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Abstract. Changes in the structural components of aortic tissues lhese shown to play a significant
role in the pathogenesis of aortic degeneration. Therefeli@ble stress analyses require a suitable and
meaningful constitutive model that captures micro-stritadtchanges. As recent data show, in-plane and
out-of-plane collagen fiber dispersions vary significabiyween healthy and aneurysmatic aortic walls.
The aim of this study is to computationally investigate thiéuience of fiber dispersion on the mechan-
ical response of aortic tissues in health and disease. ticylar, the influence of three different fiber
dispersions is studied: (i) non-rotationally symmetrispirsion, the most realistic assumption for aortic
tissues; (ii) transversely isotropic dispersion, a speecise; (iii) perfectly aligned fibers (no dispersion in
either plane), another special case. Explicit expresdmrihe stress and elasticity tensors as needed for
the implementation in a finite element code are provided e@&mepresentative numerical examples are
studied: planar biaxial extension, inflation of residuatyessed and pre-stretched aortic segments and
inflation of an idealized abdominal aortic aneurysm (AAAbgeetry. For the AAA geometry the case
of isotropic dispersion is additionally analyzed. Docuteenstructural and mechanical parameters are
taken from human aortas (healthy media/adventitia and AAMAE influence of fiber dispersions upon
magnitudes and distributions of stresses and deformatiompresented and analyzed. Stresses vary
significantly, especially in the AAA case, where materidffering is significantly influenced by fiber
dispersion. The results highlight the need to incorporhgestructural differences into finite element
simulations to obtain more accurate stress predictiongitiddally, results show the capability of one
constitutive model to represent different scenarios ofi@onicro-structures allowing future studies of
collagen reorientation during disease progression.
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1 Introduction

Aortic tissues can be viewed as fibrous composites asserfroieda ground matrix and em-
bedded families of collagen fibers with orientations that distributed spatially. It is well
established that the mechanical behavior of fibrous tissuels as arterial walls is strongly in-
fluenced by the underlying collagen structure, in partiGudg collagen orientatioanddisper-
sion, see, e.g., Holzapfel and Ogden [1]. It has been shoatrdtiring the development of dis-
eases such as an abdominal aortic aneurysm (AAA) the collstgecture changes significantly.
For example, collagen fibers in healthy abdominal aortasamnsiderably dispersed in-plane
(circumferential-axial plane), but have a rather smalpdision out-of-plane (circumferential-
radial plane) (Schriefl et al. [2]; Niestrawska et al. [3])AAs, however, show a significantly
higher dispersion out-of-plane. In addition, by means wésal samples it has been shown that
the characteristic three-layered wall structure, as se@ealthy abdominal aortas, is no longer
present in AAAs [3]. A quantification and analysis of the ieatation of the micro-structure
are key to better understand disease progression. Thetlsepesposed model by Holzapfel et
al. [4] is one that is able to capture the spatially distrolibrientations of collagen fibers in
arterial tissues, and, therefore, allows to provide a deepgght into the (pathological) changes
of fibrous tissues as occurring in AAAs.

As mentioned, the mechanical response of aortic tissudsoisgdy influenced by the un-
derlying collagen structure. Nevertheless, several etughich investigate the magnitude and
location of peak wall stresses in AAAs have utilized eithsatiopic models (see, e.g. Elger
et al. [5]; Vorp et al. [6]; Raghavan et al. [7]; Raghavan ammipvet al. [8]; Thubrikar et
al. [9]; Doyle et al. [10]; Raut et al. [11]) or material paratars which were received from
healthy aortic tissues (Pierce et al. [12]). Early studi@gehused the law of Laplace to study
the influence of the geometry on AAA stresses (Stringfelloal €[13]; McGiffin et al. [14]) or
modeled AAAs as axisymmetric membranes (Elger et al. [5]30Ainear elastic models were
used to study AAA stresses (Inzoli et al. [15]; Mower et ab])ithese models are not able to
capture the typical nonlinear behavior of aortic tissuésdi®s such as those by Vande Geest et
al. [17], Tong et al. [18], O’Leary et al. [19], Sassani et[&0] or Niestrawska et al. [3] have
illustrated that AAA tissues are anisotropic, which regsithe consideration of appropriate
models and parameters to analysis wall stresses. Espexsaiiree-dimensional (3D) imaging
data of the wall micro-structure become available it shaadaombined with mechanical data
to ensure more accurate estimates of wall stress magniamdielated locations.

The influence of material parameters and models on wallsspeslictions was studied by
several groups, with contradicting results. While the &sidby Raghavan and Vorp [8] and



Fillinger et al. [21, 22] stated that the peak wall stress &mny influenced by AAA shape
and/or AAA diameter, Polzer et al. [23] stated that it is intpat to account for nonlinearity
when simulating AAA responses. On the basis of the same AAgngry Rodriguez et al.
[24] showed that the use of an anisotropic model yields high&ximum wall stresses when
compared with isotropic models. The same group investitite influence of anisotropy on
peak wall stresses. They also studied the impact of the nood&#e different patient-specific
AAA geometries and concluded that the inclusion of anigptigcales up the magnitude of peak
wall stresses (Rodriguez et al. [25]). Additionally theydsed the outcome of two different
anisotropic models, one of them was the model by Holzapfal.ef26] and the other one
by Rodriguez et al. [24], and they concluded that parareatescribing the fiber orientation
should always be obtained independently from the fittindnefdther parameters to stress-strain
data. However, the authors fitted the models they comparddfésent data sets, hence their
conclusion on the influence of fiber dispersion is not thatpelimg.

To the authors’ knowledge the influence of different fibempdisions on the basis of the
structural model by Holzapfel et al. [4] using systematimewical simulations has not yet been
studied. In addition, stress distributions obtained frcamameter sets taken from healthy and
diseased aortic tissues have not yet been compared. Thenppagper aims to investigate the
influence of three different fiber dispersions: (i) non-tioiaally symmetric dispersion, which
is the most realistic assumption recently introduced byzbiolel et al. [4]; (ii) transversely
isotropic (rotationally symmetric) dispersion, accoglio Gasser et al. [27], a special case of
[4]; (iii) perfectly aligned fibers (no dispersion in eithplane), according to Holzapfel et al.
[26], another special case of [4]. All three dispersion agstions are studied with material and
structural parameters obtained from the media and adigeatihealthy abdominal aortic walls,
and from one AAA sample (Niestrawska et al. [3]).

The outline of the paper is as follows. In Section 2 the resplicontinuum mechanical
framework is provided by briefly explaining the utilized rsypmmetric fiber dispersion model
[4]. In addition, explicit expressions for the stress arab#tity tensors are provided, as needed
for the implementation in a finite element code. In Sectiohe8used method is described, i.e.
different fiber dispersions are studied using three reptaige numerical examples, and related
finite element simulations are performed. The results (fetggmulations are then summarized
and discussed in Section 4, which is followed by a conclusion



2 Continuum Mechanical Framework

This section briefly reviews the required continuum mectaframework, with notation ac-
cording to Holzapfel [28], and summarizes the used non-sgtna non-rotationally symmet-
ric) fiber dispersion model. It provides the background far inathematical description of the
stress and elasticity tensors needed for the implementetithe general purpose finite element
analysis prograrrEAP (Taylor [29]).

2.1 Kinematics

Let ), be a reference (or undeformed) configuration &rits current (or deformed) configura-
tion. The deformation mag(X) transforms a material poit € €, into a spatial poink € €.
With this map we define the deformation gradiént 0x (X)/0X that allows to map a tangent
vectordX from the reference to the current configuration dia= FdX. The determinant of
F is denoted by/ and describes the ratio between the volume in the currentheneference
configuration. For incompressible materials, as consdieréhe present work/ requires to be
equal to unity (Holzapfel [28]). For subsequent use we dpledtiinto a spherical (dilatational)
part JY31 and a unimodular (distortional) paft= JY3E, with detF = 1; the second-order
unit tensor is denoted bl The right Cauchy—Green tensér = F'F and the left Cauchy—
Green tensob = FF' are defined together with their modified counterp&ts- F'F and
b =FF', respectively, with the related invariants= trC = trb and/, = trC = trb.

2.2 Non-symmetric fiber dispersion model

Let us now introduce the probability densjty©, ®) of the (collagen) fiber orientation in the
reference configuration in terms of the two anghkeand® (Holzapfel et al. [4]). The experi-
mentally observed distribution of the collagen fibers indbeta is non-symmetric [2, 3] so that
we decomposg in the formp(0, ®) = p;,(®)p,,(©), wherep,,(®) andp,,(©) describe the
in-plane and out-of-plane dispersions, respectively. &pandp,, we consider the von Mises
distributions of the forms

_ explacos2(® + a) . /2bexp[b(cos20 — 1)]
Pip(®) = T ;o Pep(©) = 2\/; V) (1)

wherea and b are constant concentration parametdgsqa) is the modified Bessel function
of the first kind of ordef), anda denotes the angle between the mean fiber direction and the
circumferential direction of the blood vessel. To inclulde fiber dispersion into a strain-energy



function, two scalar measures can be defined according tagely

1 Ii(a) 1 1 1 /2 exp(—2b)
L= S R (i 0 Sl 4 2
ip 2 2[0(a)’ fiop 2 8b + 4V b erf(\/Qb) ’ ( )
where/, (a) is the modified Bessel function of the first kind of orderand0 < «;, < 1 and

0 < Kop < 1/2.
We introduce now two symmetric fiber families with the (irapé) mean fiber directions

M, = cos a€] + sin ae,, Mg = cos ag, — sin ae,, (3)

wheree, denotes the circumferential direction aedthe axial direction of the blood vessel.
Additionally, we introduce the invariants, I; and/,, i.e.

I, =C:M,®M,, i=46, I[,=C:M,®M,, (4)

whereM , is a unit out-of-plane vector. The related modified invaisaare simplyl, = J~*1,
andl, = J 21

To include the fiber dispersion in the strain-energy funttgayV, the generalized structure
tensordH, andHg, describing the material behavior, are then used, i.e.

H,= Al + BM; @M, + (1 —3A— B)M, ®M,, =46, (5)

with the constants
A = 2K,k B = 2kqp(1 = 2Ky,). (6)

ip)
According to [28] the strain-energy functidn(per unit reference volume) is now additively de-
composed intal,;, describing the volumetric elastic response, @andescribing the isochoric
elastic response. Thus,

U = U (J) + W(C, Hy, He), (7)

whereV , = %(In.J)?/2 serves here as a penalty function, anig a (positive) penalty param-
eter (for the subsequent analyses we U<E@D0 kPa). The isochoric pa® of ¥ has now the

form
T =0,(C)+ > U ,(CH,), (8)
i=4,6
where
W,(C) = 5L —3) (©)

captures the energy stored in the ground matrix, witBpresenting the stiffness of the (non-
collageneous) matrix, and the contributigp, of the two fiber families is captured by

— k —
Ui (CHY) = Zlexp(bEy) — 1), i=4.6. (10)
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wherek, > 0 is a stress-like parameter ahgl > 0 is a dimensionless parameter, while are
guantities according to

B, =trH,C)—1=Al, + B, + (1-3A—-B)I, — 1, i =4,6. (11)
In (11) the mean fiber directiond; are included in form of the invarianfs, while the disper-
sion parameters;, andx,,, are considered in the constantsnd 5.

2.2.1 Stress tensors

The second Piola-Kirchhoff stress tenSatescribes the change of the strain energy with respect
to C and is defined b = 20V /0C. Using the introduced decoupled form of the strain-energy
function (7) two stress contributions can be identified sihetS = S,,, + S. The volumetric
part is derived by means of the chain rule, which reads

o 8\IIV01(J) aJ _ -1 _ dlllvol(‘])
&OI—QT%—Z)JC ) p_T7 (12)
wherep denotes the hydrostatic pressure. The isochoric conimibtd S is obtained by
- o, = 0V
S=2_=J%P:5  S=2_— 13
aC ) 8C7 ( )

whereP = 1— %C_l ® C is the projection tensor in the Lagrangian settihig,the fourth-order
identity tensor ands is the fictitious second Piola-Kirchhoff stress tensor. @ding to the
introduced structure of the strain-energy function (8) vaymrite S as

.. N - ov - oA
S:S_'_ ) S :2—_g: I’ ’i: _7Z:2 ,ZH,“ 14
H 2 S Simgg e Sum2Ge = (14)
where (9)-(11) and the abbreviation
/ oWy, - =2
P = 857 = ki Eexp(ko ;) (15)

have been used.
For the finite element implementation we use the Kirchhotfss tensorr, which is the
push forward ofS so that
T=FSF' =1, +7, (16)
where

Tyvol = le ; (17)

a
I

=
N



p=1-— %I ® | is the projection tensor (deviatoric operator) in the Baledescription, and
7 is the push forward of the fictitious second Piola-Kirchheffisor given in eq. (13) The
contributions of the ground matrix and the fibers to the fmti$ stress can be split according to
F=Tt ) T (18)
i=4,6
which is the analogue of eq. (14)Hence, from (14)and (14) we get the fictitious Kirchhoff
stress tensors by a push-forward operation according to

7, =FSF —=cb, 7, =FS5,F =2¢h, (19)

where the definition for the Eulerian structure tensors

=T

FH,F

7 )

i=4,6, (20)

)

has been introduced.

2.2.2 Elasticity tensors

The decoupled form of the Eulerian elasticity tens@an be obtained in an analogous manner
as the decoupled stress tensor {16¢.

C = Cya + 67 (21)
with c,,; = pl ® | — 2pl, wherep = p + Jdp/dJ, and [28]
- 2 2
JE:P:C:JPJrgtr(%)P—g(I®F+F®I), (22)

wherec is the fourth-order fictitious elasticity tensor in the Eid@ description, defined as
the push-forward operation @f]“‘/?’aé/&a By using the specific choice of the strain-energy
function and the derived stress relation (14)dave obtain the explicit form

& =47 /n; @R, (23)

where the definition (20) and the abbreviation

" aQ\I]fz‘ =2 =2
’l/}i = _2’ = kl(l + 2k2Ei )eXp(/{ZgEz) (24)
oF;
have been used. Hence, with (23), (20) and the stress tdii8)@and (17) the purely isochoric

contributiont to the Eulerian elasticity tensor can be calculated fromti@hship (22).

By considering minor and major symmetries of the elastigtysors the Voigt notation was
then used for the implementation in the finite element amajyogramrEAP [29].



3 Methods

Here we describe three cases of fiber dispersions. The (alated structural) parameters used
for the numerical analyses of three examples are outlineétail.

3.1 Parameters used for the numerical analyses

We are studying three different cases of fiber dispersions:

() Non-rotationally symmetric dispersion (i.e. the gealarase), as introduced in 2015, and
reviewed in Section 2; for more details see Holzapfel et4]. Ye refer to this case as
NRSD (on+otationallysymmetricdispersion).

(i) Transversely isotropic (rotationally symmetric) gession, as introduced in the GOH
model in 2006, see Gasser et al. [27]. For this case the steutgnsors (5) have the
special form

H,=«l +(1-3s)M; @ M, (25)

wherex € [0, 1/3] is a single dispersion parameter. Equation (25) is obtdoed (5) by

takingk = 1 — 2k,,, which corresponds td = x, B = 1 — 3x. We refer to this special

op?
case as TIDtfansverselysotropicdispersion).

(i) Perfectly aligned fibers (no dispersion in either mqnas introduced in the HGO model
in 2000, see Holzapfel et al. [26]. For this special case botitentration parameters,
b) become infinite so that,, — 1/2. The structure tensors (5) are thdn= M, ® M,.
This corresponds tel = 0, B = 1in (5). We refer to this special case as Rfeffect
alignment).

Figure 1 depicts a visualization pfN)N (for just one family of fibers), where the unit vector
N is an arbitrary fiber direction in the reference configumatior (a) the general case for which
H, is given by (5), (b) the transversely isotropic dispersibi) with H, given by (25) and (c),
the case of perfect alignment (PA) of collagen fibers.

As mentioned above the fiber dispersions described in (d)(an are special cases of the
non-rotationally symmetric dispersion model, which is sidered to be the reference model.
Subsequently, we use (material and structural) paraméterhe media and adventitia of
healthy abdominal aortas (median values) according totidiwska et al. [3]. The material
parameters( k,, k,) were determined from biaxial stretching tests and adofsted Table 4

in [3], while the structural parameters,(, «,,, a) were determined from second harmonic

op?
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(b)

©

Figure 1: Visualization of three cases of fiber dispersiogfingéd byp(N)N, with p = p;,p,,,
according to (1), where the distance from the center to thiaseirepresents the probability of
finding a fiber in the directiolN: (a) non-rotationally symmetric dispersion (the geneeale);

(b) transversely isotropic dispersion; (c) perfectly agd fibers. The plots have been scaled
differently.

ckPa) ki (kPa)  ky(5)  kp() k() ()

Media 16.08 11.68 7.18 0.208 0.487 6.91
Adventitia 3.77 0.36 45.88 0.232 0.466 77.53
AAA 3.72 2.73 123.52 0.261 0.438 9.05

Table 1: Material parameters, (k;, k,) from biaxial stretching tests and structural parameters
(Kip» Kop» @) from second harmonic generation images, for healthy nseahal adventitias of
human abdominal aortas (median values), and for one AAAsealiple; taken from Tables 2-5
of Niestrawska et al. [3].

generation images and adopted from Table 2 in [3]. In additiee also use structural and ma-
terial parameters from one AAA wall sample, and adopt theesfrom Tables 3 and 5 in [3],
i.e. sample AAA-5. The parameters are summarized in Tableot.the case of transversely
isotropic dispersion we take,, = 0.414, 0.406 for the media and adventitia of the healthy
abdominal aorta, respectively, ahd97 for the AAA wall. These values are calculated using
the relationships,, = 1/2(1 + x;,), wheres;,, is taken from Table 1. This relationship results
from the symmetry of the structure tensor (in-pane and éysiane dispersions are symmetric).
From these values it is straightforward to determine théviddal dispersion parameterand
the corresponding constantsand B. Finally, for the perfectly aligned fibers we sét= 0,

B =1 (k,, = 1/2). These material and structural parameters are now takehdsubsequent
three examples.
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Figure 2: Cuboid-shaped sample of a healthy media (and a AAW veinforced by two sym-
metric fiber families, denoted byl , andM 4, and subjected to equibiaxial extension within the

(e, &) plane.

3.2 Planar biaxial extension

On the basis of a planar equibiaxial extension test we stheythree different cases of fiber

dispersions, as discussed in the previous section. Ircp&atj we consider samples of a healthy
media and a AAA wall with the dimensid x 20 x 1.5 mm, which resembles the geometry
used for the actually performed biaxial extension expenitsidocumented in [3].

Four hexahedral mixe@1-P0 elements (constant pressure and trilinear displacement in
terpolations) are used for the discretization of a cuboiuictvis reinforced by two symmetric
fiber families located in theg(, e,) plane, see Fig. 2. The samples are subjected to equibiaxial
extension within thed, e,) plane up to a stretch of;,. = A\, = 1.25, using a displacement-
driven analysis. The analytical solutions are calculatewading to [4] usingwATLAB [30] and
compared with the finite element solutions computed by me&REAP [29].

3.3 Inflation of residually stressed and pre-stretched aoit segments

Here we study the influence of the fiber dispersion on the mrechlaresponse of residually
stressed and pre-stretched (idealized) aortic segmengarticular, a healthy aorta consisting
of media and adventitia, and an aneurysmatic abdominad aoetanalyzed.

3.3.1 Geometry

The wall thickness and axial length are chosen td benm, whereas the initial inner radius
R; is 10mm. For the healthy aortic segment the thickness ratio ofim@diventitia is chosen
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Step 2

A, =1.0675

One eighth of the
aortic segment

End of step 2 Step 3

Figure 3: Three steps performed during the simulation osaltmlly stressed and pre-stressed
(cylindrical) aortic segment. Due to symmetry one eightthefsegment is simulated. First, the
opening angle of80° (90° because of symmetry) of the segment with inner radius closed;
second, an axial pre-stretch &f = 1.0675 is applied to obtain the inner radiug third, the
aortic segment is pressurized with an inner presgwne to 120 mmHg.

following the experimental findings of Schriefl et al. [2] aNtestrawska et al. [3], i.e70%

of the wall thickness is occupied by the media, 80é by the adventitia. The AAA segment
is modeled as one single layer wittb mm wall thickness. The initial (stress-free) geometry
is a cylindrical segment cut open with an opening angl&sof (defined according to Fig. 3 in
[26]), which is slightly smaller than the opening anglesared for healthy abdominal aortas
(Holzapfel et al. [31]; Greenwald [32]). For a better compan of the material responses
between healthy and diseased segments, and as there arparonextal data available on
opening angles for aneurysmatic aortas, the same openghg iarchosen for both cases.
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3.3.2 Finite element model

The geometry is discretized by one element in the axial oec70 elements in the circum-
ferential direction and0 in the radial direction. For the healthy aortic segmestements are
used for the media in the radial direction, ahfibr the adventitia.

Figure 3 shows the steps performed during the simulatione @usymmetry, only one
eighth of the aortic segment is simulated, therefore, trenoy angle isl80°/2 = 90°. In
step 1 the segment is closed to form a quarter of the segmestristraining surfacd in the
2 direction and surfacB in both thel and2 directions, and by applying tr&PIN command in
FEAP to surfaceB. This command rotates the selected nodes around the cecteespective
to a defined axis of rotation. Simultaneously, the loweraeD is restricted in th& direction.
Then, the upper and lower surfadésandD are restricted in th8 direction andA andB are
constrained in the direction only. In step 2 the aortic segment is stretchedrbgaal pre-
stretch), of 1.0675, achieved by a displacement-driven loading on surfa¢te pre-stretch is
calculated for the corresponding age following the appnqaoposed by Horn et al. [33]). At
the end of step 2 the inner radiydgs taken for the normalization of subsequent plots. In step 3
(the last step) the boundary conditions are left unchangtédrespect to step 2, and the aortic
segment is inflated with an inner presspref 120 mmHg using a pressure boundary loading
(pressure loads depend on the deformation).

3.4 Inflation of an idealized AAA geometry

The final example underlines the importance of using acediia¢r dispersions in AAA simu-
lations. We are utilizing an idealized AAA geometry to stulg effects of fiber dispersions on
the mechanical AAA response in a repeatable way using a mattieal function for the AAA
shape; therefore, a patient-specific geometry is deliegraot used. In this example we use
again the material and structural parameters from Sectibna®d, in addition, we analyze a
fourth case, namely isotropic fiber dispersion which is @gpnted by a uniform dispersion in
each plane so that, = p,, = 1, where the structure tensor is simgly/3)!. Hence, we have
no preferred direction so that= 1/3 in (25), with A = 1/3 andB = 0 in (5).

3.4.1 Geometry

The idealized geometry of the AAA segment is generated usiegoolkit cuBIT [34] and
MATLAB [30]. The initial AAA thickness is chosen to be the same ash&éxample of Sec-
tion 3.3, i.e.1.5 mm. The (total) lengtll of the AAA model is160 mm, while the AAA shape,
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i.e. the change in the radiug is defined by a ‘parabolic-exponential shape’ functiorposed
by Elger et al. [5], and utilized in, e.g., Rodriguez et @a4]f Thus,

Z

R,

) , (26)

where Z denotes the axial coordinat&, is the radius of the healthy aorta (for the analyses

Z2
R(Z) =R, + (Ran — R, — c3§> exp (—02

a

we useR, = 15mm), R,,, is the maximum radius of the aneurysm fat= 0), ¢;, = 0.5is a
constant and, andc; are defined as

4.605 o Bu-—R,
(0.5L/ R, * " R,(08Ly/R,)”

(27)

02:

wherelL,, is the length of the aneurysm (Rodriguez et al. [24]). Fdtedch of one eighth of
the AAA geometry see Fig. 4. Following [24] we us the dimen#gs geometrical parameters

an (28)

an

whereF?y, is the ratio between the AAA radius and the radius of the hgalorta, and’, is the
ratio between the length of the aneuryép), and the maximum AAA radius; we ugg, = 2.5
andFy, = 2.8.

3.4.2 Finite element model

The 3D geometry is discretized wittuBIT, and the analysis is performed wiHEAP using
1 488 hexahedral mixed)1-P0 elements. An inner pressure tf kPa (~ 120 mmHgQ) is ap-
plied to simulate the mean blood pressure. Symmetric bayrmtanditions are employed al-
lowing the simulation of only one eighth of the idealized AAy®ometry, which reduces the
computational time significantly. The axial direction istrected on both outlets, see Fig. 4.

3.4.3 Definition of fiber orientation

In order to include the fiber orientation, the local circurefdtial, axial and radial vectors of a
finite element, sag’™, €2, e’ need to be identified. This task is straightforward for a
cylindrical geometry but it is more elaborate for a AAA gedrgewhere the local axial direc-
tion varies as well. We include the fiber dispersion by usitgral coordinate system for each
individual finite element. Three nodes on the upper (topleserand three nodes on the lower
(bottom) surface of an individual element are used to defimgtianes. Hence, two orthogonal

ebottom

vectors to these planes can be identified, E8° ande} , see Fig. 5. Consequently, we
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(@) R. (b)

AN ,/!\.

Figure 4. One eighth of the idealized AAA geometry and ampbeundary conditions in (a)
along the directiong and2, and (b) along the directio®; L is the (total) length of the AAA
model, L., is the length of the aneurysmatic paRt, is the radius of the healthy aorta (at
Z =0), R,, is the maximum radius of the aneurysm fat= L/2), while Z denotes the local
axial coordinate, see Elger et al. (27).

define the local radial (unit) vector as

top bottom

elsocal _ 63 + e3
| € + e

(29)

ottom H :

Subsequently, the local circumferential vea#¥f*' is calculated by using the cross product of
the global axial vectoe, and the calculated local radial vecejt*, i.e.

ellocal _ % % egocal. (30)

local

Finally, the local axial vectog,“" is calculated as
local

e _ egocal > elloca1. (31)

By utilizing the local coordinate system the mean fiber diggts, as introduced in Section 2.2,
are then determined as

M, = cos €’ + sin aef™, Mg = cos €’ — sin aey, (32)

andM , = e,

14



Upper surface™

Lower surface

Figure 5: Local vectore?™™, &>, &>“*! required for the definition of the local fiber orientations
within an individual finite element.

4 Simulation Results and Discussion

This section documents the numerical results of the systeatig performed simulations of the
three representative examples according to Section 3t @novides short discussions.

4.1 Planar biaxial extension

Figure 6 displays plots for the Cauchy stress.(, 0..i.) vVersus the related stretch.(., Aaxial)
for a sample of the healthy media and one for the AAA wall cdesng the fiber dispersions
NRSD, TID and PA. The numerical (FE) and the analytical rsscbincide very well, which
indicates the correct implementation of the material maaelFEAP [29]. As can be seen, the
fiber dispersion has a significant influence on the mechabéetavior of the samples.

Images indicate that collagen fibers exhibit a very smaltadytlane dispersion for the
healthy media but a significant in-plane dispersion (Sélheteal. [35]; Niestrawska et al. [3]).
TID assumes too little in-plane fibers leading to a weakermenitresponse in both circumfer-
ential and axial direction compared with NRSD, see Fig..6(aPA is used (witha = 6.91°)
then too many fibers reinforce the circumferential diractiherefore, a PA of fibers overesti-
mates the stiffness in the circumferential direction andanastimates it in the axial direction
when compared with NRSD. The nonlinear stiffening in theabglirection can only be cap-
tured with the use of NRSD. Table 2 summarizes the Cauchygssis(in kPa) at.15 and1.20
stretch. Stresses in the circumferential direction.20 stretch for PA of fibers are overesti-
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Figure 6: Planar equibiaxial extension of a cuboid-shaedpte to examine the difference
in the mechanical behavior due to non-rotationally symioetispersion (NRSD), transversely
isotropic dispersion (TID) and perfect alignment (PA) okfib. Analytical and numerical (FE)
solutions are compared: (a) healthy media, (b) AAA wall.

mated by52% compared with NRSD, whereas the axial Cauchy stress isresiiteated by
56%. The TID underestimates both circumferential and axialdbg stresses by2% and45%,
respectively.

A similar tendency can be seen for the AAA sample, althoughailt-of-plane dispersion
of fibers is (much) higher for AAAs compared with healthy tiss. Especially when stresses
are compared at stretches bf)5 and 1.10 the differences become clear, see Table 2. The
analysis based on PA of fibers shows a faster stiffness whapaed with TID and NRSD. At
Aeire = 1.05 the related stress is alreadly7% higher compared with NRSD, andJat,.. = 1.10
the circumferential Cauchy stress is abéutimes higher for PA with respect to NRSD.

circ
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HEALTHY MEDIA

Circumferential Axial
Stretch) 1.15 1.20 1.15 1.20
41.06 92.92 | 19.50 35.23 | NRSD
Stressr 21.68 35.39 | 13.84 19.37| TID
56.36 141.10| 12.25 1557 | PA

AAA WALL
Circumferential Axial
Stretch)\ 1.15 1.20 1.15 1.20
1.99 19.54 1.31 6.84 NRSD
Stressr 1.42 4.47 1.13 2.49 TID
6.51 879.9 1.14 10.87 | PA

Table 2: Cauchy stresses(in kPa) at two stretches (in the circumferential and axial direc-
tions) of the equibiaxially loaded cuboid-shaped sampteNlBSD, TID and PA of fibers, for
the healthy media and the AAA wall.

4.2 Inflation of residually stressed and pre-stretched aort segments

Figure 7 illustrates the thickness change of the aortic wéh respect to the inner pressure
p for the healthy aortic and AAA segments. Initial thicknestsy = 0, is with respect to the
configuration ‘end of step 2’, as marked in Fig. 3. The closifighe open segments results
in different wall thicknesses before inflation. For the AAAgsnent the wall thicknesses at
p = 0 are quite dependent on the used fiber-reinforcement (se€/ Y, because the AAA
segment is much stiffer than the healthy aortic segment.adse seen, the choice of the fiber
dispersion is strongly influencing the results. For botlestigated segments the analyses with
PA of fibers provide (by far) the stiffest response, resglima5.6% smaller wall thickness at
120 mmHg when compared with NRSD for the AAA segment. On the otiagd the segments
with TID show the most compliant responses, while the meiciadnesponses with NRSD are
in between. The difference of the material behavior betwibertwo segments (healthy aorta
versus AAA) is as pronounced as already shown in Section 4.1.

Figure 8 depicts 3D plots of the circumferential and axiali€e stresses versus the inner
pressure and the normalized radius for the AAA segment, angpares the influence of the
three different dispersion assumptions. The current eagdibhere normalized with the inner ra-
diusr;, as depicted in the configuration ‘end of step 2’ of Fig. 3. &tsally, the circumferential
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Figure 7: FE results of wall thickness versus inner presBuré) the healthy aortic segment
and (b) the AAA wall using three different fiber dispersiomsin-rotationally symmetric dis-
persion (NRSD), transversely isotropic dispersion (Tifect alignment (PA) of fibers.
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Figure 8: FE results of circumferential and axial Cauchgsdes versus normalized radius and
inner pressure for the AAA segment with three different fidespersions: non-rotationally
symmetric dispersion (NRSD), transversely isotropic éispn (TID), perfect alignment (PA)
of fibers.

and axial Cauchy stresses analyzed on the basis of PA of Aibermgnificantly different with
respect to the other two fiber dispersions, with a peak cifetantial (Cauchy) stress of over
300 kPa.

Figure 9 depicts the distributions of the circumferentiallChy stresses with respect to the
geometry ati20 mmHg. Clearly, wall thicknesses and radii differ betweea Healthy and
aneurysmatic segments, and also between the differendiggersions.
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Figure 9: FE results of the circumferential Cauchy stressitutions (in kPa) at20 mmHg for
(a) the healthy aortic segment and (b) the AAA segment usiregtdifferent fiber dispersions:
non-rotationally symmetric dispersion (NRSD), transedrssotropic dispersion (TID), perfect
alignment (PA) of fibers. Note the different scales for threst in (a) and (b).

4.3 Inflation of an idealized AAA geometry

Figure 10 shows circumferential and axial Cauchy stressesug the (current) inner radius
for different fiber dispersions up tt20 mmHg for (a) the cylindrical segment (healthy aorta)
at the smallest radius (& = L/2), and (b) at the maximum radius of the bulged AAA seg-
ment (atZ = 0). All simulations except for the one which considers ispicalispersion show
compressive axial stresses in the cylindrical (healthyl plthe aorta, which occur due to the
boundary conditions. In addition, the circumferentiaéstes are higher with isotropic disper-
sion, labeled as ISO, as they are with NRSD and TID. The cyiiatisegment with the smallest
radius and the maximum radius of the bulged AAA segment (i8th) exhibits the largest ra-
dial extension (with a value df3.54 mm at120 mmHg), not having enough fibers located in
the circumferential direction to prevent excessive extansdue to the applied pressure. TID
exhibits a more compliant behavior in the diseased regiath (@spect to NRSD) with a max-
imal circumferential stress a%60.7 kPa, whereas NRSD reach@&st.2 kPa at a maximal inner
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Figure 10: Circumferential and axial Cauchy stresses ge(surrent) inner radius up to
120 mmHg for (a) the cylindrical segment (healthy aorta) at thmakest radius (aZ = L/2)
and (b) at the maximum radius of the bulged AAA segmenf(at 0). Three different fiber dis-
persions are investigated: non-rotationally symmetspdision (NRSD), transversely isotropic
dispersion (TID), isotropic (1ISO).

radius of42.9 mm. Note that no solutions for the AAA with PA of fibers can beplayed, as
this case showed numerical instabilities at higher preskwels in the neck region. This is
most likely due to the significant differences in stiffnegtvireen the compliant ground matrix
and the (relatively) stiff fibers. As there is no fiber disp@nsand the fibers are located close
to the circumferential direction numerical instabilitiescur, which may arise due to the used
isochoric-volumetric split of the strain-energy functi@ee, e.g., Helfenstein et al. [36]).

Figure 11 shows circumferential and axial Cauchy stresses fanction of the radius
normalized withRz,,, for different assumptions of fiber dispersions. The analgsithe basis of
an isotropic dispersion predicts axial stresses almosetas high as for TID and NRSD. The
prediction of circumferential stresses obtained on thésbalsTID is higher than those using
NRSD throughout the wall thickness.

Figure 12(a) shows contour plots of the circumferential €@gustress for the three simu-
lations at120 mmHg. The scale of the stress is the same for all simulatibnkig. 12(b) the
stress scale is changed so that the location of the maxineakss visible in the 1ISO stress plot.
All three analyses reveal that the peak wall stress is ldcattéhe luminal side of the AAA. The
peak circumferential stress (which was almost identicdhwhe maximal principal stresses)
occurs at the maximum diameter except for ISO, where the mmaxi stress is located at the
transition zone (compare with Fig. 12), hence an isotropdehis inappropriate for this type

20



800¢;

700
g 600
< —— NRSD
9 500
g - - TID
B 400 e T 1SO
% 200 xx x x Circ. stress
% oooo Axial stress
© 2001

100+

0 i | i I i i I J

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04
Normalized radius:/ R,, (mm)

Figure 11: Circumferential and axial Cauchy stresses gansumalized radius/ R, for three
different assumptions of fiber dispersions: non-rotatignsymmetric dispersion (NRSD),
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Figure 12: Contour plots of the circumferential Cauchy sdrén kPa) on the luminal side at
120 mmHag: (a) three different assumptions of fiber dispersiossg the same scale), i.e. non-
rotationally symmetric dispersion (NRSD), transversealgtiopic dispersion (TID), isotropic
(ISO); (b) stress plot for the case 1SO with a stress scalehlwmakes the location of the peak
wall stress in the transitional zone visible.

of analysis. The stress distributions between the case©ONIR8 TID are not as pronounced as
with respect to ISO, because AAA tissues exhibit a rathgelaut-of-plane dispersion, closer
to a rotationally symmetric dispersion, than it is the casehkalthy aortas.

Previous studies detected peak wall stresses at infleatiomspand a pronounced influence
of asymmetry on the location of the peak wall stress (Vorpl.e{@&; Doyle et al. [39, 40];
Rodriguez et al. [24]). Interestingly, in the present egonly the isotropic model exhibits
peak wall stresses at the inflection point. Rodriguez ¢2&l.demonstrated that an anisotropic
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model yields much higher wall stresses when compared witis@rnopic model; the authors
also discussed the influence of fiber dispersion. Howevenrtbdels the authors used are not
comparable, as they fitted their models to different dats, sising different fitting procedures.
The present simulation of an idealized AAA geometry showisévas high maximal stresses
for the isotropic case compared to the anisotropic caseshésised structural and material
parameters are not comparable with the ones used by Redreguwal. [25] the differences in
the findings highlight the influence of parameters and mosiliaptions on stress magnitudes
and locations.

5 Conclusion

The influence of different fiber dispersions on the mechanésponse of aortic tissues in health
and disease has not yet been studied on the basis of the cecestitutive model of Holzapfel
et al. [4]. In the present study we have performed a systenaaialysis using three repre-
sentative numerical examples. Magnitudes and distribatas stresses and deformations were
presented and discussed. We have used structural and nedliata from human aortic sam-
ples (healthy media/adventitia and AAA), recently docutedrby Niestrawska et al. [3].

Simulations performed with data from healthy aortas shownaré) gradual stiffening,
whereas the simulations with AAA data predict a very complieesponse at low stretches,
then a kind of ‘stiffening point’ at which a rapid stiffenired the material response occurs. For
that stiffening the collagen micro-structure is mainlypessible. Therefore, for AAA tissues it
is even more important to consider the corresponding fitsgradtsion. In all three examplesitis
visible that structural and material data from healthyiadigsues yield a (completely) different
material response when compared with AAA tissue. Consdtyuelata from healthy tissues
should not be used for the prediction of peak wall stress@g\hs, or vice versa

All simulations show a rather remarkable influence of therfthgpersion on the magnitudes
and distributions of stresses and deformations. The mesteaelifference can be appreciated
in the example analyzing the inflation of an idealized AAA getry. For example, the peak
circumferential stress is more than twice as high with moitr dispersion compared with non-
rotationally symmetric dispersion, and even the relatedtion of the peak stress is different.
The computational study indicates that small changes ifillee dispersion result in a rather
different tissue behavior. Hence, as long as structurarpaters are available they should be
considered in the analysis, especially as the computationa is about the same for differ-
ent arterial micro-structures. Clearly, it is not suffidciéo use phenomenological models to
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understand disease progression.

Future studies should focus on the inclusion of new imagiaig @f the micro-structure.
Intermediate stages of AAA formation should also be studigce.g., mouse models to provide
data for more detailed micro-structural modeling and asedy Another key research topic is
certainly the collection of structural daita vivo, which would help to establish more realistic
rupture criteria, and to better understand collagen ratate®n during disease progression.

Acknowledgements. The authors would like to thank Jakob Eckmann for the constrel
discussion on the computational analysis.
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