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A hybrid method for sound scattering calculations is presented in this paper. The1

boundary element method (BEM) is combined with a recently developed edge source2

integral equation (ESIE) [J. Acoust. Soc. Am. 133, pp. 3681-3691, 2013]. Although3

the ESIE provides accurate results for convex, rigid polyhedra, it has several numer-4

ical challenges, one of which applies to certain radiation directions. The proposed5

method, denoted ESIEBEM, overcomes this problem with certain radiation directions6

by applying a similar approach as BEM. First, the sound pressure is calculated on7

the surface of the scattering object using the ESIE, then second, the scattered sound8

is obtained at the receiver point using the Kirchhoff-Helmholtz boundary integral9

equation, as BEM does. The three methods have been compared for the scattering10

by a rigid cube. Based on results from several discretizations, ESIE and ESIEBEM11

results are typically (90% quartile) within 3 − 4 · 10−4 for a kL-value of 1.83 and12

2 · 10−3 for kL = 9.15, L being the cube length, of reference results computed with13

the BEM. The computational cost of ESIEBEM appears to be lower than BEM.14
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I. INTRODUCTION15

Accurate and fast numerical modelling of sound propagation and scattering is of great16

interest nowadays. A wide range of problems ranging from environmental acoustic prob-17

lems to musical instrument synthesis require the modeling of large scale 3D computational18

domains. The computational complexity of standard solution methods such as the finite19

element method (FEM), boundary element method (BEM) and finite differences in the time20

domain (FDTD), scale poorly with the problem size. Therefore, alternatives to these well21

known methods are needed. The fast multipole boundary element method (FMBEM) is22

an alternative method to accelerate the calculations of the boundary element method1 by23

clustering boundary elements and using multipole expansions to evaluate the interactions24

among clusters.25

A recent edge source integral equation method (ESIE) presented by Asheim and Svensson2
26

has shown to be more efficient computationally than the numerical methods mentioned27

above for convex, rigid scattering objects. Instead of using a mesh for the whole body28

surface (BEM), and possibly also the air surrounding the object (FEM, FDTD), only a29

discretization of the object edges is needed to compute so-called edge source amplitudes.30

In a subsequent stage, these edge source amplitudes can be used for computing the sound31

pressure in any external receiver positions, similar to the BEM, where the surface sound field32

can be used in a similar way. It has not been possible to prove that the ESIE method fulfills33

the governing Helmholtz equation, only that the results are remarkably accurate for rigid,34
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convex scattering bodies. Although this method is very attractive computationally, and in35

terms of accuracy in general, erroneous results may arise for certain receiver positions3.36

The goal of this paper is to propose a method that achieves fast calculation while main-37

taining good accuracy. The method developed is a combination of the edge source integral38

equation (ESIE) method and the boundary element method (BEM). Parts of this work were39

presented in the POMA paper4 by the same authors. The method avoids the singularities for40

certain receiver positions of the ESIE3, and it also avoids the well-known internal resonance41

phenomenon of the BEM formulation commonly avoided by using the Burton and Miller’s42

method5 or the CHIEF points technique6. The computational cost of this hybrid method43

will be compared to the BEM and to the original ESIE.44

This paper is organized as follows: in section II, the fundamental equations and theo-45

retical backgrounds for the three methods, the boundary element method (BEM), the edge46

diffraction-based ESIE method and the hybrid method are introduced. Section III summa-47

rizes the implementation details of the methods as well as the description of the benchmark48

case, and the results obtained are presented and discussed in section IV. Finally, section V49

collects the conclusions of the paper.50

II. THEORY51

There are two large families of methods for solving acoustic scattering problems: those52

commonly called wave-based techniques derived from the wave equation (BEM, FDTD,53

FEM, FMBEM) and those referred to as geometrical-acoustics techniques which are high54

frequency assymptotic solutions (the image source method, ray tracing). The latter can also55
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have diffraction-based extensions such as the geometrical theory of diffraction (GTD) pre-56

sented by Keller7, the Uniform Theory of Diffraction (UTD) by Kouyoumjian and Pathak8,57

or the recent edge source integral equation method (ESIE) by Asheim and Svensson2 men-58

tioned above. Two of these methods will be presented more in detail below: the wave-based59

boundary element method, and the edge source integral equation method. Their respective60

advantages and drawbacks will be identified, and a new hybrid method will be presented61

that exploits the advantages of both techniques and avoids some of their limitations when62

combined to solve scattering problems.63

A. The boundary element method (BEM)64

The acoustic boundary element method is a well-established method in acoustics, espe-65

cially suitable for infinite domains (outdoor/free-field environment). The BEM formulation66

is based on the Helmholtz integral equation which relates the sound pressure p(P ) at any67

point P to the sound pressure p(Q) and the normal velocity vn(Q) at positions Q on the68

surface D of a scattering body. In this paper, only rigid scattering polyhedra will be stud-69

ied and so the Neumann condition vn(Q) = 0 holds for any point Q ∈ D. Therefore, the70

Helmholtz integral equation for these cases can be expressed without the monopole term71

and it can be written as follows9
72

C(P )p(P ) = 4πpI(P ) +

∫
D

∂G(P,Q)

∂n
p(Q)dS, (1)

where G(P,Q) =
e−jkR

R
is the free-field Green’s function in 3D between two points P and73

Q, R is the Euclidean distance between P and Q, pI is the incident sound pressure, C(P )74
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is the solid angle corresponding to 0, 2π or 4π if P is inside, on the surface, or outside of75

the object, respectively, k is the wavenumber, and n is the normal vector to the surface at76

Q pointing away from the body. A time-harmonic factor ejωt has been omitted in Eq. (1)77

and throughout the paper.78

The sound pressure at any point P expressed in Eq. (1) is interpreted here as a sum of79

contributions from free-field radiating dipoles aligned with the surface normal vector. The80

strength of the dipole is given by the surface sound pressure and once this sound pressure81

on the surface is known, then the sound pressure at any point P can be obtained.82

The boundary element method calculates the sound pressure in a field point P in two83

steps. In the first step, the solution on the surface of the scattering object is obtained by84

placing P on the surface of the scattering object, and Eq. (1) becomes an integral equation.85

In the second step, the so-called ”propagation” step, the sound pressure in the sound field86

is calculated by letting P be an external point, often termed as a ”field point”.87

Different discretization methods are commonly used for the first step, such as the projec-88

tion methods (Galerkin, collocation) or Nyström methods, which turn Eq. (1) into various89

forms of linear systems of equations. The number of degrees of freedom in that system of90

equations is directly related to both the accuracy of the solution and the computational91

cost.92

The BEM, when it is applied to exterior scattering problems, has a well-known problem93

as mentioned in the introduction. The matrix equation to solve becomes ill-conditioned at94

the natural frequencies of the corresponding interior problem, but two different solutions95

have been presented in the literature for this problem. A first technique is using so-called96
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CHIEF points, or internal control points, where the sound field is enforced to be zero6.97

A second one is the so-called Burton-Miller technique5 which uses a linear combination of98

the Kirchhoff-Helmholtz integral equation and its normal derivative. Marburg and Amini10
99

show that the Burton and Miller method is a more robust method compared to the CHIEF100

method as its solution is unique for exterior acoustic problems at all frequencies10.101

Another challenge of the BEM is the singularity in the integral kernels, which becomes102

prominent for thin bodies and narrow gaps11 as well as when the field point is located near103

the boundary of the scattering object. There have been different approaches to overcome104

that difficulty making use, for instance, of singular numerical integration as suggested by105

Cutanda et al.12, splitting the integral using analytical removal of the singularity11,13, or106

using a polar coordinates transformation as presented by T. Terai14. The details of these107

techniques will not be discussed in this paper and the interested reader is referred to the108

cited work for more details.109

B. Edge source integral equation method (ESIE)110

The edge-diffraction based method used in this paper is the edge source integral equation111

(ESIE) method suggested recently by Asheim and Svensson2. This method, which was112

shown to be accurate and efficient for rigid convex scattering objects, decomposes the total113

acoustic field into three different components:114

ptot(P ) = pGA(P ) + pD1(P ) + pHOD(P ), (2)
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where pGA(P ) is the geometrical acoustics component, and pD1(P ) and pHOD(P ) correspond115

to the first- and higher-order diffraction components respectively. The geometrical acoustics116

term, pGA, represents the direct and reflected sound considering the visibility between source117

and receiver, and it can easily be obtained by the commonly used image source (IS) method.118

The first-order diffraction is based on a representation of the diffracted field for a single119

wedge15, which is a reformulation of the analytical solution for infinite edges by Bowman120

and Senior16 that can be applied to finite edges.121

This first-order diffraction term in Eq. (2) at a receiver’s position P , pD1(P ), can thus122

be computed as an explicit line-integral equation over the set of edges Γ of the scattering123

object as124

pD1(P ) = − 1

4π
qSνz

×
∫

Γ

VP,zVz,S
e−jkrP,z

rP,z

e−jkrz,S

rz,S
β(P, z, S)dz, (3)

where qS is the source strength of the sound source, S, defined such that qS = ρ0A/4π,125

where ρ0 is the density of the medium at rest, and A is the volume velocity amplitude of the126

monopole sound source. In Eq. (3) νz is the so-called wedge index, Va,b is a point-to-point127

visibility term being one when a is visible from b and zero otherwise. The term β(P, z, S) is128

a function which depends only on the wedge angle and on the angles of the sound source, S,129

and receiver, P , defined relative to the tangent at the edge point z, and thus β is interpreted130

as a directivity function of a virtual/secondary edge source at point z15. The integral in131
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Eq. (3) can be computed by standard quadrature methods or, as suggested by Asheim and132

Svensson, by employing the efficient and accurate numerical method of steepest descent17.133

The higher-order diffraction term, pHOD, is obtained by the introduction of explicit edge134

source strengths for the secondary sources along the edges referred to above, for first-order135

diffraction. The computation process is similar to the BEM in that first, the strengths of136

these secondary edge sources are calculated by solving an integral equation and secondly,137

the diffracted sound pressure, pHOD, is obtained via a propagation integral from the edge138

sources to the receiver. Below is a brief description of the formulation to obtain pHOD.139

Let q(z1, z2) be defined as the equivalent source strength at an edge point z2 radiating in

the direction of another edge point z1. As shown by Asheim and Svensson2, q(z1, z2) needs

to satisfy the following integral equation

q(z1, z2) = q0(z1, z2)− 1

8π

∫
Γ

q(z2, z) ·
e−jkrz2,z

rz2,z

× νz2Vz1,z2Vz2,zβ(z1, z2, z)dsz. (4)

The term q0(z1, z2) corresponds to the equivalent source strength at z2 due to the field140

diffracted at z2, coming from the source S, in the direction of z1 which is expressed as141

follows142

q0(z1, z2) = − 1

8π
ν2Vz1,z2Vz2,S

e−jkrz2,S

rz2,S

β(z1, z2, S). (5)

Once the edge source strengths are obtained, by solving the integral equation (4), the term143

pHOD(P ) can be computed by a double integral, each integration taken along the set of all144

edges, expressed as follows145
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pHOD(P ) = − 1

8π

∫
Γ

∫
Γ

q(z1, z2)νz1VP,z1Vz1,z2

× e−jkrP,z1

rP,z1

e−jkrz1,z2

rz1,z2

β(P, z1, z2)dsz2dsz1 , (6)

where the spherical radiation factors and the same directivity function β as used in Eq.(3)146

have been considered.147

Note that the computation of the edge source strengths q(z1, z2) in Eq.(4) is independent148

of the receiver’s position in the same way as the first step of the BEM when computing the149

sound field at the surface of the scattering object. The attractiveness of the ESIE, though, is150

that there is only the need to discretize the edges of the object instead of the entire surface,151

which reduces considerably the computational cost. A further advantage of the ESIE versus152

the BEM is that the ESIE does not have any problem with the internal fictive resonances153

that the BEM suffers from. On the other hand, the intermediate quantities are more directly154

useful for the BEM than for the ESIE: the surface sound pressure might be exactly what is155

sought in some applications, whereas those edge source amplitudes are apparently not useful156

for anything by themselves.157

The ESIE gives very accurate results for rigid convex scattering objects (so, with no158

indents) and even gives accurate results in the low-frequency limit2. As mentioned in the159

Introduction, it has not been shown that the ESIE method should give an exact solution to160

the Helmholtz equation. Very accurate results have been demonstrated nevertheless, and161

it is not clear how this conundrum can be tackled. But, for certain receiver positions, the162

convergence to the accurate solution for the propagation step is very slow due to that the163
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directivity function β in Eq.(6) has some singularities that depend on the positions of the164

receiver P relative to the edge sources z1 and z2. Two edges define a virtual plane, exterior165

to the scatterer, and the directivity function β makes a jump as a receiver position crosses166

that virtual plane3. Associated with that jump is a very slow convergence.167

Since the β-function is also used in the expression for the term q0, in Eq. (5), there will168

be inaccurate results associated with external source positions that are very near to any of169

the planes that are formed by pairs of the scattering body’s edges. Finally, the presence of170

the β-function in the integral equation operator in Eq. (4) leads to slow convergence when171

smooth scattering objects are represented by polyhedra. Interestingly, the ESIE formulation172

is numerically much more efficient for scattering bodies with edges than for smooth bodies.173

C. Combining the ESIE and the BEM: ESIEBEM174

It is possible to combine the two presented methods in a way that uses their respective175

strengths and overcomes some of their respective weaknesses. The hybrid method proposed176

here, called the ESIEBEM from now on, is based on using the ESIE, instead of the Helmholtz177

integral equation, for obtaining the sound pressure on the surface. At this calculation178

stage, the surface of the object is discretized by an element mesh and the sound pressure179

is computed at the element centers (collocation points). The expression of the directivity180

function β for this case, appearing in both Eq. (3) and Eq. (6), has been derived in the181

Appendix VII. Note that β would have no singularity related to the receivers positions on182

the surface, except for source positions close to a plane of the scattering object (as discussed183

in Section II B). There is also a 1/r-singularity, where r is the distance from the receiver184
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point to and edge point, which is the reason to use collocation points instead of the element185

nodes. However, the computation of the directivity function β will still have some challenges186

when two or more faces of the scattering polyhedron are close to co-planar.187

The principles of the ESIE and ESIEBEM are illustrated in Fig. 1. The ESIEBEM188

involves three calculation steps. The first step is the same as for the ESIE: calculation of189

the edge source strengths, given the external source, using Eqs. (4) and (5). The second190

step is the edge source-based computation of the sound pressure in the element collocation191

points on the surface, using Eq. (2), (3), and (6) and the third step employs the propagation192

integral of the BEM, Eq. (1).193

ESIE: Computation of
the edge sources strengths

ESIE

ESIEBEM

Propagation of edge source strengths
to the sound pressure at receiver

Propagation of edge

the sound pressure on
surface mesh points

Propagation of surface
mesh points sound

pressure at receiver

ESIEBEM

source strengths to
pressures to the sound

using Eqs. (4) and (5)

using Eq. (6)

using Eqs. (2), (3) and (6) using Eqs. (1)

FIG. 1. Illustration of the ESIE and the ESIEBEM computation steps. The discretization of edges

and surfaces as well as paths drawn are only a few, for illustration purposes.

The main advantage of using the ESIE in this first step of computing the sound pressure194

on the surface is that the ESIE is highly efficient for finding the sound pressure in receiver195

positions that are not challenging for the method. Therefore, the computation time might196
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be advantageous compared to the BEM. Moreover, the accuracy of the ESIEBEM seems to197

be guaranteed as long as the receiver points on the surface are not immediately at the edge3
198

and the scatter has no co-planar faces.199

III. IMPLEMENTATION200

A. BEM - Direct collocation method201

In this paper, the OpenBEM implementation developed by Juhl and Henriquez has been202

used for obtaining the BEM results. OpenBEM is a collection of open-source Matlab func-203

tions for solving acoustical problems in 2D, 3D or axi-symmetric settings18. Interested204

readers will find a detailed description of it in Ref.19 by Juhl and a shorter version of it in205

Ref.20 by Henriquez and Juhl.206

The implementation employs the direct collocation method to compute the sound pressure207

on the scattering body surface. The scatterer’s surface is discretized into a mesh of elements,208

triangular or quadrilateral, and the sound pressure is calculated at the nodes of this mesh.209

When the point P in Eq. (1) is placed at any node, the following matrix expression results210

Cp = Ap + 4πpI, (7)

where the matrix A contains integrals of the kernel functions defined in Eq. (1).211

Since rigid scattering objects are considered in this paper, the Neumann boundary con-212

dition applies, i.e., vn(Q) = 0, and the left-hand side term in the expression can be directly213
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substracted from the diagonal of the first term on the right-hand side, and Eq. (7) is214

simplified to215

p = D−1(−4πpI), (8)

where D = A − C is a full matrix. If the surface mesh used has N elements, then the216

computational complexity to solve the scattering problem with the OpenBEM is of the217

order of N2, for building up the needed matrices, with a subsequent step scaling as N3
218

for inverting the matrix. The simple Gauss elimination is used here to solve Eq. (8),219

although other more efficient iterative solvers could have been implemented, and reduced220

the complexity by an order of magnitude. The minimum number of surface elements will221

depend on the square of the maximum frequency studied, fmax, so the total computation222

time might scale as Tcomp ∼ f 4
max − f 6

max, depending on which stage is computationally223

dominating in a specific implementation.224

The OpenBEM uses the common method with CHIEF points to avoid the problems at225

certain fictive internal resonance frequencies6.226

B. ESIE - Matrix equation formulation227

The ESIE method used in this paper was implemented in Matlab by Svensson et al.21
228

as the ”Edge diffraction toolbox” published under the terms of the GNU General Public229

License and currently available on GitHub. The toolbox computes various combinations of230

specular reflections and higher-order diffraction, in the frequency domain.231
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The ESIE is based on the solution of the integral equation in Eq. (4) where the unknown232

edge source strengths q(z1, z2) need to be solved for each pair of edge points (z1, z2). This is233

done using the straightforward Nyström, or quadrature, method, where the integral equation234

is discretized at positions zi along all the straight edges of the polyhedron. The unknowns235

are the edge source strengths, defined for pairs of discrete points along the edge, q(zi1, z
j
2),236

which refer to the edge source amplitude at edge point zj2, in the direction of edge point237

zi1. For each straight edge of the polyhedron, a Gauss-Legendre (G–L) quadrature scheme is238

employed. A certain G–L quadrature order is chosen for the longest edge, and proportionally239

lower orders are chosen for shorter edges. For a cube example, if each of the 12 edges are240

discretised according to a G–L quadrature order ngauss, a total of 12 ·ngauss edge points will241

consequently be generated. As discussed further below, each edge point of a cube can reach242

6 other edges, and thus 6 · ngauss other edge points, for a total of 72 · n2
gauss unknowns. By243

constructing a column-vector q with all the terms q(zi1, z
j
2), zi1 and zj2 being the discretization244

points of all edges, Eq. (4) can be rewritten as the matrix expression245

q = q0 + Hq, (9)

where the matrix H contains sampled values of the kernel of the integrand operator in Eq.246

(4), including the weighting factors of the Gauss-Legendre quadrature rule. This matrix247

equation can be solved by inversion248

q = [I−H]−1q0, (10)
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although the size of the H-matrix often prohibits such a direct inversion. Fortunately, H249

has a very sparse nature, which makes an iterative solution of Eq. (9) very efficient2. Thus,250

iteration step n gives a term251

qn = Hqn−1, n ∈ N, (11)

where q0 is given by sampled values of Eq. (5), and all terms of the truncated iteration252

process are summed up to the final solution,253

qfinal =

Ntruncation∑
n=0

qn, (12)

The final solution is then propagated to the receiver with Eq. (6), and the term pHOD254

obtained will correspond exactly to the contribution of all orders of diffraction up to and255

including order (Ntruncation + 2). The matrix equation formulation for this propagation is256

p = Fqfinal, (13)

where p is the sound pressure amplitude in a single receiver point, and F is a horizontal257

vector of samples of the integrand in Eq. (6), again with weighting factors according to the258

Gauss-Legendre quadrature.259

The sparseness of the matrix H is the reason for the efficiency of the ESIE, and it is260

explained in Appendix VIII. The minimum number of edge points/sources, Nes will scale as261

Nes ∼ fmax, whereas the number of edge source amplitudes, Nq will scale as Nq ∼ N2
es ∼ f 2

max.262

The size of the H-matrix is such that the number of non-zero terms is ∼ N
3/2
q , so the iterative263

solution of the matrix equation will cost Tcomp ∼ f 3
max. This suggests that the ESIE could264
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indeed be more efficient than the BEM for computing the field at the surface of the scattering265

body.266

C. ESIEBEM267

The hybrid method ESIEBEM suggested in this paper employs the discretization of the268

scatterer’s surface like the BEM does. Triangular elements are used in this paper rather than269

quadrilateral elements but the hybrid method might be used with quadrilateral meshing as270

well.271

As mentioned earlier in the text, it is known that the ESIE converges very slowly for272

receiver positions where the visibility factor suddenly changes from 0 to 1, along the zone273

boundaries that extend away from the scattering polyhedron. Receiver positions on the274

surface of the scattering bodies are, however, not exposed to this problem. On the other275

hand, along the edges of the scattering polyhedron, there are numerical challenges for the276

ESIE, caused by the 1/r-factor in the involved integrals. No scheme has been developed for277

mitigating this singularity, and therefore the standard quadrature method that is employed278

here becomes inefficient for receiver positions very close to the edge. However, if the surface279

sound pressure is calculated at element center points (i.e. collocation points) rather than at280

the nodes, the effect of this singularity is reduced. Improved schemes might be developed281

that handle that singularity more efficiently.282

Yet another singularity occurs at the corners where two or more edges meet. The Gauss-283

Legendre quadrature approach does not use any quadrature points at the integration range284

endpoints, that is, at those corners, and no problems have been encountered with the quadra-285
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ture used for the integral equation. A well-behaved polynomial convergence is demonstrated286

in section IV B, as long as receiver points are not close to any zone boundaries. Also, in287

Ref.2, the case of a circular disc was studied in detail. For a symmetrical incident field, the288

integral equation could be simplified to a one-dimensional one, which was evaluated with the289

midpoint method, in order to avoid the same singularities at the endpoints of the integration290

range. No problems with convergence were encountered there either.291

The internal-resonance problem and the thin-scattering-body problem mentioned in sec-292

tion II A that BEM encounters, do not apply to the ESIEBEM, but the near-singularity issue293

for field points near the scattering bodies applies for both, BEM and ESIEBEM. OpenBEM294

uses a refined quadrature scheme and the solution for the near-singular kernels could be295

either to increase the mesh density near the close point or to increase the order of the296

numerical integration? .297

The test cases are calculated with different meshes when solving the problem with the298

BEM and ESIEBEM, and with different numbers of edge discretization points when solving299

the problem with the ESIE. The meshes have been created with the open-source GMSH300

software22. All elements are considered to be triangular and the receiver points (i.e. the col-301

location points of the elements) correspond to the center points of these triangular elements302

in the first ESIEBEM calculation step. The ESIEBEM uses isoparametric elements with303

constant shape functions and derivatives of these shape functions equal to zero, as employed304

in the OpenBEM.305
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D. Test case306

The scattering object studied here is one of the simplest to test the performance of the307

novel hybrid method: a rigid cube as shown in Fig. 2. A cube of size 1 x 1 x 1 m3 has been308

modeled centered at the origin, assuming an incident field of a sound source located very far309

away at a position (x, y, z) = 106/
√

3(1, 1, 1) m, to emulate a plane wave impinging on the310

scattering object. The results shown in this section are for the frequencies 100 and 500 Hz,311

corresponding to kL = 1.83 and 9.15, respectively, where L is the side length of the cube.312

The receiver positions are in the plane z = 0 along a 1 m radius circumference with313

a total of 629 receivers uniformly distributed, with a step of 0.01 radians, starting from 0.314

Twelve different meshes were constructed for the BEM, with 408, 624, 744, 1096, 1480, 3124,315

6260, 10204, 13084, 20456, 30940 and 50872 elements. With the ESIE method, edges were316

discretized with 16, 24, 32, 40, 48, 56, 64, 80, and 96 edge points per edge, giving 192-1152317

total edge points.318

The calculations were carried out on a Macintosh HD with a processor of 2.7 GHz (Intel319

Core i5) and 16 GB RAM and on a desktop computer with an operating system Windows320

10 and a processor Intel(R) Xeon(R) 3.4 GHz and 8.0 GB RAM.321

IV. RESULTS322

In this section, results will first be presented with the finest BEM-mesh results viewed as323

reference results. In the subsections following after, the application of linear extrapolation324

will be explored to reach a higher accuracy for all the methods.325
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FIG. 2. Benchmark test case, a cube of 1x1x1 m3 and 629 receivers located along a circumference

of 1 m radius. Collocation points on the cube surface are depicted with black crosses. The same

mesh with triangular elements is used both for the BEM and ESIEBEM, and the figure shows a

coarse mesh for visualization purposes with 200 nodes and 396 collocation points.

A. Overcoming problematic positions for the ESIE by using the ESIEBEM326

As explained in Section II B, the ESIE method has singularities for some receiver po-327

sitions. To demonstrate this effect, the sound pressure has been computed for the two328

frequencies, 100 Hz and 500 Hz, and all 629 receivers indicated in Fig. 2 using a BEM mesh329

with 50872 elements and collocation points, and an ESIE discretization with 96 edge sources330

per edge, that is, 96 · 12 = 1152 edge sources and 96 · 12 · 96 · 6 = 663552 unknowns in the331

q-vector (eq. 9). ESIEBEM then used the same numbers of surface mesh elements and edge332

sources.333

Fig. 3 shows the sound pressure level difference for the methods ESIEBEM and ESIE,334

relative to the reference results given by the BEM for 100 Hz and for 500 Hz. It can be335
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quite clearly seen that the ESIE has problems for some of the eight expected receiver angles,336

namely those that are very close to one of the infinite planes that contain the cube surfaces337

as mentioned in Section II B. Confirming one of the goals of developing the hybrid method,338

the ESIEBEM seems to give accurate results for those positions and therefore overcomes339

the singularities of the problematic receiver positions of the ESIE.340

Comparing Fig. IV A and Fig. IV A, it can be observed that the sound pressure level341

difference between the two methods, ESIE and ESIEBEM, and the reference result given by342

BEM, is in much better agreement for 100 Hz than for 500 Hz. The mesh sizes are the same343

for both calculations so the number of elements per wavelength is five times higher in case344

(a) than in case (b).345

Two receivers have been chosen and depicted in Fig. 3 for further study in the next346

sections: R1 at 142.6◦ is a non-problematic receiver for ESIE and R2 at 239.5◦ is a receiver347

close to a singularity of the ESIE propagation integral in Eq. 6.348

B. Convergence for the three methods349

Each method has been run for different discretizations and here, the convergence of each350

method towards their respective final value is analyzed further.351

The potential for using extrapolation to find an estimate of the ultimate/final result, for352

an infinitely large number of elements, is explored below. This is the same technique as is353

used in Richardson extrapolation, where it is assumed that each computed value, pn, based354

on a discretization step, ∆hn, is governed by a Taylor expansion around the final value,355

pn = pfinal + C0∆hk0
n + ... (14)
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FIG. 3. Sound pressure level difference as function of the receiver angle for the 629 receivers in

Fig. 2. Reference method is the BEM with 50872 elements. Two receiver positions are marked,

R1 and R2, that will be studied further. The frequency is: a) 100 Hz and b) 500 Hz.

22



where k0 is a known or unknown exponent of the error convergence for the method at hand,356

and only the first polynomial term is kept. For the methods employed here, the sought value357

pfinal can be found via a straight line fit to the data points pn against 1/BEM-mesh-size, for358

the BEM and ESIEBEM results and 1/ESIE-edgesource-number2 for the ESIE results. The359

final value would then be the intersection of the straight line with the y-axis representing a360

potential value for an infinite mesh of each method respectively.361

Fig. 4 shows one example for the real part of the sound pressure amplitude at 100 Hz362

for all three methods, for receiver R1 at 142.6◦ chosen in the previous section. The results363

are plotted versus 1/BEM-mesh-size for the BEM and ESIEBEM, and 1/ESIE-edgesource-364

number2 multiplied by 102 for visual purposes, respectively. The four finest discretizations365

for each method have been used for a straight line-fit, and the subsequent extrapolation to366

the y-axis crossing will be an estimate of the pfinal values for each method.367

It can be seen that the results for all three methods follow a trend that becomes rather368

linear for the finer discretizations, which supports the expected error convergence exponent:369

BEM and ESIEBEM converge as O(1/N) and ESIE as O(1/N2). As a sidenote, it can370

be pointed out that a uniform discretization of the edges in the ESIE gives a O(1/N)-371

convergence, so the Gauss-Legendre quadrature used in the implementation gives a much372

better accuracy for practically the same computational cost.373

374

An interesting way to evaluate the convergence of these results is presented here. Figs. 5375

and 6 show the trajectories of the complex sound pressure amplitude, as the discretization376

is refined, for all three methods, for the two different receivers R1 and R2, for 100 Hz (Fig.377
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FIG. 4. Real part of the sound pressure amplitude at 100 Hz and receiver R1, computed with

a number of different discretizations for the BEM, ESIEBEM, and ESIE method. The results for

the four finest discretizations have been used for the linear regression.

5) and 500 Hz (Fig. 6), respectively. Also the extrapolated values obtained for each method378

have been plotted, except for the ESIE method at R2 since this receiver is near a singularity379

location and its extrapolated value can not be determined.380

It can be seen that for receiver R1 the ESIE and ESIEBEM converge to its final value381

quite quickly and with a smooth and uniform trajectory, while the BEM takes larger steps.382

For the ESIE problematic receiver, R2, it can be observed that the final value is not at383

the end of a smooth trajectory, since the results jump back and forth as the discretisation is384

increased. The singularity of the ESIE for those problematic positions might be solved by385

simply refining enough the discretization of the integration points. However, the convergence386
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is very slow and it is not clear that the refining would ultimately converge to the correct387

result.388

It is also interesting to notice that the extrapolated estimates of the result with the finest389

meshes for each method are much closer to each other than the results for the finest dis-390

cretizations themselves. Certainly, the value of pfinal that is found in the way explained above391

(see Eq. (14)) is not the ultimate result, but it can be viewed as a more accurate estimate392

of the ultimate result than the best computed result, pn,max with the finest discretization.393

Now, the convergence of each method towards their respective final value, pfinal, can be394

studied. For each receiver, the relative error is computed with this extrapolated estimate of395

the final result used as reference result,396

εirel =

∣∣∣∣ p̂i − pref

pref

∣∣∣∣ , (15)

where p̂i is the sound pressure at receiver i and pref the reference sound pressure, in this397

case, pref = pfinal. This relative error will vary among receiver positions, with potentially very398

large variations, so here the median value, rather than the mean, across receiver positions399

is presented as follows. Figs. IV B and IV B present the median relative error over all the400

receivers as function of BEM-mesh elements and number of edge sources, for the frequencies401

100 Hz and 500 Hz, respectively. The median has been chosen here rather than the mean402

or the maximum absolute error to basically remove the well known inaccurate results given403

by ESIE for certain receiver positions as discussed earlier.404

All three methods display convergences with the assumed rates. Notably, the use of405

the extrapolated result as a reference, rather than the result for the finest discretization,406

makes these curves follow the trends very well. It is worth to mention that those rates would407
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increase in case polynomials of higher order in BEM or ESIEBEM were used. Apparently, the408

ESIE converges to the extrapolated value with the fastest rate and the ESIEBEM converges409

to its extrapolated value with smaller error than the BEM. Thus, the hybrid ESIEBEM410

method developed in this paper, is performing very well compared to the boundary element411

method. It is interesting to note that the ESIE results reach similar accuracies for both412

frequencies, 100 Hz and 500 Hz. The error of BEM and ESIEBEM, on the other hand, gets413

one order of magnitude higher from the results at 100 Hz to the ones at 500 Hz, which is414

not surprising since the discretizations are the same for both frequencies.415

It should also be realized that the reference result in Fig. 7 was computed from the416

results of each method to demonstrate the method’s convergence. The studied acoustic417

scattering problem does not have an analytical solution, but the extrapolation of the BEM418

can be considered as a reference result to compare the results of the methods. Fig. 8 shows419

different measures of the relative error (over all receivers) using the BEM extrapolation value420

as a reference pref in Eq. 15, in this case, pref = pfinal,BEM, for 100 Hz (Fig. IV B) and 500 Hz421

(Fig. IV B): the maximum error, the 90% percentile, the mean error and the 50% percentile422

(the median) over all 629 receivers for each of the three methods. First, it is interesting to423

notice the significant difference between the maximum error and the 90% percentile for the424

ESIE which is due to the well known problematic receivers. This effect causes the mean425

and the median errors for the ESIE to be quite different too, and as mentioned earlier, that426

is the reason to make use of the median rather than the mean in Fig. 7. For ESIEBEM427

and BEM, both the maximum error and the 90% percentile are quite close, as well as the428

median and the mean errors.429
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It can also be observed that the ESIE and ESIEBEM have smaller errors relative to the430

BEM extrapolation than the proper BEM up to a certain fine BEM mesh. The relative431

errors of the ESIE and ESIEBEM typically (90% quartile) reach 4 · 10−4(ESIE) and 3 · 10−4
432

(ESIEBEM) at 100 Hz, and 2 · 10−3 at 500 Hz, relative to the extrapolated BEM result,433

which is considered as the best possible reference result.434

V. CONCLUSIONS435

A new hybrid method (ESIEBEM) combining a technique which is an extension of436

geometrical-acoustics, the edge source integral equation method (ESIE), and a wave-based437

technique, the boundary element method (BEM), has been introduced in this paper. A438

benchmark case has been presented to study the performance of the proposed ESIEBEM439

method: the study of the scattering by a rigid cube for plane wave incidence; with receivers440

around the cube, not very close to the cube surface.441

The results obtained by the ESIEBEM have been compared with those given by the442

boundary element method (BEM) and the edge diffraction based method (ESIE). Compu-443

tations have been carried out with several different discretizations, and linear extrapolation444

has been employed to estimate more accurate results than the computed ones. The ES-445

IEBEM inherits the property of the ESIE to give accurate results for convex bodies but has446

the advantage that it overcomes the singularities of the ESIE for certain receiver positions.447

Resonances in the reciprocal interior problem are not related to the ESIEBEM and CHIEF448

points are not needed.449
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FIG. 7. Median relative error, across all 629 receivers, as a function of number of nodes in the mesh

(for the BEM and ESIEBEM) or number of edge integration points (for the ESIE). The reference

result is the linear regression extrapolation for each method respectively. Calculated frequencies:

a) 100 Hz and b) 500 Hz.
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Frequency: 100 Hz

Frequency: 500 Hz

FIG. 8. Relative error, across all 629 receivers, as a function of number of nodes in the mesh (for

the BEM and ESIEBEM) or number of edge integration points (for the ESIE). The reference result

is the linear regression extrapolation of BEM for all three methods. The frequency is a) 100 Hz

and b) 500 Hz.
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The computational time for the ESIE and ESIEBEM seems advantageous compared to450

the BEM for the cube test case. The ESIEBEM also shows good accuracy compared to the451

BEM and the ESIE. The convergence for two receivers was investigated in detail and the452

ESIEBEM converges to the similar value as the ESIE. The relative errors of the ESIE and453

ESIEBEM typically (90% quartile) reach 4 ·10−4(ESIE) and 3 ·10−4 (ESIEBEM) at 100 Hz,454

and 2 · 10−3 at 500 Hz, relative to the extrapolated BEM result, which is considered as the455

best possible reference result.456
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VII. APPENDIX A: DIRECTIVITY FUNCTION FOR RECEIVERS ON THE468

SURFACE469

The directivity function β in Eq. (3), also used in Eq.(4), is defined by470

β(R, z, S) =
4∑

i=1

sin(νθi)

cosh(νη)− cos(νθi)
, (16)

where the angles θi are471

θ1 = π + θS + θR, θ2 = π − θS + θR, (17)

θ3 = π + θS − θR, θ4 = π − θS − θR, (18)

and η is an auxiliary function defined by472

η = cosh−1

(
cosϕS cosϕR + 1

sinϕS sinϕR

)
. (19)

When the receiver R is placed on the surface, so θR = 0, then θ1 = θ3 and θ2 = θ4. Therefore,473

Eq. (16) is simplified to474

β(R, z, S) = 2 ·
(

sin(νπ + νθS)

cosh(νη)− cos(νπ + νθS)
+

sin(νπ − νθS)

cosh(νη)− cos(νπ − νθS)

)
, (20)

By using the trigonometric identities475

sin(νπ−νθS) = sin(νπ) cos(νθS)−cos(νπ) sin(νθS), sin(νπ+νθS) = sin(νπ) cos(νθS)+cos(νπ) sin(νθS),

(21)
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cos(νπ−νθS) = cos(νπ) cos(νθS)+sin(νπ) sin(νθS), cos(νπ+νθS) = cos(νπ) cos(νθS)−sin(νπ) sin(νθS),

(22)

and the equality476

sin(νπ) cos(νπ) =
sin(2νπ)

2
, (23)

Eq. (20) can be rewritten as477

β(R, z, S) = 4 ·

 sin(νπ) cos(νθS) cosh(νη)− sin(2νπ)

2
(cosh2(νη)− 2 cosh(νη) cos(νπ) cos(νθS) + cos(ν(π − θS)) cos(ν(π + θS))

 .

(24)

This expression is used in the ESIEBEM to compute the first order diffraction component478

in Eq. (3) at the collocation points on the scatterer’s surface. Interestingly enough, the479

directivity function β(R, z1, z2) used to obtain the higher order diffraction term in Eq. (6)480

can also be reduced from Eq. (24). Since z2 is on the surface, θS = θz2 = 0 and the simplified481

expression for β(R, z1, z2) turns to be482

β(R, z1, z2) = 4 ·

sin(νπ) cosh(νη)− sin(2νπ)

2
(cosh(νη)− cos(νπ))2

 , (25)

where η is defined in Eq. (19).483
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VIII. APPENDIX B: THE SPARSENESS OF THE H-MATRIX FOR THE ESIE484

The sparsity of the H-matrix in Eq. (11) can be understood as follows. For simplicity485

a cube is chosen as scattering object such that all the edges have the same length. The486

number of discretization points per edge is denoted with Nper edge. Each edge point can487

then see 6Nper edge other edge points, because each edge can see exactly 6 of the 12 edges of488

the cube. Other polyhedral shapes than the cube will have other values than 6/12. There489

are altogether 12 edges and consequently a total of Ntotal = 12Nper edge edge discretization490

points. The number of unknowns (edge source amplitudes q(z1, z2)) is then Nunknowns =491

12Nper edge · 6Nper edge = 0.5N2
total. Thus, the vector q and the transfer matrix H will492

have sizes of [0.5N2
total, 1] and [0.5N2

total, 0.5N
2
total] respectively. Each row in this H-matrix493

will obviously have 0.5N2
total elements, but since each edge source can be reached only by494

0.5Ntotal other edge sources, only 0.5Ntotal entries in each row will be non-zero. Altogether,495

the H-matrix has 0.25N3
total non-zero elements of all its 0.25N4

total, which represents a high496

degree of sparseness.497

The computational cost for obtaining the edge source amplitudes qfinal is given by setting498

up the H-matrix and the iterative solution of Eq. (11), so the calculation time, T , will be499

Tqfinal
= Cset−upN

3
total + Citer.NtruncationN

3
total

∼ (1 + Citer.,rel.Ntruncation)N3
total (26)

where the various C are constants, and the value of Ntruncation is typically below 2023.500
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Finally, the higher-order diffraction sound pressure at Nreceivers receiver points is obtained501

by calculating the double integral in Eq. (6), which is computed for the same discretization502

as described above. The time for this stage will be503

Tprop. ∼ NreceiversNunknowns ∼ NreceiversN
2
total. (27)

As indicated by Eqs. (26) and (27), the calculation of the qfinal is typically the dominating504

computational stage, but for the application here, the number of receiver points is high, so505

the propagation stage might be significant.506
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