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PROBLEM DESCRIPTION

Look at classifications of thick triangulated subcategories in triangulated categories
through the work of Paul Balmer on tensor triangulated categories.
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ABSTRACT

It is known that the thick tensor-ideal subcategories in a tensor triangulated cate-
gory can be classified via its prime ideal spectrum.

We use this to provide new proofs of two well-known classifications theorems:
that of the thick tensor-closed triangulated subcategories of the stable category of
modules over a finite group algebra, and that of the thick triangulated subcategories
of the derived category of perfect complexes over a commutative Noetherian ring.
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CHAPTER 1

INTRODUCTION

Verdier [32] and Puppe [11] discovered independently in the 60’s that certain, seem-
ingly very different, classes of categories shared some remarkable properties. They
all had particular “triangles”, linked together in a very specific structure. Since
then, the concept of triangulated categories has gradually invaded a long list of
mathematical disciplines, from representation theory and algebraic geometry to
commutative algebra and algebraic topology, and is still seizing new land. Quite
powerful tools are also available, once a category is proven to be triangulated.
However, to really bring out the big guns, it is often proclaimed that one needs
more structure.

One such, quite modest, augmentation is to assume a tensor product, here
just a symmetric monoidal structure which behaves nicely with respect to the
triangulation. This is a mild condition, and many triangulated categories do in
fact come with such a structure. Several authors have employed this to boost
up their toolbox. Among them are Hovey, Palmieri and Strickland [18], May [23]
and Garkusha [14]. However, a common feature of all these is that they also
assume further structure. Perhaps the only elaborate work on tensor triangulated
categories in their pure generality is that of Balmer, first in [2] and later followed
up with [3], and this is the context in which this thesis is written; it is largely based
on [2].

One of the main merits of Balmer’s article is a classification of the thick tensor-
closed triangulated subcategories of a tensor triangulated category (our Theorem
3.7), placing it in the tradition of thick subcategory classifications: Ever since
Devinatz, Hopkins and Smith [10] succeeded in the stable homotopy category of
spectra, a major obsession for many a category theorist has been to find ways to
describe the thick triangulated subcategories of a triangulated category.

Balmer [2] dubs the thick tensor-closed triangulated subcategories of a tensor
triangulated category K thick ⊗-ideals, and defines prime and radical such ideals
in the obvious ways. He then introduces the prime ideal spectrum Spc K , the
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CHAPTER 1. INTRODUCTION

collection of primes endowed with a topology, and a corresponding support, defined
on any a ∈ K to be the closed subset

supp a := {P ∈ Spc K | a /∈P}

Finally, he calls any topological space linked to K in a similar way a support data.
In this language, Balmer manages to give a bijection between the radical thick
⊗-ideals of K and the subsets of Spc K that are unions of supports.

The problem with Balmer’s classification, however, is that it really does not
make us much wiser at first glance; the entities at the other end of the bijection
seem as hard to compute as the subcategories themselves. But another result stirs
hope: if we have another classification on K by another “nice” support data,
then Balmer [2, Theorem 5.2] states that this support data must be isomorphic to
{Spc K , supp}.

It is therefore tempting to ask if one sometimes might be able to prove the
mentioned isomorphism independently of the classification, and thereby arriving at
the latter via a translation of Balmer’s classification. This could provide a general
path for proving classification theorems, and perhaps allow us to find sensible
classifications even in categories where we do not yet have any. The first of these
concerns is answered here. The answer is ‘yes’, at least if we require some extra
structure on K and its support data (Theorem 3.13). Theorem 3.13, though
not a very strong result, is the pinnacle of this thesis, as it is its main original
contribution.

Crucially, Theorem 3.13 turns out to be applicable on this thesis’ two main
examples of tensor triangulated categories: the stable category of modules over a
finite group algebra, and the derived category of perfect complexes over a com-
mutative Noetherian ring. This enables us to provide new proofs of the celebrated
classification theorems of Benson-Carlson-Rickard [7] and Hopkins-Neeman [17, 25].

In Chapter 2 we give a brief introduction to triangulated categories, and in-
troduce Balmer’s machinery of tensor triangulated categories. Section 3.1 settles
Balmer’s classification. In the following Section 3.2 we provide conditions for a
support data on K to be isomorphic to {Spc K , supp}, enabling a corresponding
translation of Balmer’s classification. Chapter 4 and Chapter 5 are devoted to the
two examples.

In this thesis we assume the reader has a basic knowledge of category theory,
commutative algebra and homological algebra.
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CHAPTER 2

TENSOR TRIANGULATED
CATEGORIES

As we do not assume any prior contact with triangulated categories, we here give
a brief presentation of the axioms as well as some very basic properties which we
will need. After that, we move on to introduce ⊗-triangulated categories in the
sense of Balmer [2], and look at the prime ideal spectrum of such a category, with
its corresponding support.

2.1 Triangulated categories

A triangulated category is an additive category together with a so-called translation
functor and a specific triangulated structure defined on it. To get to the precise
definition of a triangulated category, we first need to introduce some basic language:

A category with translation (K ,Σ) is a category K together with an auto-
equivalence

Σ : K −→ K

called the translation functor (also labeled the shift or suspension functor). The
translation functor is assumed to be additive if our category is.

In a category with translation a triangle is a sequence of objects and morphisms
on the form

a
u // b

v // c w // Σa

and a morphism of triangles is a triple (f, g, h) of morphisms such that the following
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CHAPTER 2. TENSOR TRIANGULATED CATEGORIES

diagram commutes:

a
u //

f

��

b
v //

g

��

c
w //

h

��

Σa

Σf

��
a′

u′ // b′
v′ // c′

w′ // Σa′

Such a morphism is called an isomorphism of triangles if f , g and h are isomor-
phisms.

Definition 2.1 (Triangulated category). A triangulated category is an additive
category with translation (K ,Σ) endowed with a collection of triangles, called
distinguished triangles (d.t. for short), satisfying the following four axioms:

TR1

a) A triangle isomorphic to a d.t. is again a d.t.

b) a
1 // a // 0 // Σa is a d.t. for every a ∈ K

c) For any morphism u : a→ b there is a d.t. a
u // b // c // Σa

TR2 (Rotation). a
u // b

v // c w // Σa is a d.t. if and only if

b
v // c w // Σa

−Σu // Σb is.

TR3 Any diagram of two d.t.’s

a
u //

f

��

b
v //

g

��

c
w // Σa

Σf

��
a′

u′ // b′
v′ // c′

w′ // Σa′

where the first square commute can be completed to a morphism of triangles.

TR4 (The octahedral axiom). Given three d.t.’s

a
u // b // c′ // Σa

b
v // c // a′ // Σb

a
v◦u // c // b′ // Σa

there exists a d.t.

c′ // b′ // a′ // Σc′

4



2.1. TRIANGULATED CATEGORIES

such that the following diagram commutes

a

v◦u
$$

u ��@@@@@@ c
%%

��@@@@@ a′
''l _ R

��@@@@@ Σc′

b
v

??~~~~~~

��@@@@@ b′

??~
~

~

��@@@@@ Σb

??~~~~~

c′ 88

??~
~

~
Σa

??~~~~~

Remark 2.2. It can be shown that TR3 is actually superfluous, as it can be derived
from the other axioms (see [23, Lemma 2.2]).

In an additive category we have the notions of additive functors and additive
subcategories (full subcategories closed under finite coproducts). For these to be
called triangulated, however, we need further properties:

Definition 2.3 (Triangle functor). A triangle functor is an additive functor

F : K −→ L

between two triangulated categories, together with a natural isomorphism

φ : FΣ −→ ΣF

such that for any d.t. a
u // b

v // c w // Σa in K , the triangle

Fa
Fu // Fb

Fv // Fc
φa◦Fw // ΣFa

is a d.t. in L .

A triangle functor is also called an exact functor.

Definition 2.4 (Triangulated subcategory). A triangulated subcategory of a tri-
angulated category K is an additive subcategory L ⊂ K that is closed under
isomorphisms and translation, and has the property that whenever two of the ob-

jects a, b, c in a d.t. a
u // b

v // c w // Σa belong to L , then so does the
third.

Remark 2.5. Note that, by the rotation axiom (TR2) and the condition that the
subcategory must be closed under translation, the last requirement is equivalent to
demand that, for instance, b, c ∈ L ⇒ a ∈ L .

One type of triangulated subcategories is of particular interest when it comes
to subcategory-classifications, and is also in focus in this thesis: the thick subcat-
egories.

Definition 2.6. A thick subcategory of an additive category is a subcategory S
with the property that whenever a ' b⊕ c and a ∈ S , then also b, c ∈ S .
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CHAPTER 2. TENSOR TRIANGULATED CATEGORIES

Basic properties

We derive some easy consequences of the axioms. All this, and more, can be found
in Neemans book [27]. Another good introduction is [16].

Proposition 2.7 (Composition of morphisms). In any distinguished triangle

a
u // b

v // c w // Σa

the compositions v ◦ u and w ◦ v are zero.

Proof. By TR1, a
1 // a // 0 // Σa is a d.t. The diagram

a
1 //

1

��

a //

u

��

0 // Σa

1

��
a

u // b
v // c w // Σa

can then by TR3 be completed to a morphism of triangles with a morphism from 0
to c. The commutativity of the resulting diagram then gives that the composition
v ◦ u must be zero. Via the rotation axiom (TR2) we also get w ◦ v = 0. (Rotate
and use the same argument).

Proposition 2.8 (Long exact sequences). Applying Hom(d,−) := HomK (d,−) on

a d.t. a
u // b

v // c w // Σa gives a long exact sequence of abelian groups:

// Hom(d,Σia) // Hom(d,Σib) // Hom(d,Σic) // Hom(d,Σi+1a) //

Proof. From the rotation axiom it suffices to show that

Hom(d, a)
u∗ // Hom(d, b)

v∗ // Hom(d, c)

is exact. Clearly Imu∗ ⊂ Ker v∗, as v ◦ u = 0 ⇒ v∗ ◦ u∗ = 0. To see the other
inclusion, look at f ∈ Ker v∗ and the diagram

0 //

��

d
1 // d //

f

��

0

��
Σ−1c

−Σ−1w // a u // b
v // c

The rows are d.t.’s by TR1 and TR2, and the right square commutes by the choice
of f . TR2 and TR3 then give us a morphism g : d → a making the diagram
commute. In particular u ◦ g = f , so f ∈ Imu∗.

A similar argument proves the corresponding result for HomK (−, d).
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2.1. TRIANGULATED CATEGORIES

Proposition 2.9 (Triangulated 5-Lemma). If we have a morphism of d.t.’s

a //

f

��

b //

g

��

c //

h

��

Σa

Σf

��
a′ // b′ // c′ // Σa′

with f and g isomorphisms, then so is also h.

Proof. Apply the functor HomK (c′,−) on the two d.t.’s. This gives us, by Propo-
sition 2.8, the following commutative diagram with exact rows:

Hom(c′, a) //

f∗

��

Hom(c′, b) //

g∗

��

Hom(c′, c) //

h∗

��

Hom(c,Σa) //

Σf∗

��

Hom(c,Σb)

Σg∗

��
Hom(c′, a′) // Hom(c′, b′) // Hom(c′, c′) // Hom(c,Σa′) // Hom(c,Σb′)

With f and g isomorphisms we see that all the downward morphisms are iso-
morphisms, except possibly h∗. But by the 5-lemma for modules we get that h∗
then must be an isomorphism too.

Now, by the surjectivity of h∗, there must be a morphism t ∈ Hom(c′, c) which
maps to the identity on c′, i.e. h ◦ t = idc′ . So h has a left inverse. The same
argument with the contravariant Hom-functor gives us a right inverse. So h is
indeed an isomorphism.

Proposition 2.10. If a // b // c // Σa and a′ // b′ // c′ // Σa′ are

d.t.’s, then so is also the coproduct a⊕ a′ // b⊕ b′ // c⊕ c′ // Σ(a⊕ a′)
with morphisms inherited componentwise (the last via the natural isomorphism
φ : Σa⊕ Σa′ → Σ(a⊕ a′) given by the additivity of Σ).

Proof. By TR1 there is a d ∈ K such that the upper row of the following diagram
is a d.t.

a⊕ a′ // b⊕ b′ // d // Σ(a⊕ a′)

a //

(
1
0

)OO
b //

(
1
0

)OO
c // Σa

Σ
(

1
0

)OO

TR3 provides us with a morphism f : c → d causing the diagram to commute.
Similarly, we get a morphism f ′ : c′ → d for the other d.t. Now, add up the two
morphisms of d.t.’s (via φ) and look at the following resulting diagram

a⊕ a′ // b⊕ b′ // d // Σ(a⊕ a′)

a⊕ a′ // b⊕ b′ // c⊕ c′ //

( f f ′ )

OO

Σ(a⊕ a′)
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CHAPTER 2. TENSOR TRIANGULATED CATEGORIES

which clearly commutes. We want to show that the morphism (f f ′) is an isomor-
phism. Since we do not yet know that the bottom row is a d.t., we can not use the
triangulated 5-lemma directly to prove this. Observe, however, that in the proof
of Proposition 2.9 the only time we used the fact that the rows were d.t.’s was
when assuring that the Hom-functor gave rise to long exact sequences. But this
fact still holds in our bottom row since Hom(d, a ⊕ a′) ' Hom(d, a) ⊕ Hom(d, a′)
and coproducts of long exact sequences must again be exact.

So, indeed, the 5-lemma holds in this case too. Thus the two rows are isomor-
phic, implying that the bottom row is also a d.t. (by TR1).

Remark 2.11. This proof can be generalized to arbitrary coproducts, and also
dualized to give the analogue result for products (see [27, Proposition 1.2.1]).

2.2 Tensor triangulated categories

In this thesis we follow the definition of Balmer [2] of a tensor triangulated cate-
gory, which is simply a triangulated category equipped with a symmetric monoidal
structure with unity that is exact in each variable. More precisely, the definition
is:

Definition 2.12 (Tensor triangulated category). A tensor triangulated category
is a triangulated category with a tensor product ⊗ : K ×K → K such that, for
any a, b, c ∈ K , the following hold:

i) a⊗ b ' b⊗ a. (Symmetric)

ii) (a⊗ b)⊗ c ' a⊗ (b⊗ c). (Monoidal)

iii) There is an object 1 ∈ K such that 1⊗ a ' a for all a. (Neutral element)

iv) −⊗ a and a⊗− are triangle functors. (Exact)

Remark 2.13. Beware that the analogy to tensor products in module categories is
not as one probably would expect. Firstly, we do not assume any universal property
as we do with modules. Also, one would perhaps assume that the homotopy category
K(R) of chain complexes of modules over a commutative ring R modulo the null-
homotopic chain maps (which arguably is the “simplest” triangulated category
derived from modR) would be ⊗-triangulated with tensor product ⊗R. But this
is not the case (condition iv) fails). However, in many ⊗-triangulated categories
our tensor product actually descends from the module category tensor product.
This, we will see, is the case in this thesis’ two main examples, the stable module
category over a finite group algebra and the derived category of perfect complexes
over a commutative Noetherian ring.

Observe that the tensor product must commute with finite coproducts:

Proposition 2.14. Let K be a ⊗-triangulated category. Then, for a, b, c ∈ K ,
we have

(a⊕ b)⊗ c ' (a⊗ c)⊕ (b⊗ c)

8



2.2. TENSOR TRIANGULATED CATEGORIES

Proof. Start by taking the coproduct of the following triangles

a
1 // a // 0 // Σa

0 // b
1 // b // 0

which are d.t.’s by TR1 and TR2. The resulting triangle

a

(
1
0

)
// a⊕ b

( 0 1 ) // b
0 // Σa

is a d.t. by Proposition 2.10. Now, from the exactness of ⊗, the top row of the
following diagram is a d.t.:

a⊗ c

(
1
0

)
⊗1
// (a⊕ b)⊗ c

( 0 1 )⊗1 //

f

���
�
�
� b⊗ c 0 // Σ(a⊗ c)

a⊗ c

(
1⊗1

0

)
// (a⊗ c)⊕ (b⊗ c)

( 0 1⊗1 )// b⊗ c 0 // Σ(a⊗ c)

The bottom row is a d.t. by the same coproduct argument as above, replacing
a with a ⊗ c and b with b ⊗ c. This diagram can be completed to a morphism of
triangles by TR3 (via rotation). The induced morphism

f : (a⊕ b)⊗ c −→ (a⊗ c)⊕ (b⊗ c)

must now be an isomorphism by the triangulated 5-lemma (Proposition 2.9).

Central to this thesis’ discussion is the notion of tensor ideals. Tensor ideals are
somewhat in analogy to ideals in rings, viewing coproduct as addition and tensor
product as multiplication. (Although note that our system can not be considered
a ring in this way, even up to isomorphism, as we do not have inverses with respect
to coproduct.) The tensor ideals of interest are the thick ones:

Definition 2.15 (Thick tensor ideal). A thick tensor ideal is a thick triangulated
subcategory J of a ⊗-triangulated category K that obeys the following criterion:

a ∈ K and b ∈J ⇒ a⊗ b ∈J

Note that, by the symmetric property of ⊗, this will also imply b ⊗ a ∈ J .
Also, check that intersections of thick ⊗-ideals are again thick ⊗-ideals.

For a collection S ⊂ K we adopt the notation 〈S 〉 for the smallest thick
⊗-ideal containing S .

9



CHAPTER 2. TENSOR TRIANGULATED CATEGORIES

Prime ideals and Zariski topology

From now on let K always be an essentially small ⊗-triangulated category. Recall
that K is essentially small if the collection of isomorphism classes in Ob(K ) is a
set.

In algebraic geometry the set of prime ideals of a commutative ring is repeat-
edly turned into a topological space via the Zariski topology. Here, we follow the
approach of Balmer [2] to transfer this idea to ⊗-triangulated categories with the
aim of using it as a tool in the study of the thick ⊗-ideals. We introduce primes
in the most obvious way, though pay attention to the slightly unfamiliar definition
of the topology.

Definition 2.16 (Prime). A prime of K is a proper thick ⊗-ideal P ( K such
that

a⊗ b ∈P ⇒ a ∈P or b ∈P

Definition 2.17 (Spectrum). The spectrum of K , denoted Spc K , is the set of
all primes of K .

Remark 2.18. Note that Spc K is indeed a set, as K is assumed to be essentially
small and triangulated subcategories are closed under isomorphisms.

We now define the announced topology:

Definition 2.19 (Zariski topology). The Zariski topology on Spc K is the topology
given by defining the closed subsets to be the sets

Z(S ) = {P ∈ Spc K | S ∩P = ∅}

for any collection of objects S ⊂ K .

That is, we can construct all our closed subsets by starting with a collection of
objects in K and collect all the primes that do not intersect with it. The open
subsets of our topology are, by definition, the complements of the closed. Denote
them by:

U(S ) = Spc K \ Z(S ) = {P ∈ Spc K | S ∩P 6= ∅}

(i.e. all the primes that intersect with our chosen collection).

The support

The closed subsets corresponding to the individual objects in K will play an im-
portant role in the task of classifying thick ⊗-ideals of K later in this thesis,
and, given their shared properties with different entities dubbed supports found in
nature, they are named accordingly by Balmer [2]:

Definition 2.20. The support of a ∈ K is defined to be

supp a := Z({a}) = {P ∈ Spc K | a /∈P}

10



2.2. TENSOR TRIANGULATED CATEGORIES

Observe that, since triangulated subcategories are closed under isomorphisms

a ' b⇒ supp a = supp b

For a collection of objects S ⊂ K we define the support of S to be the union
of the supports of its objects:

Definition 2.21. For S ⊂ K , define

supp S :=
⋃
a∈S

supp a

Note that this is just the primes not encapsulating S :

supp S = {P ∈ Spc K | S 6⊂P}

Observe also that supp a for a ∈ K is a closed subset, but supp S for a collec-
tion S ⊂ K is not necessarily closed.

The reason why we are interested in supports is that they satisfy some very
handy properties:

Proposition 2.22. The following hold on a, b, c ∈ K :

i) supp 0 = ∅ and supp1 = Spc K

ii) supp(a⊕ b) = supp a ∪ supp b

iii) supp(a⊗ b) = supp a ∩ supp b

iv) supp Σa = supp a

v) supp(a) ⊂ supp b ∪ supp c for a d.t. a // b // c // Σa .

Proof.

i) supp 0 = ∅ because all additive subcategories, and thus primes, must contain 0.

supp1 = Spc K as no proper ⊗-ideal can contain 1.

ii) If P ∈ supp(a ⊕ b), we have a ⊕ b /∈ P and a, b cannot both be in P. Hence
either P ∈ supp a or P ∈ supp b.

Conversely, if P /∈ supp(a⊕ b) we get a⊕ b ∈P, implying a, b ∈P by the
thickness of P. But that gives P /∈ supp a ∪ supp b.

iii) If P ∈ supp(a⊗ b), we have a⊗ b /∈P, ensuring that none of a, b could be in
P (because it is a ⊗-ideal). Thus P ∈ supp a ∩ supp b.

On the other hand, if P /∈ supp(a ⊗ b), we get a ⊗ b ∈ P and, since P is
prime, at least one of a, b must be in P. Hence, for instance, P /∈ supp a.

iv) Triangulated subcategories, and therefore also primes, are closed under trans-
lation.

11



CHAPTER 2. TENSOR TRIANGULATED CATEGORIES

v) Given a prime P, it is impossible to have b, c ∈ P and a /∈ P (since P is
triangulated). Thus if P ∈ supp a, we can not both have P /∈ supp b and
P /∈ supp c, hence the result.

Remark 2.23. By iii) and the fact that Z(S ) =
⋂
a∈S supp a for a collection of

objects S , we see that {supp a | a ∈ K } forms a basis for the closed subsets of
Spc K .

Support data

The properties of Proposition 2.22 are indeed so nice that they are given a name:

Definition 2.24. A support data on a ⊗-triangulated category K is a pair (X,σ)
of a topological space X and an assignment σ associating to each a ∈ K a closed
subset σ(a) ⊂ X satisfying the rules of Proposition 2.22 (with X in the place of
Spc K ).

Moreover, a morphism of support data on K

f : (X,σ) −→ (Y, τ)

is a continuous function f : X → Y with σ(a) = f−1(τ(a)) for all a ∈ K . Such a
morphism is called an isomorphism if f is also a homeomorphism.

We see that (Spc K , supp) holds a very special place among support data, in
the sense that all other maps into it:

Theorem 2.25. Given a support data (X,σ) on K , there is a morphism of support
data

f : (X,σ) −→ (Spc K , supp)

given by f(x) = {a ∈ K | x /∈ σ(a)}

Proof. It is straightforward to check that f(x) is a prime, for instance it is thick
by

x /∈ σ(a1 ⊕ a2) = σ(a1) ∪ σ(a2)⇒ x /∈ σ(a1), σ(a2)

Furthermore, the equivalence x ∈ σ(a) ⇔ a /∈ f(x) ⇔ f(x) ∈ supp a gives us
f−1(supp a) = σ(a). This also assures the continuity of f , since {supp a | a ∈ K }
is a basis for the closed subsets of Spc K by Remark 2.23.

The above morphism is actually unique (see [2, Theorem 3.2]).

12



CHAPTER 3

CLASSIFICATION OF THICK
⊗-IDEALS

One of the main goals of category theorists in their quest for understanding the
bigger structures of a category is to decipher its subcategories. Hence it is of
great interest to find ways to describe these. Often one would look at a particular
type of subcategories, in the case of triangulated categories recurringly the thick
triangulated ones. A number of such classifications has already been accomplished.
The first landmark classification was that of Devinatz, Hopkins and Smith [10] of
the thick subcategories of the stable homotopy category of spectra, whose idea soon
spread to other categories, notably the two examples we treat in this thesis.

In the context of ⊗-triangulated categories, Balmer [2, Theorem 4.10] found,
using the support defined in the previous section, a classification of the “radical”
thick ⊗-ideals, a result we present in detail here. Unfortunately, Balmer’s classi-
fication does not seem to be very helpful at first glance, and the author does not
employ this theorem further in his thesis. Here, however, we pick up this thread,
and find that under certain circumstances, i.e. subjecting our category to a number
of restrictions, Balmer’s classification can be translated into something more mean-
ingful. This turns out to be successful in our two examples, and thus providing a
new way of arriving at those (already known) classifications.

3.1 Balmer’s classification

Balmer’s classification is established through the introduction of two elementary
notions.

13



CHAPTER 3. CLASSIFICATION OF THICK ⊗-IDEALS

The radical

In complete analogy to commutative ring theory, define the radical of a thick ⊗-
ideal to be

Definition 3.1 (Radical). The radical
√

J of a tick ⊗-ideal J ⊂ K is√
J = {a ∈ K | ∃n ≥ 1, a⊗n ∈J }

If
√

J = J , we say that J is radical.

As usual, we get the following theorem:

Theorem 3.2. The radical of a thick ⊗-ideal J ⊂ K is equal to the intersection
of all the primes in Spc(K ) containing J :√

J =
⋂

J⊂P

P

To prove this we will need to introduce a technical lemma, asserting that for
a pair (S ,J ) of a ⊗-multiplicative collection S (defined to be a collection of
objects closed under tensor multiplication containing 1) and a thick ⊗-ideal J
with J ∩S = ∅, we can always construct a prime encapsulating J that still does
not intersect with S :

Lemma 3.3. Let J ⊂ K be a thick ⊗-ideal, and S ⊂ K a ⊗-multiplicative
collection of objects disjoint from J . Then there exists a prime P ∈ Spc K with
J ⊂P and P ∩S = ∅.

Proof. We will show this by using Zorn’s Lemma on the set F of the isomorphism
classes of the thick ⊗-ideals A satisfying the wanted properties of the prime, to-
gether with the condition a⊗ c ∈ A ⇒ a ∈ A for c ∈ S and a ∈ K . We will see
that an element maximal with respect to inclusion in F is prime.

Observe that F is non-empty, as A0 := {a ∈ K | ∃c ∈ S , a⊗ c ∈J } is easily
seen to be an element: First, A0 clearly satisfies the required properties to be in
F. And moreover, it is, for instance, thick by seeing that if a⊕ b ∈ A0, there must
be a c ∈ S such that (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) ∈J , which by the thickness
of J would imply a, b ∈ A0.

Let P be a an element in F maximal with respect to inclusion. Such an element
exists by Zorn’s Lemma and the fact that, for any chain B1 ⊂ B2 ⊂ · · · in F, the
union

⋃
i Bi ∈ F is an upper boundary. We aim to show that P must be prime.

To settle this, suppose a⊗ b ∈P with b /∈P, and look at the thick ⊗-ideal

A1 := {d ∈ K | a⊗ d ∈P}

We know that A1 can not be in F, because b ∈ A1 implies P ( A1 and P is
maximal. We see easily that A1 satisfies all the requirements to be in F, except
possibly A1 ∩ S = ∅. This condition must therefore fail. Thus we have a d ∈
A1 ∩S , that is, a d ∈ S with a ⊗ d ∈ P. By the last condition imposed on the
elements of F this gives a ∈P, proving that P is prime.

14



3.1. BALMER’S CLASSIFICATION

We can now prove Theorem 3.2:

Proof. If a ∈
√

J , we have a⊗n ∈J for some n. For each prime P containing J
we must therefore, by the property of primes, have a ∈P. Hence a ∈

⋂
J⊂P P.

Now, suppose a /∈
√

J . Then the ⊗-multiplicative collection

S = {a⊗n | n ≥ 1} ∪ {1}

does not intersect with J . By Lemma 3.3 we then have that there is a prime
containing J that is disjoint from S , and thus a /∈

⋂
J⊂P P.

Note that this gives us that, by being an intersection of such, the radical of a
thick ⊗-ideal is again a thick ⊗-ideal.

The subcategory supported on a set of primes

Definition 3.4. The subcategory supported on a set of primes Y ⊂ Spc K is the
full subcategory KY of K with objects given by

KY := {a ∈ K | supp a ⊂ Y }

It is then easy to see the following

Lemma 3.5. Given Y ⊂ Spc K , KY is the intersection of the primes not in Y :

KY =
⋂

P /∈Y

P

Proof. Let a ∈ KY . If there is a prime P /∈ Y that does not contain a, then
P ∈ supp a ⊂ Y , a contradiction on P. Hence a ∈

⋂
P /∈Y P. It is also clear that

the support of any object in
⋂

P /∈Y P must be a set of primes that is in Y .

We show that KY is a thick ⊗-ideal:

Lemma 3.6. For Y ⊂ Spc K , KY is a thick ⊗-ideal.

Proof. This follows straightforward from Proposition 2.22:

Thick : Let c ' a⊕b be in KY . Then supp c = supp(a⊕b) = supp a∪supp b ⊂ Y .
In particular, supp a ⊂ Y and supp b ⊂ Y , so a, b ∈ KY .

⊗-ideal : Let a ∈ KY and b ∈ K . We then get supp(a⊗ b) = supp a∩ supp b ⊂
supp a ⊂ Y . Thus a⊗ b ∈ KY .

Triangulated : Let a // b // c // Σa be a d.t. with b, c ∈ KY . Then
supp a ⊂ supp b ∪ supp c ⊂ Y , hence we get a ∈ KY .

15



CHAPTER 3. CLASSIFICATION OF THICK ⊗-IDEALS

The classification theorem

With this settled we can prove Balmer’s classification theorem:

Theorem 3.7 (Balmer). Let S be the set of all the subsets Y ⊂ Spc(K ) that
can be written as the support of a collection of objects (i.e. Y = supp M for some
M ⊂ K ), and let R be the set of all radical thick ⊗-ideals. Then there is an
order-preserving bijection F : S→ R given by

F : Y 7−→ KY

with inverse

F−1 : J 7−→ supp J

Proof. We first check that both assignments are well-defined: Clearly supp J ∈ S.
Moreover, KY is radical because by Proposition 2.22

supp a⊗n = supp a ∩ ... ∩ supp a = supp a

which gives a⊗n ∈ KY ⇒ a ∈ KY . The two assignments are also clearly order-
preserving. We now show that they are bijections by proving that F−1F and FF−1

are equal to the respective identities:

(supp KY = Y ). By Lemma 3.5 we know that KY is the intersection of all
the primes not in Y . With Y = supp M these primes must be exactly the ones
encapsulating M . This gives us M ⊂ KY , which again implies Y = supp M ⊂
supp KY . For the other inclusion note that if a prime P is not in supp M , it must
contain M and therefore also KY (the intersection of all such primes). Hence P
is not in supp KY either.

(Ksupp J = J ). As above, Ksupp J is the intersection of all primes containing
J . With J radical this is just J by Theorem 3.2.

Recall that a topological space X is called Noetherian if it satisfies the descend-
ing chain condition on closed subsets, that is, for any chain

Y1 ⊃ Y2 ⊃ Y3 ⊃ · · ·

of closed subsets in X there is an R such that Yr = Yr+1 for all r ≥ R.

We then see that if Spc K is Noetherian, to demand that Y = supp S for a
collection of objects S ⊂ K is equivalent to require Y to be specialization closed,
i.e. a union of closed subsets. This because Spc K Noetherian would imply that
any closed subset Z(S ) =

⋂
a∈S supp a could be rewritten as a finite intersection⋂n

i=1 supp ai = supp(a1⊗· · ·⊗an). Thus with Spc K Noetherian the above theorem
is a bijection between the specialization closed subsets of Spc K and the radical
thick ⊗-ideals of K .
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3.2 Conditions for isomorphism of support data

The classification theorem just given is not necessarily very beneficial, as the pair
(Spc K , supp) appears to be as difficult to compute as the ⊗-ideals themselves.
However, under some extra conditions (Spc K , supp) can be proven to be isomor-
phic to another, more tangible, support data on K , providing us with a translation
of Theorem 3.7 into something much more sensible.

In this section we formulate a set of constraints on K and its support data
(X,σ), which indeed will prove sufficient to turn the morphism in Theorem 2.25
into an isomorphism of support data. These conditions turn out to be fulfilled in
the two main examples presented in this thesis, the stable category of modules over
a finite group algebra and the derived category of perfect complexes of modules over
a commutative Noetherian ring (both essentially small ⊗-triangulated categories).
This will enable us to translate Theorem 3.7 into the renowned classification the-
orems of Benson-Carlson-Rickard [7] and Hopkins-Neeman [17, 25].

This section, together with the proofs of the corresponding classification the-
orems, is the main part of this thesis, as it is the only that claims some sort of
originality. This is also where our approach differs from Balmer’s. Balmer [2]
proves the isomorphism of the support data given the classification theorems; here
we prove the isomorphism independently, allowing the isomorphism to deliver the
classification.

The conditions we are soon to impose on K and its support data will turn out
to be quite elaborate. Although they are enough to make (X,σ) isomorphic to
(Spc K , supp), it is not clear whether they are all needed. It might well be that a
simpler set of assumptions will suffice, and given more time it would surely have
been interesting to do further research on what conditions are in fact necessary for
the isomorphism to hold.

The conditions on K

The first imposed condition on K is that it should be contained in a “bigger”
⊗-triangulated category L , which allows for arbitrary coproducts (with which the
tensor product still commutes). Moreover, K is required to hold a special place in
this category. To describe this we will need to introduce two basic notions:

Definition 3.8. A compact object in a category L is an object a ∈ L such that
for any set {bi | i ∈ I} of objects in L whose coproduct exists, the canonical map

⊕
i∈I

HomL (a, bi) −→ HomL (a,
⊕
i∈I

bi)

is an isomorphism.

Note that this is equivalent to saying that all maps a→
⊕

i∈I bi factors through⊕
i∈I′ bi for a finite subset I ′ ⊂ I.

17
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Definition 3.9. A localizing subcategory of a triangulated category L is a thick
triangulated subcategory of L that is closed with respect to formation of arbitrary
coproducts.

For a collection S ⊂ L we denote by loc〈S 〉 the smallest localizing subcate-
gory containing S .

The restriction we now impose on {K ,L } is that L = loc〈K 〉 and that K
represents exactly the compact objects of L .

Remark 3.10. This is the same as saying that L is compactly generated with K
its compact objects (see for instance [28, Definition 2.5]).

Now, in this setting, the highly regarded Brown Representability Theorem holds
(see [26, Theorem 4.1]), which as a corollary asserts that every triangle functor
F : L → L which preserves coproducts has a right adjoint. In particular, the
functor −⊗a for any a ∈ L must have one. Denote its adjoint by Hom(a,−), and
define the dual of a to be

D(a) := Hom(a,1)

The last condition we now enforce on {K ,L } is that all elements of K should
be strongly dualizable:

Definition 3.11. An object a ∈ L is called strongly dualizable if there are natural
isomorphisms

D(a)⊗ b ' Hom(a, b)

for all b ∈ L .

All these assumptions on {K ,L } finally enable us to invoke a result from the
much cited work of Hovey, Palmieri and Strickland [18], which, reformulated to fit
into our environment, reads

Theorem 3.12 (Finite localization). For any ⊗-ideal J ⊂ K in the setting
described above, there exists a functor LJ : L → L such that for any a ∈ K

i) LJ a = 0⇔ a ∈J

ii) LJ a = a⊗ LJ 1

We refer to [18, Theorem 3.3.3] for details. This provides us with a crucial step in
the proof of our pre-announced isomorphism theorem:

The isomorphism theorem

Theorem 3.13 (Isomorphism of support data). Let (X,σ) be a support data on
K such that

i) X is Noetherian and T0.

ii) Every irreducible closed subset Z ⊂ X can be written as the closure of a point.

18



3.2. CONDITIONS FOR ISOMORPHISM OF SUPPORT DATA

iii) All closed subsets of X are on the form σ(a) for an a ∈ K .

Suppose there is a ⊗-triangulated category L admitting arbitrary coproducts (com-
muting with the tensor product), such that

iv) L = loc〈K 〉 and K represents the compact objects in L .

v) The objects of K are strongly dualizable in L .

vi) The definition of σ can be extended to L such that σ(a⊗ b) = σ(a)∩ σ(b) and
σ(a) = ∅ ⇒ a = 0 for objects in L .

Then (X,σ) ' (Spc K , supp) as support data.

Proof. We have to show that the function f(x) = {a ∈ K | x /∈ σ(a)} in Theorem
2.25 is a homeomorphism. The injectivity is the easiest part: Suppose x1, x2 ∈ X
with x1 6= x2. Then, since X is T0, there exists a closed subset σ(a) containing just
one of them, say x1 ∈ σ(a) and x2 /∈ σ(a). This gives a /∈ f(x1) and a ∈ f(x2), i.e.
f(x1) 6= f(x2).

Now, to prove the surjectivity, choose a prime P ∈ Spc K . We first show that
the following holds for objects in K :

σ(a) = σ(b) and a ∈P ⇒ b ∈P (3.1)

For suppose b /∈P. Then we have from Theorem 3.12 a finite localization

L := LP : L −→ L

such that L a = 0 and L b 6= 0, yielding the following contradiction:

∅ = σ(L a) = σ(a⊗ L1) = σ(a)∩ σ(L1) = σ(b)∩ σ(L1) = σ(b⊗ L1) = σ(L b) 6= ∅

Since X is Noetherian, we have that W :=
⋂
c/∈P σ(c) can be rewritten as

a finite intersection
⋂n
i=1 σ(ci) with ci /∈ P. Thus W = σ(c1 ⊗ · · · ⊗ cn). Let

c̃ := c1 ⊗ · · · ⊗ cn.
Now, W must be irreducible. For if

σ(c̃) = σ(b1) ∪ σ(b2) = σ(b1 ⊕ b2)

with σ(b1) and σ(b2) proper subsets, we would from the definition of W have gotten
b1, b2 ∈ P. But this would by (3.1) have given c̃ ∈ P, a contradiction as P is
prime. Thus W = {x} for a point x ∈ X.

We now see that a ∈ P ⇒ x /∈ σ(a). This because x ∈ σ(a) would yield
σ(c̃) = {x} ⊂ σ(a) and σ(c̃) = σ(c̃) ∩ σ(a) = σ(c̃⊗ a), implying a /∈P.

So x ∈W ⊂ σ(a) for a /∈P, and x /∈ σ(a) for a ∈P. Hence

f(x) = {a ∈ K | x /∈ σ(a)} = P

which proves the surjectivity of f .
This, in turn, gives f(σ(a)) = supp a, which together with the fact that all

closed subsets of X are of the form σ(a) assures the continuity of f−1.
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CHAPTER 3. CLASSIFICATION OF THICK ⊗-IDEALS

Remark 3.14. Note that the two first requirements in Theorem 3.13 could be ab-
breviated to X being spectral and Noetherian.

Before we move on to our two examples, observe that when we have K as
above, Theorem 3.7 will in fact enable us to classify every thick ⊗-ideals, as they
all prove to be radical:

Proposition 3.15. Let K be as in Theorem 3.13. Then all thick ⊗-ideals J of
K are radical.

Proof. If we can show that a⊗ a ∈J implies a ∈J , we are finished, since that
would yield a⊗2n ∈J ⇒ a ∈J for any n, by induction. Thus suppose a⊗a ∈J .

From the unit/counit definition of adjointness we get that 1 ⊗ a ' a is a
retract of Hom(a,1⊗ a)⊗ a ' Hom(a, a)⊗ a. But since a is strongly dualizable,
Hom(a, a) ' D(a)⊗ a, implying a ∈ 〈a⊗ a〉 ⊂J , as wanted.
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CHAPTER 4

EXAMPLE I: STABLE MODULE
CATEGORIES

Let kG be the group algebra of a finite groupG over a field k, and let mod kG denote
the category of finitely generated left kG-modules. If we look at this category
modulo the maps that factor through an injective object, the result turns out to
be a ⊗-triangulated category. Let us first define this category more precisely:

Definition 4.1. The stable module category mod kG of a finite group algebra kG
is the category whose objects are inherited from mod kG and the morphisms are
the equivalence classes of morphisms in mod kG modulo those factoring through
an injective module.

In other words, two maps f, g : X → Y in mod kG are equal in mod kG if
there exists an injective module I ∈ mod kG and maps h, i such that the following
diagram commutes

I
i

��????????

X

h

??�������� f−g // Y

Remark 4.2. Note that this actually makes the injective modules “vanish”, as in
mod kG they will all be isomorphic to 0 (their identity map, which definitely factors
through an injective module, will be equal to the zero map).

The stable module category mod kG is our first example of a category satisfying
the requirements of Theorem 3.13. As we will see, this will translate Theorem 3.7
into the classification of thick ⊗-ideals of mod kG given by Benson, Carlson and
Rickard in [7]. Before that, however, let us take a look at how mod kG is a ⊗-
triangulated category.
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CHAPTER 4. STABLE MODULE CATEGORIES

4.1 The triangulation and tensor product

In the following we will be working in mod kG, unless explicitly stated that we are in
the stable category. For an introduction to mod kG and group algebras in general,
we refer the reader to [4, Chapter 3]. We will need the following characteristics of
mod kG:

i) The algebra kG is self-injective, meaning it is injective as a module over itself.
This, in particular, implies that injective and projective modules coincide in
mod kG [4, Proposition 3.1.2].

ii) Tensor products of any module by a projective/injective module in mod kG are
still projective/injective [4, Proposition 3.1.5].

The field k is looked upon as a kG-module in the trivial way, i.e. letting gm := m
for any g ∈ G and m ∈ k.

Now, to present the triangulation of mod kG we begin with the, quite laborious,
task of defining and assuring the functoriality of the translation functor. The
following exposition follows and works out the details of Happel’s presentation [15,
Chapter I.2].

The translation functor

Since mod kG has enough injectives, we have, for any kG-module M , a short exact
sequence

0 // M // IM // M/IM // 0

with IM injective. We now define Σ on objects by ΣM := M/IM . Later we will
see that, in the stable category, ΣM is independent of what injective module IM we
choose, so this actually makes sense. To define Σ on a map u : M → N ∈ Hommod kG,
start with the diagram

0 // M
ιM //

u

��

IM
πM // ΣM // 0

0 // N
ιN // IN

πN // ΣN // 0

Since IN is injective and ιM is a monomorphism, there is a map Iu : IM → IN
making the first square in the following diagram commute

0 // M
ιM //

u

��

IM
πM //

Iu

��

ΣM //

Σu

���
�
� 0

0 // N
ιN // IN

πN // ΣN // 0

Now, define Σu to be the composition πNIuπ
−1
M . This clearly makes the diagram

commute, and can easily be checked to be well-defined in mod kG.
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Call the pair (Iu,Σu) a completion of the diagram. Now, in proving the functo-
riality of Σ, we first suppose that we have fixed our choices (IM ,ΣM) of short exact
sequences for each kG-module M , and show that Σ can be regarded as a functor
in this way. Later, we prove that any such choices yield isomorphic functors, and
that it is indeed an auto-equivalence.

To see that Σ is well-defined on morphisms, we will need

Lemma 4.3. Let (Iu,Σu) and (Ĩu, Σ̃u) be two completions of

M
ιM //

u

��

IM
πM // ΣM

N
ιN // IN

πN // ΣN

Then Σu = Σ̃u in mod kG.

Proof. We show this by constructing a factorization of Σu−Σ̃u through the injective
IN . Let γ := Iu − Ĩu. By the commutativity of the first square we get

γιM = ιNu− ιNu = 0

Thus KerπM = Im ιM ⊂ Ker γ, which makes σ := γπ−1
M well-defined. We then

have
πNσπM = πNγ = πNIu − πN Ĩu = ΣuπM − Σ̃uπM

With πM surjective this implies πNσ = Σu− Σ̃u.

We thus can assure

Lemma 4.4. Σ is well-defined on morphisms in mod kG.

Proof. We have already seen that Σu does not depend on our choice of Iu. It
remains to show that it does not depend on the choice of representative in the
equivalence class of u either.

So, let v be another such choice. Then w := u − v must factor through an
injective module I as in the following diagram

I
f

  AAAAAAAA

IM

g

==|
|

|
|

MιM
oo

f ′

OO

w
// N

where g is constructed via the injectivity of I. Now, (ιNfg, 0) is a completion of

M
ιM //

w

��

IM
πM // ΣM

N
ιN // IN

πN // ΣN

Lemma 4.3 then gives Σw = 0 in mod kG . Thus Σu = Σv, by the easily checked
additive property of Σ.
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Hence we can settle

Corollary 4.5. Σ is an additive functor in mod kG.

Proof. By Lemma 4.4 we know that Σ is well-defined on morphisms. Since we have
already fixed our choices (IM ,ΣM) of short exact sequences, it is also well-defined
on objects. Moreover, it is straightforward to verify that it is additive and preserves
identities and compositions.

The next step is to prove that, up to isomorphism, this functor does not depend
on our initial choices of short exact sequences.

Lemma 4.6. Let (IM ,ΣM) and (I ′M ,Σ
′M) represent two choices of short exact

sequences for each kG-module M . Then there is a natural isomorphism β : Σ→ Σ′

in mod kG.

Proof. For any kG-module M define αM , α′M , βM and β′M to be maps making the
following diagram commute

0 // M
ιM // IM

πM //

αM

��

ΣM

βM

��

// 0

0 // M
ι′M // I ′M

π′M //

α′M
��

Σ′M

β′M

��

// 0

0 // M
ιM // IM

πM // ΣM // 0

We show that β := {βM} is the wanted natural isomorphism. First, we see
that the βM ’s are isomorphisms since both (α′MαM , β

′
MβM ) and (idIM , idΣM ) are

completions of the diagram

M // IM // ΣM

M // IM // ΣM

Thus β′MβM = idΣM in mod kG , by Lemma 4.3. (In the same way, we have
βMβ

′
M = idΣ′M .)

And secondly, we assure that they define a natural transformation because,
given a map u : M → N , both (I ′uαM ,Σ

′uβM ) and (αNIu, βNΣu) are completions
of

M //

u

��

IM // ΣM

N // I ′N // Σ′N

which implies Σ′uβM = βNΣu in mod kG .
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Thus we can finally state the following.

Theorem 4.7. Σ is an auto-equivalence on mod kG.

Proof. The previous lemmas assured us that Σ is a well-defined additive functor
on mod kG . To see that it is an auto-equivalence we define an inverse Σ−1 by the
dual construction:

Define Σ−1M on a kG-module M to be the kernel of an epimorphism

πM : PM →M

with PM projective, giving us the short exact sequence

0 // Σ−1M
ιM // PM

πM // M // 0

We define Σ−1 on morphisms in the analogue way, constructed to get commu-
tative diagrams of short exact sequences. Dually to the proof for Σ, one can then
show that Σ−1 is an additive functor in mod kG . Moreover, since projectives and
injectives coincide in mod kG, we get ΣΣ−1 ' Σ−1Σ ' idmod kG .

The triangulation

Now, from any map u : M → N , construct triangles in mod kG from the following
diagram

M
ιM //

u

��

IM

cιM
��

πM

��4444444444444444

N
cu //

0
))RRRRRRRRRRRRRRRRR C(u)

wu

##F
F

F
F

ΣM

where (cu, cιM , C(u)) is the pushout of (u, ιM ) and wu is determined via the pushout
property. The resulting triangles

M
u // N

cu // C(u)
wu // ΣM

are called standard triangles. We define the d.t.’s in mod kG to be all triangles
isomorphic to a standard triangle. The following is then shown for instance in
Happel’s book [15, Chapter I.2].

Theorem 4.8. The stable module category mod kG is a triangulated category with
the above translation functor and triangulation.

The triangulation turns out to have the following reassuring property, proven
in [15, Chapter I.2.7]:
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Theorem 4.9. Every short exact sequence 0 // M ′ // M // M ′′ // 0
in mod kG gives rise to a d.t.

M ′ // M // M ′′
w // ΣM ′

in mod kG for a suitable w.
Moreover, all d.t.’s are isomorphic to such a d.t.

The tensor product

For kG-modules M and N the tensor product M ⊗k N can be made into a kG-
module with G acting diagonally, i.e. g(m⊗ n) = gm⊗ gn for g ∈ G,m ∈ M and
n ∈ N . Fortunately for us, it turns out that mod kG is a ⊗-triangulated category
with this tensor product:

Proposition 4.10. The stable module category mod kG is a ⊗-triangulated cate-
gory with tensor product given by ⊗ := ⊗k.

Proof. The first three requirements in Definition 2.12 certainly hold (let 1 := k).
What remains is to prove that for a kG-module S the functors − ⊗ S and S ⊗ −
are triangulated (where ⊗ = ⊗k). We will only prove the latter, as the two proofs
are analogous.

Start with a standard triangle M
u // N

cu // C(u)
wu // ΣM . If we can

show that

S ⊗M
1⊗u // S ⊗N

1⊗cu // S ⊗ C(u)
βM◦(1⊗wu) // Σ(S ⊗M)

is a d.t. for a natural isomorphism βM : S ⊗ ΣM → Σ(S ⊗M), we are done, as
every d.t. is isomorphic to a standard triangle.

Since S is k-free, we get that 0 // S ⊗M
1⊗ιM // S ⊗ IM

1⊗πM// S ⊗ ΣM // 0
is a short exact sequence. Moreover, S ⊗ IM is still injective. Thus we have from
Lemma 4.6 a commutative diagram

0 // S ⊗M // S ⊗ IM //

αM

��

S ⊗ ΣM

βM

��

// 0

0 // S ⊗M // IS⊗M //

α′M
��

Σ(S ⊗M)

β′M

��

// 0

0 // S ⊗M // S ⊗ IM // S ⊗ ΣM // 0

with βM and β′M (natural) isomorphisms in mod kG .
Recycling notation from the previous section we define

fu :=

(
u
−ιM

)
and gu :=

(
cu cιM

)
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Recall that with this notation we have C(u) = (N ⊕ IM )/ Im fu. Look at

S ⊗M
1⊗fu // (S ⊗N)⊕ (S ⊗ IM )

1⊗gu //(
1 0
0 αM

)
��

S ⊗ C(u)
1⊗wu //

ψM

���
�
� S ⊗ ΣM

βM

��
S ⊗M

f1⊗u // (S ⊗N)⊕ IS⊗M
g1⊗u //(

1 0
0 α′M

)
��

C(1⊗ u)
w1⊗u //

ψ′M
���
�
�

Σ(S ⊗M)

β′M

��
S ⊗M

1⊗fu // (S ⊗N)⊕ (S ⊗ IM )
1⊗gu // S ⊗ C(u)

1⊗wu // S ⊗ ΣM

One can check that the maps

ψM := g1⊗u

(
1 0
0 αM

)
(1⊗ gu)−1

ψ′M := (1⊗ gu)

(
1 0
0 α′M

)
g−1

1⊗u

are well-defined and make the diagram commute. Now, in the stable category, the
two maps turn out to be each other’s inverses. For instance ψ′MψM = idS⊗C(u) by

S ⊗ C(u)
1−ψ′MψM //

1⊗(1−α′MαM )c−1
ιM &&LLLLLLLLLL

S ⊗ C(u)

S ⊗ IM
1⊗cιM

88rrrrrrrrrr

where the first map is well-defined since (1 − α′MαM )ιM (m) = 0 for any m ∈ M .
Thus in mod kG we get an isomorphism of triangles

S ⊗M
1⊗u // S ⊗N

1⊗cu // S ⊗ C(u)
βM◦(1⊗wu) //

ψM

��

Σ(S ⊗M)

S ⊗M
1⊗u // S ⊗N

c1⊗u // C(1⊗ u)
w1⊗u // Σ(S ⊗M)

4.2 Classifying thick ⊗-ideals in mod kG

We are now ready to give a proof of the classification theorem of thick ⊗-ideals
of mod kG proved by Benson, Carlson and Rickard in [7] and later generalized to
group schemes by Friedlander and Pevtsova in [13], using the framework of support
data.
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It is known that mod kG is an essentially small category, so in particular we
know that Balmer’s classification (Theorem 3.7) holds here. What we thus hope
for is that the support data defined in the coming section will allow us to translate
3.7 into the result of Benson, Carlson and Rickard [7].

The support data

Let us first recall some basic homological algebra (see [4, Chapter 2] for more
details).

Definition 4.11. Let M and M ′ be two kG-modules. An n-fold extension of M
by M ′ is then an exact sequence

0 // M ′ // Mn−1
// Mn−2

// · · · // M1
// M0

// M // 0

If there exist maps between two n-fold extensions making the following diagram
commute

0 // M ′ // Mn−1
//

��

· · · // M0
//

��

M // 0

0 // M ′ // M ′n−1
// · · · // M ′0 // M // 0

the two extensions are said to be similar.
Moreover, two extension X and Y are called equivalent if there exists a sequence

of extensions X = X0, X1, · · · , Xm−1, Xm = Y such that Xi and Xi+1 are similar
for 0 ≤ i < m.

One can prove that this indeed defines an equivalence relation on the set of
n-fold extensions of M by M ′, and that these equivalence classes are in one-
to-one correspondence with the elements of ExtnkG(M,M ′). This leads us into
defining multiplication on Ext∗kG(M,M) by so-called Yoneda composition: Given
f ∈ ExtnkG(M,M) and g ∈ ExtmkG(M,M) with corresponding extensions

0 // M // Mn−1
// · · · // M0

// M // 0

0 // M // M ′m−1
// · · · // M ′0 // M // 0

we define f ◦ g ∈ Extm+n
kG (M,M) to be the element corresponding to the extension

0 // M // Mn−1
// · · · // M0

σ // M ′m−1
// · · · // M ′0 // M // 0

where σ is the composition M0
// M // M ′m−1 .

It can be shown that multiplication by Yoneda composition, which clearly is
well-defined, gives Ext∗kG(M,M) the structure of a graded ring. It turns out that
Ext∗kG(k, k) will even be graded commutative, in the sense that, for homogeneous
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elements x, y ∈ Ext∗kG(k, k), we have xy = (−1)deg x deg yyx. If the characteristic of
k is 2, we get real commutativity. If this is not the case, however, we simply drop
out the odd degrees to make it so. Thus define

H•(G, k) :=

{
Ext∗kG(k, k), if char(k) = 2

Extev
kG(k, k), if char(k) 6= 2

where Extev
kG(k, k) denotes the Ext-groups of even degree. Thus H•(G, k) is a

commutative graded ring.
Now, to get a suitable topological space out of H•(G, k), we choose its projective

prime ideal spectrum, which is defined as follows:

Definition 4.12. The projective prime ideal spectrum ProjR of a commutative
graded ring R =

⊕
i≥0Ri is the set of its homogeneous prime ideals that does not

contain the irrelevant ideal
⊕

i≥1Ri. ProjR is made into a topological space via
the Zariski topology, i.e. defining the closed subsets to be those on the form

V(I) = {P ∈ ProjR | I ⊂ P}

for a homogeneous ideal I.

Recall that the homogeneous ideals are the ones generated by homogeneous
elements. One might often want to equip ProjR with even more structure, turning
it into a scheme, but here we will only need the topology.

Having our topological space defined, our next step will now be to define the
“supp” subsets of this space, i.e. assigning to each kG-module M a closed subset
of Proj(H•(G, k)) satisfying the properties of Proposition 2.22. To do this we start
by tensoring a projective resolution

· · · // P2
// P1

// P0
// k

of k with M . This gives, since − ⊗M is exact (M is k-free) and the Pi ⊗M are
still projective, a corresponding resolution for M

· · · // P2 ⊗M // P1 ⊗M // P0 ⊗M // M

In this way, each cycle f ∈ ExtnkG(k, k) will induce a cycle f ⊗ 1 ∈ ExtnkG(M,M).
One can check that this assignment defines a ring homomorphism

φ∗M : H•(G, k) −→ Ext∗kG(M,M)

Now, we define
VG(M) := V(Kerφ∗M )

which makes sense because Kerφ∗M is obviously a homogeneous ideal. This finishes
the definition of our support data:

Theorem 4.13. The pair (Proj(H•(G, k)),VG) is a support data on mod kG.
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Proof. Among the properties stated in Proposition 2.22 we here only prove the
most straightforward ones, and refer the interested reader to [6] and [7] for the
rest.

i) VG(0) = V(Kerφ∗0) = V(H•(G, k)) = ∅
VG(k) = V(Kerφ∗k) = V(0) = Proj(H•(G, k))

ii) VG(M ⊕ N) = V(Kerφ∗M⊕N ) = V(Kerφ∗M ∩ Kerφ∗N ) can be seen from the
following factorization of φ∗M⊕N :

H•(G, k)

(
φ∗M
φ∗N

)
// Ext∗kG(M,M)⊕ Ext∗kG(N,N)

� � // Ext∗kG(M ⊕N,M ⊕N)

But

V(Kerφ∗M ∩Kerφ∗N ) = V(Kerφ∗M ) ∪V(Kerφ∗N ) = VG(M) ∪ VG(N)

by the property of primes.

iv) Given a projective resolution · · · // P2
// P1

// P0
// k of k we

look at the commutative diagram

· · · // P2 ⊗ ΣM //

��

P1 ⊗ ΣM //

��

P0 ⊗ ΣM //

��

k ⊗ ΣM

��
· · · // Σ(P2 ⊗M) // Σ(P1 ⊗M) // Σ(P0 ⊗M) // Σ(k ⊗M)

where the downward arrows are the natural isomorphisms arising from the
exactness of ⊗. From this we see that a map

f ⊗ 1ΣM : k ⊗ ΣM −→ Pi ⊗ ΣM

is a boundary if and only if Σ(f ⊗ 1M ) : Σ(k⊗M)→ Σ(Pi⊗M) is. But this
is again equivalent to f ⊗ 1M : k ⊗M → Pi ⊗M being a boundary, as Σ is
an equivalence. Thus Kerφ∗M = Kerφ∗ΣM , and VG(M) = VG(ΣM).

The much more involved properties iii) and v) are stated in [7, Proposition
2.2] (note that our definition of VG(M) coincides with the one used in [6] and [7]
in the case of finitely generated modules by the remarks following [6, Definition
10.2]).

The classification theorem

Now, to make use of Theorem 3.13, we will need to embed mod kG into a bigger ⊗-
triangulated category which admits arbitrary coproducts. What then seems more
appropriate than to choose Mod kG , the stable category of all, not necessarily
finitely generated, kG-modules? This indeed turns out to be a good choice, as
the finitely generated modules are exactly its compact objects, and we have that
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Mod kG = loc〈mod kG〉, which we provide proofs for in the Appendix (Theorem
A.1 and Theorem A.2). It is a ⊗-triangulated category via the same triangulation
and tensor product as mod kG , and, also, the finitely generated kG-modules are
strongly dualizable in Mod kG , as is shown in Theorem A.3. Thus we get:

Theorem 4.14. (Proj(H•(G, k)),VG) ' (Spc mod kG , supp) as support data on
mod kG.

Proof. We here show that i), ii), iv) and v) of Theorem 3.13 are fulfilled for
(Proj(H•(G, k)),VG). The requirements iii) and vi) are more elaborate, and we
leave it for the interested reader to check it out in [5] and [7].

i) Proj(H•(G, k)) is a Noetherian topological space because H•(G, k) is a Noethe-
rian ring (see for instance [5, Theorem 4.2.1]) and thus obeys the ascending
chain condition on (homogeneous) ideals.

It is T0 because, given P1, P2 ∈ Proj(H•(G, k)) with P1 6= P2, clearly either
P1 /∈ V(P2) or P2 /∈ V(P1).

ii) Any homogeneous ideal I ⊂ H•(G, k) with V(I) = V(P ) = {P} for a prime
P is clearly irreducible. Our claim is that if this is not the case, then V(I)
must be reducible. Thus pick a prime P minimal in V(I), and assume that
there is at least one other prime P ′ ∈ V(I) with P 6⊂ P ′. Let S denote the
set of such primes. By the properties of primes and the minimality of P , we
have that ∏

Q∈S

Q 6⊂ P , which implies Q̃ :=
⋂
Q∈S

Q 6⊂ P

Thus we get V(I) = V(P ) ∪ V(Q̃) with V(P ) and V(Q̃) proper subsets of
V(I), confirming our claim.

iii) This follows from [5, Corollary 5.9.2] and [7, Proposition 2.2 c)].

iv)-v) See proofs in the Appendix, Theorem A.1, A.2 and A.3.

vi) Benson, Carlson and Rickard provide a generalization of VG to modules in
Mod kG , which abides the two conditions (see [7, Proposition 2.2 b), f)]).

Before we state the important corollary, we introduce the analogue to KY for
the support data (Proj(H•(G, k)),VG):

Definition 4.15. For a subset W ⊂ Proj(H•(G, k) let C (W ) denote the full
subcategory of mod kG with objects the kG-modules M satisfying VG(M) ⊂W :

C (W ) := {M ∈ mod kG | VG(M) ⊂W}

Corollary 4.16 (Benson-Carlson-Rickard). There is a bijection F : S → R be-
tween the set S of specialization closed subsets of Proj(H•(G, k)) and the set R of
thick ⊗-ideals of mod kG given by

F : W 7−→ C (W )

31



CHAPTER 4. STABLE MODULE CATEGORIES

with inverse
F−1 : C 7−→

⋃
M∈C

VG(M)

Proof. Via Proposition 3.15 the above bijection is simply the bijection of Theo-
rem 3.7 together with the order-preserving bijection between specialization closed
subsets induced by the homeomorphism

f : Proj(H•(G, k))→ Spc mod kG

of Theorem 4.14
Observe that C (W ) = Kf(W ) and

f(
⋃
M∈C

VG(M)) =
⋃
M∈C

suppM = supp C

In the special case when G is a p-group with p = char k, Benson, Carlson
and Rickard [7, Corollary 3.5] point out that we in fact have classified all thick
triangulated subcategories (not just the thick ⊗-ideals):

Theorem 4.17. If P is a p-group and k is a field with characteristic p, then all
thick triangulated subcategories C of mod kP are ⊗-ideals.

Proof. We will need to show that for C ∈ C and M ∈ mod kP we have C⊗M ∈ C .
It is known that k is the only simple module in mod kP (see for instance [4, Lemma
3.14.1]). Thus given a filtration of M in mod kP

M = Mn ⊃Mn−1 ⊃ · · · ⊃M0 = 0

we must have Mi+1/Mi ' k for 0 ≤ i ≤ n. We can thus show that C ⊗Mi ∈ C
for 1 ≤ i ≤ n by induction on i. First, clearly C ⊗M1 ' C ⊗ k ' C ∈ C . Suppose
C ⊗Mi ∈ C . Then the short exact sequence

0 // Mi
// Mi+1

// Mi+1/Mi
// 0

gives rise to a d.t. Mi
// Mi+1

// Mi+1/Mi
w // ΣMi (see Theorem 4.9).

Now, since both C⊗Mi and C⊗Mi+1/Mi ' C⊗k are in C , we get C⊗Mi+1 ∈ C
by the exactness of C ⊗−.
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EXAMPLE II: THE DERIVED
CATEGORY OF PERFECT

COMPLEXES

As another application of Theorem 3.13, we will now prove the classification first
given by Hopkins [17] and later corrected by Neeman [25] of the thick subcategories
of the derived category of perfect complexes over a commutative Noetherian ring.

We first provide some background on derived categories, derived functors and
perfect complexes for the unacquainted reader. For a more in-depth exposition, we
refer to Krause’s excellent treatment in [21] or Weibel’s book [33, Chapter 10].

5.1 The derived category

Let R be a ring and C(R) be the category of chain complexes over R. A chain map
φ : X → Y in C(R) is called a quasi-isomorphism if the induced map

Hφ : H(X)→ H(Y )

is an isomorphism. The derived category is then the category constructed from
C(R) by formally inverting quasi-isomorphisms. More precisely, it is defined to be
a category D(R) equipped with a functor

q : C(R) −→ D(R)

such that qφ is an isomorphism whenever φ is a quasi-isomorphism, which, more-
over, is universal with this property. It is possible to show that such a category
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really exists. By the universal property it is also uniquely determined (up to equiv-
alence). One can think of D(R) as having as objects the chain complexes over R,
any two being isomorphic if there exists a chain map between them which is an
isomorphism under homology.

The category D(R) is called the localization of C(R) with respect to quasi-
isomorphisms, and q is called the localization functor. The notion of derived cat-
egories is usually (and originally) generalized to any abelian category in the place
of ModR.

There are three natural (triangulated) subcategories of D(R): The full subcate-
gories consisting of complexes quasi-isomorphic to bounded below, bounded above
and bounded (in each direction) complexes. These subcategories are denoted, re-
spectively, by D+(R), D−(R) and Db(R).

The triangulation

It turns out that D(R) is a triangulated category. Its triangulation is determined
via three quick definitions:

Definition 5.1 (The translation functor). The shift functor

[1] : D(R)→ D(R)

is defined to be the shifting of any complex one degree to the left and the corre-
sponding action on morphisms, i.e X[1]n = Xn−1 for any complex X.

Definition 5.2. From a chain map f : X → Y between two complexes define the
cone of f to be the complex M(f) given by

M(f)n := Xn−1 ⊕ Yn and dM(f)
n :=

(
−dXn−1 0
fn−1 dYn

)
Definition 5.3. A standard triangle in D(R) is a triangle

X
f // Y

α // M(f)
β // X[1]

where α and β are the natural inclusion and projection.

The d.t.’s in D(R) are then defined to be all the triangles isomorphic to a
standard triangle. For a proof that D(R) is triangulated with this triangulation
see [33, Section 10.4]. Luckily, it turns out that the triangulation has the following
convenient property:

Proposition 5.4. All short exact sequences

0 // X
u // Y

v // Z // 0

of complexes X,Y, Z ∈ C(R) give rise to a d.t. X
u // Y

v // Z
w // X[1] in

D(R). Moreover, all d.t’s are isomorphic to such a d.t.
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From this one also quickly deduces

Proposition 5.5. All d.t.’s X
u // Y

v // Z
w // X[1] give rise to a long

exact sequence

· · · // Hi(X) // Hi(Y ) // Hi(Z) // Hi−1(X) // · · ·

Derived functors

For a commutative ring R, the bifunctors HomR(−,−) and − ⊗R − generalize
neatly to bifunctors in C(R) via

(HomR(X,Y ))n =
⊕

−p+q=n
HomR(Xp, Yq) and (X ⊗R Y )n =

⊕
p+q=n

Xp ⊗R Yq

and a suitable sign rule on the differentials (see [33, Section 2.7]). However, if
we wish to bring with us these further to the derived category, we soon run into
difficulties, as neither functor is exact. Derived functors are designed to overcome
this obstacle, i.e. the problem of extending any functor F : C(R) → C(S) to a
functor F ∗ : D(R)→ D(S).

The crucial idea here comes from the construction of ordinary derived functors,
where the argument is replaced by its projective (injective) resolution. This analogy
turns out to be rewarding, as one can prove the following:

Proposition 5.6. We have that

i) Every X ∈ D+(R) is quasi-isomorphic to a bounded below complex of projectives.

ii) Every X ∈ D−(R) is quasi-isomorphic to a bounded above complex of injectives.

Moreover, if our original complex consisted of finitely generated modules, then the
projectives/injectives can be chosen to be finitely generated too, provided that R is
Noetherian.

By replacing the argument in our functor by its projective (or injective) “res-
olution” it turns out that we indeed get well-definedness in the derived category,
as wanted. However, this only enables us to define derived functors for complexes
bounded in a direction. Fortunately, Spaltenstein [30] offered a solution to this
via the definition of K-projective and K-injective complexes (some places called
homotopically projective/injective complexes):

Definition 5.7. A complex P ∈ C(R) is called K-projective, if we have

HomC(R)(P,X) = 0

for each acyclic complex X. Dually, a complex I ∈ C(R) is called K-injective if

HomC(R)(X, I) = 0
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It turns out that all complexes are quasi-isomorphic to a K-projective (respec-
tively injective) complex, called its K-projective (injective) resolution, and that
Proposition 5.6 comes out as a special case of this. Furthermore, this resolution
plays the same role in providing us with well-defined functors in D(R) as the old
ones. Letting pX and iX denote the K-projective and K-injective resolutions of
X respectively (these assignments turn out to be functorial) we can thus define:

Definition 5.8. Let F : C(R) → C(S) be a functor for rings R and S. Then its
left derived functor LF is defined to be the composition

F ◦ p : D(R) −→ D(S)

Similarly, its right derived functor RF is the composition F ◦ i : D(R)→ D(S).

Having defined derived functors in their generality, we now turn to the two
particular functors employed in this thesis:

Definition 5.9. Let R and S be rings. For a complex of R-S-bimodules X we
define

RHomR(X,−) := R(HomR(X,−) : D(R) −→ D(S)

−⊗L
RX := L(−⊗R X) : D(R) −→ D(S)

One can show that RHomR(−,−) and −⊗L
R − are bifunctors

D(R)×D(R)→ D(R)

for commutative R (if not, replace the first D(R) with D(R)op in the case of
RHomR), and that, had we chosen to define them via a K-projective resolution of
their other variable instead, we had arrived at the same functors.

The following properties are inherited straight away from the module categories:

Proposition 5.10. Let X, Y and Z be complexes of R-modules, R-S-bimodules
and S-modules, respectively, where R and S are commutative rings. We then have
that

i) RHomS(Y,−) and −⊗L
R Y form an adjoint pair.

ii) (X ⊗L
R Y )⊗L

S Z ' X ⊗L
R(Y ⊗L

S Z)

Crucially for us, D(R) turns out to be a ⊗-triangulated category in the sense
of Definition 2.12 with ⊗L

R as the tensor product. This is, however, not the ⊗-
triangulated category we are most interested in here. Our focus will rather be on
the subcategory described in the following section.

Perfect complexes

For a ring R, define the perfect complexes over R as the complexes on the form

0 // Pi // Pi−1
// · · · // Pj+1 // Pj // 0
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where the P ’s are finitely generated projective R-modules.
This leads us into defining the derived category of perfect complexes over R,

denoted by Dperf(R), as the full (triangulated) subcategory of D(R) having as
objects the complexes isomorphic in D(R) to a perfect complex. This is the category
where Hopkins and Neeman did their celebrated classification, and is our second
example of a category satisfying the conditions of Theorem 3.13.

The perfect complexes have some nice features. First, as they are their own K-
projective resolution, the functors −⊗L

R − and RHomR(−, X) (for any X) can be
treated as the ordinary chain complex functors on them. Moreover, it can be shown
that the perfect complexes are the compact objects of D(R) and that they generate
D(R) as a triangulated category. This is proven in [20, Section 8.1.3-4]. We here
also prove that they are strongly dualizable in D(R), making the requirements iv)
and v) of Theorem 3.13 fulfilled for Dperf(R), with D(R) as its corresponding “big”
category. But first, let us verify that RHomR and ⊗L

R are still well-defined when
restricted to Dperf(R):

Proposition 5.11. If X,Y ∈ Dperf(R) for a commutative ring R, we also have

RHomR(X,Y ) ∈ Dperf(R) and X ⊗L
R Y ∈ Dperf(R)

Proof. First, we note that if P and Q are finitely generated projective R-modules,
then so are also HomR(P,Q) and P ⊗RQ. As HomR(R,Q) ' Q and R⊗RQ ' Q,
and we must have P ⊕ M ' Rn for some n and an R-module M , this is seen
immediate, since HomR and ⊗R commute with finite coproducts.

We are now finished by invoking the observation above; in the case of perfect
complexes, RHomR and ⊗L

R are just the ordinary HomR and ⊗R (the respective
boundedness conditions are given by that of X and Y ).

The second assertion above settles that Dperf(R) is a thick ⊗-ideal in D(R),
and that it indeed is a ⊗-triangulated category on its own. In addition to this,
it can be shown to be essentially small, thus complying with the preconditions of
Balmer’s classification theorem.

Due to the lack of finding a direct proof in the literature of the fact that the
perfect complexes are strongly dualizable in the derived category, we present one
here:

Proposition 5.12. The perfect complexes are strongly dualizable in D(R).

Proof. We want to show that there is a natural isomorphism

RHomR(X,R)⊗L
R Y ' RHomR(X,Y ) (5.1)

for all X ∈ Dperf(R) and Y ∈ D(R).
Let us first verify that for R-modules P and M , with P finitely generated

projective, the natural map

θ : HomR(P,R)⊗RM −→ HomR(P,M)

given by θ : f ⊗R m 7→ mf , is an isomorphism.
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Suppose that {p1, · · · , pn} is a generating set for P , define F to be the free R-
module with {p1, · · · , pn} as basis, and let π : F → P be the canonical projection.
By the property of projectives we then have a map σ : P → F such that π◦σ = idP .
Defining fi : F → R by fi(pj) = δij for 1 ≤ i ≤ n, we get maps gi := fi ◦σ : P → R
such that gi(pj) = δij (this is called the dual basis property of projective modules).
Now, one can check that the map ψ : HomR(P,M) → HomR(P,R)⊗RM defined
by

ψ : f 7−→
n∑
i=1

gi ⊗R f(pi)

is an inverse of θ.
Since HomR(X,R) is again a perfect complex, (5.1) boils down to showing

HomR(X,R)⊗R Y ' HomR(X,Y )

But this follows directly from the preceding discussion, as in each degree in the
above complexes we get a finite coproduct of pairwise naturally isomorphic sum-
mands (whose isomorphisms commute with differentials by the naturality).

5.2 The support data

From now on, let R always be a commutative Noetherian ring. The support data
employed in the classification of Hopkins [17] and Neeman [25] is what makes
their theorem so remarkably beautiful; it is simply SpecR, the simplest imaginable
topological space related to R, together with the following support:

Definition 5.13. Define the support of a complex X ∈ Dperf(R) to be

SuppR(X) := {p ∈ SpecR | H(Xp) 6' 0}

Note that since R is Noetherian, H(X) is finitely generated as an R-module.
One can then check that H(Xp) ' H(X)p 6' 0 is equivalent to annR H(X) ⊂ p (the
first isomorphism comes from the exactness of localization).

We will now show that this indeed defines a support data on our category. To
prove the tensor property, however, we will first need two short lemmas:

Lemma 5.14. Let X,Y ∈ Dperf(R) and p ∈ SpecR Then

(X ⊗L
R Y )p ' Xp⊗L

Rp
Yp

Proof. Since ⊗L
R is just the normal tensor product between complexes for objects

in Dperf(R) and Xp, Yp ∈ Dperf(R) as projectivity is a local property, the result
follows from the corresponding theorem for finitely generated R-modules (see for
instance [1, Proposition 3.7]).

Define i(X) := inf{i | Hi(X) 6' 0} for any X ∈ D(R). The following lemma is
due to Foxby [12]
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Lemma 5.15. If X,Y ∈ D+(R), then

i(X ⊗L
R Y ) ≤ i(X) + i(Y )

with equality if and only if Hi(X)(X)⊗R Hi(Y )(Y ) 6' 0

Proof. We may by Proposition 5.6 assume that X and Y are bounded below com-
plexes of projectives.

The first statement is immediate. Furthermore, since projective modules are
flat, it is easy to check that

Hi(X)+i(Y )(X ⊗R Y ) ' Hi(X)(X)⊗R Hi(Y )(Y )

Theorem 5.16. The pair (SpecR,SuppR) is a support data on Dperf(R).

Proof. We again work our way through the requirements of Proposition 2.22.

i), ii), iv) These properties are trivial, noting that

H(Rp) ' Rp

H((X ⊕ Y )p) ' H(Xp)⊕H(Yp)

H(X[1]p) ' 0⇔ H(Xp) ' 0

iii) From Lemma 5.14 and Lemma 5.15 we know that

i((X ⊗L
R Y )p) = i(Xp⊗L

Rp
Yp) ≤ i(Xp) + i(Yp)

which gives us SuppR(X ⊗L
R Y ) ⊂ SuppR(X) ∩ SuppR(Y ).

On the other hand, if p ∈ SuppR(X) ∩ SuppR(Y ), we know, as Rp is local
and H(Xp) and H(Yp) are finitely generated as R-modules, that

Hi(Xp)(Xp)⊗Rp
Hi(Yp)(Yp) 6' 0

(see [29, Corollary 2, p. 2]). Thus we have equality above, giving

i((X ⊗L
R Y )p) 6=∞⇒ p ∈ SuppR(X ⊗L

R Y )

v) Let X // Y // Z // X[1] be a d.t. Since any d.t. is isomorphic to

one arriving from a short exact sequence of complexes (see Proposition 5.4),
we get, via the exactness of localization and Proposition 5.5, a corresponding
long exact sequence

· · · // Hn+1(Xp) // Hn(Yp) // Hn(Zp) // Hn(Xp) // · · ·

We then see that if two of H(Xp), H(Yp) and H(Zp) for a prime ideal p are
isomorphic to zero, then so is the third.
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The small support in D(R)

In Theorem 3.13 it is required that the support should be generalizable to the
“big” category, still obeying σ(a ⊗ b) = σ(a) ∩ σ(b) together with the condition
σ(a) = ∅ ⇒ a = 0. We have already suggested that in the case of Dperf(R) this big
category is D(R). In this section we prove that the small support introduced by
Foxby in [12] is a generalization of SuppR to D(R), which abides the two conditions.
The small support is defined on X ∈ D(R) as

suppR(X) := {p ∈ SpecR | H(X ⊗L
R k(p)) 6' 0}

where k(p) := Rp/pRp is the residue field at p. The following propositions are
stolen from [12] and [14]:

Proposition 5.17. If X ∈ Dperf(R), then suppR(X) = SuppR(X).

Proof. First, note that

X ⊗L
R Rp = pX ⊗R R/p ' (pX)p ' Xp

in the derived category (the last isomorphism is given by the exactness of localiza-
tion). Thus we have X ⊗L

R k(p) ' Xp⊗L
Rp

k(p), and Lemma 5.15 gives

i(X ⊗L
R k(p)) = i(Xp⊗L

Rp
k(p)) ≤ i(Xp) + i(k(p)) = i(Xp)

implying suppR(X) ⊂ SuppR(X).
Furthermore, if H(Xp) 6' 0, we have Hi(Xp)(Xp)⊗Rp

H0(k(p)) 6' 0, which gives
equality above, and thus the other inclusion.

Proposition 5.18. Given X,Y ∈ D(R) we have

suppR(X ⊗L
R Y ) = suppR(X) ∩ suppR(Y )

Proof. Bökstedt and Neeman [9, Lemma 2.17] states the (easily proved) assertion
that if there is a homomorphism α : R → k of a commutative ring into a field,
then for any complex X ∈ D(R) we have that X ⊗L

R k is isomorphic (in the derived
category) to a direct sum of suspensions of k.

Thus, if p ∈ suppR(X) ∩ suppR(Y ), we have that Y ⊗L
R k(p) is isomorphic to a

(non-trivial) coproduct of suspensions of k(p). This gives us

H((X ⊗L
R Y )⊗L

R k(p)) 6' 0

since ⊗L
R is associative and commutes with coproducts and suspensions.

The other inclusion is given by

(X ⊗L
R Y )⊗L

R k(p) ' X ⊗L
R(Y ⊗L

R k(p)) ' Y ⊗L
R(X ⊗L

R k(p))

Proposition 5.19. If X ∈ D(R) is non-trivial, then suppR(X) 6= ∅.
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Proof. That X is non-trivial means that H(X) 6' 0. Let p be maximal (with respect
to inclusion) among ideals a ⊂ R such that H(X ⊗L

R R/a) 6' 0. Then p must be
prime. For if not, there would be a (non-trivial) prime filtration

R/p = Bn ⊃ · · · ⊃ B0 = 0

with Bi+1/Bi ' R/qi for some prime ideal qi (see [22, Theorem 6.4]). But this is
impossible since the following induction argument then would give H(X ⊗L

R Bi) ' 0
for all i:

Clearly H(X ⊗L
R B0) ' 0, and if H(X ⊗L

R Bi) ' 0, the short exact sequence

0 // Bi // Bi+1
// R/qi // 0

gives, via the exactness of X ⊗L
R − and Proposition 5.5, rise to the long exact

sequence

· · · // Hl(X ⊗L
R Bi)

// Hl(X ⊗L
R Bi+1) // Hl(X ⊗L

R R/qi)
// · · ·

One sees easily that p ⊂ qi, giving H(X ⊗L
R R/qi) ' 0 and H(X ⊗L

R Bi+1) ' 0.
Having verified that p is prime, we now claim that

H(X ⊗L
R k(p)) ' H(X ⊗L

R R/p) 6' 0

making suppR(X) non-trivial.
To prove this, first observe that (X ⊗L

R R/p)p ' Xp⊗L
Rp

k(p) ' X ⊗L
R k(p).

Thus we settle our claim if we can show that the canonical map

θi : Hi(X ⊗L
R R/p) −→ Hi(X ⊗L

R R/p)p ' Hi((X ⊗L
R R/p)p)

is an isomorphism for all i.
Crucial here is that, in Hi(X ⊗L

R R/p), multiplication by any element a ∈ R \ p
turns out to be an isomorphism: R/p

a // R/p // R/(p + (a)) is a short exact

sequence (the first map is an injection since R/p is an integral domain), and thus
gives rise to a d.t.

R/p
a // R/p // R/(p + (a)) // R/p[1]

Since X ⊗L
R − is exact we get, applying homology, a long exact sequence

· · · // Hi(X ⊗L
R R/p)

a∗ // Hi(X ⊗L
R R/p) // Hi(X ⊗L

R R/(p + (a))) // · · ·

yielding the wanted isomorphism, since H(X ⊗L
R R/(p+(a))) ' 0 by the maximality

of p.
This, in turn, implies injectivity and surjectivity of θi: First, if θi(x) = x/1 = 0

for an x ∈ Hi(X ⊗L
R R/p), we must have xa = 0 for some a ∈ X \ p, giving

x = 0. Also, any x/a ∈ Hi(X ⊗L
R R/p)p is equal to θi(x

′), where x = ax′ in
Hi(X ⊗L

R R/p).
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5.3 Classifying thick subcategories of Dperf(R)

All this finally makes us ready to invoke the isomorphism theorem:

Theorem 5.20. (SpecR,SuppR) ' (Spc Dperf(R), supp) as support data.

Proof. We check that the requirements of Theorem 3.13 are satisfied:

i)-ii) The corresponding proofs for Proj(H•(G, k)) in Theorem 4.14 carry straight
over to the case of SpecR, keeping in mind that R is Noetherian.

iii) Given a closed subset V(a) of SpecR for an ideal a, we want to find a perfect
complex X such that SuppR(X) = V(a). Since R is Noetherian, a is finitely
generated, say a = 〈a1, · · · , an〉. Define complexes

Xi : · · · // 0 // R
ai // R // 0 // · · ·

with the R’s in degree one and zero, and let X be the (Koszul) complex

X :=

n⊗
i=1

Xi

Since free modules are projective, this is clearly a perfect complex. By the
tensor property of SuppR we now have SuppR(X) =

⋂n
i=1 SuppR(Xi). Fur-

thermore, annR H0(Xi) = annRR/Rai = Rai, and since Rai also annihilates
H1(Xi) = Ker ai we get annR H(Xi) = Rai, yielding the following equiva-
lence:

p ∈ SuppR(X)⇔ Rai ⊂ p for 1 ≤ i ≤ n⇔ a ⊂ p

Hence SuppR(X) = V(a), as wanted.

iv)-v) With D(R) identified as the appropriate “big” category for Dperf(R), this
is proved in [20, Section 8.1.3-4] and Proposition 5.12.

vi) This was proved in Proposition 5.17-5.19.

Before we move on to the classification theorem we claim that all thick triangu-
lated subcategories of Dperf(R) are ⊗-ideals, thus applying Theorem 3.7 to Dperf(R)
gives us a classification of all thick triangulated subcategories. This claim is settled
in the Appendix (Theorem A.8). By the same arguments as in Corollary 4.16 we
thus get

Corollary 5.21 (Hopkins-Neeman). There is a bijection F : S → R between the
set S of specialization closed subsets of SpecR and the set R of thick triangulated
subcategories of Dperf(R) given by

F : W 7−→ {X ∈ Dperf(R) | SuppR(X) ⊂W}

with inverse
F−1 : C 7−→

⋃
X∈C

SuppR(X)

Remark 5.22. This result has been generalized by Thomason in [31] to hold when
R is replaced by a more general entity, a Noetherian scheme.
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CLOSING REMARKS

As already mentioned in the introduction of Section 3.2, we needed to introduce
quite a few preconditions to be able to prove the existence of an isomorphism
between {Spc K , supp} and another given support data. It is perfectly possible,
and also highly probable, that a simpler set of requirements would still be enough
for the isomorphism to hold, and hence still enable a translation of Balmer’s clas-
sification. To dig further into the question of what we really need to prove this
isomorphism would be an interesting study. In particular, it would be very exciting
if one could give a proof of the surjectivity without needing to involve the result
of Hovey, Palmieri and Strickland [18], and thus getting rid of the “big” category
and “compactly generated” constraints.

Also, as another direction for further research, we strongly suspect that Theo-
rem 3.13 can be used in giving proofs of classification theorems in other categories
than our two examples, especially in those already having a classification that is
comparable to those of our examples. Perhaps, if one succeeds with getting rid of
some of the conditions, it could even provide totally new classifications in tensor
triangulated categories not yet having a classification theorem.
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APPENDIX A

In this Appendix we give proofs for Mod kG being the appropriate “big” category to
mod kG in the sense of Theorem 3.13, and that all thick triangulated subcategories
of Dperf(R) are ⊗-ideals.

A.1 Mod kG is compactly generated by mod kG

Let kG be a group algebra where G is a finite group and k is a field. We here
prove that mod kG , the stable category of finitely generated kG-modules, represents
the compact objects in Mod kG , the stable category of all, not necessarily finitely
generated, kG-modules. We also show that Mod kG = loc〈mod kG〉, and that the
objects in mod kG are strongly dualizable in Mod kG . The proofs of Theorem A.1
and Theorem A.2 are taken from [24].

Theorem A.1. The compact objects in Mod kG are exactly those which are iso-
morphic to a finitely generated kG-module.

Proof. First note that since kG is obviously Artinian as a ring, we have projective
covers and know that M/MJ is a direct sum of simple modules for any kG-module
M , where J is the Jacobson radical of kG (which also is nilpotent).

If M is finitely generated, any map f : M →
⊕

i∈I Ni factors through the finite
coproduct

⊕
i∈I′ Ni where I ′ ⊂ I is chosen such that the Ni’s with i ∈ I ′ are those

in which f(ej) has a non-zero component for a generator ej . Thus it is compact.
To prove the converse, suppose that M is compact. Since M/MJ '

⊕
i∈I Si for

a set of simple modules Si, the projection p : M // // M/MJ must factor through

T1 :=
⊕
i∈I′

Si

for some finite subset I ′ ⊂ I. Letting T2 :=
⊕

i∈I\I′ Si we must thus have an f
making the following diagram commute in the stable category
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M
( p1p2 )

// //

f   AAAAAAAA T1 ⊕ T2

T1

- 

;;wwwwwwwww

where p1, p2 are the projections of p onto the respective summands. This means
that (

p1−f
p2

)
: M // // T1 ⊕ T2

factors through a projective module. Let πi : Pi → Ti for i ∈ {1, 2} be projective
covers. We can then, via the property of projectives, replace this module by P1⊕P2,
yielding a commutative diagram

M

(
p1−f
p2

)
// //

( xy ) ##HHHHHHHHH T1 ⊕ T2

P1 ⊕ P2

(
πi 0
0 π2

)
99 99rrrrrrrrrr

Now, since p2 is surjective, y must be so too (since π2 is an essential epimor-
phism). Furthermore it must split, as P2 is projective. Thus M ' M ′ ⊕ P2 for
some M ′, which gives

T1 ⊕ T2 'M/MJ 'M ′/M ′J ⊕ P2/P2J

Since T2 is a coproduct of simple modules we must have P2/P2J ' T2. Thus
we get M ′/M ′J ' T1, which is finitely generated by definition.

But this implies that M ′ too must be finitely generated: First, it gives us
that M ′J i/M ′J i+1 must be finitely generated for i ≥ 0 (as J is). Then, since
J is nilpotent, an induction argument yields that, indeed, M ′J i must be finitely
generated for all i.

We are now finished by observing that M 'M ′ in the stable category.

Theorem A.2. Let S be a complete set of non-isomorphic simple kG-modules.
Then

Mod kG = loc〈S〉

Proof. Since kG is Artinian as a ring, the Jacobson radical J is nilpotent. Let r
be the least positive integer such that Jr = 0, and choose an M ∈ Mod kG . We
prove by induction that MJ i ∈ loc〈S〉 for 0 ≤ i ≤ r.

Clearly MJr = 0 ∈ loc〈S〉. Now, suppose MJ i ∈ loc〈S〉, and look at the d.t.

MJ i // MJ i−1 // MJ i−1/MJ i // ΣMJ i

which exists by Theorem 4.9. Since MJ i−1/MJ i = (MJ i−1)/(MJ i−1)J is a co-
product of simple modules, we must thus have MJ i−1 ∈ loc〈S〉, completing the
proof.
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Theorem A.3. The objects of mod kG are strongly dualizable in Mod kG.

Proof. The functor Homk(M,−) is a right adjoint of − ⊗M in Mod kG (where
Homk(M,N) is made into a kG-module via (gφ)(m) := g(φ(g−1m)) for g ∈ G,
m ∈ M and φ ∈ Homk(M,N)). Thus we have to show that there is a natural
isomorphism

Homk(M,k)⊗N ' Homk(M,N)

for M ∈ mod kG and N ∈ Mod kG . Indeed, defining the (k-bilinear) natural map
g : Homk(M,k)×N → Homk(M,N) by

g : (ψ, n) 7−→ nψ

the induced (kG-linear) map g : Homk(M,k) ⊗ N → Homk(M,N) is such an
isomorphism.

To see this, let (e1, · · · , en) be a basis for M as a k-vector space and (f1, · · · , fn)
the corresponding dual basis (given by fi(ej) = δij). Then the map

h : Homk(M,N) −→ Homk(M,k)⊗N

defined by

h : φ 7−→
n∑
i=1

fi ⊗ φ(ei)

is an inverse.

A.2 Thick subcategories in Dperf(R) are ⊗-ideals

As announced in Section 5.3, we here prove that all thick triangulated subcategories
of Dperf(R) are ⊗-ideals, where R is a commutative Noetherian ring as usual. We
will need to introduce some machinery to succeed, as the proof will involve DG-
algebras and homotopy colimits. The idea of the proof is taken from [19, Theorem
2].

DG-algebras

Most of the results we presented in Section 5.1 can be transferred to what can be
thought of as a generalization of the setting of complexes over a ring, namely the
case of DG-modules over a DG-algebra, which we here give a brief introduction to
(see [20, Section 8.2] for more).

Definition A.4. For a commutative ring R, a differential graded R-algebra (DG-
algebra) is a graded R-algebra

A =
⊕
p∈Z

Ap

endowed with an R-linear differential

· · · d // Ai+1
d // Ai

d // Ai−1
d // · · ·
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such that we have d2 = 0, and, for a ∈ Ap and b ∈ Aq, the Leibniz rule

d(ab) = (da)b+ (−1)pa(db)

A trivial example is any ordinary R-algebra B (for instance R itself), defining
A0 := B and Ai = 0 everywhere else. The R-algebra HomR(X,X) for a complex
X ∈ C(R) is another standard example, with multiplication composition of chain
maps. In the same way, RHomR(X,X) can be thought of as a DG-algebra.

Now, fixing a DG-algebra A, we define

Definition A.5. A differential graded module (DG-module) over A is a graded
right A-module

M =
⊕
p∈Z

Mp

with an R-linear differential

· · · d // Mi+1
d // Mi

d // Mi−1
d // · · ·

such that we have d2 = 0, and, for m ∈Mp and a ∈ Aq, the Leibniz rule

d(ma) = (dm)a+ (−1)pm(da)

A morphism f : M → N between DG A-modules is a homogeneous (A-linear) map
of degree 0 which commutes with the differentials.

In the trivial case of A = R we get that the DG A-modules are just the com-
plexes over R, settling the claim that DG-modules over DG-algebras are a gen-
eralization of this setting. Other examples include HomR(X,Y ) for any complex
Y ∈ C(R), which is viewed as a DG-module over HomR(X,X) under composition.
Similarly, RHomR(X,Y ) is a DG RHomR(X,X)-module.

It turns out that, for a DG-algebra A, we can define D(A), the derived cat-
egory of DG A-modules, in the same way as in Section 5.1, by inverting quasi-
isomorphisms (morphisms turning into isomorphisms when applying homology with
respect to the module differential). This category is triangulated as well, via the
very same structure as the derived category over a ring. Moreover, all the results of
Section 5.1 carry over, mutatis mutandis, to the case of DG-algebras. In particular
we have, for two DG R-algebras A and B and a DG A-B-bimodule X (defined in
the obvious way), an adjoint pair of functors

RHomB(X,−) : D(B)→ D(A)

−⊗L
AX : D(A)→ D(B)

These functors are constructed via K-projective DG A-modules, to which all DG-
modules are isomorphic. We also get the special case of this in the bounded case,
as in Proposition 5.6: Any DG A-module

⊕
p∈ZMp with H(Mp) = 0 when p is

small enough is isomorphic in D(A) to a DG A-module
⊕

p∈ZQp with each Qp
projective (as A-module) and Qp = 0 for small p.
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Homotopy colimits

Let K be a triangulated category and let

X0
φ1 // X1

φ2 // X2
φ3 // · · ·

be a direct system of objects in K . The homotopy colimit of this system, denoted
hocolim−−−−−→Xn, is defined to be the cone of the map

1− shift :=


1 0 0 · · ·
−φ1 1 0 · · ·

0 −φ2 1 · · ·
...

...
...

. . .

 :
⊕
n≥0

Xn −→
⊕
n≥0

Xn

In other words, it is the object constructed via TR1 such that⊕
n≥0

Xn 1−shift //
⊕
n≥0

Xn χ // hocolim−−−−−→Xn ψ // (
⊕
n≥0

Xn)[1]

is a d.t. for some morphisms χ and ψ. This object is uniquely determined up to
(non-canonical) isomorphism. In the case of D(R) the homotopy colimit coincides,
up to isomorphism, with the direct limit of the same system (hence the name).

The homotopy colimit plays an important role in the proof of the Brown rep-
resentability theorem, but here, we will need it in proof of the ⊗-closedness of the
thick subcategories in Dperf(R) via the following proposition:

Proposition A.6. All bounded below complexes of finitely generated modules in
D(R), where R is a commutative Noetherian ring, are isomorphic to a homotopy
colimit of a direct system of objects in thickD(R)〈R〉, where thickD(R)〈R〉 denotes
the smallest thick triangulated subcategory of D(R) containing R.

Moreover, the corresponding assertion also holds for finitely generated DG-
modules over a DG-algebra which is Noetherian as an R-algebra.

Proof. Let X ∈ D(R) be a bounded below complex of finitely generated R-modules.
For convenience, suppose Xn = 0 for n < 0. Then we know from Proposition 5.6
that X is isomorphic in D(R) to a bounded below complex

· · · // P3
// P2

// P1
// P0

// 0

of finitely generated projective R-modules. Define complexes

Xi : 0 // Pi // · · · // P0
// 0

for i ≥ 0. The Xi’s form a direct system X0 // X1 // X2 // · · · via

inclusion. We claim that X ' hocolim−−−−−→Xi, and that Xi ∈ thickD(R)〈R〉, for each i.

The former is immediate, as in D(R) we have hocolim−−−−−→Xi ' lim−→Xi. We prove
the second assertion inductively. First, since we have P0 ⊕M = Rn for some M
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and n, we get P0 ∈ thickD(R)〈R〉. Now, suppose Xi ∈ thickD(R)〈R〉, and look at
the following morphism f between objects in thickD(R)〈R〉

· · · // 0 //

��

Pi+1
//

��

0 //

��

· · · // 0

��

// 0 //

��

· · ·

· · · // 0 // Pi // Pi−1
// · · · // P0

// 0 // · · ·

which commutes as the Pi’s form a complex. A quick computation then shows that
M(f) = Xi+1, giving Xi+1 ∈ thickD(R)〈R〉.

The above proof translates directly to the case of DG-algebras, noting that a
finitely generated DG-module must be bounded in each direction.

We will also need the following lemma:

Lemma A.7. Suppose that hocolim−−−−−→Xn for a direct system

X0
φ1 // X1

φ2 // X2
φ3 // · · ·

of objects in a triangulated category is compact. Then in the d.t.⊕
n≥0

Xn 1−shift //
⊕
n≥0

Xn χ // hocolim−−−−−→Xn ψ // (
⊕
n≥0

Xn)[1]

ψ must be the zero morphism.
Furthermore, hocolim−−−−−→Xn must be a retract of

⊕
n∈I X

n for some finite subset
I ⊂ N0.

Proof. Define H := hocolim−−−−−→Xn. Since H is compact and suspension is an additive
functor, ψ factors as

H
ψ //

⊕
n∈J

Xn[1] // (
⊕
n≥0

Xn)[1]

for a finite subset J ⊂ N0. Define ψi : H
pi◦ψ // Xi[1] , where the pi’s are the

respective projections (projections exist since finite products and coproducts coin-
cide). Then the map

H

(
ψi
ψi+1

)
// Xi+1[1]⊕Xi[1]

( 1 −φi+1 )[1] // Xi+1[1]

is zero for i ≥ 0 (since the composition (1−shift)[1]◦ψ is). This gives, as ψ0 clearly
must be the zero morphism, that ψi = 0 for all i, by induction. Thus ψ is zero.
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Now, we have the following morphism of d.t.’s

0 //

��

H

g

���
�
�
� H // 0

��⊕
n≥0

Xn 1−shift //
⊕
n≥0

Xn
// H

ψ // (
⊕
n≥0

Xn)[1]

where g is constructed via TR2, proving the second assertion (as H is compact).

The proof

Now, after having introduced the right tools, the proof of our theorem is actually
quite appealing:

Theorem A.8. All thick triangulated subcategories of Dperf(R) are ⊗-ideals.

Proof. Fixing a perfect complex X ∈ Dperf(R), we are finished if we can show
Y ⊗L

RX ∈ thickD(R)〈X〉 for any Y ∈ Dperf(R).
Start by defining the DG-algebra ε := RHomR(X,X). Since X is naturally a

DG ε-module, we have that the functors

RHomR(X,−) : D(R) −→ D(ε)

−⊗L
ε X : D(ε) −→ D(R)

form an adjoint pair.
The unit/counit definition of adjoint functors gives us that

Y ⊗L
RX = Y ⊗L

R(ε⊗L
ε X) = (Y ⊗L

R ε)⊗L
ε X

is a retract of
RHomR(X,Y ⊗L

RX)⊗L
ε X

Now, since ε is Noetherian as an R-algebra and RHomR(X,Y ⊗L
RX) is finitely

generated over ε (it is even finitely generated over R), we get from Proposition A.6
that

RHomR(X,Y ⊗L
RX) ' hocolim−−−−−→Xn

in D(ε), for a direct system

X0
φ1 // X1

φ2 // X2
φ3 // · · ·

of DG ε-modules with Xn ∈ thickD(ε)〈ε〉
Furthermore, since −⊗L

ε X is a triangle functor and commutes with coproducts,
we get

RHomR(X,Y ⊗L
RX)⊗L

ε X ' hocolim−−−−−→(Xn⊗L
ε X)
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Noting that RHomR(X,Y ⊗L
RX)⊗L

ε X is a perfect complex and hence compact,
we get from Lemma A.7 that RHomR(X,Y ⊗L

RX)⊗L
ε X, and thus Y ⊗L

RX, must
be a direct summand of

⊕
n∈J(Xn⊗L

ε X) for some finite subset J ⊂ N0.
It is known that all objects in thickD(ε)〈ε〉 can be constructed via a finite

number of coproducts, retracts, suspensions and formations of d.t.’s (see [8, Sec-
tion 3.2]). Since −⊗L

ε X commutes with all these actions, we must thus have
Xn⊗L

ε X ∈ thickD(R)〈ε⊗L
ε X〉 = thickD(R)〈X〉 for each n, finally giving Y ⊗L

RX ∈
thickD(R)〈X〉, as wanted.
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