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Abstract

In this thesis I have been working on comparing the performance of the ACER and POT
methods for prediction of extreme values from heavy tailed distributions. To be able to
apply the ACER method to heavy tailed data the ACER method was first modified to
assume that the underlying extreme value distribution would be a Fréchet distribution,
not a Gumbel distribution as assumed earlier. These two methods have then been tested
with a wide range of synthetic and real world data sets to compare their preformance in
estimation of these extreme values. I have found the ACER method seem to consistently
perform better in the terms of accuracy compared to the asymptotic POT method.
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Chapter 1

Introduction

Extreme value theory (EVT) is a branch of statistic dealing with the extremes of a
distribution, being the extremely small or extreme large observations. Important appli-
cations of extreme value theory is i.e. estimating return levels for a process for a given
time period, the levels expected to be exceeded during this time period. By being able
to accurately predicting this return levels we are able to estimate risk or being able to
correctly dimension structures.

Since we are working with the extreme values from a distribution we are operating
in the very tail of the distribution. Considering this it is clear that when working with
extreme value statistic, the amount of data, or at least extreme observations, will be
sparse. In classical EVT one is working with block maxima (or minima), fitting these
observations to a distribution of the generalised extreme value family. This procedure
is regarded as a wasteful approach as many observations are discarded. Further the
peaks over threshold (POT) method deals with, as it’s name implies, exceedances over
a given threshold. This makes better use of the data as we are no longer looking at the
distribution of block maxima, but the distribution of threshold exceedances. Though
this method is not without flaws as it’s results is based on a limiting distribution as
the threshold increases. In this thesis we are going to compare this POT method to a
method called average conditional exceedance rate (ACER) method. This method does
not rely on asymptotic behaviour of data, but rather uses the sub asymptotic form of the
generalised extreme value distribution as an assumption of the behaviour in the tail of a
distribution. Earlier the ACER method has been using the sub asymptotic form of the
Gumbel distribution, and has been applied to data that can be assumed has the Gumbel
distribution as extreme value distribution with great results. The ACER method has it’s
advantage over these asymptotic methods that it is able to utilize the available data in a
better manner, no having to rely on block maxima or exceedances over a given threshold.
We are now going to further try to generalise the ACER method to by looking at data
generated by heavy tailed processes. This will be done by assuming another form of the
sub asymptotic extreme value distribution.
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Chapter 2

Theory

In the following chapter we shall consider a series of independent stochastic variables
X = (X1, ..., XN ), with an unknown common distribution. The extreme value of these
stochastic variables is defined as

MN = max(X1, ..., XN ), (2.1)

with the exact distribution of MN given by

P(MN ≤ η) = P(X1 ≤ η) · · ·P(XN ≤ η) = FNX (η), (2.2)

since all observations are iid. If one where to estimate the distribution of FX , small errors
in this estimate would lead to great errors in FNX . Instead we look at the behaviour of
FNX when N ⇒∞, and it can then be shown that if there exists a sequence of constants
{aN > 0} and {bN} such that the distribution ofM∗N = (MN−bN )/aN is non-degenerate,
the distribution of M∗N will be of one of three families:

I : G(η) = exp
{
− exp

[(
η − b
a

)]}
,−∞ < η <∞

II : G(η) = exp
{
−
(
η − b
a

)−α}
, η > b

III : G(η) = exp
{
−
[
−
(η − b

a

)]−α}
, η < b.

The distributions I, II and III is the Gumbel, the Fréchet and the Weibull distribution
respectively. This is known as the Extremal Types Theorem, [4]. This three types can
also be written as

Prob(MN ≤ η) −→ G(η) = exp
{
−
[
1 + ξ

(η − µ
σ

)]1/ξ

+

}
, N →∞, (2.3)

where [z]+ = min(0, z). This distribution is the generalised extreme value (GEV) distri-
bution with location parameter µ, scale parameter σ and shape parameter ξ. For values
of the shape parameter ξ > 0, ξ < 0 and ξ → 0 the general extreme value distribution
equals the Fréchet, the Weibull and the Gumbel distribution respectively.

3
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2.1 Return period

The return period of a level η for a random variable X is defined as

R = 1
P (X > η) = 1

1− FX(η) . (2.4)

This means that the return rate R for η is the mean number of trials that must be done
for X to exceed η.

When modeling POT the return period for a level ηR = u + y, where u is the
threshold, is given by

R = 1
λP (X > ηR) = 1

λP (Y > y) . (2.5)

Here λ is the mean crossing rate of the threshold per block (i.e. per year, month etc.), or
the average proportion of observations that fall over the threshold. From (2.5) is follows
that

P (Y ≤ y) = 1− 1
λR

, (2.6)

and since the distribution of Y is know, we have from (2.11) that

ηR = u− σ̃

ξ
(1− (λR)ξ), (2.7)

for ξ 6= 0, and

ηR = u+ σ̃ ln(λR), (2.8)

for ξ = 0.
Confidence intervals for the return level ηR is computed using the delta method,

that is assuming that the maximum likelihood estimator is multi normal distributed
with expectation equal to the real parameter value and variance covariance matrix V .
The variance of the return level ηR can then be estimated by the delta method as

Var(ηR) ≈ ∇ηTRV∇ηR, (2.9)

where V is the variance-covariance matrix for the estimated parameters (λ̂, σ̂, ξ̂), and

∇ηR =
[∂ηR
∂λ

,
∂ηR
∂σ

,
∂ηr
∂ξ

]T
. (2.10)

For the ACER method the return levels are estimated by inverting (2.28) with the
values for a, b, c and q, found by the least square routine, for the exceedance rate of
interest.
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2.2 Peaks over threshold (POT)

When fitting the GEV distribution to a set of data only block maxima (or minima) can
be used. This is of course very wasteful when considering that a block may be a whole
year, or a single block can contain several observations more extreme than observations of
another block. To be able to use more of the data it can be useful to look at exceedances
of a high threshold instead of block maxima. This describes the peaks over threshold
(POT) method and is based on that if MN is distributed according to (2.3), then for
large enough values for a threshold u, the threshold excess X−u, conditional on X > u,
can be approximated with

Prob(X − u > y|X > u) ≈ H(y) = 1−
(

1 + ξy

σ̃

)−1/ξ

+
, (2.11)

where σ̃ = σ + ξ(u − µ). This distribution is the generalized Pareto (GP) distribution
with parameters σ̃ and ξ, where µ, σ and ξ is the same for both the GEV and GP
distributions. When modeling POT the parameters of the distribution is estimated by
i.e. maximum likelihood.

2.2.1 Threshold selection

As mentioned above the GP distribution is only a valid approximation to the threshold
excess if the threshold is large enough. In practice that means that the threshold must
be decided on by the user, a task which is not always trivial. Choosing a large value for
the threshold may ensure that the asymptotic assumptions made are indeed satisfied,
but choosing too large of a threshold will see much of the data discarded and hence
the estimation of the parameters in the GP distribution may be poor. So the desired
threshold is the lowest value for which the threshold excess fits the GP distribution. As
a start it can be informative to look at a mean residual life plot of the data. The idea
behind the mean residual life plot is to look at the first moment of the GP distribution

EX = σ̃

1− ξ = σ + ξ(u− µ)
1− ξ , ξ < 1, (2.12)

which is linear in u. The mean residual life plot is obtained by plotting empirical mean
exceedance of the threshold against the threshold, that is plotting{(

u,
1
nu

nu∑
i=1

(x(i) − u) : u < xmax

)}
, (2.13)

where x(1) ≤ x(2) ≤ · · · ≤ xnu is the ordered observations above u. This plot should then
be linear above a threshold u0 for which the GP distribution is a valid approximation.
In practice it can be difficult to interpret where the plot actually becomes linear since as
the threshold increases so does the confidence bounds, which is obtained by the central
limiting theorem for sample means.
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Another method to aid in the selection of threshold is obtained by looking at the
estimated shape and scale parameters. The shape parameter ξ is the same as for the GEV
distribution. That means that above a threshold for which (2.11) is valid the estimate
of the shape parameter should be constant. As for the scale parameter σ̃ = σ+ ξ(u−µ),
the modified scale parameter σ∗ = σ̃ − ξu is independent of u and should be constant
above the chosen threshold. Plotting these estimates against a range of thresholds and
observing when the estimates become approximately constant will give a good indication
of what threshold to choose.

2.2.2 Dependent sequences

When introduction the POT method it was specified that the observations needed to
be independent. This means that when modeling POT all threshold exceedances should
be independent. In practice this is obviously rarely the case. The most common way
to solve this, as stated by [4], is to decluster the data, that is identifying clusters of
dependent observations by an empirical rule and keeping only each clusters maxima. An
appropriate choice of the empirical rule will ensure that the set of threshold excesses can
be assumed independent. The use of declustering is considered to be a rather wasteful
approach as all the data except the cluster maxima is discarded.

All computations regarding the use of the POT method is carried out using the R
package POT, [7].

2.3 Average conditional exceedance rate (ACER)
For the ACER method let MN be defined as in (2.1), but now no independence between
the Xi’s is assumed. The exact distribution of MN will then be

Prob(MN ≤ η) = Prob(X1 ≤ η, ..., XN ≤ η)
= Prob(XN ≤ η|XN−1 ≤ η, ..., X1 ≤ η)Prob(X1 ≤ η, ..., Xn ≤ η)

=
N∏
j=2

Prob(Xj ≤ η|X1 ≤ η, ..., Xj−1 ≤ η)P (X1 ≤ η). (2.14)

Instead of assuming independence between the Xi’s we can now assume a Markov-like
property, or a k-step memory. With this assumption we can approximate (2.14) with

Prob(MN ≤ η) ≈
N∏
j=k

Prob(Xj ≤ η|Xj−k+1 ≤ η, ..., Xj−1 ≤ η)

·Prob(Xk−1 ≤ η|X1 ≤ η, ..., Xk−2 ≤ η)
·Prob(X2 ≤ η|X1 ≤ η)P (X1 ≤ η)

=
n∏
j=k

(1− αkj(η))(1− αk−1,k−1(η)) · · · (1− α11(η)), (2.15)
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where
αkj(η) = Prob(Xj > η|Xj−k ≤ η, ..., Xj−k+1 ≤ η) (2.16)

for j ≥ k ≥ 2. In the case where k = 1 we have α1j(η) = Prob(Xj > η). Using that
(1 + x) ≈ ex if |x| << 1, equation (2.15) becomes

Prob(MN ≤ η) ≈ Pk(η) = exp

− N∑
j=k

αkj(η)− αk−1,k−1(η)− · · · − α11(η)

 . (2.17)

In most cases n >> 1, so we can approximate (2.17) with

Pk(η) ≈ exp

− N∑
j=k

αkj(η)

 . (2.18)

Since αkj(η) is defined as the probability that the j’th observation exceeds η condi-
tional on that the k − 1 previous observations was below η, it is reasonable to interpret∑N
j=k αkj(η) as the expected number of independent exceedances of the level η condi-

tioning on the k− 1 previous observations. We can now introduce the ACER functions,
defined as

ε̄k(η) = 1
N − k + 1

N∑
j=k

αkj(η), (2.19)

which then will be a representation of the average conditional exceedance rate (ACER).
To estimate ε̄k the following random functions is introduced:

Akj(η) = I(Xj > η,Xj−1 ≤ η, ..., Xj−k+1 ≤ η), j = k, ...N, k = 2, 3, ... (2.20)

and
Bkj(η) = I(Xj ≤ η, ...., Xj−k+1 ≤ η), j = k, ..., N, k = 2, 3... (2.21)

where I(A) is the indicator function for the event A. It is now possible to write ε̄k terms
of Akj and Bkj instead of αkj obtaining

ε̄k(η) = lim
N→∞

∑N
j=k Akj(η)∑N
j=k Bkj(η)

. (2.22)

The sample estimation of ε̄k will then be

ε̂k(η) = 1
R

R∑
r=1

ε̂
(r)
k (η), (2.23)

where R is the number of realizations (i.e. number of time series) and

ε̂
(r)
k (η) =

∑N
j=k A

(r)
kj (η)∑N

j=k B
(r)
kj (η)

. (2.24)
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For construction of confidence intervals for the ACER functions the standard deviation
ŝk(η) is estimated by

ŝk(η)2 = 1
R− 1

R∑
r=1

(ε̂(r)k − ε̂k)
2. (2.25)

If it’s assumed that the realizations are independent the 95 % confidence interval can be
computed as

CI = (ε̂k − 1.96ŝk(η)/
√
R, ε̂k + 1.96ŝk(η)/

√
R). (2.26)

Originally the underlying asymptotic extreme value distribution is assumed to be of
Gumbel type. With this assumption the asymptotic form of the Gumbel distribution is
used as a guide to the sub asymptotic form

ε̄k ≈ qk(η) exp{−ak(η − bk)ck}, (2.27)

where qk(η) is slow varying compared to the exponential function. Now it is assumed
that for η > η1 the function qk varies so slow compared to the exponential function that
can be assumed to constant. So the form of the tail becomes

ε̄k ≈ qk exp{−ak(η − bk)ck}, η > η1. (2.28)

The value η1 is called a tail marked and is chosen by the user for a plot of (η, log ε̃k) as
the marker for regular tail behavior. Even though the tail marker is a value specified
by the user it is from [1] known that it does not greatly influence the estimated return
level.

This sub asymptotic assumption is from [1] shown to be valid for a range of data,
including wind speed data. Problems arise when the data considered does not have an
underlying asymptotic extreme value distribution of Gumbel type. If the data considered
is generated by a i.e. a heavy tailed process, the underlying extreme value distribution
will not be of Gumbel type, which decays exponentially, and the ACER method will
generally lead to a bad fit. We can now, instead of assuming an underlying Gumbel
distribution, assume that the underlying extreme value distribution is of Fréchet type,
which decays polynomially [4]. From this we can use the asymptotic form, the Fréchet
distribution, as a guide for the sub asymptotic form. From this we get the sub asymptotic
generalised extreme value (SGEV) distribution

G(η) = exp
{
− q

(
1 + a(η − b)c

)−1/ξ}
(2.29)

for shape parameter ξ 6= 0. We are here interested in the case were ξ > 0, the Fréchet
distribution. The case when ξ < 0 is not of much interest for us, as the Weibull distribu-
tion has a upper limit which will not be the case for the data we are considering. From
this assumption the parametric form for the ACER function can be approximated with

ε̃k(η) ≈ qk(1 + ξa(η − bk)ck)−1/ξ

= qk(1− ãk(η − bk)ck)γ η > η1, (2.30)
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where γ = −1/ξ, ãk = ak/ξ and η1 is again a chosen tail marker. Here, as was the case
in (2.28), it is assumed that qk varies so slow in the tail that it can be assumed constant.
Using the empirical values for the ACER function, and taking the logarithm on both
sides we obtain

log ε̂k = log qk + ξ log (1− ãk(η − bk)ck). (2.31)

It is now possible to obtain parameter estimation by minimising the weighted square
error function

F (ã, b, c, q, ξ) =
n∑
i=1

wi| log ε̂(ηi)− log q − γ log (1− ã(ηi − b)c)|2

=
n∑
i=1

wi(yi − log q − ξxi)2, (2.32)

where yi = log ε̂(ηi) and xi = log(1− ã(ηi − b)c). The weights, wi, are calculated as

wi = (ln CI+(ηi)− ln CI−(ηi))−2, (2.33)

where CI+(ηi) and CI−(ηi) is the upper and lower bounds of the 95% confidence interval
at level ηi. These weights are used in order to put less emphasis on the more uncertain
values for the ACER function. Also, it is possible to change the exponent in (2.33) to
put more or even less emphasis on the uncertain values, though the exponent has not
been changed in the parameter estimation here. A problem is that the function which
should be minimised (2.32) is a function of five variables, which will not be trivial to
minimise. To make things easier we have decided to use

γ∗ =
∑n
i=1wi(xi − x̄)(yi − ȳ)∑n

j=1wj(xj − x̄)2 (2.34)

as an estimator for γ, and
log q∗ = ȳ − γ∗x̄ (2.35)

as an estimator for log q. Substituting these estimators back into (2.32) the function
which should be minimised can be represented as a function of three variables instead of
five. To minimize (2.32) the e04wd function of the NAG1 toolbox for Matlab is used. This
function uses the sequential quadratic programming algorithm for the optimisation, [5],
with respect to the three parameters ã, b and c. For more accurate results the gradient of
(2.32) with respect to these parameters is also specified. When running the optimisation
algorithm the initial values for the parameters ã and b is set to the respective parameters
found by the POT method, while the initial value for c is set as 1, which is the value
for the asymptotic case. It has been observed that the initial values do not influence the
estimated parameters as long as they are set with some caution.

1Numerical Algorithms Group
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2.3.1 Confidence intervals for return levels

By inverting the exceedance rate function, with the parameters for the minimisation of
the square error function (2.32), the estimated return level η̂m for ηm has been found.
Further we are going the estimate the 95% confidence intervals for this return level.
This confidence intervals will be estimated by finding other curves of the form as the
exceedance rate with other parameters ã, b, c, q and ξ. By inverting these functions in
the same way the estimated exceedance rate function was, these curves will represent
other estimates for the return level. Restricting to only those curves that falls within
the bounds of the confidence intervals defined by (2.26), the maximum and minimum
return levels estimate provided by these curves will provide an 95% confidence interval
for ηm.

So to estimate the confidence intervals it will be necessary to find the curves ε̂min(η)
and ε̂max(η), which provides the lower and upper bound of the return level confidence
interval respectively. To find these curves, the parameters found by the optimisation
will be slowly varied, keeping only the parameters for the curves which falls within the
confidence intervals. Since the confidence intervals for ε̂k found by (2.26) will not be
smooth, the confidence intervals will be approximated with

CI ≈ (q̂k(1−ˆ̃ak(η−b̂k)ĉk)γ̂−1.96ŝk(η)/
√
R, q̂k(1−ˆ̃ak(η−b̂k)ĉk)γ̂+1.96ŝk(η)/

√
R). (2.36)

These will be smooth curves which approximates the confidence intervals. The curves
which falls within these confidence interval is then found by varying the parameters a
certain percentage, which is an input for the routine, from the parameters found by
optimisation routine. By this variation of the parameters 115 − 1 curves are fitted, and
the curves, which falls within these confidence interval, providing the maximum and
minimum return level estimates, ε̂max and ε̂min respectively, is kept and provides an
estimate for the 95 % confidence interval for the return level.

2.4 Heavy tailed distributions

A heavy tailed distribution is a distribution with tail that are not exponentially bound,
i.e. a distribution with heavier tails than the exponential distribution. The definition of
a heavy (right) tailed distribution is, as stated in [2],

lim
x→∞

eλxPr(X > x) =∞ ∀ λ > 0. (2.37)

This means that a distribution has a heavy (right) tail if it has a tail which is heavier
than the ones for the exponential distribution.
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2.5 AR-GARCH model
An AR(k)-GARCH(p,q) is an autoregressive model of order k with GARCH noise of
order p, q, that is a model of the form

rt = a0 +
k∑
i=1

airt−i + εt

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i, (2.38)

where εt = σtzt and zt ∼ IID(0, 1). The distribution of the zt’s will here be either
Gaussian or Student’s t distribution with ν degrees of freedom, and scaled to variance 1.
When fitting the AR-GARCH model to a data set it is possible to estimate conditional
tail quantiles. As shown in [3], the tail quantiles can be estimated by assuming either
Gaussian or t-distribution, and multiplying the estimates of conditional volatility σt with
the quantiles in the chosen distribution and adding the conditional mean, a0+

∑k
i=1 airt−i

for each t.
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Chapter 3

Data

In this chapter the data, which later will be analysed, is introduced. We will look at
both synthetic time series and real world data sets.

3.1 Synthetic data
To investigate the performance of the ACER method with the Fréchet assumption
against the performance of the common asymptotic methods we are going simulate
synthetic time series and applying both methods to the same data sets. This will give
an indication of prediction accuracy in terms of both return level estimates and most
important the length of the estimated confidence intervals for these return levels.

3.1.1 Pareto distribution

For the first time series we are using independent realisations from a Pareto distribution.
This gives a time series {Xt} where eachXt is an independent realisation from the Pareto
distribution, defined by the CDF

FX(x) =
{

1− 1/xα for x ≥ 0
0 for x < 0,

(3.1)

where α is a positive parameter. Small values for α will produce very extreme observa-
tions, so to begin with only values between 2 and 5 will be considered for α. The Pareto
distribution is by the definition stated in (2.37) a heavy tailed distribution. To generate
synthetic time series from this distribution we are going to use the inverse transformation
rule. So we have if U ∼ Unif[0, 1] and

X = 1
U1/α , (3.2)

then X ∼ Pareto(α). Samples, for different values of α, is plotted in 3.1(a)-3.1(d). From
this plots it is clear that it is for the small values of the parameter α we observe the
most extreme deviations from the mean, which for a Pareto distribution is α/(α − 1)
when α > 1 (The mean does not exist for α ∈ (0, 1]).

13
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(a) Time series generated from the Pareto
distribution with α = 2.
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(b) Time series generated from the Pareto
distribution with α = 3.
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(c) Time series generated from the Pareto
distribution with α = 4.
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(d) Time series generated from the Pareto
distribution with α = 5.

Figure 3.1: Time series generated for the Pareto distribution.
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Figure 3.2: First 1000 observations from the student’s t-model with ν = 4.

3.1.2 Student’s t-distribution

Another common heavy tailed distribution is the Student’s t-distribution with ν degrees
of freedom. This distribution is defined by the pdf

fX(x) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(
1 + x2

ν

)−(ν+1)/2
. (3.3)

The time series {Xt} will be constructed as

Xt
iid∼ t(ν).

The first 1000 observations from a time series, here with degrees of freedom ν = 4, can
be seen in figure 3.2.
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3.1.3 ARCH/GARCH models

An ARCH1(p) model is a model where the error term Zt is assumed to be Zt = σtet,
where et ∼ IID(0, 1) and σt is given by the recursion equation

σ2
t = α0 +

p∑
i=1

αiZ
2
t−i, (3.4)

where α0 > 0 and αi ≥ 0. A GARCH(p,q), generalised ARCH, model is an ARCH
model for which an ARMA model is assumed for the error variance. Hence, the error
variance term is

σ2
t = α0 +

p∑
i=1

αiZ
2
t−i +

q∑
j=1

βjσ
2
t−j , (3.5)

with α0 > 0 and αi, βj ≥ 0. The distribution of {Zt} is

Zt = σtet, (3.6)

where et ∼ IID(0, 1). In this section it is used that√
ν

ν − 2et ∼ tν , ν > 2, (3.7)

where tν is a Student’s t-distribution with ν degrees of freedom. The distribution of et in
(3.7) is scaled to make the variance of et equal to 1. The Student’s t-distribution is used
here over the Gaussian distribution because it is a heavy tailed distribution. It is also
found that the GARCH models can be better fitted to heavy tailed financial data when
using the Student’s t-distribution over the Gaussian distribution [6]. In figure 3.3 1000
observations from a GARCH(2,2) process, with α = [0.5, 0.3, 0.067]T and β = [0.5, 0.1]T ,
is observed. Also, the underlying Student’s t-distribution with ν = 8 degrees of freedom.

3.2 Data series

In this section we are going to look at a couple of real data sets, first electric market spot
price data from the Nordic Power Exchange and then closing index of the Dow Jones
stock exchange.

3.2.1 Electric market spot price data

The Nordic Power Exchange, Nord Pool, data is electric market spot price data. These
data is provided by Sjur Westgaard. The data consists of hourly spot price values for a
period of ten years, with a time series consisting of the daily ith hour measurement. In

1ARCH is an abbreviation of autoregressive conditional heteroskedasticity
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Figure 3.3: Time series generated from a GARCH process.
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Figure 3.4: Spot price for the 9th hour for the then year period.

table 3.4 the spot price for the 9th hour for this ten year period is plotted. The data
will be transformed to log-daily return rates, defined by

rt = log
( xt
xt−1

)
, (3.8)

where {xt} is the original time series and {rt} is the transformed time series. In figure
3.5 the log-daily returns is plotted for the 9th hour for the ten year period.

3.2.2 Dow Jones Index

The Dow Jones closing index data consist of the closing index for this stock exchange
for the time period 1st of January, 1980 to 29th of December, 2000. These data will,
as with the spot price data, also be transformed to log-daily returns. In figure 3.6
the transformed data is plotted. From the plotted data we observe that there are one
observation, or increase in the index, which is far greater than all other changes in the
index. For the ACER method this should not produce any problems since the method
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Figure 3.5: Log-daily returns for the 9th hour for the ten year period.
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Figure 3.6: Log-daily returns for the Dow Jones index.

neglects observations when the confidence interval for the empirical ACER function is
too great.



Chapter 4

Analysis of data and results

In this chapter the data presented in chapter 3 will be analysed. Both the POT method
and the ACER method where the underlying asymptotic extreme value distribution is
assumed to be a Fréchet distribution. We will use both method to predict return levels,
and the confidence intervals for these return levels.

4.1 Analysis of synthetic data
We will begin with the analysis of the synthetic time series introduced in 3.1. The
analysis of these time series will let us use the ACER method on time series with know
properties, such as exceedance rates and return levels, and compare the result to, where
these are available, analytical results and the estimates provided by the asymptotic POT
method.

4.1.1 Pareto distribution

First we are going to consider the model based on the Pareto distribution introduced
in section 3.1.1. To predict return levels are we are to simulate a set of 10 time series,
each consisting of 3650 realisations from a Pareto distribution. Since all realisations are
independently drawn from a Pareto distribution there will be no need to use higher level
ACER functions, and for the POT method the assumption of independent realisations is
fulfilled, and therefore there are no need to decluster the data. The time series analysed
will be generated from the Pareto distribution with the value for the parameter α = 2
and α = 3.

For a set of these time series generated from the Pareto, here with parameter α = 2,
the logarithm of the ACER function is plotted in figure 4.1. For the same model, only
with α = 3, the logarithm of the ACER function is plotted in figure 4.2.The parameters
in (2.30) is then found by minimising (2.32) for the two different cases. For the Pareto
distribution the exceedance rate of level η is easily derived as

P (X > η) = 1− FX(η) = 1− (1− 1
ηα

) = η−α, (4.1)

21
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since all observations are independent. From this it is possible to plot both the extrap-
olated ACER function with confidence intervals and the actual exceedance rate for the
Pareto distribution in the same plot, hence observing the actual fit of the model. In
figure 4.3 and 4.4 the extrapolated ACER function with confidence intervals, the empir-
ical ACER function and the analytical exceedance rate for the Pareto time series with
parameter α = 2 and α = 3 respectively is plotted. From these plots we observe that
the extrapolated ACER function is a good approximation to the analytical exceedance
rate, and the analytical exceedance rate falls within the 95% confidence interval for the
ACER function for all values of the exceedance. To compare the ACER method to the
asymptotic POT method we need to fit a GPD to the exceedances. Though efore fitting
a GPD to the data it should be noted that if X ∼ Pareto(α), then the distribution of
conditial threshold exceedances is

Prob(X > u+ y|X > u) = 1− F (u+ y)
1− F (u) = 1/(u+ y)α

1/(u)α

=
(
u+ y

u

)−α
=
(

1 + y

u

)−α
, (4.2)

which is the generalised Pareto distribution with shape parameter ξ = 1/α and scale
parameter σ̃ = u/α. This is an exact result, and holds for all thresholds u ≥ 1. Hence
there is no asymptotic argument in the derivation of the distribution of the threshold
exceedances. This means that the threshold can be set to u = 1 without any inspection
of mrl plots or plots of the modified scale and shape parameters against the threshold,
which in turn leads to the POT method being able to use all of the data in the time
series. In figure 4.5 and 4.6 both the extrapolated ACER function and the exceedance
rate for the GPD, for the Pareto model with α = 2 and α = 3 respectively, with 95%
confidence interval is plotted. We observe from these plots that both methods produce
results close to each other, but the acurracy, in terms of confidence interval width, is far
greater for the POT method in both cases. This means that even though both methods
are able to actually use all of the data in the time seires, the POT method performes
much better the ACER method. This may be because the exceedances for the Pareto
distribution is disitributed by GPD with no asymptotic argument, and for the ACER
method it is necessary to estimate the extra parameters for the exceedance rate function,
c and q for which the value of both should be, in this case, 1.

Now we are going to predict the 100 time series return level, that is the level which
is expected to be exceeded once every 3650 · 100 observation. This will only be done for
the Pareto model with α = 3. For the Pareto model with α = 3 it is easy to show that
the value expected to be exceeded once for every 100 time series is

P (X > η100ts) = 1/(η100ts)3 = 1/(3650 · 100)⇒ η100ts = 365000
1
3 = 71.47. (4.3)

The two methods will then be used in order to predict this value. Estimation of the
100 time series return level with confidence intervals with the two methods for several
sets of time series can be observed in table 4.1. The values in parentheses is percentage
deviation from real value. From this it is observed that both in terms of length of
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η100ts
ACER CIACER η100ts

POT CIPOT
76.27(6.7%) [61.11, 94.91] 69.83(2.3%) [61.15, 78.51]
65.93(7.8%) [57.98, 79.30] 69.46(2.8%) [60.76, 78.15]
72.36(1.2%) [59.51, 84.64] 77.59(8.6%) [67.70, 87.48]
70.11(1.9%) [58.45, 81.88] 70.75(1.0%) [61.88, 79.63]
71.39(0.1%) [67.98, 86.45] 69.83(2.3%) [61.15, 78.51]

Table 4.1: 100ts return level estimated with ACER and POT.

1 2 3 4 5
ã -1.08 -0.96 -0.98 -1.03 -0.89
b 1.01 0.99 1.00 1.02 1.03
c 1.02 1.00 0.98 1.04 1.01
γ -2.83 -3.07 -3.05 -2.86 -3.04
q 1.00 0.99 1.01 0.95 0.97

Table 4.2: Estimated parameters for the sub asymptotic extreme value distribution.

confidence intervals and deviation from real return value, the POT method seem to
be the most accurate method. For the ACER method the predicted return level here
deviates, on average, 3.52% from the actual return level of this model. For the POT
method this average deviation is 3.40%. In terms of the confidence intervals, the length
of the 95% confidence intervals for the predicted return level for the ACER method is on
average 24.43 units, while for the POT method this figure is only 17.93. This means that
the confidence intervals for the return levels predicted for by the ACER method is on
average approximatly 36% longer than for the POT method. For the ACER method the
estimated parameters is presented in table 4.2. Since there are no asymptotic argument
in the derivation of the threshold exceedances the parameters c and q from the SGEV
distribution should ideally be close to 1. From table 4.2 it is observed that the parameter
c is for all five data sets close to the real value. The parameter q is also close to 1 for
all of the five data sets. The estimates for the shape parameter γ = −1/ξ is all close to
the real parameter, which is, as seen from (4.2), γ = −3.

4.1.2 Student’s t-distribution

Secondly are we going to consider the Student’s t-model introduced in section 3.1.2. We
will also here look at data sets consisting 10 time series each with 3650 realisations.
Since all observations are independent the first ACER function will used. In figure 4.7
the extrapolated ACER function, the empirical ACER function and the exceedance rate
for the Student’s t-model is plotted. From this it seems that the ACER method gives
a good fit to the actual exceedance rate, and we see that the exceedance rate for the t-
model is inside the confidence bounds for the extrapolated ACER function for all values
of the exceedances. When fitting the data to the GPD with the POT method there are
no need, due to the independence between observations, to decluster the data, but the
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Figure 4.1: Logarithm ACER function for Pareto time series with α = 2.
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Figure 4.2: Logarithm ACER function for Pareto time series with α = 3.
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Figure 4.3: Extrapolated ACER function for Pareto time series with α = 2.
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Figure 4.4: Extrapolated ACER function for Pareto time series with α = 3.
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Figure 4.5: Extrapolated ACER function and POT fitted GPD with α = 2.
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Figure 4.6: Extrapolated ACER function and POT fitted GPD with α = 3.
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η100ts
ACER CIACER η100ts

POT CIPOT
32.99(2.1%) [29.32, 37.80] 33.82(4.7%) [23.75, 43.88]
27.78(14.0%) [24.17, 31.59] 24.56(24.0%) [18.35, 31.05]
31.68(1.9%) [28.43, 34.72] 30.24(6.4%) [21.87, 38.61]
29.76(7.7%) [26.88, 33.31] 31.83(1.5%) [22.46, 41.20]
31.80(1.5%) [26.29, 34.25] 29.05(10.1%) [21.15, 36.96]

Table 4.3: 100ts return level estimated with ACER and POT for the t-model with ν = 4.

threshold will need to be decided. From inspection of the mean residual plot in figure
4.9(a) it is difficult to decide on a right level for the threshold, but from the plot of
the modified scale and the shape parameters against the threshold in figure 4.9(b) these
parameters seem to stabilise around u = 2, so this is the threshold we choose. When
the threshold is set to u = 2, it is for this specific model expected that only 5.8% of all
observations fall above this threshold. For the ACER method, for which in this case the
tail marker is η1 = 0, it is expected that half of all observations fall in this category. With
this huge difference in usage of the available data, it is expected that the length of the
estimated confidence intervals should be much greater for the POT method compared
to those estimated by ACER. In figure 4.11 the extrapolated ACER function and the
exceedance rate for the GPD is plotted with confidence intervals. From this plot it is
observed the predicted exceedance rate for both methods is almost the same, but the
width of the confidence intervals is far greater for the POT method.

Further we are going to use the two methods to predict the return level associated
with the length of 100 time series. The actual return level associated with this period
is found to be η100ts = 32.30. For a total of five sets of time series the 100 time series
return level with confidence intervals has been estimated using both methods, with the
values found in table 4.3. From this table we observe that for the second data set both
methods seriously under estimate the return level, and for both methods the actual
return level is not even included in the 95% confidence intervals. For the four other
there are not too much difference in the deviance of the estimated return levels compared
to the real value, the ACER method seem to predict slightly closer to the real value.
Considering the confidence intervals we see the same in this table as in figure 4.11, that
the length of the confidence intervals is far greater for the return levels estimated with
the POT method compared to those estimated with the ACER method. Considering
the confidence intervals for the return levels estimated by the ACER method, the length
of these is on average only apporixmatly 56% of the length of the confidence intervals
esimated by the POT method. In table 4.4 the estimated parameters for the SGEV
distribution is presented. We see that these parameters, as was also the case considering
the Pareto model, do not vary much across different data sets.

The next model we will consider is another Student’s t-model, this time with ν = 3
degrees of freedom. As for the first Student’s t-model the first ACER function will be
the one analysed, and there will be no need for declustering of the data when fitting
the GPD with the POT method. In figure 4.8 the extrapolated ACER function, the
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1 2 3 4 5
ã -0.41 -0.36 -0.39 -0.38 -0.39
b 0.01 0.00 0.00 0.11 0.01
c 1.49 1.50 1.46 1.46 1.48
γ -2.77 -3.01 -2.93 -2.98 -2.88
q 0.48 0.47 0.49 0.43 0.47

Table 4.4: Estimated parameters for the sub asymptotic extreme value distribution for
the t-model with ν = 4.

empirical ACER function and the exceedance rate for this model is plotted. From this
we see that the ACER method seem to predict close to the real exceedance rate. The
real exceedance rate also fall inside the 95% confidence interval for the ACER function
for the all values of the exceedance leve. When deciding upon a level for the threshold we
star by inspecting the mean residual life plot in figure 4.10(a). Again it is very difficult
to decide a threshold from this plot, so in figure 4.10(b) the modified scale and shape
parameters is plotted against the threshold. Considering these plots the threshold is set
at u = 3. While the ACER method is able to use all positive observations, the POT
method will on an average only use about 2.9% of the data in this model when u = 3. In
figure 4.12 both the extrapolated ACER function and the exceedance rate of the GPD
is plotted. Again the ACER method seem to produce more accurate estimates in terms
of confidence interval width.

At last we are going to estimate the return level for associated with the length of 100
time series. For the Student’s t-model with ν = 3 degrees of freedom the return level
considered is ν100ts = 73.82. Estimated return levels and estimated confidence intervals
for this return level is presented for both methods in table 4.5, with the percentage
deviance from the actual return level in parenthesis. As we observed earlier in figure
4.12 both methods predict the actual return level, in terms of percentage deviance, rather
well (except the POT method for the last time series). Also, we again observe that the
length of the confidence intervals is far greater for the POT method than for the ACER
method. This is again, at least partially, because of the asymptotic argument in the
derivation of the POT method. In table 4.6 the parameters for the extrapolated ACER
function is presented. We see from this that the parameters seem to vary a lot more
for this model than for both the Pareto model with α = 3 and for the Student’s model
with α = 4. Still, as for the Student’s t-model with ν = 4 degrees of freedom, the sub
asymptotic parameters c and q significantly differs from 1, which is the asymptotic case.

4.1.3 ARCH/GARCH model

First in this section we are going to look at a simple ARCH(2) model where Zt is
Student’s t distributed with ν = 4 degrees of freedom and scaled to variance 1 and
α = [0.5, 0.2, 0.1]T . After inspection of the five first ACER function we conclude that
there is no need to use a higher order ACER method for this model, and there are also
no need for declusting for the POT method. For the ACER method the tail marker
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η100ts
ACER CIACER η100ts

POT CIPOT
70.68(4.25%) [56.78, 91.17] 66.24(10.27%) [36.50, 95.97]
71.87(2.64%) [57.74, 93.38] 74.85(1.40%) [39.76, 109.91]
69.72(5.55%) [56.41, 82.91] 74.07(0.34%) [41.37, 106.77]
68.83(6.76%) [58.01, 87.19] 65.93(10.69%) [36.06, 95.80]
67.84(8.10%) [51.50, 86.62] 59.05(20.01%) [33.89, 84.21]

Table 4.5: 100ts return level estimated with ACER and POT for the t-model with ν = 3.

1 2 3 4 5
ã -0.52 -0.43 -0.51 -0.55 -0.55
b 0.01 1.44 0.54 0.00 0.00
c 1.83 1.10 1.24 1.57 1.74
γ -1.66 -2.76 -2.53 -1.98 -1.77
q 0.39 0.12 0.31 0.47 0.43

Table 4.6: Estimated parameters for the sub asymptotic extreme value distribution for
the t-model with ν = 3.
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Figure 4.7: Extrapolated ACER function and exceedance rate for the t-model with ν = 4.
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Figure 4.8: Extrapolated ACER function and exceedance rate for the t-model with ν = 3.
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(a) Mean residual life plot for the Student’s
t-model with ν = 4.
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Figure 4.9: Plots for deciding upon the threshold for the Student’s t-model with ν = 4.
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Figure 4.10: Plots for deciding upon the threshold for the Student’s t-model with ν = 3.

is set at η1 = 0, and for the POT method the threshold is set, after inspection of the
mean residual life plot and a plot of the modified scale and shape parameter against
the threshold, to u = 2. Both methods then have been applied to five sets of time
series, each consisting of 10 time series with 3650 observations each, and used to try and
predict the 100 time series return level. In table 4.7 the estimated return levels along
with the estimated 95% confidence intervals for these return levels is presented, and in
table 4.8 the estimated parameters for the SGEV distribution for the five data sets are
available. From the return levels we see that both methods again predict return levels
rather close to each other, though there seem to be greater variability in the return
levels predicted by the POT method. As for the confidence intervals we again see that
the ACER method performes with much more accuracy that the asymptotic method.
For illustration purposes it can be mentioned that for the for the first data set 49.8%
of the observations is used by the ACER method (Half of the observations is expected
to be positive since Zt ∼ IID(0, 1)), while only 1.5% of the observations falls above the
threshold selected for use with the POT method. This will of course influence the length
of the confidence interval for the return levels, at least when predicting such far out
in the tail of the distribution as done here. As for the parameters of the extrapolated
ACER function there does not seem to vary a lot between the data sets.

In this section we are going to look at several GARCH models as introduced earlier in
section 3.1.3. The first GARCHmodel analysed is a GARCH(1,1) model with parameters
α = [0.5, 0.3]T and β = 0.3 and the Student’s t-distribution with ν = 4 degrees of
freedom. For this analysis only the upper tail of the distribution is considered. As used
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Figure 4.11: Extrapolated ACER function and POT fitted GPD with confidence intervals
for the Student’s t-model with ν = 4.

η100ts
ACER CIACER η100ts

POT CIPOT
18.88 [16.71, 21.08] 15.46 [9.09, 21.82]
19.76 [17.75, 23.22] 19.27 [9.54, 29.00]
19.57 [17.08, 21.65] 17.64 [10.14, 25.14]
20.62 [17.87, 23.49] 24.04 [12.47, 35.62]
22.66 [17.99, 27.10] 24.58 [10.11, 39.07]

Table 4.7: 100ts return level estimated with ACER and POT for the ARCH(2) model.

1 2 3 4 5
ã -0.94 -1.06 -0.98 -0.85 -1.07
b 0.01 0.00 0.01 0.21 0.00
c 1.49 1.50 1.46 1.24 1.49
γ -2.77 -2.65 -2.79 -3.27 -2.54
q 0.46 0.49 0.48 0.36 0.47

Table 4.8: Estimated parameters for the sub asymptotic extreme value distribution for
the first ARCH(2) model.
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Figure 4.12: Extrapolated ACER function and POT fitted GPD with confidence intervals
for the Student’s t-model with ν = 3.
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η100ts
ACER CIACER η100ts

POT CIPOT
41.60 [34.99, 51.00] 36.33 [20.48, 52.19]
36.04 [28.39, 48.41] 33.58 [19.74, 47.41]
43.82 [35.25, 52.85] 38.98 [21.15, 56.81]
37.37 [29.74, 46.26] 33.75 [18.74, 48.76]
45.19 [37.21, 53.28] 44.66 [22.39, 65.94]

Table 4.9: 100ts return level estimated with ACER and POT for the first GARCH
model.

earlier the data sets will consist of 10 time series, each with 3650 observations. For the
models considered earlier all observations have been independent, this is not the case
now. In figure 4.13 the four first ACER functions is plotted against scaled exceedance.
From this plot it is shown that the second ACER function coincides with the higher
order ACER functions in the tail, which is where we are interested in the exceedances.
Hence, the second ACER function should be used in the estimation of the parameters
in the SGEV. For the POT method it is clear the data no longer for fill the assumption
of iid observations. This means that it is now necessary to declust the data to ensure
that all threshold exceedances are independent. The declusering is preformed with the
following empirical rule:

• First observation above the threshold marks the start of a cluster.

• Last observation above the threshold , followed by M observations below the
threshold, marks the end of a cluster.

• All data points in the cluster, except the cluster maxima, is discarded.

For this model the declustering threshold is set at 0 and M = 2. The declustering is
performed by the clust function from the POT R package. After the declustering the
selection of threshold is made from figure 4.14(a) and 4.14(b). From these plots the
threshold is selected as u = 2. Further the two methods are used to predict a 100 time
series return rate from five different sets of generated time series. The estimated return
levels are presented in table 4.9. It is observed from the table that the estimated return
levels does not greatly differ, though the ACER method consistently predict return levels
above those predicted by the POT method. Also the accuracy of the prediction in term
of confidence interval length is again much greater for the ACER method. In table 4.10
the estimated parameters for the SGEV distribution for the five data sets. We see from
this that also here the sub asymptotic parameters c and q differs from 1, which is the
asymptotic case. Again the parameters differ slightly between data sets, but not as much
as for the second Student’s t-model.

The second GARCH model will be a GARCH(2,2) model with the same parameters
as used in figure 3.3. That is α = [0.5, 0.3, 0.067]T and β = [0.5, 0.1]T and the Student’s
t-distribution with ν = 8 degrees of freedom. Again, as was the case with the first
GARCH model, only the upper tail of the distribution will be analysed. In figure 4.15
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Figure 4.13: Empirical ACER functions plotted against scaled exceedance.

the logarithm of the ACER function is plotted against the scaled exceedance level. From
this it is observed that the third ACER function coincides with the higher order ACER
functions in the tail, while the lower order ACER functions differ. This leads to the
use of the third ACER function when estimating the parameters for the SGEV for this
model. For the POT method it will now be necessary to declust the data to ensure
independence between observations before fitting. Since it was necessary to use the
third ACER function, the data is declustered with the same rule as used for the first
GARCH model, but with M = 3. To select an appropriate threshold the mrl plot in
figure 4.16(a) and the shape and modified scale plot in figure 4.16(b) are considered.

1 2 3 4 5
ã -1.01 -0.79 -1.04 -0.92 -0.95
b 0.00 0.32 0.00 0.00 0.01
c 1.56 1.28 1.65 1.51 1.46
γ -2.05 -2.68 -1.91 -2.23 -2.19
q 0.46 0.33 0.45 0.48 0.49

Table 4.10: Estimated parameters for the sub asymptotic extreme value distribution for
the first GARCH model.
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(a) Mean residual life plot for the
GARCH(1,1) model.
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(b) Shape and modified scale parame-
ters plotted against the threshold for the
GARCH(1,1) model.

Figure 4.14: Plots for deciding upon the threshold for the GARCH(1,1) model.

From this the threshold is selected to be u = 3. In figure 4.17 both the extrapolated
ACER and the exceedance rate of the GPD is plotted with confidence intervals. From
this it is observed that while the estimates is fairly equal the accuracy, in terms of the
plotted confidence intervals, is far greater for the ACER method. One of the reasons for
this is that the POT method in this case only uses 1246 of the observations, or about
3%, while the ACER method is able to use 9249 of the observations, which is about 25%
of the observations. As apposed to the Pareto model the return levels of the GARCH
model cannot be expressed analytically. It is still interesting to look at the return levels
with confidence intervals and, for the SGEV distriubtion, the estimated parameters.

4.2 Analysis of data

In this section the data introduced in section 3.2 will be analysed. As for the synthetic
data we will use both the ACER and POT method, and compare their results.

4.2.1 Electricity market spot price data

The log-daily return transformed electric market spot price data introduced earlier will
now be analysed. The data analysed will be the 9th hour spot price for the ten year
period. As for the GARCH model only the right (upper) tail of the distribution will be
analysed. In table 4.11 the yearly maxima of the log-daily return can be observed. We
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Figure 4.15: Logarithm of ACER functions plotted against scaled exceedance level for
the GARCH(2,2) model.
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(a) Mean residual life plot for the
GARCH(2,2) model.
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(b) Shape and modified scale parame-
ters plotted against the threshold for the
GARCH(2,2) model.

Figure 4.16: Plots for deciding upon the threshold for the GARCH(2,2) model.
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Figure 4.17: Extrapolated ACER function and POT fitted GPD for the GARCH model.
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Year Max increase Month observed
1 1.392 December
2 2.733 January
3 2.423 February
4 0.6006 June
5 0.6360 June
6 1.056 May
7 1.257 February
8 0.958 January
9 1.545 August
10 1.317 May

Table 4.11: Maximum log-return value each year of the spot price data.

see from this table the two years with by far greatest observed increase in the electricity
spot price, year two and three, this increase is found in two of the coldest months of the
year, January and February. This is a trend observed through out the data set, making
the assumption that all observations come from the same distribution dubious. Even
though this trend is observed in the data we are going to try to use both methods to
predict extreme values. In figure 4.18 the empirical ACER functions for k = 1, 2, 4, 5, 6, 7
is plotted. From the plot of the empirical ACER functions it is observed that it is
necessary to use the fifth ACER function when estimating the parameters in (2.32).
The tale marker for the ACER method is set, after inspection, to η1 = 0. For the POT
method the data will be declustered by the same rule as above with M = 5. Choice of
threshold is made after we have inspected figure 4.19(a) and 4.19(b), which lead us to
set the threshold as u = 0.2. After declustering of the data only 183 observations fall
above the threshold. In figure 4.19 the extrapolated ACER with confidence intervals,
the empirical ACER and the exceedances rate for the GPD fitted by POT is plotted.
From the plot we observe that the exceedance rate estimated by both the ACER and
the POT method is rather close, though the ACER method has even heavier tail than
the POT method. We also observe that the exceedance rate estimated by the POT
method falls within the confidence intervals for the ACER method for all values of the
exceedance level. The confidence intervals for the POT method is not plotted since the
scarce amount of data points above the threshold leads to very wide confidence intervals.

When we are modeling the tail of the distribution of the electricity market sport
price data with the ACER and POT method in the way we have done above, we do
not take into account any seasonality, which is highly present in the data, or any other
trends in the data. It is also not possible for the tail quantiles for the distribution to
change with time, which is the case for such data. In [3] the POT method is applied to
the residuals after the data has been fitted to an AR-GARCH model. It is found that
by applying the POT method to the residuals the estimates of the extreme tail quantiles
gives considerably greater accuracy than from AR-GARCH models with Gaussian or t-
distributed errors. So with the use of this we are going to fit the data to an AR-GARCH
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Figure 4.18: Empirical ACER functions plotted against scaled exceedance level.
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(a) Mean residual life plot for the spot price
data.
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(b) Shape and modified scale parameters
plotted against the threshold for spot price
data.
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model and apply both POT and ACER method to residuals. The AR-GARCH model
which we are going to fit the data, which will be a combination of an AR(7) model and
an GARCH(1,1) model, will be of the form

rt = a0 +
7∑
i=1

airt−i + εt

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (4.4)

where εt = σtzt with zt ∼ IID(0, 1) which is this case will be a standard Gaussian
distribution or a Student’s t-distribution scaled to have variance equal to 1, and as before
ν degrees of freedom. So we are now going to fit two AR-GARCH models to the data, one
with the Gaussian distribution and one with the Student’s t-distribution. The ACER
and POT method will be applied to the residuals from the AR-GARCH model with
the Gaussian distribution. In table 4.12 the estimated parameters for the AR-GARCH
model, for both the Gaussian and the Student’s t distribution, is presented. The data
is fitted to the AR-GARCH model with the function garchFit from the fGarch package
for R, [8]. As shown in 2.5 the conditional tail quantiles for the AR-GARCH model
when assuming either Gaussian or t-distribution. Instead of assuming these distribution
it is also possible, as show in [3], to fit a GPD with the POT method to the residuals
from the model, and estimating the conditional quantiles from the estimated GPD. We
now also want to use the ACER method to estimate exceedance rates, and from this
estimate the tail quantiles for this model. When fitting either the POT method or the
ACER method to this model, we are first going to fit the residuals from the Gaussian
AR-GARCH model with these two methods. When we are using the ACER method to
model the the exceedance rate for the residuals it is sufficient to use the second ACER
function. This is a real improvement over the straight forward method of fitting the
ACER method to the data set, when it was necessary fifth ACER function. Since we
are able to use the second ACER function instead of the fifth ACER function more of
the data will be used, and the estimates will have better accuracy. This is the case since
the AR-GARCH process actually remove much of the autocorrelation in the data, but
according the Ljung–Box test, for which the values is provided for both model in 4.12,
for the standardised residuals there are still some autocorrelation left. The tail marker is
in this case set to ν1 = 0. For the POT method the the threshold is set after inspection
of figure 4.20(a) and 4.20(b) to u = 0.1. So now that the residuals have been fitted to
the GPD and the SGEV with the POT and ACER method respectively, the conditional
tail quantiles can be calculated. The conditional tail quantiles will be calculated as

αp,t = a0 +
7∑
i=1

airt−i + σtαp, (4.5)

where a0 +
∑7
i=0 a0rt−1 is the conditional mean and σt is the conditional volatility and

αp is the quantile of the residual distribution, which either is fitted with POT or ACER,
associated with probability p. After estimating the tail quantiles for all four models, we
can use the data to observe the number of observations which falls above each quantile.
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Parameter Gaussian Student’s t
a0 2.998 · 10−3 −1.628 · 10−3

a1 −0.338 −0.283
a2 −0.374 −0.309
a3 −0.306 −0.256
a4 −0.274 −0.236
a5 −0.309 −0.269
a6 −0.221 −0.181
a7 0.388 0.425
α0 2.99 · 10−4 8.52 · 10−4

α1 6.36 · 10−2 0.455
β1 0.93 0.74
ν − 2.58

Q(10) 57.84 119.48
Q(15) 79.89 145.51
Q(20) 90.62 161.69

Table 4.12: Parameters for the AR-GARCH models.

In table 4.13 the number of observations above each quantile for the four models, with
the expected number of exceedances in the second column from the left, is presented.
From [3] it was expected that the Gaussian AR-GARCH model underestimates the
quantiles, the Student’s t AR-GARCH model overestimates the quantiles and the POT
fit the quantiles rather good. We can also observe that the ACER method actually seem
to predict the quantiles, based on exceedances of the observed data, even better than
the POT method. In figure 4.20 the extrapolated ACER function is plotted alongside
the exceedance rate for the GPD fitted with POT. If we compare this case to when we
directly fitted the log-daily returns with these methods, it is clear that it is the POT
method that gains the most, in terms of confidence interval width, from this procedure.
When we did fit the log-daily returns directly, the declustering of the data resulted in a
much greater loss of observations compared to the fitting of the residuals. The threshold
could also be set lower when fitting the residuals, resulting ultimately in better use of the
data compared to the direct fit of the log-daily returns. Even though the POT method
perform es much better when fitting the residuals, the ACER method still is more
accurate considering the confidence interval width and tail quantile estimates presented
earlier.

4.2.2 Dow Jones Index

In this section we are going to use the ACER and POT method for return level estimation
in the same way as done with the synthetic data. For the ACER method we need to use
the third ACER function, and for the POT method we declust the data withM = 3 and
the threshold is set to u = 2 after inspection of 4.21(a) and 4.21(b). In figure 4.21 the
extrapolated ACER function with confidence intervals, the empirical ACER function and
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Probability Expected Gaussian Student’s t POT ACER
0.95 182 189 37 145 209
0.99 37 75 7 17 40
0.995 18 75 4 7 16
0.999 4 37 2 2 2
0.9995 2 32 1 2 2

Table 4.13: Number of exceedances observed over estimated tail-quantiles.
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(a) Mean residual life plot for the residuals
of the Gaussian AR-GARCH model.
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(b) Shape and modified scale parameters
plotted against the threshold for the AR-
GARCH model.
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Figure 4.20: Extrapolated ACER function and exceedance rate for GPD fitted with
POT for residuals of the Gaussian AR-GARCH model.
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(a) Mean residual life plot for the Dow Jones
index data.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●●●●

●●●●
●●

0 1 2 3 4 5

−
5

0
5

Threshold

M
od

ifi
ed

 S
ca

le

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●

0 1 2 3 4 5

−
0.

5
0.

5
1.

5

Threshold
S

ha
pe

(b) Shape and modified scale parameters
plotted against the threshold for the Dow
Jones index data.

the exceedance rate for the GPD fitted with POT is plotted. The confidence intervals
for the POT method is very wide, and because this omitted in this figure. From this
figure we observe that while both methods predict exceedances close to each other, the
predicted exceedance rate of the POT method reveals that this method predict a heavier
tail than the ACER method for the distribution of log-returns. The reason for this may
be that while the ACER method, by the choice of weights, put less emphasis on more
insecure observations (observations where the 95% confidence interval for the empirical
ACER function is wide), the POT method does no such thing. As we observed in section
3.2.2 there seem to be some observations, which is much more extreme than
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Figure 4.21: Extrapolated ACER function and exceedance rate for GPD fitted with
POT for residuals of the Dow Jones index data.



Chapter 5

Conclusion

After comparing the performance of the ACER and POT methods in estimation of
extreme values it seem like the ACER method generally perform better the POT method.
The one clear exception is when there is no asymptotic argument in the derivation of the
threshold exceedances, as was the case for the Pareto distribution. Further the ACER
and POTmethods seem to generally predict return levels which is close, but the accuracy,
when considering the confidence intervals for these return levels, tend to be far greater
when using the ACER method. This is most likely due to the fact that the POT method
only uses observations above a given threshold when fitting the GPD. The method for
estimating the parameters for the ACER function seem robust in that the parameters
do not vary a lot between samples from the same model. Though it is observed that
when the tails of the distribution become too heavy there may be problems estimating
the parameters (i.e. a Pareto distribution with α ∈ (0, 1) or Student’s t-distribution
with ν ∈ (1, 2]). This is not a great flaw as these distributions do not represent the
phenomena we would want to apply this method to very well.

5.1 Further work
When modeling the residuals for the AR-GARCH model for the Nord Pool data, it could
be interesting to use the combination of the AR-GARCH model and the ACER method
to predict tail quantiles in the future. This could be done by for each data point (or in
this case, day) fitting an AR-GARCH model to the data and using the ACER method
to predict the tail quantiles for the residuals. This is not done in this thesis since the
GARCH fitting is done with the fGarch package for R, while all implementation of the
ACER method is done in Matlab.
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