σ-finite measure
space and let Tν denote the family of sets of E of finite ν-measure. Then a
Gaussian white noise based on ν is a random field W : Tν → R such that for all
A,B ∈ Tν ,

(i) W(A) ∼ N (0, ν(A)),

(ii) A ∩B = ∅ implies that W(A ∪B) =W(A) +W(B),

(iii) A ∩B = ∅ implies that W(A) and W(B) are independent.

A simple example of this construction is to let E = Rn, for some n > 0, E
be the Borel σ-algebra on Rn and ν be the Lebesgue measure on Rn. This gives
what is called a standard Gaussian white noise process on Rn. Note that the set
E does not have to be Euclidean and can be something like a sphere or a torus
and ν an appropriate measure of the area of a set on the sphere or the torus.

Let W be a standard Gaussian white noise process on Rn for some n > 0.
ThenW can be considered as a form of random measure and one can give meaning
to expressions such as ∫

A

f(s)W(s) ds,

where f satisfies certain conditions. In this expressionW is written as a function
of position in the same manner as a Dirac delta function is written as a function of
position even though it is a generalized function. One can show that the following
theorem is true, but the proof is not given here.

Theorem 2.2.3. Let W be a standard Gaussian white noise process on Rn, for
some n > 0, and let L2(Rn) be the set of Lebesgue square-integrable functions
from Rn to R. Then the following holds for all f, g ∈ L2(Rn).

(i)
∫
Rn

f(s)W(s) ds has a Gaussian distribution.
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(ii) E

[∫
Rn

f(s)W(s) ds

]
= 0.

(iii) E

[(∫
Rn

f(s)W(s) ds

)
·
(∫

Rn

g(s)W(s) ds

)]
=

∫
Rn

f(s)g(s) ds.

Both this theorem and Definition 2.2.3 give the properties needed for the
finite volume method approximation used in the next chapter. Namely, that for
a Lebesgue measurable subset A of Rn, for some n > 0,∫

A

W(s) ds ∼ N (0, |A|)

and that for two disjoint Lebesgue measurable subsets A and B of Rn the integral
over A and the integral over B are independent. In the remaining chapters the
statement that the sets are Lebesgue measurable is dropped, because there is no
need to consider sets which fail to fulfil this condition.

One can show that the use of the derivative of the standard Wiener process
as in Equation (2.4) has the same properties as a standard Gaussian white noise
process on R. Therefore, one often says that the derivative of a standard Wiener
process is a standard Gaussian white noise process. Walsh (1986) has more infor-
mation on the connection between Brownian sheets, which are the generalization
of the Wiener process to higher dimensions, and Gaussian white noise.

2.2.3 Definition

A stochastic differential equation, abbreviated SDE, is a differential equation
which involves one or more stochastic processes. The stochastic processes may
also be generalized stochastic processes. Further, the expression stochastic partial
differential equation, abbreviated SPDE, can be used to emphasize that there is
more than one free variable. For the purpose of this thesis only linear SPDEs are
considered. Let u be the stochastic process that the SPDE describes, then it is a
linear SPDE if the left hand side is linear in u and its derivatives and the right
hand side is a known stochastic process.

Example 2.2.1. A simple example of a linear SPDE for u over R2 is

n∑
k=0

m∑
l=0

Ak,l(x, y)
∂k+l

∂xk∂yl
u(x, y) = v(x, y), (x, y) ∈ R2, (2.5)

where n and m are non-negative integers, Ak,l is a deterministic function for
k = 0, . . . , n and l = 0, . . . ,m and v is a known Gaussian stochastic process.
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It is clear that a solution u of the SPDE in Equation (2.5) should be a stochas-
tic process which makes the left hand side and the right hand side equal, but it
is not clear in what sense they should be equal. Since the derivatives previously
were defined in the quadratic mean sense, the same is done for the equality. If
v is a Gaussian stochastic process, then a solution is a stochastic process u such
that the left hand side and the right hand side have the same mean value function
and covariance function. Note that some of the derivatives may be generalized
stochastic processes.

If v is a generalized stochastic process, the covariance function does not exist in
the usual sense and a different approach must be taken. Since the only generalized
stochastic process that is used on the right hand side in this thesis is a standard
Gaussian white noise process, this is the only one that is considered. Simply
put, in this case a solution is a stochastic process which gives the left hand side
the same properties as a standard Gaussian white noise process. That is the left
hand side should satisfy the properties in Theorem 2.2.3.

2.2.4 Random coefficients

In the previous section the linear SPDEs have deterministic coefficients. This does
not have to be the case. Also SPDEs with random coefficients are encountered
in later chapters. But the randomness can in the specific cases encountered in a
sense be ignored when solving the SPDEs.

Consider the SPDE

f(t, A1, . . . , Ak)u′(t) =W(t), u(0) = 0,

where W is a Gaussian white noise process, f is a deterministic function and
A1, A2, . . . , Ak are random variables independent of the Gaussian white noise
process. Here the fact that the coefficient in front of the u′ term is random does
not impose any difficulties. Because it can be interpreted in the sense that for
each value of the variables A1, A2, . . . , Ak there is a solution which can be found
in the usual sense. And one can say that the resulting joint distribution is the
“solution” of the SPDE. This is the useful way of considering the SPDE for the
inference in Chapter 4.

2.2.5 Further notes

The theory presented in the previous sections did not use any “new” form of cal-
culus. The only thing that was changed in the integration and the differentiation
was the sense in which the limits should hold. For more general integrands this
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is not possible. A simple example is∫ b

a

W (t) dW (t),

where a < b and W is a standard Wiener process. This is a Wiener process
integrated with respect to itself and it is not meaningful to define it as a usual
Riemann-Stieltjes integral. This is because it is not a well defined construction,
the resulting random variable depends on how the sums are constructed. The
problem is that if one creates a partition P = {a = t0 < t1 < · · · < tn = b} and
writes the sum as

n∑
k=1

W (t∗k)(W (tk)−W (tk−1)),

the two choices t∗k = tk−1 and t∗k = (tk−1 + tk)/2 give different results as the size
of the partition tends to zero. These choices are connected with Itō calculus and
Stratonovich integrals, respectively, and more details can be found in Øksendal
(2003).

For SDEs it becomes a problem for equations such as

u(t)− ∂u

∂t
(t) = σ(u(t), t)W(t),

whereW(t) is a standard Gaussian white noise process, in which one of the coeffi-
cients depends on the solution itself. But no equations such as this is encountered
in later chapters. Therefore, there is no further discussion of the problem.
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Chapter 3

Modelling inhomogeneity
through diffusion

The first goal of this chapter is to derive a GMRF approximation for the solution
of the SPDE

κ2(s)u(s)−∇ ·H(s)∇u(s) =W(s), s ∈ [0, A]× [0, B], (3.1)

where A and B are strictly positive constants, κ2 is a scalar function, H is a
2×2 matrix valued function, ∇ =

(
∂
∂x ,

∂
∂y

)
andW is a standard Gaussian white

noise process. In addition, κ2 is assumed to be a continuous, strictly positive
function and H is assumed to be a continuously differentiable function which
gives a positive definite matrix H(s) for all s ∈ [0, A]× [0, B].

Further, periodic boundary conditions are used. This means that opposite
sides of the rectangle [0, A]× [0, B] are identified. The variable loops around the
rectangle in the sense that s+(A, 0) and s+(0, B) are the same point as s. This
means that the space can be viewed as a torus parametrized as the Cartesian
product of two circles, with the distance defined as the square root of the sum of
the squared angular distances. This gives additional requirements for κ2 and H.
The values of κ2 must agree on opposite edges and the values of H and its first
order derivatives must agree on opposite edges.

The second goal of this chapter is to study some of the GMRFs that can be
built by using different choices of functions for H.

17
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3.1 GMRF approximation

3.1.1 Finite volume methods
Finite volume methods are useful for creating discretizations of conservative laws
of the form

∂q

∂t
(x, t) +∇ · F (x, t) = f(x, t),

where ∇· is the spatial divergence operator. This equation relates the change
of q in time to the spatial divergence of the flux F and the sink-/source-term
f . In this thesis there is no time dependence, but the method is still useful
by considering the differential equation to describe a system that has reached a
steady state for a right hand side that does not depend on time.

The main tool in these methods is the use of the divergence theorem∫
E

∇ · F dV =

∮
∂E

F · n dσ, (3.2)

where n is the outer normal vector of the surface ∂E relative to E.
The main idea is to divide the domain of the SPDE in Equation (3.1) into

smaller parts and consider the resulting “flow” between the different parts. A
lengthy treatment of finite volume methods is not given, but a comprehensive
treatment of the method for non-stochastic differential equations can be found
in Eymard et al. (2000).

3.1.2 Discretization scheme
The discretization of the SPDE in Equation (3.1) is done by a finite volume
method. To keep the calculations simple the domain is divided into a regular
grid of rectangular cells. Let there be N cells along the x-coordinate and M cells
along the y-coordinate, then for each cell the sides parallel to the x-axis have
length hx = A/N and the sides parallel to the y-axis have length hy = B/M .
Number the cells by (i, j), where i is the column of the cell (along the x-axis) and
j is the row of the cell (along the y-axis). Call the lowest row 0 and the leftmost
column 0, then cell (i, j) is

Ei,j = [ihx, (i+ 1)hx]× [jhy, (j + 1)hy].

Using this notation the set of cells, I, is given by

I = {Ei,j : i = 0, 1, . . . , N − 1, j = 0, 1, . . . ,M − 1}.

Figure 3.1 shows an illustration of the discretization of [0, A]× [0, B] into the cells
I.
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E0,0 E1,0

E0,1 E1,1

EN−1,0

EN−1,1

E0,M−1 E1,M−1 EN−1,M−1

h
y

2
h
y

B
−
h
y

B
y

xhx 2hx A− hx A

Figure 3.1: Illustration of the division of [0, A]× [0, B] into a regular N ×M grid
of rectangular cells.
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σ
(i,j)
1

σ
(i,j)
2

σ
(i,j)
3

σ
(i,j)
4

si,j
si−1/2,j

si,j+1/2

si+1/2,j

si,j−1/2

Figure 3.2: One cell, Ei,j , of the discretization with faces σ(i,j)
1 , σ(i,j)

2 , σ(i,j)
3 and

σ
(i,j)
4 , centroid si,j and centres of the faces si−1/2,j , si,j−1/2, si+1/2,j and si,j+1/2.

Let si,j denote the centroid of cell Ei,j , then

si,j = ((i+ 1/2)hx, (j + 1/2)hy), (i, j) ∈ {0, . . . , N − 1} × {0, . . . ,M − 1}.

Further, let the expression for si,j also hold for i = −1/2, 1/2, 3/2, . . . , N − 1/2
and j = −1/2, 1/2, 3/2, . . . ,M − 1/2. That is the centres of the faces of the cells.
For cell Ei,j the centres of the faces are si−1/2,j , si,j−1/2, si+1/2,j and si,j+1/2.
Because of the periodic boundary conditions the i-index and the j-index in si,j
are modulo N and modulo M respectively.

Each cell has four faces, two parallel to the x-axis (top and bottom) and two
parallel to the y-axis (left and right). Let the right face, top face, left face and
bottom face of cell Ei,j be denoted σ

(i,j)
1 , σ(i,j)

2 , σ(i,j)
3 and σ

(i,j)
4 respectively.

Further, let σ(Ei,j) be the set of faces of cell Ei,j . Figure 3.2 shows one cell Ei,j
with the centroid and the faces marked on the figure.

In addition, let the value of the function u at the centroid of cell Ei,j be
denoted by ui,j = u(si,j) for all the centroids, and denote the area of Ei,j by Vi,j .
Since the grid is regular, Vi,j ≡ V = hxhy.

To derive the finite volume scheme, begin by integrating Equation (3.1) over
a cell, Ei,j . This gives∫

Ei,j

κ2(s)u(s) dA−
∫
Ei,j

∇ ·H(s)∇u(s) dA =

∫
Ei,j

W(s) dA, (3.3)
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where dA is an area element.
As discussed in Section 2.2.2, the integral on the right hand side is distributed

as a Gaussian variable with mean 0 and variance V for each (i, j). Further, the
integrals are independent, because all Ei,j are disjoint. Thus Equation (3.3) can
be written as∫

Ei,j

κ2(s)u(s) dA−
∫
Ei,j

∇ ·H(s)∇u(s) dA =
√
V zi,j ,

where zi,j is a standard Gaussian variable for all (i, j) and the Gaussian variables
are independent.

By the divergence theorem in Equation (3.2), the second integral on the left
hand side can be turned into an integral over the boundary of the cell. This
results in ∫

Ei,j

κ2(s)u(s) dA−
∮
∂Ei,j

(H(s)∇u(s))Tn(s) dσ =
√
V zi,j , (3.4)

where n is the exterior normal vector of ∂Ei,j with respect to Ei,j and dσ is a line
element. It is useful to divide the integral over the boundary in Equation (3.4)
into integrals over each face∫

Ei,j

κ2(s)u(s)dA−
4∑
l=1

W
(i,j)
l =

√
V zi,j , (3.5)

where W (i,j)
l =

∫
σ
(i,j)
l

(H(s)∇u(s))Tn(s) dσ.
The first integral on the left hand side of Equation (3.5) is approximated by∫

Ei,j

κ2(s)u(s) dA = V κ2i,ju(si,j), (3.6)

where κ2i,j = 1
V

∫
Ei,j

κ2(s) dA. For the purpose of this thesis κ2 is assumed to be
continuous and κ2i,j is approximated by κ2(si,j).

The second part of Equation (3.5) requires the approximation of the surface
integral over each face of a given cell. The values of H are in general not diagonal,
so it is necessary to estimate both components of the gradient on each face of
the cell. For simplicity, it is assumed that the gradient is constant on each face
and that it is identically equal to the value at the centre of the face. On a face
parallel to the y-axis the estimate of the partial derivative with respect to x is
simple since the centroid of each of the cells which share the face have the same
y-coordinate. The problem is the estimate of the partial derivative with respect
to y. The reverse is true for the top and bottom face of the cell.
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It is important to use a scheme which gives the same estimate of the gradient
for a given face no matter which of the two neighbouring cells are chosen. For
the right face of Ei,j , that is σ

(i,j)
1 , the approximation used is

∂

∂y
u(si+1/2,j) ≈

1

hy
(u(si+1/2,j+1/2)− u(si+1/2,j−1/2)),

where the value of u at si+1/2,j+1/2 and si+1/2,j−1/2 are linearly interpolated
from the values at the four closest cells. More precisely, because of the regularity
of the grid the mean of the four closest cells are used. This gives

∂

∂y
u(si+1/2,j) ≈

1

4hy
(ui+1,j+1 + ui,j+1 − ui,j−1 − ui+1,j−1). (3.7)

Note that this formula can be used for the partial derivative with respect to
y on any face parallel to the y-axis, by suitably changing the i and j indices.
The partial derivative with respect to x on a face parallel to the y-axis can be
approximated directly by

∂

∂x
u(si+1/2,j) ≈

1

hx
(ui+1,j − ui,j). (3.8)

In more or less exactly the same way the two components of the gradient on
the top face of cell Ei,j can be approximated by

∂

∂x
u(si,j+1/2) ≈ 1

4hx
(ui+1,j+1 + ui+1,j − ui−1,j − ui−1,j+1) (3.9)

and
∂

∂y
u(si,j+1/2) ≈ 1

hy
(ui,j+1 − ui,j). (3.10)

These approximations can be used on any side parallel to the x-axis by changing
the indices appropriately.

The approximations for the partial derivatives on each face are collected in
Table 3.1. Using this table one can find the approximations needed for the second
part of Equation (3.5). It is helpful to write

W
(i,j)
l =

∫
σ
(i,j)
l

(H(s)∇u(s))Tn(s) dσ =

∫
σ
(i,j)
l

(∇u(s))T(H(s)n(s)) dσ,

where the symmetry of H is used to avoid transposing the matrix. Assuming
that the gradient is identically equal to the value at the centre of the face, one
finds

W
(i,j)
l ≈ (∇u(c

(i,j)
l ))T

∫
σ
(i,j)
l

H(s)n(s) dσ,
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Table 3.1: Finite difference schemes for the partial derivative with respect to x and
y at the different faces of cell Ei,j .

Face ∂
∂xu(s) ∂

∂yu(s)

σ
(i,j)
1

ui+1,j−ui,j

hx

ui,j+1+ui+1,j+1−ui,j−1−ui+1,j−1

4hy

σ
(i,j)
2

ui+1,j+ui+1,j+1−ui−1,j−ui−1,j+1

4hx

ui,j+1−ui,j

hy

σ
(i,j)
3

ui,j−ui−1,j

hx

ui−1,j+1+ui,j+1−ui−1,j−1−ui,j−1

4hy

σ
(i,j)
4

ui+1,j+ui+1,j−1−ui−1,j−1−ui−1,j

4hx

ui,j−ui,j−1

hy

where c(i,j)l is the centre of face σ(i,j)
l .

Since the cells form a regular grid, n is constant on each face. Let H be
approximated by its value at the centre of the face, then

W
(i,j)
l ≈ m(σ

(i,j)
l )(∇u(c

(i,j)
l ))T(H(c

(i,j)
l )n(c

(i,j)
l )), (3.11)

where m(σ
(i,j)
l ) is the length of the face and c(i,j)l is the centre of the face. One

can observe that the length of the face is either hx or hy and that the normal
vector is parallel to the x-axis or the y-axis.

Let

H(s) =

[
H11(s) H12(s)
H21(s) H22(s)

]
,

then using Table 3.1 one finds the approximations

Ŵ
(i,j)
1 =

hy

[
H11(si+1/2,j)

ui+1,j − ui,j
hx

]
+

hy

[
H21(si+1/2,j)

ui,j+1 + ui+1,j+1 − ui,j−1 − ui+1,j−1

4hy

]
,

Ŵ
(i,j)
2 =

hx

[
H12(si,j+1/2)

ui+1,j+1 + ui+1,j − ui−1,j+1 − ui−1,j
4hx

]
+

hx

[
H22(si,j+1/2)

ui,j+1 − ui,j
hy

]
,
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Ŵ
(i,j)
3 =

hy

[
H11(si−1/2,j)

ui−1,j − ui,j
hx

]
+

hy

[
H21(si−1/2,j)

ui,j−1 + ui−1,j−1 − ui−1,j+1 − ui,j+1

4hy

]
and

Ŵ
(i,j)
4 =

hx

[
H12(si,j−1/2)

ui−1,j + ui−1,j−1 − ui+1,j − ui+1,j−1

4hx

]
+

hx

[
H22(si,j−1/2)

ui,j−1 − ui,j
hy

]
.

These approximations can be combined with the approximation in Equation (3.6)
and inserted into Equation (3.5) to give

V κ2i,jui,j −
4∑
l=1

Ŵ
(i,j)
l =

√
V zi,j .

Stacking the variables ui,j row-wise in a vector u, that is first row 0, then row 1
and so on, gives the linear system of equations,

DV Dκ2u−AHu = D
1/2
V z, (3.12)

where DV = V IMN , Dκ2 = diag(κ20,0, . . . , κ
2
N−1,0, κ

2
0,1, . . . , κ

2
N−1,M−1), z is a

standard multivariate Gaussian variable of dimension MN and AH is a matrix
considered more closely in what follows.

The construction of the matrix AH, which depends on the function H, requires
only that one writes out the sum

4∑
l=1

Ŵ
(i,j)
l

and collects the coefficients of the different ua,b terms. This is not difficult, but
requires many lines of equations. Therefore, only the resulting coefficients are
given. Fix (i, j) and consider the equation for cell Ei,j . For convenience, let ip
and in be the column left and right of the current column respectively and let jn
and jp be the row above and below the current row respectively. These rows and
columns are 0-indexed and due to the periodic boundary conditions one has, for
example, that column 0 is to the right of column N − 1. Further, number the
rows and columns of the matrix AH from 0 to MN − 1.
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For row jN + i the coefficient of ui,j itself is given by

(AH)jN+i,jN+i =

− hy
hx

[
H11(si+1/2,j) +H11(si−1/2,j)

]
− hx
hy

[
H22(si,j+1/2) +H22(si,j−1/2)

]
.

The four closest neighbours have coefficients

(AH)jN+i,jN+ip =
hy
hx
H11(si−1/2,j)−

1

4

[
H12(si,j+1/2)−H12(si,j−1/2)

]
,

(AH)jN+i,jN+in =
hy
hx
H11(si+1/2,j) +

1

4

[
H12(si,j+1/2)−H12(si,j−1/2)

]
,

(AH)jN+i,jnN+i =
hx
hy
H22(si,j+1/2) +

1

4

[
H21(si+1/2,j)−H21(si−1/2,j)

]
,

(AH)jN+i,jpN+i =
hx
hy
H22(si,j−1/2)− 1

4

[
H21(si+1/2,j)−H21(si−1/2,j)

]
.

Lastly, the four diagonally closest neighbours have coefficients

(AH)jN+i,jpN+ip = +
1

4

[
H12(si,j−1/2) +H21(si−1/2,j)

]
,

(AH)jN+i,jpN+in = −1

4

[
H12(si,j−1/2) +H21(si+1/2,j)

]
,

(AH)jN+i,jnN+ip = −1

4

[
H12(si,j+1/2) +H21(si−1/2,j)

]
,

(AH)jN+i,jnN+in = +
1

4

[
H12(si,j+1/2) +H21(si+1/2,j)

]
.

The rest of the elements of row jN + i are 0.
Based on Equation (3.12) one can write

z = D
−1/2
V Au, (3.13)

where A = DV Dκ2 −AH. This gives the joint distribution of u,

π(u) ∝ π(z) ∝ exp

(
−1

2
zTz

)
π(u) ∝ exp

(
−1

2
uTATD−1V Au

)
π(u) ∝ exp

(
−1

2
uTQu

)
, (3.14)

where Q = ATD−1V A.
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3.1.3 Appropriate domain size
The SPDE in Equation (3.1) has domain D = [0, A]× [0, B] with periodic bound-
ary conditions. As mentioned in the start of the chapter, the periodic boundary
conditions mean that opposite sides of the rectangular domain are identified with
each other. It is clear that the sizes of the parameters A and B affect the prop-
erties of the solution of the SPDE. To study these effects closer, consider the
SPDE

u(s)−∆u(s) =W(s), s ∈ [0, A]× [0, B], (3.15)

where ∆ is the Laplace operator and W is a standard Gaussian white noise
process, with periodic boundary conditions. Note that the solution of this SPDE
must be homogeneous, which in particular means the same marginal variance
everywhere.

First the marginal variances’ dependency on A and B is considered for the
SPDE in Equation (3.15). By integrating Equation (3.15) over the domain D,
one finds ∫

D
u dA−

∫
D

∆u dA d
=N (0, V1),

where V1 is the area of D. It is clear that the integral of the Laplacian of u over
the full domain must be zero since there can be no net flux into an area with no
boundary. It follows that ∫

D
u dA d

=N (0, V1),

or in other words
1

V1

∫
D
u dA d

=N (0, 1/V1).

Combining this statement with the statement that the marginal variances are the
same at each point, one sees that if the area of the domain becomes small, the
point-wise variances must become large. In fact, they can be made arbitrarily
large by decreasing the area. This shows that the marginal variances do not only
depend on the chosen κ2 and H in the SPDE, but also on A and B.

However, if A and B are so large that the correlation becomes more or less 0
for distances greater than min(A,B)/2, the marginal variances should be approx-
imately the same as for the homogeneous solution of the corresponding SPDE
over R2. For the SPDE in Equation (3.15) this corresponds to the Matérn case
in Lindgren et al. (2011). To see what happens when A and B become small
compared to the correlation range, it is useful to consider the spectra of the so-
lution and the white noise. Since the SPDE in Equation (3.15) has homogeneous
solutions, the spectral representation of homogeneous stochastic processes can be
used. See Adler and Taylor (2007) for details about spectral representations for
homogeneous processes.
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Assume, for simplicity, that A and B are equal, say A = B = T . Since the
solution and the white noise are Gaussian fields on the same box domain with
periodic boundaries, they have discrete spectra with spectral mass at the same
frequencies. The covariance function of the white noise is δ(s), which can be
represented by its Fourier series as the double sum

δ(s) =

∞∑
n,m=−∞

1

T 2
exp(2πi(nx+my)/T ).

From this expression one sees that the white noise on the torus has a spectral
mass function

fW (2πn/T, 2πm/T ) =

{
1
T 2 , n,m ∈ Z,
0, otherwise.

In addition, the SPDE in Equation (3.15) has a (spectral) transfer function

g(wx, wy) =
1

1 + w2
x + w2

y

. (3.16)

By combining the spectral mass function of the white noise and the above transfer
function, one finds the spectral mass function of the solution,

fs(2πn/T, 2πm/T ) =


(

T 2

T 2+4π2n2+4π2m2

)2
· 1
T 2 , n,m ∈ Z,

0, otherwise,

or

fs(2πn/T, 2πm/T ) =

{
T 2

(T 2+4π2(n2+m2))2 , n,m ∈ Z,
0, otherwise.

(3.17)

In theory, the marginal variance could be calculated by taking the sum of the
spectral mass function in Equation (3.17) over all (n,m) ∈ Z2, but in practice
this is not easy to compute. But one can see that when T tends to zero fs(0, 0)
behaves asymptotically as 1/T 2 and that fs goes to zero as some constant times
T 2 for any other fixed (n,m). It is known that the sum of fs over all integer
pairs converges, thus the sum must behave asymptotically as 1/T 2 when T tends
to zero. Or in other words, the marginal variance must be asymptotically 1/T 2

for small T . Thus one should not make T too small or the marginal variance
will be completely dominated by the (0, 0) frequency of the white noise. These
calculations used A = B, but are possible to do also without this assumption.
However, choosing first a good value for T and then taking A and B greater than
this value should be sufficient.

Since it is not practical to use fs to calculate the marginal variance, it is rea-
sonable to try to approximate the marginal variance with the marginal variance
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of the homogeneous solution of the corresponding SPDE on R2. Intuitively, one
expects this to be a good approximation if A and B are large. However, what
“large” means will most likely depend on κ2 and H. When κ2 and H are constant,
the corresponding marginal variance on R2 can be found from a simple formula.

Proposition 3.1.1. Let u be a homogeneous solution of the SPDE

κ2u(x, y)−∇ ·H∇u(x, y) =W(x, y), (x, y) ∈ R2, (3.18)

where W is a standard Gaussian white noise process, κ2 > 0 is a constant, H is
a positive definite 2× 2 matrix and ∇ =

(
∂
∂x ,

∂
∂y

)
.

Then u has marginal variance

σ2
m =

1

4πκ2
√

det(H)
.

Proof. Firstly, it is clear that rotating the coordinate system cannot change the
marginal variances of the process. Secondly, from Section 2.2.2 it is clear that W
is not changed by rotation since the measures of sets are not changed by rotations.
Thus the coordinate axes can be chosen to be parallel to the eigenvectors of H. In
addition, since the solution is homogeneous, Gaussian white noise is homogeneous
and the SPDE has constant coefficients, the SPDE is acting as a linear filter. Thus
one can use spectral theory to find the marginal variance.

In the rotated coordinate system in which the axes are parallel to the eigen-
vectors of H, the SPDE becomes

κ2u(x′, y′)− λ1
∂2u

∂x′2
(x′, y′)− λ2

∂2u

∂y′2
(x′, y′) =W(x′, y′), (x′, y′) ∈ R2,

where λ1 and λ2 are the eigenvalues of H. Section 3.1.4 gives details as to why
this is true, but in the rotated coordinate system the effect of the operator ∇·H∇
is simply to scale each of the components of the gradient and take the divergence
of the scaled gradient.

The transfer function of the rotated SPDE is

g(w1, w2) =
1

κ2 + λ1w2
1 + λ2w2

2

.

Further, the spectral density of a standard Gaussian white noise process on R2

is identically equal to 1/(2π)2. Thus the spectral density of the solution is

fS(w1, w2) =

(
1

2π

)2
1

(κ2 + λ1w2
1 + λ2w2

2)2
.
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Table 3.2: The marginal variance, σ2
a, of the approximate solution on a 100 × 100

grid of [0, T ]2 as a function of T . The corresponding marginal variance on R2 is
0.0796.

T σ2
a

0.25 16.0
0.50 4.00
1.00 1.00
2.00 0.263
4.00 0.0804
16.0 0.0809
100 0.0903
1000 0.00926

From the spectral density it is only a matter of integrating the density over
R2,

σ2
m =

∫ ∞
−∞

∫ ∞
−∞

fS(w1, w2) dw1 dw2 =
1

4πκ2
√
λ1λ2

.

Thus
σ2
m =

1

4πκ2
√

det(H)
.

From the proposition above one can calculate the marginal variance of the
homogeneous solution of the SPDE in Equation (3.15) solved over R2. This
gives the value 0.0796. To see how good this approximation is, it is compared
with the values found by the GMRF approximation for different domain sizes.
Let A = B = T and consider a 100 × 100 grid for the GMRF approximation.
Table 3.2 shows the marginal variances found for the GMRF approximation for
different values of T . The table shows that for small T the marginal variance
is higher than for the homogeneous solution of the SPDE on R2 and that the
asymptotic behaviour 1/T 2 for small T fits well with the values of T ≤ 1 in the
table. This increase in marginal variance is caused by increased boundary effects
as the size of the domain decreases. For T = 4 to T = 16 the estimate is very
good, for T = 100 the grid most likely becomes to coarse for the solution to be
well approximated by the GMRF and for T = 1000 the grid is not good enough.
By increasing the grid size to 200× 200 and using T = 100, one finds a marginal
variance of 0.0861 for the GMRF, which is closer, and one should expect to get
even closer if the grid size is increased further.

The numerical example above uses a specific choice of values for κ2 and H.
If the value of κ2 or the value H is changed, the value of T required to avoid
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boundary effects on the marginal variances may change. There may also be cases
where one wants there to be significant correlations also for distances as large
as A or B. In this case one can not expect the approximation from solving the
SPDE over R2 to be any good. Further, when κ2 and H are not constant, there
is no approximation from solving the SPDE over R2, but one should take care in
selecting the correlation ranges.

3.1.4 Interpretation of H
The function H in Equation (3.1) affects the diffusive operator ∇ ·H∇. To see
how the behaviour of that operator differs from the usual ∇2 operator, it is useful
to split it into the flux part Dj = H∇ and the divergence part ∇ · Dj . Let u be
a function on some two-dimensional domain into R which is twice continuously
differentiable and H a function which is continuously differentiable, then it is
possible to calculate ∇ ·H∇u.

Let u : R2 → R be a function on the Cartesian coordinate system (x, y), then
the gradient of u at s ∈ R2 is

∇u(s) =

[∂u
∂x (s)
∂u
∂y (s)

]
. (3.19)

This representation hides some of the true underlying meaning of the gradient.
Namely, that the gradient at s is the linear transformation that takes a direction
v ∈ R2 and maps it to the directional derivative v · ∇u(s). The 2 × 1 matrix
in Equation (3.19) is a representation of this linear transformation in the basis
consisting of ∂

∂x , change in the x-coordinate, and ∂
∂y , change in y-coordinate. For

the same function u in a rotated and scaled version of the coordinate system, the
matrix which represents the linear transformation may be different, but it is the
same linear transformation represented in a different basis. This is the key to
understanding what applying H(s) to ∇u(s) means.

Since H is symmetric positive definite, H has a real spectral decomposition
given by

H(s) = U(s)Λ(s)U(s)T,

where Λ(s) = diag(λ1(s), λ2(s)) and

U(s) =
[
e1(s) e2(s)

]
,

where e1(s) and e2(s) are the orthogonal normalized eigenvectors of H(s) and
λ1(s) and λ2(s) are the corresponding eigenvalues. In what follows it is assumed
that all these functions are evaluated at a fixed s, so the simpler notation H, U,
Λ, e1, e2, λ1 and λ2, where s is omitted, is used. Further, expressions like ∇u
are also assumed to be evaluated at the fixed point.
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One way to interpret Dju is through

UΛUT∇u.

The rightmost part of this expression, UT∇u, can be interpreted as the gradient
of u in a different (Cartesian) coordinate system. ∇u is the gradient in the basis
consisting of ∂

∂x and ∂
∂y and UT transforms the gradient into the the basis ∂

∂e1

and ∂
∂e2

. This follows from the fact that UT : R2 → R2 maps a vector in (x, y)-
coordinates into (e1, e2)-coordinates, which also means that UT transform ∇u
from ( ∂

∂x ,
∂
∂y ) coordinates into ( ∂

∂e1
, ∂
∂e2

) coordinates.
The next part of the Dj operator is to scale the component of UT∇u in

direction ∂
∂e1

by λ1 and the component in direction ∂
∂e2

by λ2. Then the U
factor transforms the scaled gradient represented by derivatives in the directions
e1 and e2 to the same gradient represented by derivatives in the directions x and
y. In other words a function represented in the basis ∂

∂x and ∂
∂y .

Thus the interpretation of Dju for a fixed spatial point is similar to the inter-
pretation of the usual gradient of a function at a fixed point. It no longer takes
a direction v ∈ R2 to the directional derivative, but to a transformed version of
the directional derivative. The H matrix is defined relative to some coordinate
system, and if one changes the coordinate system to the orthogonal normalized
eigenvectors of H, H becomes the diagonal matrix diag(λ1, λ2). Thus it only
scales the components of the gradient separately when expressed in this coordi-
nate system.

This fact can be used to understand why one requires H(s) to be positive
definite for all s in the domain. A negative eigenvalue would give something
quite different from what is called diffusion. It would amplify differences in the
first order derivative. To see this effect it is necessary to include a time derivative.
Consider the partial differential equation

∂

∂t
u = − ∂2

∂x2
u,

which corresponds to a one dimensional spatial domain and a 1 × 1 matrix H
with a negative eigenvalue, and

∂

∂t
u =

∂2

∂x2
u,

which corresponds to a positive eigenvalue. The first differential equation tends
to amplify differences in the spatial first order derivative, whereas the latter tends
to equalize differences in the spatial first order derivative. Only the latter can be
considered a diffusion. This generalizes to higher dimensions.

The divergence of a vector field at a given point can be interpreted as the
volume density of the net outward flow at that point. If (x, y) is a Cartesian
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coordinate system and F = (F1, F2) : R2 → R2 is a differentiable function
expressed in that coordinate system, the divergence of F at s ∈ R2 is simply

∇ · F (s) =
∂

∂x
F1(s) +

∂

∂y
F2(s).

Loosely speaking, one can say that the divergence of F at a fixed point is the net
outward flow from that point according to the vector field F .

From this point on, the spatial point is no longer considered fixed. The last
part of the ∇ · Dju expression is to take the divergence expressed in the xy-
coordinate system of the flux Dju also expressed in the xy-coordinate system.
This involves the local net outward flux associated with Dju at the different
points, that is a measure of how much the transformed gradient is changing at a
given point.

From the spectral representation of H it is possible to construct operators
which scale the the derivative in a chosen direction with a higher factor than the
other directions. This penalizes changes in the derivative more in one direction
than another. Choose a normalized vector v and construct

H = γI2 + βvvT,

where γ > 0 and β ≥ 0 are constants. This matrix results in a scaling by γ+β of
the derivative in the directions parallel to v and a scaling of γ in the directions
orthogonal to v. In the context of the SPDE in Equation (3.1) this means that
the solution is more regular in direction v than in the direction orthogonal to v.
This means that it can be used to give an anisotropic covariance function.

For a general H, which is allowed to vary with s, it is not enough to only
consider the local properties as above, but the same type of effects should be
present. But there are effects both from the local spectral decomposition and
from the changing scaling factors and directions in the spectral decomposition as
a function of spatial position.

3.1.5 Interpretation of κ2

By assumption, κ2 is a strictly positive function, so Equation (3.1) can be written
as

u(s)− 1

κ2(s)
∇ ·H(s)∇u(s) =

1

κ2(s)
W(s). (3.20)

From this one can see that the effect of increasing κ2 is both to reduce the co-
efficient of the diffusive term relative to the u term and to decrease the variance
of the driving Gaussian white noise. Only reducing the coefficient of the diffu-
sive term relative to the u term, would give more irregular solutions and higher
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marginal variances. Only reducing the coefficient of the Gaussian white noise
process relative to the other coefficients, would give some sort of scaling of the
solution. Multiplying the right hand side with a constant C simply implies that
the solutions are scaled by C as well. For a non-constant factor things become
more involved.

However, the focus of the thesis is on the function H and only constant
functions are used for κ2.

3.2 Numerical examples

This section has examples of some of the types of behaviour which can be achieved
by different H. The function κ2 is constant in each of the examples. The section
consists of three parts. The parts are homogeneous isotropic GMRFs, homoge-
neous anisotropic GMRFs and inhomogeneous GMRFs.

3.2.1 Homogeneous isotropic GMRFs

As discussed in Section 3.1.3, there is an increase in marginal variances for small
A and B. The domain is chosen large enough to avoid this. For the purpose of
this section, A and B in Equation (3.1) are both chosen to be equal to 20.

The construction of a homogeneous isotropic GMRF requires both that κ2
and H are constant in the domain and that H is equal to a constant times the
identity matrix. This means that one only needs to control the parameters C in
κ2(s) ≡ C and γ in H(s) ≡ γI2. This type of GMRF does not have very exciting
behaviour, but could be useful as a null hypothesis when checking whether there
should be inhomogeneity or anisotropy. They also serve well as first examples of
the type of behaviour that can be achieved from the SPDE.

Note that if one is only interested in the solution up to a scalar factor, one
only needs one parameter. Reparametrize to σ = 1/C and γ̂ = γ/C. Then σ is
only a scale factor for the solution and all homogeneous isotropic solutions can
be found by solving

û(s)− γ̂
(
∂2

∂x2
û(s) +

∂2

∂y2
û(s)

)
=W(s), s ∈ [0, A]× [0, B], (3.21)

whereW is a standard Gaussian white noise process, and setting u = σû. There-
fore, this is the SPDE that is considered in the following example.

Example 3.2.1 (Homogeneous isotropic GMRF). The example uses the SPDE
in Equation (3.21) with domain [0, 20]2 and periodic boundary conditions. A
200× 200 regular grid is used with the precision matrix found in Section 3.1.2.
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Figure 3.3 shows one simulation with γ̂ = 1 and one simulation with γ̂ = 5.
For γ̂ = 1 the marginal variance of the GMRF is 0.0802 and for γ̂ = 5 the
marginal variance of the GMRF is 0.0160. The formula in Proposition 3.1.1 gives
the values 0.0796 and 0.0159 for the same values of γ̂, so the formula gives very
good estimates in these cases.

Comparing Figure 3.3(a) and Figure 3.3(b) one sees that the behaviour for
γ̂ = 5 is more regular than the behaviour for γ̂ = 1. Comparing with the
corresponding PDE without the white noise, this is what one should expect since
large values of γ̂ penalize large values of the second order derivatives. One should
expect that the correlations increase when γ̂ is increased.

This is in fact what happens. Figure 3.4 shows the covariances for the variable
at (9.95, 9.95) with every other point in the grid. Since the marginal variances are
the same everywhere, the covariances can be scaled with the marginal variance
so that they are correlations. This means in practice that the same colours in
Figure 3.4(a) and Figure 3.4(b) are given the same values. Under that assumption
one can see that γ̂ = 5 gives a much larger area with high correlation than γ̂ = 1.

In addition, the covariances appear to be quite isotropic for both γ̂ = 1 and
γ̂ = 5. The use of the point (9.95, 9.95) for the calculation of the covariances is not
of importance, because of the homogeneity all points have the same covariance
function. Note that the isotropy gives level curves which are circles around the
point.

This example demonstrates that changing γ̂ changes the correlation function
of the field. In addition one can use the σ parameter to get the desired marginal
variances. In this example the correlations were close to 0 for distances greater
than or equal to 10, and the formula for the marginal variances in Proposi-
tion 3.1.1 gave good estimates for the marginal variances.

3.2.2 Homogeneous anisotropic GMRFs

To give the SPDE in Equation (3.1) homogeneous solutions, one should use a
constant κ2 and a constant H. With constant κ2 and H one has anisotropy if
and only if the eigenvalues of H are different. If the SPDE were solved over R2,
a non-diagonal H would correspond to a rotation of the domain. Therefore, all
homogeneous cases could be reduced to a constant κ2 and a constant diagonal
H.

For the case of a rectangular domain with periodic boundary conditions the
same is not true. However, if the correlation is small at distances of 10 and
greater, the effect of the bounded domain is small and one only needs to consider
a diagonal H and rotate the resulting solution. In that case one can use the
parameter C in κ2 ≡ C and parameters H11 and H22 in H ≡ diag(H11, H22) to
describe the homogeneous anisotropic GMRFs up to rotation.
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(a) γ̂ = 1.
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(b) γ̂ = 5.

Figure 3.3: Realizations from the SPDE in Equation (3.21) with a 200×200 grid
of [0, 20]2 and periodic boundary conditions for two different values of γ̂.
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Figure 3.4: Covariances of (9.95, 9.95) with every other point for the solution
of the SPDE in Equation (3.21) with a 200 × 200 grid of [0, 20]2 and periodic
boundary conditions for two different values of γ̂.
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In the same manner as in the previous section, reparametrize as γ1 = H11/C,
γ2 = H22/C and σ = 1/C to get the SPDE

u(s)− γ1
∂2

∂x2
u(s)− γ2

∂2

∂y2
u(s) = σW(s), s ∈ [0, A]× [0, B], (3.22)

where W is a standard Gaussian white noise process, with periodic boundary
conditions. Then σ is just a scale parameter and one can solve the SPDE with
σ = 1 to get û, and set u = σ̂û to find a solution for σ = σ̂.

If one does not assume that H is diagonal, one has an additional parameter
γ12 corresponding to the off-diagonal entry in H divided by C. This gives the
SPDE

u(s)−
[
γ1

∂2

∂x2
+ 2γ12

∂2

∂x∂y
+ γ2

∂2

∂y2

]
u(s) = σW(s), s ∈ [0, A]× [0, B],

(3.23)
where W is a standard Gaussian white noise process, with periodic boundary
conditions. Comparing Equation (3.22) with Equation (3.23) one sees that the
only difference is the cross derivative with the −2γ12 coefficient.

The SPDE in Equation (3.22) and the SPDE in Equation (3.21) are similar,
and with γ1 = γ2 = γ̂ (and σ = 1) they are equal. This means that the only
difference is the introduction of the possibility of different coefficients for the
second order partial derivatives. This gives the ability to introduce different
regularity in different directions. In the following example both a diagonal H
and a non-diagonal H is considered.

Example 3.2.2 (Homogeneous anisotropic GMRF). The purpose of this exam-
ple is to consider the effect of using a H with different eigenvalues. Both with the
SPDE in Equation (3.22) and the SPDE in Equation (3.23). The domain [0, 20]2

is used with periodic boundary conditions and is discretized by a regular 200×200
grid. The case with H having equal eigenvalues is done in Example 3.2.1 and to
get comparable results with that example one of the eigenvalues of H is chosen
equal to 1.

Figure 3.5(a) shows one realization of the solution of the SPDE in Equa-
tion (3.22) with σ = 1, γ1 = 1 and γ2 = 3. This means that the eigenvalues of H
are 1 and 3. Figure 3.5(b) shows one realization of the solution of the SPDE in
Equation (3.23) with σ = 1, γ1 = 5, γ12 = 4 and γ2 = 5. This corresponds to

H = I2 + 8vvT,

where v = (1, 1)/
√

2, and gives the eigenvalue 9 for direction v and the eigenvalue
1 for the direction (1,−1)/

√
2.

Figure 3.5 shows that both cases give a realization which looks anisotropic.
For the first case the realization looks more regular in the y-direction than the x-
direction and for the latter case the realization looks most regular in the direction
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given by v and least regular in the direction orthogonal to v. The difference in
regularity seems much greater for the case with the non-diagonal matrix than for
the case with the diagonal matrix. This should be expected since the difference
between the eigenvalues is larger for this case.

To demonstrate that the solution of the SPDE is anisotropic for each of the
cases, the covariances between a fixed point and all others are calculated for
each case. Note that this is sufficient to describe all the covariances since the
solutions are homogeneous. Figure 3.6 shows the covariances between the variable
at (9.95, 9.95) and all other points in the grid for both cases. One can immediately
note that the non-diagonal H gives what appears to be elliptic constant level
curves with semi-axes along v and the direction orthogonal to v, whereas the
diagonal H gives constant level curves that appears to be ellipses with semi-axes
along the x-axis and the y-axis. It is clear from the figure that the solutions are
not isotropic.

Since the solutions are homogeneous, one can consider Figure 3.6(a) and Fig-
ure 3.6(b) to be rescaled versions of the correlation functions. From this one can
see that the correlation decreases most slowly and most quickly along the direc-
tions used to specify H, with slowest decrease along the direction with the highest
parameter value. For the diagonal H the correlation decreases most slowly in the
y-direction and decreases most quickly in the x-direction. Similarly, for the non-
diagonal H the correlation decreases slowest in the direction given by v and most
rapidly in the direction orthogonal to v.

As previously mentioned, the constant level curves seem to be ellipses for both
cases. It is interesting to note that if one compares the two correlation functions
found in this example with the one in Figure 3.4(a), one can observe that they
all seem to have the same length for the minor-axis of the constant level curves.
Further, increasing the largest eigenvalue of H gives larger semi-axis along the
chosen direction, and compared with Figure 3.4(b) increasing both eigenvalues
increases both semi-axes.

This example indicates that the constant level curves of the correlation func-
tion are approximately ellipses. It can be shown that this is the case for a
homogeneous anisotropic solution of the corresponding SPDE on R2 by doing a
change of variables from the standard equation with γ1 = 1 and γ2 = 1. No
further investigation of this is done.

From this section one can see that compared to the previous section, which
only uses one parameter γ̂ to control the correlation, the introduction of two
parameters γ1 and γ2 allows for the creation of GMRFs which are more regular
in one direction than another. One can use the parameters γ1, γ12 and γ2 to
decide the correlation function and σ to get the desired marginal variance.
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Figure 3.5: (a) Realization from the SPDE in Equation (3.22) on [0, 20]2 with a
200× 200 grid and periodic boundary conditions with σ = 1, γ1 = 1 and γ2 = 3.
(b) Realization from the SPDE in Equation (3.23) on [0, 20]2 with a 200 × 200
grid and periodic boundary conditions with σ = 1, γ1 = 5, γ12 = 4 and γ2 = 5.
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Figure 3.6: (a) Covariances of the centre with all other points for the solution
of the SPDE in Equation (3.22) on [0, 20]2 with a 200 × 200 grid and periodic
boundary conditions with σ = 1, γ1 = 1 and γ2 = 3. (b) Covariances of the
centre with all other points for the SPDE in Equation (3.23) on [0, 20]2 with a
200×200 grid and periodic boundary conditions with σ = 1, γ1 = 5, γ12 = 4 and
γ2 = 5.
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3.2.3 Inhomogeneous GMRFs
The two previous sections only have homogeneous GMRFs. To make the solutions
of the SPDE in Equation (3.1) inhomogeneous, either κ2 or H has to be a non-
constant function. One way to achieve inhomogeneity is by letting H be non-
constant through

H(s) = γI2 + βv(s)v(s)T,

where v is a vector field on [0, A] × [0, B] which satisfy the periodic boundary
conditions and γ > 0 and β > 0 are constants.

Example 3.2.3 (Inhomogeneous GMRF). Use the domain [0, 20]2 with a 200×
200 grid and periodic boundary conditions for the SPDE in Equation (3.1). Let
κ2 be identically equal to 1 and let H be given as

H(s) = γI2 + βv(s)v(s)T,

where v is a 2-dimensional vector field on [0, 20]2 which satisfies the periodic
boundary conditions and γ > 0 and β > 0 are constants.

To create an interesting vector field, start with the function f : [0, 20]2 → R
defined by

f(x, y) =

(
10

π

)(
3

4
sin(2πx/20) +

1

4
sin(2πy/20)

)
.

Then calculate the gradient ∇f and let v : [0, 20]2 → R2 be the gradient rotated
90 ◦ counter-clockwise at each point. Figure 3.7(a) shows the values of the func-
tion f and Figure 3.7(b) shows the resulting vector field v. The vector field is
calculated on a 400× 400 regular grid, because the values between neighbouring
cells of the discretization is needed.

Figure 3.8(a) shows one realization from the resulting GMRF with γ = 0.1
and β = 25. A much higher value for β than γ is chosen to illustrate the connec-
tion between the vector field and the resulting covariance structure. From the
realization it is clear that there is stronger dependence along the directions of
the vector field shown in Figure 3.7(b) at each point than in the other directions.
In addition, from Figure 3.8(b) it seems that positions with large values for the
norm of the vector field has smaller marginal variance than positions with small
values and vice versa.

From Figure 3.9 one can see that the covariances depend on the direction and
norm of the vector field, and that there is clearly inhomogeneity. Figure 3.9(a)
shows the covariances of the variable at position (9.95, 9.95) with all other points
in the grid and Figure 3.9(b) shows the covariance of the variable at (4.95, 2.05)
with all other points in the grid. At both of these points there is much higher
covariance along the vector field than in the direction orthogonal to the vector
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Figure 3.7: The gradient of the function illustrated in (a) is calculated and rotated
90 ◦ counter-clockwise at each point to give the vector field illustrated in (b).
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(b) Marginal variances.

Figure 3.8: One observation and the marginal variances of the solution of the
SPDE in Equation (3.1) on a 200 × 200 regular grid of [0, 20]2 with periodic
boundary conditions, κ2 ≡ 1 and H = 0.1I2 + 25vvT, where v is the vector field
described in Example 3.2.3.
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field. In Figure 3.9(a) one can see that the covariance follows the curving of
the vector field and in Figure 3.9(b) one can see that the high covariance values
extend around the point (4.95, 4.95).

From this example one can see that allowing H to be non-constant means
that one can vary the dependence structure in more interesting ways than the
homogeneous anisotropic fields. Secondly, using a vector field to control how H
varies means that the resulting correlation structure can be partially visualized
from the vector field. Thirdly, when γ > 0 this construction guarantees that H
is everywhere positive definite.
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Figure 3.9: Covariances of two different points with all other points in the grid
for the solution of the SPDE in Equation (3.1) on a 200 × 200 regular grid of
[0, 20]2 with periodic boundary conditions, κ2 ≡ 1 and H = 0.1I2 +25vvT, where
v is the vector field in described in Example 3.2.3.
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Chapter 4

Inference with the GMRF
approximation

In the previous chapter a GMRF approximation is derived for the solution of
the SPDE in Equation (3.1). The goal of this chapter is to do inference on the
coefficients in the SPDE in a Bayesian setting by using the derived GMRF.

4.1 Inference scheme

To do the inference on the coefficients in the SPDE in Equation (3.1), parameters
are introduced in both κ2 and H. Let κ2 depend on parameters θ1 and H depend
on parameters θ2, and let θ = (θT1 ,θ

T
2 ). In addition, give θ a prior distribution

θ ∼ π(θ).
Then for a given value of θ, use the discretization in Section 3.1.2 to find the

GMRF u|θ ∼ N (0,Q(θ)−1). Combine this with the prior of θ to find the joint
distribution of the parameters and u.

Lastly, introduce a third step y|u ∼ π(y|u) which specifies how y is observed
from the underlying GMRF. The model for how y is related to u is chosen to
be particularly simple, namely that linear combinations of u are observed with
Gaussian noise,

y|u ∼ N (Au,Q−1N ).

This is a three level hierarchical model, where the goal is to do inference on θ
based on an observation of y. To complete the scheme the posterior distribution
of θ given an observation of y has to be calculated.

47
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4.1.1 Posterior distribution
Assume thatN rectangles are used in the discretization in Section 3.1.2. Then u|θ
is an N -dimensional multivariate Gaussian distribution with probability density

π(u|θ) =

(
1

2π

)N/2
|Q(θ)|1/2 exp

(
−1

2
uTQ(θ)u

)
,

where Q(θ) is the precision matrix at the end of Section 3.1.2 for parameter value
θ. Further, y is a k-dimensional random variable defined through

y|u ∼ N (Au,Q−1N ),

where A is a k × N matrix and QN is a k × k positive definite matrix. The
probability density of y|u is

π(y|u) =

(
1

2π

)k/2
|QN |1/2 exp

(
−1

2
(y −Au)TQN (y −Au)

)
.

Note that since the density of y|u is independent of θ, the probability density of
y|u,θ is equal to the probability density of y|u.

It is useful to first calculate the probability density of u|y,θ. It can be found
from the probability densities above,

π(u|y,θ) ∝ π(u,y|θ)

= π(u|θ)π(y|u,θ)

∝ exp

(
−1

2

[
uTQ(θ)u+ (y −Au)TQN (y −Au)

])
∝ exp

(
−1

2

[
uT(Q(θ) + ATQNA)u− 2uTATQNy

])
.

Let QC(θ) = Q(θ) + ATQNA and µC(θ) = QC(θ)−1ATQNy, then

u|y,θ ∼ N (µC(θ),QC(θ)−1).

This is an N -dimensional multivariate Gaussian distribution.
The probability density of u|y,θ can be used to integrate out u from the joint

density of u, y and θ by calculating

π(θ,y) =
π(θ,u,y)

π(u|y,θ)

=
π(θ)π(u|θ)π(y|u,θ)

π(u|y,θ)
.
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This expression gives

π(θ|y) ∝

π(θ)
|Q(θ)|1/2|QN |1/2

|QC(θ)|1/2
exp

(
−1

2

[
uTQ(θ)u

])
×

× exp

(
−1

2

[
(y −Au)TQN (y −Au)

])
×

× exp

(
+

1

2

[
(u− µC(θ))TQC(θ)(u− µC(θ))

])
.

Observe that the quadratic terms in the exponential functions can be greatly
simplified. Write out the two first quadratic terms to find

−1

2

[
uTQ(θ)u+ yTQNy − 2uTATQNy + uTATQNAu

]
.

But ATQNy = QC(θ)µC(θ) and Q(θ) + ATQNA = QC(θ), so the terms the
terms can be written as

−1

2

[
uTQC(θ)u+ yTQNy − 2uTQC(θ)µC(θ)

]
.

Further, the quadratic term in the third exponential function can be written as

−1

2

[
−uTQC(θ)u+ 2uTQC(θ)µC(θ)− µC(θ)QC(θ)µC(θ)

]
.

Adding these two sums and removing everything that does not depend on θ gives

log(π(θ|y)) =

Const + log(π(θ)) +
1

2
log(|Q(θ)|)

− 1

2
log(|QC(θ)|) +

1

2
µC(θ)TQC(θ)µC(θ). (4.1)

From the above expression one can see that the posterior distribution of θ
contains terms which are hard to handle analytically. It is hard to say anything
about both the determinants and the quadratic term as functions of θ. Therefore,
the inference is done numerically.

An additional distribution that can also be of interest is π(u|y). This is not
as easily calculated as the distribution of θ|y and usually has to be calculated
numerically. It can be found from the expression

π(u|y) =

∫
Rn

π(u|θ,y)π(θ|y)dθ,

where n is the dimension of θ.
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4.1.2 Approximate inference
As mentioned in the previous section, the posterior distribution θ|y is hard to
work with analytically. Therefore, approximate numerical inference is used. If
the posterior distribution were a multivariate Gaussian distribution, it could be
characterized by the mode of its probability distribution and the Hessian of the
logarithm of its probability distribution at the mode. The mode would correspond
to the mean and the Hessian is connected to the covariance matrix. If K is the
Hessian of the logarithm of a multivariate Gaussian probability density at the
mode and Σ is the covariance matrix, then

Σ = (−K)−1.

θ|y typically does not have a multivariate Gaussian distribution, but these two
statistics are used to give an estimate of the parameter and the associated un-
certainty of the estimate.

For the actual implementation, the mode is first found by numerical opti-
mization of the logarithm of the posterior distribution, and then the Hessian is
found by a numerical differentiation at the estimated mode. There are numeri-
cal issues to each of these operations. Firstly, there may actually be more than
one local maximum. Secondly, the estimation of the Hessian involves estimating
second order derivatives, which may be hard if the posterior is not well behaved.
These are problems connected with optimization and numerical differentiation in
general.

Further, there may be restrictions on the parameters, θ. For example, one
parametrization that is considered later is

H(s) = γI2 +

n∑
k=1

βkvk(s)vk(s)T.

Since H must be positive definite at all positions, not all parameter choices are
legal. As discussed later, one reasonable choice here is to take γ > 0 and βk ≥ 0
for k = 1, . . . , n. This means that the prior distribution is zero for all other
parameter values. One should use an optimization method which can handle
simple boundaries on the domain such as these.

4.1.3 Choice of prior
The selection of the prior for the parameters depends on the actual parametriza-
tion used. For the examples in this chapter there is no real prior knowledge
about the parameters, except that some of the parameters must be positive and
so on. The examples only use arbitrarily chosen parameter values and there is no
“physical” interpretation of the parameters. Therefore, an improper prior which
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specifies which values that are allowed is used. This gives maximum likelihood
estimates.

4.2 First parametrization of H

The SPDE in Equation (3.1) uses periodic boundary conditions. This means that
H has to be periodic. One possible parametrization is

H(s) = γI2 +
n∑
k=1

βkvk(s)vk(s)T,

where vk is a vector field on the rectangular domain that satisfy the periodic
boundary conditions for k = 1, . . . , n. In this parametrization one can consider
γ to specify a baseline effect. If βk = 0 for all k = 1, . . . , n, then H specifies
an isotropic field and γ controls the regularity of the isotropic field. The βk
parameter can be considered to specify an additional regularity in the direction
of vector field vk. With this interpretation one should have γ > 0 and βk ≥ 0 for
k = 1, . . . , n.

4.2.1 Examples

In a realistic situation one can not expect to have observed the field at all points
(in the grid) and one can not expect to have observed the values exactly. One
could imagine that general linear combinations of u were observed, but the focus
is on the situation that the field is observed on a subset of the grid cells. This
means that A is a k×N matrix, where k is the number of grid cells observed and
N is the total number of grid cells. Further, A has exactly one 1 on each row,
where a 1 in column j on row i means that element i of y is an observation of grid
cell number j. In this section QN = Ik/σ

2
ε is used, that means that the values

are observed with Gaussian white noise with mean 0 and standard deviation σε.
The improper prior used is

π(γ, β1, · · · , βn) =

{
1, (γ1, β1, · · · , βn) ∈ [0,∞)n+1,

0, otherwise,

which corresponds to maximum likelihood estimates.
Consider first the situation in which one has observed the whole GMRF with-

out noise. The grid size is decreased to 100× 100 compared to 200× 200 in the
examples in Chapter 3 to save computation time.
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Figure 4.1: An observation of the SPDE in Equation (3.1) on a 100×100 regular
grid of [0, 20]2 with periodic boundary conditions, κ2 = 1 and H(s) = 0.5I2 +
5v(s)v(s)T, where v is the vector field in Example 3.2.3.

Example 4.2.1 (γ and one vector field). Use a 100× 100 grid of [0, 20]2 and pe-
riodic boundary conditions for the SPDE in Equation (3.1). Let κ2 be identically
equal to 1 and let H be parametrized as

H(s) = γI2 + βv(s)v(s)T,

where v is the vector field from Example 3.2.3.
Figure 4.1 shows one observation of the solution with γ = 0.5 and β = 5. In

this case one expects that it is possible to make accurate estimates about γ and
β as the solution is observed at all grid points.

The inference is done with the posterior distribution θ|y from Section 4.1.1,
with QN = I10000/σ

2, where σ2 = 10−6, and A = I10000. This means all values
are assumed to be observed nearly exactly. This gives the estimates in Table 4.1.
From the table one can see that the estimates for both γ and β are quite accurate,
which is reflected both in the actual value of the estimates and the approximated
standard deviations. The estimates for both γ and β are accurate to 2 digits.

The example shows that when using only the γI2 term and one vector field
for H, the estimates for the parameters are quite accurate. The accuracy of the
estimates for β and γ will of course depend on the vector field used.
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Table 4.1: Posterior inference on parameters in Example 4.2.1.
Parameter True value Estimate Std.dev.
γ 0.5 0.5012 0.0081
β 5 5.014 0.084

Table 4.2: Posterior inference on parameters in Example 4.2.2.
Parameter True value Estimate Std.dev.
γ 0.5 0.492 0.021
β1 5 4.984 0.086
β2 0 0.000 0.020
β3 0 0.027 0.025

To make it harder to estimate γ, one can add more vector fields which are
known not to be present. In this case one can imagine that one does not know
that these vector fields are not present, and see how this changes the posterior
results. Care must be taken such that the choice of vector fields actually gives
matrices, vk(s)vk(s)T, which are linearly independent. If not, there is infinitely
many modes and the estimate of the covariance is not useful.

Example 4.2.2 (γ and three vector fields). Continue with the same situation as
in Example 4.2.1, but change the parametrization to

H(s) = γI2 + β1v1(s)v1(s)T + β2v2(s)v2(s)T + β3v3(s)v3(s)T,

where v1 is the vector field from Example 4.2.1, v2(x, y) = (1+0.3 cos(2πx/20), 0)
and v3(x, y) = (0, 1 + 0.3 cos(2πx/20)). In addition, use the same observation as
in Example 4.2.1. This corresponds to γ = 0.5, β1 = 5, β2 = 0 and β3 = 0 with
the parametrization for H used in this example.

The inference is done as in Example 4.2.1. This gives the estimates in Ta-
ble 4.2. From the table one can see that the estimate for γ is less exact than in
Example 4.2.1 and that γ has a higher standard deviation. The estimate of γ is
exact to 1 digit, compared to the estimate in Example 4.2.1 which is exact to 2
digits. For β1 the estimate has the same accuracy.

Further the estimates for β2 and β3 are both nearly within one standard
deviation of 0. This means that the inference gives reason to suspect that they
are not significant. Since it is known that they are in fact 0, this is the result
that one wants.

As can be seen from the example, introducing additional vector fields can
change the degree to which one can estimate the parameters. It is harder to
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Figure 4.2: The observation in Figure 4.1 with Gaussian white noise with variance
0.01 added to each grid cell.

estimate more parameters as there is a broader range of parameters which is
likely to give the observed behaviour.

As noted in the beginning of the section, there may be noise in the observation.
Use the same vector fields and observation as in the previous example, but add
Gaussian white noise to the observation and repeat the inference.

Example 4.2.3 (All points observed with σε = 0.1.). The construction of the
grid and the parametrization of H is the same as in Example 4.2.2, but now the
observation from that example has Gaussian white noise with standard deviation
0.1 added to each grid cell. The true parameter values are γ = 0.5, β1 = 5, β2 = 0
and β3 = 0. The original observation is shown in Figure 4.1 and the observation
with added noise is shown in Figure 4.2.

The inference is done with the posterior distribution θ|y from Section 4.1.1
with QN = I10000/σ

2, where σ2 = 0.01, and A = I10000. This means that all
values are assumed to be observed with iid Gaussian noise with variance 0.01.
This gives the estimates in Table 4.3.

As expected, compared to Example 4.2.2 the approximated standard devia-
tions for the parameters are larger than when the observation is exact. But all
estimates are approximately within 2 standard deviations from the true values.
Since these are approximate standard deviations and the exact distribution is
not multivariate Gaussian, it is hard to say exactly what 2 standard deviations
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Table 4.3: Posterior inference on parameters in Example 4.2.3.
Parameter True value Estimate Std.dev.
γ 0.5 0.436 0.043
β1 5 4.9 0.29
β2 0 0.039 0.0407
β3 0 0.108 0.052

Table 4.4: Posterior inference on parameters in Example 4.2.4.
Parameter True value Estimate Std.dev.
γ 0.5 0.44 0.26
β1 5 5.1 4.3
β2 0 0.02 0.19
β3 0 0.6 1.2

means. But the standard deviations give indications on the order of error to be
expected. The inference still suggests that the parameters β2 and β3 are not
significant.

The example demonstrates that adding Gaussian white noise to the cells in-
creases the standard deviations of the estimates. Consider now the situation that
the field is only observed at some of the grid cells. This may be the case when
data is missing.

Example 4.2.4. Use the same SPDE and parametrization of H as in Exam-
ple 4.2.2. As in that example, a 100 × 100 grid is used, but 1000 points were
chosen randomly from the observation in Example 4.2.2. This means only 10%
of the grid cells are observed.

From Table 4.4 one can see that there is a lot of uncertainty for all of the
parameters. None of the parameters are more than 2 standard deviations from
0. These standard deviations are only approximations, but indicate that there is
not enough information to estimate the 4 parameters.

For all the above examples the inference on the parameters in the SPDE works
as desired. The hierarchical model works well both with and without noise.

4.2.2 Shortcomings

In the previous section one can see that the examples all have good estimates of
the parameters. But consider the simple case that an observation is made without
noise and that the true H is identically equal to (cos(α), sin(α))(cos(α), sin(α))T
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for some α ∈ [0, 2π]. In this case it is impossible to choose a finite set {vk}nk=1

such that for any α there exists a set {βk}nk=1 of coefficient such that[
cos(α)
sin(α)

] [
cos(α) sin(α)

]
=

n∑
k=1

βkvk(s)vk(s)T.

This indicates that the previous parametrization of H is most appropriate when
specifying a model in which the effect of different vector fields are “added”. The
reason for the problems is that each of the vector fields vk has a fixed direction
at each position. In fact, if vk is not parallel to (cos(α), sin(α)) everywhere, βk
must be 0. Since there are uncountably many angles, it follows that no finite set
of vector fields can be sufficient.

4.3 Second parametrization of H
Based on the comments in Section 4.2.2, it is useful to look for a different
parametrization for inference applications in which the parametric form of H
is not known. One choice is

H(s) = γ(s)I2 + v(s)v(s)T, (4.2)

where γ is a strictly positive function and v is some vector field. In this situation
γ(s) is equal to the minimum of the eigenvalues of H(s), v(s) is in the direction
of the eigenvector corresponding to the largest eigenvalue and the length of v(s)
is equal to the difference between the largest and smallest eigenvalue. In this
setting, all constant H only requires three parameters. Use γ1, v1 and v2 as
parameters and write

H(s) ≡ γ1I2 +

[
v1
v2

] [
v1 v2

]
.

All constant H can be written in this form.
To use Equation (4.2), one has to parametrize the function γ and the vector

field v in some manner. γ has to be strictly positive in order for H to be positive
definite, so a parametrization which ensures this is necessary. For v any vector
field is possible, so a basis which can generate any vector field is appropriate.
Additionally, the function and the vector field must satisfy the periodic boundary
conditions.

4.3.1 Parametrization of the vector field
Let the domain be [0, A] × [0, B] and assume that v is a differentiable, periodic
vector field on the domain. Then each component of the vector field can be
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written as ∑
(k,l)∈Z2

Ck,l exp

[
2πi

(
k

A
x+

l

B
y

)]
,

where i is the imaginary unit. But since the components are real-valued, one can
write each of them as a real 2-dimensional Fourier series of the form

A0,0 +
∑

(k,l)∈E

[
Ak,l cos

[
2π

(
k

A
x+

l

B
y

)]
+Bk,l sin

[
2π

(
k

A
x+

l

B
y

)]]
,

where the set E ⊂ Z2 is given by

E = (N× Z) ∪ ({0} × N).

Use this Fourier series for each component of v to find the representation

v(s) =[
A

(1)
0,0

A
(2)
0,0

]
+

∑
(k,l)∈E

[
A

(1)
k,l

A
(2)
k,l

]
cos

[
2π

(
k

A
x+

l

B
y

)]
+

∑
(k,l)∈E

[
B

(1)
k,l

B
(2)
k,l

]
sin

[
2π

(
k

A
x+

l

B
y

)]
, (4.3)

where A(1)
k,l and B

(1)
k,l are the coefficients for the first component of v and A

(2)
k,l

and B(2)
k,l are the coefficients of the second component.

Introduce new coefficients Â(1)
k,l and Â

(2)
k,l through

A
(1)
k,l =

k

A
Â

(1)
k,l −

l

B
Â

(2)
k,l , (4.4)

A
(2)
k,l =

l

B
Â

(1)
k,l +

k

A
Â

(2)
k,l , (4.5)

for (k, l) 6= (0, 0). Then the cosine term in Equation (4.3) can for term (k, l) be
written as (

Â
(1)
k,l

[
k
A
l
B

]
+ Â

(2)
k,l

[
− l
B
k
A

])
cos

[
2π

(
k

A
x+

l

B
y

)]
.

It is easy to verify that the first part gives something with zero curl and that the
second part gives something with zero divergence. Exactly the same can be done
for the sine term. The result is(

B̂
(1)
k,l

[
k
A
l
B

]
+ B̂

(2)
k,l

[
− l
B
k
A

])
sin

[
2π

(
k

A
x+

l

B
y

)]
,

where the first part has zero curl and the second part has zero divergence.



58 CHAPTER 4. INFERENCE WITH THE GMRF APPROXIMATION

Lemma 4.3.1. Let M : R2 → R2 be defined by

M

[
x
y

]
=

[
k
A − l

B
l
B

k
A

] [
x
y

]
,

where A and B are positive constants. Then for (k, l) ∈ E, where

E = (N× Z) ∪ ({0} × N),

M is an invertible linear transformation.

Proof. The expression for M gives

det(M) =
k2

A2
+

l2

B2
.

This is greater than 0 for all (k, l) 6= (0, 0). So the linear transformation is
invertible.

The lemma shows that the new and the old coefficients uniquely determine
each other. Therefore, these new coefficients together with A

(1)
0,0 and A

(2)
0,0 pro-

vide an alternative way of representing v. The details can be summarized in a
proposition.

Proposition 4.3.2. Let A and B be positive constants and let v be a differen-
tiable vector field on [0, A] × [0, B], such that the vector field and its first order
derivatives agree on opposite edges. Then there exist vector fields v̂ and w that
satisfies the same conditions as v such that

v(s) = v̄ + v̂(s) +w(s), ∀s ∈ [0, A]× [0, B],

where v̄ is the mean of v, v̂ has mean zero and curl(v̂) = 0 and w has mean zero
and div(w) = 0.

Let
E = (N× Z) ∪ ({0} × N),

then v̂ can be written as

v̂(s) =∑
(k,l)∈E

Â
(1)
k,l

[
k
A
l
B

]
cos

[
2π

(
k

A
x+

l

B
y

)]
+

∑
(k,l)∈E

B̂
(1)
k,l

[
k
A
l
B

]
sin

[
2π

(
k

A
x+

l

B
y

)]
,
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where Â(1)
k,l and B̂

(1)
k,l are unique real coefficients, and w can be written as

w(s) =∑
(k,l)∈E

Â
(2)
k,l

[
− l
B
k
A

]
cos

[
2π

(
k

A
x+

l

B
y

)]
+

∑
(k,l)∈E

B̂
(2)
k,l

[
− l
B
k
A

]
sin

[
2π

(
k

A
x+

l

B
y

)]
.

where Â(2)
k,l and B̂

(2)
k,l are unique real coefficients.

Proof. A Fourier series provides a unique decomposition for v, and Lemma 4.3.1
shows that there is a one-to-one correspondence between the coefficients in the
decomposition in this proposition and the coefficients in the Fourier series. Since
the basis is still the same cosine and sine functions, the decomposition in this
proposition exists for all differentiable, periodic vector fields and the coefficients
are unique.

The fact that a differentiable, periodic vector field with mean 0 can be de-
composed uniquely in a curl free component and a divergence free component
can also be seen from the fact that the only solutions of the Laplace equation on
a rectangle with periodic boundaries are the constant functions.

The decomposition in Proposition 4.3.2 can be useful for, for example, deter-
mining if the vector field in H is curl free or divergence free. And if one knows
that the vector field is curl free one can reduce the number of parameters needed.

4.3.2 Parametrization of γ
The function γ must be strictly positive. One idea for achieving this is to instead
use γ2, but this does not help as keeping γ2 from becoming 0 is the same as
keeping γ positive or negative everywhere. A possible solution is to take

γ(s) = exp

( ∞∑
k=1

γk(s)

)
,

where {γk}∞k=1 is, for example, the Fourier basis. This function is strictly positive.

4.3.3 Examples
This section gives examples for the homogeneous anisotropic case with H con-
stant. This can not be estimated well with the previous scheme, but only requires
three parameters with this parametrization. Three parameters is what one should
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Table 4.5: Parameter estimates for Example 4.3.1.
Parameter True value Estimate Std.dev.
γ 3 2.971 0.071
v1 0.707 0.730 0.049
v2 1.225 1.237 0.039

expect since it requires three parameters to specify all positive definite 2× 2 ma-
trices. The following example only uses the minimum number of parameters.

Example 4.3.1. Use the SPDE

u(s)−∇ ·H∇u(s) =W(s), s ∈ [0, 20]× [0, 20], (4.6)

where W is a standard Gaussian white noise process and H is a 2 × 2 matrix,
with periodic boundary conditions. Let

H = 3I2 + 2vvT,

with v = (1,
√

3)/2. This means that H has eigenvector v with eigenvalue 5 and
an eigenvector orthogonal to v with eigenvalue 3. Use a 100 × 100 grid for the
construction of the GMRF.

One observation of the solution is shown in Figure 4.3. Assume that the
fact that H is constant is known, but that its value is not. Then using the
decomposition from the previous sections one writes

H = γI2 +

[
v1
v2

] [
v1 v2

]
,

where γ, v1 and v2 are the parameters. Use an improper prior that disallows
γ < 0. This gives the estimates shown in Table 4.5. From the table one can see
that all the estimates are accurate to one digit, and within one standard deviation
of the true value.

In the example the estimates are close to the correct values, and the compu-
tation time required is small. However, if one increases the number of parameters
used in the decomposition in Proposition 4.3.2, the computational task is much
higher and it is harder to find the global maximum of the posterior distribution
for the parameters. This is demonstrated in the following example.

Example 4.3.2. This is a continuation of Example 4.3.1 and uses the same SPDE
and grid. In addition, the same observation is used. The previous example uses
only three parameters. Assume that it is not known that H is constant and use
in addition the terms from Proposition 4.3.2 for (k, l) = (1, 0), (k, l) = (0, 1) and
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Figure 4.3: One realization of the solution of the SPDE in Equation (4.6).

(k, l) = (1, 1). This give 12 extra parameters, 4 additional parameters for each
frequency.

First two arbitrary starting positions are chosen for the optimization. The first
is γ = 3.0 and all other parameters at 0.1. And the second is γ = 3.0, A0,0 = 0.1,
Â0,0 = 0.1 and all other parameters equal to 0. For both of these starting
points the optimization converges to more or less the same non-global maximum.
Parameter estimates and approximate standard deviations are calculated, but
requires a large table. So instead only the resulting vector field v is shown in
Figure 4.4(a). Note that the vectors (a, b) and −(a, b) have the same effect on H,
so only the direction up to a factor of −1 is important.

A third optimization is done with starting values close to the correct parame-
ter values. This gives the vector field shown in Figure 4.4(b). This gives estimates
for γ, A(1)

0,0 and A(2)
0,0 that agree with the ones in Example 4.3.1 to two digits. The

other frequencies all had coefficients close to zero, with the largest having an
absolute value of 0.058.

Comparing the two vector fields in Figure 4.4 it is clear that there are major
differences. The vector field in Figure 4.4(b) has low variations from the mean
value, whereas the one in Figure 4.4(a) has a lot of variation. In this example
the problem is that there are at least two maxima for the posterior (actually at
least 4, due to symmetry). It is hard to avoid these alternative maxima, but
part of the problem is likely to be that there are 15 parameters, but only one
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Figure 4.4: Two different local maxima found for the vector field. The vector
field in (a) gives a lower value for the posterior distribution of the parameters
than the vector field in (b).
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observation.

The example shows that introducing many parameters makes the optimization
much harder, but that when starting close to the actual parameter values one gets
an estimate close to the actual vector field. In addition, there is a large increase
in computation time when increasing the parameter space to be 15-dimensional,
compared to a 3-dimensional parameter space. The computation time required
is increased by a factor of 10.

4.4 Model verification
In this chapter there is an underlying assumption that it is possible to specify
H in the chosen way. But one does in general not expect to be able to specify a
parametric form that catches the real value of H, when the real value of H is not
know. The inference scheme presented in the previous sections requires a correct
specification, and if the specification is incorrect, the estimated values may give
no indication of it. A simple example is to simply specify an isotropic model with
H = γI2. The posterior estimate of the standard deviation of γ might in this
case not give any indication of how appropriate this specification is. Therefore,
the inference done in this chapter should be combined with some kind of model
verification. However, this is not something which have been studied extensively
for these type of SPDE-based GMRFs yet.
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Chapter 5

Discussion

The goal of this thesis is to study SPDE-based GMRFs for use in spatial statis-
tics. To this end, a specific SPDE is chosen in Chapter 3 with rectangular domain
and periodic boundary conditions. These choices are based on a desire to not
introduce unnecessary complications. For a more general domain, for example,
a convex domain with a boundary consisting of a finite number of straight line
segments, it is in general not possible to divide the domain into rectangles. But
this problem can be solved with a triangulation of the domain. Triangulation is a
known problem in numerics, and the finite volume method can be applied to the
triangles in the triangulation in a similar manner as for the regular discretization
in the thesis. Thus the SPDE-based GMRFs are not limited to rectangular do-
mains. In fact, in Lindgren et al. (2011) it is demonstrated that even a 2-sphere
can be used. For the SPDE in Equation (3.1) the diffusive operator has to be
modified slightly to make it work for a non-Cartesian coordinate system, but it
is possible.

On the other hand, the boundary conditions must be changed for a more
general domain. The periodic boundary conditions provide a simple way to avoid
worrying about boundary conditions for the rectangle, but there is no clear way
to extend it to other domains. In Lindgren et al. (2011) Neumann boundary
conditions are used to give a solution which behaves close to the desired Matérn
field. For the SPDE considered in this thesis something similar can be done. The
normal derivative does not provide the desired behaviour. The diffusion matrix
can give an anisotropic diffusion operator, so setting the normal derivative equal
to zero does not stop “things” from leaving or entering the domain. A reasonable
solution is to use the directions provided by the diffusion matrix at the boundary.
Thus there are different boundary conditions that can be applied for more general
boundaries, but this is something to be considered in further work.
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An additional point worth mentioning is that the work in the thesis is re-
stricted to a constant function κ2 in the SPDE. One thing one can note from
Example 3.2.3 is that the diffusion matrix H controls the covariance structure
according to the vector field used to construct it, but there is also an effect on the
marginal variances. It would be desirable to also be able to keep the marginal
variances nearly constant while still varying the diffusion matrix. To which de-
gree κ2 can be used to do exactly that is a question not answered in this thesis,
but it is an interesting point for further studies.

From the examples in Section 3.2 it is clear that diverse spatial GMRFs can
be constructed from the SPDE. It is interesting to note that the isotropic case in
Section 3.2.1 is controlled by only two parameters. One parameter controls the
correlation range and the other is a scale factor for the solution. Thus one can
control correlation range and marginal variance. For the homogeneous anisotropic
case in Section 3.2.2 two new parameters are introduced. The example indicates
that one can specify the elliptic level curves of the correlation. One can use two
parameters to specify the shape and rotation of the ellipse, one parameter to
specify the rate at which the correlation decreases and one parameter to control
the marginal variance.

For the inhomogeneous GMRFs in Section 3.2.3 it is not possible to reduce
to a finite number of parameters. Any sufficiently differentiable diffusion matrix
can be used. As demonstrated in Section 3.2.3, the diffusion matrix can be con-
structed from a vector field that everywhere specifies directions with additional
dependence. The example shows that this gives covariances that curve along the
vector field. In the specific example the effect is large because the direction of
the vector field is given much higher dependence than the orthogonal direction.
Overall, the use of a vector field seems to have clear advantages when visualizing
the effect of the diffusion matrix. One possible problem is that changing the
diffusion matrix also changes the marginal variances.

For the SPDE-based GMRFs to be useful, it must also be possible to introduce
useful parameters which control the GMRF. In Chapter 4 observations from the
GMRF are used as way of estimating the diffusion matrix. Section 4.2 and
Section 4.3 introduce two different parametrizations of the diffusion matrix. For
each of the parametrizations one is guaranteed to get a well defined precision
matrix for the GMRF. As long as the parametrization gives a everywhere positive
definite, differentiable diffusion matrix, the resulting precision matrix is valid.
Thus for the SPDE in this thesis it is easy to introduce parameters in a valid
way.

The parametrizations in Section 4.2 and Section 4.3 are used to estimate pa-
rameters based on observations of the GMRF with and without noise. The exam-
ples for the first parametrization in Section 4.2.1 all show the good results for the
parameter estimation. But from Section 4.2.2 it is clear that this parametrization
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is not appropriate unless one knows what kind of vector fields that control the
diffusion matrix. For instance, there is no general choice of vector fields that can
estimate a constant diffusion matrix. This specific problem is better solved with
the parametrization in Section 4.3. This parametrization uses only one vector
field and instead parametrizes that one vector field. The effect of this is that the
vector field can take any constant direction with only two parameters, and one
can estimate constant diffusion matrices with only three parameters. In Exam-
ple 4.3.1 the use of three parameters gives good results. But when 15 parameters
are used in Example 4.3.2, the inference becomes much harder. For a very good
starting point it still converges to the correct solution, but it is increasingly hard
to do the numerical inference. An additional point is that there is a limit to how
many parameters one should try to estimate based on a single observation. But
this should be given closer consideration in further work.

A question only briefly touched upon in the thesis is the choice of prior. The
posterior distributions are found, but the prior is only used to limit the valid
parameter choices for the maximum likelihood estimations. The main reason
for this is that in all the examples the parameters are chosen arbitrarily. In
this setting a choice of prior would be somewhat artificial unless one gives some
meaning to the parameters. For futher study of the choice of priors, it seems
useful to consider real-life problems that one wants to solve.

From the above points there are many arguments for using a SPDE to specify
a GMRF. Firstly, the SPDE in this thesis can be used to specify many interesting
covariance structures from different diffusion matrices and the resulting GMRFs
possess a sparseness which enables fast simulation and numerical inference. Sec-
ondly, it is simple to introduce parameters that guarantee valid precision matrices
and the simple examples show that the hierarchical inference scheme gives rea-
sonable results. Thirdly, the GMRFs are approximating some continuous solution
and one can increase resolution without resulting to ad hoc modifications of the
precisions.

Necessarily, the approach is not perfect. The SPDE used in this thesis can
not give all possible covariance structures. Further, there are issues with how to
parametrize the coefficients and numerical issues for the actual implementation.
But, most importantly, the approach should be tested on a real-life example
where the parameters can be given a meaning and there are other established
methods to compare it with.
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Chapter 6

Conclusion

An SPDE with non-constant coefficients provides a useful way of specifying an
inhomogeneous GMRF. Specifically, the spatial diffusion equation studied in this
thesis admits the construction of a GMRF through a finite volume method applied
to the SPDE, and it is simple to create interesting inhomogeneous GMRFs by
varying the diffusion matrix.

Further, the introduction of parameters in the coefficients of the SPDE pro-
vides a way of estimating the coefficients. The sparseness of the GMRF approx-
imation implies that the approximate inference can be done considerably faster
than for a dense covariance matrix. But there are some issues with choosing an
appropriate parametrization of the coefficients and with numerical optimization.

In summary, the SPDE-based GMRFs show good potential for spatial models.

6.1 Future work
The work in this thesis focuses on the diffusion matrix in the SPDE in Equa-
tion (3.1), but it would be interesting to also extend the work to a non-constant
κ2. In addition, there is more work to be done on the choice of the parametrization
for the diffusion matrix and on the prior distributions for the parameters. This is
especially interesting for real-world applications where there is prior knowledge
available.

Further, the SPDE can be extended to also include a time derivative ∂u
∂t and

a transport term ∇(bu), where b is a scalar function. This raises interesting
questions as to what the difference between the diffusive term and the transport
term is for the resulting spatio-temporal model.
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