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Problem description

The aim of this thesis is to evaluate and further develop methods for quantification
of gene expression based on polymerase chain reaction (PCR) data. Emphasis is
put on statistical modeling of the PCR amplification process. Both simulated and
real data from two dilution experiments are used in the evaluation.
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Abstract

This thesis seeks to develop a better understanding of the analysis of gene expres-
sion to find the amount of transcript in a sample. The mainstream method used
is called Polymerase Chain Reaction (PCR) and it exploits the DNA’s ability to
replicate. The comparative CT method estimate the starting fluorescence level f0
by assuming constant amplification in each PCR cycle, and it uses the fluorescence
level which has risen above a certain threshold. We present a generalization of this
method, where different threshold values can be used.

The main aim of this thesis is to evaluate a new method called the Enzymolog-
ical method. It estimates f0 by considering a cycle dependent amplification and
uses a larger part of the fluorescence curves, than the two CT methods.

All methods are tested on dilution series, where the dilution factors are known.
In one of the datasets studied, the Clusterin dilution-dataset, we get better esti-
mates from the Enzymological method compared to the two CT methods.
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Chapter 1

Introduction

This thesis is a cross-disciplinary project, where statistical models and methods
are used to analyze and interpret biological data. The data comes from Poly-
merase Chain Reaction (PCR), which is a laboratory technique commonly used
in molecular biology to produce many copies of any short sequence of DNA (or
RNA). Beginning with a single molecule of the genetic material DNA, the PCR
can generate 100 billion similar molecules in an afternoon. For this achievement,
Kary Mullis won the 1993 Nobel Prize in Chemistry. In our analyses, the aim is
to quantify the relative abundance between a selected set of DNA sequences, such
as the Fold Change (FC).

In Chapter 2, the idea behind the PCR method is presented. One PCR cycle
amplify selected sections of DNA for analysis. For each amplification cycle j, we
measure a fluorescence level fj, resulting in a fluorescence curve for a specific DNA
sample. It is common to repeat this process for around 40 cycles. The fluorescence
levels measured are assumed to be proportional to the amount of transcript in the
sample. For early cycles in the process, the amplification curve is dominated by
noise and uncertainty in the measurements. The amplification decreases toward
the end of the PCR runs. The most popular method for estimating the Fold Change
between samples, the comparative CT method, assumes constant amplification in
each PCR cycle, resulting in an exponential growth in the amplification curve.
This method only use the first cycle where the fluorescence level has risen above
a certain threshold. We present a generalization of this method, where different
threshold values can be included.

In this thesis, we will look at new methods for estimating the starting fluores-
cence level f0. Chapter 3 introduces the Enzymological method, which allows cycle
dependent amplification and uses a larger part of the amplification curves than the
comparative CT method. The efficiency depends on the free enzyme concentra-
tion given in the Michaelis-Menton kinetics. When assuming additive, normally
distributed noise the f0 can be estimated by the maximum likelihood estimator.
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The maximum likelihood is optimized numerically using the Nelder-Mead simplex
method. In Chapter 4, the method is evaluated on a dataset from the Arabidopsis
Thaliana plant, called the Arabidopsis dilution-dataset.

In Chapter 5 we use simulated data following the mathematical models behind
the Enzymological method. We evaluate the part of the amplification curve where
the model is valid and study the impact of the initial values in the Nelder-Mead
simplex method. Further testing is performed on three versions of the Enzymo-
logical method.

In Chapter 6, the three methods are evaluated and compared to the two CT
methods, using the two real datasets. In addition to the Arabidopsis dilution-
dataset, we will analyze the Clusterin dilution-dataset with different primer pairs.
Some of the primers are not optimal, leading to not perfect efficiencies. We will
in this dataset see that the Enzymological method preforms better.
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Chapter 2

Polymerase chain reaction data

One of the main goals in the fields of functional genomics is to measure the ex-
pression of genes in a sample. Both the absolute number of copies and the relative
amount between different samples are interesting. We can for instance analyze
samples from healthy individuals compared to samples from diseased individuals.
A challenge is that the number of copies of DNA, called n0 is small and thus
hard to detect. A world wide used solution to this problem is the PCR method.
The PCR method amplifies and simultaneously quantifies a gene, by generating
thousands to millions of copies of a particular DNA sequence.

In this chapter we will present the PCR process in a mathematical perspective,
and introduce methods for analyzing the PCR data. A well known method for
analyzing PCR data is called the comparative CT method. We will present this
method and a generalization thereof, which we call the generalized CT method.
These two methods will serve as benchmark methods in the study of new methods
for analyzing PCR data.

2.1 The PCR method
We have a sample with a number n0 of copies of DNA molecules. In every living
material DNA is copied, a process called replication. One PCR cycle imitates this
process and make copies of all the DNA strings in our sample. For each gene we
want to amplify we find optimal primer pairs, which locates the gene on the DNA
string. One uses the most optimal primer available so that the amplification is as
close to perfect as possible. In Schmittgen and Livak (2008) they establishes that
if the PCR efficiency is not optimized, it is recommended to design new primers.
Starting with n0 DNA strings and a perfect replication, we get n1 = 2 ·n0 copies of
the DNA strings after one PCR cycle. In PCR cycle j we get nj number of DNA
strings equal to
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nj = 2 · nj−1 = 2j · n0

n0 = 2−j · nj (2.1)

This forms an exponential curve. In many cases the amplification is not perfect
and the PCR efficiency E is not always equal to two. We do not directly count the
number of DNA copies after each PCR cycle but we measure it using a fluorescence
dye. The measured fluorescence level at cycle j and curve i is fji. We assume that
fji is proportional to the number of DNA copies, with fji = γ ·nji, where the scaler
factor γ is not dependent on cycle. At some cycle j the fluorescence curve is

f0i = E−j · fji

where 1 < E < 2. After a while the amplification rate decreases, and we normally
perform around 40 PCR cycles. We often analyze many samples simultaneously,
where each sample get it’s own fluorescence curve. These samples have different
starting fluorescence levels.

We assume that we observe this fluorescence level with a noise εji. We observe
a fluorescence level yj after each cycle j such that we can see the results in real
time. A baseline level at cycle j for curve i is called bji, and it can be estimated
by various methods. We will explain the chosen method when the datasets are
introduced. The observed fluorescence levels before baseline correction are called
y∗ji, and after baseline correction yji. The equation becomes

y∗ji − b̂ji = yji = fji + εji

Usually the baseline for curve i is approximately similar for each cycle. The use of
an inferior baseline correction method will have higher consequences for the lower
fluorescence levels in the early cycles than for late cycles. In our analysis we will
not concentrate on the early cycles. The research into baseline correction methods
will not be of focus in this thesis.

An example of an observed background corrected fluorescence curve y is plotted
in Figure 2.1. After cycle 20 we can visually see that the number of DNA copies has
increased. What looks to be the flat part of the curve from cycle 1 to 20 is called
the ground phase. The next phase is called the exponential phase. Around cycle
31 we see the inflection point. Before the inflection point the fluorescence curve
has a concave character and afterwards a convex character. The amplification is
close to perfect for early cycles, and decreases after some PCR cycles.

In Figure 2.2 we see the log transformed fluorescence curve. We see that the
exponential phase is now linear on the log scale. There are rapid fluctuations in
the early cycles, where the observed fluorescence levels are small. The negative

4



values of y, due to the baseline correction, can not be log transformed and are thus
not shown. It is not possible to see the assumed linear trend in the fluorescence
level in the early cycles.

The amplification efficiency, also called PCR efficiency, is often referred to as
1 + pj, where pj is the proportion of DNA strings which is perfectly duplicated in
cycle j. We estimate these parameters by

Êj = yj+1/yj

p̂j = yj+1/yj − 1 (2.2)

In many biological studies technical triplicates are generated. The biologist
use triplicates to make their analysis robust. With technical replication they have
backup curves if they have to discard a damaged sample. These three technical
replicates should in principle have the same number of copies of DNA transcript.
If we are not interested in the variance between the technical replicates, we will
calculate the mean value of the curves. The mean value for the estimated starting
fluorescence is calculated as

f̂0 = 1
3

3∑
k=1

f̂0k (2.3)

were k is replicate index. We often have many sets of technical triplicates. In
Chapter 6 we will also look at the results using regression models, and take into
account all f̂0k including the technical triplicates.

In many studies it is common to calculate a ratio called the Fold Change (FC),
based on the estimates of the starting fluorescence levels f̂0 between samples. In
these studies there often is a group A and B which can be a case and control
group. In all samples there is a PCR run for a gene of interest G, and one or more
references genes. With one reference gene R and the gene of interest G in samples
A and B, which are not paired, we can calculate the FC from the f̂0 as

FC = f̂0
GA
/f̂0

RA

f̂0
GB
/f̂0

RB (2.4)

In the methods which soon will be introduced, the FC is the motivation. Later
we will look at ratios between fluorescence levels, but in another setting where the
ratio is known, namely dilutions series. But first, let us look at how to estimate
the starting fluorescence levels.

2.2 The Comparative CT method
The comparative CT method is a mainstream method to analyze PCR data. From
the fluorescence curves we choose one threshold for the fluorescence level after the
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ground phase, and find the corresponding cycle called CT . The efficiency is as-
sumed perfect, thus equal to two. The threshold is chosen early in the exponential
phase to support the assumption E = 2. We estimate the starting fluorescence
level for curve i as

f̂0i = fji · E−j = T · 2−CT i (2.5)

When using this method we will set one threshold for all fluorescence curves within
a dataset. In Livak and Schmittgen (2001) and Schmittgen and Livak (2008), the
comparative CT method is not presented as Equation (2.5) but as the FC.

2.3 Generalization of the comparative CT method
When different samples with different starting concentrations are run through the
PCR process simultaneously the results are curves where the exponential phase
ends at different cycles. It can be a challenge to set one threshold for all the curves.
Based on this requirement we introduce a generalization of the comparative CT
method.

When using the generalized CT method one threshold is chosen for each fluo-
rescence curve within a dataset. The Ti is placed where the estimated efficiency
for curve i is closest to two. We have found a method which find candidates for
the CT value were the efficiency is at its highest. The threshold value is chosen
as the fluorescence value corresponding to the chosen CT value. We estimate E
for each cycle using Equation (2.2), and start by initializing the CT value to be at
cycle m near the inflections point. We accept CT = m− 1 if the Êm−1 > Êm and
smaller than 2. In general we move the CT value to cycle k−1 if Êi,k−1 > Êi,k and
Êi,k−1 < 2. We end up with the cycle CT i = k where the efficiency is as close to
perfect amplification as possible. The corresponding yCT i becomes the threshold
Ti, and

f̂0i = Ti · 2−CT i . (2.6)

These two methods try to model the fluorescence curve on the interval y0, . . . , yCT ,
using only the value yCT = T .

The opportunity of different thresholds more suitable for each curve may im-
prove the estimates of f0. If the same threshold is chosen for all curve we will get
the same estimates as for the comparative CT method. It is interesting to compare
these two methods, which we will come back to in Chapter 6. First we will look
at a method which opens up for cycle dependent efficiency and evaluation of more
than one point in several cycles simultaneously.

6



0 10 20 30 40

0
10

20
30

40
50

Observed fluorescence curve

Cycle

y

Figure 2.1: Example of an observed background corrected fluorescence curve. The
curve is from a dataset called Arabidopsis dilution-dataset, which will be intro-
duced in Chapter 4.
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Figure 2.2: Examples of an observed log transformed baseline corrected fluores-
cence curve. For the early cycles we see the rapid fluctuation that can not be
explained by the amplification process.

8



Chapter 3

The Enzymological method

In this section we will give an introduction to the new method presented in Jørstad
et al. (2008). We will call this method the Enzymological method. The main
goal of the method is to estimate the starting fluorescence level corresponding
to a cell sample. When evaluation the results we will look at ratios between
starting fluorescence levels. Jørstad et al. (2008) compares the Enzymological
method to a known suitable benchmark method called MoBPA Alvarez, Vila-Ortiz,
Salibe, Podhajcer and Pitossi (2007) and show that the Enzymological method
outperforms this method. In this thesis we will first take a closer look at the
assumptions behind the Enzymological method and evaluate its strengths and
weaknesses. We will compare the Enzymological method to the comparative CT
method and the generalized CT method.

3.1 A mathematical model for the PCR efficiency

The Enzymological method is presented in Jørstad et al. (2008) and uses Michaelis-
Menten (enzyme) kinetics to model the PCR efficiency, see Schnell and Mendoza
(1997). It is assumed that the reaction efficiency is mainly determined by the ratio
of free to total enzyme concentration. For some rate constant κ the PCR efficiency
E is given by the concentration of target DNA molecules x as

E(x) = 1 + p(x) = 1 + κ

κ+ x
, (3.1)

where p(x) is the proportion of x that is perfectly duplicated in each PCR cycle.
When x is small, almost every DNA molecule is duplicated and when x gets

larger the duplication rate drops. If the PCR efficiency in cycle j = 1, . . . ,m
follows Equation (3.1) the concentration of target DNA at cycle j can be given by
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the following deterministic model

xj = xj−1(1 + p(xj−1)) = xj−1(1 + κ

κ+ xj−1
), (3.2)

where x0 is the starting concentration of target DNA molecules.

Definition (Fluorescence level). The true (not observed) intensity level at cycle
j is denoted fj, and is assumed to be proportional to the number of target DNA
molecules and thus proportional to the concentration of target DNA x. We write
fj = γxj where γ is independent of cycle and sample.

Let α = γκ such that Equation (3.2) becomes

fj = fj−1(1 + α

α + fj−1
), (3.3)

The primary goal of the Enzymological method is to estimate the starting fluores-
cence f0 for each fluorescence curve.

Motivated by the analysis of experimental data in Follestad, Jørstad, Erland-
sen, Sandvik, Bones and Langaas (2010) we will consider a generalized form of
Equation (3.3) where we introduce parameter β

fj = fj−1(1 + α

α + fβj−1
). (3.4)

The proportion of DNA molecules that is duplicated for each cycle can be
written

p(fj) = α

α + fβj
(3.5)

An example of the curve from Equation (3.5) is shown in Figure 3.1. For early
cycles around 95% of all DNA molecules are duplicated, and for later cycles the
proportion of DNA molecules that is duplicated drops to around 50% for this
example curve.

3.2 Choosing the (si,mi)-interval
For each curve i we only look at data from cycles si ≤ j ≤ mi. Then si is the
start cycle and mi is the end cycle for the part of the curve which is assumed to
follow the mathematical model introduced in Equation (3.4). The assumed cycle
dependent efficiencies in Equation (3.1) take in consideration the ratio of free to
total enzyme concentration. However, towards the end of a PCR run we see that
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Figure 3.1: The p(fj) function presented in Equation (3.5). The curve is generated
with α = 20, β = 1 and f0 = 2.036e−06. All parameter values are motivated by
the analysis of the Arabidopsis dilution-dataset which is introduced in Section 4.
Cycles after a certain point called m (which here are cycle 19). This cycle m will
be discussed in Section 3.2.

the factors such as denaturing of the enzymes, reannealing of the DNA molecules
or a shortage of primers or nucleotides will eventually become important. We only
fit the model in Equation (3.4) for the fluorescence curves i up to cycle mi.

The Enzymological method models the fluorescence curve on the interval y0i, . . . , ymi,
using the interval ysi , . . . , ymi . We look at the shape of the function in Equation
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(3.4) to find a proper end cycle mi. If we, in this thesis, take a closer look at
the possible values for the parameter β we see that the model in Equation (3.4)
has different behavior when the parameter β changes. The difference between two
consecutive fluorescence levels fj − fj−1 = αfj−1

α+fβj−1
has different limiting growth.

When fj−1 = z →∞

αz

α + zβ
= α

α
z

+ zβ−1 → 0 for β > 1

αz

α + z
= α

α
z

+ 1 → α for β = 1

αz

α + zβ
= αz1−β

α
zβ

+ 1 →∞ for β < 1

For β = 1 and β < 1 we note that Equation (3.4) have a limiting growth such
that the function is convex. From empirical experience, the fluorescence curve we
want to model is convex before its inflection point and then concave for late cycles.
In Jørstad et al. (2008) the end cycles mi is chosen to be the cycle closest to, and
smaller than the inflection point x0 in the observed fluorescence curve. Then we
avoid the limiting problem, if β ≤ 1. The inflection point is determined by fitting a
four-parameter sigmoid function to the observed fluorescence level on the original
scale using a least squares approach. The parameterization used for the sigmoid
curve is

y0 + a

(1 + e(x0−x)/b) ,

with x0 being the inflection point.
How can we find the start cycle si to be used for curve i? Why not si = 1? The

mathematical model in Enzymological method assumes that the efficiency starts
at the value 2 with perfect amplification from the very first cycle, and decreases
later in the PCR process. From a biological perspective the mathematical model
applies from cycle one. But as seen in Figure 2.2 there are rapid fluctuations in the
observed fluorescence values even after baseline correction that cannot be explained
by the amplification process in our mathematical model. To avoid affecting the
model fit Jørstad et al. (2008) suggest to use the method discussed in Tichopad,
Dilger, Schwarz and Pfaf (2003). This method considers a linear behavior for the
fluorescence level in the early cycles and then tries to find the point where the
exponential phase starts, thus departs from the ground phase. To make sure that
we have detected a departure from the ground phase we find the third outlier
from the ground phase. We will call this approach the Tichopad approach. Based
on practical experiments we found this approach to be slow and to include data

12



points with much relative noise. We will therefore look closer at other suggestions
for finding si in Section 5.4.

3.3 Evaluating the PCR efficiency assumption
The Enzymological method is based on the assumption that the PCR efficiency can
be modeled as a function of the proportion of DNA molecules that is duplicated,
using the Michaelis-Menten (enzyme) kinetics. The mathematical expression is
given in Equation (3.5). Using the logit transformed model in Equation (3.5) we
get a linear relationship between logit(pj) and log(fj)

logit(p(fj)) = log( p(fj)
1− p(fj)

) = log( α
fβj

) = log(α)− βlog(fj). (3.6)

We can use this relation to investigate if the model in Equation (3.4) is appropriate
for ysi, . . . , ymi in curve i. We use the following estimates for fj and pj

f̂j = yj (3.7)

p̂(fj) = p̂j = yj+1/yj − 1 (3.8)

We do visual inspection in a plot with logit(p̂j) on the y-axis and log(yj) on
the x-axis. We call this plot the p-assumption plot.

3.4 Parameter estimation
Let yji denote the observed baseline corrected fluorescence level in sample i =
1, . . . , n and cycles j = 1, . . . , k .

Definition (Number of cycles). Let the observations after each PCR cycle be
y = y1, . . . , ym, where yj is the observed fluorescence level after cycle j. The first
observation y1 is after one PCR cycle and therefore after one duplication of the
cDNA. We are interested in the starting fluorescence level y0.

We only use cycle j = si, . . . ,mi where we assume that the PCR efficiency in
Equation (3.5) holds. Following Jørstad et al. (2008) the observed fluorescence is
modeled with additive noise

yji = fji + εji, (3.9)
where εji is independent and distributed as N(0, σ2). The noise is relatively large
compared to the fluorescence levels for early cycles, and relatively small compared
to the fluorescence levels for cycles towards the end of the PCR process.
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For sample i = 1, . . . , n we assume common parameters α, β and σ2. The
observed fluorescence is modeled with Equation (3.4)

yji = fj−1,i(1 + α

α + fβj−1,i
) + εji. (3.10)

Denoting the vector for all observed baseline corrected intensities {yji} the
log-likelihood function for θ′ = (σ2, α, β, f01, . . . , f0n) is

lnL(θ′|y) =
n∑
i=1

mi∑
j=si

[−1
2 ln(2π)− ln(σ)− 1

2σ2 (yji − fji)2] (3.11)

We observe that maximization of the likelihood can be performed separately
with respect to σ2 and θ = (α, β, f01, . . . , f0n), where θ is of primary interest when
finding f01, . . . , f0n. To estimate θ we find it sufficient to minimize

n∑
i=1

mi∑
j=si

(yji − fji)2.

This can be achieved by differentiation with respect to each parameter in θ. But
gradient based methods perform poorly and the calculations are time consuming
because of the recursion derived from Equation (3.4). In Jørstad et al. (2008) the
estimates are found numerically using the Nelder-Mead simplex method.

The initial estimates of the parameters f0, β and α

The initial parameters used in the Nelder-Mead simplex method are chosen as
follows. The parameter β will be initialized as

βinit = 1, (3.12)

because this is the theoretically correct value from Schnell and Mendoza (1997).
From our model we have found a new estimator for the amplification in each

cycle

p∗j = α̂

α̂ + yβ̂j
. (3.13)

This estimator together with the estimator p̂ in Equation (2.2) will be used in the
initialization of α. First the parameter α will be initialized to ∑n

i1
αi
init

n
, where

αi
init is estimated for each replicate curve separately. An αiinit is calculated using

β = 1 and the last two observed intensities belonging to the model region, yi,mi
and yi,mi−1 as

14



p̂i,j−1 = p∗i,j−1
yi,mi
yi,mi−1

− 1 = α̂i
init/(α̂iinit + yi,mi−1)

α̂initi =
y2
i,mi−1 − yi,mi−1 · yi,mi
yi,mi − 2yi,mi−1

α̂init =
n∑
i1

α̂i
init

n
. (3.14)

This is motivated by that the last observed intensities yi,mi and yi,mi−1 , where the
model applies, are the least noisy.

The f0i is initialized using Equation (3.3) in reverse by setting

fi,mi = yi,mi and using the initial values of α and β. (3.15)
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Chapter 4

Using biological data to evaluate
the Enzymological method

In this chapter we will use the method presented in Chapter 3 to see how the En-
zymological method works in practice. The method will be applied to a biological
dataset called Arabidopsis dilution-dataset, presented in Jørstad et al. (2008).

4.1 The Arabidopsis dilution-dataset
This experiment involves two genes TIP41 (gene of interest G) and PP2A (refer-
ence gene R). The genes are taken from two types of plants, the AtRAC7 knock-out
mutant plants (case group A) and the wild-type plants (control group B). We call
GA, RA, GB and RB the four sample types. Dilutions are made with dilution
factors 1, 4, 16 and 64. In this case the ratio of two starting concentrations is
known. In Table 4.1 we see an overview of the sample types and dilutions. There
are triplicate observations for each of the fluorescence levels. In total there are 4
sample type times 4 dilutions time 3 replicates, which is equal to 48 starting fluo-
rescence levels and thus 48 fluorescence curves. We have not available information
about the nature of the triplicates, that is whether the triplicates are technical or
biological replicates. By Biological replicates we mean that the samples are found
from different plants but with the same sample type. By Technical replicates we
mean that one sample is taken from a plant and divided into three. Technical
replicates will be more similar than the biological replicates. Plots of the observed
fluorescence curves before baseline correction are found in Figure 4.1.

The data are baseline corrected as in Jørstad et al. (2008). This is for each
curve done by first ranking the fluorescence observations according to numerical
value, and then finding the window of 5 consecutive data points having the smallest
rank sum. In the case of multiple windows with the same minimum rank sum the
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Dilutions
Sample type 1:1 1:4 1:16 1:64

GA fGA0
fGA0

4
fGA0
16

fGA0
64

RA fRA0
fRA0

4
fRA0
16

fRA0
64

GB fGB0
fGB0

4
fGB0
16

fGB0
64

RB fRB0
fRB0

4
fRB0
16

fRB0
64

Table 4.1: Overview of the different starting fluorescence levels organized in groups
and dilution factors. There are three replicates for each of the 16 starting fluores-
cence levels.

window containing the smallest single rank was used. The arithmetic mean of the
observations in the chosen window was used as baseline value and subtracted from
all observations.

4.2 Finding the (si,mi)-interval
The Enzymological method uses the Tichopad approach to find the starting cycle
si and place the last cycle mi right before the inflection point in the fluorescence
curve, as explained in Section 3.2. In Jørstad et al. (2008) the chosen part of the
curve (ys, . . . , ym) is evaluated by checking the assumption in Equation (3.6). The
p-assumption plots in Figure 4.2 show the chosen part of the fluorescence curve for
the four dilutions in group RB. The p-assumption plots for the other three groups
show a similar trend. We do not see a linear relationship with slope −β. For
early cycles, thus small values of log(yj), we see that the logit(p̂j) deviates from
linearity. But for larger cycles toward the inflection point we see that the relation
is more linear. In Jørstad et al. (2008) they conclude that the lines provided a
reasonable explanation and a had a linear trend. Data from the earliest cycles
in the plots were left out. We will in this thesis conclude otherwise. In Figure
4.2 we have included all points (si, . . . ,mi) and from visual inspection we think
that it is clear that the assumption in Equation (3.6) is not fulfilled. The main
reason for departure from the linear trend is the rapid fluctuations in the observed
fluorescence level for early cycles.

When using the Enzymological method on data (ysi , . . . , ymi) this method gives
good estimates for the parameters f0 even though it looks like from Figure 4.2 that
s is chosen too early. Why is this? Maybe the p-assumption that Jørstad et al.
(2008) ask us to check is not the right assumption to concentrate on. We will now
take a closer look at how the MLE is found, thus how the MLE works. These two
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Figure 4.1: The observed fluorescence level in the Arabidopsis dilution-dataset.
The four different sample types (GA, RA, GB and RB) are plotted in separate
plots with different colors. In the upper left we have GA (black), upper right RA
(red), lower left GB (blue) and lover right RB (green). The three curves to the
left in each panel have the original concentration. The next three curves to the
right have dilution factor 4, then the curves with dilution factor 16 are plotted
and last the curves with dilution factor 64 to the far right. This is the fluorescence
level before baseline correction.

next sections are not found in Jørstad et al. (2008).
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Figure 4.2: The p-assumption plot for the four dilution (1,4,16 and 64) for gene
PP2A (R) from the wild type (control group B) in the Arabidopsis dilution-
dataset. The three replicates are drawn in different green colors, but the difference
between the replicates is not of interest here. On the x-axis we see the logarithm of
the observed fluorescence level and on the y-axis we see the logit of the estimated
amplification probability.
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4.3 A closer look at the maximum likelihood es-
timator MLE

To estimate θ we maximize the likelihood in Equation (3.11) over f0, α and β.
The error term is estimated by ε̂ = y − f̂ , using the Enzymological method to
estimate f̂ . What does ε̂ look like? In Figure 4.3 we see a plot of the observed
fluorescence level y (red lines) and the estimated fluorescence level f̂ (blue lines)
with the estimated parameters from the Enzymological method. They seem to
follow the same trend. In Figure 4.4 we see ε̂ for sample type RB for all four
dilutions. In the panel to the upper left we see the original concentrated samples,
where the residuals have a larger variance than for the other samples. Still, overall
the residuals are mainly concentrated around zero. Towards the ending cycle (the
inflection point) we see that ε̂ increases.

The ε̂ is calculated from f̂ with estimated parameters (α̂, β̂, f̂0) such that the
term ∑n

i=1
∑mi
j=si(yji− f̂ji)2 in Equation (3.11) is minimized. What happens to the

likelihood when the estimated parameters change? We will change one estimate
at a time to see what happens to ε̂. In Figure 4.5 we change α̂, and thus f̂ , such
that we get another ε̂. In Figure 4.6 we change β̂. The black line is the ε̂ with the
MLE.

We see that the value for the ε in the cycle close to the inflection point has a
very high influence on the resulting likelihood, and thus the estimates. We might
only need the two last cycles? What are the results if we only include two points
in the MLE?

MLE based on two observations
We look at n = 1 and β = 1 for curve i and only include cycle j and j − 1. The
MLE solution is found by minimizing the term

(yj − f̂j)2 + (yj−1 − ˆfj−1)2

with respect to f̂ . The solution is f̂j = yj and ˆfj−1 = yj−1. The relationship
between f̂ and α̂ is f̂j = ˆfj−1(1 + α̂

α̂+ ˆfj−1
). Since f̂ = y in the two observations

we get yj = yj−1(1 + α
α+yj−1

). When j = m we get exactly the same expression
as Equation (3.14) which is the value for α used as initial values before the MLE
optimization. This is an interesting result. Later in Section 5.5 we will use the
initial values directly in the estimation of f0.

We have in this section seen how the behavior of ε̂ influence the MLE. We
make an important assumption about ε, that the error is normally distributed
with mean zero and variance σ2. Can we from the ε̂ accept the hypothesis that ε
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is normally distributed? This assumption is not evaluated in Jørstad et al. (2008),
therefore we will do some statistical testing on ε̂ in the next section.

4.4 The assumption of an additive model
We want to see if the noise εji for cycle j in curve i is independent and nor-
mally distributed with mean 0 and standard deviation σ, as assumed in Equation
(3.9). Normality is tested by using the Anderson-Darling test on (ε̂1, . . . , ε̂m) for
each curve, thus performing 48 tests. The H0 hypothesis is that εi is normally
distributed, with rejection if p < 0.05 the significance level. We have multiple
testing with some dependent samples. To account for this we calculate Bonferroni
adjusted p-value for each curve. The p-value from the Anderson Darling test for
each sample is multiplied by the number of samples which is 48. Meaning we
accept normality if p · 48 > 0.05 or p > 0.05/48 for each curve.

We will perform the Anderson-Darling test in two different situations, when we
estimate α and β for each individual curve n = 1 and next when we estimate one
α and β for each triplicate set n = 3. When we look at the 48 estimated residuals
when α and β are estimated for each individual curve, we accept the normality for
all curves. We can accept the hypothesis of normality for 31 of total 48 ε, when α
and β are estimated for each triplicate.

In Figures 4.7 and 4.8 we present QQ plots of the curves where the H0-
hypothesis was rejected. We see that the departure from normality do not ap-
pears to be large. We conclude that the assumption of normality can be rejected
when n = 1 and holds approximately for n = 3. This could be one of the reasons
why the Enzymological method give good estimates even though the p-assumption
from Equation (3.6) is not fulfilled. Instead of checking the p-assumption in new
dataset we will check if we can assume normally distributed ε.

4.5 Parameter estimation for each individual curve
We start by estimating the parameters based on individual curves, and letting
n = 1 in Equation 3.11. The results are presented as a plot over all 48 α̂ in Figure
4.9 and all 48 β̂ in Figure 4.10. These two plots are also presented in Jørstad et al.
(2008).

We want to see if the parameter estimates vary between gene, group and di-
lution. If estimates are similar we can have the same parameter for groups of
curves. From the plots it looks like the two parameters vary between gene and
dilutions factor. We know that the parameter estimates can also depend on the
sample type used, in Jørstad et al. (2008), although this is not as evident from the
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test results. We see that the two natural choices for n is either n = 1 or n = 3.
Based on Figure 4.9 and Figure 4.10 Jørstad et al. (2008) concludes that α and β
should be estimated based on three replicates simultaneously which have the same
gene, same sample type and same dilution factor. But we observe that estimates
for α are different within each triplicate. The two groups of the gene TIP2 have
higher variance with respect to α̂ than the other gene. Thus we will not make any
conclusions about n at this point.

Another result seen from Figure 4.10 is that all the estimated β are concen-
trated around one. Based on this we choose to continue to estimate beta and
not force it to be equal to one. As mentioned, the motivation for including the
parameter β was based on an analysis of experimental data in Follestad et al.
(2010).

We now turn to estimated dilution factors, see Table 4.2. We observe that the
estimates are close to the true dilution factors.

log2(4/1) log2(16/1) log2(64/1) log2(16/4) log2(64/4) log2(64/16)
True value 2 4 6 2 4 2

ˆratio 2.19(0.13) 4.15(0.2) 6.2(0.17) 1.96(0.13) 4.01(0.08) 3.03(2)

Table 4.2: Estimated log2 of ratios corresponding to the dilutions in the Arabidop-
sis dilution-dataset using the Enzymological method for each individual curve. The
estimates refer to the mean estimated ratios, with standard deviation in parenthe-
sis.

Estimating the dilution factors
We have f̂0 from each of the 48 samples in the Arabidopsis dilution-dataset. In
this dataset we do not know if there are biological or technical triplicates. We
will consider them as technical triplicates in these calculations. We take the mean
value of the estimated fluorescence of a triplicate set as explained in Equation
(2.3).

We will estimate dilution factors by forming ratios between dilutions within
each group. For the Arabidopsis dilution-dataset we will find all ratios within
each of the four groups GA, RA, GB and RB. Thus we will have 4 estimates of
each of the dilution factor 4, 16 and 64.

In general we have the dilution factors 1 : a, 1 : b and 1 : c. For our dataset we
have more dilution factors, but for illustration we look at three different dilution
factors. Let the starting concentration have dilution factor 1 : 1. Then a = 1, thus
the original concentration. In this general case we have, for each dilution series,
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three estimates of the starting concentration f̂0(D) corresponding to each of the
three dilution factors D.

There are three different ratios R which are known, and that is b/a, c/a and
c/b. For illustration we show the calculation and estimates for two of the ratios.

f0(a)
f0(b) = f0(a)

f0(a)/b = b

f0(b)
f0(c) = f0(a)/b

f0(a)/c = c/b

The estimated ratio is then

b̂ = f̂0(a)
f̂0(b)

ĉ/b = f̂0(b)
f̂0(c)

The theoretical correct value for b̂ is b and the theoretical correct value for ĉ/b is
c/b. We take the logarithm

log ˆ(b) = logf̂0(a)− logf̂0(b)
log ˆ(c/b) = logf̂0(b)− logf̂0(c)

We estimate the ratio for every pair of dilution D for every dilutions series l
where 1 ≤ l ≤ L. In the Arabidopsis dilution-dataset there are 4 different dilution
series, since we assumed that the triplicates were technical. Thus L = 4 in the
Arabidopsis dilution-dataset.

If we look at one dilution series at a time, we find the mean value for all
estimates of the ratio R as

logR̂ = 1
L

L∑
l=1

(logR̂l)

and the standard deviation for all estimates of the ratio R as√√√√ 1
L− 1

L∑
l=1

(logR̂l − logR̂)2
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4.6 Parameter estimation for sets of replicate
curves

We now look at sets of replicate curves (n = 3) in the MLE estimation in Equation
(3.11). We estimate three starting concentrations f01, f02, f03, one α and one β for
each set of triplicates. We have 16 sets of estimates.

In Figure 4.11 and 4.12 we see the 16 estimates of α and β, and they still vary
between gene, groups and dilutions. In Table 4.3 we see the estimated dilution
factors when n = 3 in the MLE. The estimated ratios are closer to the true value
than for n = 3. Most of the estimates have lower bias and lower standard deviation.

log2(4/1) log2(16/1) log2(64/1) log2(16/4) log2(64/4) log2(64/16)
True value 2 4 6 2 4 2

ˆratio 2.08(0.06) 4.02(0.1) 6.07(0.09) 1.94(0.15) 3.99(0.12) 3.03(1.98)

Table 4.3: Estimated log2 of ratios corresponding to the dilutions in the
Arabidopsisdilution−dataset using the Enzymologicalmethod for each triplicate
set. The estimates refer to the mean estimated ratios, with standard deviation in
parenthesis.

Based on this we will from now on do parameter estimation for sets of replicate
curves. We see that the estimate for the ratio between the two dilution factors 64
and 16 has a high bias, this might be due to pipetting error.

Summary
The analysis performed in this chapter indicates that the Enzymological method
is a good estimation method to find the starting fluorescence level in a PCR curve.
We have detected some points worth further investigation. We have seen that
the p-assumption plot do not give valuable information about the fit of the model
to the real data. It is more important to check the assumption of normally dis-
tributed noise. We have observed that the last cycle right before the inflection
point has the most influence of the parameter estimation. When estimating the
model parameters, we use triplicate sets simultaneously, thus n = 3.
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Figure 4.3: A selected section of the observed fluorescence level (y1, . . . , y30) in
red, and (f̂1, . . . , f̂m) in blue with estimated parameters from the Enzymological
method. The corresponding triplicates are in the same panel. For illustration we
show the curves belonging to PP2A (gene R) for wild-type (group B).
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Figure 4.4: The residuals ε̂ = y − f̂ where y is observed fluorescence level and
f̂ is the estimated deterministic fluorescence level from model 3.5 and estimated
parameters from the Enzymological method. The corresponding triplicates plotted
in the same panel. For illustration we show all dilutions for sample type RB, gene
PP2A for the wild-type plant.

26



18 20 22 24 26

−
4

−
2

0
2

4

Cycle

es
t(

e)
=

y−
es

t(
f)

Figure 4.5: Residuals ε̂ for different α̂ (from 10 to 30 with steps of 2). The other
two estimated parameters in f̂ are β̂ and f̂0 and their values are held constant at
1.06 and 2.84e−07 respectively. The blue line is the residual ε̂ where α = 21.73
which gives the highest likelihood.
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Figure 4.6: Residuals ε̂ for different β̂ (from 0.3 to 2 with steps of 0.2). The other
two estimated parameters in f̂ are α̂ and f̂0 and their values are held constant at
21.73 and 2.84e−07 respectively. The blue line is the estimated ε where β = 1.06
which gives the lowest likelihood.
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Figure 4.7: The QQ plots for 9 of the 17 curves where the hypothesis of normality
in ε was rejected.
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Figure 4.8: The QQ plots for the remaining 8 of the 17 curves where the hypothesis
of normality in ε was rejected.
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Figure 4.9: Estimation of α for each individual curve in the Arabidopsis dilution-
dataset with 3× 16 = 48 samples. The estimates are organized according to gene,
group and dilution. Black open circles represent estimates for TIP2 (gene G) for
mutant plant (case group A), red filled circles represent estimates for PP2A (gene
R) for mutant plant (case group A), blue open squares represent estimates for
TIP2 (gene G) for wild-type (control group B) and green filled squares represent
estimates for PP2A (gene R) for wild-type (control group B). In each group the
x-axis represents the true known dilutions factor in the order 1, 4, 16 and 64.
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Figure 4.10: Estimation of β for each individual curve in the Arabidopsis dilution-
dataset with 3 × 16 = 48 samples. The explanation of the plot is the same as in
Figure 4.9.
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Figure 4.11: Estimation of α for each corresponding triplicate set in the Arabidop-
sis dilution-dataset, with 16 estimations. The estimates are organized according
to gene, group and dilution. Black open circles represent estimates for TIP2 (gene
G) for mutant plant (case group A), red filled circles represent estimates for PP2A
(gene R) for mutant plant (case group A), blue open squares represent estimates
for TIP2 (gene G) for wild-type (control group B) and green filled squares repre-
sent estimates for PP2A (gene R) for wild-type (control group B). In each group
the x-axis represents the true known dilutions factor in the order 1, 4, 16 and 64.
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Figure 4.12: Estimation of β for each corresponding triplicate curves in the Ara-
bidopsis dilution-dataset, with 16 estimations. The explanation of the plot is the
same as in Figure 4.11.
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Chapter 5

Modification of the
Enzymological method

In this chapter, we will look at how the Enzymological method works on data,
which we assume follows the model. The analyses in this chapter are based on
simulated data, where the starting fluorescence level and model parameters are
known and we can evaluate the quality of the estimated parameters. We will also
suggest new approaches.

5.1 Simulated data

We simulate a dataset of fluorescence levels with parameters σ2, α, β and f0 chosen
to match parameter estimated from the Arabidopsis dilution-dataset. From Figure
4.9, we choose α to be 20 and from Figure 4.10 we choose β = 1. To find a value
for the starting fluorescence level f0, we use the fluorescence value in the inflection
point ymi for a representative curve i and calculate f0 recursively, using Equation
(3.4). We do not look at cycles after the inflection point, because the mathematical
model in Equation (3.4) does not apply for such late cycles. From Figure 4.1, we
choose m = 25, and the fluorescence level at this cycle to be 30, meaning f25 = 30.
After 25 calculations with Equation (3.4), we find f0 = 2.036 · 106. From these
true starting parameters α = 20, β = 1 and f0 = 2.036 · 106 we can generate a
theoretically correct fluorescence curve i with values f1i, . . . , fji, . . . , f25,i according
to Equation (3.4).

The last step to calculate a simulated observed fluorescence curve yji is to add
noise independently to each cycle j as explained in Equation (3.9). The noise εji
for curve i and cycle j should be normally distributed with variance σ2.

We estimate σ2, using the observed fluorescence levels yji from the Arabidopsis
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dilution-dataset

σ̂2 = 1
ν

n∑
i=1

mi∑
j=1

(yji − fji)2 (5.1)

where ν is the number of observations yji minus the number of estimated param-
eters, thus ν = ∑n

i=1mi − (n + 2). There is one estimate of f0 for each curve i
where 1 ≤ i ≤ n which adds up to n parameters, plus 2 parameters α and β. In
Section 4.4, we concluded that the relation εji = yji−fji applies for 1 < j < m for
curve i. We let 1 < i < (n = 3) represent technical triplicates. We calculate one
σ̂2 for each technical triplicates. In the Arabidopsis dilution-dataset, there are in
total 16 triplicates and thus 16 estimates of σ2. In Table 5.1 we see a summary of
these estimates. We see that all the estimates are less than 0.0239, and as a worst

Mean Sd Max
Estimated σ2 0.0071 0.007 0.0239

Table 5.1: The summary of the 16 estimated σ2 for each triplicate in the Ara-
bidopsis dilution-dataset from start cycle 1 to the inflection point.

case scenario we choose the true parameter σ2 = 0.025 in our simulations.
A list of the true starting parameters in the simulated dataset is found in Table

5.2.

σ2 f0 α β
true parameters 0.025 2.036 · 1006 20 1

Table 5.2: The four true parameters used in the simulated dataset, based on the
Arabidopsis dilution-dataset.

We simulate 7500 observed fluorescence curves, representing 2500 technical
triplicates. All of these curves will be based on the same true α and β, but we
will still let n = 3 to evaluate the behavior on the Enzymological method for
triplicates. Since all the graphs are based on the same true starting fluorescence
level, they are comparable without baseline correction.

In Figure 5.1, we see an example of a simulated fluorescence curve which follows
the model from Equation (3.10) with parameters from Table 5.2. For early cycles,
the fluorescence values have rapid fluctuations as for real fluorescence curves. The
simulated curve ends in the inflection point and it never gets concave, because the
curves follow the mathematical model in the Enzymological method which only
applies up to the inflection point. We see the similarity between this simulated
fluorescence curve in Figure 5.1 and a true fluorescence curve in Figure 2.1.
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Figure 5.1: Three simulated fluorescence level yji following the model from Equa-
tion (3.10) with parameters from Table 5.2.

5.2 Results

Now we turn to parameter estimation. For each triplicate set {yji} where 1 ≤ i ≤ 3
and si ≤ j ≤ mi, we estimate parameter α, β, f0i. We select the part of the
fluorescence curve from si to mi, using the procedures explained in Section 3.2.
One would think that data from all cycles would be included in the theoretically
correct simulated dataset yji. However, the curve yji = fji+εji varies a lot for small
j when the error εji is normally distributed with σ2 = 0.025 and the fluorescence
level fji is less than 10−6. Thus we can not see the original trend in fji for early
cycle. By using the procedure from Section 3.2, the number of cycles (si,mi) is
around 7 or 8. The curves include from 5 to 17 cycle in the MLE.

In Table 5.3, we see the results for the 2500 estimated σ2 from our simulated
dataset and observe that the mean of the estimated σ2 is close to the true value
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σ2 = 0.025.

Mean Sd Max
Estimated σ2 0.0261 0.005 0.0617

Table 5.3: Summary statistics for the 2500 estimated σ2 for each triplicate in the
simulated data from start cycle 1 to the inflection point, mi.

We estimate α̂, β̂ for the 2500 triplicate curves, and calculate the mean value
f̂0 over triplicates. We choose to consider the mean value of fluorescence level in
the corresponding triplicates since from a biological view these value should be
identical. In Chapter 6, we will analyze triplicate samples, but in this section
we focus on the mean value f̂0. For estimate θ̂ with true value θ, the results are
evaluated by using estimated observed bias B̂ias(θ̂), the observed mean square
error MSE(θ̂) and the coefficient of variance CV (θ̂)

B̂ias(θ̂) = Ê(θ̂)− θ = 1
2500

2500∑
l=1

θ̂l − θ,

MSE(θ̂) = sd(θ̂)2 + B̂ias(θ̂)
2

=

√√√√ l

2500− 1

2500∑
l=1

(θ̂k − θ̄)2 + (Ê(θ̂)− θ)2,

CV (θ̂) = sd(θ̂)

|Ê(θ̂)|
.

Coefficient of Variation (CV) has a value between zero and infinity. A small
CV value is preferable, meaning a small standard deviation compared to the mean
value. When CV (θ̂) is larger than 1 the standard deviation is greater than the
mean value.

In Table 5.4, we see the summary of statistics for the three estimated param-
eters from the simulated dataset. The α̂ has a standard deviation of around 15%
of the mean value. Our primary aim is to estimate the starting fluorescence level
and it looks like the estimates of f0 are more accurate. All in all the estimates
are very good, but this is not surprising, since the simulated data is based on data
that perfectly follow the mathematical model.

In Figure 5.2, we see a pairs plot of the estimated parameters to demonstrate
the dependence between the estimates. We see that f̂0, α̂ and β̂ are highly depen-
dent, in an almost linear fashion.
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B̂ias(θ̂) MSE(θ̂) CV (θ̂)
f̂0 3.34e-09 3.24e-15 2.79e-02
α̂ 1.41e-01 9.39 1.52e-01
β̂ -2.56e-03 2.62e-03 5.13e-02

Table 5.4: Summary statistics of the three estimated parameters from the simu-
lated dataset with the Enzymological method. There are 2500 estimates of each
of f0, α and β.

5.3 Changing the initial values in the MLE
We would like to investigate the robustness of the MLE to the initial value. From
Figure 5.2, we see that all the three parameters are highly correlated, thus we
choose to only change the initial value for α. We set αinit equal to 10 and 30 which
is far from the true value 20. In Table 5.5, we see the results for the estimated
parameters with αinit = 10 and in Table 5.6 we see the results for the estimated
parameters with αinit = 30.

With αinit = 10, we get a mean value for f̂0 equal to 4.10 · 106 and with
αinit = 30 we get a mean value for f̂0 equal to 1.84 · 106. In both cases, the CV
value for f̂0 is higher compared to Table 5.4. The bias of f̂0, estimated when using
αinit from Equation 3.14, is in order of magnitude 10−9. This is 1000 times better
than for αinit = 10 and 100 times better than for αinit = 30. The MLE seems to
be sensitive to the choice of αinit.

B̂ias(θ̂) MSE(θ̂) CV (θ̂)
f̂0 2.07e-06 6.71e-12 3.81e-01
α̂ -1.36e+01 1.98e+02 5.41e-01
β̂ -4.93e-01 2.87e-01 4.15e-01

Table 5.5: Summary statistics of the three estimated parameters from the 7500
simulated curves with αinit = 10

5.4 Methods for finding the starting cycle s

The end cycle mi is placed near the inflection point on the observed fluorescence
curve. We will not investigate this further. However, we want to look at the start
cycle si and its effect on the MLE in Equation (3.11). Can we find estimates with
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Figure 5.2: Pairs plots of the estimated parameters f0, α and β from 2500 simulated
triplicates when using the Enzymological method to calculate the estimates. There
are 2500 estimates of the mean values f̂0 = ∑3

i=1 f̂0i
calculated over triplicates.

lower bias and variance if we place s later or earlier than the Tichopad approach
explained in Section 3.2? What happens to the bias and variation of the estimated
starting fluorescence level when we use different number of cycles in the MLE? To
investigate this. we first include 2 cycles in the MLE, m and m− 1. Since we use
triplicate curves, we have six observation and five parameters. Next we include
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B̂ias(θ̂) MSE(θ̂) CV (θ̂)
f̂0 -1.97e-07 4.95e-14 5.63e-02
α̂ 2.36e+01 9.18e+02 4.37e-01
β̂ 2.41e-01 7.95e-02 1.17e-01

Table 5.6: Summary statistics of the three estimated parameters from the 7500
simulated curves with αinit = 30

cycle m− 2, such that we have three cycles for each curve. The number of cycles
used is increased until 10 cycles are included for each curve. Last we show the
results when including 20,21,22 and 23 cycles in each curve. The results are shown
in table 5.7.

B̂ias(θ̂) MSE(θ̂)
2 1.03e-08 7.41e-14
3 2.20e-08 2.75e-14
4 6.74e-09 8.14e-15
5 4.02e-09 4.14e-15
6 9.36e-10 2.44e-15
7 5.91e-09 3.60e-15
8 -3.13e-10 2.83e-15
9 -5.23e-09 3.03e-15
10 4.94e-10 3.30e-15
20 1.45e-09 3.52e-15
21 1.26e-09 3.50e-15
22 1.34e-09 3.50e-15
23 1.38e-09 3.51e-15

Table 5.7: Summary statistics of the estimats of f0 from the 7500 simulated curves,
with different numbers of cycles in the MLE

We see that the bias of f̂0 decreases up to six cycles. The MSE goes from
7.41e−14 to 2.44e−15 and the bias goes from 1.03e−8 to 9.36e−10. The MSE do
not get lower after six cycles even though more cycles are included. All in all the
difference is very small, but it looks like there is a small advantage to include 6 or
more cycles in this simulated dataset. As mentioned in Chapter 2, we saw in Figure
2.2 the rapid fluctuations in the observed fluorescence values even after baseline
correction and this trend cannot be explained by our mathematical model. These
rapid fluctuations can be an explanation of the irregular value of the estimated
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bias after 6 cycles are included in the MLE. To avoid affecting the model fit, we
want to include as few cycles as possible, but still get the lowest bias and variance
as possible. In Table (5.7), it looks like six cycles may be the most optimal number.

These simulated curves have all the same starting fluorescence level and we can
choose 6 cycles for all of the curves simultaneously. With real data we often have
groups with different starting fluorescence level and we have to choose starting
cycles individually for each curve. The Tichopad approach chooses the starting
cycle by finding the endpoint of the PCR ground phase and ends up using in most
cases 7 or 8 cycles. The summary of the number of cycles included in the MLE is
found in Table 5.8.

(m-s+1) 5 6 7 8 9 10 11 12 13 14 15 16 17
K 57 717 3532 2679 453 40 7 1 4 2 2 4 2

Table 5.8: The number of occurrences (K) when the number of cycles (m-s+1) is
used in the MLE with the Tichopad approach.

We want to see if we can find a method that find si for each individual curve
i and overall includes fewer cycles than Tichopad approach. Another approach to
finding si, is to start with estimating the efficiency with Equation (3.13). This es-
timate is close to 2 up to a certain number of cycles, where the estimated efficiency
starts to drop. By fitting a linear regression, we find where this change happens.
We investigated this approach and found that it ends up with almost identically
starting cycles as the Tichopad approach.

Our next idea is to look at the estimated standard deviation for the noise for
each triplicate curve. We call this the Sigma approach. We want to find the cycle
where an observed fluorescence curve is relatively large, compared to the noise.
We will find a limit where y is relatively larger than σ̂. To do this, we first use the
theoretically correct fluorescence curve f , which follows the mathematical model
in Equation (3.3) with parameters motivated by the Arabidopsis dilution-dataset,
showed in Table 5.2. Then we find the ratio between σ = 0.025 and the f curve,
σ
f
. This ratio will give us an idea of how large a normal standard deviation is

compared to a normal fluorescence curve. In Table 5.9, we see that at cycle 15
the standard deviation of the noise is more than twice the fluorescence level. This
indicates that the relative noise is too large for us to find a trend in the fluorescence
curve. At cycle 16 we see that the standard deviation of the noise is just a little
bigger than the fluorescence level. In cycle 17 the ratio is around 0.5 and the
fluorescence curve do not have as highly rapid fluctuations as for early cycles. The
inflection point is around cycle 25. There we see that the true standard deviation
is only 0.5% of the fluorescence level.

At what ratio should we place the limit σ/fj? We have earlier seen in this
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Cycles j 16 17 18 19 20 21 22 23 24 25
σ/fj 1.189 0.596 0.30 0.152 0.078 0.041 0.022 0.013 0.008 0.005

Table 5.9: The ratio between the σ = 0.025 and the theoretically correct fluores-
cence curve f for each cycle j. The ending cycle m is 25.

Number of cycles 4 5 6 7
Occurrences 89 830 6564 17

Table 5.10: The number of cycles used in the MLE with the Sigma approach

simulated dataset that 6 cycles for each curve give the best results with the MLE.
When we include 6 cycles from the ending cycle m at 25, we end up with starting
cycle s = 20. In Table 5.9 the ratio σ/fj is 0.078 for starting cycle 20. We set a
limit on the fluorescence level where f limit · 0.1 = σ, meaning that the fluorescence
curve should be 10 times the standard deviation of the noise.

In practice, we are dealing with observed fluorescence levels {yji} which include
noise. To find the start cycle si, we first find the estimate σ̂ for each triplicate, as
explained previously in this chapter. Last we find the observed fluorescence limit
ylimit = σ̂/0.1. The starting cycle si for curve i is then j where yi,j > ylimiti . In
Table 5.10, we see the number of cycles found with the Sigma approach. We see
that the number of cycles in most cases are 6 and 5 just as expected.

In the Sigma approach compared to the Tichopad approach, the number of
cycles are more concentrated around 6 points in the Sigma approach. The results
for the estimates of the parameters θ with the Sigma approach can be seen in
Table 5.11.

B̂ias(θ̂) MSE(θ̂) CV (θ̂)
f̂0 -3.92e-10 3.04e-15 2.71e-02
α̂ 3.17e-01 9.04e+00 1.47e-01
β̂ 7.72e-04 2.52e-03 5.01e-02

Table 5.11: Summary statistics of the three estimated parameters from the simu-
lated dataset with the Sigma approach. There are 2500 estimates of each of f0, α
and β.

Not unexpected the Tichopad approach and the Sigma approach gave quite
similar estimates for f0, but there are some differences.
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The Tichopad approach gives good estimates of f0. It seems like it in-
cludes unnecessary many points in the calculation. The algorithm from
Tichopad et al. (2003) is very slow. It finds s directly from the observed
fluorescence curve.

The Sigma approach gives slightly better estimates of f0. It includes a
suitable amount of cycles in the calculations. It is fast, but one must
estimate an additional parameter σ.

5.5 Estimation with the initial values from MLE
Another interesting result is that the initial values in Equation (3.4) are good
estimates. As a third method we will use these estimates and call it the Init
approach. The estimates of the parameters θ with the Init approach are found in
Table 5.12.

B̂ias(θ̂) MSE(θ̂) CV (θ̂)
f̂0 -8.16e-09 2.24e-15 2.30e-02
α̂ 1.68e-01 4.29e-01 3.14e-02
β̂ 0 0 0

Table 5.12: Summary statistics of the three estimated parameters from the sim-
ulated dataset with the Init approach. There are 2500 estimates of each of f0, α
and β.

All three methods give very similar results, but the Init approach has the lowest
MSE and the Sigma approach has the lowest bias. In Figure 5.3, we see boxplots
of the 7500 estimated f0 for each approach.

The f̂0 from the Init approach has low sample variance without using the MLE.
In the calculations of all f̂0, we use the α̂’s and β̂’s. We have seen from visual
inspection in Figure 5.2 that all three estimates are highly dependent. In Figure
5.4, we see the estimated standard deviation for the α̂’s and β̂’s from the Init
approach as red dots, and the estimated standard deviation when we include MLE
and increase the numbers of cycles used as black dots. As expected, the estimated
standard deviation for the α̂’s is small and for the β̂’s it is zero, since every curve is
given the initial value β = 1. When the β̂ have low empirical variance, this affect
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Figure 5.3: Here we see the three different methods used to estimate f0 from 7500
simulated curves. From the left we see the Tichopad approach, in the middle
the Sigma approach and to the right the Init approach. The red line is the true
parameter for f0, equal to 2.036 · 1006. The boxes represent the lower and upper
quartile, and the line in the middle of each box represent the median.

α̂ and f̂0 such that their empirical variances also become small. The estimated
standard deviation increases when we use 2 cycles in each curve in MLE, but then
it decreases until six cycles are included in the MLE calculations. For further
inclusions, the estimated variance is stable.
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Figure 5.4: In the upper panel we see the estimated standard deviation of the 2500
estimates of α from the simulated dataset. The red dot is the value corresponding
to the Init approach. The black dots are the estimated standard deviation when
increasing the number of cycles used in the MLE, thus moving the start cycle
si away from the end cycle mi. The number of cycles used starts at 2 and are
increased to 10. In the lower panel we see the same calculations of the 2500
estimates of β from the simulated dataset.

Important features of the Init approach are as follows
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The Init approach finds good estimates for f0 with low bias and MSE. It
has an advantage in the simulated data because it uses additional correct
information about β in this simulated dataset, and therefore β̂ has zero
bias and MSE. But this approach may not have this advantage for real
data if the true β is not equal to 1.
It is a simple and fast method.

The Init approach used two fluorescence values from each curve ym and ym−1
and the mathematical formula from Equation (3.4). We have chosen m to be
the inflection point, but we can let m be other cycles. The comparative CT
method and its generalization uses the cycle corresponding to a chosen threshold.
Obviously this threshold can also be given variously values. We want to calculate
the estimated f0, where we vary the threshold and m on the simulated data. We
know that this data follow the model that Init approach uses, thus this method
should give better results. But for which cycle and to what degree is the Init
approach superior? What will happen if the thresholds are chosen unwisely? In
Figure 5.5, there are boxplot of the 7500 estimated f0 where m starts at cycle 17
and are moved up to cycle 25, which is the last cycle in the simulated dataset.
When m = 25, 24, 23 and 22, the estimates are concentrated around the red line,
the true value of f0. The standard deviation increases when m decreases. The f̂0
is closest to the true value when m is at the inflection point as the Init approach
uses. In Figure 5.5, the generalized comparative CT method is used to estimate
f0. First the threshold is placed at the fluorescence level corresponding to cycle
17 and then it is moved up stepwise corresponding to one cycle, until cycle 25. In
this simulated dataset this method works best when the threshold is placed such
that the CT values are close to 19. But it is not as good as the results from the
Init approach. We see that placing the threshold value lower or higher will give
inferior results.

We have tried these three methods on simulated dataset with true starting
parameters that corresponds to the Clusterin dilution-dataset, which will be in-
troduced and analyzed in Section 6.3. The results for the Tichopad approach, Init
approach and Sigma approach were consistent and concluded in the same manner
as for the Arabidopsis dilution-dataset. This work is not complete. For further
work, the bais, the MSE and the CV in simulated data with a wider span of true
parameters should be analyzed. At this point we choose to investigate all three
methods further on true data.
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Figure 5.5: Boxplot of 7500 estimated f0 from the simulated data. The Init
approach are used where m starts at cycle 17 (the boxplot to the left) and are
moved up to cycle 25 (the boxplot to the right). The red line is the true f0 value.

48



1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

Estimation of f_0

Shift in cycle

E
st

im
at

e 
of

 f_
0

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

Figure 5.6: Boxplot of 7500 estimated f0 from the simulated data. The generalized
comparative CT method are used where the threshold are placed at the fluores-
cence level corresponding to cycle 17 (the boxplot to the left) and are moved up
to the fluorescence level corresponding to cycle 25 (the boxplot to the right). The
red line is the true f0 value.
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Chapter 6

Analysis of dilution datasets

This chapter presents results from five competing methods, called the Tichopad
approach, the Sigma approach, the Init approach, the comparative CT method
and the generalized CT method. The results of interest are the estimates of the
starting concentration level f0 and the estimated ratios between dilution factors.
Two datasets will be analyzed, the Arabidopsis dilution-dataset and the Clusterin
dilution-dataset.

6.1 Overview of the five competitive methods
In Tables 6.1 and 6.2, we see an overview of the five methods. The Tichopad
approach, Sigma approach and Init approach are all variants of the Enzymological
method with cycle dependent efficiency. There is one less parameter in the Init
approach, since β = 1. The Tichopad approach and Sigma approach estimate
their five parameters using MLE. The Tichopad approach finds the starting cycle
si by identifying where the ground phase ends. The Sigma approach finds the
starting cycle si by estimating the standard deviation of the additive error and
finding the cut off when yji > σ̂ · 10 in each triplicate set. The Init approach finds
its four parameters from cycle mi and mi − 1 in three technical triplicates. The
comparative CT method and generalized CT method assume exponential growth
with constant efficiency equal to two, and the estimated f0 is found from one
point on the fluorescence curve corresponding to a threshold. In the generalized
CT method, we choose a threshold individually for each curve.

6.2 The Arabidopsis dilution-dataset
The Arabidopsis dilution-dataset was introduced in Chapter 4. There are four
sample types (GA, RA, GB and RB) and four dilution factors (1, 4, 16, 64). The
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Tichopad approach Sigma approach Init approach
Model Equation (3.4) Equation (3.4) Equation (3.3)
PCR efficiency Cycle dependent Cycle dependent Cycle dependent
Parameters in triplicates f01, f02, f03, α, β f01, f02, f03, α, β f01, f02, f03, α
Region on the curve y (ys(thicopad) : ym) (ys(sigma) : ym) ym−1, ym
Estimation MLE Equation (3.11) MLE Equation (3.11) Equation (3.4)

Table 6.1: Notation and important aspects for the three chosen methods based on
the Enzymological method.

comparative CT method generalized CT method
Model Exponential curve Exponential curve
PCR efficiency Constant = 2 Constant = 2
Parameters in triplicates f01, f02 and f03 f01, f02 and f03
Region on the curve y yi = threshold T yi = threshold Ti
Estimation f0i = T · 2−CTi f0i = Ti · 2−CTi

Table 6.2: Notation and important aspects for the two methods based on CT
values.

number of PCR curves is 48, where we have 16 sets of triplicates. In the Tichopad
approach, the Sigma approach and Init approach we have decided to analyze trip-
licate curves simultaneously, thus letting n = 3. Since the Tichopad approach, the
Sigma approach and Init approach are based on the same mathematical models,
we choose to use the Tichopad approach to conclude if n = 3 can be used in all
methods. In Section 4.5, we looked at the variation in estimated parameters α
and β from the Tichopad approach for each curve, to found that it was acceptable
within triplicate sets. In Section 4.4, we tested for normality in the residuals when
the parameters where found with n = 3 in the Tichopad approach. We concluded
that we could use n = 3 in the Tichopad approach. We will also use n = 3 in the
Init approach and in the Sigma approach.

6.2.1 Cycles used for each method
In Table 6.3, we see summary statistics on the intervals used in the five methods.
To see how the methods work the mean value over the triplicates is shown. The
number of cycles used in the MLE with the Tichopad approach is mostly seven
for the original concentrated samples and around ten for the samples with dilution
factor 64. The number of cycles used in the MLE with the Sigma approach is
mostly four for the original concentrated samples and around five for the samples
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with dilution factor 64. This increasing number of cycles in the more diluted
samples can be caused by the free enzymes becoming a limiting factor at a later
stage. The inflection point m is placed at later cycles for the smallest concentrated
samples. This is natural since the starting fluorescence level is lower. We see the
same trend for the CT values in the comparative CT method. From Figure 4.1, we
placed the threshold at fluorescence level four, and from linear interpretation we
found the corresponding CT values. The thresholds in the generalized CT method
are chosen to be where Ê has its value close to two, explained in Section 2.3. The
CT values in the comparative CT method are often one or two cycles later than
the CT values in the generalized CT method.

No of Cycles in No of Cycles in m CT (CT ,T ) at Ê
Thicopad-app. Sigma-app. (T=4)

GA.1 6.67 4.33 19.33 16.35 (15.33 , 2.22) at 1.81
GA.4 9 6 21 18.22 (17 , 1.84) at 1.91
GA.16 9.67 6.33 23.33 20.32 (19 , 1.73) at 1.92
GA.64 9.33 6 25.33 22.29 (19.67 , 1.21) at 1.95
RA.1 7.67 4.67 25 21.83 (20.67 , 2.03) at 1.84
RA.4 9.67 5 27 23.86 (21.67 , 0.99) at 1.93
RA.16 10.33 5.33 29 25.74 (24.33 , 1.83) at 1.92
RA.64 9.67 5 31 27.8 (25.67 , 1.04) at 1.95
GB.1 9.67 4.67 19.67 16.37 (15.33 , 2.22) at 1.79
GB.4 9.67 6.33 21.33 18.36 (16.67 , 1.48) at 1.89
GB.16 9 5.67 23.33 20.28 (18 , 1.07) at 1.93
GB.64 9.67 6.67 25.33 22.33 (19.33 , 0.62) at 1.96
RB.1 7.67 4.67 25 21.51 (20.33 , 2.12) at 1.81
RB.4 9.33 5.67 26.67 23.49 (22 , 1.54) at 1.92
RB.16 10.67 5 28.33 25.36 (23.33 , 1.35) at 1.94
RB.64 11.67 5 30.67 27.43 (25 , 0.81) at 1.97

Table 6.3: Summary statistics for the triplicates of fluorescence curves used in the
calculations with the five methods. All values are means over triplicates curves.
The names in the left column denote the different sample types and dilutions. In
the first column we see the number of cycles used in the MLE with the Tichopad
approach, the second column we see the number of cycles used in the Sigma ap-
proach, the third column shows the inflection point. The fourth column presents
the CT values from the comparative CT method with thresholds equal to 4 for all
curves. In the last column we see the CT values corresponding to the threshold
and estimated efficiency from the generalized CT method where each curve have
individual thresholds.
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6.2.2 The f0 estimates
In Figure 6.1, we see all 48 log transformed f̂0’s. The five methods have different
colors, Tichopad approach (black), Sigma approach (red), Init approach (blue),
comparative CT method (green) and generalized CT method (yellow). On the
x-axis we find the four sample types (GA, RA, GB and RB). We see that the
estimated f0 from the five methods are very similar.

In Figure 6.2, we see six Mean-Difference plots of all 48 estimates of log2(f̂0)
so we pairwise can compare methods. In each panel, the x-axis is the mean value
(log(f̂0)A + log(f̂0)B)/2 from method A and B, and the y-axis is the difference
(log(f̂0)A− log(f̂0)B) within the same two methods A and B. If the methods give
the same estimates, the difference are zero and they will follow the red line. If
the difference is negative, then (log(f̂0)A < log(f̂0)B) and method B gives higher
estimates of f0 than method A. The mean values (log(f̂0)A + log(f̂0)B)/2 are
negative since the fluorescence levels are less than one. The estimated starting
fluorescence levels from the Tichopad approach and the Sigma approach are very
similar so we only compare the other methods to the Sigma approach in Figure 6.2.
We see that the Sigma approach, the Init approach and the generalized CT method
give more similar results, than the other comparison methods. This indicates that
the model in the Enzymological method on the interval (y0, . . . , ym) fits the true
fluorescence curves as good as the exponential model on the interval (y0, . . . , yCT )
with CT value found from the generalized CT method. In the lower panel to the
right, we see that the trend is that f̂0

CT
< f̂0

genCT . In the comparative CT method,
the T = 4 and for the generalized CT method every threshold is places lower than
4. If the efficiency at T = 4 were to be close to two, these two methods would
have given more similar results. If the efficiency, however, has decreased from
two where the CT values are placed, the comparative CT method will give lower
estimates of f0 than the generalized CT method. This is because the comparative
CT method assumes higher amplification from yCT and back to the first cycle.
This may indicate that the threshold in the comparative CT method is placed too
high. All in all the estimated f0 from the five methods are very similar.

To evaluate the five methods, we will perform linear regression for each method
separately. The response is log2(f̂0i)l. At significance level 0.05 we find, with
biological motivation, a significant model

log2(f̂0i)l = xli · ηli + δli (6.1)

for triplicate i and sample l, where 1 < i < 3 and 1 < l < 16. The regression
coefficients are ηli = [η0, ηST2, ηST3, ηST4, ηD2, ηD3, ηD4] for sample typeRA (ST2),
GB (ST3) and RB (ST4) and dilutions 4 (D2), 16 (D3) and 64 (D4), where η0 is
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the intercept. The xli is a vector of 0’s and 1’s denoting the sample type and the
dilution of each sample.

To investigate if the triplicate observations can be regarded as independent, we
fit a linear mixed effects model using each of the 16 combinations of sample type
and dilution as a random variable. We then calculated the intraclass correlation
(ICC), which estimates the correlations between two observations from the same
triplicate. The ICC was of order 10−5 for all methods. The intraclass correlation is
small for all methods so we choose to use the linear regression model in the further
analyses.

The Anderson-Darling test shows that we can accept the hypothesis of nor-
mally distributed δ’s in model (6.1). We assume the error term δ is distributed as
N(0, ν2). We find the estimated variance ν2 by the mean squared error for each
method to be lowest for the comparative CT method (0.0395). The next methods
are the Init approach (0.0410), the Sigma approach (0.0420), the Tichopad ap-
proach (0.0432) and the generalized CT method (0.0442). This means the model
in Equation (6.1) best explains the estimates from the comparative CT method,
but there are not large differences between the methods.

6.2.3 Estimation of the ratio between dilution factors
The true value of the starting fluorescence levels are unknown, but we do know the
value of the ratios between dilution factors. In Table 6.4, we see the estimated log
transformed ratios calculated from the mean value of the triplicates, as explained
in Section 4.5. We see that all the methods give estimates close to the true value.
In most cases, the generalized CT method and the Init approach have lower bias.

Tichopad Sigma Init comparativ CT generalized CT
log(4/1)=2 2.08(0.059) 1.979(0.062) 2.032(0.067) 1.969(0.07) 2.016(0.045)
log(16/1)=4 4.022(0.1) 3.919(0.019) 3.99(0.095) 3.911(0.049) 3.956(0.072)
log(64/1)=6 6.067(0.086) 5.95(0.021) 6.035(0.053) 5.95(0.023) 5.975(0.026)
log(16/4)=2 1.942(0.147) 1.94(0.077) 1.957(0.128) 1.943(0.107) 1.94(0.105)
log(64/4)=4 3.987(0.119) 3.971(0.042) 4.003(0.094) 3.981(0.066) 3.959(0.036)
log(64/16)=2 3.031(1.985) 3.012(1.963) 3.054(2.004) 3.002(1.945) 2.987(1.984)

Table 6.4: Results for the estimated ratios between dilutions in the Arabidopsis
dilution-dataset with all five methods. The calculations of the mean value and the
standard deviation in paranthesis, is explained in Section 4.5.

We also estimate the ratios between dilution factors by calculating the contrasts
between the dilution factors from the linear regression model in Equation (6.1).
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When estimating a ratio, we look at the starting fluorescence level in a sample
from the same gene and group, but with different dilutions. For instance, the
estimated log transformed ratio between dilution factor number two and dilution
factor number four is

̂log2(f̂0)dil4 − ̂log2(f̂0)dil64 = η̂0 + η̂D2 − (η̂0 + η̂D4)

with true value

log2(f0/4)− log2(f0/64) = log2(64/4) = 4.

Since we have no interactions between sample type and dilution, this estimate
is the same for all sample types.

These estimated ratios from the Arabidopsis dilution-dataset for each of the
five methods are found in the five Tables 6.5 (Tichopad approach), 6.6 (Sigma
approach), 6.7 (Init approach), 6.8 (comparative CT method) and 6.9 (generalized
CT method). We perform a hypothesis test that the ratio between dilution factors
are equal to their true value. After using a two sided t-test we get a p-value larger
than significance level 0.05, and the true bias (difference between the estimated
ratios minus the true value) equal to zero lies within the 95% confidence interval
for all methods. For every method, we accept the hypothesis that the ratio is equal
to its true value.

True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 2.00 2.07 0.08 0.88 41.00 0.39 -0.10 0.25
D1-D3 4.00 4.03 0.08 0.33 41.00 0.74 -0.14 0.20
D1-D4 6.00 6.07 0.08 0.79 41.00 0.44 -0.10 0.24
D2-D3 2.00 1.95 0.08 -0.54 41.00 0.59 -0.22 0.13
D2-D4 4.00 3.99 0.08 -0.09 41.00 0.93 -0.18 0.16
D3-D4 2.00 2.04 0.08 0.46 41.00 0.65 -0.13 0.21

Table 6.5: Estimated ratios between dilutions in the Arabidopsis dilution-dataset
from the Tichopad approach with a 95% confidence interval.

In Figure 6.3, we see a boxplot of all estimated ratios between dilution factors
minus their true value. It is hard to decide which method is the best.
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True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 2.00 2.03 0.08 0.32 41.00 0.75 -0.14 0.20
D1-D3 4.00 4.00 0.08 -0.05 41.00 0.96 -0.17 0.16
D1-D4 6.00 6.04 0.08 0.42 41.00 0.67 -0.13 0.20
D2-D3 2.00 1.97 0.08 -0.37 41.00 0.71 -0.20 0.14
D2-D4 4.00 4.01 0.08 0.10 41.00 0.92 -0.16 0.18
D3-D4 2.00 2.04 0.08 0.48 41.00 0.64 -0.13 0.21

Table 6.6: Estimated ratios between dilutions in the Arabidopsis dilution-dataset
from the Sigma approach with a 95% confidence interval.

True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 2.00 1.97 0.08 -0.31 41.00 0.76 -0.19 0.14
D1-D3 4.00 3.93 0.08 -0.90 41.00 0.38 -0.24 0.09
D1-D4 6.00 5.95 0.08 -0.60 41.00 0.55 -0.22 0.12
D2-D3 2.00 1.95 0.08 -0.58 41.00 0.56 -0.22 0.12
D2-D4 4.00 3.98 0.08 -0.28 41.00 0.78 -0.19 0.14
D3-D4 2.00 2.02 0.08 0.30 41.00 0.77 -0.14 0.19

Table 6.7: Estimated ratios between dilutions in the Arabidopsis dilution-dataset
from the Init approach with a 95% confidence interval.

True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 2.00 1.97 0.08 -0.39 41.00 0.70 -0.20 0.13
D1-D3 4.00 3.91 0.08 -1.09 41.00 0.28 -0.25 0.08
D1-D4 6.00 5.95 0.08 -0.62 41.00 0.54 -0.21 0.11
D2-D3 2.00 1.94 0.08 -0.71 41.00 0.48 -0.22 0.11
D2-D4 4.00 3.98 0.08 -0.23 41.00 0.82 -0.18 0.15
D3-D4 2.00 2.04 0.08 0.48 41.00 0.64 -0.13 0.20

Table 6.8: Estimated ratios between dilutions in the Arabidopsis dilution-dataset
from the comparative CT method with a 95% confidence interval.
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Figure 6.1: Plot of log2(f̂0) for the Tichopad approach (black circles), the Sigma
approach (red circles), the Init approach (blue circles), the comparative CT method
(green squares) and the generalized CT method (yellow squares). On the x-axis
are the four sample types (GA, RA, GB and RB) organized by increasing dilution
factor.
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Figure 6.2: Mean-Difference plots of all 48 estimates of log(f̂0) for comparing
pairs of methods. In each panel we see on the x-axis the mean value (log(f̂0)A +
log(f̂0)B)/2 from a method A and B, and on the y-axis we see the difference
(log(f̂0)A − log(f̂0)B) from the same two methods A and B. If the methods give
the same estimates they will follow the red line.
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True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 2.00 2.01 0.09 0.07 41.00 0.94 -0.17 0.18
D1-D3 4.00 3.96 0.09 -0.48 41.00 0.63 -0.21 0.13
D1-D4 6.00 5.97 0.09 -0.31 41.00 0.76 -0.20 0.15
D2-D3 2.00 1.95 0.09 -0.55 41.00 0.58 -0.22 0.13
D2-D4 4.00 3.97 0.09 -0.38 41.00 0.70 -0.21 0.14
D3-D4 2.00 2.01 0.09 0.17 41.00 0.87 -0.16 0.19

Table 6.9: Estimated ratios between dilutions in the Arabidopsis dilution-dataset
from the generalized CT method with a 95% confidence interval.

59



thicopad sigma init CT genCT

−
0.

05
0.

00
0.

05

Figure 6.3: Boxplot over all estimates of the ratios minus the true value. Each
boxplot is based on six estimated ratios between dilution factors.
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6.3 The Clusterin dilution-dataset

6.3.1 Description of the dataset
In the Clusterin dilution-dataset, the experiments are performed on one gene called
Clusterin. In the PCR runs, four different primer pairs were used called Clu, Clu1,
Clu2 and Clu3, which we will call sample types. The sample types are diluted with
dilution factors 1, 10, 100, 1000 and 10000. In Table 6.10, we see an overview of
the sample types and the dilutions. There are technical triplicates for each of the
sample types and dilution combinations. In total, there are four sample type times
five dilutions time three replicates, which is equal to 60 fluorescence curves.

Dilutions
Sample type 1:1 1:10 1:100 1:1000 1:10000

Clu fClu0 fClu0 /10 fClu0 /100 fClu0 /1000 fClu0 /10000
Clu1 fClu1

0 fClu1
0 /10 fClu1

0 /100 fClu1
0 /1000 fClu1

0 /10000
Clu2 fClu2

0 fClu2
0 /10 fClu2

0 /100 fClu2
0 /1000 fClu2

0 /10000
Clu3 fClu3

0 fClu3
0 /10 fClu3

0 /100 fClu3
0 /1000 fClu3

0 /10000

Table 6.10: Overview of the different starting fluorescence levels organized in
groups and dilution factors. Technical replicates are available for each of the
20 starting fluorescence levels.

All 60 baseline corrected graphs are shown in Figure 6.4. We use the baseline
correction, trend, which looks for a increasing or decreasing trend in the early
cycles. It is a linear trend, which is subtract from the fluorescence curve. In the
Clusterin dilution-dataset, the slope of the linear curve is between ±20. Compared
to the order of magnitude for the fluorescence level at 104, this trend is relatively
small.

6.3.2 Can we evaluate sets of technical triplicates?
Before we use the Tichopad approach, Sigma approach and Init approach we have
to decide if we can let n = 3, meaning if we can combine triplicate curves. Since
the Tichopad approach, the Sigma approach and Init approach is based on the
same mathematical models, we choose to use the Tichopad approach to conclude
if we can use n = 3 in all methods. First we perform separate estimation for all
curves to look at the variation in α̂ og β̂ within the triplicate sets. Secondly, we
look at the normality of the residuals when n = 3.

A plot of the log transformed α̂ is found in Figure 6.5. They are shown on the
log scale because the estimates are very different between dilutions. The values
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for α̂ lies between 104 = 10000 and 106 = 1000000, which are substantially higher
than in the Clusterin dilution-dataset. We see that within some of the triplicates
the α̂ has a larger variance, but these triplicate sets are in minority. In Figure
6.6, we see a plot of the β̂’s. These estimates are concentrated around one. This
indicates that perhaps β should be set equal to one. From the two plots, it looks
like we might be able to evaluate the sets of technical triplicates together.

Next we check for normality for cycle 1 < j < m in all curves when we use
n = 3. Thus we find the 60 sets of residuals when α and β are estimated for each
triplicate. Are the estimated ε normally distributed? From the Anderson-Darling
test we find that for 27 curves the hypothesis of normality were accepted. This is
less than half of the curves. In Figure 6.7 and 6.8, we see the QQ plot of the 18
curves with the smallest p-value within the H0-hypotheses that were rejected. We
choose to evaluate this as not substantially deviation from normality and conclude
that we can evaluate sets of technical triplicates in the estimation of f0.

6.3.3 Cycles used for each method
In Table 6.11, we see summary statistics for the cycles used for each method.
We see the same trend as for the Arabidopsis dilution-dataset in Table 6.3. The
threshold value for the comparative CT method were set by the biologist at 1275
for all curves.

6.3.4 The f0 estimates
In Figure 6.1, we see a plot of all 60 log transformed f̂0’s. We observe that the
three methods based on the Enzymological method (circles in color black, red and
blue) give estimates with higher value than the two methods based on CT values
(squares in color green and yellow).

The estimated f0’s from the five methods are plotted in six Mean-Difference
plots in Figure 6.10. In each panel, the x-axis show the mean value (log(f̂0)A +
log(f̂0)B)/2 from a method A and B, and the y-axis is the difference (log(f̂0)A −
log(f̂0)B) within the same method A and B. If the methods give the same estimates
they will follow the red line. If the difference is negative, then (log(f̂0)A < log(f̂0)B)
thus method B gives higher estimates of f0 than method A. The mean values
(log(f̂0)A + log(f̂0)B)/2 are negative since the fluorescence levels are less than one.
The estimated starting fluorescence levels from the Tichopad approach and the
Sigma approach are very similar, so we only compare the other methods to the
Sigma approach in Figure 6.10.

The estimated f0 from the comparative CT method and the generalized CT
method are very similar. In this dataset, the threshold values for the generalized
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CT method are spread around T = 1275, which is the threshold value for the com-
parative CT method. We see that the Sigma approach and the Init approach give
higher estimates of f0, than both the comparative CT method and the generalized
CT method. If the efficiency has decreased where the thresholds are placed for
the two CT methods, these two methods will give lower estimates of f0. Despite
placing the threshold where Ê is close to 2, the generalized CT method find esti-
mates of f0 with lower value than the estimates from the three methods based on
the Enzymological method.

Next we perform a linear regression analysis with log10(f̂oi)l as response sep-
arately for each of the five methods. With biological motivation, we find the
significant model at significance level 0.05

log10(f̂0i)l = xli · ηli + ul + δli (6.2)

for triplicate i and sample l, where 1 < i < 3 and 1 < l < 20. The regression
coefficients are ηli = [η0, ηST2, ηST3, ηST4, ηD2, ηD3, ηD4, ηD5] for sample type Dil1
(ST2), Dil2 (ST3) and Dil3 (ST4) and dilutions 10 (D2), 100 (D3), 1000 (D4) and
10000 (D5), where η0 is the intercept. The xli is a vector of 0’s and 1’s denoting the
sample type and the dilution of each sample. The ul is the random effect caused
by the correlation between the technical triplicates.

In this dataset, we find a higher correlation within a triplicate set for some
methods. The intraclass correlation using data from the comparative CT method
is 9.489 · 10−10 and in generalized CT method 8.969 · 10−10. These two methods
do not find a high correlation between the estimated starting fluorescence levels
within triplicate sets. With the Tichopad approach we find intraclass correlation
equal to 0.0987, in the Init approach 0.4959 and in the Sigma approach 0.4984.
In these three methods, we have parameter α and β with the same value within
triplicate sets. This can cause the higher intraclass correlation in the versions of
the Enzymological method compared to the CT methods. We choose to use the
mixed effects model for all of the methods to be able to compare them.

From the Anderson-Darling test, we can accept the hypothesis that all of the
δ are normally distributed. We assume that δ are distributed as N(0, ν2). We find
the estimated variances ν2 to be lowest for the CT with value 6.2840 ·10−3 and for
the generalized CT method with value 5.753 · 10−3. The next following methods
are the Sigma approach (0.0107) , the Tichopad approach (0.0114) and the Init
approach (0.0132).

6.3.5 Estimation of the ratio between dilution factors
The true value of each f0 is unknown, but we do know the true ratios within
dilution series. We estimate the log10 transform of each estimated ratio. When we
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estimate the ratios, we will look at ten ratio combinations as shown in Table 6.12.
In Table 6.13, we see the log transformed estimated ratios calculated from

the mean value of the triplicates, as explained in Section 4.5. In most cases the
Tichopad approach and the Sigma approach have the lowest bias.

Next we estimate the ratios by calculating the contrast between the dilution
factors from the linear mixed effects regression model, where all 60 curves are
taken into account simultaneously. The estimated log transformed ratios from
the Clusterin dilution-dataset for each of the five methods is found in the five
Tables 6.14 (Tichopad approach), 6.15 (Sigma approach), 6.16 (Init approach),
6.17 (comparative CT method) and 6.18 (generalized CT method). We perform
a hypothesis test with null hypothesis that the true ratios between the dilution
factors are equal to their true known value. From a two sided t-test, we find that
four out ten p-values in the Sigma approach and the Init approach are smaller than
significance level 0.05. We reject the null hypothesis that the ratios are equal to
their true value. All four contrasts include the dilution factor 10 000, D5. In the
Tichopad approach these same four contrast and in addition the contrast D2−D4
gave rejection of the null hypothesis. In the two CT methods, eight out of ten null
hypotheses were rejected.
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Figure 6.4: The observed fluorescence levels in the Clusterin dilution-dataset. The
four different sample types (Clu, Clu1, Clu2 and Clu3) are plotted in separate
plots with different colors. In the upper left we have Clu, upper right Clu1, lower
left Clu2 and lover right Clu3. The curve to the left in each panel is the original
concentration. The second curve from the right has dilution factor 10, then the
curve with dilution factor 100 and 1000 are plotted and last the curve with dilution
factor 10000 to the far right. This is the fluorescence level after baseline correction.
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Figure 6.5: Estimation of α for each individual curve in the Clusterin dilution-
dataset, in all 3 × 20 estimations. The estimates are organized into groups ac-
cording to type of gene and sample group and dilutions. Black circles represent
estimates for Clu, red circles represent estimates for Clu1, blue squares represent
estimates for Clu2 and green squares represent estimates for Clu3. In each group
the x-axis represents the dilutions factor in the order 1, 10, 100, 1000 and 10000.
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Figure 6.6: Estimation of β for each individual curve in the Clusterin dilution-
dataset, in all 3 × 20 estimations. The explanation of the plot is found in Figure
6.5
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Figure 6.7: The QQ plot for 9 of the 17 sets of residuals, where the hypothesis of
normally distributed error was rejected.
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Figure 6.8: The QQ plot for the remaining 8 of the 17 sets of residuals, where the
hypothesis of normally distributed error was rejected.
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No of Cycles in No of Cycles in m CT (CT ,T ) at Ê
Thicopad-app. Sigma-app. (T=1275)

Clu1:1 8 3.33 21 16.23 (16.67, 1807) at 1.86
Clu1:10 8.67 3 24 19.1 (19, 1207) at 1.93
Clu1:100 9 3.33 27.67 22.97 (23, 1394) at 1.9
Clu1:1000 13.33 4 33 26.6 (26, 970) at 1.91
Clu1:10000 7 2.67 33.67 30.37 (29.67, 882) at 1.93
Clu11:1 7.67 3 21 16.2 (16, 1288) at 1.89
Clu11:10 8.33 3.33 24.33 19.23 (19.33, 1454) at 1.95
Clu11:100 8.67 3.33 27.33 22.47 (22, 1073) at 1.93
Clu11:1000 7.33 3.33 30.33 26.43 (26, 1158) at 1.92
Clu11:10000 9.67 3.67 36.33 30.23 (29.67, 888) at 1.92
Clu21:1 7.33 3 20 14.83 (15, 1645) at 1.9
Clu21:10 7.67 3.33 22.33 17.93 (18, 1364) at 1.96
Clu21:100 9 3.67 26.67 21.27 (21.67, 1761) at 1.89
Clu21:1000 9.67 2.33 32.33 25.23 (25.67, 1824) at 1.9
Clu21:10000 8.33 3 33 28.67 (28.67, 1311) at 1.93
Clu31:1 7.33 3 20.67 15.7 (16, 1622) at 1.93
Clu31:10 8.33 3.67 23.67 18.43 (18.33, 1246) at 1.94
Clu31:100 9 3.33 27.33 22.03 (22, 1256) at 1.96
Clu31:1000 8.67 3 30 25.77 (26, 1715) at 1.92
Clu31:10000 9 3.33 33.67 29.3 (29.33, 1405) at 1.92

Table 6.11: Summary statistics for the triplicates of fluorescence curves used in
the calculations with the five methods. All values are means over triplicates curves.
The names in the left column denote the different sample types and dilutions. In
the first column we see the number of cycles used in the MLE with the Tichopad
approach, the second column we see the number of cycles used in the Sigma ap-
proach, the third column shows the inflection point. The fourth column presents
the CT values from the comparative CT method with thresholds equal to 1275 for
all curves. In the last column we see the CT values corresponding to the threshold
and estimated efficiency from the generalized CT method where each curve have
individual thresholds.
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Figure 6.10: Mean-Difference plots of all 48 estimates of log(f̂0) for comparing
pairs of methods. In each panel we see on the x-axis the mean value (log(f̂0)A +
log(f̂0)B)/2 from a method A and B, and on the y-axis we see the difference
(log(f̂0)A − log(f̂0)B) from the same method A and B. If the methods give the
same estimates they will follow the red line.
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ratio log transformed true value
fDil10 /fDil10

0 log10(f0)− log10(f0/10) = log1010 = 1
fDil10 /fDil100

0 log10(f0)− log10(f0/100) = log10100 = 2
fDil10 /fDil1000

0 log10(f0)− log10(f0/1000) = log101000 = 3
fDil10 /fDil10000

0 log10(f0)− log10(f0/10000) = log1010000 = 4
fDil10

0 /fDil100
0 log10(f0/10)− log10(f0/100) = log1010 = 1

fDil10
0 /fDil1000

0 log10(f0/10)− log10(f0/1000) = log10100 = 2
fDil10

0 /fDil10000
0 log10(f0/10)− log10(f0/10000) = log101000 = 3

fDil100
0 /fDil1000

0 log10(f0/100)− log100(f0/1000) = log1010 = 1
fDil100

0 /fDil10000
0 log10(f0/100)− log100(f0/10000) = log10100 = 2

fDil1000
0 /fDil10000

0 log10(f0/1000)− log100(f0/10000) = log1010 = 1

Table 6.12: Ten ratios between five dilutions 1, 10, 100, 1000 and 10000.

True value Tichopad Sigma Init comparativ CT generalized CT
1 0.905(0.035) 0.913(0.039) 0.899(0.033) 0.324(0.713) 0.313(0.695)
2 1.95(0.052) 1.965(0.047) 1.953(0.09) 0.474(0.676) 0.486(0.662)
3 3.028(0.124) 2.995(0.234) 2.966(0.255) 1.008(0.178) 1.014(0.158)
4 4.189(0.074) 4.199(0.078) 4.242(0.1) 1.347(0.71) 1.364(0.702)
1 1.045(0.055) 1.051(0.055) 1.054(0.083) 0.151(0.511) 0.173(0.516)
2 2.123(0.152) 2.081(0.272) 2.068(0.285) 0.685(0.651) 0.701(0.649)
3 3.283(0.071) 3.286(0.078) 3.344(0.098) 1.024(0.209) 1.05(0.207)
1 1.078(0.132) 1.03(0.243) 1.014(0.267) 0.534(0.513) 0.528(0.519)
2 2.238(0.025) 2.234(0.033) 2.29(0.049) 0.873(0.32) 0.877(0.334)
1 1.161(0.139) 1.204(0.258) 1.276(0.274) 0.339(0.602) 0.35(0.613)

Table 6.13: Results for the estimated ratios in the Clusterin dilution-dataset with
all five methods. The calculations of the mean value and the sample standard
deviation in paranthesis is explained in Section 4.5.
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True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 1.0000 0.9034 0.0503 -1.9211 12.0000 0.0788 -0.2061 0.0130
D1-D3 2.0000 1.9602 0.0503 -0.7927 12.0000 0.4433 -0.1494 0.0697
D1-D4 3.0000 3.0301 0.0503 0.5995 12.0000 0.5600 -0.0794 0.1397
D1-D5 4.0000 4.2049 0.0503 4.0769 12.0000 0.0015 0.0954 0.3145
D2-D3 1.0000 1.0567 0.0503 1.1284 12.0000 0.2812 -0.0528 0.1662
D2-D4 2.0000 2.1267 0.0503 2.5206 12.0000 0.0269 0.0172 0.2362
D2-D5 3.0000 3.3015 0.0503 5.9980 12.0000 0.0001 0.1920 0.4110
D3-D4 1.0000 1.0700 0.0503 1.3923 12.0000 0.1891 -0.0395 0.1795
D3-D5 2.0000 2.2448 0.0503 4.8696 12.0000 0.0004 0.1353 0.3543
D4-D5 1.0000 1.1748 0.0503 3.4774 12.0000 0.0046 0.0653 0.2843

Table 6.14: Estimated ratios between dilutions in the Clusterin dilution-dataset
from the Tichopad approach with a 95% confidence interval.

True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 1.0000 0.9118 0.0839 -1.0513 12.0000 0.3138 -0.2711 0.0946
D1-D3 2.0000 1.9742 0.0839 -0.3077 12.0000 0.7636 -0.2087 0.1571
D1-D4 3.0000 2.9950 0.0839 -0.0593 12.0000 0.9537 -0.1879 0.1779
D1-D5 4.0000 4.2148 0.0839 2.5589 12.0000 0.0251 0.0319 0.3977
D2-D3 1.0000 1.0624 0.0839 0.7436 12.0000 0.4714 -0.1205 0.2453
D2-D4 2.0000 2.0833 0.0839 0.9920 12.0000 0.3408 -0.0996 0.2662
D2-D5 3.0000 3.3030 0.0839 3.6102 12.0000 0.0036 0.1202 0.4859
D3-D4 1.0000 1.0209 0.0839 0.2484 12.0000 0.8080 -0.1620 0.2037
D3-D5 2.0000 2.2406 0.0839 2.8666 12.0000 0.0142 0.0577 0.4235
D4-D5 1.0000 1.2198 0.0839 2.6182 12.0000 0.0225 0.0369 0.4027

Table 6.15: Estimated ratios between dilutions in the Clusterin dilution-dataset
from the Sigma approach with a 95% confidence interval.

The dilutions factor 10000 appears to be difficult to estimate for all methods.
After excluding this highest dilution, we see that the three methods based on the
Enzymological method give estimates of the remaining six ratios with lower bias.
In Figure 6.11, we see a boxplot of the remaining six estimated ratios minus the
true value. The bias in the three methods based on Enzymological method is closer
to the zero and has lower variation than the CT based methods.
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True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 1.0000 0.8960 0.0936 -1.1107 12.0000 0.2885 -0.3080 0.1000
D1-D3 2.0000 1.9642 0.0936 -0.3823 12.0000 0.7090 -0.2398 0.1682
D1-D4 3.0000 2.9660 0.0936 -0.3632 12.0000 0.7227 -0.2380 0.1700
D1-D5 4.0000 4.2573 0.0936 2.7477 12.0000 0.0177 0.0533 0.4613
D2-D3 1.0000 1.0682 0.0936 0.7284 12.0000 0.4803 -0.1358 0.2722
D2-D4 2.0000 2.0700 0.0936 0.7474 12.0000 0.4692 -0.1340 0.2740
D2-D5 3.0000 3.3612 0.0936 3.8584 12.0000 0.0023 0.1573 0.5652
D3-D4 1.0000 1.0018 0.0936 0.0190 12.0000 0.9851 -0.2022 0.2058
D3-D5 2.0000 2.2930 0.0936 3.1300 12.0000 0.0087 0.0891 0.4970
D4-D5 1.0000 1.2913 0.0936 3.1109 12.0000 0.0090 0.0873 0.4953

Table 6.16: Estimated ratios between dilutions in the Clusterin dilution-dataset
from the Init approach with a 95% confidence interval.

True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 1.0000 0.8830 0.0324 -3.6146 12.0000 0.0035 -0.1875 -0.0465
D1-D3 2.0000 1.9391 0.0324 -1.8807 12.0000 0.0845 -0.1314 0.0096
D1-D4 3.0000 3.0906 0.0324 2.7987 12.0000 0.0161 0.0201 0.1611
D1-D5 4.0000 4.1843 0.0324 5.6953 12.0000 0.0001 0.1138 0.2548
D2-D3 1.0000 1.0561 0.0324 1.7339 12.0000 0.1085 -0.0144 0.1266
D2-D4 2.0000 2.2076 0.0324 6.4133 12.0000 0.0000 0.1370 0.2781
D2-D5 3.0000 3.3013 0.0324 9.3100 12.0000 0.0000 0.2308 0.3718
D3-D4 1.0000 1.1514 0.0324 4.6794 12.0000 0.0005 0.0809 0.2220
D3-D5 2.0000 2.2452 0.0324 7.5761 12.0000 0.0000 0.1747 0.3157
D4-D5 1.0000 1.0937 0.0324 2.8966 12.0000 0.0134 0.0232 0.1643

Table 6.17: Estimated ratios between dilutions in the Clusterin dilution-dataset
from the comparative CT method with a 95% confidence interval.

75



True Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
D1-D2 1.0000 0.8951 0.0310 -3.3863 12.0000 0.0054 -0.1723 -0.0374
D1-D3 2.0000 1.9503 0.0310 -1.6055 12.0000 0.1344 -0.1172 0.0178
D1-D4 3.0000 3.0933 0.0310 3.0118 12.0000 0.0108 0.0258 0.1607
D1-D5 4.0000 4.1969 0.0310 6.3602 12.0000 0.0000 0.1295 0.2644
D2-D3 1.0000 1.0551 0.0310 1.7809 12.0000 0.1002 -0.0123 0.1226
D2-D4 2.0000 2.1981 0.0310 6.3981 12.0000 0.0000 0.1307 0.2656
D2-D5 3.0000 3.3018 0.0310 9.7466 12.0000 0.0000 0.2343 0.3693
D3-D4 1.0000 1.1430 0.0310 4.6173 12.0000 0.0006 0.0755 0.2104
D3-D5 2.0000 2.2467 0.0310 7.9657 12.0000 0.0000 0.1792 0.3141
D4-D5 1.0000 1.1037 0.0310 3.3484 12.0000 0.0058 0.0362 0.1712

Table 6.18: Estimated ratios between dilutions in the Clusterin dilution-dataset
from the generalized CT method with a 95% confidence interval.
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Figure 6.11: Boxplot of estimated ratios minus the true value, thus the bias.
Dilution D5 are not included, so there are 6 estimates for each of the five methods.
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Chapter 7

Discussion

For the comparison of the different methods, two datasets are analyzed. The Ara-
bidopsis dilution-dataset have optimized primers and are a study of plants. The
Clusterin dilution-dataset is a study of a cell line, where a range of primers are used
with different amplification abilities. The values of the estimated parameters f0
have different order of magnitude, which follows from the different type of technol-
ogy used. The observed fluorescence levels in the Arabidopsis dilution-dataset have
a maximum value at 50 in the last cycles, and in the Clusterin dilution-dataset, the
maximum fluorescence levels are 30000. In the Arabidopsis dilution-dataset, the
most diluted samples have dilution factor 64 as oppose to 10000 in the Clusterin
dilution-dataset. Despite these differences and the additional challenge with the
not perfect amplification rate in the Clusterin dilution-dataset, the Enzymological
method gives good results for both datasets.

We use two regression models in the analysis of the estimated starting fluores-
cence levels from the two datasets. In the Arabidopsis dilution-dataset, a linear
regression is used. In the Clusterin dilution-dataset we use a linear mixed effects
regression model, which takes into account the correlation between technical trip-
licates. It seems appropriate, that a mixed effects model is used when f̂0 is based
on the Enzymological method. This method use common α̂ and β̂ for triplicates
sets, which can lead to higher correlating between the f̂0i within a triplicate set.
However the mixed effects model was only found to be needed for the Clusterin
dilution-dataset, and not for the Arabidopsis dilution-dataset. An explanation
could be that the variance between all 60 estimates of f0 is larger in the Clusterin
dilution-dataset, because of a higher dilution factor, compared to the Arabidopsis
dilution-dataset.
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7.0.1 Estimation of f0 and ratio between dilution factors
The estimates of f0 and ratio are similar for the five methods in the Arabidop-
sis dilution-dataset. However, in the Clusterin dilution-dataset, there is a larger
difference between the CT methods and the three methods based on Enzymo-
logical method. Why is this difference greater in the Clusterin dilution-dataset?
An important difference between the CT methods and the methods based on the
Enzymological method is the assumption of the efficiency.

If the efficiency over the curves is much lower than two, the difference between
Enzymological method and the CT method will be larger, than if the efficiency
is close to two. What are the efficiencies in the two datasets? We compare the
estimated efficiencies at the inflection points for both datasets. When estimating
E at the inflection point we will compare the same part of the curves for both
datasets, where there are little relative noise. The estimated efficiencies at the
inflection point for the Arabidopsis dilution-dataset are plotted in Figure 7.1. The
mean value is the red line at 1.474. The estimated efficiencies at the inflection point
for the Clusterin dilution-dataset are plotted in Figure 7.2, with mean value 1.317.
This is a strong indication that the efficiencies over the curves are lower in the
Clusterin dilution-dataset than in the Arabidopsis dilution-dataset. This great
difference in the efficiency at the inflection point might be the main reason the
Enzymological method and the CT methods perform differently in the Clusterin
dilution-dataset.

7.0.2 Baseline correction
Another aspect we have not emphasized, is the fact that there are used two meth-
ods of baseline corrections. In the Arabidopsis dilution-dataset, one constant value
for each cycle is subtracted from the observed fluorescence curve. We calculate this
value as suggested in Jørstad et al. (2008) by ranking the observed fluorescence
level according to numerical value, and then finding the window of 5 consecutive
data points having the smallest rank sum. In the Clusterin dilution-dataset, a
cycle dependent value is subtracted from the observed fluorescence curve. This
baseline correction is called trend and is widely used in commercial software for
PCR analysis. In the PCR research field, baseline correction is suspected to have
a great influence on the results. When comparing the five estimation methods
within a dataset, the same baseline correction was used, thus should the compari-
son between the five estimating methods still be valid.

In the analysis of the estimated efficiencies, we compared the Enzymological
method in the two datasets. The influence from the baseline correction is un-
known. With no baseline correction, the fluorescence levels are higher and the rel-
ative amplification is lower giving a smaller estimated efficiency. Without baseline
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Figure 7.1: Estimated efficiencies at the inflection point for the 48 curves in the
Arabidopsis dilution-dataset. The red line is the mean value.
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Figure 7.2: Estimated efficiencies at the inflection point for the 60 curves in the
Clusterin dilution-dataset. The red line is the mean value.
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correction, the efficiency still drops to a smaller level in the Clusterin dilution-
dataset, than in the Arabidopsis dilution-dataset. Without baseline correction the
mean value of the estimated efficiencies is 1.085 at the inflection point in the Clus-
terin dilution-dataset and 1.214 in the Arabidopsis dilution-dataset. This shows
that the difference in the estimated efficiencies, are not due to different baseline
correction.

7.1 Further evaluation of the Enzymological method

7.1.1 Assumptions and parameters
The Tichopad approach, the Init approach and the Sigma approach must be tested
and analyzed on more datasets. However, they show good results for the two
datasets used in this paper. Still there are aspects within each approach, which
can be investigated further. We have used a mathematical model where β is a
free parameter. In both datasets, we see that β̂ is close to one. When setting this
parameter equal to one the model gets simpler and we have one more degrees of
freedom. For β > 1 the function in Equation (3.4) is concave after the inflection
point, which may be useful if we want to use a larger part of the fluorescence curve
for estimation. In our MLE estimation, we could have estimated only one starting
fluorescence level for each triplicate sets, because the starting concentration should
be the same from a biological view. Another aspect is to investigate the rapid fluc-
tuations displayed for early cycles in many observed log transformed fluorescence
curves. We have not been able to explain this trend with the amplification process.
If we improve our knowledge about the fluorescence level in the early cycles, we
can evaluate more of the curve. The ending cycle mi in Figure 4.4 indicates that
we can place the end cycle mi earlier and get smaller residuals and thus a better
fit.

7.1.2 Log model
In our model, we have assumed additive noise on the original scale. Another
possibility is to look at the log transformed fluorescence data. When letting the
observed log transformed fluorescence be modeled with additive noise, we get a
model

log(yji) = log(fji) + εji, (7.1)

where εji are independent and distributed as N(0, σ2).
In Figure 7.3, we see the estimated {εji} with f̂ from Equation (7.1) in the

Enzymological method, with starting cycle si = mi−7. With an Anderson-Darling
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test, we accept the hypothesis of normally distributed noise on a significance level
5% for all curves and cycles ysi , . . . , ymi .

7.2 Further evaluation of the CT methods
We have looked at the comparative CT method and the generalized CT method.
In the comparative CT method, we place the common threshold T right after
the ground phase. In generalized CT method, we place the individual thresholds
Ti where the estimated efficiency is close to 2. These two methods give similar
results for our two datasets. From our two datasets, the generalized CT method
gives estimates of the ratio, which are a closer to the true value than the estimates
from the comparative CT method. Still there are aspects about the efficiency and
the thresholds we can investigate further.

7.2.1 Estimation of the efficiency
The CT methods find estimates of f0, which are smaller compared to the estimates
from the three other methods, as seen in Figure 6.9. The CT methods always
assume efficiency equal to 2. If we implement the comparative CT method with
efficiency equal to 1.9 and do the same calculations as in Section 6.3.4, we get an
estimated variance for ν2 equal to 5.388 · 10−3 compared to 6.2840 · 10−3 when
calculating with E = 2. The estimated ratios are closer to the true value, and in
four out of ten tests we can accept that the bias is equal to zero on a significance
level 0.05 when calculating with E = 1.9. All these results indicate that the true
efficiencies are smaller than two for the Clusterin dilution-dataset.

An improvement on the generalized CT method could be to introduce the
estimated efficiency Ê instead of forcing it to be 2. Then we would assume that
the constant efficiency from cycle CT and forward to cycle one had value Ê. This
is called the Pfaffl method, see Pfaffl (2001).

7.2.2 Threshold
A potential problem with the comparative CT method is that the threshold is set
to be the same for all curves. If we change the threshold, how do the resulting
estimates of f0 and ratios change? From a small study with the Clusterin dilution-
dataset, we chose ten different thresholds evenly spread out from fluorescence
value 900 to 15000 and found the corresponding CT values. Using Equation f0k =
Tk · 2−CTk , we find the estimated starting fluorescence level with the comparative
CT method for each curve k when 1 < k < 60. Then we get 10 sets of 60
estimated f0’s. Using the linear mixed effects model on each set of 60 f̂0, we
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Figure 7.3: The estimated noise ε̂ with a model where the log transformed fluo-
rescence level have additive noise.
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calculate the contrasts to find estimates of the ratios between dilution factors.
The f̂0’s values were decreasing together with higher thresholds. This make sense,
since the efficiency drops from two, while the CT assume constant efficiency equal
to two. The standard deviation of the residuals increases from 7.977·10−2 (T=900)
to 1.136 · 10−1 (T=15000). The standard deviation of the contrasts also increases
from 0.0326 (T=900) to 0.046 (T=15000). From these results it looks like setting
the threshold too late will result in estimates with greater variance and with larger
bias.
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Chapter 8

Conclusion

In this thesis we have presented three versions of the Enzymological method. From
the simulated data, we found that including a certain number of cycles in the max-
imum likelihood estimation gives estimates of f0, which are close to the true value.
An interesting result is that the Init approach performs well, but including the
MLE did lead to lower variance in f̂0. To evaluate if the Enzymological method
can be used for analyzing a dataset, there is little information in the p-assumption
plot. It is more important to test if the noise ε is normally distributed. Two
real datasets have been analyzed, the Arabidopsis dilution-dataset with optimized
primer pairs and the Clusterin dilution-dataset whit different primer pairs, mean-
ing that some primer pairs give higher efficiency than other primer pairs.

The results from the comparative CT method and the generalized CT method
give similar results when the thresholds are placed properly, but setting the thresh-
old too late will lead to estimates of the ratio with larger variance and larger bias.
From the regression model, we found that the estimated variance for the residuals
in the linear regression models were very similar for all the five methods in the
Arabidopsis dilution-dataset. In all methods, the estimates of all ratios between
dilution factors led to acceptance of the hypothesis, that the ratio were equal to
the true value. Based on our results, we can not conclude which method to prefer
for the Arabidopsis dilution-dataset. In the Clusterin dilution-dataset, the esti-
mated variance in the residuals for the linear mixed effects model were smaller for
the two methods based on CT values, than for the other three competitive meth-
ods. But when looking at the estimated ratios, the versions of the Enzymological
method gave lower bias than the CT methods. The estimates of the ratio between
dilution factors from the version of the Enzymological method, led to acceptance
of the hypothesis, that the ratio were equal to the true value. From our results,
we can not conclude which of the three versions of the Enzymological method are
the best.

Estimating the ratio between starting fluorescence levels are commonly calcu-
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lated in the fields of functional genomics. For this practice, the versions of the
Enzymological method seem to give good estimates in both of our datasets. The
Enzymological method is an interesting basis for further work.
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Appendix A

Notation

f0i The starting fluorescence level for curve i.

j Cycle, 1 ≤ j ≤ J .

fji True fluorescence level in cycle j in curve i. fji = γxij where γ is a constant
and x is the number of copies of the target DNA molecules.

si starting cycle for a curve i for the mathematical model in Equation 3.4.

mi ending cycle for a curve i for the mathematical model in Equation 3.4.

A Case group.

B Control group.

G Gene of interest.

R Reference gene.

Clu,Clu1,Clu2,Clu3 Primer pairs for Cluesterin.

GA,RA,GB,RB,Clu,Clu1,Clu2,Clu3 Sample types.

E = 1 + p The amplification in a PCR cycle, also called the PCR efficiency,
with 1 ≤ E ≤ 2

p The probability that a member of the target DNA population is successfully
duplicated, with 0 ≤ p ≤ 1

T Threshold

log Log transform with a general base (as opposed to log2, log10, ln = loge where
the base is emphasized)
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CT Cycle corresponding to the threshold T .

bk The value used for baseline correction at cycle k.

Biological triplicate Three samples with the same sample type.

Technical triplicate Three copies from the same sample.

Ground phase The section of the PCR curve where no amplification-specific
fluorescence can yet be determined.

Exponential phase The section of the PCR curve after the ground phase. This is
where the generated fluorescence exceeds baseline fluorescence, but reagents
have not yet begun to be limited.

Noise Normally distributed disturbances in the fluorescence measure.

Rapid fluctuations Disturbances in the fluorescence measure for early cycles,
which can not be explained by the amplification process.
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