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Abstract

This thesis examines misspecifed log-location-scale regression models. Particularily how
the models’ Cox–Snell residuals can be used to infer the functional form of possibly
misspecified covariates in the regression. Two different methods are considered. One is
using a transformation of the expected value of the residuals. The second is based on
estimating the hazard rate function of the residuals using the covariate order method.
Simulations and computations in the statistical computing environment R are used to
obtain relevant and illustrative results. The conclusion is that both methods are able to
recover the functional form of a misspecified covariate, but the covariate order method is
best when high levels of censoring are introduced. The Kullback–Leibler theory, applied
to misspecified regression models, is a part of the basis for the investigations. The thesis
shows that a theoretical approach to this theory is consistent with the methods used in
R.
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1 Introduction

In survival analysis a common problem is to determine whether or not some variables
(covariates) are correlated with the lifetime (response variable). For covariates which are
correlated with the response, it is not always straightforward to determine what kind of
relationship they have. This is the main problem considered in this thesis. Say the true
model of a variable, T , is of the form

lnT = β0 + β1z1 + β2z2 + f(x) + σW. (1.1)

This is a log-location-scale regression model. Examples of log-location scale models are
models with Weibull, log-logistic and lognormal lifetimes. In this thesis we investigate
Weibull and lognormally distributed lifetimes. In (1.1) T is the lifetime, z1, z2 and x
are covariates, β0, β1 and β2 are model coefficents, and σW is the error term. The
distribution of W varies with the distribution of T , but it is assumed to be known. The
function f(x), β0, β1 and β2 are unknown, but we will first assume that covariate x has a
linear relationship with the response variable lnT . By maximum likelihood the possibly
misspecified model (f(x) might be linear) is fitted,

lnT = β0 + β1z1 + β2z2 + γx+ σW. (1.2)

Then by using the misspecified model’s Cox–Snell residuals we use two different methods
for recovering the correct functional form of the covariate x. The first method uses a
transformation of the expected value of the Cox–Snell residuals, while the second is by
investigation of the estimated hazard rate of the Cox–Snell residuals, for each covariate,
using the covariate order method [2]. The covariate order method is a method of non-
parametric censored exponential regression.

We start the report by introducing the reader to the concept of survival analysis and
some frequently encountered terms and distributions. Then, for both the Weibull and
lognormal distribution, we use a large data set, simulating a population, to find the
model coefficients which minimize the Kullback–Leibler distance [3] for a misspecified
model. This is done by maximum likelihood fitting of (1.2) with the regression function
survreg in R [4]. The model minimizing the Kullback–Leibler distance is denoted

lnT = β∗0 + β∗1z1 + β∗2z2 + γ∗x+ σ∗W. (1.3)

The starred coefficients are the coefficients minimizing the Kullback–Leibler distance.
The Kullback–Leibler distance can illustratively be thought of as the minimized distance
between the true model (1.1) and the linearly constrained (misspecified) model (1.2).
When trying to recover the functional form of covariate x, we discover that the terms
that are modelled correctly, z1 and z2, can be neglected because the Kullback–Leibler
coefficients are approximately the same as the real ones for these covariates. Towards the
end of the report we try to obtain the coefficients which minimizes the Kullback–Leibler
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distance analytically, comparing it to the ones found by maximum likelihood.

Smaller, more practical and complete (i.e. non-censored) data sets are simulated and
used to recover the functional form of a covariate with the transformation method for
both probability distributions. Censored data sets are investigated with both the trans-
formation method and the covariate order method. This is where the covariate order
method is expected to excel. We use levels of 20%, 50% and 80% censoring to analyze
the effect censoring has on the results for the different methods.

Finally we investigate the functional form of a covariate in a data set from real life.
The data is from [5] and describes the relationship between the lifetimes of nickel-base
superalloy specimens, in terms of low-cycle fatigue failures, as a function of different
levels of pseudostress being applied to the specimens during their lifetimes.
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2 Survival analysis

Survival analysis is a part of statistics which focus is on examining the lifetimes, often
described by the variable T , of an item. The term lifetime is used for simplicity. It
does not necessary denote the time a human being is alive. It can also be the time until
the failure of a mechanical component etc. Neither is it always measured in traditional
time units as hours or minutes. It can be the number of times a switch has been used,
or the number of cycles for a tire. However, the lifetime is never negative, T ≥ 0. In
survival analysis we try to model the lifetimes using appropriate probability density
functions. The probability density function, abbreviated PDF, is a well known term for
any statistician. The PDF for the random variable T is often denoted as fT (t), or simply
f(t). Using the terminology of a survival analyst, it is the instantaneous probability of
failure at time t. There are discrete and continuous distributions, but in this project we
only encounter some of the continuous ones. Common for the two kinds are that the
PDF must always sum to one. In the continuous case this means that∫ ∞

0
fT (t)dt = 1. (2.1)

The cumulative distribution function, abbreviated CDF and denoted FT (t), is defined
as

FT (t) = Pr(T ≤ t) =
∫ t

0
fT (u)du. (2.2)

FT (t) is thus the probability that the item being the focus of attention will fail in the
time interval (0, t]. FT (t) takes values in [0, 1]. The complement of the CDF is the
reliability function

RT (t) = 1− FT (t) = Pr(T > t) =
∫ ∞
t

fT (u)du. (2.3)

RT (t) is the probability the item does not fail in (0, t]. It is the probability that it
survives up until time t. This is why it is also known as the survivor function. The last
function we will present is the failure rate function, or the hazard rate function. The
hazard function gives the instantaneous probability of failure at time t, given that it has
survived until t:

λT (t) = lim
∆T→0

Pr(t < T ≤ t+ ∆T |T > t)
∆t ,

λT (t) = lim
∆T→0

FT (t+ ∆t)− FT (t)
∆t · 1

RT (t) = fT (t)
RT (t) .

(2.4)

Having introduced the reader to survival analysis, we now present some of the distribu-
tions frequently encountered in the project, the concept of censoring, Cox–Snell residuals
and the covariate order method.
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2.1 The exponential distribution

The exponential distribution is the most frequently used distribution in survival anal-
ysis. This is mainly because it is easy to work with. Lifetimes that are exponentially
distributed have PDF, mean and variance

fT (t) =
{
λe−λt for t > 0, λ > 0,
0 otherwise,

E[T ] = 1
λ
,

Var[T ] = 1
λ2 .

(2.5)

If λ in (2.5) equals one, we say that the variables are unit exponentially distributed. The
reliability function is

RT (t) = e−λt for t > 0. (2.6)

One of the main things to notice about the exponential distribution is that the hazard
rate function is constant

λT (t) = fT (t)
RT (t) = λe−λt

e−λt
= λ. (2.7)

This again leads to the memoryless property of the exponential distribution. The con-
ditional reliability function is defined as the probability that an item will survive for an
additional time x, given that it has survived up to t:

RT (x|t) = Pr(T > t+ x|T > t) = Pr(T > t+ x)
Pr(T > t) ,

= e−λ(t+x)

e−λt
= e−λx = Pr(T > x) = RT (x).

(2.8)

The concequence of this is that an old item is as good as a new item. The memoryless
property is a reason for why the exponential distribution is so easy to work with, but it
is also a weakness. It is not realistic that an item will have the same hazard function
throughout its lifetime.

2.2 The Weibull distribution

The Weibull distribution, named after the Swedish professor Waloddi Weibull, is also
one of the most used distributions in survival analysis. It has PDF, mean and variance
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fT (t) =
{
αλαtα−1e−(λt)α for t > 0, λ > 0,
0 otherwise,

E[T ] = 1
λ

Γ
[ 1
α

+ 1
]
,

Var[T ] = 1
λ2

(
Γ
[ 2
α

+ 1
]
− Γ2

[ 1
α

+ 1
])

.

(2.9)

Here α is the shape parameter, λ is the scale parameter and Γ[·] is the gamma function.
The reliability function is

RT (t) = e−(λt)α for t > 0. (2.10)
If α = 1 we can compare (2.9) with (2.5) and see that the Weibull distribution becomes
the exponential distribution. The exponential distribution is therefore a special case of
the Weibull distribution.

2.3 The Gumbel distribution of the smallest extreme

The Gumbel distribution of the smallest extreme is an example of an extreme value
distribution [6, p. 54]. Say we have a set of independent, identically distributed (iid)
lifetimes, Ti’s. If the PDF of the lifetimes goes exponentially towards zero when t→∞,
then the limiting distribution of a normalized version of Un = T(1) = min{T1, T2, ..., Tn}
is known to be

FT(1)(t) = 1− e−e(t−ν)/α for −∞ < t <∞. (2.11)
Here α > 0, the mode, and ν, the scale parameter, are constants. If the lifetimes are
standardized

Y = T − ν
α

,

we get the CDF of the standardized Gumbel distribution of the smallest extreme

FY(1)(y) = 1− e−ey for −∞ < y <∞. (2.12)
Which leads to the corresponding PDF, mean and variance

fY(1)(y) = eye−e
y for −∞ < t <∞,

E[Y(1)] = −φ,

Var[Y(1)] = π2

6 ,

(2.13)

where φ = 0.5772... is Euler’s constant. The reliability function is

RY(1)(y) = e−e
y for −∞ < y <∞. (2.14)
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2.4 The normal distribution

The normal distribution, also called Gaussian distribution, is a frequently encountered
continous probability distribution in statistics. It has PDF, mean and variance

fY (y) = 1√
2πσ

e−(y−µ)2/2σ2 for −∞ < y <∞,

E[Y ] = µ,

Var[Y ] = σ2.

(2.15)

A normally distributed variable Y , with mean and variance equal µ and σ2, is denoted:
Y ∼ N (µ, σ2). If Y is N (0, 1) we say that Y is standard normally distributed. A
normally distributed variable can have negative values, but it is sometimes used as
a lifetime distribution nonetheless. The CDF of the normal distribution is found by
integrating the PDF and is denoted

FY (y) = Φ
(
y − µ
σ

)
= 1√

2π

∫ y

−∞
e−t

2/2dt = 1
2

[
1 + erf

(
y − µ√

2σ

)]
. (2.16)

Here erf(·) is the error function

erf(x) = 2√
π

∫ x

0
e−t

2
dt. (2.17)

The reliability function is

RY (y) = 1− FY (y) = 1− Φ
(
y − µ
σ

)
(2.18)

2.5 The lognormal distribution

A lognormally distributed variable has PDF, mean and variance

fY (y) = 1√
2πσy

e−(ln y−µ)2/2σ2 for y >∞,

E[Y ] = eµ+σ2/2,

Var[Y ] = e2σ
(
e2µ2 − eµ2)

.

(2.19)

The lognormal and normal distribution are related by: Y ∼ lognormal(µ, σ2) if X =
lnT ∼ N (µ, σ2). The reliability function is

RY (y) = Pr(T > t) = Pr(lnT > ln t)

= Pr
( lnT − µ

σ
>

ln t− µ
σ

)
= Φ

(
µ− ln t
σ

)
.

(2.20)

Here Φ(·) is the CDF of the standard normal distribution.
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2.6 Censoring

A lifetime, T , is said to be censored if we are not able to observe it entirely. We have
right censoring when we know when the item was put to test, but not when it failed.
Left censoring is when we know that the item has failed, but not when. A third version
is interval censored observations. This is when we know that the item failed within an
interval of two observed values. An illustration of censoring can be seen in Figure 1.
Censoring is said to be random if the censoring time and failure time are independent
random variables.

Time

Item no.

1

2

3

4
·
·
·
n

Non-censored

Left censored

Right censored

Interval censored
·
·
·

Right censored

Figure 1: Illustration of left, right and interval censoring. The crosses illustrate when
the failure occurs, while the short lines perpendicualar to the time axis are the actual
times observed.

2.7 Cox–Snell residuals

Cox–Snell residuals [7] are used to check if an assumed reliability function models a set
of lifetimes adequately. We write the Cox–Snell residuals with a hat, R̂, to avoid being
mistaken for the reliability function. The Cox–Snell residuals are given by

R̂ = − ln[R(T )] = − ln[1− F (T )], (2.21)

where T is an observed lifetime, R(·) is the reliability function of the assumed distribu-
tion, and F (·) is the corresponding cumulative distribution function. If the distribution
assumed is correct, the Cox–Snell residuals should be unit exponentially distributed.

Using a log-location-scale model means that we use lifetimes that comes from a log-
location-scale distribution. A log-location-scale distributed variable is parametrized by
a location parameter and a non-negative scale parameter.
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lnY = µ+ σX. (2.22)
Here µ is the location parameter and σ is the scale parameter. From the models above
we see that the Weibull distribution and the lognormal distribution are log-location scale
distributions.

For more theory on survival analysis, we recommend the book “System Reliability The-
ory” [6] by M. Rausand and A. Høyland. Section 2.1-2.3 is a reproduction of parts from
this book. Another recommended book on survival analysis is “Statistical Methods for
Reliability Data” [5] by William Q. Meeker and Luis A. Escobar, which was used as a
source for Section 2.6.

2.8 Covariate order method

The covariate order method is a nonparametric method for exponential regression. We
use it to investigate the functional form of misspecfied accelerated lifetime models. A
short description of the covariate order method follows here, however, for a more detailed
description, the reader is advised to look at [2].

s
0 S1 S2 Sr

Y1/n Y2/n Y3/n Yn/n

. . .

Figure 2: Constructed artificial point process with (Y1, δ1 = 1), (Y2, δ2 = 0), (Y3, δ3 =
1), ..., (Yn, δn = 1).

A set of n independent observations (Y1, δ1, X1), ..., (Yn, δn, Xn), where Yi is the ob-
servation time, δi the censoring status and Xi the covariate, which is assumed to be
one-dimensional, are ordered ascendingly with respect to the covariate. I.e. X1 ≤ X2 ≤
... ≤ Xn. The observations are, for convenience, scaled Yi/n. Y1/n, ...Yn/n are set as
interarrival times of an artificial point (Poisson) process. If the endpoint of an interar-
rival time corresponds to a uncensored observation, this point is an event occuring at
S1, S2, ..., Sr., while the endpoints corresponding to censored observations are not con-
sidered as events. Here r =

∑n
j=1 δj . An illustration of the process can be seen in Figure

2. The time of the events, Si, are given by

Si =
k(i)∑
j=1

Yj
n
, where k(i) = min(s|

s∑
j=1

δj = i). (2.23)

The covariate order method estimates, by using a kernel density estimator [8], the in-
tensity of the artificial point process and then transforms this to an estimator of λ(x),
the hazard of a lifetime Y with covariate x. Theorems and accompanying proofs that
the estimator is uniformly consistent can be found in [9].
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3 Model

We have the lifetime model

lnT = βTz + f(x) + σW. (3.1)

This is a log-location-scale regression model. Here T is the lifetime (lnT is the response),
β is a vector of the intercept β0 and constant weights β1, ..., βn, z is a vector of covariates
z0, ..., zn (z0 ≡ 1 because of the intercept term β0), f(·) is an unknown function of the
covariate x, and σW is the error term. W is from the distribution which give us the
desired distribution for T . The functional form of f(x) is unknown. However, we assume
as a starting point that it is linear and fit the following model using maximum likelihood,

lnT = βTz + γx+ σW. (3.2)

The estimates obtained from the regression via maximum likelihood of this misspecified
model, β̂, γ̂ and σ̂, are consistent estimators for β∗, γ∗ and σ∗. β∗, γ∗ and σ∗ are the
values which minimize the Kullback–Leibler distance [3]. The Kullback–Leibler distance
is defined as

KL(θ) = E
[
ln g(x)
h(x, θ)

]
, (3.3)

where g(x) is the density of the true model and h(x, θ) is the density of the misspecified
model. These x’s have nothing to do with (3.1) and (3.2), they are purely illustrational.
The expectation in (3.3) is taken with respect to the true model. In our case g(x) and
h(x, θ) are the densities of T given by (3.1) and (3.2), respectively. Figure 3 illustrates
the idea where the misspecified model constrains f(x) to a linear function. It follows
that β̂, γ̂ and σ̂ are consistent estimators for β∗, γ∗ and σ∗ for sufficiently large data sets.

Our idea is to find the form of f(x) using the misspecified model’s Cox–Snell residuals,
R̂∗. The Cox–Snell residuals are given by the definition in (2.21).

R̂∗ = − ln[R∗(T )] = − ln[1− F ∗(T )], (3.4)

where R∗(·) is the reliability function, and F ∗(·) is the cumulative distribution function
of the misspecified distribution, i.e

F ∗(t) = Pr(T ≤ t) = Pr(lnT ≤ ln t)

= Pr
(

lnT − β∗Tz − γ∗x
σ∗

≤ ln t− β∗Tz − γ∗x
σ∗

)

= Φ
(

ln t− β∗Tz − γ∗x
σ∗

)
.
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From this, the Cox–Snell residual for an observation, Ti, from the misspecifed model
(3.2) is

R̂∗i = − ln
[
1− Φ

(
lnTi − β∗Ti zi − γ∗xi

σ∗

)]
, (3.5)

where Φ(·) is the cumulative distribution function of the distribution in question. The
stars in the superscript of the coefficients indicate that these coefficients are the ones
obtained from the fitted model. We want f(xi) to be a part of the expression for the
Cox–Snell residuals, so we add and subtract terms from the underlying “real” model.

R̂∗i = − ln
[
1− Φ

(
lnTi − βTzi − f(xi)

σ
· σ
σ∗

+ (β − β∗)Tzi + f(xi)− γ∗xi
σ∗

)]

= − ln
[
1− Φ

(
σ

σ∗
Wi + (β − β∗)Tzi + f(xi)− γ∗xi

σ∗

)]
,

(3.6)

where Wi is distributed as Φ. Then solving this expression for f(xi)

f(xi) = −σWi − (β − β∗)Tzi + γ∗xi + σ∗ · Φ−1
(
1− e−R̂∗

i

)
. (3.7)

This expression can be used for any Φ when β, β∗, γ∗, σ and σ∗ are well defined
theoretically. For real data sets, we will not know the values of σ and β, but we are able
to estimate β∗, γ∗ and σ∗ from the misspecified model. (3.7) is the expression we will
use at first to recover the functional form of misspecified covariates. This is the method
we refer to as the “transformation method”.

β̂,γ̂,σ̂

β,f(·),σ

Linear constraint

Kullback–Leibler distance

β∗,γ∗,σ∗
Correct

Figure 3: Illustration of the Kullback–Leibler distance.
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4 Weibull distributed lifetimes

We start with lifetimes which are Weibull distributed with probability density function
as in (2.9)

fT (t) = abata−1e−(bt)a , t ≥ 0. (4.1)

Here a is the shape parameter and b is the scale parameter. When simulating the model
given by (3.1), we can ensure the Ti’s to be Weibull distributed by using Wi’s which
are from the standard Gumbel distribution of the smallest extreme. The Wi’s have
probability density function

fW (w) = ewe−e
w
, −∞ < w <∞. (4.2)

By using the transformation formula for functions of random variables, which can be
found in any introductory statistics book, we can show that the lifetime, T , in (3.1) is
indeed Weibull distributed. Assuming that the shape and scale parameter in (4.1) are
respectively equal to 1/σ and e−(βT z+f(x)), then isolate T in (3.1) and transform:

T = eβ
T z+f(x)+σW ,∣∣∣∣ dT

dW

∣∣∣∣ = σeβ
T z+f(x)+σW ,

fW (w) = fT
(
eβ

T z+f(x)+σw
)
· σeβT z+f(x)+σw

= 1
σ

(
e−(βT z+f(x))

)1/σ (
eβ

T z+f(x)+σw
)1/σ−1

· e

(
−e−(βT z+f(x))eβ

T z+f(x)+σw
)1/σ

· σeβT z+f(x)+σw

= 1
σ

(
e−(βT z+f(x))

)1/σ
(
eβ

T z+f(x)
)

(
eβT z+f(x)

)1/σ
(eσw)1/σ

eσw
· e−ew · σeβT z+f(x)eσw

= ewe−e
w
.

Which equals (4.2). Using the definition of the Cox–Snell residuals in (2.21), we can
find the Cox–Snell residuals for the misspecified model. Now we must use the CDF of
standard Gumbel distributed variables of the smallest extreme. The residuals become

R̂∗i = − ln [1− FW (Wi)] = − ln [RW (Wi)]

= − ln
[
e−e

Wi
]

= eWi = e
lnTi−β

∗T zi−γ
∗xi

σ∗ .
(4.3)

Here we solved (3.2) for W .
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4.1 Coefficients minimizing the Kullback–Leibler distance

In order to find the coefficients minimizing the Kullback–Leibler distance, β∗, γ∗ and σ∗,
we simulate a data set with a very large number of observations. The motivation for this
is to be sure that the methods used can provide accurate estimates for the parameter
coefficients from the misspecified model. When we know the original coefficients, it
is easy to see if the method generates satisfying estimates. The model used in the
simulation of the large data set was the “true” model:

lnTi = βTzi + f(xi) + σW = β0 + β1zi1 + β2zi2 + f(xi) + σWi. (4.4)

The coefficients and function were set to

β0 = 0,
β1 = 5,
β2 = 0.2,
f(xi) = x2

i ,

σ = 2.

(4.5)

When using R [4] to simulate the covariates in the model for Ti, one has to be careful
regarding the parametrization of the Gumbel distributed error terms. The rgumbel()
function in the VGAM library in R samples from the Gumbel distribution of the largest
extreme. Therefore we implemented our own simulating procedure for variables from
the Gumbel distribution of the smallest extreme. The CDF of any variable takes values
in [0,1]. Letting u be uniformly distributed in [0,1], i.e. u ∼ Unif[0, 1], and solving for w
in the expression for the CDF of a standard Gumbel distributed variable of the smallest
extreme

FW (w) = 1− e−ew = u,

⇒ ln[− ln(1− u)] = w,

⇒ ln[− ln(u)] = w,

where the last relationship utilizes the fact that 1-Unif[0,1] = Unif[0,1]. By simulating u
uniformly on [0,1] we can create standard Gumbel distributed variables of the smallest
extreme by using this relationship. zi1, zi2 and xi were drawn from the standard normal
distribution. By inserting the covariates and error term into

Ti = eβ
T z+f(xi)+σWi ,

we have simulated Weibull distributed lifetimes. 1 000 000 vectors of (Ti, zi1, zi2, xi,Wi)
were simulated. All the vectors were saved in a data frame.
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The next step in order to obtain the values for β∗, γ∗ and σ∗, is to fit the misspecified
model. This was done by using the survreg function in the survival library in R. The
function call and summary of the model was:

> weibullModLarge <- survreg(Surv(wData$T_i) ˜ wData$z_i1 + wData$z_i2
+ wData$x_i, data, dist=’weibull’)
> summary(weibullModLarge)

Call:
survreg(formula = Surv(wData$T_i) ˜ wData$z_i1 + wData$z_i2 +

wData$x_i, data = data, dist = "weibull")
Value Std. Error z p

(Intercept) 1.2479 0.003316 376.37 0.00e+00
wData$z_i1 5.0060 0.003129 1599.63 0.00e+00
wData$z_i2 0.2169 0.003142 69.03 0.00e+00
wData$x_i 0.0099 0.001920 5.16 2.45e-07
Log(scale) 1.1433 0.000618 1848.61 0.00e+00

Scale= 3.14

Weibull distribution
Loglik(model)= -2442543 Loglik(intercept only)= -3105705
Chisq= 1326324 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6
n= 1000000

From the summary we can find the estimated coefficients. However, again we have to take
into consideration the parametrization R uses. The survreg function’s parametrization
of the Weibull distribution is embedded in a general location-scale family. The relation-
ship between the parameters in survreg’s scale and the shape in (4.1) is

survreg’s scale = 1/a.

Knowing this we find the coefficients from the summary of the regression model

β∗0 = 1.2479,
β∗1 = 5.0060,
β∗2 = 0.2169,
γ∗ = 0.0099,
σ∗ = 3.14.

(4.6)

The values for β∗1 and β∗2 are close to the values they were set to in (4.5). This is, as
expected due to the misspecified term, not the case for β∗0 and σ∗. γ∗ is seen to be small
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as well. The reason for all this will be clearified later. With these results the Cox–Snell
residuals can be calculated according to (4.3). Plots of the Cox–Snell residuals versus
the covariates are illustrated in Figure 4

Figure 4: Plot of the logarithm of the Cox–Snell residuals, ln(R̂∗i ), versus the covariates
zi1, zi2 and xi (from left to right).

From Figure 4 it looks as there is no dependency between the residuals and zi1 and zi2.
The large absolute values of the logarithm of the Cox–Snell residuals in the middle are
due to the fact that the normal distribution has the most observations in the middle.
However, for xi there is a clear tendency that the residuals increase rapidly for large
absolute values of xi. Knowing that the fitted model provides satisfying values for β∗1
and β∗2 , we need to clearify what the model’s intensions are for the values of β∗0 and
γ∗. If we look at the parameters isolatedly, they essentially describe a linear function
with intercept equal β∗0 and slope equal γ∗. From the summary of the model we see
that 0 lies within one standard deviation of the estimated value of γ∗. Thus a zero
hypothesis stating that γ∗ = 0 would not be rejected. The misspecified models solution
for estimating f(xi) is simply to add the constant β∗0 . The model value for σ, σ∗, is also
far from the true value in (4.5), also caused by the misspecified covariate.

4.1.1 Using Cox–Snell residuals to infer the form of f(xi)

As mentioned earlier we want to investigate the form of f(xi) using the Cox–Snell resid-
uals. This is done using (3.7). If we take another look at the summary of the regression
model, we see that the value of β∗1 and β∗2 are within one standard deviation of the values
they were set to in (4.5). This means that the terms (β1−β∗1)zi1 and (β2−β∗2)zi2 in (3.7)
are so small that they are negligible. The expression can therefore be approximated by

f(xi) ≈ −σWi − (β0 − β∗0) + γ∗xi + σ∗ · Φ−1
(
1− e−R̂∗

i

)
. (4.7)
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Using Φ(·) from the Gumbel distribution of the smallest extreme, given by equation
(2.12), the inverse function becomes

Φ−1(u) = ln(− ln(1− u))

Φ−1
(
1− e−R̂∗

i

)
= ln

[
R̂∗i

] (4.8)

Inserting this into (4.7) gives us

f(xi) ≈ −σWi − (β0 − β∗0) + γ∗xi + σ∗ ln
[
R̂∗i

]
. (4.9)

By inserting the computed Cox–Snell residuals from (4.3) for R̂∗i in (4.9), the values for
f(xi) were computed using the coefficients in (4.6). Figure 5(a) shows a plot of all the
estimated values for f(xi), while Figure 5(b) shows the estimated function plotted as a
solid line.

(a) f(xi) for all xi. (b) f(xi) as a continuous line.

Figure 5: Plot of the estimation of the function f(xi) from (4.9).

From these plots we see that the form f(xi) = x2
i is recovered.



16 4 WEIBULL DISTRIBUTED LIFETIMES

4.2 Simulation and model fitting of Weibull distributed lifetimes

In Section 4.1 the simulated data set had 1 million observations. In practice we may have
data sets which are much smaller, and this will be the focus in this section. However,
for smaller, more realisticly sized data sets, we have to be aware of some moments.
Remember (4.9), the approximation of f(xi). If we have a real data set, we will not
know the values of σ and β0. Neither will the values for β∗, γ∗, σ∗ be known, we would
only know the corresponding estimates β̂, γ̂, σ̂. The knowledge about f(xi) will be
restricted to the relationship

f(xi) ∼ ln
[
R̂i
]
· σ̂ + β̂0 + γ̂xi. (4.10)

The points will be displaced by the value −σWi+β0. However, the main thing to notice
is that the displacement does not depend on xi. It is also worth noticing that if the
(β1 − β∗1)zi1 and (β2 − β∗2)zi2 terms in (3.7) are not negligible, they will also lead to a
displacement of the curve. This displacement is independent of the xi’s as long as the
zi’s and xi’s are independent. The plot obtained from the expression in (4.10) in Figure
6(a) is blurred compared to the plot obtained from the expression in (4.9) in Figure 5(a).
The blurring comes from the stochastic term, σWi, left out. The rest of the displacement
is best seen in the smoothed plot. The minima of the smoothed curved in Figure 5(b) is
approximately zero, while the minima in Figure 6(b) is less than zero. This smoothed
line was obtained by taking the mean value of all approximated values of f(xi) within
intervals of length 0.1 on the x-axis.

(a) f(xi) for all xi.
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(b) Smoothed f(xi).

Figure 6: Plot of the estimation of the function f(xi) from (4.10).
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In order for us to be able to neglect the (β1 − β̂1)zi1 and (β2 − β̂2)zi2 terms, we need to
know how large the data set will have to be to provide adequate estimates for β∗, γ∗, σ∗.
In the specialization project [1], which is the basis for this thesis, we found that 100
observations would be sufficient for this kind of problem.

4.2.1 Uncensored data set

We start with simulating an uncensored set of 100 lifetimes. An uncensored set is said
to be complete. The lifetimes come from the same model

lnTi = βTzi + f(xi) + σW = β0 + β1zi1 + β2zi2 + f(xi) + σWi, (4.11)

with the same coefficients and function

β0 = 0,
β1 = 5,
β2 = 0.2,
f(xi) = x2

i ,

σ = 2,

(4.12)

as the lifetimes for the large data set in Section 4.1. The covariates are drawn from the
standard normal distribution. Using survreg, a misspecified model

lnTi = β0 + β1zi1 + β2zi2 + γxi + σWi, (4.13)

was fitted to the data. We want to check if the linear term, γxi, should be replaced by
a function f(xi), and what this function may look like. The summary from survreg for
the misspecified model was:

> summary(weibullMod)

Call:
survreg(formula = Surv(data$T_i) ˜ data$z_i1 + data$z_i2 + data$x_i,

data = data, dist = "weibull")
Value Std. Error z p

(Intercept) 1.4597 0.3181 4.589 4.45e-06
data$z_i1 5.0963 0.2584 19.720 1.44e-86
data$z_i2 0.5184 0.2973 1.744 8.12e-02
data$x_i 0.0771 0.2133 0.361 7.18e-01
Log(scale) 1.0925 0.0751 14.547 6.08e-48

Scale= 2.98

Weibull distribution
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Loglik(model)= -254 Loglik(intercept only)= -328.7
Chisq= 149.49 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6
n= 100

As mentioned previously, with a small data set the estimated coefficients β̂, γ̂ and σ̂
are not necessarily the true values for β∗, γ∗ and σ∗. Nevertheless, β̂, γ̂ and σ̂ are
consistent estimators for β∗, γ∗ and σ∗. This because we have seen that when having a
large number of observations, the coefficients for the correctly modelled covariates looked
to converge to their true values. From the summary we see that the estimated values
β̂1 and β̂2 are not significantly different from the known true values. It is also seen that
the Scale estimate of 2.98 is pretty good considering we only have 100 observations.
We calculate the Cox–Snell residuals according to (4.3), with σ∗, β∗0 and γ∗ replaced by
σ̂, β̂0 and γ̂, respectively, and use (4.10) to find the estimates for f(xi). In Figure 7(a)
the values for the estimated f(xi) are plotted against the xi’s. We see that there is a
“U”-shape characteristic for quadratic functions. Using the function lm in R, a quadratic
regression model of the form f(x) = b1x+ b2x

2 was fitted.

> quad <- lm(f_prop ˜ x + I(xˆ2)-1)
> summary(quad)

Call:
lm(formula = f_prop ˜ x + I(xˆ2) - 1)

Residuals:
Min 1Q Median 3Q Max

-8.8250 -2.4583 -0.7959 0.9134 4.2382

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x -0.3192 0.2832 -1.127 0.263
I(xˆ2) 0.8247 0.1526 5.405 4.56e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.922 on 98 degrees of freedom
Multiple R-squared: 0.234,Adjusted R-squared: 0.2183
F-statistic: 14.97 on 2 and 98 DF, p-value: 2.127e-06

From this summary we see that only the coefficient in front of the quadratic term is
significantly different from zero. The regression line is plotted as the red dashed line
in Figure 7(b) together with the original dots, as well as another estimated line. This
estimated line, the solid black one, is obtained from the lowess function in R. The
lowess function estimates the locally weighted scatterplot smoothed [10] line from the
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points. From the plot we conclude that 100 observations give us a good indication of
what f(xi) looks like.
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(a) f(xi) for all xi.
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(b) f(xi) for all xi with regression line (red dashed)
and LOWESS (black solid).

Figure 7: Plot of the estimation of the function f(xi) from (4.10) with 100 observations.

4.2.2 Censored data sets

Now we simulate censored data sets. A background of censoring is described in Section
2.6. We use random right censoring. Independent censoring times, C, drawn from the
exponential distribution with λ20 = 0.005, λ50 = 0.5 and λ80 = 100 gave approximately
20%, 50% and 80% censoring in the data set. The simulated data set with censoring
times is listed in its entirety in Appendix A. Two methods for recovering the functional
form of the misspecified covariate is tested for censored data; the transformation method,
which we have used up until now, and an approach using the covariate order method.

4.2.2.1 Transformation method

Using survreg we again fitted a model to the simulated censored data analogously to the
uncensored data investigated earlier. The only difference is the Surv() element in the call
to the survreg function. For the uncensored data set we used Surv(weibullData$T_i),
but for the censored data set we used Surv(weibullData$Y_i,weibullData$s_i). Here
weibullData$Y_i is given by Yi = min(Ti, Ci) and weibullData$s_i indicates the cen-
soring status. The censoring status, si, is given by
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si = 1 if Ti ≤ Ci,
si = 0 if Ti > Ci.

The misspecified model fitted with survreg was

lnYi = β0 + β1zi1 + β2zi2 + γxi + σWi. (4.14)

This model was fitted for the three different censoring levels. The summary from survreg
for the misspecified models were, for ascending levels of censoring:

> summary(weibull20Mod)

Call:
survreg(formula = Surv(data$Y20_i, data$s20_i) ˜ data$z_i1 + data$z_i2 +

data$x_i, data = data, dist = "weibull")
Value Std. Error z p

(Intercept) 1.4904 0.3475 4.2886 1.80e-05
data$z_i1 4.9520 0.3602 13.7487 5.19e-43
data$z_i2 0.5023 0.3191 1.5739 1.16e-01
data$x_i 0.0201 0.2444 0.0821 9.35e-01
Log(scale) 1.0724 0.0872 12.3011 8.94e-35

Scale= 2.92

Weibull distribution
Loglik(model)= -52 Loglik(intercept only)= -109.6
Chisq= 115.16 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6
n= 100
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> summary(weibull50Mod)

Call:
survreg(formula = Surv(data$Y50_i, data$s50_i) ˜ data$z_i1 +

data$z_i2 + data$x_i, data = data, dist = "weibull")
Value Std. Error z p

(Intercept) 1.153 0.526 2.191 2.85e-02
data$z_i1 4.684 0.499 9.381 6.55e-21
data$z_i2 0.523 0.408 1.283 2.00e-01
data$x_i -0.041 0.307 -0.134 8.94e-01
Log(scale) 1.043 0.113 9.189 3.97e-20

Scale= 2.84

Weibull distribution
Loglik(model)= 93.3 Loglik(intercept only)= 50.2
Chisq= 86.14 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 100

> summary(weibull80Mod)

Call:
survreg(formula = Surv(data$Y80_i, data$s80_i) ˜ data$z_i1 +

data$z_i2 + data$x_i, data = data, dist = "weibull")
Value Std. Error z p

(Intercept) 1.566 1.519 1.031 3.02e-01
data$z_i1 5.003 0.991 5.050 4.42e-07
data$z_i2 0.796 0.586 1.358 1.74e-01
data$x_i 0.397 0.464 0.855 3.92e-01
Log(scale) 0.978 0.181 5.409 6.33e-08

Scale= 2.66

Weibull distribution
Loglik(model)= 108.8 Loglik(intercept only)= 81
Chisq= 55.7 on 3 degrees of freedom, p= 4.9e-12
Number of Newton-Raphson Iterations: 7
n= 100
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(b) 50% censoring.
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(c) 80% censoring.

Figure 8: Plots of the covariates (z1, z2, and x respectively from left to right) versus the
logarithm of the Cox–Snell residuals from the misspecified models (xi is modelled linearly,
γxi) for each of the censoring levels. The circles represent residuals from uncensored
observations, while the dots represent residuals from censored observations.
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(c) 80% censoring.

Figure 9: Plot of the estimation of the function f(xi) with LOWESS (solid line) and
quadratic regression (dashed line) estimates for the different censoring levels.
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The Cox–Snell residuals for the uncensored observations from the misspecified models
were calculated analogously as in (4.3),

R̂i = e
lnYi−β̂0−β̂1zi1−β̂2zi2−γ̂xi

σ̂ . (4.15)

For the censored observations it is not quite that simple. We start by calculating tem-
porary Cox–Snell residuals according to (4.15), but since the observations are right
censored, it is obvious that the actual lifetimes, Ti, would have been longer than the
recorded observation times, Yi(= Ci) (censoring times). Assuming that the regression
model is correct, the Cox–Snell residuals in (4.15) should be unit exponentially dis-
tributed. Due to the memoryless property of the exponential distribution (Section 2.1),
we simply add one to the temporary Cox–Snell residuals to compensate for the obser-
vation times cut short. This corresponds to the fact that the remaining time of an unit
exponential variable is always unit exponential. Together with the Cox–Snell residuals
for the uncensored observations we now have the Cox–Snell residuals for all of the ob-
servations. This was done for all three levels of censoring. We plot the logarithm of the
residuals against the covariates to investigate any dependencies between them. This can
be seen in Figure 8. For correct models the residuals are independent of the covariates.
From Figure 8(a), with plots from the model with 20% censoring, we see that the resid-
uals are random when plotted against zi1 and zi2, but for the xi’s they seem to have
large positive values for large absolute values of xi, and they have large negative values
for small absolute values of xi. This indicates that the xi’s are not modelled correctly.
The same observation can be seen in the plot with 50% censoring (Figure 8(b)), but not
as clear. For the plot with 80% censoring (Figure 8(c)) the logarithm of the residuals
are close to zero for the censored observations. This is because the censoring times are
very small for many of the observations, and the Cox–Snell residuals are then approx-
imately one because we add one to compensate for the observation times being cut short.

The Cox–Snell residuals were again used to estimate the functional form of f(xi) by using
(4.10), for each censoring level. For the 20% censoring level the plot (Figure 9) shows
that a “U”-shaped function would fit the data better. The same relationship can, with a
stretch, be seen with 50% censoring as well. While for 80% censoring there is not much
to learn from the plot. The censored observations ruins the plot by approximating a
vast majority of the residuals to one. For the two lowest censoring levels we fit quadratic
regression models to the respective plots:
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> summary(quad20)

Call:
lm(formula = t(f_prop20) ˜ x + I(xˆ2) - 1)

Residuals:
Min 1Q Median 3Q Max

-8.8028 -2.3615 -0.4062 1.2521 4.2397

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x -0.2431 0.2891 -0.841 0.402
I(xˆ2) 0.7436 0.1558 4.774 6.31e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.983 on 98 degrees of freedom
Multiple R-squared: 0.1911,Adjusted R-squared: 0.1745
F-statistic: 11.57 on 2 and 98 DF, p-value: 3.076e-05

> summary(quad50)

Call:
lm(formula = t(f_prop50) ˜ x + I(xˆ2) - 1)

Residuals:
Min 1Q Median 3Q Max

-9.130 -1.323 1.411 4.109 6.424

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x -0.3643 0.3788 -0.962 0.339
I(xˆ2) 1.3550 0.2041 6.640 1.76e-09 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.908 on 98 degrees of freedom
Multiple R-squared: 0.3122,Adjusted R-squared: 0.2981
F-statistic: 22.24 on 2 and 98 DF, p-value: 1.089e-08

When looking at the summaries from the quadratic regressions, we see that a quadratic
term is significant for the models with 20% and 50% censoring. We respecifiy these
models as
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lnYi = β0 + β1zi1 + β2zi2 + γ2x
2
i + σWi. (4.16)

Fitting the models in (4.16) with survreg gives the following summaries:

> summary(weibull20Mod)

Call:
survreg(formula = Surv(data$Y20_i, data$s20_i) ˜ data$z_i1 +

data$z_i2 + I((data$x_i)ˆ2), data = data, dist = "weibull")
Value Std. Error z p

(Intercept) -0.277 0.3293 -0.84 4.01e-01
data$z_i1 5.059 0.2749 18.40 1.25e-75
data$z_i2 0.249 0.2146 1.16 2.46e-01
I((data$x_i)ˆ2) 1.459 0.2465 5.92 3.26e-09
Log(scale) 0.789 0.0864 9.13 6.96e-20

Scale= 2.2

Weibull distribution
Loglik(model)= -27 Loglik(intercept only)= -109.6
Chisq= 165.17 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6
n= 100

> summary(weibull50Mod)

Call:
survreg(formula = Surv(data$Y50_i, data$s50_i) ˜ data$z_i1 +

data$z_i2 + I((data$x_i)ˆ2), data = data, dist = "weibull")
Value Std. Error z p

(Intercept) -0.771 0.418 -1.84 6.51e-02
data$z_i1 4.765 0.365 13.05 6.50e-39
data$z_i2 0.273 0.270 1.01 3.13e-01
I((data$x_i)ˆ2) 1.624 0.336 4.84 1.32e-06
Log(scale) 0.730 0.112 6.50 8.30e-11

Scale= 2.07

Weibull distribution
Loglik(model)= 112.6 Loglik(intercept only)= 50.2
Chisq= 124.71 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 7
n= 100
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We immediately see that the other coefficients are estimated better now than previously,
compared to the correct values. This is best seen in the Scale coefficient (i.e. σ̂). How-
ever, this was expected due to the large residuals from the misspecified models. New
Cox–Snell residuals were computed and log-plotted versus the covariates in Figure 10.
The plots can be hard to read due to the covariates being clustered around zero, because
they are normally distributed. However, from the plot we see that the relationship with
large residuals for large absolute values of the xi’s are gone. We believe that the func-
tional form of the xi’s is recovered.
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(b) 50% censoring.

Figure 10: Plot of the covariates (z1, z2, and x respectively from left to right) versus
the logarithm of the Cox–Snell residuals from the respecified models in (4.16) (xi is
modelled quadratically, γx2

i ) for the 20% and 50% censoring levels. The circles represent
residuals from uncensored observations, while the dots represent residuals from censored
observations.
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If the fitted model is correct, the Cox–Snell residuals should be unit exponentially dis-
tributed. To check if the residuals are distributed this way can be done in several ways.
We start with a plot of the Cox–Snell residuals with the theoretical mean as well as the
estimated mean (Figure 11(a)). These plots show that the unit exponential distribution
might be the correct distribution for both censoring levels. Secondly, a histogram of the
computed Cox–Snell residuals together with the theoretical density function for the unit
exponential distribution (Figure 11(b)). These plots show that the assumed distribution
might fit for a 20% censoring level, but the 50% censoring level does not fit as well.
In particular we notice the peak for residuals approximately equal to one. This comes
from the censored observations where we add one to the residuals. The same peak can
be seen for 20% as well, but not as distinct. Finally, an exponential probability plot
(Figure 11(c)). A probability plot [11] is constructed such that we can check if the data
comes from an assumed theoretical distribution. This is done, in our case, by plotting
the Cox–Snell residuals versus the probability the value of the residual has in the unit
exponential distribution. If the assumed distribution fits, the plotted points should lie
close to a straight line. From the left plot in Figure 11(a) one could suspect, if this was
a real data set, that the residuals larger than five could come from observations charac-
terized as outliers. From a practical viewpoint, an outlier might be the result of error
during the recording of the data set, that it comes from a different population, or that
it is an unusual observation (an observation with small probability) from the assumed
distribution [12]. The probability plots supports the observation in the histograms. The
reason why the Cox–Snell residuals are not exact unit exponentially distributed, is that
the estimated values, β̂0, γ̂, σ̂, are used. Nonetheless, the plots indicate that the unit
exponential is the true distribution for the Cox–Snell residuals for a 20% censoring level.
This strengthens our belief that the model in (4.16) is correct for this level of censoring.
However, it looks like this method for recovering the functional form for a misspecified
covariate fails at high levels of censoring. The plot in 9(c) clearly illustrates this.
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Figure 11: Plots checking if the Cox–Snell residuals are unit exponentially distributed.
20% censoring in the left column, 50% censoring in the right. (a) is a plot of the
Cox–Snell residuals from the model (4.16) with theoretical mean (red dashed line) and
estimated mean (blue solid line). (b) is a histogram of the Cox–Snell residuals with
theoretical density function. (c) is the exponential probability plot. 1 is added to the
censored residuals.
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4.2.2.2 Covariate order method

Now we turn to the covariate order method, described in Section 2.8, to recover the func-
tional form of the misspecified covariate for the three censoring levels. As mentioned in
the description, this method should be better for high levels of censoring.

We start by fitting an empty model. The empty model is a model fitted without any co-
variates. The results from this can help us to determine how the covariates are modelled.
We fit the empty model using survreg.

lnYi = β0 + σWi. (4.17)
From the summary of the regression in R, estimates for β̂0 and σ̂ are found. The Cox–
Snell residuals are, according to (4.3), for the empty model

R̂i = e
lnYi−β̂0

σ̂ . (4.18)
These should ideally be unit exponentially distributed under the assumption that the
empty model is correct. The residuals are now used as the response variable when using
the covariate order method. The covariate order method estimates the hazard function,
λ̂(x), for a covariate x. Implementation of the covariate order method in R was provided
by Jan Terje Kvaløy. This code can be found in Appendix D.1. Assuming that the
correct model is given by

lnYi = β0 + f(xi) + σWi. (4.19)
The expected value of the Cox–Snell residuals, R̂i, in (4.18), are estimated as 1/λ̂(xi)
by the covariate order method. We need to find the expression for the expected value
of the Cox–Snell residuals. Start by solving (4.17) for Wi. Then we find the expected
value of the Cox–Snell residuals when Yi has distribution given by (4.19),

E[R̂∗i ] = E
[
e

lnYi−β
∗
0

σ∗

]
= E

[
e

lnYi−β0−f(xi)
σ

· σ
σ∗ e

(β0−β∗
0 )+f(xi)
σ∗

]
.

(4.20)

The first exponential term in the expectation is shown to be Weibull distributed. The
second term is only a constant depending on observation number i. Setting U =
e

lnTi−β0−f(xi)
σ and recognizing this as an unit exponentially distributed variable, i.e.

U ∼ fU (u) = e−u. Then setting the variable in the first exponential term as Y = Uσ/σ
∗

and transforming:

Y = U
σ
σ∗ ⇒ U = Y

σ∗
σ ⇒ dU

dY = σ∗

σ
Y

σ∗
σ
−1,

fY (y) = fU (y
σ∗
σ ) · σ

∗

σ
y
σ∗
σ
−1 = σ∗

σ
y
σ∗
σ
−1e−y

σ∗
σ .
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Which we recognize, from (2.9), as a Weibull distributed variable with scale parameter 1
and shape parameter σ∗/σ. The expectation of a Weibull distributed variable is known
from (2.9). Thus the expectation of the Cox–Snell residual becomes

E[R̂∗i ] = Γ
(
σ

σ∗
+ 1

)
e

(β0−β∗
0 )+(f(xi)−γ∗xi)

σ∗ . (4.21)

With this expression and the Cox–Snell residuals we have a tool which can help us
to determine what f(xi) looks like. It is also worth noticing that if we do not take
the expectation of (4.18), but still expand the terms as in (4.20) and use the same
transformation as above, we see that

R̂∗i = Uσ/σ
∗
e

(β0−β∗
0 )+(f(xi)−γ∗xi)

σ∗ , (4.22)

which means that the R̂∗i ’s are Weibull distributed with scale parameter e
(β−β∗)T zi+(f(xi)−γ∗xi)

σ∗

and shape parameter σ∗/σ. However, our focus will be on the expectation, 1/λ̂(xi), since
this is where we can utilize λ̂(xi), which is estimated by the covariate order method.

E[R̂i] = E
[
e

lnYi−β̂0
σ̂

]
≈ Γ

[
σ

σ̂
+ 1

]
· e

(β0−β̂0)+f(xi)
σ̂ ≈ 1

λ̂(xi)
. (4.23)

Solving this equation for f(xi) gives us

f(xi) = β̂0 − β0 + σ̂ ln
[(
λ̂(xi) · Γ

[
σ

σ̂
+ 1

])−1
]
. (4.24)

However, we do not know β0 and σ, so the expression will be horizontally displaced by
the value β0 + σ̂ ln [Γ[σ/σ̂ + 1]]. The relationship is then

f(xi) = β̂0 − σ̂ ln
[
λ̂(xi)

]
. (4.25)

Plotting this versus xi can give us an indication of the functional form of the covariates.
We will do this for all covariates, zi1, zi2 and xi, for all three censoring levels. Before
we use the covariate order method, we need to find the optimal smoothing parameters
in each of the nine cases.

4.2.2.3 Finding the optimal smoothing parameter using a likelihood cross-
validation criterion

When using the covariate order method, one has the choice of smoothing over the co-
variate axis or the event axis (the Si’s in Figure 2). Since the covariates are standard
normal distributed, with more observations around zero than in the tails, we choose to
smooth over the covariate axis. A constant smoothing parameter on the covariate axis
with a varying number of points within each interval would be unfortunate. The reader
is referred to [9] for a more detailed description of the smoothing concept in the method.
To find the optimal value of the smoothing parameter we use a likelihood cross-validation
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criterion described in [9]. Letting Xi denote the covariate used and R̂i the Cox–Snell
residual, then the likelihood of the Cox–Snell residuals are

L(λ(·)) =
n∏
i=1

[λ(Xi)e−λ(Xi)R̂i)]δi [e−λ(Xi)R̂i)]1−δi ], (4.26)

which again gives us the log-likelihood function

l(λ(·)) =
n∑
i=1

[δi lnλ(Xi)− λ(Xi)R̂i]. (4.27)

Here the δi’s are the censoring status. The idea of the cross validation, here leave-one-
out-cross validation [13, ch. 17] is used, is to estimate the hazard function, λ(x), with all
of the data except for observation i. Then use this hazard rate to find the hazard rate
for the observation left out. Let λ̂−i(x|h) denote this hazard rate, where the smoothing
parameter, h, is held constant. This leads to the likelihood cross-validation criterion

lCV (h) =
n∑
i=1

[δi ln λ̂−i(Xi|h)− λ̂−i(Xi|h)Ri]. (4.28)

The optimal smoothing parameter is found by maximizing this expression for h. We
could not find a function that did this for us, so we have done this in R, and the code
is included as Appendix D.4. We used model (4.17) when estimating the hazard rates
in the likelihood cross-validation criterion. The maximum value for lCV (h) for each
covariate was found using the optimize function in R. The results are seen in Table 1.

20% 50% 80%
Covariate h lCV (h) h lCV (h) h lCV (h)

zi1 1.773136 -51.32165 3.788885 -29.50246 0.2693558 -19.21889
zi2 1.951446 -81.43132 7.329702 -51.16201 8.88204 -22.36975
xi 1.887488 -76.57993 1.463886 -46.68948 4.017604 -21.95032

Table 1: Maximum value for lCV (h) with corresponding h for each of the covariates zi1,
zi2 and xi for censoring levels of 20%, 50% and 80%.

One could suspect that the smoothing parameter, which is the length of each interval
on the covariate axis we smooth over, should increase for increasing censoring levels.
This is because there are fewer events in the artificial point process when the censoring
level is high. This should lead to an increase in the smoothing parameter, in order to be
able to cover a sufficient amount of events. See Figure 12 (this plot has nothing to do
with the data set used, it is merely included for illustrational purposes). It is seen that
the smoothing parameter for the covariate zi2 increases along with the censoring level,
but this is not the case for zi1 and xi. The smoothing parameter for zi1 increases from
20% to 50%, and decreases to 80% censoring. For xi it decreases from 20% to 50%, and
increases to 80%. In the specialization project [1] it was seen that a preliminary näıve
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choice of 1 for the smoothing parameter also lead to nice results. When computing the
lCV (h), it was also noted that this expression diverged for some h’s, so it is uncertain
how important this parameter is for the final results. We used the smoothing parameters
in Table 1 when the Cox–Snell residuals from the empty model was the basis for the
point process in the covariate order method. The functional form in (4.25) was estimated
for each covariate for each censoring level.

S

x

hS

hx

Figure 12: Figure illustrating the correspondance between the smoothing parameter on
the covariate axis,x, and the event axis, S.

The plots of the functional form (Figure 13) of each covariate clearly suggests a linear
function for z1 for all censoring levels. z2’s functional form varies for all censoring levels.
The reason for this could be that according to the p-values in the summaries for both
the misspecified and assumed correct model in Section 4.2.2.1, the coefficient of z2 is not
significantly different from zero, and hence the covariate’s influence is negligible in the
models. This may also be the reason for the scale being so different on the f(·)-axis for
80% censoring compared to the two lower censoring levels. The functional form of x is
clearly “U”-shaped at 20% censoring, visible at 50%, but not as clear cut at 80%. The
next step is to fit a model with functional form of the covariates as suggested by the
plots for each censoring level. We fit the model

lnYi = β0 + β1zi1 + β2zi2 + β3x
2
i + σWi. (4.29)

New Cox–Snell residuals are calculated,

R̂i = e
lnYi−β̂0−β̂1zi1−β̂2zi2−β̂3x

2
i

σ̂ . (4.30)

This model is believed to be correct. Which means that the hazard rate estimated
with the covariate order method, or the inverse of the expected value of the Cox–Snell
residuals, should not have any trends. We have chosen to look specifically at the hazard
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rates estimated from the covariate x, since we know that this is the one that initially
was misspecified. We again find the optimal smoothing parameter for each censoring
level. Values can be found in Table 2.
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Figure 13: Plots of the estimated function from (4.25) for each covariate (z1, z2 and x
from left to right) for each censoring level (20%, 50% and 80% from top to bottom).
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Censoring level h lCV (h)
20% 8.157306 -78.58567
50% 8.35743 -48.93229
80% 7.923083 -19.70174

Table 2: Maximum value for lCV (h) with corresponding h for x2
i for censoring levels of

20%, 50% and 80%.

The hazard rates are estimated with the covariate order method. The plot of the loga-
rithm of the hazard rate versus x for all censoring levels can be seen in Figure 14. If the
model is correct, the logarithm of the hazard rate should be zero. From the plots we see
that all the points lie close to zero, but it looks as though there is an increasing trend
for small values of x2

i and a decreasing trend for large values. To check for trends more
rigorously we perform a more formal trend test.
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Figure 14: Plots of x2
i vs. ln(λ̂(x2

i )) for 20%, 50% and 80% censoring (from left to right).

4.2.2.4 Statistical trend tests of the hazard rate

Three statistical tests of trend have been considered:

1. The Laplace test,

2. The military handbook test,

3. Trend test based on the Anderson–Darling statistic [14].

The Laplace test and the military handbook test are described in [6, p. 286-287]. These
test the following null hypothesis, H0, against the alternative hypothesis, H1:
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H0:“No trend”, i.e. that the artificial (point) poisson process is a
homogeneous poisson process (HPP).

H1:“Monotonic trend”, i.e. that the artificial (point) poisson process is a
non-homogeneous poisson process (NHPP) with either
increasing or decreasing hazard rate.

The fact that these tests only test for monotonic trend is the reason why we decided
not to use them. The increasing and decreasing characteristics in Figure 14 is clearly
non-monotonic. The third test, the Anderson–Darling test, tests for both monotonic
and non-monotonic trends as an alternative to the null hypothesis of no trend. The
Anderson–Darling test used is described in [2]. The test statistic is given by

AD = −1
k̂

 k̂∑
i=1

(2i− 1)
(

ln Si
S

+ ln
(

1−
Sk̂+1−i
S

))− k̂. (4.31)

Here S =
∑n
i=1 Yi and k̂ is given by

k̂ =
{
k(n) if Sk(n) < S,

k(n)− 1 if Sk(n) = S.

This means that k̂ is dependent on whether or not the last interoccurence time in the
aritificial point process is a censored or uncensored observation time, Yi. The Anderson–
Darling test statistic was calculated for each censoring level. Their values were found to
be

ADxi = 3.914077 at 20% censoring,
ADxi = 3.139462 at 50% censoring,
ADxi = 1.814149 at 80% censoring.

(4.32)

Our implementation of the Anderson–Darling statistic in R is found in Appendix D.2.
The Anderson–Darling test is a one sided test, so we need to find our critical values.
However, instead of using the critical value for the asymptotic null distribution of (4.31)
given in [2], we used bootstrapping to estimate our own distribution for the Anderson–
Darling test statistic. The reason for this is that we do not know if this asymptotic null
distribution works for us, and using its critical value would therefore be erroneous.

4.2.2.5 Estimating the distribution of the Anderson–Darling statistic using
bootstrapping

Before we do the actual bootstrapping, we give a brief description of the concept. Boot-
strapping is a computer-intensive method used for statistical inference. It is used to
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estimate properties of, in our case, the Anderson–Darling test statistic, but it can be
used to estimate properities of other statistics as well. Our idea is to estimate the
Anderson–Darling test statistic many times by using the observed data as basis for re-
sampling. With resampling we make a new (i.e. bootstrap) data set from which we can
calculate the Anderson–Darling test statistic. All these bootstrapped Anderson–Darling
statistics estimate the distribution of the statistic. We will use this distribution to check
if our statistics in (4.32) lead to the conclusion of significant trends in the hazard func-
tions. Both a parametric and non-parametric bootstrapping method were used. The
non-parametric bootstrapping method is obtained by resampling, with replacement, the
observations in the data set. The parametric bootstrap samples are obtained by re-
sampling residuals. This is done using the estimated σ̂ from the fitted model in (4.29),
and adding residuals, error terms, given by σ̂W , to the observation times Yi. Here
W are drawn from the standard Gumbel distribution. We now have the bootstrapped
observations (Y ∗i , zi1, zi2, xi), where Y ∗i denotes the bootstrapped observation time, for
all i. For a more thorough description of bootstrapping, the reader is referred to [13].
We made, for each bootstrapping method, 10000 bootstrap samples. This to be sure
that the critical values obtained would be sufficiently accurate. The critical values are
found by sorting the six vectors of Anderson–Darling statistics, and then picking out
the values in the 9500th position in each vector. We have one vector of bootstrapped
Anderson–Darling statistics for each censoring level using both parametric and non-
parametric bootstrapping. The values in the 9500th positions are the 95%-quantiles of
the estimated distributions. Our code showing the implementation of the bootstrapping
is included as Appendix D.3.

Censoring level Statistic 95%-quantile Observed statistic
20% ADpar

xi 4.17991 3.914077
ADnon−par

xi 7.20538
50 % ADpar

xi 3.616888 3.139462
ADnon−par

xi 6.606602
80% ADpar

xi 2.908031 1.814149
ADnon−par

xi 4.379813

Table 3: Observed Anderson–Darling statistics and 95%-quantiles from the estimated
distributions of the Anderson–Darling statistics.

In Table 3 the critical values are listed. Here the superscript in ADsup denotes if the es-
timated distribution came from the parametric or non-parametric bootstrapping. Com-
paring the critical values to the observed test statistics, we see that the observed test
statistic for each covariate is always lower than the critical value, regardless of boot-
strapping method. It is therefore safe to conclude that there is no significant trend in
the hazard function. Which again means that the Cox–Snell residuals can be viewed
as independent of the covariates. Thus we believe that the lifetime model in (4.29) is
correct. However, we have to be careful not to be too obstinate here. Remember, it
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was not obvious that the quadratic function was the underlying functional form of the
xi’s at 80% censoring (Figure 13). In Figure 15 the density plots of the bootstrapped
distributions for the Anderson–Darling test statistics are displayed. The vertical lines
are their respective observed test statistics. The distributions’ scale is larger for the
distributions from the non-parametric bootstrap. The reason for this is because of the
censoring of the lifetimes. When adding “more residuals” to the censoring times causes
the bootstrapped observation times to approach, in most cases, or maybe even surpass
the real, unknown, lifetimes. This again causes the Cox–Snell residuals, in most cases,
to be smaller, which again leads to smaller Anderson–Darling statistics.

To conclude this section we plot the estimation of f(xi) for both methods, transformation
and covariate order, along with the real function in Figure 16. Keep in mind, the output
from using the covariate order method is the blue squares, while the output from the
transformation method is the circles. Knowing this it is easy to say that the approach
using the covariate order method is the best for retrieving the functional form of f(xi).
Especially for high levels of censoring.
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Figure 15: Density plots of the six bootstrapped distributions for the Anderson–Darling
test statistic. The vertical, red, dashed line is the observed statistic, while the vertical,
solid, black line is the 95%-quantile.



40 4 WEIBULL DISTRIBUTED LIFETIMES

−2 −1 0 1 2 3

−
1

0
−

5
0

5
20% censoring

x

f(
x
)

(a)

−2 −1 0 1 2 3

−
1

0
−

5
0

5
1

0

50% censoring

x

f(
x
)

(b)

−2 −1 0 1 2 3

−
1

0
−

5
0

5

80% censoring

x

f(
x
)

(c)

Figure 16: Plots of the estimation of f(xi) using the transformation method, covariate
order method and the real function. The transformation method is illustrated by the
circles, the black solid LOWESS line and the red dashed line (fitted quadratic function).
The covariate order method is the blue squares connected by the blue line. The real
function is the black dash-dot line.
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5 Lognormally distributed lifetimes

Now we use lifetimes that are lognormally distributed with probability density function
as in (2.19)

fT (t) = 1√
2πbt

e−(ln t−u)2/2b2
, −∞ < w <∞. (5.1)

Here u is the log-scale parameter and b is the shape parameter. When simulating the
model given by (3.1), we need to ensure that the Ti’s are lognormally distributed. This
is done by using Wi’s which are from the standard normal distribution. The Wi’s have
probability density function

fW (w) = 1√
2π
e−w

2/2 for −∞ < y <∞. (5.2)

By using the transformation formula for functions of random variables, we can show that
the lifetime, T , in (3.1) is indeed lognormally distributed. Start by isolating W in (3.1)
and transforming:

W = lnT
σ
− β

Tz + f(x)
σ∣∣∣∣dWdT

∣∣∣∣ = 1
bT

fT (t) = fW

(
lnT − βTz − f(x)

σ

)
·
∣∣∣∣dWdT

∣∣∣∣
= 1√

2π
e−

1
2b2

(lnT−βT z−f(x))2
· 1
bT

= 1√
2πbT

e−
1

2b2
(lnT−(βT z+f(x)))2

,

(5.3)

which we recognize as a lognormally distributed variable, according to (5.1), with log-
scale parameter u = βTz + f(x) and shape parameter b = σ. The Cox–Snell residuals
are given by

R̂i = − ln
[
1− FW

(
lnTi − β̂Tzi − γ̂xi

σ̂

)]
. (5.4)

Here FW (·) is the CDF of lognormally distributed variables.
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5.1 Coefficients minimizing the Kullback–Leibler distance

As for the Weibull distributed lifetimes, we want to find the coefficients minimizing
the Kullback–Leibler distance for lognormally distributed lifetimes. For the Weibull
distributed lifetimes we simulated from the model in (4.4):

lnTi = β0 + β1zi1 + β2zi2 + f(xi) + σWi

The results from the data from this model showed that the linear terms, β1zi1 and β2zi2,
were not important when trying to obtain the functional form of f(xi). In this section
we will simulate lognormally distributed lifetimes from a model with only one covariate,
which is misspecified.

lnTi = β0 + f(xi) + σWi, (5.5)

with coefficients and function

β0 = 0,
f(xi) = x2

i ,

σ = 2.
(5.6)

Notice that σ and f(xi) are the same as for the censored Weibull data. The xi’s are
still standard normally distributed. We start with a complete data set with 1 million
observations. When simulating these lifetimes from (5.5), we will again find, with almost
exact precision, the coefficients minimizing the Kullback–Leibler, β∗0 , γ∗ and σ∗, when
fitting the misspecified model

lnTi = β∗0 + γ∗xi + σ∗Wi. (5.7)

5.1.1 Using Cox–Snell residuals to infer the form of f(xi)

To find the functional form of f(xi) we want to use (3.7). However, as for the Weibull
case, we will not know the values forβ0 and σ for real data set. So when solving these
equations for f(xi), we will only be able to find an approximated expression, as we did
in (4.10).

f(xi) ∼ σ∗ ·
[
Φ−1

(
1− e−R̂∗

i

)]
+ β∗0 + γ∗xi. (5.8)

Here Φ−1(·) is the inverse of the standard normal CDF. 1 million lifetimes are simulated
from the model in (5.5) and fitted as (5.7) with survreg in R. Cox–Snell residuals are
calculated according to (5.4). These Cox–Snell residuals are used as R̂∗i in (5.8). The
plot of the estimated f(xi)’s are displayed in Figure 17(a). The function is blurred since
because of the displacement of the points. The functional form is seen better, as for the
Weibull lifetimes, in the smoothed line of the points. Still obtained by taking the mean
value of all approximated values of f(xi) within intervals of length 0.1 on the x-axis.
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(a) f(xi) for all xi.
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Figure 17: Plot of the estimation of the function f(xi) from (5.8).

5.1.2 Uncensored data set

As for the Weibull distributed lifetimes, we simulate 100 uncensored observations. This
moderately sized, complete data set is used to see how the transformation method will
work in practice for lognormally distributed lifetimes. The model is given by (5.5) and
(5.6). Using survreg we fit the misspecified model

lnTi = β̂0 + γ̂xi + σ̂Wi. (5.9)

The summary from survreg was

> summary(lognormalMod)

Call:
survreg(formula = Surv(data$T_i) ˜ data$x_i, data = data, dist = "lognormal")

Value Std. Error z p
(Intercept) 0.8109 0.2416 3.3564 7.90e-04
data$x_i 0.0150 0.2478 0.0604 9.52e-01
Log(scale) 0.8777 0.0707 12.4119 2.25e-35

Scale= 2.41

Log Normal distribution
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Loglik(model)= -310.9 Loglik(intercept only)= -310.9
Chisq= 0 on 1 degrees of freedom, p= 0.95
Number of Newton-Raphson Iterations: 1
n= 100

The linear term, data$x_i, is not significant. Which is the same observation as seen in
the summary for the complete Weibull distributed data set. We calculate the Cox–Snell
residuals according to (5.4), and use them to estimate f(xi) from (5.8). The results are
displayed in Figure 18(a).
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Figure 18: Plots of the estimation of the function f(xi) from (5.8) for the complete data
set of lognormally distributed lifetimes. The solid black line in (b) is the LOWESS, the
red dashed line is a fitted quadratic function.

By just looking at the dots, one observes the tendency of large values of f(xi) for
large absolute values of xi. By fitting the LOWESS line, as seen in Figure 18(b), we
see tendencies of a “U”-shaped function characteristic for quadratic polynomials. A
quadratic regression model was fitted with the function lm in R to see if this could be
significant.
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> summary(quadlognorm)

Call:
lm(formula = f_prop ˜ data$x_i + I(data$x_iˆ2) - 1)

Residuals:
Min 1Q Median 3Q Max

-5.158 -1.773 0.317 1.527 5.154

Coefficients:
Estimate Std. Error t value Pr(>|t|)

data$x_i -0.2930 0.2280 -1.285 0.202
I(data$x_iˆ2) 0.9662 0.1494 6.469 3.9e-09 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.145 on 98 degrees of freedom
Multiple R-squared: 0.3001,Adjusted R-squared: 0.2858
F-statistic: 21.01 on 2 and 98 DF, p-value: 2.547e-08
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Figure 19: Plots comparing the estimation of the function f(xi) for Weibull and lognor-
mally distributed lifetimes.
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From the summary we see that a quadratic term is significant. Figure 18 is the lognormal
equivalent to Figure 7 for Weibull distributed lifetimes. Immediately it does not look
like one is any better the other, but if we plot them again with the same scale we see
a difference. Figure 19 shows the two plots together. We see that the points are more
scattered for the Weibull distributed lifetimes, and this leads to a poorer estimation of
f(xi). However, this is believed to be caused by the variance of Cox–Snell residuals from
the two different lifetime distributions. The variance is larger for the Cox–Snell residuals
from the lifetimes from the Weibull distribution (1.21 > 0.96), since the variance of the
actual lifetimes are alot larger (3.3 · 1016 � 1.4 · 104). Another moment is that the x’s
for the Weibull case are a bit more spread than the for the lognormal case, even though
they are drawn from the same distribution.

5.1.3 Censored data sets

We continue with the 100 observations from the complete data set, but we draw cen-
soring times for approximately 20%, 50% and 80% censoring levels. The independent
censoring times, Ci, were drawn from the exponential distribution with λ20 = 3.0 · 10−2,
λ50 = 1/4 and λ80 = 2 for ascending censoring levels. The data set is listed in Appendix
B.

As in Section 4.2.2.1 we use survreg to fit the misspecified model

lnYi = β0 + γxi + σWi, (5.10)

for all three censoring levels. Here Yi = min(Ti, Ci) The summaries from survreg were

> summary(lognormalMod20)

Call:
survreg(formula = Surv(data$Y20_i, data$s20_i) ˜ data$x_i, data = data,

dist = "lognormal")
Value Std. Error z p

(Intercept) 0.9063 0.2595 3.493 4.78e-04
data$x_i -0.0607 0.2655 -0.229 8.19e-01
Log(scale) 0.9113 0.0817 11.154 6.85e-29

Scale= 2.49

Log Normal distribution
Loglik(model)= -217.6 Loglik(intercept only)= -217.7
Chisq= 0.05 on 1 degrees of freedom, p= 0.82
Number of Newton-Raphson Iterations: 3
n= 100
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> summary(lognormalMod50)

Call:
survreg(formula = Surv(data$Y50_i, data$s50_i) ˜ data$x_i, data = data,

dist = "lognormal")
Value Std. Error z p

(Intercept) 1.017 0.325 3.128 1.76e-03
data$x_i -0.196 0.314 -0.623 5.33e-01
Log(scale) 0.959 0.107 8.937 4.01e-19

Scale= 2.61

Log Normal distribution
Loglik(model)= -105.1 Loglik(intercept only)= -105.3
Chisq= 0.39 on 1 degrees of freedom, p= 0.53
Number of Newton-Raphson Iterations: 3
n= 100

> summary(lognormalMod80)

Call:
survreg(formula = Surv(data$Y80_i, data$s80_i) ˜ data$x_i, data = data,

dist = "lognormal")
Value Std. Error z p

(Intercept) 0.955 0.586 1.629 1.03e-01
data$x_i 0.182 0.411 0.444 6.57e-01
Log(scale) 0.949 0.175 5.411 6.26e-08

Scale= 2.58

Log Normal distribution
Loglik(model)= -26.1 Loglik(intercept only)= -26.2
Chisq= 0.2 on 1 degrees of freedom, p= 0.66
Number of Newton-Raphson Iterations: 4
n= 100

We see the same “error” in the lognormal models as in the Weibull models. The linear
term data$x_i = xi is insignificant for all censoring levels. The models solution to cope
with this is again to add a large (Intercept) = β̂0 value.

The Cox–Snell residuals for each model were calculated from

R̂i = − ln
[
1− Φ

(
lnYi − β̂Tzi − γ̂xi

σ̂

)]
, (5.11)
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for each censoring level. Here Φ(·) is the CDF of the standard normal distribution.
Assuming that the model is correct, we do the same as in Section 4.2.2.1 for the cen-
sored observations. We add 1 to the Cox–Snell residuals from censored observations to
compensate for the observation times being censored. A plot of the logarithm of the
Cox–Snell residuals versus xi can be seen in Figure 20. The dots does not appear to be
randomly scattered for any of the censoring levels. For 20% censoring the logarithm of
the Cox–Snell residuals are particularily small for small values of xi, indicating that the
covariate may be misspecified. This can be seen for 50% as well. For 80% one cannot
draw any solid conclusions for the dots coming from uncensored observations. Here the
logarithm of the residuals from censored observations are close to zero. The cause of
this is the same as for Weibull distributed lifetimes. The censoring times are small, and
adding one to the residuals causes them to approximate to one.
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Figure 20: Plot of the logarithm of the Cox–Snell residuals versus xi for censoring levels
of 20%, 50% and 80% (left to right). Circles from uncensored observations, solid dots
from censored observations.

We continue our investigation to find the functional form of f(xi) by using (5.8). We use
the computed values for the Cox–Snell residuals for R̂∗i and the model parameters β̂0, γ̂,
σ̂ for β∗0 , γ∗, σ∗. The results can be seen in Figure 21. The LOWESS line was fitted to
each censoring level, suggesting a quadratic function for the two lowest censoring levels.
For 80% censoring the plot is inconclusive, as it was for Weibull distributed lifetimes.
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Figure 21: Plot of the estimation of the function f(xi) with LOWESS (black solid line)
and quadratic regression (red dashed line) estimates for the different censoring levels for
lognormally distributed data.
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For 20% and 50% censoring we fit a quadratic regression model:

> summary(quad20lognorm)

Call:
lm(formula = f_prop20 ˜ data$x_i + I(data$x_iˆ2) - 1)

Residuals:
Min 1Q Median 3Q Max

-5.119 -1.692 0.526 1.665 4.115

Coefficients:
Estimate Std. Error t value Pr(>|t|)

data$x_i -0.3599 0.2398 -1.501 0.137
I(data$x_iˆ2) 0.9647 0.1571 6.140 1.77e-08 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.257 on 98 degrees of freedom
Multiple R-squared: 0.2779,Adjusted R-squared: 0.2631
F-statistic: 18.85 on 2 and 98 DF, p-value: 1.182e-07

> summary(quad50lognorm)

Call:
lm(formula = f_prop50 ˜ data$x_i + I(data$x_iˆ2) - 1)

Residuals:
Min 1Q Median 3Q Max

-5.0553 -1.5872 0.2982 2.1105 3.8897

Coefficients:
Estimate Std. Error t value Pr(>|t|)

data$x_i -0.5211 0.2406 -2.165 0.0328 *
I(data$x_iˆ2) 1.0530 0.1576 6.679 1.46e-09 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.264 on 98 degrees of freedom
Multiple R-squared: 0.3137,Adjusted R-squared: 0.2997
F-statistic: 22.4 on 2 and 98 DF, p-value: 9.745e-09
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The summary of the quadratic regression model for the censoring level of 20% (quad20lognorm)
suggests that only a quadratic term is significant. For 50% the linear term is also sig-
nificant, which we know is not the case. This again indicates that the transformation
method is not good for high levels of censoring. However, we continue as for the Weibull
distributed lifetimes, and respecify the models for 20% and 50% censoring

lnYi = β0 + γ1x
2
i + σWi, for 20% censoring,

lnYi = β0 + γ2xi + γ3x
2
i + σWi, for 50% censoring.

(5.12)

The models were fitted with survreg:

> summary(lognormalMod20_2)

Call:
survreg(formula = Surv(data$Y20_i, data$s20_i) ˜ I(data$x_iˆ2),

data = data, dist = "lognormal")
Value Std. Error z p

(Intercept) 0.0256 0.3001 0.0852 9.32e-01
I(data$x_iˆ2) 0.8990 0.2069 4.3454 1.39e-05
Log(scale) 0.8103 0.0814 9.9489 2.55e-23

Scale= 2.25

Log Normal distribution
Loglik(model)= -208.8 Loglik(intercept only)= -217.7
Chisq= 17.65 on 1 degrees of freedom, p= 2.7e-05
Number of Newton-Raphson Iterations: 4
n= 100

> summary(lognormalMod50_2)

Call:
survreg(formula = Surv(data$Y50_i, data$s50_i) ˜ data$x_i + I(data$x_iˆ2),

data = data, dist = "lognormal")
Value Std. Error z p

(Intercept) -0.112 0.340 -0.329 7.42e-01
data$x_i -0.703 0.339 -2.074 3.81e-02
I(data$x_iˆ2) 1.279 0.299 4.280 1.87e-05
Log(scale) 0.832 0.105 7.894 2.93e-15

Scale= 2.3
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Log Normal distribution
Loglik(model)= -94.6 Loglik(intercept only)= -105.3
Chisq= 21.51 on 2 degrees of freedom, p= 2.1e-05
Number of Newton-Raphson Iterations: 4
n= 100

The coefficients are estimated better for the respecified models in (5.12) than for the
initial misspecified models in (5.10). This is best seen in the (Intercept) and Scale
coefficients. New Cox–Snell residuals were computed and log-plotted versus the xi’s in
Figure 22. It still looks like the logarithm of the residuals have large values for large
absolute values of xi, but perhaps not as clear as the plot from the original misspecified
model in Figure 20.
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Figure 22: Plot of the logarithm of the Cox–Snell residuals versus xi for censoring
levels of 20% and 50% from the respecified models in (5.12). Circles from uncensored
observations, solid dots from censored observations.

To check if our respecified models are correct we investigate the Cox–Snell residuals
more formally. When a model is correct these residuals should be unit exponentially
distributed. We start by plotting them along with their theoretical mean of one. This
plot is displayed in part (a) of Figure 23. We see that the estimated mean value, the
blue solid line, does not coincide with the theoretical one, the red dashed line. The
difference is larger for the model with 50% censoring than for the one with 20%. In part
(b) we have fitted the Cox–Snell residuals into histograms. If the residuals truly were
unit exponentially distributed the histogram should follow the solid blue line, which is
the theoretical density function. Neither of the plots fit, but the one for 20% censoring
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is remarkably better than the one for 50%. Part (c) shows the probability plots for both
censoring levels. Again, the plot coming from the model with 20% censoring fits best,
but it is not a very good fit. This leads to the conclusion that the residuals are not
unit exponentially distributed, and hence the respecified model is not the correct one
either. Then again, at least for the model with 20% censoring, we know that the model
is correct. So the poor results could simply come from the fact that the fitted model
does not fit the data as good as we could have hoped for.
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Figure 23: Plots checking if the Cox–Snell residuals are unit exponentially distributed.
20% censoring in the left column, 50% censoring in the right. (a) is a plot of the Cox–
Snell residuals from the models in (5.12) with theoretical mean (red dashed line) and
estimated mean (blue solid line). (b) is a histogram of the Cox–Snell residuals with
theoretical density function. (c) is the unit exponential probability plot. 1 is added to
the censored residuals.
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5.1.3.1 Covariate order method

Now we turn to the covariate order method. Starting by fitting an empty model, a model
without any covariates, using survreg, for all censoring levels.

lnYi = β0 + σWi. (5.13)

From the regression we get estimates for β̂0 and σ̂. The Cox–Snell residuals are for the
empty model

R̂i = − ln
[
1− Φ

(
lnYi − β̂0

σ̂

)]
, (5.14)

which, under the assumption that the empty model is correct, should be unit expo-
nentially distributed. The residuals are used as the response variable when estimating
the hazard function, λ̂(x), with the covariate order method. Suspecting that the empty
model is not the correct model, we can assume that the correct model is given by

lnYi = β0 + f(xi) + σWi. (5.15)

The expected value of the Cox–Snell residuals, R̂i, in (5.14), are estimated as 1/λ̂(xi),
where λ̂(xi) is estimated by the covariate order method

E[R̂i] = E
[
− ln

[
1− Φ

(
lnYi − β̂0

σ̂

)]]
≈ 1
λ̂(xi)

, (5.16)

Estimating and solving for f(xi), gives us the relationship f(xi) has with the known
coefficients and covariates.

f(xi) ≈ σ̂ ·
[
Φ−1

(
1− e−1/λ̂(xi)

)]
+ β̂0. (5.17)

Before using the covariate order method we need to find the optimal smoothing parame-
ters. This is done in the same way as for Weibull distributed lifetimes in Section 4.2.2.3,
i.e. using a likelihood cross-validation criterion. The optimal smoothing parameters for
the different censoring levels are listed in Table 4, together with their corresponding
maximal lCV (h). We still smooth over the covariate axis.

Censoring level h lCV (h)
20% 1.399745 -76.09383
50% 1.351782 -44.84995
80% 2.600193 -19.53924

Table 4: Maximum value for lCV (h) with corresponding h for the covariate xi for
censoring levels of 20%, 50% and 80%.
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When using the optimal smoothing parameters for each censoring level with the covariate
order method, we get the plots in Figure 24 estimating the functional form of f(xi).
We see that the functional form is estimated better with this method than with the
transformation method, albeit its accuracy deteriorates for increasing censoring levels.
The function increases too rapidly when the absolute value of xi increases.
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Figure 24: Estimation of the f(xi) using the covariate order method for censoring levels
of 20%, 50% and 80%.

Assuming that f(xi) ∝ x2
i , we fit new models with survreg where this covariate is

included. We fit the model

lnYi = β0 + γx2
i + σWi, (5.18)

for all censoring levels. Their Cox–Snell residuals are estimated with the model coeffi-
cients

R̂i = − ln
[
1− Φ

(
lnYi − β̂0 − γ̂x2

i

σ̂

)]
(5.19)

To test if this model is correct, we check if the hazard rate estimated with the covariate
order method has any trends. The model is believed to be correct if we cannot find any
trends. We start by finding the optimal smoothing parameter using the same likelihood
cross-validation criterion as before (Section 4.2.2.3). The optimal smoothing parameters,
h, together with their maximal values for lCV (h) are listed in Table 5.
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Censoring level h lCV (h)
20% 4.882172 -78.61886
50% 12.74270 -49.50710
80% 12.74270 -21.60141

Table 5: Maximum value for lCV (h) with corresponding h for the covariate x2
i for

censoring levels of 20%, 50% and 80%.
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Figure 25: Plots of x2
i vs ln(λ̂(x2

i )) for 20%, 50% and 80% censoring (from left to right).

The hazard rates, from the covariate order method, are displayed in Figure 25. The
plot shows that the hazard rate is decreasing for small values of x2

i with 20% censoring
and increasing hazard rate for small x2

i with 50% censoring. For 80% censoring it looks
as there is no trend, except for the largest x2

i having an abnormally high hazard rate.
When we look at the scale on the ln(λ̂(x2

i ))-axis it is seen to be much larger for the 80%
censoring plot than the two others. With this in mind it can look like this hazard rate
is also decreasing for small values of x2

i .

We continue with the formal trend test used for the Weibull distributed data, the
Anderson–Darling test. Using (4.31), the test statistics were found to be

ADxi = 1.245602 at 20% censoring,
ADxi = 0.4133454 at 50% censoring,
ADxi = 0.9418295 at 80% censoring.

(5.20)

The next step is to bootstrap the observations to find distributions for the Anderson–
Darling statistics. Then we can check if our observerd statistics are smaller than the
critical values. This is done analogously as in Section 4.2.2.5, with both parametric and
non-parametric bootstrapping. The critical values, 95%-quantiles, are listed in Table
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6, while the bootstrapped densities, along with the critical and observed values of the
Anderson–Darling statistic, can be seen in Figure 26. From the table and figures we
see that all the observed statistics are smaller than the corresponding critical values for
both parametric and non-parametric bootstrapped densities. The critical values for the
non-parametric bootstrap is seen to be higher than the values for the parametric, as it
was also seen for the Weibull distributed lifetimes. This leads to the conclusion that the
model in (5.18) is correct for all censoring levels.

Censoring level Statistic 95%-quantile Observed statistic
20% ADpar

xi 1.418442 1.245602
ADnon−par

xi 2.108066
50 % ADpar

xi 1.220073 0.4133454
ADnon−par

xi 2.460707
80% ADpar

xi 1.240678 0.9418295
ADnon−par

xi 3.126138

Table 6: Observed Anderson–Darling statistics and 95%-quantiles of the estimated dis-
tributions of the Anderson–Darling statistics.

We conclude this section with a plot of the estimation of f(xi) for both methods, trans-
formation and covariate order, along with the real function in Figure 27. The output
from using the covariate order method is the blue squares, while the output from the
transformation method is the circles. As it was for Weibull distributed lifetimes, the
covariate order method is the best approach for retrieving the functional form of f(xi)
when the lifetimes are lognormally distributed.
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Figure 26: Density plots of the six bootstrapped distributions for the Anderson–Darling
test statistic. The vertical, red, dashed line is the observed statistic, while the vertical,
solid, black line is the 95%-quantile.
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6 Analytical Kullback–Leibler

In this section we will investigate the possibility of obtaining the coefficients minimizing
the Kullback–Leibler distance analytically. Previously we have used a simulated data
set with an unrealistic number of observations to find the coefficients. Finding the
coefficients analytically is mainly a curiosity, but it would also be reassuring to see that
the theory is consistent with what we have seen in practice. In general the expression in
equation (3.3) can be written as

KL(θ̂) = E

[
ln g(T1, ..., Tn)
h(T1, ..., Tn, θ̂)

]
= E

[
ln g(T1, ..., Tn)− ln h(T1, ..., Tn, θ̂)

]
,

= E
[
ln[g(T1) · ... · g(Tn)]− ln[h(T1, θ̂) · ... · h(Tn, θ̂)]

]
,

= E

[
n∑
i=1

{
ln g(Ti)− ln h(Ti, θ̂)

}]
,

=
n∑
i=1

{
E
[
ln g(Ti)− ln h(Ti, θ̂)

]}
.

(6.1)

The expectation is taken with respect to the true model, g(·). g(·) is given by the
lifetimes from the model

lnT = f1(x1) + f2(x2) + ...+ fp(xp) + σW. (6.2)

Where the fi(xi)’s are unknown. h(·) is given by the lifetimes from the misspecified
model where linearity is assumed.

lnT = β̂Tx+ σ̂W. (6.3)

Here β̂ = {β̂0, β̂1, β̂2, ..., β̂p} and x = {1, x1, x2, ..., xp}. We will use the following true
and misspecified model, respectively h(·) and g(·), in this section.

lnTi = β0 + x2
i + σWi. (6.4)

lnTi = β̂0 + γ̂xi + σ̂Wi. (6.5)
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6.1 Lognormal

We start with lognormally distributed lifetimes. Here g(·) and h(·) are given, respectively,
by

g(Ti) = 1√
2πσTi

e−
1

2σ2 (lnTi−(β0+x2
i ))

2

,

h(Ti, θ̂) = 1√
2πσ̂Ti

e−
1

2σ̂2 (lnTi−(β̂0+γ̂xi))2

. (6.6)

Inserting this into (6.1) for a given i

KL(θ̂) =
n∑
i=1

{
E

[
ln σ̂
σ

+ (lnTi)2 ·
( 1

2σ̂2 −
1

2σ2

)
+ lnTi ·

(
β0 + x2

i

σ2 − β̂0 + γ̂xi
σ̂2

)

−(β0 + x2
i )2

2σ2 + (β̂0 + γ̂xi)2

2σ̂2

]} (6.7)

Here we need to find E[lnTi] and E[(lnTi)2]. For E[lnTi], we know that Wi is standard
normal distributed.

E[lnTi] = E[β0 + x2
i + σWi] = β0 + x2

i + σE[Wi] = β0 + x2
i + σ · 0 = β0 + x2

i , (6.8)

Then for E[(lnTi)2].

E[(lnTi)2] = (E[lnTi])2 + V ar[lnTi] = (β0 + x2
i )2 + σ2V ar[Wi]

= (β0 + x2
i )2 + σ2.

(6.9)

Here we use that V ar[X] = E[X2]−(E[X])2 for a stochastic variable X. The expression
for the Kullback–Leibler distance which needs to be minimized for θ̂ = {β̂0, γ̂, σ̂} is with
these results

KL(θ̂) =
n∑
i=1

[
ln σ̂
σ

+
(
(β0 + x2

i )2 + σ2
)
·
( 1

2σ̂2 −
1

2σ2

)
+ (β0 + x2

i ) ·
(
β0 + x2

i

σ2 − β̂0 + γ̂xi
σ̂2

)

−(β0 + x2
i )2

2σ2 + (β̂0 + γ̂xi)2

2σ̂2

]
.

(6.10)

Notice that the lifetimes, Ti’s, are eliminated from the function. As an example we now
use a fixed design with only five covariate values xi ∈ {−2,−1, 0, 1, 2}. To minimize
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the function we take the partial derivative with respect to β̂0, γ̂ and σ̂. Setting the
expressions equal to zero, and solving. Remember that β0 = 0, σ = 2 and n = 5. We
start with γ̂.

∂KL(θ̂)
∂γ̂

=
5∑
i=1

[
−(β0 + x2

i )xi
σ̂2 + (β̂0 + γ̂xi)xi

σ̂2

]
= 0

⇒
5∑
i=1

[
−x3

i + γ̂xi
]

= 0

⇒ γ̂ =
∑5
i=1 x

3
i∑5

i=1 x
2
i

= 0.

(6.11)

The coefficient in front of the linear term in (6.5) is found to be zero. Then for β0.

∂KL(θ̂)
∂β̂0

=
5∑
i=1

[
−β0 + x2

i

σ̂2 + β̂0 + γ̂xi
σ̂2

]
= 0

⇒
5∑
i=1

[
−x2

i + β̂0
]

= 0

⇒ β̂0 = 1
5

5∑
i=1

x2
i = 2.

(6.12)

Finally, σ̂.

∂KL(θ̂)
∂σ̂

=
5∑
i=1

[
1
σ̂
− (β0 + x2

i )2 + σ2

σ̂3 + 2(β0 + x2
i )(β̂0 + γ̂xi)
σ̂3

− (β̂0 + γ̂xi)2

σ̂3

]
= 0

⇒
5∑
i=1

[
σ̂2 − x4

i − 4 + 4x2
i − 4

]
= 0

⇒ σ̂ =

√√√√1
5

5∑
i=1

[
x4
i − 4x2

i + 8
]

=
√

34/5 ≈ 2.60781.

(6.13)

To check if these results are correct we simulate 1 million lifetimes from the model in
(6.4). Here β0 = 0, σ = 2 and Wi is standard normal distributed. For the xi’s we use 200
000 observations with value -2, 200 000 with -1 and so on. The summary when fitting
(6.5) gives us the estimated coefficients.
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> summary(survLmod)

Call:
survreg(formula = Surv(fixedLData$T) ˜ fixedLData$x, data = fixedLData,

dist = "lognormal")
Value Std. Error z p

(Intercept) 2.00e+00 0.002608 7.68e+02 0.000
fixedLData$x 1.44e-05 0.001844 7.81e-03 0.994
Log(scale) 9.58e-01 0.000707 1.36e+03 0.000

Scale= 2.61

Log Normal distribution
Loglik(model)= -4379657 Loglik(intercept only)= -4379657
Chisq= 0 on 1 degrees of freedom, p= 0.99
Number of Newton-Raphson Iterations: 1
n= 1000000

We see that all the coefficients from survreg match the analytically obtained ones. The
coefficients minimizing the Kullback–Leibler distance are

β∗0 = 2,
γ∗ = 0,
σ∗ = 2.61.

(6.14)
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6.2 Weibull

For Weibull distributed lifetimes. g(·) and h(·) are given, respectively, by

g(Ti) = 1
σ
e−

1
σ

(β0+x2
i )T

1/σ−1
i e−T

1/σ
i e−(β0+x2

i
)/σ
,

h(Ti, θ̂) = 1
σ̂
e−

1
σ̂

(β̂0+γ̂xi)T
1/σ̂−1
i e−T

1/σ̂
i e−(β̂0+γ̂xi)/σ̂ . (6.15)

Inserting this into (6.1) for a given i

KL(θ̂) =
n∑
i=1

{
E

[
− ln σ − β0 + x2

i

σ
+ lnTi

σ
− T 1/σ

i e−(β0+x2
i )/σ

+ ln σ̂ + β̂0 + γ̂xi
σ̂

− lnTi
σ̂

+ T
1/σ̂
i e−(β̂0+γ̂xi)/σ̂

]}
.

(6.16)

Which means that we need to find E[lnTi], E[T 1/σ
i ] and E[T 1/σ̂

i ]. Knowing that Wi is
standard Gumbel distributed, E[lnTi] is

E[lnTi] = E[β0 + x2
i + σWi] = β0 + x2

i + σE[Wi] = β0 + x2
i − σφ, (6.17)

where φ is Euler’s constant. For E[T 1/σ
i ] and E[T 1/σ̂

i ] we use the standard approach for
finding expected values. Staring with E[T 1/σ

i ].

E[T 1/σ
i ] =

∫ ∞
0

T
1/σ
i

1
σ
e−(β0+x2

i )/σT
1/σ−1
i e−T

1/σ
i e−(β0+x2

i
)/σ
dTi

= 1
σ
e−(β0+x2

i )/σ
∫ ∞

0
T

2/σ−1
i e−T

1/σ
i e−(β0+x2

i
)/σ
dTi

(6.18)

Set u = T
1/σ
i e−(β0+x2

i )/σ. Then dTi = e(β0+x2
i )/σ · σ · T 1−1/σ

i du. Inserting this in (6.18)

E[T 1/σ
i ] = 1

σ
e−(β0+x2

i )/σ
∫ ∞

0
T

2/σ−1
i e−ue(β0+x2

i )/σ · σ · T 1−1/σ
i du

=
∫ ∞

0
T

1/σ
i e−udu = e(β0+x2

i )/σ
∫ ∞

0
ue−udu = e(β0+x2

i )/σ.
(6.19)

Here we have used that T 1/σ
i = u · e(β0+x2

i )/σ. Then we do much of the same for E[T 1/σ̂
i ]

E[T 1/σ̂
i ] =

∫ ∞
0

T
1/σ̂
i

1
σ
e−(β0+x2

i )/σT
1/σ−1
i e−T

1/σ
i e−(β0+x2

i
)/σ
dTi

= 1
σ
e−(β0+x2

i )/σ
∫ ∞

0
T

1/σ+1/σ̂−1
i e−T

1/σ
i e−(β0+x2

i
)/σ
dTi

(6.20)
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Again, we use u = T
1/σ
i e−(β0+x2

i )/σ for substitution.

E[T 1/σ̂
i ] = 1

σ
e−(β0+x2

i )/σ
∫ ∞

0
T

1/σ+1/σ̂−1
i e−ue(β0+x2

i )/σ · σ · T 1−1/σ
i du

=
∫ ∞

0
T

1/σ̂
i e−udu = e(β0+x2

i )/σ̂
∫ ∞

0
ue−udu = e(β0+x2

i )/σ̂
∫ ∞

0
uσ/σ̂e−udu

= e(β0+x2
i )/σ̂ · Γ

[
σ

σ̂
+ 1

] (6.21)

The last integral is recognized as the Gamma function. We also used that T 1/σ̂
i =(

u · e(β0+x2
i )/σ

)σ/σ̂
. The expression for the Kullback–Leibler distance which needs to be

minimized for θ̂ is with these results

KL(θ̂) =
n∑
i=1

[
ln σ̂
σ

+ β̂0 + γ̂xi − β0 − x2
i + σφ

σ̂

−φ− 1 + e(β0−β̂0+x2
i−γ̂xi)/σ̂ · Γ

[
σ

σ̂
+ 1

]]
.

(6.22)

Again we use the fixed design with only five covariate values xi ∈ {−2,−1, 0, 1, 2}. To
minimize the function we take the partial derivative with respect to β̂0, γ̂ and σ̂. Setting
the expressions equal to zero, and try to solve them. Remember that β0 = 0, σ = 2 and
n = 5.

∂KL

∂β̂0
=

n∑
i=1

[ 1
σ̂
− 1
σ̂
e(β0−β̂0+x2

i−γ̂xi)/σ̂ · Γ
[
σ

σ̂
+ 1

]]
= 0 (6.23)

∂KL

∂γ̂
=

n∑
i=1

[
xi
σ̂
− xi
σ̂
e(β0−β̂0+x2

i−γ̂xi)/σ̂ · Γ
[
σ

σ̂
+ 1

]]
= 0 (6.24)

Finding the partial derivative for σ̂ is not as straightforward as for the two other co-
efficients. To find the derivative of the gamma function we need to make use of the
digamma function [15]. The digamma function is defined as the logarithmic derivative
of the gamma function. For any x

ψ0(x) = d

dx
ln Γ(x) = Γ′(x)

Γ(x) ,

⇒ Γ′(x) = ψ0(x)Γ(x).
(6.25)

Then application of the chain rule gives the partial derivative for σ̂.
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∂KL

∂σ̂
=

n∑
i=1

[
1
σ̂
− β̂0 − β0 + γ̂xi − x2

i + σφ

σ̂2 + e(β0−β̂0+x2
i−γ̂xi)/σ̂

·
[
−β0 − β̂0 + x2

i − γ̂xi
σ̂2 · Γ

[
σ

σ̂
+ 1

]
−
σΓ
[
σ
σ̂ + 1

]
ψ0
[
σ
σ̂ + 1

]
σ̂2

]]
= 0.

(6.26)

These functions can not be solved analytically, so we try a numerical approach. We use
the Newton-Rhapson method, found in any elementary calculus book, to find the values
where a function f(x) is zero, starting with an initial guess x(0)

x(1) = x(0) − f(x(0))
f ′(x(0))

x(2) = x(1) − f((1))
f ′((1))

...

x(n) = x(n−1) − f(x(n−1))
f ′(x(n−1))

(6.27)

According to (6.27) we need the second partial derivatives of KL(θ̂) for β̂0, γ̂ and σ̂.

∂2KL

∂β̂2
0

=
n∑
i=1

[ 1
σ̂2 e

(β0−β̂0+x2
i−γ̂xi)/σ̂ · Γ

[
σ

σ̂
+ 1

]]
(6.28)

∂2KL

∂γ̂2 =
n∑
i=1

[
x2
i

σ̂2 e
(β0−β̂0+x2

i−γ̂xi)/σ̂ · Γ
[
σ

σ̂
+ 1

]]
(6.29)

The second partial derivative for σ̂ utilizes the trigamma function [15]. The trigamma
function is the second derivative of the logarithm of the gamma function. For any x

ψ1(x) = d2

dx2 ln Γ(x) = d

dx
ψ0(x),

d2

dx2 Γ(x) = d

dx
(ψ0(x)Γ(x)) = d

dx
ψ0(x)Γ(x) + ψ0(x) d

dx
Γ(x)

= ψ1(x)Γ(x) + ψ0(x)ψ0(x)Γ(x) = Γ(x)
(
ψ0(x)2 + ψ1(x)

)
.

(6.30)

Applying this gives us the second partial derivative for σ̂.
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∂2KL

∂σ̂2 =
n∑
i=1

[
− 1
σ̂2 + 2 β̂0 + γ̂xi − β0 − x2

i + σφ

σ̂3

+e(β0−β̂0+x2
i−γ̂xi)/σ̂

(β0 − β̂0 + x2
i − γ̂xi

σ̂2

)2

· Γ
[
σ

σ̂
+ 1

]

+2 · β0 − β̂0 + x2
i − γ̂xi

σ̂3 · Γ
[
σ

σ̂
+ 1

]
+4 · β0 − β̂0 + x2

i − γ̂xi
σ̂2 ·

Γ
[
σ
σ̂ + 1

]
ψ0
[
σ
σ̂ + 1

]
σ̂2

+
4Γ
[
σ
σ̂ + 1

] (
ψ0
[
σ
σ̂ + 1

]2 + σ̂ψ0
[
σ
σ̂ + 1

]
+ ψ1

[
σ
σ̂ + 1

])
σ̂4



(6.31)

The next step is to insert the expressions for the partial derivatives in (6.27) and con-
tinuously update to the newest estimated coefficient before the next calculation. It is
easily explained by looking at the first iterations. We start with initial guesses for each
parameter: β̂(0)

0 , γ̂(0) and σ̂(0)

First iteration:

β̂
(1)
0 = β̂

(0)
0 −

∂KL
∂β̂0

(β̂(0)
0 , γ̂(0), σ̂(0))

∂2KL
∂β̂2

0
(β̂(0)

0 , γ̂(0), σ̂(0))
,

γ̂(1) = γ̂(0) −
∂KL
∂γ̂ (β̂(1)

0 , γ̂(0), σ̂(0))
∂2KL
∂γ̂2 (β̂(1)

0 , γ̂(0), σ̂(0))
,

σ̂(1) = σ̂(0) −
∂KL
∂σ̂ (β̂(1)

0 , γ̂(1), σ̂(0))
∂2KL
∂σ̂2 (β̂(1)

0 , γ̂(1), σ̂(0))
.

Second iteration:

β̂
(2)
0 = β̂

(1)
0 −

∂KL
∂β̂0

(β̂(1)
0 , γ̂(1), σ̂(1))

∂2KL
∂β̂2

0
(β̂(1)

0 , γ̂(1), σ̂(1))
,

γ̂(2) = γ̂(1) −
∂KL
∂γ̂ (β̂(2)

0 , γ̂(1), σ̂(1))
∂2KL
∂γ̂2 (β̂(2)

0 , γ̂(1), σ̂(1))
,

σ̂(2) = σ̂(1) −
∂KL
∂σ̂ (β̂(2)

0 , γ̂(2), σ̂(1))
∂2KL
∂σ̂2 (β̂(2)

0 , γ̂(2), σ̂(1))
.
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Continuing until it converges. This kind of numerical scheme is known as the Gauss-
Seidel iterative method [16, p. 440]. This technique converges faster than the Jacobi
iterative method, which does not update the coefficients immediately. It updates them
after all three new estimates has been found. We set our initial values approximately to
what survreg believes to be the correct coefficients. Again we use 1 million observations
from (6.4). Here β0 = 0, σ = 2 and Wi are from the standard Gumbel distribution of
the smallest extreme. Also here we use 200 000 observations for each value of xi. The
summary when fitting (6.5) with survreg was

> summary(survWmod)

Call:
survreg(formula = Surv(fixedWData$T) ˜ fixedWData$x, data = fixedWData,

dist = "weibull")
Value Std. Error z p

(Intercept) 2.30362 0.002816 818.042 0.000
fixedWData$x 0.00123 0.001535 0.799 0.425
Log(scale) 0.97970 0.000755 1297.863 0.000

Scale= 2.66

Weibull distribution
Loglik(model)= -3375706 Loglik(intercept only)= -3375706
Chisq= 0.64 on 1 degrees of freedom, p= 0.42
Number of Newton-Raphson Iterations: 5
n= 1000000

We set the intial values to

β̂
(0)
0 = 2.3,
γ̂(0) = 0,
σ̂(0) = 2.6.

(6.32)

After 7 iterations we have convergence for the values

β̂
(7)
0 = β∗0 = 2.298448,
γ̂(7) = γ∗ = −1.044555 · 10−16,

σ̂(7) = σ∗ = 2.66316.

(6.33)

Which is approximately the same as survreg’s coefficients. These are the coefficients
minimizing the Kullback–Leibler distance. The same coefficients are found using cruder
initial values, but then we need more iterations.
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7 Investigation of a real data set

In this section we investigate the functional form of a covariate in a real data set. The
data set is censored, so we use the covariate order method. With a real data set, if
there is a model to be found, we will not know the true functional form of the covariate.
The data we look at are of low-cycle fatigue life of nickel-base superalloy found in [5].
We have 26 observations, of which four are censored. We have included the data set as
Appendix C. Our goal is to find the relationship between the number of cycles to failure
and pseudostress.

7.1 Distribution of the data

In order to use the covariate order method, we need to suggest the distribution of the
data. In [5] they use a Weibull model with the natural logarithm of pseudostress as the
covariate. To make our results comparable we use this as the covariate as well, denoting
it xi. We start with a scatter plot of xi versus k-Cycles, denoted Yi.
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Figure 28: (a) Scatter plot of the covariate xi, ln(pseudostress), versus the response Yi,
k-Cycles. Circles represent failures, while dots are censored events. (b) Histogram of
the lifetimes, k-Cycles, from the real data set.

In Figure 28(a) we see that the long lifetimes, i.e. large number of cycles, are found
amongst the observations with low pseudostress. This is logical, since less stress means
less strain on the items. However, there are som shorter lifetimes among the items with
little pseudostress as well. This could be infant mortality failures, known from the well
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known bathtub curve in survival analysis. A plot of the histogram of the lifetimes can be
seen in Figure 28(b). This histogram might suggest an exponential ditribution, but we
need more results to conclude. The histogram does not take any covariate dependency
into consideration, so its relevance is questionable. Using MINITAB [17], a statistical
software, we find probability plots for different distributions of lnYi as a linear function
of the xi’s:

lnYi = β0 + β1xi + σWi. (7.1)

The probability plots can be seen in Figure 29. We see that the Weibull distribution
is the one that fits the data best. This is also the distribution used in [5]. In the
continuation of our investigation to find the functional form of the covariate, we assume
lnYi to be Weibull distributed conditional on xi.
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7.2 Covariate order method

Following the procedure used for with the simulated data sets with the covariate order
method, we start with fitting the empty Weibull model with survreg.

lnYi = β0 + σWi. (7.2)

From the regression summary in R the coefficients β̂0 = (Interept) and σ̂ = Scale are
found.

> summary(weibMod)

Call:
survreg(formula = Surv(Y, s) ˜ 1, dist = "weibull")

Value Std. Error z p
(Intercept) 4.358 0.257 16.94 2.20e-64
Log(scale) 0.174 0.173 1.01 3.14e-01

Scale= 1.19

Weibull distribution
Loglik(model)= -118.4 Loglik(intercept only)= -118.4
Number of Newton-Raphson Iterations: 6
n= 26

With these coefficients the Cox–Snell residuals are calculated according to (4.3)

R̂i = e
lnYi−β̂0

σ̂ . (7.3)

Under the assumption that the empty model is correct, these should be approximately
unit exponentially distributed. We use the Cox–Snell residuals as basis for the artificial
point process in the covariate order method. The hazard rate is estimated for covariate
xi. If a trend is seen, the covariate is not modelled correctly. Before using the covariate
order method, we must find the optimal smoothing parameter. Still using the likelihood
cross-validation criterion from Section 4.2.2.3, the smoothing parameter, h is found to
be

h = 0.2824328.

With this smoothing parameter the covariate order method estimates the hazard rate of
the point process using the Cox–Snell residuals in (7.3). The hazard rate is plotted in
Figure 30(a). Here a decreasing trend is clearly seen, so the functional form of the xi’s
needs more attention.
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Figure 30: (a) Plot of the covariate x plotted against the estimated log-hazard rate
ln(λ̂(x)). Circles represent failures, while dots are censored events. (b) Plot of x against
f(x) from (7.5). Circles represent failures, dots are censored events.

We assume that the covariate, xi, should be included in the model.

lnYi = β0 + f(xi) + σWi, (7.4)

Then, according to (4.25) in Section 4.2.2.2, f(xi) can be seen by calculating

f(xi) = β̂0 − σ̂
[
λ̂(xi)

]
, (7.5)

and plotting it against the xi’s. This is done in Figure 30(b). From the plot f(x) is seen
to decrease rapidly for small values of x, and more moderately for large values. Because
of an apparent non-linear lnYi, we try a quadratic polynomial, setting f(x) = β1x+β2x

2

in (7.4),

lnYi = β0 + β1x+ β2x
2 + σWi. (7.6)

One could as well suspect the model to be linear, but we choose to add the quadratic
term since the summary from the fitted model will tell us if this term is significant or
not. From the following summary, obtained when fitting the model in (7.6), we see that
the quadratic term is significant. The values in the summary are the same as the ones
found in [5, p. 440].
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> summary(weibModNew)

Call:
survreg(formula = Surv(Y, s) ˜ x + x2, dist = "weibull")

Value Std. Error z p
(Intercept) 217.611 62.132 3.50 4.61e-04
x -85.522 26.546 -3.22 1.27e-03
x2 8.483 2.831 3.00 2.73e-03
Log(scale) -0.982 0.179 -5.48 4.18e-08

Scale= 0.375

Weibull distribution
Loglik(model)= -93.4 Loglik(intercept only)= -118.4
Chisq= 50.01 on 2 degrees of freedom, p= 1.4e-11
Number of Newton-Raphson Iterations: 8
n= 26
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Figure 31: The covariate x plotted against the estimated log-hazard rate ln(λ̂(1/x)) from
the model in (7.6)
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New Cox–Snell residuals are computed

R̂i = e
lnTi−β̂0−β̂1x−β̂2x

2
σ̂ . (7.7)

If the new model in (7.6) is correct, there should be no trend in the hazard rate esti-
mated with the covariate order method. We start by finding the new optimal smoothing
parameter for the quadratic f(xi) using the likelihood cross-validation criterion. The
new h is found to be

h = 3.999942.

The logarithm of the estimated hazard rate can be seen in Figure 31. A shape is seen,
but when looking at the scale on the ln(λ̂(x))-axis, we see that all the points are close
to zero. This suggests that there is no trend.
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Figure 32: Density plots of the two bootstrapped distributions for the Anderson–Darling
test statistic. The vertical, red, dashed line is the observed statistic, while the vertical,
solid, black line is the 95%-quantile.

To formally check for trend, we make use of the Anderson–Darling statistic from (4.31).
We bootstrap, non-parametrically, the data set to find our own distribution for the
Anderson–Darling statistic. The observed statistic and 95%-quantile are listed in Table
7. We see that the observed statistic is smaller than the critical value. This is also
illustrated in Figure 32. Hence there is no evidence of trend, and the model in (7.6) is
acceptable.
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95%-quantile Observed statistic
1.240545 0.4418252

Table 7: Observed Anderson–Darling statistic and 95%-quantile from the estimated
distribution for the superalloy data.

Another way to investigate if the model is correct, is to check if the Cox–Snell residuals
can be assumed to be unit exponentially distributed, as we did for the transformation
method in previous sections. A mean plot, density plot and probability plot are dis-
played in Figure 33. Here we have added 1 to the residuals from censored observations,
as explained in Section 4.2.2.1. The plots are not perfect fits, but they indicate that the
unit exponential might be the distribution of the residuals.

There might be other models which fit the data better. We tried fitting f(xi) with only
a linear function as well. This model’s hazard rate was also found to have no significant
trend. However, it had an Anderson–Darling statistic of approximately 0.67, which is
higher than the statistic from the model with the quadratic polynomial. This is an
indication that the quadratic model we have chosen is a better fit than the linear. The
quadratic model was also the preferred model in [5]. Here they also tried a model where
σ varies with xi. This approach is described in Chapter 17.5.2, p. 439-441, in [5].
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Figure 33: Plots verifying that the Cox–Snell residuals truly are unit exponentially
distributed. (a) is a plot of the Cox–Snell residuals from the model (7.6) with theoretical
mean (red dashed line) and estimated mean (blue solid line). Circles represent failures,
solid squares are censored events. (b) is a histogram of the Cox–Snell residuals with
theoretical density function. (c) is the exponential probability plot. 1 is added to the
censored residuals.
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8 Discussion and conclusions

In this thesis we have shown that the functional form of covariates in misspecified sur-
vival regression models can be retrieved with a transformation of the model’s Cox–Snell
residuals, as well as estimating and investigating the hazard rate functions of the Cox–
Snell residuals using the covariate order method.

In Section 4 and 5 we see that when using the transformation method, the functional
form is clearly seen for complete data sets. However, when censoring is introduced the
functional form is more blurred. The covariate order method retrieves the functional
form better than the transformation method for censored data sets, and especially for
high levels of censoring (50% and 80%). This is because of the transformations method’s
näıve approach of adding 1 to the Cox–Snell residuals of censored observations justified
by the memoryless property of the exponential distribution. This leads to many Cox–
Snell residuals approximating to 1, thus causing the method to fail. In the project [1] we
could not conclude which of the methods that was preferred because of an insufficient
basis of results. Now however, we can say that the covariate order method clearly is
better for high levels of censoring. This is seen for two different probability distribu-
tions, the Weibull and lognormal distribution. In our search for f(x), in (3.1), we start
by assuming it is linear. Although we know that it is a quadratic function. This is done
throughout the simulation parts of the thesis. It would have been interesting to test the
methods on other polynomials, as well as logarithmic and exponential functions. For
the real data set we did not know the original functional form, but it turned out to be
quadratic as well. For the simulated data sets, if we know the true functional form, we
might subconsciously recognize its form easier. For real data sets we will not know if
the chosen model is correct. There are benefits and liabilities for borth real data and
simulated data, like a double-edged sword. Another moment is that we have used stan-
dard normally distributed covariates, which are for the most part clustered around zero.
With uniformly distributed variables it was seen in the project that the functional form
was retrieved clearer for complete data sets. However, in the project, uniform covariates
from -5 to 5 led to unrealisticly large lifetimes.

In Section 6, it has been shown that the maximum likelihood approach to finding the
coefficients in a misspecified model, which minimizes the Kullback–Leibler distance, is
consistent with the coefficients obtained analytically. It is reassuring to know that the
methods implemented in the software used give the same results as a theoretical ap-
proach does.

After completing the project it was believed that recovering the functional form in other
lifetime distributions than Weibull would lead to a blurring effect. The blurring would
be caused by approximations of the cumulative distribution function of the error terms,
W , in (3.1). While working with this thesis, it was seen that what was thought to be
unique for the elegant Cox–Snell residuals of Weibull distributed lifetimes, seen in (4.3),
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in fact could be generalized to any other lifetime distribution as well.
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C Real data set with censoring

Pseudostress k-Cycles Status
1 80.3 211.629 F
2 80.6 200.027 F
3 80.8 57.923 C
4 84.3 155.000 F
5 85.2 13.949 F
6 85.6 112.968 C
7 85.8 152.680 F
8 86.4 156.725 F
9 86.7 138.114 C
10 87.2 56.723 F
11 87.3 121.075 F
12 89.7 122.372 C
13 91.3 112.002 F
14 99.8 43.331 F
15 100.1 12.076 F
16 100.5 13.181 F
17 113.0 18.067 F
18 114.8 21.300 F
19 116.4 15.616 F
20 118.0 13.030 F
21 118.4 8.489 F
22 118.6 12.434 F
23 120.4 9.750 F
24 142.5 11.865 F
25 144.5 6.705 F
26 145.9 5.733 F

Low-cycle fatigue life of nickel-base superalloy specimens. Lifetimes are measured in
k-Cycles, i.e. units of thousands of cycles. In the status column, cases marked with “F”
stands for failures, while the ones marked with “C” are censored.
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D R-code

All the code in this section is the version used with the Weibull distributed lifetimes in
Section 4. Code for lognormally distributed lifetimes and real data are analogous.

D.1 Covariate order method

Code for the covariate order method. This code was provided by Jan Terje Kvaløy.
#covorder .R

sx <− function ( xgr id , Xdata ,V) {
ngr id <− length ( xgr id )
sx <− vector ( length=ngr id )
for ( i in 1 : ngr id ) {

sx [ i ] <− t a i l ( c (0 ,V[ Xdata<xgr id [ i ] ] ) , 1 )
}
sx

}

epK <− function (u) {
i f e l s e ( abs (u) <1 ,(3/4)∗(1−uˆ2) ,0 )

}

# The boundary k e r n e l o f Zhang and Karunamuni ( JSPI , 1998)
epbK <− function (u , c ) {

i f e l s e ( ( abs (u)<1 & u<c ) , ( ( 12 /((1+c ) ˆ4) )∗(1+u)∗((1−2∗c )∗u+(3∗cˆ2−2∗c+1)/2)
) ,0 )

}

covordn <− function ( Xdata , Tdata , ind , h , xgr id =1, g l a t t=”x” , s p l o t=F, edge=”BK” ) {
# Sort data

orden <− order ( Xdata )
ind <− ind [ orden ]
Tdata <− Tdata [ orden ]
Xdata <− Xdata [ orden ]

# Ca l c u l a t e b a s i c q u a n t i t i e s
n <− length ( Xdata )
V <− Tdata/n # s c a l i n g o b s e r v a t i o n s f o r the cons t ruc t ed po i s son proces s .
V <− cumsum(V)
Vmax <− V[ n ]
S <− V[ ind==1] # S i s the o b s e r v a t i o n s in the po i s son proces s . The

proces s c o n s i s t s on ly o f the non−censored o b s e r v a t i o n s from Tdata
X s <− Xdata [ ind==1]
r <− length (V)

# Make p l o t o f the cons t ruc t ed po i s son proces s .
i f ( s p l o t )
{

plot (X s , S , type=” s ” )
points (X s , S)

}
# Ca l c u l a t e sx ( the correspondance f unc t i on )
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i f ( length ( xgr id ) >1){
xorder <− order ( xgr id )
invorden <− order ( xorder )
xgr id <− xgr id [ xorder ]
t i l d e s x <− sx ( xgrid , Xdata ,V)

}
i f ( length ( xgr id )==1){

xgr id <− Xdata
invorden <− order ( orden )
t i l d e s x <− V

}
nxgr id <− length ( xgr id )

# Smooth
lambdaest <− vector ( length=nxgr id )

# Boundary k e r n e l
i f ( edge !=”R” ) {

i f ( g l a t t==” s ” ) { # smoothing the s−a x i s
for ( i in 1 : nxgr id ) {

i f (h>Vmax/2)
h=Vmax/2

i f ( t i l d e s x [ i ]<h)
lambdaest [ i ] <− sum(epbK ( ( t i l d e s x [ i ]−S)/h , t i l d e s x [ i ] /h) )/ (n∗h)

i f ( t i l d e s x [ i ]>=h & t i l d e s x [ i ]<=Vmax−h)
lambdaest [ i ] <− sum(epK ( ( t i l d e s x [ i ]−S)/h) )/ (n∗h)

i f ( t i l d e s x [ i ]>Vmax−h)
lambdaest [ i ] <− sum(epbK(−( t i l d e s x [ i ]−S)/h , ( Vmax−t i l d e s x [ i ] ) /h) )/

(n∗h)
}

}
i f ( g l a t t !=” s ” ) { # smoothing the x−a x i s ( c o v a r i a t e a x i s )

for ( i in 1 : nxgr id ) {
hsx <− sx ( xgr id [ i ]+h/2 , Xdata ,V)−sx ( xgr id [ i ]−h/2 , Xdata ,V)
i f ( hsx>Vmax/2)

hsx=Vmax/2
i f ( t i l d e s x [ i ]<hsx ) {

lambdaest [ i ] <− sum(epbK ( ( t i l d e s x [ i ]−S)/hsx , t i l d e s x [ i ] /hsx ) )/ (n∗
hsx ) }

i f ( t i l d e s x [ i ]>=hsx & t i l d e s x [ i ]<=Vmax−hsx ) {
lambdaest [ i ] <− sum(epK ( ( t i l d e s x [ i ]−S)/hsx ) )/ (n∗hsx ) }

i f ( t i l d e s x [ i ]>Vmax−hsx ) {
lambdaest [ i ] <− sum(epbK(−( t i l d e s x [ i ]−S)/hsx , ( Vmax−t i l d e s x [ i ] ) /

hsx ) )/ (n∗hsx ) }
}

}
}

# R e f l e c t i o n
i f ( edge==”R” ) {

i f ( g l a t t==” s ” ) {
for ( i in 1 : nxgr id ) {

lambdaest [ i ] <− (sum(epK ( ( t i l d e s x [ i ]−S)/h) )+sum(epK ( ( t i l d e s x [ i ]+S)/
h) )+sum(epK ( ( t i l d e s x [ i ]+S−2∗Vmax)/h) ) )/ (n∗h)

}
}
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i f ( g l a t t !=” s ” ) {
for ( i in 1 : nxgr id ) {

hsx <− sx ( xgr id [ i ]+h/2 , Xdata ,V)−sx ( xgr id [ i ]−h/2 , Xdata ,V)
lambdaest [ i ] <− (sum(epK ( ( t i l d e s x [ i ]−S)/hsx ) )+sum(epK ( ( t i l d e s x [ i ]+S

)/hsx ) )+sum(epK ( ( t i l d e s x [ i ]+S−2∗Vmax)/hsx ) ) )/ (n∗hsx )
}

}
}
l i s t ( x=xgrid , lambdaest=lambdaest , x nosor t=xgr id [ invorden ] , lambdaest

nosor t=lambdaest [ invorden ] , s=S)
}

D.2 Anderson-Darling trend test

Code for calculating the Anderson-Darling trend test statistic.
#t r e n d t e s t .R

AD <− function (x ,T, status ) {
# Sor t ing the data
orden <− order ( x )
status <− status [ orden ]
T <− T[ orden ]
x <− x [ orden ]
n <− length (T)
S <− cumsum(T) [ status==1]
S max <− cumsum(T) [ n ]
k <− sum( status [ 1 : n−1])

ln 1 <− 0
ln 2 <− 0

for ( i in 1 : k ) {
ln 1 <− ln 1 + (2∗ i −1)∗log (S [ i ] /S max)
ln 2 <− ln 2 + (2∗ i −1)∗log (1−(S [ k+1− i ] /S max) )

}

ad <− −k−(1/k )∗ ( ln 1 + ln 2)

return ( ad )
}

D.3 Bootstrapping the Anderson-Darling statistics

Code for non-parametric and parametric bootstrapping to find the distribution of the
Anderson-Darling statistics.
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#bootstrapAD .R
l ibrary ( s u r v i v a l )
l ibrary (VGAM)
l ibrary ( f i e l d s )
l ibrary ( e1071 )

source ( ’ covorder .R ’ )
source ( ’ t r e n d t e s t .R ’ )

data <− read . table ( ’ weibul lDataCens . csv ’ , header= TRUE, sep=’ , ’ ,
row . names=1)

data$x i sq <− ( data$x i ) ˆ2

#Non−parametr ic b o o t s t r a p
obsBoot <− function ( data , bs ) {

ADz1 <− c ( )
ADz2 <− c ( )
ADx sq <− c ( )
muVec <− c ( )
beta1Vec <− c ( )
beta2Vec <− c ( )
beta3Vec <− c ( )
sigmaVec <− c ( )

for ( i in 1 : bs ) {
bsData <− data [ sample (100 , replace=TRUE) , ]
mod <− survreg ( Surv ( bsData$Y i , bsData$s i ) ˜ bsData$z i 1+
bsData$z i 2+bsData$x i sq , bsData , d i s t=’ we ibu l l ’ )

# Ext rac t ing model c o e f f i c i e n t s
muHat <− as . numeric (mod$ c o e f f [ 1 ] ) #beta 0
beta1Hat <− as . numeric (mod$ c o e f f [ 2 ] )
beta2Hat <− as . numeric (mod$ c o e f f [ 3 ] )
beta3Hat <− as . numeric (mod$ c o e f f [ 4 ] )
sigmaHat <− as . numeric (mod$scale )

muVec <− c (muVec , muHat)
beta1Vec <− c ( beta1Vec , beta1Hat )
beta2Vec <− c ( beta2Vec , beta2Hat )
beta3Vec <− c ( beta3Vec , beta3Hat )
sigmaVec <− c ( sigmaVec , sigmaHat )

# Computing Cox−S n e l l r e s i d u a l s
CSRes <− exp ( ( log ( bsData$Y i )−muHat−beta1Hat∗bsData$z i 1
−beta2Hat∗bsData$z i2−beta3Hat∗bsData$x i sq )/sigmaHat )

lambda z1 <− covordn ( bsData$z i1 , CSRes ,
bsData$s i , h=opt h z1 20 , g l a t t=’ x ’ , edge=’R ’ )
lambda z2 <− covordn ( bsData$z i2 , CSRes ,
bsData$s i , h=opt h z2 20 , g l a t t=’ x ’ , edge=’R ’ )
lambda x sq <− covordn ( bsData$x i sq , CSRes ,
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bsData$s i , h=opt h x 20 , g l a t t=’ x ’ , edge=’R ’ )

# Computing Anderson−Darl ing t e s t s t a t i s t i c
ADz1 <− c (ADz1 ,AD( bsData$z i1 , CSRes , bsData$s i ) )
ADz2 <− c (ADz2 ,AD( bsData$z i2 , CSRes , bsData$s i ) )
ADx sq <− c (ADx sq ,AD( bsData$x i sq , CSRes , bsData$s i ) )

}
l i s t ( adz1 = ADz1 , adz2 = ADz2 , adxsq = ADx sq , mu=muVec ,
b1=beta1Vec , b2=beta2Vec , b3=beta3Vec , sigma=sigmaVec )

}

#Parametric b o o t s t r a p
parBoot <− function ( data , bs ) {

ADz1 <− c ( )
ADz2 <− c ( )
ADx sq <− c ( )
muVec <− c ( )
beta1Vec <− c ( )
beta2Vec <− c ( )
beta3Vec <− c ( )
sigmaVec <− c ( )

Mod <− survreg ( Surv ( data$Y i , data$s i ) ˜ data$z i 1+
data$z i 2+data$x i sq , data , d i s t=’ we ibu l l ’ )

MuHat <− as . numeric (Mod$ c o e f f [ 1 ] ) #beta 0
Beta1Hat <− as . numeric (Mod$ c o e f f [ 2 ] )
Beta2Hat <− as . numeric (Mod$ c o e f f [ 3 ] )
Beta3Hat <− as . numeric (Mod$ c o e f f [ 4 ] )
SigmaHat <− as . numeric (Mod$scale )

for ( i in 1 : bs ) {
bsData <− data
u <− runif (100)
W <− log(−log (u) )
bs r e s <− SigmaHat∗W
yTmp <− log ( bsData$Y i )+bs r e s
bsData$Y i <− exp(yTmp)
bsMod <− survreg ( Surv ( bsData$Y i , bsData$s i ) ˜ bsData$z i 1+
bsData$z i 2+bsData$x i sq , bsData , d i s t=’ we ibu l l ’ )

# Ext rac t ing model c o e f f i c i e n t s
muHat <− as . numeric (bsMod$ c o e f f [ 1 ] ) #beta 0
beta1Hat <− as . numeric (bsMod$ c o e f f [ 2 ] )
beta2Hat <− as . numeric (bsMod$ c o e f f [ 3 ] )
beta3Hat <− as . numeric (bsMod$ c o e f f [ 4 ] )
sigmaHat <− as . numeric (bsMod$scale )

muVec <− c (muVec , muHat)
beta1Vec <− c ( beta1Vec , beta1Hat )
beta2Vec <− c ( beta2Vec , beta2Hat )
beta3Vec <− c ( beta3Vec , beta3Hat )
sigmaVec <− c ( sigmaVec , sigmaHat )
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# Computing Cox−S n e l l r e s i d u a l s
CSRes <− exp ( ( log ( bsData$Y i )−muHat−beta1Hat∗bsData$z i 1
−beta2Hat∗bsData$z i2−beta3Hat∗bsData$x i sq )/sigmaHat )

lambda z1 <− covordn ( bsData$z i1 , CSRes ,
bsData$s i , h=opt h z1 20 , g l a t t=’ x ’ , edge=’R ’ )
lambda z2 <− covordn ( bsData$z i2 , CSRes ,
bsData$s i , h=opt h z2 20 , g l a t t=’ x ’ , edge=’R ’ )
lambda x sq <− covordn ( bsData$x i sq , CSRes ,
bsData$s i , h=opt h x 20 , g l a t t=’ x ’ , edge=’R ’ )

# Computing Anderson−Darl ing t e s t s t a t i s t i c
ADz1 <− c (ADz1 ,AD( bsData$z i1 , CSRes , bsData$s i ) )
ADz2 <− c (ADz2 ,AD( bsData$z i2 , CSRes , bsData$s i ) )
ADx sq <− c (ADx sq ,AD( bsData$x i sq , CSRes , bsData$s i ) )

}
l i s t ( adz1 = ADz1 , adz2 = ADz2 , adxsq = ADx sq , mu=muVec ,
b1=beta1Vec , b2=beta2Vec , b3=beta3Vec , sigma=sigmaVec )

}

D.4 Likelihood cross-validation

Code for using likelihood cross-validation to find the optimal smoothing parameters.
# l c v .R

l ibrary ( s p l i n e s )

lCV <− function (H, cov ) {
data <− read . table ( ’ weibul lDataCens . csv ’ , header= TRUE, sep=’ , ’ ,

row . names=1)
x i sq <− data$x i ˆ2
data$x i sq <− x i sq
n <− length ( x i sq )

Model <− survreg ( Surv ( data$Y i , data$s i )˜data$z i 1+data$z i 2+data$x
i sq , d i s t=’ we ibu l l ’ )

MuHat <− as . numeric ( Model$ c o e f f [ 1 ] )
Beta1Hat <− as . numeric ( Model$ c o e f f [ 2 ] )
Beta2Hat <− as . numeric ( Model$ c o e f f [ 3 ] )
Beta3Hat <− as . numeric ( Model$ c o e f f [ 4 ] )
SigmaHat <− as . numeric ( Model$scale )

CSRES <− exp ( ( log ( data$Y i ) − MuHat − Beta1Hat∗data$z i 1 − Beta2Hat
∗data$z i 2 − Beta3Hat∗data$x i sq )/SigmaHat )

i f (cov==’ z1 ’ ) {
x <− data$z i 1

}
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else i f (cov==’ z2 ’ ) {
x <− data$z i 2

}
else i f (cov==’ c ’ ) {

x <− data$x i
}

lCV <− 0

for ( i in 1 : n) {
# Using cov . ord . to e s t imate lambda wi thou t o b s e r v a t i o n no .

’ i ’
lambdaEst <− covordn ( x[− i ] ,CSRES[− i ] , data$s i [− i ] ,H, g l a t t=’

s ’ , edge=’R ’ )

# F i t t i n g a s p l i n e func t i on to the es t imated lambdas . This
in order to p r e d i c t the lambdaHat f o r o b e r s v a t i o n ’ i ’ .

spline <− po lySp l in e ( i n t e r p S p l i n e ( lambdaEst$x , lambdaEst$
lambdaest ) )

predSp l ine <− predict ( spline , x [ i ] )
lHat i <− predSp l ine $y

# Adding to the lCV
lCV <− lCV + ( data$s i [ i ] ∗log ( lHat i )−lHat i ∗CSRES[ i ] )

}
return ( lCV)

}
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