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Abstract.  Dispersed collagen fibers in fibrous soft biological tisshage a significant ef-
fect on the overall mechanical behavior of the tissues. @otige modeling of the detailed
structure obtained by using advanced imaging modalitissiegn investigated extensively in
the last decade. In particular, our group has previouslggsed a fiber dispersion model based
on a generalized structure tensor. However, the fiber tarsmmpression switch described in
that study is unable to exclude compressed fibers within gedsson and the model requires
modification so as to avoid some unphysical effects. In antepaper we have proposed a
method which avoids such problems, but in this present stwgljntroduce an alternative ap-
proach by using a new general invariant that only dependé@fitbers under tension so that
compressed fibers within a dispersion do not contributeacstrain-energy function. We then
provide expressions for the associated Cauchy stress asticél/ tensors in a decoupled form.
We have also implemented the proposed model in a finite eleamatysis program and illus-
trated the implementation with three representative exasngimple tension and compression,
simple shear, and unconfined compression on articulatageti We have obtained very good
agreement with the analytical solutions that are availédoi¢he first two examples. The third
example shows the efficacy of the fibrous tissue model in @facpale simulation. For compar-
ison we also provide results for the three examples with timepressed fibers included, and the
results are completely different. If the distribution oflagen fibers is such that it is appropriate
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to exclude compressed fibers then such a model should beealdopt

Keywords: Constitutive modeling; fiber dispersion; compressed fib@iusion; general in-
variant; articular cartilage

1 Introduction

Constitutive models of fibrous soft biological tissues tiete been proposed to account for the
underlying microstructure have been employed extensteedymulate the mechanical response
of the tissues (see, e.g., [1, 2]), and to inform the devekaraf new medical devices [3]. The
latest advances in imaging techniques have revealed slefathe microstructure of biological
tissues such as arterial walls [4—6]. Fiber dispersiong teen observed not only in arterial
walls but also in articular cartilage [7, 8], carotid aré={9], the myocardium [10, 11], the peri-
cardium [12], and other tissues. In particular, the knogtedf layer-specific three-dimensional
(3D) dispersion of collagen fibers embedded in the groundtanioe of tissues provides a bet-
ter understanding of the underlying mechanism of tissudhargcal behavior and facilitates the
development of new constitutive models.

The mathematical description of fiber dispersion in a ctuiste equation for computational
simulations of fibrous tissues poses formidable challeeger with considerable idealizations
and simplifications. Since the pioneering work of Lanir [18] the angular integratiom()
approach for incorporating fiber dispersion in a strainrgypéunction there have been numer-
ous studies based on this approach; see, e.g., the reviele §tt] and references therein, in
addition to more recent works such as [15, 16]. Although timgspral interpretation of thei
approach is clear and easy to understand, its computaiimpéémentation requires numeri-
cal integration over a spherical domain at each Gauss panmgl a finite element analysis,
which is computationally expensive. When exclusion of coesped fibers is considered, the
Al approach requires even more computational time, whichdcbelreduced by using a high-
performance computing cluster [16].

By contrast the generalized structure tenszsT) approach [17] requires much less com-
putational time, and recently this approach has been showa équivalent in predictive power
to that of theal approach [18]. In passing we note that it has recently beeundht to our
attention that a notion equivalent to our generalized stiredensor was introduced (much) ear-
lier in the context of the rheology of short fiber compositgsAalvani and Tucker [19]. The
GSTapproach has been used extensively in recent years anced das so-called generalized



structure tensad defined by
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p(©,P)N ® Nsin© dO dP, (1)

where© and ® are two spherical polar angle§? = {(©,®) | © € [0,7],® € [0,2x]}
denotes a unit sphere, and the probability density fun¢tom) p(O, ®) represents the relative
probability density of fibers at an arbitrary orientatiNnaround a mean directioM in the
reference configuration of the tissue. T can be determined from imaging data of the fiber
distribution in the tissue, and tF is normalized according to
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— [ p(©,9)sinO©dOdP = 1. (2)
47 s?

In addition, a Green—Lagrange strain-like quanfityvas introduced as

E=1 [ p0,0)L(N)sin0dodd — 1, @3)
AT Js2
wherel, = N - CN is a pseudo-invariant [20], which is equal to the square effither stretch
in the directionN, andC is the right Cauchy—Green tensor. This quanfityvas used in the
strain-energy function introduced in [17], which is noweegd to as theoH model.

In the original work [17], it was stated that the fibers woutohtribute to the strain—energy
function viaH when the strain in the mean fiber directibhis positive. However, for compu-
tational purposes this condition was implementedas 0, whereF is defined in (3), with/,
replaced by its isochoric counterpdst= N - CN, whereC = (detC)_l/?’C. In the nonlinear
finite element programBAQUS [21] the GoH model is implemented by using > 0 for the
switch. This leads to continuous stresses and their derégtwhereas a switch based on the
strain in the mean fiber direction may lead to discontinudtssses and derivatives. When
the mean fiber direction in a dispersion is extended then neigé some of the fibers in the
dispersion will be compressed and such fibers are not extlbgeheGoH model. For an
incompressible material it is always the case that somesfilnes compressed when others are
extended andice versa

It is not surprising that this rather ‘abrupt’ treatmentdeao a discontinuous stress re-
sponse as revealed in the recent study [22] since the autlisisterpreted theoH model. In
that study, an equivalent transversely isotropic defoionagtate was defined that uses squared
stretches in the mean fiber direction and an average of trered|stretches of all the fibers in
the plane transverse to the mean direction to exclude casgddibers from a dispersion, and
thus a continuous stress response is achieved. Howevére asithors mentioned, if both the
squared stretches are greater than one, then no exclusiba cbmpressed fibers is possible.



Indeed, for simple sheatr, it is straightforward to show thettension-compression criterion for
dispersed fibers does not exclude all the compressed fibens thie amount of shear is large.
Thus, this approach may be only applicable for some (ragpegial cases. This motivates the
need for a physically realistic switch for tleoH model which avoids discontinuities. It has
been stated several times in the literature that it is nosiptesto exclude compressed fibers
within the GoH approach, but this is not the case, as was recently show3jn [2

In this paper we provide an alternative approach to the siafuof compressed fibers on a
quite different basis to the one in [23]. Again we consid@d, ®) to satisfy the normalization
condition (2) and it follows from (3) thak = 0 for deformations for which, = 1, i.e. at the
boundary between stretched and compressed fibers.

The present study is structured as follows. In Section 2 vgerilee the form of a new gen-
eral invariant that excludes fibers under compression. ,Tbased on this new invariant, we
present a new strain-energy function in which the total cbuation of all the fibers depends
only on the strain energy of the fibers under tension. NextfHe purpose of finite element
implementation, in Section 3, we present the continuum eiclal framework of the proposed
constitutive model in a decoupled form. Expressions foGhachy stress and the elasticity ten-
sors needed for the implementation are also provided. Ihidedé, the computational aspects
of the constitutive model developed in Section 3 are desdrib

The theoretical development in Section 3 is independent®PbF and the strain-energy
function of a single fiber. However, for the finite element lempentation and for numerical
examples, specific forms of the strain-energy function dredPDF are needed and therefore
given in this section. To demonstrate the accuracy and eyfichthe proposed fiber dispersion
model and its implementation, we present three represemtaimerical examples by using the
finite element based numerical integration scheme from [K5)articular, in the first example,
we compare the numerical and analytical solutions for a culite under uniaxial tension or
compression in the mean fiber direction. In the second exama consider simple shear of
the same unit cube. The third example deals with an unconfioegbression test on a circular
cylindrical specimen of articular cartilage. This examiglehosen because the majority of the
fibers in cartilage are compressed when it is subjected tmeondined compression test. Thus,
the compressive effects of excluding or including comprdgibers can easily be identified. Fi-
nally, in Section 5, we summarize the proposed computdtrandeling framework and discuss
possible extensions of the present work.



2 Afiber dispersion model based on a general invariant

For computational simulations, fibrous soft biologicasties are often treated as incompress-
ible, elastic and fiber-reinforced continuum bodies with @&D2D fiber dispersions. When
layer-specific material properties of the tissue are alghd|aas in [4], then each layer should be
treated separately.

Within a fiber dispersion, the fiber orientatioNsand —N represent the same fiber. In the
following we therefore confine attention to a unit hemisgtier= {(©,®) | © € [0,7], P €
[—7/2,7/2]} instead ofS* since we do not distinguish betweshand —N. Now, in order to
exclude the compressed fibers within the dispersion whemtterial is deformed, we intro-
duce a new general invariant, denotedvhich depends only on fibers that are under tension,

i.e.
1

2r Q(C)
whereQ(C) = {(0,®) | © € [0,7],® € [-n/2,7/2],1, > 1} represents the deformation-
dependent domain withi® where fibers are under tension, af{d,) denotes a scalar function

I p(0,P)f(Iy)sin©dO dd, 4)

dependent on the direction df and the deformatio€. We requiref(1) = 0 and f'(1) =
0, where f'(I,) = df/9I,, so thatl vanishes on the boundary 6f(C). We also require
f(I,) > 0andf'(I,) > 0for I, > 1. Although we are considering here the hemispleribe
normalization condition (2), which includes all the fibessll holds because of symmetry.
Since the fibrous soft biological tissue is considered asamtie continuum, in this study we
assume that there exists a strain-energy funclig@, {N}) which depends on the macroscopic
deformation of the material throudD, thePDF p(©, ®), and the underlying fiber orientations
through{N}, where the notatiofN} indicates the dependencebfon the distribution of the
fiber orientations. Following our previous experimentaliés [24] and the modeling approach
in [17, 25, 26] we treat the ground substance of the tissuerspadookean material [20] in
terms of the first invarianf, = trC and consider one family of collagen fibers embedded in the
ground substance. Thus, the total strain-energy fundtiper unit reference volume due to the
contributions of the ground substance and all the extenbedsfreads

(1 -3), W) = L ep(hol) — 1], (5)

U(C,{N}) = U (1) + Uy(I), V(L) = 2k,

N =

where ¥, represents the strain energy stored in the ground substépée the strain energy
accumulated in all the extended fibersdenotes the shear modulus of the ground substance,
k, is a positive material parameter with the dimension of stresis a positive dimensionless
material parameter, whilé is defined by (4). The parameteks and k, are related to the



fiber properties. The fiber strain enengly(/) increases monotonically with If an additional
fiber family is present in the tissue it can be included adeliyi in a straightforward way, with
different parameterk, andk,, in general, see the third example in [16].

3 Continuum mechanical framework

In this section, the notation and fundamental concepts ofimear continuum mechanics are
briefly reviewed in order to describe the new fiber dispersimalel in a decoupled form. Then,
we present expressions for the corresponding Cauchy strekslasticity tensors, also in de-
coupled form.

3.1 Kinematics

Let us introduce a deformation map= x(X) that transforms a material poiXtin the stress-
free reference configuration into a spatial poinof the material in its deformed configura-
tion. The deformation gradient tensor is definedFdX) = 0x(X)/0X. Its determinant
J = detF(X) > 0 represents the local volume ratio at poiat and for an incompressible
materialJ = 1. Let us now introduce the multiplicative decompositionFof27, 28]. Thus,
we decoupleF into a volumetric (dilatational) parf'/*1 and an isochoric (distortional) part
F = J'3F, with det F = 1. In terms ofF the right Cauchy—Green tensor is given®y= F'F
and its isochoric counterpart @ = E'F with the corresponding first invariants = trC and
I, = trC, respectively.

3.2 Decoupled form of the model

Following our previous method of excluding fibers under cozspion in the framework of the
Al approach for a general deformation state [15], we first cansa local coordinate system in
terms of the normalized eigenvectdrfs ¢ = 1,2, 3, of C. Within the local coordinate system
V,,V,, V; we decompose an arbitrary fiber directidrfa unit vector) using two spherical polar
angles O, ®) according to

N = sin © cos PV, + sin © sin PV, + cos OV, (6)

as shown in Figure 1. We restrict the ranges of the two sphlgpalar angles to the domain
of the unit hemispher8 so thato € [0,7] and® € [—x/2,7/2]. It is more convenient to
describe the boundary of the integration dom@im the local coordinate system,,V,,V;
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Figure 1: Two spherical polar angle® € [0,7] and® € [—7/2,7/2] uniquely define an

V, ;
¥ E,

arbitrary fiber directionN in a local coordinate system constructed by the eigenvedtgr
1 =1,2,3, of C. The components dfl in the global coordinate systeR), : = 1,2, 3, can be
determined by a rotation tensBrwhich relates the coordinate systeris £ R'V,).

instead of the global coordinate systé&m E,, E; [15]; the two coordinate systems are related
byV, = RE;,: = 1,2, 3, whereR is a rotation tensor dependent Gn

Similarly, we decompose the mean fiber directidnwhich is a constant unit vector in the
reference configuration, as

M = sin Oy cos PV + sin Oy sin @y V4 + cos OV, (7)

where©,,; and®,, can be determined from
V, - M
V,-M’

cos Oy = Vi3 - M, tan &y = (8)

On use of (6) the invarianf,(N) = C : N ® N, where : denotes a double contraction,
becomes

I,(N) = cos® OV - (CV3) +sin® © [cos® DV, - (CV4) + sin® @V, - (CV,)]
+25in O cos O(cos DV, + sin ®V,) - (CV;) + 2sin® O sin @ cos DV, - (CV,). (9)
In terms of its spectral decompositi@can be written as
C=XV,0V,+AV,8V,+ AV, Vs, (10)

where the eigenvalue¥’, i = 1,2,3, of C are the squared principal stretches. Hence, (9)
reduces to
1,(0, ®) = sin® ©(A\] cos® ® + A5 sin’ ®) + A cos” O, 11



where the argumem in 7, in (9) has been replaced here Gy.

Becausd- is decoupled we assume that the total strain-energy fumgtioan be described
in terms of an energy contributioh,,; dependent only od, i.e. a purely volumetric contribu-
tion, and a contributiol,,, from the isochoric deformation vi@. Thus [15, 20],

T(C, {N}) = Ty (J) + Ty (C, {N}). (12)

In addition, we assume thdt,,, can be determined by the superposition of the energy con-
tributions ¥,, from the (non-collagenous) ground substance &pdrom the collagen fibers,
i.e.
Uiso = y(C) + T1(C, {N}). (13)

Subsequently, we rewrite the general invariant (4) in tesfitee modified invarianf,(N), i.e.

I= L p(©,®)f(1,)sin © dO dP. (14)

27 Q(C)

Because the physical meaning kfis different from that off, [14], the integration boundary
of 2 is defined by usind, instead ofl,, although there is no difference in the incompressible
limit.

Now, when the strain-energy function (5) is expressed imdpled form the isochoric strain
energy of the ground substance depends on the isochoriinfiesiant/;, and that of all the
extended fibers depends on the isochoric general invafidefined in (14). Hence, the total
isochoric strain-energy functiof,,, per unit reference volume reads

Vo = U (0) 4 (D), (1) =5 -3), WD) =y Llexp(bD) -1 (@9)

Since we are considering an incompressible material, thenetric strain energy .., is
not critical here (as it is used as a penalty function), ansl @onvenient to adopt the form of
U, used in theeEAP manual [29], i.e.

K
U= Z(J2 —1—2InJ), (16)

whereK is a penalty parameter.

3.3 Cauchy stress tensor

We now present the Cauchy stress tensdor the proposed fiber dispersion model. We first
evaluate the fictitious Piola—Kirchhoff stress tenSpwhich is obtained by differentiating (15)

with respect taC/2, i.e.
_ 9V, . —
S=2 66180 - ng(ll)l + wa(I)Ha (17)




wherel is the second-order unit tensof,(1,) = 0V, (1,)/01, = /2, ¥i(1) = 0%¢(1)/0] =
k, exp(koI)/2, andH is defined as

oI 1
aC 27 Jocoy

H= p(©,®)f'(I;)N ® Nsin © dO do, (18)
where f'(I,) = 0f(I,)/0l,. Because the boundary of the integration donfai€) in the
modified general invariant also depends of, the derivative ofl with respect taC should,

in general, include an integral over the boundar{2¢€). This second integral vanishes since
f vanishes on the boundary in the incompressible limit. A $&ngerivation of (18) by using
the general Leibniz integral rule and (14) is given in App&mdfor the incompressible limit.

A push-forward operation 08 with F to the current configuration yields the fictitious Cauchy
stress tensaF as

o= J 'FSF = J '[204(1)b + 2¢4(Dh], (19)

whereb = FF ' is the modified left Cauchy—Green tensor, fn¢ FHF ', the counterpart of

H in the Eulerian description, i.e.

h= x p(©,®)f (I,)N ®Nsin© dO dd, (20)
2w Q(C)
wheren = FN. The isochoric part of the Cauchy stress tensqr is then determined as
o, =P:0,wWherer =1— %I ® | is the Eulerian projection tensor [20], ang the symmetric
fourth—order unit tensor with componer(ts,,.; = 3 (3,054 + d.40.). Finally, the total Cauchy
stress tensor is given by = o, + o, Where the volumetric Cauchy stress tensgy, is

straightforward to derive [20].

3.4 Elasticity tensor

For the computational implementation the elasticity tensio the Eulerian description is also
required. Thus, we start with the derivation of the fictis@lasticity tensof in the Lagrangian
description, which is obtained as [20]

C=2J"3 gi AT @) + 4T Byl (D HeH + 4 Py (D H,  (21)
where o o
o0, (L) o ()

(1) = === 7 (1) = —2% 22

wg( 1) 8]18]1 ) Q/Jf ( ) OIOI ) ( )



and the fourth-order tenséf is defined as,

—_ OH 1
H=—=

L p(©,®)f"(I)N®N &N @ Nsin © dO dd, (23)
oC 21 Jac)

in which f"(1,) = 0f*(1,)/01,0I,. Because), (I,) = 0 for the neo-Hookean material model,
thel ® | term in (21) vanishes. A push-forward operation@fwith F and the Piola transform
yields the fictitious elasticity tensor in the Eulerian dgswon, i.e.

C=4J ¢ (I)h@h+4J "y (1) &, (24)

wheretH is the Eulerian version di given by

1

— p(©,®)f"(I,)M®N@N®NsinOdO dd. (25)
2 Q(C)

H=

Finally, with (24) we obtain the resulting isochoric parttbé elasticity tensor in the Eulerian
description, i.e. [20]

2 2
Ciso =P:C:P+ gtr(&)P — g(aiso RN +1®0i)- (26)

Then, the total elasticity tensor in the Eulerian desaripts obtained as = ¢, + ¢, Where
the volumetric part,,,, as foro,,, is straightforward to derive [20].

4 Computational aspects and representative examples

We have implemented the general-invariant-based fiberediggn model (15) in the general
purpose finite element analysis programAP [29] at the integration point level. Here, for
illustration of the method, we simply adopt the quadratimfof f(7,) given by

fL) = (I, = 1), (27)

which satisfies the requirementél) = f'(1) = 0, f(1,) > 0 andf'(1,) > 0 for I, > 1.

For purposes of illustration, in this study, we considerrade case of fiber dispersion in
3D, namely a fiber dispersion which is rotationally symneearound a mean direction, be-
cause the main goal here is to investigate the influence améodanical response of excluding
compressed fibers from a dispersion. We have therefore edlaptotationally symmetric fiber
dispersion described by the von Mises distribution as

(0, ) = 4\/§ eXpEgE'\\'/é_b'\:) | (28)

10



whereb represents a concentration parameter measuring how glibeefibers are distributed
around the mean directiod, anderfi(x) = —ierf(iz) denotes the imaginary error function
with the error functiorerf(x) defined by

erf(x) = % /Om exp(—£2)de. (29)

On substitution of (27) and (28) into the isochoric Cauchgss tensosr,,, and the Eulerian
fictitious elasticity tensor (24), the specific forms of thauChy stress and Eulerian elasticity
tensors can be obtained. Then, following the method de=ttrib [15], we have chosen a
finite element based multi-dimensional numerical integrascheme for the evaluation of the
double integrals in the Cauchy stress and elasticity tenf3%, 31]. A general guideline
for implementation of the proposed fiber dispersion modshiswyn in the accompanying box
(Algorithm 1).

In the following we present three representative examplasder to illustrate the perfor-
mance and computational implementation of the proposestitotive model (15). Specifically,
simple tension and compression tests on a unit cube in tha filbea direction, simple shear of
the same unit cube, and an unconfined compression test omdraydl specimen of articular
cartilage cylinder. For each example we assume the materisd incompressible. To enforce
the incompressibility condition, we adopt the augmentegraagian method [33] iIREAP [29].

In each of the three examples, the geometry of the finite elemedel was discretized with
8—node hexahedral mixed Q1/P0O elements, and the problenestiven solved by using the
Newton—Raphson method. The finite element solutions of thetfio examples are compared
with analytical solutions obtained by using eithesTLAB [34] or MATHEMATICA [35]. Due
to the non-homogeneous stress distribution, an analydaation for the last example is not
available for comparison.

11



Algorithm 1: Implementation of the proposed fiber dispersion model

Data: input dataM andb; F at each integration point
Result: isochoric Cauchy stress tensey,,, Eulerian elasticity tensar,,
begin
F«— J'°F
compute the eigenvalues and eigenvectorg, of C, i = 1,2, 3
computev;, = FV,,i=1,2,3
computev; ® V, @ V, ® V,, 4,7, k, 1 € {1,2,3}
transferM to the local coordinate system constructedhy
determine the integration domdihaccording to Section 2.3.3 of [15]
mesh the integration domain with square, triangle and dlaaeiral elements
evaluate/ [ exp[2b(N - M)? sin’ © cos’ @ sin” ® cos' ® dO d® for each element:
if triangle elementhen
\ compute the integral by the symmetric quadrature rule [32]

else if square elemerthen
| compute the integral by the adaptive multidimensionalgrdagon rule

end
else
scale the general quadrilateral element to a generic sglerent
compute the integral by the adaptive multidimensionalgragon rule
end
sum over all the elements within the domé&irio obtain the integral
[ e, exp[2b(N - M)?] sin’ © cos’ © sin” ® cos’ & dO dd
determinel andh according to (14) and (20), respectively
determinex according to (25)
compute the neo-Hookean contributiomt, andc;,
compute isochoric Cauchy stress tenggQr, isochoric Eulerian elasticity tensog,

4.1 Simple tension and compression

In this first example we consider simple tension and compese the mean fiber direction

M = E; of a unit cube composed of one element. We assume that thecoulsests of one
family of fibers with theeDF given by (28). The cube is aligned with the Cartesian basiswe

E,, E; andE; (see an undeformed cross-section of the cube defined byls@&lin Figure 2)
and its dimensions are x 1 x 1 mm. A displacement is applied to the top face of the cube,
and four nodes at the bottom face are constrained ifcgheirection. To eliminate rigid body
translation, the node 40, 0, 0) on the bottom face of the cube is constrained also irEthend

E, directions; to further prevent rigid body rotation abowt#j direction, the node dt, 0, 0) is
constrained in th&, direction, see Figure 2. The resulting deformation undésual tension
and compression is homogeneous, and the matrix represastaf the deformation gradient

12



MWNQ
---------- A A Y
1

E,

- —

Figure 2: Cross-section of a unit cube under simple tension and casajae The solid lines
refer to the reference configuration of the cube crossa®ctind the dotted and dashed lines
show the deformed configurations of the cube when it is unelesibn and compression in
the E; direction, respectively. Within a rotationally symmetfilger dispersion about the mean
directionM = E3, a unit vectom represents an arbitrary fiber direction.

and the Cauchy—Green tensors are written as

[F] = diag\™2, A2 )], [b] = [C] = diag[A ™", A7, A7, (30)

where \ is the principal stretch in th&; direction. Because the eigenvectors of the right
Cauchy—Green tensor coincide with the Cartesian basigrgatie can simply decompose
in terms of the Cartesian basis vect&si = 1,2, 3, as

N = sin © cos PE; + sin O sin PE, + cos OE;, (32)

noting, with reference to Figure 1, that, E,, E; are principal axes. Thus, with) = C : N®N,
from (30) and (31) we obtain

1,(0) = XN cos®© + X\ 'sin* O, (32)

which is independent ob, thePDF in (28) specializes to

4] b oexp(2b cos” ©)

13



and the normalization condition (2) reduces to
w/2
/ p(0)sinO®dO = 1. (34)
0

To determine the general invariahtor this special case, we first compute the boundary of
the integration domaif® defined byl, = 1, which is governed by the equation

tan ©, = \/ AN+ 1), (35)

where©, € {6 | 0 < © < 7/2} denotes the critical angle at which the fiber stretch is one.
In 3D, © = O, represents a circle on the hemisph8rawith (27), (32) and (33) the general
invariant (4) becomes

T=(\ =12 4+202 =)A= A%)ss + (A1 = M%) s, (36)
where
@C ®c ec
51 :/ p(©)sin©dO, s, :/ p(0)sin® ©dO, s :/ p(©)sin° ©dO. (37)
0 0 0

Now we can evaluate the Cauchy stress temsosing the specific form (36) of the general
invariant/, i.e.
o = ub + kyexp (ko) h —pl, (38)

wherep is a Lagrange multiplier ankl is given by

h=-— / p(©)(I; — )N ® Nsin © dO d, (39)
Q

™
where() = {(6,®) | © € [0,0.],® € [0,27]}, n = FN, and the overbars have been omitted
since we are considering an incompressible material hdre.ufiaxial Cauchy stress= o4
IS

0 = u\* + 2k exp (koI) N2a — p, (40)
whereq is defined as

®C
a = / p(©)(I, — 1)sin © cos* © dO
0
= (A —Ds; + AT =227+1)s3 — (A1 = A)ss. (41)

Since we are considering uniaxial tension and compressign=£ o,, = 0), the Lagrange
multiplier is given by

p=pA"+kexp (kD) A'B, B=(N=Dsy+ (A = A\%)ss. (42)

14
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Figure 3: Comparison of the analytical solution obtained withTLAB and the finite element
result obtained witlFEAP for the uniaxial Cauchy stressversus the stretchfor simple tension
and compression tests on a unit cube with the paramgtersl.0 kPa,k;, = 10.0kPa,k, =
50.0, andb = 0.1. The solid curve and dots represent the material resporteecasmpressed
fibers excluded@eENI model); the dashed curve and open circles are the resuttsdfaase with
all fibers included (All-fiber model).

On elimination ofp, c becomes
o = p(N = A7) + k1 (20 % = A7 B) exp(k, ), (43)

whereq, § andl depend om\ and©,, which itself depends oA via (35).

This equation was implemented MATLAB [34], and we adopted the built-in adaptive
Gauss—Kronrod quadrature methegiddgk) for the evaluation of the integrals in the coeffi-
cientsa andg in (41) and (42), respectively. With the parametars= 1.0 kPa,k; = 10.0kPa,
ky, = 50.0, andb = 0.1, the uniaxial Cauchy stressversus the stretch is plotted as a solid
curve in Figure 3. For comparison with the finite element softuobtained withFEAP [29],
we have plotted the numerical results as solid dots in thedigGlearly, there is a very good
agreement between the computational and analytical sakitiAlso shown in the figure are
the computational and analytical solutions for the case hiclwvthe coefficientsy and g are
evaluated numerically over the entire hemisplieiestead of2 (dashed curve and open circles
in Figure 3). In the following, we refer to this method as “Ailber model’ in contrast to the
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general invariant model, abbreviated asGeENI model’, in which compressed fibers are ex-
cluded. As shown, the difference between the two methodsases gradually with increasing
load for both tension and compression. In addition, the lalbsealues ofr for each test with
the All-fiber model (including compressed fibers) are latgan for theGENI model (excluding
compressed fibers). This may be explained by the fact thaeigENI model the strain energy
of the compressed fibers is excluded from the total straarggnfunction, and this reduces the
magnitude of the stress.

4.2 Simple shear

In this second example we subject the same unit cube to aesshplr deformation in order to
test the performance of the proposed constitutive modetedipting shear stress. In order to
demonstrate the significant differences between the gredscof theGeNI model and the All-
fiber model, the mean fiber directidv is aligned atl35° in the clockwise direction from the
E; axis in the E,, E5) plane in the reference configuration, as illustrated byctioss-section
of the cube in Figure 4. For the simple shear deformation, evesitained the four nodes on
the bottom face of the cube in all three translational degydreedom, and then applied a
horizontal displacement in tHe, direction on the top face.

We write the matrix forms of the deformation gradi&mnd the right Cauchy—Green tensor

Cas
10c¢ 10 c
Fl=1{010], Cl=101 0 , (44)
001 c0(1+c)

and we decompose an arbitrary fiber directdas in (31). Then, the squared fiber stref¢cin
the directionN reads

1,(0,®) = 1+ ¢? cos” © + ¢sin 20 cos P. (45)

The amount of shearis assumed to be positive, so the integration dorfiais then obtained
from the inequality

ccos® © + sin 20 cos ® > 0. (46)
The general invariant now specializes to

4 3 2
c 2c 2c
[ — _tl + —tQ + —tg, (47)
2T T T
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E,

Figure 4: Cross-section of a unit cube subjected to simple shear ifEheE;) plane. The
solid lines refer to the reference configuration of the culssssection, and the dashed lines
correspond to the deformed configuration of the cube for amusrtnof shear. The mean fiber
directionM is aligned atl35° measured clockwise from tHg; axis. A rotationally symmetric
fiber dispersion aboW is assumed. The vectdrrepresents an arbitrary fiber direction within
the dispersion.

where
tlz/p(@,é)sin@cos4®d@d<l>,
Q

ty = / p(©, ®)sin® © cos” O cos & dO dd, (48)
)

ty = / p(©, ®)sin® © cos® O cos® & dO dP.
Q

Similarly to the preceding section, it is straightforwandderive the Cauchy stress components
with respect to the Cartesian basis vectors. In partictdayaluate the shear stress component
013, We first substitute = FN into the expression fdr in (39), and then substituteinto (38),
yielding

013 = Jc+ %exp(kzl)(c?’tl + 3¢ty + 2cts). (49)

The normal components of the Cauchy stress induced by theglesishear deformation can
be calculated by the method described in our previous wobk, [dut are not needed here.
Similarly to that study, we implemented the equation (49YATHEMATICA [35] by using the
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Figure 5: Comparison of the computational results with the anal{/solition (49) for a simple
shear test of a unit cube with parametgrs- 2.0kPa,k;, = 10.0kPa,k, = 25, andb = 1.0.
The solid curve and dots represent the material responbewntpressed fibers excludezEN|
model); the dashed curve and open circles are the resultedarase with all fibers included
(All-fiber model).

NIntegrate function and théoole operation for the evaluation of the integrals in (48) on the
domain defined by (46). The computational results (solig)obtained by usingeAp [29]
and the analytical solution (solid curve) obtained by usmgHEMATICA [35] for 0,5 versuse

are plotted in Figure 5, with the material parameters 2.0 kPa,k;, = 10.0kPa,k, = 25, and

b = 1.0. Again, a very good agreement is observed between the twiti@as. For comparison,
we also plotted the computational and analytical solutieitis the All-fiber model. Due to the
assumed alignment of the mean fiber direction, most of thesfivghin the dispersion are under
compression, similarly to the results of Figure 7 in [16]. &cluding the contributions from
the compressed fibers in the strain-energy function, afggnily lower shear stress response
is observed with theENI model than with the All-fiber model.

4.3 Unconfined compression of articular cartilage

To further illustrate the influence of excluding fibers undempression on the mechanical
response, we now consider an unconfined compression testiimukar cylindrical specimen of
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articular cartilage. The effect of excluding compressedrlbecomes most pronounced when
the cartilage is compressed in the thickness direction,hithva large proportion of the fibers
are aligned. In this example, the purpose is not to creatplasticated model of cartilage tissue
but rather to use a simplified model to demonstrate the pegoce of the proposed model in a
larger scale simulation.

The mechanical properties and durability of cartilageugsdepend primarily on its highly
organized collagen fiber network [36]. Through the thiclseésection, the modeling is often
divided into three zones: superficial, middle, and deep 2oDee to the low fluid permeability
of cartilage tissue, it is not easy to squeeze the water cericél cartilage behaves mechanically
as a single-phase solid for short static loading period®ocyclic loading with moderate or
high frequencies [37]. Thus, in this example, we treat lzagé tissue simply as a nonlinear,
incompressible, single-phase, and multi-zonal fibroumis The viscoelastic behavior is not
considered in this study. It is well established that thdag@n fibers are distributed in the
three zones of mature cartilage as follows: (i) in the supaifzone (SZ) the fibers are oriented
tangentially to the articular surface; (ii) in the middleneqMZ) the fibers have no predominant
orientation and are thus randomly distributed; (iii) in ttheep zone (DZ) the fibers become
aligned perpendicularly to the articular surface and theeboartilage interface (see the image
analysis in [36]).

Due to the lack of sufficient zone-specific mechanical datac#otilage, we estimated the
material parameters of the cartilage by using the depthageer compression data of carti-
lage [38]. Specifically, because of the fiber alignment in¢hgilage, it is assumed that the
depth averaged Cauchy stress versus stretch responsefuif-tieckness bovine cartilage rep-
resents approximately the behavior of the middle zone. iBratso motivated by experimental
results which show that the mechanical response of the midalhe is closest to that of the
full-thickness specimen [39]. We then fit the proposed maedé¢he unconfined compression
test data of bovine femoral cartilage [38] at a loading festpy of 1 Hz and obtained depth
averaged material parameters of the MZ. For the SZ and DZ,deptad the same material
parameters, namely, k,, k,, but we have used different structural parameters. Notattis
not sensible to fit the overall stress—stretch data of tHetiidkness cartilage to the analytically
computed Cauchy stress separately for each of the thres.zone

For the model fitting, we can still use the analytical Cauctngss (43) from Section 4.1
because the fibers in the MZ are dispersed unifortnky () andp(©, &) = 1). The integrations
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Figure 6: Comparison of theseENI model fit (open circle) and the experimental data (dashed
curve) for an unconfined compression test on bovine articaldgilage [38]. Also shown is the
FEAP verification (solid curve) of the compression test by ushwgfitted parameters of Table 1.
Note that therEAP analysis was performed with a stretch of 0.85.

in (37) now become

w/2 w/2 /2
51:/ sin © dO, 53:/ sin® © dO, 55:/ sin® © dO, (50)

O, O, O,
which can be evaluated exactly, but we omit the explicit egpions here. On substituting these
into o andg, i.e. (41) and (42) we obtain the stress component (43) in the thickness direct
as a function of stretch. We then fitted this result to the grpental data and obtained the
material parameters = 2.70MPa, k; = 34.69MPa, k, = 43.12, andb = 0, with the
coefficient of determination® = 0.99. For comparison, the experimentally measured and
analytically computed stress—stretch curves are plotiggigure 6 together with the results
obtained by usingrEAP [29] with the fitted parameters and the unit cube model, asribesi
in Section 4.1. As can be seen, we obtain very good agreeneténebn the fitted result and
the FEAP solution. This set of material parameters is then appliegltthree zones separately.
However, the concentration parametas different for each of the zones, and the mean fiber
directions in the SZ and the DZ are different. Since the filz@eshighly aligned in the SZ,
we could use theicGo model [25]. But to fully test the performance of the proposeNI
model, we employed it in each of the three zones. We adoptddhcentration parameters
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Table 1. Material and structural parameters of the cartilage mdgil [

Model Zone w(MPa) | k; (MPa) ks (-) b(-) Oum (%)
Superficial 5.0 0
GENI Middle 2.70 34.69 43.12 0.0 -
Deep 2.0 90
Superficial 5.0 0
All-fiber Middle 2.70 15.80 41.30 0.0 -
Deep 2.0 90

b = 5 for the SZ,b = 0 for the MZ, andb = 2 for the DZ [40], as summarized in Table 1.
Similarly, we have also fitted the All-fiber model to the sampeximental data and obtained
another set of material parameters, see Table 1. The asalgtlution of the All-fiber model

is obtained by replacin@. with 0 in (50). Because the difference of the two models lies in the
fiber contribution, the shear modulusstays the same. This set of material parameters has also
been verified by using the unit cube model. Again, we obtamedry good match between
the fitted result and theeap solution (not shown here). The mean fiber direction in the ®Z i
aligned with the thickness directioA(” measured from the articular surface), while in the SZ

it is aligned tangentially to the articular surface.

Based on the dimensions of the specimen in the experimentdy §38], we have created
a cartilage model 03.0 mm in diameter and.83 mm in thickness. The total thickness of the
cartilage is supposed to B33 mm. However, &.5 mm thick layer of tissue was removed from
the DZ in the experiment. We then obtained the ratio of thektiesses in each zone of bovine
femoral cartilage from Figure 7 of [41]. With these datagafubtraction of..5 mm from the
DZ, we obtained the thickness of each zoné&d{, 0.56, and0.85 mm for SZ, MZ, and DZ,
respectively, as indicated in Figure 7(a). Due to the symyratthe specimen and the fiber
distribution, we only simulated one half of the specimene Tieometry was then discretized
with 1430 8-node hexahedral elementsABAQUS/CAE [21] and depicted in Figure 7(b).

The generated mesh file was then converted into the inputditedt of FEAP [29]. For
the unconfined compression simulation, all the nodes on ¢iéern face of the model were
constrained in th&; direction. All the nodes on the symmetry plane, which is te E;)
plane, were constrained in th& direction. Furthermore, to prevent rigid body motion, we
constrained th&; direction degree of freedom at the center node of the bottofacse shown
as the red dot in Figure 7(b). A displacement-ai.23 mm, which was determined from the
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configuration showing the normal Cauchy stress distrilough All

material parameters (Table 1). The red frames in (c),

tions.

Figure 7: Unconfined compression simulation of articular cartilage ta a stretch 0f).87:

(a) geometry of the cartilage model (one half of the spec)nga) finite element mesh with
1430 hexahedral elements; (c) deformed configuration showiaghrmal Cauchy stress dis-
tribution o35 (in MPa) with theGENI model; (d) deformed configuration showing the normal

Cauchy stress distribution with the All



experiment [38], was prescribed on the top face of the mamtehie compression test.

The finite element analysis of the cartilage model was peréarwithFEAP [29]. The sim-
ulation results reveal a non-homogeneous Cauchy stresibdi®on (o53) in the configuration
at a stretch 06.87, as shown in Figure 7(c). As expected, a very small displaceis observed
in the E, direction in the SZ because of the highly concentrated filmetisat direction, while
the displacement in thE, direction is the largest of all three zones because of thiecp&ar
fiber alignment. The displacement in the MZ is, in generajdathan in the SZ in th&,
direction, but smaller than for the SZ in thg direction. In the DZ, because of the exclusion
of compressed fibers in the; direction, the displacement reaches its peak ingEhéirection,
and close to the peak in th®, direction observed in the SZ. Thus, we conclude that the dis-
placement increases nonlinearly in tagdirection, but in theE, direction the displacement is
smallest in the MZ. We found that the displacement patterthfe three zones in the, direc-
tion is very similar to that of the simulation results for altiphasic, axisymmetric cartilage
model in [41].

For comparison we have also performed a finite element asdiysthe same cartilage
model without the exclusion of compressed fibers (All-fibexdal with GENI model param-
eters). This again results in a non-homogeneous Cauclsssdrstribution §53), as shown in
Figure 7(d). As can be seen, the displacements are someiifeatiot from those of th&EN!I
model shown in Figure 7(c). Indeed, the peak value of thelatigpnent in thee, direction
observed in the SZ is aboui21% larger than that of theENI model. The simulation results
indicate that the displacement in tke direction has a saddle shape with that in the MZ being
the largest, see Figure 7(d), and in tegdirection decreases nonlinearly from the SZ to the
DZ. Thus, they are completely different from tle&NI model predictions. Interestingly, the
deformation pattern in thE; direction, when compressed fibers are not excluded, isairnal
the corrected simulation results described in [42], in \white compressed fibers were also not
excluded.

For a further comparison, we carried out another finite efgraealysis of the same cartilage
model by using the All-fiber model with its own model paramgt@able 1), see Figure 7(e).
Hence, we are testing the capability of the All-fiber modeiriadeling of the cartilage under
compression. Again, we observed very similar deformatiatitgon and stress distribution with
respect to the case when the All-fiber model is used with@bsl model parameters (Fig-
ure 7(d)). The only major difference is the magnitude of tiness due to the smaller values of
the material parameteks andk,. Note that, in general, the All-fiber model should not be used
for modeling of fibrous tissues.
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5 Concluding remarks

Based on a new general invariant, we have proposed an exjedridgaer dispersion model ca-
pable of excluding fibers under compression in the modelirtg® highly nonlinear response
of fibrous soft biological tissues. We have derived expmssfor the associated Cauchy stress
and elasticity tensors and have implemented the model inita ftement analysis program.
The model has been tested with three numerical examplesaWedbserved very good agree-
ment with the analytical solutions in the first two exampld&®ecause of the complex non-
homogeneous deformation in the last example, an analywatation is not available for com-
parison with the simulation results. We have also perforiingte element analyses for the
three examples using the All-fiber model and found that theukition results are completely
different from those for th&ENI model. Exclusion of compressed fibers in a fiber dispersion
model plays an important role in the modeling of fibrous tessu Besides the capability of
excluding fibers under compression, the other advantageeqiropose@&ENI model is that it
requires less computational time in a way similar to &s approach [17], because the total
contribution of fibers under tension is ‘wrapped up’ into alacinvariant. This invariant is then
used in the exponential strain-energy function. This meitsdaster than the one which uses
an exponential function in the integrand of the strain-gnéunction according to [16].

In general, if under some loading conditions the contrdoutof the compressed fibers to
the total strain-energy function is much smaller than tahe fibers under tension, then the
exclusion of compressed fibers may have a very small influendbe overall material behav-
ior. In that case, the mechanical response of the fiber dispemodel with the compressed
fibers excluded is very similar to that of the All-fiber modelowever, in scenarios where the
contribution of the compressed fibers to the total straimgynis relatively large, then the model
which excludes the compressed fibers should be adopted., ithaally depends on how the
fibers are distributed within a dispersion in space and hownefthem are compressed when
choosing an appropriate constitutive model for fibrousitss

In the third numerical example, we found that the latergbldisements of the cartilage tissue
under unconfined compression are in general large in the DéhwieGENI model is used.
Because the DZ is connected to the bone underneath this rsiagtréhe lateral displacement,
especially in the DZ itself, but this is not considered in giresent study. Because of the
complex deformation pattern under unconfined compresgienaxisymmetric finite element
model [41] is not sufficient for investigating the deforneattiof cartilage. Thus, a 3D model for
simulating the cartilage response with dispersed fiberaldhze adopted.

In the present study, we have adopted the quadratic forfitfaf for a single fiber given in
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(27). It is straightforward to use a more general formf¢f,) if required. We also note that
collagen fibers may be distributed more densely in some dicdb tissues, in which case the
volume fraction of the fibers could be included in the model €irb) replaced by

\I]iso = (1 - n)\llg(—fl) + T]\Df(l_)7 (51)

wherer represents the layer-specific volume fraction of the fioethé material. Finally, in our
study, we have adopted a 3D fiber dispersion around a meastidire We note, however, that
for some tissues a planar fiber dispersion would be more pppte, as exemplified in [15].
Moreover, a rotationally symmetric fiber dispersion hasnbagsumed in all three numerical
examples, although the general framework of Section 3 igegiticted to rotationally sym-
metric dispersions. An extension to a hon-symmetric fibspelision, which is more realistic
for arterial walls [2], can also be accommodated. Such sibes are beyond the scope of the
current study but can be included in future works.
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Appendix A: Derivations of H and & for an incompressible ma-
terial

In this appendix we consider the incompressible speciadizan which case the bar can be
dropped fromH andH. Because the boundary of the integration donfaim the definition
(4) of the general invariant depends on the deformation throughdifferentiation of/ with
respect taC following the Leibniz integral rule for multi-dimensiongltegrals reads (without
the factorl /(27))

i/ F(C,@,cI))dQ:/ iF(C,@,c1>)dQ+/ F(C,0,9)N @ N ds, (52)
oC Q(C) Q(C) oC a0(C)

whereF (C, 0, ®) = p(0, ®) f(1,), 9(C), with unit outward normal/, denotes the boundary
of 2, dQ2 = sin ©dOd®, and ds is a line element oW2(C). Becausd, = 1 on the boundary
andf(1) =0, F(C,©,®) = 0. Thus, the second term on the right-hand side of (52) vasishe
and does not appear in (18) in the incompressible limit.
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Similarly to the result in (52), the second derivativelofvith respect taC reads (without
the factorl /(27))

0 0 s
— —~_F(C.0,®)dQ = F(C.0,®)d
ac/ﬂ(c)ac (C.0,%) /Q(C)acac (C.0,)

0
+/ —F(C,0,0) ® N @ N ds. (53)
aa(c) 0C

Again, because on the bounddry= 1 and f'(1) = 0, the second term on the right-hand side
of (53) vanishes and does not appear in (23) in the incomiptedsnit.
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