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Abstract

We have in this thesis looked at possible improvements with respect to security
for the Norwegian Internet voting protocol analyzed by Gjøsteen in [Gjø10].

We have made a new protocol with independent secret keys, where all the
encryptions of the votes are done by the voter’s computer. We have also made
two Special-Honest-Verifier-Zero-Knowledge Arguments of Knowledge for proving
permutation and decryption of ElGamal ciphertexts, useful for the decryption
service.
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Chapter 1

Introduction

Internet voting. The Norwegian government is planning a trial of Internet vot-
ing during the local government election September 2011. To build trust to the
system, an important principle for the government is transparency. Most impor-
tant documents including technical details are therefore made public. Gjøsteen
[Gjø10] has described and analyzed the cryptographic protocol that will be used
for the trial.

The protocol is designed by the Spanish electronic voting company Scytl. The
voter submits a ballot by picking vote options on his computer. The protocol
consists of several players encrypting and decrypting the ballot before the final
result is made public. In a security analysis of a cryptographic protocol, we look
at how the protocol acts when it is been attacked. An attacker is an non-honest
player taking control over parts of the protocol.

According to [Gjø10], there are two main security problems in the Norwe-
gian Internet voting system, compromised computers and coercion. As a defense
against coercion, a voter will be allowed to submit multiple ballots where the
last submitted ballot always will count. If a paper vote is submitted, this will be
counted instead of any electronic vote.

Overview of the paper. We will in this thesis look at how it is possible to
improve parts of the existing protocol by making it more secure.

Chapter 2 is a presentation of the theoretical background we need for the
improvements.

The first improvement is presented in Chapter 3. It is a new vote submission
where we make the secret keys independent, and where we move all the encryp-
tions of the votes to the voter’s computer. The new key generation is described,
with a security analysis of different cases of attacks.
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Chapter 4 contains a new proof for the decryption service. We have made
two Special-Honest-Verifier-Zero-Knowledge Arguments of knowledge for proving
permutation and decryption of ElGamal ciphertexts. The two suggestions are
compared with respect to the performance in the end of the chapter.

We assume readers have basic knowledge in mathematics and cryptography.



Chapter 2

Theoretical Background

We will in this chapter present the theoretical background used in the improve-
ments in Chap. 3 and Chap. 4. We present notation, definitions, theorems and
a new subprotocol.

2.1 Notation

Picking a random element r from a group Zq will be denoted by r ← Zq. For a
probabilistic algorithm A, we write y ← A(x) for A making the assignment y =
A(x; r) on input x, where r is picked random. Pr[A;B] denotes the probability
for B to happen, given the probability space A.

2.2 Game Hopping

The basic ideas and definitions of game hopping and security proofs are from
[Sho04], and also described by Gjøsteen in [Gjø].

Security is the fundamental goal of every cryptographic protocol. A well-
founded confidence in the security of the protocol is essential for the trust in the
voting system. But to show that an attacker can not break a system can often be
difficult because we must assume the attacker has greater cryptanalytic resources
than we have.

A security proof is a way to deal with this by isolating core components of
the protocol and showing that an attack on the cryptosystem must lead to an
attack on some of the components. Given such security proof, the confidence in
the security of all the core components will be transferred to the cryptosystem.
The advantage is that the core components are often easier to analyze and our
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resources will be used more efficiently. But for even simple cryptosystems, the
security proof can be complex and difficult to understand, and therefore difficult
to verify the correctness of.

A proof technique to simplify the complexity in a system and make the proofs
easier to understand and verify, is called Game hopping. The technique will be
presented after some basic definitions.

Definition 2.2.1. A Probability distribution on a finite set S is a function µ :
S → R such that (i) for all s ∈ S, 0 ≤ µ(s) ≤ 1, and (ii)

∑
s∈S µ(s) = 1. A

probability space X is a pair (S, µ) where S is a finite set and µ the probability
distribution on S

A central part in Game hopping is distinguishing probability spaces. Given
two spaces X and Y over the same set S, we have a distinguisher between the
spaces if we can tell whether an element s ∈ S is sampled from X or Y .

Let A be an algorithm with (X,Y, s) as input. We define the Success proba-
bility of the algorithm, Succ(A), as a measure on "how good" the algorithm is
to distinguish the probability spaces. Since the chance with a random guess is 1

2 ,
we define the advantage for the algorithm to be

Adv(A) = |Succ(A)− 1

2
|

We call X and Y indistinguishable if Adv(A) is negligible.

Definition 2.2.2. A Game G is a collection of interactive, probabilistic ma-
chines cooperating to produce 0 or 1 as output. A Game essentially describes a
probability space over {0, 1}, and we denote this space by G.

In Game hopping, we make a sequence of indistinguishable games. Indistin-
guishable games mean that the probability spaces the games describe are indis-
tinguishable. We start with a game with the original attack with respect to a
given adversary, and want to end up with a game which is easier to analyze.

2.3 Encryption
We want to use ElGamal encryption in our protocol. That is, the same encryption
as we use in the existing protocol in [Gjø10]. Our group G will be a cyclic group
of prime order q, with a1 as a secret key and the public keys (g, y1) such that
y = ga1 . The encryption of a message m will be

ξ : M ×R→ G×G
ξ(m, r) = (gr, yr ·m)
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where r is a randomizer sampled uniformly from R. We can show that the
encryption is homomorphic when (Mpk,·), (Rpk,+), (G,·) are abelian groups :

ξ(mo, ro) · ξ(m1, r1) = (gr0 , yr0m0)(gr1 , yr1m1)

= (gr0+r1 , yr0+r1m0m1) = ξ(m0m1, r0 + r1)

The secret key a1 will be used for decryption of the message.

2.4 Commitments
Commitments are a central part of many cryptographic protocols. Damgard and
Nielsen describe in [DN08] a player committing to a value or message, by hiding
it in a commitment, before passing the commitment to another player without
revealing the content of it.

They define a commitment scheme as a probabilistic polynomial generator
that outputs a public key ck from a keyspace K. For every ck, there will be a
function that outputs the commitment:

comck : M ×R→ C

with a message m ∈ M and a random parameter r ∈ R as input. To open the
commitment, the opening (m, r) will be revealed and the second player checks
that c = comck(m, r).

The commitment scheme is said to have the binding property if it is hard for
the first player to change the value of the commitment after it has been sent. The
value it has been committed to should be the only value that can be accepted as
an opening. The commitment scheme has the hiding property if it is hard for the
second player to gain any knowledge of the value before the first player gives his
approval and reveals the key.

We can divide each of the properties of hiding and binding into unconditional
and computational. Unconditional means that it is theoretical impossible to break
the property, while computational means it should not be possible to break it with
polynomial computing power. Intuitively, a commitment scheme both uncondi-
tional hiding and binding will give the best protection, but unfortunately, this is
impossible as described in [DN08].

In our situation, the commitment schemes are used by a prover P who wants
to convince a verifier V in a limited time. A computational hiding and binding
commitment scheme should therefore be enough to preserve our security. How-
ever, we always want to accomplish the best security possible. As we will see
several times later, first in Sect. 4.1.1, we need an argument that the verifier
does not see the contents of the commitments. For this reason, we choose a com-
mitment scheme with the unconditional hiding property that should satisfy the
following definition:
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Definition 2.4.1. [DN08] We have a commitment scheme with:
computational binding if for any probabilistic polynomial time algorithm P ∗

which takes as input a public key produced by a generator on input 1l. Let ε(l)
be the probability with which the algorithm outputs a commitment and two valid
openings revealing distinct values. That is, it outputs C,m, r,m

′
, r
′
such that

m 6= m
′
and comck(m, r) = C = comck(m

′
, r
′
). Then ε(l) is negligible in l.

Unconditional hiding if for even infinitely powerful V and for correctly gen-
erated ck and random independent r, s, then comck(m, r) and comck(m, s) are
statistically indistinguishable 1. Furthermore, an honest P should accept an in-
correctly generated ck with negligible probability.

Two extra properties are important in the choice of commitment scheme for
our protocol, Homomorphic Property and Root-extraction Property.

Definition 2.4.2. [Gro10] We have a homomorphic commitment scheme with
message space (Mck,+), randomizer space (Rck,+) and commitment space (Cck,·)
all abelian groups, if for all ck and for all (m0, r0), (m1, r1) ∈Mck×Rck we have:

comck(mo +m1; r0 + r1) = comck(m0; r0) · comck(m1; r1)

Definition 2.4.3. [Gro10] A commitment scheme has the root-extraction prop-
erty if there exist a polynomial time algorithm that given a message M , random-
izer R, and a non-trivial e ∈ Zq such that

ce = comck(M ;R) , then it outputs (m, r) as the opening of c

We further require that the algorithm runs in polynomial time.

Pedersen commitment scheme

A commitment with the required properties and that will be used in our protocol
is a Pedersen commitment scheme found in [Ped92]. The key generator KG
generates random (g, h) and let

comck(m, r) = (gm · hr)

We will show that this satisfies the properties:

The commitment is clearly homomorphic and we begin to show the root-extraction
property. Assume we have an opening (M,R) of ce:

ce = (gM · hR) = c · c . . . · c︸ ︷︷ ︸
e

= (gm · hr) · · · (gm · hr)︸ ︷︷ ︸
e

= (gm+···+m · hr+···+r)

where m = M/e, r = R/e and (m, r) is the opening of c
1the statistical distance between the two are negligible
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It is a unconditionally hiding commitment scheme. The random r makes it im-
possible to tell what m is, and therefore to distinguish two different messages.
Assume we want to find a second opening (m′, r′) of a commitment c to break
the binding property. To find the randomizer to the new message m′, we get
hr
′

= c · gm′−1

, and we are left with the discrete log problem which should be
impossible with only computational computing power. It therefore satisfies the
computational binding property.

To save exponentiations, we can use multi commitments [Gro04]. The key
generator will generate random (g1, g2 . . . , gn, r) and let

c = comck(m1,m2 . . .mn, r) = (gm1
1 · · · gmnn · hr)

In this way, we use n + 1 exponentiations instead of 2n for committing to n
messages.

2.5 Zero Knowledge Argument
A Zero-Knowledge Argument is an argument where we want to convince a player
without leaking any information out of the conversation. We will start to define
an Interactive Argument System with two players, a prover P who wants to
convince a verifier V . We assume both have polynomial time computing power.

The prover and verifier get a common input x, and the verifier will after an
interactive conversation, output rejected or accepted to the current x. Given a
binary language L, we say that (P, V ) accepts if V is convinced that x ∈ L,
and (P, V ) rejects if V is convinced that x /∈ L [DN08]. We call a conversation
between P and V for a transcript (tr). A cheating player will be denoted by P ∗
and V ∗.

Definition 2.5.1. [DN08] The pair (P, V ) is an Interactive Argument for L if
it satisfies the following conditions:
Completeness: If x ∈ L, then the probability that (P, V ) rejects x is negligible
in the length of x.
Soundness: If x /∈ L, then for any prover P ∗, the probability that (P ∗, V )
accepts x is negligible in the length of x.

A variant of this is the Argument of knowledge. The prover will instead of
arguing that x ∈ L, argue that it knows certain piece of information. We call
this information for a witness w. Let R be a relation, typically a subset of
{0, 1}∗ × {0, 1}∗. The input x can be a computational problem, where w is the
solution of the problem. We say that (x,w) ∈ R if w is the solution of x [DN08].
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Definition 2.5.2. [Dam10] Let κ() be a function from bit strings to the interval
[0, 1]. The protocol (P, V ) is said to be the Argument of knowledge for the relation
R with knowledge error κ, if the following are satisfied:
Knowledge completeness:On common input x, if the honest prover gets a
private input w such that (x,w) ∈ R, then the verifier always accepts.
Knowledge soundness: There exist a probabilistic algorithm M called the
knowledge extractor. This M gets input x and rewindable black-box access to
the prover and attempts to compute w such that (x,w) ∈ R. We require that the
following holds: For any non-honest prover P ∗, let ε(x) be the probability that
V accepts on input x. There exist a constant c such that whenever ε(x) > κ(x),
M will output a correct w in expected time at most

|x|c

ε(x)− κ(x)

where access to P ∗ counts as one step only.

Zero-Knowledge(ZK) is an extra property to the Interactive Argument or
Argument of knowledge. In addition to completeness and soundness, we do not
want V to be able to extract any extra information out of the conversation that
he did not know before. We can show this by making a simulator for the prover
without access to the witness, and showing that the arguments made by the real
prover and the simulator are indistinguishable.

Definition 2.5.3. [DN08] An interactive argument system (P, V ) for language
L is Zero-Knowledge Argument if for every probabilistic polynomial time verifier
V ∗ there is a simulator MV ∗ running in expected probabilistic polynomial time,
such that the output of MV ∗ has the same probability distribution as the output
from (P, V ) on input x ∈ L and arbitrary δ (as input to V ∗ only).

Similarly, we can define Zero-Knowledge Argument of knowledge. We will use
several versions of Zero-Knowledge-arguments in this paper. Honest-Verifier-
Zero-Knowledge (HVZK) means that the argument is ZK as long as the verifier
is honest and follows the protocol. A stronger version is Special-Honest-Verifier-
Zero-Knowledge (SHVZK).

Definition 2.5.4. [Gro10] An argument is called Special-Honest-Verifier-Zero-
Knowledge for a relation R if there exists a simulator S such that for all non-
uniform adversaries A we have

Pr
[
σ ← K(); (x,w, ρ)← A(σ); tr ← 〈P ∗(σ, x, w), V (σ, x; ρ)〉 :

(σ, x, w) ∈ R and A(tr) = 1
]

≈ Pr
[
σ ← K(); (x,w, ρ)← A(σ); tr ← S(σ, x; ρ) : (σ, x, w) ∈ R and A(tr) = 1

]
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The special case differ from the normal with the fact that it is HVZK on a
given challenge ρ.

These cases are interesting even they demand the verifier to be honest. [Gro10]
remarks that there are efficient techniques to transfer Honest-Verifier-Zero-Knowledge
Arguments into Non-Interactive Zero-Knowledge Arguments, and [Gro04] de-
scribes such technique by all participants having access to a random oracle.

The random oracle acts like a random function R: {0, 1}l → {0, 1}t. Since R is
totally random, R(a) will be uniform and random. R(a) will also be independent
of a and gives no information about R(b) unless a = b. R will be fixed, such that
the same R(a) always will be returned on input a [Dam10].

With such oracle, we can execute a HVZK-protocol without the interactive
conversation with V . The random oracle acts like an honest verifier, and we can
replace the challenges V outputs on input a by R(a). The prover will execute
the protocol by generating the "conversation" with R(a) as the challenge, and
pass the whole conversation to V . The verifier will be able to accept or reject the
argument by calling R(a) from the same oracle. A SHVZK-argument with the
random oracle behaving like an honest verifier, but without the ability to cheat,
will according to [Gro04] yields as a Non-Interactive Zero-Knowledge–argument.

2.6 Witness-Extended Emulation
To complete a Special-Honest-Verifier-Zero-Knowledge Argument of knowledge,
we need to show the Knowledge soundness property in Def. 2.5.2. The problem
however, described in [DF02], is that the soundness property requires a 100 %
chance for the emulator to extract the witness whenever a prover can convince
the verifier. This will not always be the case, and they modified the definition
to be a new knowledge soundness for a Computationally convincing argument of
knowledge

Definition 2.6.1. [Gro04] A protocol (P, V ) has the Computational knowledge
soundness property for the relation R with knowledge error κ(k) and failure
probability ν(k) if there is a polynomial p(k) and a probabilistic machine M
such that for all deterministic polynomial time provers P and all probabilistic
polynomial time adversaries A we have

Pr
[
σ ← K(); (x, s)← A(σ) : εP∗(σ, x, s) > κ(k) and the expected

running time of MP∗(σ, x) is larger than
p(k)

εP∗ − κ(k)

]
< ν(k)

where εP∗ is the probability that a cheating prover P ∗ convinces V , and the
running time of M is defined as ∞ if there is non-zero probability that it does
not outputs a witness such that (σ, x, w) ∈ R.
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Another property used in this paper is called Witness-extended emulation.
That is, for all adversaries with probability ε to get an accepting argument, we
want the emulator E to have the same probability to produce a similar argument
and provide the witness.

Definition 2.6.2. [Gro10] An argument has witness-extended emulation if for
all deterministic polynomial time P ∗ there exists an expected polynomial time
emulator E such that for all non-uniform polynomial time adversaries A we have

Pr
[
σ ← K(); (x, s)← A(σ); tr ← 〈P ∗(σ, x, s), V (σ, x)〉 : A(tr) = 1

]
≈

Pr
[
σ ← K(); (x, s)← A(σ); (tr, w)← E〈P

∗(σ,x,s),V (σ,x)〉(σ, x) :

A(tr) = 1 and if tr is accepting then(σ, x, w) ∈ R
]

where s is the state of P ∗, including the randomness. E has access to a transcript
oracle 〈P ∗(σ, x, s), V (σ, x)〉 that can be rewound to a particular round and run
again and again with the verifier choosing fresh random coins.

We will define the emulator E to run 〈P ∗(σ, x, s), V (σ, x)〉 over and over again
until it finds the witness for every time V accepts the argument. With this in
mind, we have the following theorem

Theorem 2.6.3. [Gro04] An Interactive argument with Witness-extended emu-
lation property is a Zero-Knowledge Argument of Computational knowledge with
negligible knowledge error and negligible failure probability.

We write out the sketch of proof from [Gro04]

Proof. Completeness follows from the completeness property of the argument.
We want to show computational knowledge soundness. Assume we have an inter-
active argument with Witness-extended emulation property. Then we can assume
from Def. 2.6.2 that there exists a negligible function δ(k) such that

Pr
[
σ ← K() : (x, s)← A(σ); tr ← 〈P ∗(σ, x, s), V (σ, x)〉 : A(tr) = 1

]
−

Pr
[
σ ← K() : (x, s)← A(σ); (tr, w)← E〈P

∗(σ,x,s),V (σ,x)〉(σ, x) : A(tr) = 1

and if it is accepting,then (σ, x.w) ∈ R
]
< δ(k) (2.1)

We are only interested in the probability to find the transcript tr when V accepts,
otherwise E outputs w = ⊥ and we do not need to find a witness either. Let



2.6. WITNESS-EXTENDED EMULATION 11

εp∗(σ, x, s) = Pr[P ∗ convinces V ]

α(σ, x, s) = Pr
[
Σ← K(); (X,S)← A(Σ) : Σ = σ,X = x, S = s

]
βE(σ, x, s) = Pr

[
w ← E〈P

∗(σ,x,s),V (σ,x)〉 : (σ, x, w) ∈ R
]

and let d be the function d(σ, x, s) = (εP∗ − βE)(σ, x, s)

We can then write out the probability of (2.1) to be∑
(σ,x,s)

α(σ, x, s) · εP∗(σ, x, s) −
∑

(σ,x,s)

α(σ, x, s) · βE(σ, x, s)

=
∑

(σ,x,s)

α · (εP∗ − βE)(σ, x, s)

=
∑

d(σ,x,s)>κ(k)

α · (εP∗ − βE)(σ, x, s) +

∑
d(σ,x,s)≤κ(k)

α · (εP∗ − βE)(σ, x, s) < δ(k) (2.2)

where κ(k) is the knowledge error. We can argue that d is always positive, i.e
εP∗ ≥ βE , in the way E is constructed. For E to find a witness such that
(σ, x, w) ∈ R, it needs an accepting argument. That means that

βE = Pr[tr is accepting] · Pr[E finds w such that(σ, x, w) ∈ R]

The first factor is εP∗ because E is running 〈P ∗(σ, x, s), V (σ, x)〉 to get the argu-
ment. The second factor is a probability function ∈ (0, 1) which implies βE ≤ εP ∗,
and d is positive. We can therefore conclude that both terms in (2.2) are positive
and we have ∑

d(σ,x,s)>κ(k)

α · (εP∗ − βE)(σ, x, s) < δ(k) (2.3)

∑
d(σ,x,s)≤κ(k)

α · (εP∗ − βE)(σ, x, s) < δ(k) (2.4)

Let ν(k) be the failure probability and ν(k) = κ(k) =
√
δ(k). The witness-

extractorM runs the emulator EP
∗
until it gets a witness w such that (σ, x, w) ∈

R. To show computational knowledge soundness, we want to find the probability
to get (σ, x, s) such that εP∗ > κ(k) and M has an expected running time larger
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than p(k)
εP∗−κ(k)

, and show that this probability is less than ν(k). To have M

running more than p(k)
εP∗−κ(k)

times means that the probability for EP
∗
to find w

such that (σ, x, w) ∈ R, βE(σ, x, s), is less than εP∗ − κ(k). That is

βE(σ, x, s) < εP∗(σ, x, s)− κ(k)

⇒ (εP∗ − βE)(σ, x, s) > κ(k)

⇒ d(σ, x, s) > κ(k)

This is exactly the elements in (2.3), and since κ(k) is the lower bound of (εP∗ −
βE)(σ, x, s) we have ∑

d(σ,x,s)>κ(k)

α(σ, x, s)κ(k) < δ(k)

which gives us the probability to get such triple to be

∑
d(σ,x,s)>κ(k)

α(σ, x, s) =
δ(k)

κ(k)
< ν(k)

where ν(), κ() negligible by δ() negligible.

2.7 Encryption of Identity Subprotocol

We will in Sect. 4.1.1 need a Special-Honest-Verifier-Zero-Knowledge (SHVZK)
argument of knowledge showing that

ξid = (x0, w0) = (gr, yr1 · 1)

is an encryption of the identity where y1 = ga1 and without knowing r. The idea
is that if we have an encryption of the identity, then

ξid = (x0, w0) = (gr, yr1 · 1)

⇒ logxo wo = logg y1 = a1

The subprotocol is shown in Fig.2.1 and we will show it is a SHVZK-argument
of knowledge in the next sections.
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PROVER VERIFIER
common input
(g,y),(x0, w0)

Private input:
a1 s.t y1 = ga1 and w0 = xa10

s← Zq
q0 = xs0, q1 = gs

q0,q1−−−−−−−→
e← Zq

e←−−−−−−−−
z = a1e+ s

z−−−−−−−−→ Check that
q0w

e
0 = xz0

q1y
e
1 = gz

Figure 2.1: Subprotocol to show identity encryption

2.7.1 SHVZK

Completeness is straight forward to verify. Soundness follows from the Witness-
extended emulation in the next subsection. We show it is Special-Honest-Verifier-
Zero-Knowledge by making a simulator without access to the private input, and
indistinguishable from the real prover. That is, on input e it outputs a transcript
(q0, q1, e, z) with the same probability distribution as the transcription made by
the the real prover. The differences between the simulator, hybrid and real prover
will be described by colors in Fig. 2.2

Simulator

z ← Zq
q0 = xz0w

−e
0

q1 = gzy−e

Hybrid
z ← Zq
s = z − a1e
q0 = xz0w

−e
0

q1 = gzy−e

Real Prover
s← Zq
z = a1e+ s
q0 = xs0
q1 = gs

Figure 2.2: Differences between the Simulator and the Real Prover

The simulator and hybrid arguments differ by that s is computed in the hybrid
argument. Since s is not used in the computation of q0, q1, the transcriptions will
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be exactly the same. The hybrid and Real prover arguments differ by how z, s, q0
and q1 are computed. We can easily see that the computation of q0 and q1 gives
the same result, and z has the same probability distribution since z is picked
random in the hybrid argument and s is picked random in the real argument.
From this, it follows that the transcripts made by the simulator and the real
prover have the same probability distribution.

2.7.2 Witness-Extended Emulation
We want to create the emulator E, and show that E with the same probability
that the prover P ∗ can convince V , will be able to extract the witness a1 in
expected polynomial time.

Let the emulator E run as the real conversation between 〈P ∗, V 〉. It gets
out the transcription (q0, q1, e, z). If P ∗ fails, i.e V rejects, E outputs (tr, ⊥).
If V accepts, E runs 〈P ∗, V 〉 over and over again on the same q0, q1 until it
gets another accepting argument (q0, q1, e

′
, z
′
). Thus we have q0we0 = xz0 and

q0w
e
′

0 = xz
′

0 . This gives us

we−e
′

0 = x
(z−z

′
)

0

w0 = x
((z−z

′
)(e−e

′
)−1)

0

Want to show that y = g((z−z
′
)(e−e

′
)−1) = ga1 .

We have q1ye = gz and q1ye
′

= gz
′

:

ye−e
′

= g(z−z
′
)

y = g((z−z
′
)(e−e

′
)−1)

Thus, a1 = (z − z′)(e− e′)−1 and we have the witness.
It remains to argue that E uses expected polynomial time. Assume P ∗ has

the probability ε to get an accepting argument. If he does and E needs to find
the witness, we except 1

ε runs to get the second argument. There will be one run
and a non-accepting argument with a probability (1− ε) . In total, this gives us
(1− ε) · 1 + (1 + 1

ε ) · ε = 2 expected runs.



Chapter 3

Improving the Vote
Submission

We will in this chapter present a new and improved protocol for the Norwegian
Internet voting system described in [Gjø10], with respect to security.

In the existing protocol, there are three connected secret keys spread out to
three different players with one key each. The connection between the keys makes
us vulnerable for two players cooperating, they can easily compute the third key.
We will avoid this problem by making a new protocol with two independent secret
keys.

The encryption of the votes are in the original protocol done by two different
players. We will move the encryption to one of them, remove the secret key used
by the other, and let the two remaining secret keys be independent of each other.

More technical, the protocol consists of several players. It is a set of voters V
and the voter’s computers P . We also have a set of infrastructure players. That
is the ballot box B, the receipt generator R, the decryption service D and the
auditor A, which monitors the entire process. An attacker is a non-honest player
taking control over parts of the protocol. We call a part being controlled by an
attacker for a corrupt player, and it will be denoted by the player’s letter followed
by ∗. The connection between the secret keys are a3 ≡ a1 + a2 (mod q).

Originally, the encryption of the votes was first done by the computer, followed
by an re-encryption in B with the encryption key a2 and a personal exponent s.
We will move all the encryption to the computer, and make it without a2. The
receipt generator computes a receipt for each ballot with a3, and sends it directly
to the voter. He will control it against a receipt code-set received before the
election starts. The decryption service decrypts the ballots, sent from the ballot
box when the election is closed, with the decryption key a1. With this encryption,
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a corrupt B∗ and R∗ will no longer be able to compute a1 and decrypt the votes.
We will begin the chapter with the new key generation functionality followed

by the new vote submission. The following section will be a security analysis for
different cases of attacks. And the last section discusses the improvements we
have made.

3.1 Key Generation
We will in this section describe the new key generation KG. It is based on the
key generation in [Gjø10], adapted to the changes made in our protocol. In the
existing protocol, KG generates the per-voter exponent s and gives it directly to
the ballot box through a secure channel.

In the improved protocol, the voter’s computer needs the exponent s. For
security reasons, the key generation closes before the election starts, and it will
therefore not be able to send s directly to the computers during the election. The
description of the key generation will therefore be followed by two suggestions for
distribution of s to P .

Key generation Let O be the set of options, C the set of receipt codes and
G a cyclic group of prime order q generated by g. KG generates random a1, a3
and makes (g, q, y1, y3) public, where y1 = ga1 and y3 = ga3 . The decryption ser-
vice gets a1 and the receipt generator gets a3. KG generates a public f : O → G
which encodes the vote options into group elements. In addition, it generates the
per-voter-exponent s from Zq and computes γ = gs. The element γ is given to
both B and R. We need a set of functions to generate the receipt codes set. That
is d picked from a pseudo-random function family F : G→ C. The composition
of f , the exponentiation map x 7−→ xs and d gives a function r : O → C where
r(v) = d((f(v))s). Before the election, the receipt code-set {(v; r(v)) | v ∈ O} is
computed and given to V.

Intuitively, there are two ways to solve the distribution problem of s. We can
use existing players and channels and pass s to P through B. The key generator
will then use an encryption to hide s from B, where P with V will have the
decryption key. The second way is to make a new player which will be open
during the election. It will receive all the exponents from KG and keep them
until a computer asks for it.

3.1.1 Distribution of the Exponent s Through Existing Play-
ers.

With a distribution of s through the ballot box, we will need to encrypt s. We
will use a public key encryption with encryption key epk and a smart card, SC.
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The smart card will be issued by the government, and we will assume it will
be available for the improved protocol. We want the smart card, in addition
to the signature and identification, containing a decryption key ds such that
ds(ξepk(s)) = s. The generation and delivering of s before and during the election
will be described in Fig. 3.1 and Fig. 3.2 and be like:

1. KG generates the per-voter exponent s, and does an encryption of s with
a public encryption key epk given for every voter. The tuple

{
V, γ, ξepk(s)

}
is given to the ballot box.

2. The contact between the voter’s computer and ballot box will be establish
by P using the smart card and passing the voters signature. B will respond
on the signature by the corresponding ξepk(s) from the list received from
KG.

3. The computer uses the decryption key ds to decrypt. It will now be in
possession of s and ready to do the computation described in Sect. 3.2.

KG B
For all voters V :
s

r←− {0, ...q − 1}

Compute ξepk (s)
{V,ξepk (s)}−−−−−−−−→ Store

{
V, ξepk (s), γ

}

Figure 3.1: Distribution of s from KG to P before the election

B P V/SC
Store

{
V, ξepk (s)

}
Vid←−− Vid←−− vid, ds

ξepk (s)−−−−→
ξepk (s)−−−−→

s
(s)←−− ds(ξepk(s)) = s

Figure 3.2: Distribution of s from KG to P during the election

The computer with access to the voter’s smart card will be the only player
in possession of s during the election. But during the election, we will have a
problem to generate new smart cards if they get lost. A lost smart card should be



18 CHAPTER 3. IMPROVING THE VOTE SUBMISSION

revoked to avoid it being abused, and a new smart card should therefore contain
a new decryption key. However, the encryption of s is already given to B before
the election starts, and a new encryption can not be generated because KG is
closed.

In practice, with this distribution of s, a smart card lost during the election
can not be replaced and a voter will in this case be forced to use paper vote.

3.1.2 Distribution of the Exponent s Through New Players
Our aim is to find a distribution of s in such way that a new smart card can
replace a lost one. We need to introduce a new player which will be open during
the election. We could let this extra player communicate directly to P , and in
this way pass s to P without the encryption. However, for security reasons, we
want as few players as possible be connected directly to the Internet, and an
encryption of s sent through B is still to prefer. We will still use the smart card
described in 3.1.1 for decryption.

To avoid an attacker taking control over the new extra player with the expo-
nent s, we can divide this extra player into multiple players, where each player
only has access to a piece of s. We will use a Shamir treshold-scheme to share s
among the players.

Definition 3.1.1. [Sti06] Let t, w be positive integers, t ≤ w. A Shamir (t, w)-
treshold scheme is a method of sharing a key K among a set of w participants
(denoted by P), in such a way that any t participants can compute the value of
K, but no group of t− 1 participants can do.

The Shamir (t, w)-treshold scheme is described in Fig. 3.3 from [Sti06]
A(x) will be of degree t− 1 and on the form

A(x) = ao + a1x+ ....at−1x
t−1

t participants with (xi, A(xi) = si) will have t equations, and will be able to
determine all the coefficients of A(x). We can then compute K = A(0). The
solution is unique by Lagrange interpolation formula described in [Sti06], which
also gives us the formula to compute A(x):

A(x) =

t∑
i=1

(si)
∏

1≤k≤t,k 6=i

x− xi
xi − xk

(mod q)

However, we do not need the whole polynomial since K = A(0). Thus,

K = A(0) =

t∑
i=1

(si)
∏

1≤k≤t,k 6=i

−xi
xi − xk

(mod q)



3.1. KEY GENERATION 19

Initialization Phase

1. The Dealer chooses w distinct, non-zero elements of Zq , denoted xi, 1 ≤
i ≤ w (and q ≤ w + 1). For all i, the dealer gives the value xi, all public,
to the participants Pi

Share distribution

2. Suppose the dealer wants to share a key K ∈ Zq. The dealer secretly
chooses (independently at random) t− 1 elements in Zq which are denoted
a1 . . . at−1

3. For all i, the dealer computes si = A(xi), where

A(x) = K +

t−1∑
j=1

ajx
j (mod q)

4. The dealer gives si secretly to all Pi

Figure 3.3: Shamir (t, w)-Threshold Scheme

and with
bj =

∏
1≤k≤t,k 6=i

xi
xk − xi

(mod q)

we have

K =

t∑
i=1

sibi (mod q) (3.1)

We will use this scheme in our distribution of s. We assume we have several
key generators. The main generator KG works like before, generates s, and will
be closed before the election starts. In addition, we have several subgenerators
KGi where i = 1, . . . , w. These will be open during the whole election and
contain a public xi.

The main KG plays the role of the dealer, and makes a function such that
A(0) = s. He computes si = A(xi) and will pass si to KGi for all i. Now, t
participants will be able to compute s as in ( 3.1) by sharing (sibi).

However, we do not want the ballot box to be able to compute s, and sibi
should therefore be encrypted. The distribution and encryption of s before and
during the election will be explained in Fig. 3.4 and Fig. 3.5.
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KG

KG1

(V
, s1

)

KG2
(V
, s

2
)

· · · KGw

(V, s
w )

B

(V, γ = gs)

Figure 3.4: Distribution of s before election

KGi will use an public encryption key ξpk received from the smart card to-
gether with the signature. KGi encrypts sibi and ξ(sibi) will be sent to P through
B. The computer will decrypt with the decryption key on the smart card, and
compute s as in (3.1). With this distribution of s, P with access to the decryp-
tion key will still be the only player in possession of s during the election. A
lost smart card can be replaced by a new one, containing a new decryption and
encryption key. In practice, it means that a voter can lose and revoke as many
smart card he wants during the election, and we can still generate new.

However, the more players introduced in the protocol, the more vulnerable
for attacks. The advantage of using the Shamir (t, w)-treshold scheme is that
the distribution of s will work even (w − t) participants are out of action. The
values of t and w depends on several factors. A bigger w allows us to have more
players out of action, and demands less computing power from each player. The
advantage to a smaller w is a smaller number of players to control, and it may be
easier to implement in practice. We will not conclude with any numbers in this
thesis.
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KG1 KG2 · · · KGt

B

P

SC

(V
id , ξpk ){ξpk (sibi)}{sibi}

(V id
, ξp

k
){ξpk

(s i
b i)
}

ξpk (s
1 b1 )

(V
id , ξpk )

ξ
pk (s

2 b
2 )

(V
id , ξ

pk )

ξpk
(s t
b t)

(V i
d
, ξp

k
)

Figure 3.5: Distribution and encryption of s during election

3.2 Vote Submission

We want to describe how the vote submission works in the new protocol. Our
aim is to make an improvement to the existing protocol, by making adjustments
in the encryption of the votes, and in this way make it more secure. Except for
these changes, we will mainly follow the programs described in detail for each
player in Chap.4 in [Gjø10].

As long as nothing else is mentioned, we use the same ideal functionalities
as well. They are described as trusted third parties which all the players can
communicate securely with. They will replace needed subprotocols to simplify
our analysis.

The Ideal functionality for electronic identity Feid is to prove the identity of
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the voter and Ideal functionality for secure communication Fsc is used for secure
communication between the players.

The Ideal functionality for discrete logarithm proof of knowledge Fpok outputs
a proof π of knowledge of the exponent ρ where η = ερ. It will output π on input
(ε, η, ρ), with the assumption that (ε, η) is known for everyone.

The ideal functionality for key generation Fkey generates the keys used in the
protocol. The changes made in our Fkey are described in the previous section.

The new vote submission will be as follows:

1. The voter selects his options (v1, . . . vk) on the computer. Typically, v1
will denote a political party, followed by candidates. The voter gives the
computer access to his electronic identity and waits for a "ballot accepted"-
message on his computer and receipts from the receipt generator out-of-
band. He will before the election receive a receipt code-set with a table of
receipt codes and options and will control the receipts against the receipt
code-set.

2. As before, the computer sets vi = 0 for i = k + 1, · · · , kmax. For 1 ≤ i ≤
kmax , the computer chooses random ti from {0, 1 . . . , q − 1}. Now, for all
i it encrypts the votes and computes the ballot:

(xi, wi) = (gti , yti1 f(vi))
(x̂i, ŵi) = (xsi , w

s
i )

(x̌i, w̌i) = (gtis, ytis3 f(vi)
s)

Note that x̌i = x̂i. The computer signs the ballot on the voter’s behalf.

3. The computer needs to show that the computation is done correctly, and
prove the knowledge of the contents. The last proof is to prevent a corrupt
ballot box feeding a non-honest voter with a ciphertext from an honest
voter. If this is submitted, the receipt code sent to the non-honest voter
will reveal the content of the vote. We will use Fpok to generate the proofs
of knowledge. We can also use Fpok to prove equality of discrete logarithms,
by proving knowledge of discrete logarithms in G×G×G. Thus, the com-
puter
Sends (g, xi, ti) to Fpok to show correctness of (xi, wi) and knowledge of v.
Sends (y3y

−1
1 , w̌iŵ

−1
i , st) to Fpok to show correctness of (ŵi, w̌i). ŵi and w̌i

contain the same ballot if w̌iŵ−1i = (y3y
−1
1 )st

Sends ((g, xi, wi)(γ, x̌i, ŵi), s) to Fpok to show equality of the exponents in
(γ, x̌i, ŵi)

The computer sends (xi, x̌i, wi, ŵi, w̌i) with the proofs and signature to B



3.3. SECURITY ANALYSIS 23

and waits for R’s signature that it has received the ballot before it informs
the voter that the ballot has been accepted.

4. The ballot box verifies the signature and proofs. It enumerates the incom-
ing ballots with ascending sequence numbers, this to make sure that only
the last ballot will count from each voter. The ballot box will pass the
entire ballot with signature, sequence number and proofs to R. The receipt
generator replies with a signed hash for received ballot. When the election
is over, B selects which ballots that should be decrypted. It computes for
every voter j the product of the first ciphertexts, that is, xj =

∏kmax
i=1 xi

and wj =
∏kmax
i=1 wi and passes it to D. The entire content of B is sent to

A.

5. The receipt generator verifies the signatures and proofs from B, and signs a
hash of the received ballot. It sends the signature back to B, which checks
it, and passes it on to P . The receipt generator computes the receipts
ři = d(w̌ix̌i

−a3) and sends ři directly to the voter. It makes a list of hashes
of sign ballots to the auditor.

6. The decryption service receives a list of encrypted ballots from B. It waits
for A’s approval before it decrypts the ballots, and outputs them in a ran-
dom order. The decryption service shows the correctness of this to the
auditor.

7. The auditor monitors the protocol. It receives the entire content of B and
the list of hashes from R. It verifies the content of B and controls it against
the list from R to make sure that no ballots have been lost or inserted. A
makes its own list over ballots that should be counted. It compares this
list with the incoming ballots to the decryption service before it gives D its
approval to decrypt.

The adjustments in our vote submission is the computation of (x̌i, ŵi, w̌i).
It was originally done by the ballot box, and we have moved it to the voter’s
computer. In addition, w̌ is changed and the protocol can now be executed
without a2. The proofs made by Fpok have also been adapted to our adjustments.

3.3 Security Analysis
We will in this section analyze the security for different cases of corruption:

• Receipt generator corrupt

• Ballot box corrupt
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• Receipt generator and ballot box corrupt

• Computer corrupt

An analysis of the decryption service is presented in detail in Chap. 4, and an
analysis of the auditor follows from this as well.

We want to show that the new protocol is an improvement of the existing.
We show that the security is equal or better for each case of corruption, and
analyze each of them, from the goals defined in [Gjø10]. We also look at some
extra additional corruption scenarios in Sect. 3.3.4, not analyzed in the existing
protocol.

3.3.1 Receipt Generator Corrupt
For the receipt generator, we use game hopping to show the goal defined in
[Gjø10]:

• The corrupt receipt generator learns nothing about the submitted ballots,
except what the receipt codes tell him.

We will in the games need a simulated Fpok indistinguishable from the real.
We can make this by replacing the challenge given by the verifier by a random
hash-function. In this way, it acts like an honest verifier. We can then use a
HVZK-simulator with the correct challenge. A HVZK-simulator is clearly indis-
tinguishable from the real and do not use the witness.

To simplify, we will assume in the description that there is only one vote per
ballot. That is, xi = x,wi = w, etc. But the arguments should hold even when
a ballot contains several votes. The games go like this:

Game 1
A machine M plays the role of every honest player and functionality. M also
knows all secret keys. The encryption will be

(x,w) = (gt, yt1f(v))
(x̂, ŵ) = (xs, ws)
(x̌, w̌) = (gts, yts3 f(v)s)

Game 2
Since M does all the work, it certainly knows which cleartext ballot corresponds
to which encrypted ballot. In this game, the decryption service uses the cleartext
instead of decrypting the ballots. Since an attacker can not see how D decrypts,
this game is indistinguishable from the previous. Note that the decryption key
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a1 is no longer in use in D.

Game 3
We want Fpok to work even if the votes do not contain any contents. We will there-
fore use the simulated Fpok, and we can provide it a random witness. Because the
simulated Fpok is indistinguishable from the real, the games are indistinguishable.

Game 4
We want to end up with a game without the exponent s, and where the compo-
nents are independent and random. We want to remove the dependency between
ŵ and w and begin to express them in terms of (x, x̌) That is, change the com-
putation of (x, x̌, w, ŵ, w̌) to :

x = gt w = xa1f(v)
ŵ = x̌a1f(v)s

x̌ = xs w̌ = x̌a3f(v)s

The games are indistinguishable since y1 = ga1 , and we still have the connection

ŵ = x̌a1f(v)s = (xs)a1f(v)s = (xa1f(v))s = ws

Game 5
Further on, we also want (x, x̌) to be independent of each other. We compute
f(vi) for all possible votes vi, and let ρvi = f(vi)

s. That is for all vi, we have the
pairs {f(vi), ρ(vi)} . Let ri be random, and we change the computation to

x =
∏
f(vi)

ri w = xa1f(v)
ŵ = x̌a1ρv

x̌ =
∏
ρrivi w̌ = x̌a3ρv

and since
∏
f(vi)

ri = gt for some t, and

x̌ =
∏

ρrivi =
∏

(f(vi)
s)ri = (

∏
f(vi)

ri)s = xs

the games are indistinguishable.

Game 6
Let the computation be the same as in the previous game, but let ρvi be picked
random. We want ρvi 6= ρvj for i 6= j. Assume an attacker can distinguish the
two games. That means he will be able to determine whether ρvi is a power of
f(vi) or not. This is shown as hard in Game 8 Sect. 5.2 in [Gjø10]. Note that
there is no longer a connection between x and x̌, nor between w and ŵ.

Game 7
Let t, u be random, and let the computation of (x, x̌, w, ŵ, w̌) be



26 CHAPTER 3. IMPROVING THE VOTE SUBMISSION

x = gt w = yt1f(v)
ŵ = yu1 ρv

x̌ = gu w̌ = x̌a3ρv

Since t, u are both random, and there is no longer a connection between x and
x̌, the games are indistinguishable. We have also made the game independent of
a1 by replacing ga1 by y1.

Game 8
Our last step is to remove the connections between x and w and between x̌ and
ŵ. We begin to define (g, y1, b, c) as a DDH-tuple and let the computation be

x = gtbt
′

w = yt1c
t′f(v)

ŵ = yu1 c
u′ρv

x̌ = gubu
′

w̌ = x̌a3ρv

With a DDH-tuple, we have logg y1 = logb c = a1. We want to show that the
games are indistinguishable. That is, we still have the connections w = xa1f(v)
and ŵ = x̌a1ρv.

Proof. Let

w = yt1c
t′f(v)

= ga1tba1t
′
f(v)

= (gtbt
′
)a1f(v)

= xa1f(v)

Similarly, we have

ŵ = yu1 c
u′ρv

= ga1uba1u
′
ρv

= (gubu
′
)a1ρv

= x̌a1f(v)

and the games are indistinguishable.

Game 9
Let (g, y1, b, c) now be a random tuple and the computation the same. We can
show that a distinguisher between these two games are equivalent to a distin-
guisher for a DDH-tuple.
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Proof. We sssume we have a distinguisher between Game 8 and Game 9 called
A. That means we have an algorithm that on input (g, y1, b, c) has a output
depending on the input is a DDH-tuple or not. We therefore have a distinguisher
for a DDH-tuple, by simply using the algorithm. This is known as hard and we
can assume A do not exist.

We want to have a sequence of indistinguishable games even when a ballot
contains more than one vote. It is therefore important that we have two random
variables for each component to make it indistinguishable with the next game.
With only one random variable and several votes, we have dependency between
the components and they will not be completely random as the next game re-
quires.

We assume a ballot contains several votes from V , and only one variable.
That is xi = bt

′
i , wi = ct

′
if(v), we get

xix
−1
j = gut

′
= bt

′

wiw
−1
j = gvt

′
= ct

′

and we have the connection

logb xix
−1
j = logc wiw

−1
j

which makes them not independent.
With two random variables per component, we will show that the components

are equal to

xi = gri xj = grj

wi = ysi1 f(v), wj = y
sj
1 f(v) (3.2)

with ri, rj , si, sj all random. We have

xi = gtibt
′
i , xj = gtj bt

′
j

wi = yti1 c
t′if(v), wj = y

tj
1 c

t′jf(v)

With (g, y1, b, c) a random tuple, we have for some random u, v, b = gu and
c = yv. We can compute

xi = gtigut
′
i , xj = gtjgut

′
j

wi = yti1 y
vt′if(v), wj = y

tj
1 y

vt′jf(v)
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=⇒

xi = gti+ut
′
i , xj = gtj+ut

′
j

wi = y
ti+vt

′
i

1 f(v), wj = y
tj+vt

′
j

1 f(v)

which gives us for each couple (xi, xj) and (wi, wj) two equations with two un-
known,

ti + ut′i = ri ti + vt′i = si

tj + ut′j = rj tj + vt′j = sj

and the components can be written as in ( 3.2), with exponents random since u
and v are random.

Game 10
Let the final game be the computation with (t1, t2, u1, u2) random and

x = gt1 w = gt2

ŵ = gu2

x̌ = gu1 w̌ = x̌a3ρv

This is indistinguishable with previous game. With (t1, t2, u1, u2) all random, we
do not have any connection between any of the components except between x̌
and w̌. We need this last connection for R to be able to give similar receipt codes
for similar votes.

This game do not contain any information about the votes, and we have a final
game equal to the final game in the analysis of R in [Gjø10]. R∗ will therefore
learn no unavoidable information about the submitted ballots. However, some
untested cryptographic assumptions are used in the proof in Game 6, obtained
from the existing protocol. Gjøsteen only conclude that the receipt generator will
be quite well protected. We will from now on assume that this is good enough.

3.3.2 Ballot Box Corrupt

Our ballot box differ from the existing because our will not do any encryption
or contain a secret key. We therefore define the goal for a corrupt ballot box
from: Any vote submitted through an honest computer should remain confiden-
tial [Gjø10], and it will be

• A corrupt Ballot box should not be able to extract any information about
the ballot
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The ballot box receives the same information as R, but do not have any secret
key to recognize similar receipt codes for similar votes. We will therefore continue
from Game 10 in Sect. 3.3.1. That is

Game 10
Let (t1, t2, u1, u2) random and

x = gt1 w = gt2

ŵ = gu2

x̌ = gu1 w̌ = x̌a3ρv

We also let the the receipt generator use the cleartexts to compute the receipt
codes instead of computing them out of x̌i, w̌i. In this way, a3 is no longer in use
in R. Since the attacker can not see how R makes his receipt codes, the games
are indistinguishable.

Game 11
We want to remove the last connection between x̌ and w̌. Let (g, y3, b, c) be a
DDH-tuple and compute:

x = gt1 w = gt2

ŵ = gu2

x̌ = gu1bu3 w̌ = yu1
3 cu3ρv

This game is indistinguishable from the previous game since logg y3 = logb c
= a3 and similar to the proof made in Game 8.

Game 12
Let (g, y3, b, c) be a random tuple. As before, we do not have any distinguisher
for a DDH-tuple, and the games are indistinguishable. The components are now
all random and do not contain any information about the votes. And B∗ will not
be able to extract any information about the votes.

3.3.3 Receipt Generator and Ballot Box Corrupt

We want to analyze the protocol when both the receipt generator and the ballot
box are corrupt. The ballot box does not change or add anything, and the
knowledge an attacker can extract from this situation is the same that he can
extract when R∗ is corrupt. It will follow from Sect. 3.3.1, and we can again
conclude that it is quite well protected.

However, a corrupt ballot box and receiptgenerator will still give an attacker
a chance to erase votes. Assume B∗ receives a ballot with a vote v. R∗ sees it and
signs the hash which will be passed back to P through B. It also computes the
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receipt code to V . The voter V will now see that the vote has been accepted on
the computer, and received the right receipt code. Then the election is over, B∗
and R∗ can remove the ballot from the ballot box, and remove the corresponding
sign hash on the list sent from R to A. In this way, neither the voter V or auditor
A will notice an attack.

The advantage in our protocol compared with the existing is that the attacker
will not know the contents of the ballots he may remove.

3.3.4 Computer Corrupt
A corrupt computer P ∗ will follow the analysis discussed in detail in Sect. 5.1 in
[Gjø10] and will still have a chance to delay and reverse the order of the ballots
submitted by an honest voter and there will be a chance that the wrong ballot
will count. For this reason, Gjøsteen arguing that a voter receiving a wrong
receipt code, should not vote electronic again, but rather use paper votes. We
will analyze a corrupt P ∗ together with a corrupt R∗ or B∗.

We will distinguish between a voter using a corrupt computer, and a voter
that has been in touch with a corrupt computer. In the last situation, the votes
are coming from an honest computer, but the attacker will still be in possession
of the personal exponent s.

Corrupt P ∗ and R∗

For a voter using a corrupt computer P ∗, and R∗ is corrupt, an attacker will be
able to forge votes. An honest voter chooses v on the corrupt computer. But P ∗
can submit whatever v∗ he wants to B while R∗ provides the "right" receipt code
to V . R∗ will also make a list for A matching the content of B and the voter and
auditor will not notice. In this way, the attacker can control the whole protocol.

Assume V has been in touch with a corrupt computer, with receipt generator
also corrupt. The attacker will then be in possession of both a3 and s and will
be able to decrypt the votes:

(w̌x̌−a3)s
−1

= (f(v)s)s
−1

= f(v)

However, even if an attacker with this access can identify votes, it will not be
able to change or destroy votes.

Corrupt P ∗ and B∗

We have shown that a corrupt ballot box will not be able to extract any infor-
mation about the votes. A corrupt B∗ will not be able to change the content
without being noticed by the auditor. A corrupt B∗ and a voter using P ∗ will
therefore not make any more damage than a corrupt P ∗ alone.
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We can show that for a voter who has been in touch with a corrupt computer,
and the ballot box corrupt, an attacker will still not learn anything new about
the votes. Our goal is to make the final game without any content of the votes.
Note that we need in this situation to preserve the "s"-connection between the
components in the games because an attacker is in possession of it. Continue on
the computation in Game 4 from 3.3.1, that is

Game 4

x = gt w = xa1f(v)
ŵ = x̌a1f(v)s

x̌ = xs w̌ = x̌a3f(v)s = yts3 f(v)s

Game 5’
We want to hide a1 to be able to remove the real content f(v) from w. Introduce
a2 and define a1 as a1 = a3− a2 (mod g). We can then make y3 = y1g

a2 . In this
way, the computation can be done without a1 and a3.

x = gt w = yt1f(v)
ŵ = ws

x̌ = xs w̌ = ŵx̌a2

To show the games are indistinguishable, we want to show that y3 = y1g
a2 = ga3

and w̌ = yts3 f(v)s in Game 5’. Have

y3 = y1g
a2 = y1g

a3−a1 = ga1ga3−a1 = ga3

and

w̌ = wsx̌a2 = wsxs(a3−a1)

= yts1 f(v)sgts(a3−a1)

= ga1tsf(v)sgts(a3−a1)

= gtsa3f(v)s = yts3 f(v)s

Game 6’
Let (g, y1, b, c) be a DDH-tuple. Let

x = gtbt
′

w = yt1c
t′f(v)

ŵ = ws

x̌ = xs w̌ = ŵx̌a2

With c = ba1 , we have

w = yt1c
t′f(v) = ga1tba1t

′
f(v) = (gtbt

′
)a1f(v) = xa1f(v) = yt1f(v)
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as in the previous game, and they are indistinguishable.

Game 7’
Let the computation be the same, with (g, y1, b, c) a random tuple. Indistinguish-
able since we still do not have a distinguisher for a DDH-tuple as shown in Sec
3.3.1.

Game 8’
We have now removed the connection between x and w, which makes w totally
random. We can replace f(v) by a random group element and we get

x = gt w = gt
′

ŵ = ws

x̌ = xs w̌ = ŵx̌a2

and the game is clearly indistinguishable from the previous game. A corrupt
B∗ with access to s will therefore not learn anything new about the votes.

3.4 Improvements
Our goal was to remove the connection between the secret keys to avoid a corrupt
B∗ and R∗ to decrypt the votes. This is accomplished, and we have not found
any other part with less security in the new protocol. The protection against a
corrupt R∗ or corrupt B∗ will both still satisfy the goals defined in [Gjø10].

We will also compare the new protocol with the existing with respect to
the performance. We have saved computations for the infrastructure players
by moving all the encryption to the voter’s computer. However, the proof of
knowledge for all the ciphertexts will in the new protocol be verified by both R
and B. Generating a proof of knowledge in Fpok for (x1 . . . xkmax) costs kmax
exponentiations, while verifying costs 2kmax. There are three proofs given to
Fpok in Sect. 3.2. The total exponentiations for R and B to verify n votes will
be given in Fig. 3.6. Note that kmax = k

Improved protocol
Operation of B R Total
Verify Fpok (xi, wi) 2kn 2kn
Verify Fpok (w̌i, ŵi) 2kn 2kn
Verify Fpok (g, x, w)s = (γ, x̌, ŵ) 6kn 6kn
Computing ri kn
Sum 10kn 11kn 21kn

Figure 3.6: Exponentiations for R and B in the new protocol
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The cost forR andB in the existing protocol,including encryption, generating,
and verifying of proofs are given in Fig. 3.7. Note that k = kmax.

Existing protocol
Operation of B R Total
Encryption (w̌, w̄, x̄) 3kn
Generating proof π̄ 3kn
Generating proof π̌ 2kn
Verifying proof π 2kn 2kn
Verifying proof π̄ 6kn
Verifying proof π̌ 4kn
Computing ri kn
Sum 10kn 13kn 23kn

Figure 3.7: Exponentiations for R and B in the existing protocol

It means we have a small improvement in the performance in the new protocol
for the infrastructure players. The numbers of exponentiations for the computers
has increased, but the computers will only do the exponentiations for one ballot
at time.

The conclusion is that the new protocol is an improvement with respect to
the security as wanted. In addition, we also have a small improvement of the
performance.
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Chapter 4

Improving the Decryption
Service

The decryption service D decrypts the ballots. The auditor will see both the
incoming encrypted ballots and the decrypted ballots. Because A has access
to the whole content of B, it will be possible to connect which incoming ballot
corresponds to which signature and voter. To avoid a corrupt A∗ connecting
incoming ballots with the decrypted ballots, we want the decryption service to
output the ballots in random order. Furthermore, the decryption service does not
only need to prove the correctness of the decryption, but also that the decrypted
ballots actually are a permutation of the incoming.

In the existing proof to show the correctness of permutation and decryption,
an attacker will according to [Gjø10] has 1

100 chance of manipulating two votes.
We want to replace this proof by a Special-Honest-Verifier-Zero-Knowledge Ar-
guments of knowledge(SHVZK), which will increase the security. It will minimize
the chance for D∗ manipulating votes, and it will also give us a protection against
A∗.

We have made two SHVZK-arguments of knowledge to the given problem,
and will compare them in the end of the chapter.

4.1 Decryption Service 1

This first SHVZK-argument of knowledge is a modification of the SHVZK Argu-
ment of Shuffle of Homomorphic Encryptions by Groth in [Gro10]. While Groth
wants to show that two sets of chiphertexts have the same contents, we want in
addition to show that the second set actually is the decryption of the first.
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We will use the same parameters used by Groth, and demand 2le+ls < q.
Groth also discusses the sizes of le, ls to preserve the security. The encryption
and commitments spaces are Zq.

The protocol for our new argument is shown in Fig. 4.1, where the prover P
will play the role of D, and the verifier V the role of A. We will show that this
is a SHVZK argument of knowledge in the next subsections.

We use two subprotocols. Arg(π, ρ) is a SHVZK argument of known content
from [Gro10]. It is an argument to show knowledge of a permutation π. For
a known set (m1 . . .mn), the prover convinces the verifier that a commitment c
contains a permutation of (m1 . . .mn).

In our case, (λi + ti) is the known contents, while cλcdcom(f1 . . . fn) is the
commitment containing the permutation. The cost of this subprotocol is given
as 3n exponentiations for the prover, and 2n for the verifier [Gro10].

The second subprotocol is Arg(ξid), described in 2.7. It shows that a tuple
(x0, w0) is an encryption of the identity. With (xi, wi) = (gt

′
i , yt

′
imi), the verifier

will in the protocol compute

n∏
i=1

(xi, wi)
−tiξ(

n∏
i=1

Mfi
i ; 0) · Ed

=

n∏
i=1

(gt
′
i , y

t′i
1 mi)

−ti · (g0, y01
n∏
i=1

Mfi
i ) · (gRd , yRd1

n∏
i=1

M−dii )

= (g
∑n
i=1−t

′
iti+Rd , y

∑n
i=1−t

′
iti+Rd

1

n∏
i=1

(m−tii Mfi
i M

−di
i ))

= (g
∑n
i=1−t

′
iti+Rd , y

∑n
i=1−t

′
iti+Rd

1

n∏
i=1

(m−tii M
tπ(i)

i MdiM−di))

as long asMi = mπ(i) = wπ(i)x
−aπ(i)

π(i) and with no modular reduction of fi it gives

= (g
∑n
i=1−t

′
iti+Rd , y

∑n
i=1−t

′
iti+Rd

1 · 1) = ξ(1,

n∑
i=1

−t′iti +Rd) = ξid

Arg(ξid) shows that this is an encryption of the identity. To save exponentiations,
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the prover computes the same ξid = ξ(1,
∑n
i=1−t′iti +Rd) as

(

n∏
i=1

x−tii gRd ,

n∏
i=1

w−tii yRd1 )

= (

n∏
i=1

(gt
′
i)−tigRd ,

n∏
i=1

(y
t′i
1 )−tiyRd1 )

= (g
∑n
i=1−t

′
iti+Rd , y

∑n
i=1−t

′
iti+Rd

1 )

= ξ(1,

n∑
i=1

−t′iti +Rd) = ξid
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PROVER Common input: VERIFIER
(x1, w1) . . . (xn, wn)

M1, . . . ,Mn

Private input : π, a1
s.t Mi = mπ(i) = wπ(i)x

−aπ(i)

π(i)

r, rd ← Zq = Rck , Rd ← Zq = Rpk
d1, d2, ..., dn ← {0, 1}ls+le

c=com(π(1), π(2), ..., π(n); r)
cd=com(−d1,−d2, . . . ,−dn; rd)

Ed = ξ(
∏n
i=1M

−di
i ;Rd)

= (gRd , yRd
∏n
i=1M

−di
i )

c, cd, Ed−−−−−−→

ti ← {0, 1}le

t1,...,tn←−−−−−−−
fi = tπ(i) + di

f1,...,fn−−−−−−−→
λ← {0, 1}le

λ←−−−−−−
Arg(π, ρ; cλcdcom(f1, ··, fn; 0)

=com(λπ(1) + tπ(1)
, ..., λπ(n) + tπ(n); ρ) ←−

−→
←−
−→

Check that
c, cd ∈ Zq, Ed ∈ Zq × Zq
2le ≤ (f1, .., fn) < 2le+ls

Verify Arg(π, ρ)

Compute Compute

ξid = (xo, wo) =
∏n
i=1(xi, wi)

−ti ·
(
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 ) ξ(

∏n
i=1M

fi
i ; 0) · Ed

= (xo, wo) = ξid
Arg(ξid) −→

←−
−→ Verify Arg(ξid)

Figure 4.1: The protocol for Decryption service 1
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4.1.1 SHVZK
Completeness is straight forward to verify when we do not have any modular re-
duction of fi. We will not when 2le ≤ (f1, .., fn) < 2le+ls . There is overwhelming
probability for this as long as ls is sufficiently large [Gro10]. The Soundness prop-
erty will follow from the Witness-emulation in the next subsection. We create a
simulator for the prover to show we have the SHVZK-property. The simulator
takes e as input and has no access to the private inputs.

Simulator
r, rd, R

′, Rd ← Zq
f1, .., fn ← Zq

c = com(0, .., 0; r)
cd = com(0, ..0; rd)
Ed = ξ(1, R′)

∏n
i=1(xi, wi)

ti

ξ(
∏n
i=1M

−fi
i ; 0)

ξid = (
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 )

Sim Arg(π, ρ)
Sim Arg(ξid)

Hybrid 1
r, rd, R

′, Rd ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), .., π(n); r)
cd = com(d1, ..dn; rd)
Ed = ξ(1, R′)

∏n
i=1(xi, wi)

ti

ξ(
∏n
i=1M

−fi
i ; 0)

ξid = (
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 )

Sim Arg(π, ρ)
Sim Arg(ξid)

Figure 4.2: Differences between Simulator and Hybrid 1

The differences between the Simulator and Hybrid 1 in Fig. 4.2 are the
contents of c and cd. These are statistically indistinguishable because of the
unconditional hiding property of the commitments. The simulated arguments,
Sim Arg(π, ρ) and Sim Arg(ξid), are both independent of di and therefore still
the same. We can conclude that they are indistinguishable.
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Hybrid 1
r, rd, R

′, Rd ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), .., π(n); r)
cd = com(d1, ..dn; rd)
Ed = ξ(1, R′)

∏n
i=1(xi, wi)

tiξ

(
∏n
i=1M

−fi
i ; 0)

ξid = (
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 )

Sim Arg(π, ρ)
Sim Arg(ξid)

Hybrid2
r, rd, R

′, Rd ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), .., π(n); r)
cd = com(d1, ..dn; rd)

Ed = ξ(
∏n
i=1M

−di
i ;Rd)

ξid = (
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 )

Sim Arg(π, ρ)
Sim Arg(ξid)

Figure 4.3: Differences between hybrid 1 and hybrid 2

Hybrid 1 and Hybrid 2 differ in the way Ed is computed. We can show that
they are indistinguishable. Note that (xi, wi) = (gt

′
i , yt

′
imi). We have in Hybrid

1

Ed = ξ(1, R′)

n∏
i=1

(xi, wi)
tiξ(

n∏
i=1

M−fii ; 0)

= ξ(1, R′)

n∏
i=1

(xi, wi)
tiξ(

n∏
i=1

M
−tπ(i)−di
i ; 0)

= (gR
′
, yR

′
· 1)

n∏
i=1

(gt
′
i , yt

′
imi)

ti(g0, y0
n∏
i=1

M
−tπ(i)−di
i )

= (gR
′
, yR

′
· 1)(g

∑n
i=1 t

′
iti , y

∑n
i=1 t

′
iti

n∏
i=1

mti
i )(g0, y0

n∏
i=1

M
−tπ(i)−di
i )

= (gR
∗
, yR

∗
n∏
i=1

mti
i M

−tπ(i)−di
i ) = (gR

∗
, yR

∗
n∏
i=1

M−dii )

= ξ(

n∏
i=1

M−dii ;R∗) where R∗ = R′ +

n∑
i=1

t′iti

R∗ is random since R′ is random. Hybrid 1 and Hybrid 2 are therefore indistin-
guishable since Ed = ξ(

∏n
i=1M

−di
i ;Rd) with Rd random.
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Hybrid2
r, rd, R

′, Rd ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), .., π(n); r)
cd = com(d1, ..dn; rd)

Ed = ξ(
∏n
i=1M

−di
i ;Rd)

ξid = (
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 )

Sim Arg(π, ρ)
Sim Arg(ξid)

Real prover
r, rd, Rd ← Zq
d1, d2, ..., dn ← Zq
fi = tπ(i) + di
c = com(π(1), .., π(n); r)
cd = com(d1, ..dn; rd)

Ed = ξ(
∏n
i=1M

−di
i ;Rd)

ξid = (
∏n
i=1 x

−ti
i gRd,

∏n
i=1 w

−ti
i yRd1 )

Arg(π, ρ)
Arg(ξid)

Figure 4.4: Differences between Hybrid 2 and the real P

f ′is and d′is differ between Hybrid 2 and the Real prover in Fig.4.4. They
will be indistinguishable because the probability distribution is the same, no
matter which order they are picked/computed. The Simulated Arguments for
π and ξid are both SHVZK arguments by [Gro10] and Sect.2.7, and therefore
indistinguishable from the real arguments. We can therefore conclude that the
simulator exists and the argument is SHVZK.

4.1.2 Witness-Extended Emulation
We want to create an emulator E that whenever a deterministic polynomial time
prover P ∗ can make a convincing argument, E extracts the witnesses in expected
polynomial time. We use the emulator E′ for Arg(π, ρ) in [Gro10], and the em-
ulator E′′ for Arg(ξid) by Sect.2.7 in our construction of E. It works like

E runs 〈P ∗, V 〉 as in the real protocol which outputs the transcript
(c, cd, Ed, t1.., tn, f1.., fn,λ, trknown, trξid) , where trknown is the transcript of
Arg(π, ρ) and trξid the transcript for Arg(ξid). If P ∗ fails and V does not accept,
E outputs (tr,⊥). Otherwise, we want to show that E extracts the witnesses π
and a1.

In order to extract the witnesses, we will rewind the transcript
(c, cd, Ed, t1.., tn, f1.., fn, λ, trknown) and run E′′ on Arg(ξid) until we get the
witness a1. We can go further back and get two new transcripts on random chosen
challenges (ti . . . tn, λ) and (t

′

i . . . t
′

n, λ
′) until E′ gets the openings (π1, ρ1), (π2, ρ2)

of the commitments containing permutations of respectively (λi+ti) and (λ′i+t
′

i).
That means we have

cλcdcom(f1, . . . , fn; 0) = com(λπ1(1) + tπ1(1), . . . , λπ1(n) + tπ1(n))
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and

cλ
′

cdcom(f
′

1, . . . , f
′

n; 0) = com(λ
′
π2(1) + t

′

π2(1)
, . . . , λ

′
π2(n) + t

′

π2(n)
)

Combining this:

cλ−λ
′

= com(f
′

1 − f1 + λπ1(1)− λ
′
π2(1) + tπ1(1) − t

′

π2(1)
, . . . )

and we get an opening (µ1, . . . , µn) of c by the root property of the commitments.
We want to argue that this really is a permutation of {1, . . . , n}, that is

µi = π(i). Assume we have two accepting argument which gives us the opening
(µ1, . . . , µn) of c with a probability ε2. Then we have the probability ε3 to get
the third transcripts such that

λµi − di + fi = λπ(i) + tπ(i)

⇒ λ(µi − π(i))− di + fi − tπ(i) = 0.

The fi’s are sent by the prover before it receives λ, and it is a overwhelming
probability that µi = π(i) and fi = tπ(i) + di.

It remains to argue that E uses expected polynomial time. We know that
both E

′
and E

′′
use expected polynomial time on their real arguments. The

transcripts are indistinguishable from the real argument with the same probability
distribution, and we can assume they will use the same computing time on the
transcripts as well.

Assume that a cheating P ∗ has the probability ε to get an accepting argument
on the whole protocol. Arg(π, ρ) and Arg(ξid) are parts of the protocol, and we
can assume ε is a lower bound for their probability for an accepting argument.
Therefore, assuming ε will be the probability for E

′
and E

′′
as well, we will get an

upper bound on expected runs for E. Expected runs for E
′
getting 2 accepting

arguments are 2
ε and for E

′′
getting 1 is 1

ε . There will only be one run if V does
not accept, and the probability for this is 1 − ε. Total expected runs for E will
therefore be (1− ε) · 1 + (1 + 2

ε + 1
ε ) · ε = 4 runs.

4.2 Decryption Service 2
We will in this section present the second suggestion of a SHVZK-argument of
knowledge. This one is based on Groth’s Argument of Shuffle and Decryption of
ElGamal Ciphertexts[Gro10], and we will use the same parameters as in Sect. 4.1.
.

Groth’s argument is based on mix-nets which is a multi-party protocol. It has
several mix-servers which, one by one, mixing and part decrypting the ciphertexts.
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Linking inputs and outputs is impossible if at least one mix-server is honest. In
our case, there will only be one mix-server doing a permutation and a decryption.
We will therefore make several modifications and the argument will be presented
in the protocols in Fig.4.5 and Fig.4.6.
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PROVER VERIFIER
Common input

(x1, w1)....(xn, wn)
M1, ...,Mn

Private input : π, a1
s.t Mi = mπ(i) = wπ(i) · x

−aπ(i)

π(i)

r, rd, r1, r2 ← Zq = Rck
dx, rv, dv,← Zq
d1, d2, ..., dn ← {0, 1}ls+le ,

c=com(π(1), π(2), ..., π(n); r)
cd=com(−d1,−d2, ...,−dn; rd)

M = grv
∏n
i=1M

−di
i

D = gdx ,
c1 = com(rv; r1),
c2 = com(dv; r2)

c, cd, Ed−−−−−−→
c1, c2, D,M−−−−−−−−→

ti ← {0, 1}le
t1,...,tn,←−−−−−−−

fi = tπ(i) + di
U = gdv (

∏n
i=1 x

−ti
i )dx

f1,...,fn,U−−−−−−−−→
e, λ← {0, 1}le

λ,e←−−−−−−−
Arg(π, ρ; cλcdcom(f1, . . . , fn; 0)

=com(λπ(1) + tπ(1)
, ..., λπ(n) + tπ(n); ρ) ←−

−→
←−
−→

Figure 4.5: The protocol for Decryption service 2. Part 1
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PROVER VERIFIER
f = ea1 + dx
fv = erv + dv
zv = er1 + r2

f,fv,zv−−−−−−−−−−→
Check that c, cd, c1, c2 ∈ Zq

M,D,U ∈ Zq
and that 2le ≤ f1, . . . , fn < 2le+ls

Verify Arg(π, ρ)
Check that∏n

i=1(x−tii )−f (
∏n
i=1M

fi
i

∏n
i=1 w

−ti
i M)eU = gfv

yeD = gf , ce1c2 = com(fv, zv)

Figure 4.6: The protocol for Decryption Service 2. Part 2

4.2.1 SHVZK
Completeness is straight forward to verify:

n∏
i=1

(x−tii )−f (

n∏
i=1

Mfi
i

n∏
i=1

w−tii M)eU

=

n∏
i=1

(x−fi wei )
−ti

n∏
i=1

(Mfi
i M)eU

=

n∏
i=1

(x−ea1−dxi wei )
−ti

n∏
i=1

Mefi
i (Mdi

i g
rv )e(gdv (

n∏
i=1

x−tii )dx =

=

n∏
i=1

(x−ea1−dxi wei )
−ti(xdxi )−ti

n∏
i=1

M
etπ(i)+edi
i (Medi

i grv )egdv =

=

n∏
i=1

(x−ea1i wei )
−ti

n∏
i=1

M
etπ(i)

i gervgdv =

=

n∏
i=1

(x−a1i wi)
−eti

n∏
i=1

M
etπ(i)

i gerv+dv =

=

n∏
i=1

m−etii M
etπ(i)

i gervgfv = gfv
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It works when we do not have any modular reduction of fi’s, and we will not as
long as 2le ≤ (f1, .., fn) ≤ 2le+ls . There is an overwhelming probability for this
with ls sufficiently large [Gro10].

We will show the argument has the SHVZK-property. We create a simulator
for the prover with several hybrid protocols between the prover and the simula-
tor. The simulator takes e as input and has no access to the private inputs.

Simulator
f, fv, zv, r1 ← Zq
f1, .., fn ← Zq

c = com(0, .., 0; r)
cd = com(0, ..0; rd)
c1 = com(0; r1)
c2 = com(dv, zv)C

−e
1

M ← Zq
U = gfv

∏n
i=1(x−tii )f ·

(
∏
Mfi
i

∏n
i=1 w

−ti
i M)−e

D = gfy−e

Sim Arg(π, ρ)

Hybrid 1
f, fv, zv, r1 ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), . . . , π(n); r)
cd = com(−di, . . . ,−dn; rd)
c1 = com(0; r1)
c2 = com(fv, zv)C

−e
1

M ← Zq
U = gfv

∏n
i=1(x−tii )f ·

(
∏n
i=1M

fi
i

∏n
i=1 w

−ti
i M)−e

D = gfy−e

Sim Arg(π, ρ)

Figure 4.7: Differences between the Simulator and Hybrid 1

The differences between the Simulator and Hybrid 1 in Fig. 4.7 is in the
contents of the commitments on c, cd. These are statistically indistinguishable
because of the unconditionally hiding property of commitments, and the simula-
tor and hybrid 1 are therefore indistinguishable.
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Hybrid 1
f, fv, zv, rv, rd, r1 ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), . . . , π(n); r)
cd = com(−di, . . . ,−dn; rd)
c1 = com(0; r1)
c2 = com(fv, zv)C

−e
1

M ← Zq
U = gfv

∏n
i=1(x−tii )f ·

(
∏n
i=1M

fi
i

∏n
i=1 w

−ti
i M)−e

D = gfy−e

Sim Arg(π, ρ)

Hybrid 2
f, fv, zv, rv, dv, dx, r1 ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), . . . , π(n); r)
cd = com(−di, . . . ,−dn; rd)
c1 = com(0; r1)
c2 = com(fv, zv)C

−e
1

M = grv
∏n
i=1M

−di
i

U = gdv (
∏n
i=1 x

−ti
i )dx

D = gfy−e

Sim Arg(π, ρ)

Figure 4.8: Differences between the Hybrid 1 and Hybrid 2

In Fig. 4.8, M is picked random in Hybrid 1, and it is indistinguishable from
the one computed in Hybrid 2 because of the randomness of rv. Both U ’s have a
random factor given by gfv and gdv which make them indistinguishable. Hybrid
1 and Hybrid 2 are therefore indistinguishable.

Hybrid 2
f, fv, zv, dv, rv, dx, r1 ← Zq
f1, .., fn ← Zq
di = fi − tπ(i)
c = com(π(1), . . . , π(n); r)
cd = com(−di, . . . ,−dn; rd)
c1 = com(0; r1)
c2 = com(fv, zv)C

−e
1

M = grv
∏n
i=1M

−di
i

U = gdv (
∏n
i=1 x

−ti
i )dx

D = gfy−e

Sim Arg(π, ρ)

Real prover
f, fv, zv, dv, rv, dx, r1, r2 ← Zq
d1, . . . , dn ← Zq
fi = tπ(i) + di
c = com(π(1), . . . , π(n); r)
cd = com(−di, . . . ,−dn; rd)
c1 = com(rv; r1)
c2 = com(dv, r2)

M = grv
∏n
i=1M

−di
i

U = gdv (
∏n
i=1 x

−ti
i )dx

D = gdx

Arg(π, ρ)

Figure 4.9: Differences between hybrid 2 and the real prover

The f ′is are picked random in Hybrid 2 and computed with the random d′is
in the Real prover. They and therefore indistinguishable in Fig. 4.9. Similar
argument can be used on the d′is. D = gfy−e is random in the choice of f andD =
gdx in the choice of dx. The contents of the commitments in c1, c2 are hide by the
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unconditional hiding property of commitments and therefore indistinguishable.
The last difference is Arg(π, ρ), which is described as a SHVZK-argument by
[Gro10]. It is therefore indistinguishable from the simulated Arg(π, ρ) in hybrid
2.

We can conclude that the simulator exists. The Witness-extended emulation
follows directly from the first part of Witness-extended emulation in Argument
of Shuffle and Decryption of ElGamal Ciphertexts in [Gro10], and we can also
conclude soundness. Thus, we have a SHVZK-argument of knowledge.

4.3 Performance
We have shown that both our suggestion are Special-honest-verifier-zero-knowledge
Arguments of knowledge, and we can therefore conclude that they are equally se-
cure. Because of the soundness property, D∗ has negligible chances of cheating,
and this is better than the existing proof.

Since the arguments are equally secure, we will compare the two SHVZK-
arguments with respect to performance, i.e the computing power they need is
measured in number of exponentiations. The existing proof needs around 15n
exponentiations, where n is the number of votes. That is 8n to show the permu-
tation is correct, and 7n for the decryption.

The number of exponentiations in the first suggestion called Decryption ser-
vice 1:

Decryption service 1
Computation: Prover Verifier Total
DecryptionMi n
c n+ 1
cd n+ 1
Ed n+ 2
Arg(π, ρ) 3n 2n
ξid 2n+ 2 3n
Sum 9n+ 6 5n 14n+ 6

The number of exponentiations in the second suggestion, called Decryption
service 2:
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Decryption service 2
Computation: Prover Verifier Total
DecryptionMi n
c n+ 1
cd n+ 1
M n+ 1
D 1
c1, c2 4
U n+ 1
Arg(π, ρ) 3n 2n
gfv 3n
com(fv, rv) = ce1c2 3
yeD = gf 2
Sum 8n+ 9 5n+ 5 13n+ 14

The second suggestion has the best performance, and should be preferred.
The advantage to the second is also the number of rounds. But as described
in Sect.2.5, we can turn Interactive HVZK-arguments into Non-Interactive ZK-
arguments, and the number of rounds do not matter. Compared with the existing
proof, our suggestion decrease the performance by around 2n

4.4 Auditor Corrupt
We want to argue that a corrupt auditor satisfies the goal defined in [Gjø10],
that is

• The submitted ballots remain confidential

The auditor has, as the ballot box, no secret keys. We can therefore use the
game hopping from Sect. 3.3.2 and we see that a corrupt auditor will not be
able to extract information out of the ciphertexts. That means the only way
A∗ can gain information about the votes are correlating the incoming ballots D
gets, with the decrypted ballots. As shown is this chapter, the decryption service
shows the correctness of the permutation by a SHVZK-argument of knowledge.
And by the SHVZK property, A∗ can not extract information about it. It will
therefore not be able to connect the decrypted ballots with the incoming, and
the ballots remain confidential.
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Chapter 5

Conclusion

Our goal was to make an improved Internet voting protocol compared to the
existing. We removed the connection between the secret keys to avoid a corrupt
ballot box and a corrupt receipt generator decrypting the votes. We also wanted
to make a new and better proof for the decryption service. This is both accom-
plished, and we have not found any other parts with less security in the new
protocol.

The protection against a corrupt receipt generator or a corrupt ballot box will
still both satisfy the goals defined in [Gjø10]. The new Special-Honest-Verifier-
Zero-Knowledge Argument of knowledge for the decryption service preserves the
confidentially for the votes with a corrupt auditor, and makes the chances for a
corrupt decryption service manipulating votes negligible. We have therefore in
both cases made improvements with respect to security. We also looked at the
performance, and found some small improvements in both cases.

However, the Internet voting protocol is still not perfect. A corrupt ballot
box and receipt generator can still remove votes, even if they no longer are able
to decrypt the ciphertexts and see the contents of the ballots. Our main security
problem is still compromised computers. We do not have any protection against
P ∗ and R∗ cooperating. Furthermore, as described in Chap. 6 in [Gjø10],
there are also many requirements for a secure election system that have not been
examined.
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