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Highlights

• We develop a surgery allocation model handling continual patient arrivals.

• We implement column generation approach with a stochastic knapsack pricing problem.

• We introduce constraints handling service levels for categories of patient.

• Two allocation policies are compared to a First-Come First-Served policy. A simulation study

shows that our model performs better than a myopic approach.
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Abstract

We consider the assignment of jobs to heterogeneous agents in a dynamic system with a rolling

time horizon. An example is a hospital operating theatre where the jobs are surgeries and the

agents are the surgeons. The paper is presented in the context of surgery allocation and the

system is characterized as follows: Patients are grouped into categories and they arrive continually

following a stochastic process. Patients in each group have specific time limits within which they

need treatment and if it cannot be accommodated then the patients are outsourced. The service

level is the percentage of patients in each group treated within the time limit. Surgery durations

are stochastic and depend on the surgeon conducting the surgeries. Each surgeon has limited time

available and expected overtime is penalized by a non-decreasing convex function. We develop a

column generation approach for the assignment of already arrived patients and tentative future

patients to surgeons on specific days. It balances the conflicting objectives of including as many

arrived patients as possible within their time limits, maximizing the service level of future patients,

and minimizing the expected overtime of surgeons. A computational study is conducted with the

model embedded in a rolling time horizon frame. The study indicates that the assignment of patients

based on our model increases system performance in terms of service level and reduced overtime

compared to a First-Come-First-Served (FCFS) policy when the arrival rates of patients are medium

to high compared to the capacity of the system.
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1. Introduction

Surgical costs account for a significant share of total hospital costs, and the operating theatre

(OT) is a pivotal cost driver at any hospital. Part of this cost arises from salary to staff as well as

capital costs of having the operating rooms (ORs) available with the necessary equipment. Efficient

scheduling of resources is the key to keeping costs under control. Scheduling is challenged by several

factors. First, the underlying problem is combinatorial by nature and is often subject to constraints

making it hard to solve. Second, decisions are made in a dynamic environment with new patients

arriving continuously.1 Third, surgery times are stochastic and should be treated accordingly. These

factors in combination make scheduling decisions for an OT particularly difficult.

Running an OT requires decisions within different time horizons. Long term decisions relate

to the strategic level of planning and address the issue of capacity, while medium and short term

decisions relate to allocation and scheduling of capacity with an increasing level of detail (May et al.,

2011). To illustrate, the number of surgeons is decided and allocated to blocks of surgery in the

medium term, and patients are next allocated to blocks of surgery in the short term.

Different levels of planning require different types of data. In the long term, data is highly aggre-

gate and must be forecasted. The movement into a shorter time horizon requires more disaggregate

data and provides the possibility for more precise schedules and allocations (Bitran and Tirupati,

1993). The focal point in the literature on short term scheduling is the allocation of patients, who

have arrived and been diagnosed. Future stochastic patient arrivals are usually ignored or addressed

by a simple assignment of unused blocks to potential future arrivals. We develop a method for an

optimized allocation of surgery dates to patients that utilizes data on already arrived patients along

with basic distributional characteristics of future arrival patterns and surgery durations without

the assumption of any exact distributional forms. We consider the scenario with the predominant

paradigm of advance scheduling, where patients are given an appointment in the future rather than

notified on the day of their appointment. A patient must be offered surgery not later than a due

date dependent on type of diagnosis or patient category. The scheduling of an arriving patient

should take the expectations regarding future arrivals into account, because an appointment blocks

for or increases the risk of overtime caused by a future booking, since it cannot be removed once it

has been booked. For example, future cancer patients will often be associated with due dates within

the planning period and must be handled as an integral part of the planning process. We know the

number of already arrived and diagnosed cancer patients. We do not know the precise arrival times

and diagnoses of future patients, but an estimate of the number of cancer patients arriving during

the next planning period can be made available and taken into account in the planning process.

In this paper we focus on the medium term assignment of patients to surgery dates. We introduce

the dynamic aspect into a combinatorial model with stochastic surgery times by utilizing information

on potential future patient arrivals. The model yields surgery dates for patients known to the system

as well as tentative surgery dates for potential patients who have not yet arrived. It allocates patients

1For this reason, a rescheduling is required on a regular basis.
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and potential surgeries to combinations of surgeons and dates such that the expected overtime for

surgeons is minimized while minimizing the tardiness of the system and ultimately the expected

number of patients who cannot be treated within a predefined deadline. To test the effect of different

allocation policies for the OT we embed this model into a rolling horizon framework simulating

patient arrivals.

The underlying combinatorial model is a generalized assignment problem (GAP), where already

arrived patients are assigned to a combination of a surgeon and a date. Potential future patients

are also assigned to a surgeon-date combination, and the GAP model is augmented by a set of

service-level constraints measuring the expected number of future and not yet arrived patients who

cannot be treated within a prespecified deadline given the already allocated surgeries of potential

patients. The assignment of more potential surgeries to the available surgeon-date combinations

will lower the expected number of patients not treated within the relevant deadlines and increase

the level of service. However, surgery times are stochastic, and the assignment of more known as

well as potential future patients to any given surgeon-date combination involves a higher risk of

overtime for the surgeon on that day. Overtime in turn increases the direct cost of the schedule.

In addition, the need for reassignment of patients to a new day for surgery due to a violation of

a surgeon’s maximum workload increases. We model this by a strictly convex cost function in

expected overtime.

A column-generation-based method is developed for solving the augmented GAP. The main

variables in the problem correspond to feasible allocations of known patients and potential surgeries

to surgeon-date combinations. The number of such variables is huge, and for this reason the relevant

columns are generated by solving a set of pricing problems – one for each surgeon-date combination.

The pricing problems turn out to be variants of the stochastic knapsack problem. We utilize a

dynamic programming method based on a shortest path problem with resource constraints on an

acyclic graph to solve the stochastic knapsack problem. An explicit modeling of stochastic arrival

processes and service times with stochastic future arrivals incorporated into the planning problem

is a main contribution of the paper.

The paper unfolds as follows. Section 2 provides a brief review of the relevant literature related

to GAP and surgery scheduling. The augmented GAP model is developed in Section 3. It is

described in detail how to set up constraints measuring and maximizing the service level, how to

set up an extensive formulation of the surgery scheduling problem, and how to generate schedules

for individual surgeon-date combinations. The static model is embedded into a rolling time horizon

simulation in Section 4, and the performance of different allocation policies is tested in Section 5.

Finally, concluding remarks are given in Section 6. All proofs are provided in appendix Appendix

A.

2. Related literature

The assignment of patients to available surgeons on any given day in a deterministic scenario

is a Generalized Assignment Problem (GAP), where each patient must be assigned to exactly one
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surgeon (or team of surgeons), and surgeons may be assigned to multiple tasks. Each surgeon has

a capacity, for example, in terms of the number of hours available. Patients consume a certain

amount of this capacity, and the combined consumption of resources by patients assigned to any

surgeon is not allowed to exceed his capacity. The GAP to be considered in this paper is stochastic

and dynamic.

Moccia et al. (2009) address a stochastic GAP with recourse. A given set of jobs is assigned

to agents, but a random subset of jobs does not need to be processed. The assignment of jobs to

agents is decided a priori, and the recourse is a reassignment of jobs from overloaded agents. The

reassignment of jobs is decided upon once the subset of jobs to be executed is known. Mazzola and

Neebe (2012) consider the GAP over discrete time periods within a finite planning horizon. The

underlying idea is that tasks can be reassigned between agents from one period to another and that

reassignments of this type are accompanied by a transition cost. Kogan and Shtub (1997) suggest

a continuous-time optimal control formulation of the problem with due dates imposed for jobs and

inventory as well as shortage costs incurred when jobs are finished ahead of or after their due dates.

Kogan et al. (2016) extend the dynamic GAP to a stochastic environment.

Our focus is different. We do have a set of jobs to be assigned to agents. Some jobs are known,

while others emanate from our expectations regarding future job arrivals. Capacity is limited, and

jobs that cannot be assigned to an agent must be outsourced. Outsourcing is accompanied by a

cost. The problem is to assign known and currently unknown jobs to agents in such a way that the

anticipated cost of outsourcing is minimum. We consider the dynamic scenario with due dates for

jobs and imposed service levels reflecting a policy for the completion of jobs within certain deadlines.

A policy stating that, say, 75% of all jobs of a certain type must be completed no later than two

weeks after their arrival is an example. The scenario is highly relevant in the context of patient

scheduling in an OT, which for this reason defines the storyline in the development of the model. In

addition, planning and scheduling of an OT is of significant importance per se, and many variants

have been studied in the literature. Several reviews exist – see, for instance, Cardoen et al. (2010),

May et al. (2011), Guerriero and Guido (2011), Hulshof et al. (2012), and Demeulemeester et al.

(2013). On-line bibliographies are maintained by Dexter (2016) and Hulshof et al. (2011).

Deterministic models are common in cases with many interrelated resource constraints. Pham

and Klinkert (2008) consider surgical scheduling in the context of a generalized job shop problem

and solve this by Mixed Integer Linear Programming (MILP). Gartner and Kolisch (2014) set up

MILP models with a focus on maximizing the contribution to margin. This model is embedded

into a rolling horizon, and the authors show that the time between admission and surgery can be

reduced significantly. Riise et al. (2016) see the surgery scheduling problem as a resource-constrained

project scheduling problem and argue that this formulation can be used to solve several variants

of the surgery scheduling problem. These studies share a focus on the combinatorial aspect of the

problem.

Another approach for allocating patients to days is to view the system as a make-to-order (MTO)

system with zero inventories. Accordingly, each patient’s request for surgery is treated as an order,
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which is back-logged to be produced in the (near) future. The focus in MTO systems is on customer

satisfaction – see, for example, Jalora (2016) – which often translates into service levels. However,

it is not always possible to satisfy all orders, and for this reason a rejection of certain orders may

be necessary. This is in focus in the Order Acceptance and Scheduling Problem. Examples can be

found in Ebben et al. (2005) and Mestry et al. (2011) as well as in the review by Slotnick (2011).

There are two main paradigms for the dynamic scheduling of patients to days. Patients are given

an appointment in the future at the time of request in advance scheduling. Patients are not scheduled

in advance but notified on the day of their appointment in the allocation scheduling problem. The

solution of the advance scheduling problem is made difficult compared to the allocation scheduling

problem by a high dimensional state and decision variable space. Gerchak et al. (1996) address the

advance scheduling problem as an aggregate planning problem, where patient arrivals by assumption

are independent and identically distributed (i.i.d.) as are surgery times. The problem is modeled

as a dynamic programming model, where profits are maximized and a unit-time penalty is paid for

physician overtime. Truong (2015) is an extension of Gerchak et al. (1996) with multiple resources

and non-stationary demand. Structural properties for an optimal advance scheduling policy are

derived, and a method for construction of an optimal solution from the solution to the more simple

allocation scheduling problem is developed. Min and Yih (2010) allocate patients based on priority

when surgery times are i.i.d. and the capacity is scarce. Huh et al. (2013) consider the multiresource

allocation scheduling problem with two classes of patients (elective and emergency) in a dynamic

environment, where demand and capacity constraints may be random, non-stationary, and time

correlated. The problem is modeled as a Markov Decision Process (MDP). It is not easy to solve,

but structural properties for the optimal policies can be derived. The focus in these papers is on

dynamic and stochastic aspects of surgery scheduling.

The assignment of patients to surgeon-day combinations is challenged by limited information

on the distribution of e.g. patient arrivals and surgery durations. For that reason the development

of models that do not involve the assumption of exact distributional forms has been given some

attention in the literature. Focus in Kong et al. (2013) is on the determination of appointment

times in an outpatient clinic with a single physician given that the number of patients and their

sequence of arrivals are known. The stochastic job durations are characterized by their moments,

but the complete distributions are not known. The model identifies distributionally robust schedules

that minimize expected waiting time on the patient side and the physician’s expected overtime. Mak

et al. (2015) also suggest a distribution-free model.

Blake and Donald (2002) use a MILP model to allocate blocks of time in OTs to specific depart-

ments. Vissers et al. (2005) construct a so-called cyclic master surgery schedule, where the number

of patients in each category scheduled for a day is determined such that a target throughput for

respective categories is achieved. The allocation of blocks of surgery time to operating rooms is also

in focus by Denton et al. (2010). Their model minimizes the cost of opening ORs as well as the cost

of overtime in a stochastic setting. The authors consider blocks of time rather than individual pa-

tients. Their approach can be seen as a more aggregate model compared to the one to be suggested
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in the present paper.

Hans et al. (2008) investigate the (single day) surgery loading problem, where surgery times are

uncertain, and patients are allocated to ORs, such that the probability for violating a hard daily limit

is bounded. Lamiri et al. (2008) develop a column generation model for assigning elective patients

to combinations of ORs and days, where elective patients are mixed with emergency patients in

the ORs. For each OR-day combination the authors use a stochastic variable representing the

time used for emergency patients and in this way obtain an expected overtime. Surgery times for

elective patients are assumed to be deterministic, and the stochasticity of the model is addressed

in the pricing problem. Shylo et al. (2013) assign surgeries to blocks of surgery time such that a

minimal number of blocks are used in the future. They include approximations for both over- and

underutilization of the blocks. Their approach is embedded into a simulation and is shown to be

superior to a first-fit procedure. Finally, Gul et al. (2015) suggest a stochastic multistage MILP for

the assignment of surgeries to operating rooms and days. The model is solved using the progressive

hedging algorithm suggested by Rockafellar and Wets (1991).

The use of methods from management science for the scheduling of OTs with the aim of per-

formance improvement also involves discrete event simulation. Testi et al. (2007) suggest a 3-phase

hierarchical approach for the weekly scheduling of OTs combining optimization and simulation pro-

cedures. A bin-packing problem is solved in order to select the number of sessions to be allocated

to each ward on a weekly basis. This is followed by the use of a blocked booking method for deter-

mining optimal time tables in terms of an assignment of wards to OTs. Finally, a simulation tool

is used for an analysis of the performance of the OT under conditions of different sequencing rules.

An investigation of the impact of the choice of appointment system and sequencing rules on waiting

times can also be found in Westeneng (2007) with a focus on outpatient appointment scheduling.

Bowers and Mould (2004) use simulation to explore the balance between maximizing the utilization

of theater sessions while avoiding overruns. VanBerkel and Blake (2007) examine how an increase

in throughput triggers a decrease in waiting time. Cardoen and Demeulemeester (2008) propose a

discrete event simulation approach that allows for an evaluation of multiple clinical pathways and

the inherent uncertainty that accompanies any clinical process. Ma and Demeulemeester (2013)

use discrete event simulation to evaluate and adjust the master surgery schedule in an iterative

approach. This is in turn used to enhance the trade-off between efficiency of resource utilization

and the level of service. Harper (2002) suggests a simulation model for the flow of patients through

the hospital that captures resource consumption over time with a focus on dimensioning. In the

context of a simulation study Kim and Horowitz (2002) explore whether the use of a daily quota

system with a 1- or 2-week scheduling window improves the performance of an Intensive Care Unit.

Focus in our paper is on the allocation of patients to combinations of surgeons and days in a

dynamic setting. This is in some contrast to the existing literature, where the focus is either on

capacity or the sequencing of patients. In the literature focusing on sequencing patients are by

assumption typically known a priori as is the capacity. The capacity problem, the allocation prob-

lem, and the sequencing problem should be solved simultaneously if sub-optimality is to be avoided.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

However, the problem to be solved would become highly complex, and it would be very difficult

to obtain a solution with a guaranteed maximum deviation compared to the optimum. We take

capacity for given, too, and address the problem of allocating patients to a set of available combina-

tions of surgeons and days given a priori while ignoring the sequencing of patients to be addressed

at the operational level. The procedure allows for an allocation of patients taking future expected

arrival patterns into account. Our computational study suggests that an improved performance is

obtained regarding outsourcing of patients because of a violation of imposed due dates or deadlines

reflecting service levels. The aspect to be considered relates to balking in queuing theory and has

to the best of our knowledge not been addressed previously in the literature.

3. A model for patient-to-day allocation

A GAP can be decomposed into a set partitioning problem and a set of knapsack problems –

one problem for each surgeon on each day – and solved by a Branch-and-Price approach (see, e.g.,

Barnhart et al. (1998)). The model to be presented does not presuppose deterministic data. By

contrast, the model is designed with the aim of obtaining an improved assignment of surgical tasks

to surgeons by incorporating uncertainty regarding future patient arrivals as an integral part.

The output is a set of schedules for a given set of surgeon-day combinations indicating the (ex-

pected) set of activities to be carried out by that surgeon on that day while ignoring the sequencing

of these activities. Each schedule includes a number of already arrived and known patients along

with a number of slots allocated to potential surgeries for future and not yet arrived patients.2

The model has a finite time horizon split into individual days. The set of days is denoted

D = {1, . . . , D} and is indexed by d and δ. A set of heterogeneous surgeons, S = {1, . . . , S}, is

available to conduct surgeries. The time a surgeon, s ∈ S, is available on day d ∈ D is denoted

Tsd ≥ 0. The cost of surpassing the available time for a surgeon is a non-decreasing convex function

Ωs : R+ → R+ with Ω(0) = 0. Ω(t) measures the cost of having t time units of expected overtime.

A surgeon with no available time on a given day cannot conduct surgeries on that day. We denote

R = {(s, d) ∈ S × D|Tsd > 0} as the set of feasible surgeon-day pairs. The problem is to identify a

cost minimizing assignment of a combination of known and potential future patients to the set of

surgeon-day pairs.

The distinction between known and potential future patients is important. We have information

on arrival dates, due dates, and diagnoses for the set of already arrived or known patients. This

information is for obvious reasons not available for future patients, who have not arrived yet. How-

ever, estimates of within group arrival patterns along with means and variances for the duration of

surgeries are available. We denote C = {1, . . . , C} as the index set for categories of patients. Each

2The slots allocated to potential surgeries can in practice be used by the planner to book patients when they arrive
and can be seen as pre-booked surgeries of anonymous not yet known patients.
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patient belongs to precisely one category, and patients within a category are homogeneous.3 For

each c ∈ C we use the following notation:

• Scatc ⊆ S is the set of surgeons who can operate patients in category c.

• Xcd is a stochastic variable corresponding to the number of patients in category c arriving on

day d ∈ D.

• πncd is the probability that n ≥ 0 patients in category c will arrive on day d ∈ D.

• M cat
csd is the maximum number of patients in category c that surgeon s ∈ S can operate on day

d ∈ D.

• Zcatcsj is a stochastic variable with mean µcatcs > 0 and standard deviation σcatcs > 0 of the surgery

time of patient number j = 1, . . . ,maxd∈D{M cat
csd} in category c conducted by surgeon s ∈ S.

Zcatcsj are by assumption i.i.d. for all j, all days d, and surgeons s ∈ S.4

Patient arrivals are by assumption independent.5

At the time of planning, some patients are known, and some of these have already been assigned

to a date of surgery as well as to a specific surgeon. This set of patients still has to be an integral

part of the planning process, since we must account for their surgeries when planning new patients

on the same day. The set of known patients who have arrived and been diagnosed is denoted

P = {C + 1, . . . , C + P}, and for a known patient, p ∈ P, we use the following notation:

• Dp ⊆ D is the set of feasible dates for surgery on patient p ∈ P.

• Spatp ⊆ S is the set of surgeons who can operate patient p ∈ P.

• CPpd is the cost of scheduling patient p ∈ P for surgery on day d ∈ D. If d /∈ Dp then we put

CPpd =∞.

• Zpatp is a stochastic variable with µpatps > 0 and standard deviation σpatps > 0 of the surgery

time.

Each known patient belongs to exactly one category of arriving patients, and we might use the

mean and the standard deviation for the duration of surgery for that category as the relevant mean

and standard deviation for service (i.e., surgery time). However, we obtain more information, such

as age and co-morbidities, when the patient has arrived, which in turn may have an impact on our

estimates of mean and standard deviation. The mean and variance for the set of known patients in a

3Focus in this paper is on the one resource scenario, namely the set of feasible surgeon-day pairs. Patients within
a given category share the same clinical pathway, i.e., utilize the same resources in the more general multiple resource
scenario.

4Experienced surgeons typically use less time for surgeries compared to the junior surgeons. Hence different
surgeons may have different means and standard deviations for a given category of patients. Compared to the case
where surgeons are identical the problem becomes more complex when the surgeons are heterogeneous.

5This assumption may not hold true for emergency patients who arrive from, for example, traffic accidents.
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specific group is therefore adjusted based on this information, and the mean and standard deviation

for individual patients are allowed to be distinct.

The cost of scheduling a specific patient on a specific day is a cost related to the patient and

indicates a prioritization of the patients. That is, some patients are more urgent and get a higher

cost while other patients are less urgent and may get a lower cost. Furthermore the cost of scheduling

a specific patient is typically an increasing function of the number of days the patient has waited

due to the potential postponement of recovery or increase in severity of the patients condition.

A known patient, p ∈ P, for whom we have fixed a specific date for surgery will have |Dp| = 1,

while a patient for whom we have fixed the surgeon will have |Sp| = 1. Pf = {p ∈ P||Dp| = 1∧|Sp| =
1} is the set of patients with fixed dates and fixed surgeons, and Pu = P \ Pf is the set of patients

for whom either the date of surgery or the surgeon has not been fixed.

3.1. Modeling the service level

The treatment of patients before their due dates and imposed deadlines reflecting service levels

are key issues for most hospitals. For this reason, a model designed to determine the day of surgery

should include performance measures reflecting this issue. This may be obvious for known patients,

but not for patients who have not arrived yet. We model an approximation for the expected number

of future arrivals to be handled within a specific period – the larger the expected share of future

patients to be handled within imposed deadlines the higher the level of service.

Suppose that the target for a category c is to treat at least, for example, 50% of the patients

within one week, 75% within two weeks, and 90% within three weeks. We set up a measure for this

by constructing a function that measures the expected number of patients in category c violating

the imposed target levels given the number of preallocated surgeries assigned to category c patients

in the future. This number is next compared to the expected number of future patients in category

c, thus obtaining the expected share of patients not treated within the target levels.

We denote Lc as the set of treatment deadlines, for example, Lc = {7, 14, 21}, in the example

above. For each treatment deadline, l ∈ Lc, we define the target portion, Hcl ∈ [0, 1], of patients

intended to be treated within the deadline, where Hc14 = 0.75 in the example above. The require-

ment that Hcl percent of patients in category c arriving on day d should be allocated to surgery

within l days translates into the following constraint:

E [Ycdl] ≤ (1−Hcl)E [Xcd] (1)

where Ycdl is a stochastic variable indicating the number of patients in category c arriving on day

d who cannot be allocated to surgery within the target of l days. Ycdl depends on the number of

available pre-allocated surgery slots for patient category c after day d. Consider a given day, d ∈ D,

and a given category, c ∈ C. We omit the subscripts for day, category, and deadline to simplify the

notation, (i.e., πn is a shorthand for πncd, X for Xcd, and Y for Ycdl). Let A ∈ N denote the number

of preallocated slots for surgery assigned to future patients of category c. A ∈ N is an upper bound

on the number of patients of category c arriving on day d that can be allocated to surgery on a
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future day. Define a set of stochastic variables as follows:

Y A = (X −A)+, A ∈ N (2)

where (x)+ is shorthand for max{0;x}. Y A measures the number of patients (of category c arriving

on day d) who cannot be allocated to surgery within the imposed deadline. The expected value of

the stochastic variable, Y A, can now be derived as stated in Proposition 1:6

Proposition 1. Let X be a discrete stochastic variable having probability πn of attaining value n

and let Y A = max{0, X −A}, where A ∈ N is an exogenously given value. Then

E
[
Y A
]

= E [X]−A+
A∑

n=0

πn (A− n) (3)

Proposition 1 is trivial, because the LHS is the conditional expectation given that the stochastic

variable Y A must be non-negative. It is included as a means for a self contained presentation with a

formal basis. Clearly, the expected number of patients who cannot be allocated to surgery decreases

when the number of patients who can be allocated to surgery increases (i.e., when A increases). The

expected number of patients who cannot be allocated to surgery, is only defined for integer values of

A. For model building purposes we approximate this relationship by a continuous piecewise linear

function passing through the points (A,E[Y A]) and (A+ 1,E[Y A+1]) for A ∈ N.

Proposition 2. The straight line passing through both (A,E[Y A]) and (A+1,E[Y A+1]) is described

by the function

fA(x) =

(
A∑

n=0

πn − 1

)
x+ E [X]−

A∑

n=0

πnn (4)

The line fA(x) is of interest only for values of x ∈ [A,A+ 1], such that it connects the two points

(A,E[Y A]) and (A + 1,E[Y A+1]). Letting successive functions f0(x), f1(x), . . . , fA(x),... connect

the sequence of points (0,E[Y 0]), (1,E[Y 1]), (2,E[Y 2]), . . ., (A,E[Y A]), (A+ 1,E[Y A+1]), . . . yields

a piecewise linear function:

g(x) =





f0(x), 0 ≤ x < 1

f1(x), 1 ≤ x < 2
...

fA(x), A ≤ x < A+ 1
...

(5)

The function g(x) yields the expected number of patients who cannot be allocated for any value

x ≥ 0 corresponding to a possible number of patient allocations. Figure 1 provides an example

6The proofs of Propositions 1-3 are provided in appendix Appendix A.
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of the functions fA(x) and the function g(x). Proposition 3 states the properties of the shape of

function g:

Proposition 3. Let g : R+ → R be defined by (5) and suppose that the cumulative distribution

function, F , is strictly increasing. Then g is continuous, decreasing, and convex.

−1 0 1 2 3 4

0

0.5

1

1.5

f0(x)

f1(x)

f2(x) f3(x)

g(x)

A

Figure 1: Illustration of fA(x) for A = 0, . . . , 3 (dashed lines) and g(x) for X Poisson distributed with mean 1 (full
line).

The function g(x) is convex and can for this reason be rewritten as follows:

g(x) = max
{
fA(x)|A ∈ N

}

g(x) is in view of the definition of fA(x) piecewise linear. Let y denote the expectation of the

random variable indicating the number of patients who cannot be allocated to surgery. y is a

variable bounded from below by g(x) for any given x. The following result prevails:

y ≥ g(x) = max
{
fA(x)|A ∈ N

}
(6)

⇒ y ≥ fA(x), ∀A ∈ N (7)

The minimum value of y is attained at g(x). Hence, (7) provides a lower bound on the number of

patients in category c arriving on day d who cannot be assigned to surgery within the target of l

days as a function of x.7

3.2. Identification of the cost-minimizing set of schedules

For each day a surgeon is available a number of surgeries are allocated to her or him. We will

refer to such an allocation as a schedule for the surgeon on that given day. All known patients

7Bear in mind that x in turn measures the number of operations for patients in category c arriving on day d, who
can be assigned to a surgeon-day combination within the imposed deadline.
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must be assigned to a specific day as well as a specific surgeon. Schedules may also include a

number of tentative surgeries for patients who may arrive in the future before the relevant day for

the schedule at hand. Hence, a schedule for a surgeon-day combination is an assignment of known

patients in combination with a number of tentative potential surgeries. A schedule for a surgeon-

day combination is said to be feasible if all known patients and planned tentative surgeries can be

operated by the surgeon.

Let I denote the set of all feasible schedules, and let Ir ⊆ I denote the set of feasible schedules

for surgeon-day pairs, r ∈ R. By assumption Ir, r ∈ R, partitions the set of all schedules, I. Let

Idayd = {i ∈ I|i ∈ I(s,d), s ∈ S : (s, d) ∈ R} denote all schedules for a given day, d ∈ D. For each

schedule, i ∈ I, we use the notation:

• cSi is the cost of a schedule i, which is composed of the cost of assigning known patients as

well as the cost of expected overtime.

• api ∈ {0, 1} is a parameter equal to 1 if and only if patient p ∈ Pu is included in schedule i.

• bci ∈ N is the number of planned surgeries for arriving patients in category c ∈ C in schedule

i.

The values cSi , api, and bci (see Section 3.3) can easily be determined when the subset of patients

from P included in the schedule and the number of planned surgeries in each category are known.

Known but not yet allocated patients can be outsourced if necessary. We let

• COPp be the outsourcing cost of patient p ∈ Pu.

An available surgeon-day combination can be used for surgeries. Otherwise, the OR is not open on

that day. Thus, we denote

• COr as the cost of opening the OR for surgeon-day combination r ∈ R.

The direct costs of a schedule relate to personnel. The indirect costs relate to the cost of outsourcing

known patients, the cost of opening an OR, and the cost of violating imposed service levels. For

each category c ∈ C and each l ∈ Lc we let

• CVcl be the unit cost of violating the required service level l of category c (could be set to ∞
for a hard constraint).

Finally, we need the following variables:

• λi ∈ {0, 1} is a variable equal to 1 if and only if schedule i ∈ I is used in the solution.

• ζp ∈ {0, 1} indicates whether or not patient p ∈ Pu is outsourced.

• ρr ∈ {0, 1} indicates whether or not surgeon-day combination r ∈ R is used.
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• xcdδ ≥ 0 is the number of tentative patients in category c ∈ C arriving on day d scheduled for

surgery on day δ > d.8

• ycdl ≥ 0 is the expected number of patients in category c ∈ C arriving on day d who cannot

be allocated within the maximal time l.

• vcl ≥ 0 is the amount of violation of the required service level.

The number of patients in category c arriving on day d and allocated to a day within planning

period D and no later than the target deadline l ∈ Lc can be computed as:

min{D,d+l}∑

δ=d+1

xcdδ (8)

Tentative patient arrivals on day d with d+ l > D may by assumption be allocated to days beyond

the planning horizon. To be more specific, we assume in case d+l > D that a portion of the expected

patient arrivals are allocated to days beyond the planning horizon and that in the long run patients

are distributed evenly over the potential days for surgery. Accordingly, the tentative number of

patient arrivals allocated to surgery on a day beyond the planning horizon can be computed as

follows:9

Ecdl =
max{0; d+ l −D}

l
E[Xcd]

where c ∈ C, d ∈ D, and l ∈ Lc. The tentative number of patient arrivals allocated to a specific

surgery day, δ, is
δ−1∑

d=0

xcdδ

The model can now be stated as follows, provided that the complete set of feasible schedules I is

8It should be noted that only some combinations of d and δ are feasible.
9The approximation has the desirable properties that no patient is allocated to surgery beyond D if d+l does not

exceed D and that all patients are allocated to surgery beyond D if d=D. Other approximations are available.
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known along with the components described above:

min
∑

i∈I
cSi λi +

∑

p∈Pu
COPp ζp +

∑

r∈R
COr ρr

+
∑

c∈C

∑

l∈Lc
CVcl vcl (9)

s.t.
∑

i∈I
apiλi + ζp = 1, p ∈ Pu (10)

∑

i∈Ir
λi = ρr, r ∈ R (11)

∑

i∈Idayδ

bciλi ≥
δ−1∑

d=0

xcdδ, c ∈ C, δ ∈ D (12)

fAcd




min{D,d+l}∑

δ=d+1

xcdδ + Ecdl


 ≤ ycdl, c ∈ C, d ∈ D, l ∈ Lc, A ∈ N (13)

∑

d∈D
ycdl − vcl ≤ (1−Hcl)

∑

d∈D
E[Xcd], c ∈ C, l ∈ Lc (14)

λi ∈ {0, 1}, i ∈ I (15)

ζp ∈ {0, 1}, p ∈ Pu (16)

ρr ∈ {0, 1}, r ∈ R (17)

xcdδ ≥ 0, c ∈ C, d, δ ∈ D (18)

ycdl ≥ 0, c ∈ C, d ∈ D, l ∈ Lc (19)

vcl ≥ 0, c ∈ C, l ∈ Lc (20)

Objective (9) minimizes the total cost of the selected set of schedules, the total cost of outsourcing

known patients, the total cost of opening ORs, and the cost of violating the target service levels.

Constraint (10) ensures that each known patient without a fixed surgeon-day pair either gets allo-

cated to exactly one schedule or is outsourced. Constraint (11) imposes the requirement that each

surgeon-day pair has exactly one associated schedule if the corresponding OR is opened for that

surgeon-day pair. The left-hand side of constraint (12) states the number of available surgeries in

category c on day δ, while the right-hand side measures how many patients in category c arriving

earlier than day δ are allocated to have surgery on day δ. The right-hand side has to be no larger

than the left-hand side, since we cannot operate more patients in category c than planned. The

expected number of patients in category c arriving on day d not allocated to a surgery is measured

by constraint (13).10 The target service level corresponding to equation (1) is enforced in constraint

10This constraint corresponds to (7), where x is the amount of expected patients allocated to future surgeries.
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(14) by putting a bound on ycdl over the planning horizon.11 If this is not satisfied, then vcl mea-

sures the magnitude of the violation, which is penalized by CVcl in the objective function. Finally,

constraints (15)-(20) state the variable types. In practice, ζp and ρr are naturally integer as long as

all λi variables are integer. Hence, we relax (16) to 0 ≤ ζp ≤ 1 and (17) to 0 ≤ ρr ≤ 1.

Consider the scenario with an empty set of constraints of type (13). This is the case where future

and currently not known patients are simply not taken into account. A similar situation occurs in

the scenario with CVcl = 0 for all c and l, since a violation of imposed service levels is not penalized

in the objective function. By contrast, Hcl = 1 and CVcl > 0 accompanied by
∑

d∈D ycdl = vcl in any

optimal solution is the case with a penalty imposed whenever a tentative patient cannot be offered

surgery.

The number of constraints of type (13) is in principle not finite since A ∈ N. Hence, we

test whether any of the infinitely many constraints of this type is violated and include violated

constraints in the problem. Constraints (13) are easy to separate, since we only need to check

whether the constraint for c, d, l, A in
∑d+l

δ=d+1 xcdδ ∈ [A,A + 1[ is fulfilled. We add the relevant

constraint and resolve the problem if this is not the case.

The number of possible schedules for each surgeon-day pair, r, is huge. For this reason we

generate schedules dynamically for the LP relaxation of (9)-(20). We apply the approach known

as column generation to construct an LP lower-bound solution.12 The idea is first to remove the

integrality constraints, (15), thus obtaining an LP relaxation. The number of basic variables cannot

exceed the number of constraints. Hence, most of the scheduling variables, λi, from problem (9)-

(20) can be removed (or implicitly fixed at zero), which in turn provides a restricted version of

the LP relaxation of problem (9)-(20). An optimal solution for the LP relaxation is obtained,

provided variables are removed or fixed at zero in an appropriate way (i.e., when the reduced

cost coefficients for these variables are non-negative). For this reason we compute the minimum

reduced cost coefficient over all variables. If the minimal reduced cost coefficient is negative, the

corresponding variable is allowed to exceed zero. Let βp ∈ R be the dual price for constraint (10)

with p ∈ Pu, let αr ∈ R be the dual price for constraint (11) with r ∈ R, and let γcδ ≥ 0 be the dual

price for constraint (12) with c ∈ C and δ ∈ D. Bearing in mind that r ∈ R reflects a combination,

r = (s, d), of a surgeon s ∈ S and a day d ∈ D, the reduced cost coefficient for schedule i ∈ Ir with

r ∈ R can be computed as

ci = cSi −
∑

p∈Pu

apiβp −
∑

c∈C
bciγcd − αr (21)

11The specification of (14) as an aggregation of (1) is an example of the inherent flexibility as seen from a model
building point of view. The relaxation imposes the requirement that the expected number of patients of type c ∈ C
who arrive within the planning period and cannot be allocated to surgery within the time limit l must not exceed the
fraction (1−Hcl) of the expected number of arrivals. The corresponding disaggregate constraint as in (1) states that
the requirement is not only to be fulfilled on average but on a daily basis.

12The reader is referred to Barnhart et al. (1998) or Lübbecke and Desrosiers (2005) for an introduction to column
generation.
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Clearly, we need to identify api and bci as well as the direct cost of the schedule, cSi , in order to

compute a minimum reduced cost schedule. We will return to this in Section 3.3.

The model we propose is focused on the planning of the schedules for future dates. As such, it

does not directly focus on the daily control of the OT. For instance, we do not include sequencing of

patients in the operating rooms nor the risk of cancellation of patients due to surges of acute patients.

While both issues are relevant, we have not included these in this study. However, the knapsack

problem described below can be extended to a so-called Elementary Shortest Path Problem (ESPP)

which will take the sequencing into account. The price to pay for this extension is that the structure

of the ESPP makes the problem stongly NP-hard, while the variant we use has pseudo-polynomial

time complexity.

The issue of cancellation and the re-allocation of patients to new time-slots is important in real

life. We have not explicitly taken this into account in the model. However, the model has to be

resolved on a daily basis and patients canceled one day may be forced into the solution by adding

them to the set Pu and either fix the variable ζp = 0 such that the patient cannot be outsourced or

put the outsource cost COPp to a huge value. As a canceled patient should be treated sooner rather

than later, one can also increase the cost of including these patients later significantly. While it is

possible to handle cancellations in the model, we have left this for future research.

3.3. The generation of schedules

This section is concerned with the development of a model that approximates costs for potential

schedules and identifies the minimum reduced cost schedule given the dual prices of the LP relaxation

of model (9)-(20). The model is referred to as the pricing problem.

The decisions to be made in the pricing problem are who of the known patients and how many

surgeries of each category of patients are to be included in a surgeon’s schedule on a given day.

Let vp ∈ {0, 1} indicate whether or not a known patient p ∈ P is included in the schedule, and let

wcj ∈ {0, 1} indicate whether or not an unknown, future patient, labeled as number j in category

c is included. Implicitly we assume that wcj ≥ wcj+1 (i.e., patient number j + 1 in category c can

only be included in the schedule if patient j in category c is included). A fixed patient, p ∈ Pf , will

have the corresponding variable, vp, fixed to either 0 or 1: vp = 1 if the patient is fixed to surgeon

s on day d, and vp = 0 if the patient is fixed to another surgeon or another day.

In this section we will treat the surgeon-day pairs individually. For convenience we fix r = (s, d),

and, unless otherwise stated, we let Zcatp = Zcatps , Zcatcj = Zcatcsj , Ω(·) = Ωs(·), T = Tsd, C
P
p = CPpd,

α = αr, and γc = γcd.

The cost of a schedule, cS , depends on the direct costs, CPp , of including patient p ∈ P as well

as the expected overtime cost of the schedule. Let Z denote the total processing time for patients

included in the schedule. Z is the sum of the realizations of the respective stochastic variables, i.e.,

Z =
∑

p∈P
vpZ

pat
p +

∑

c∈C

Mcat∑

j=1

wcjZ
cat
cj (22)
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Overtime can now be written as the stochastic variable O = (Z − T )+, and the expected cost of

overtime can be evaluated by Jensen’s inequality (Jensen, 1906): E [Ω (O)] ≥ Ω (E [O]). Accordingly,

the expected cost of a schedule can be computed as

cS =
∑

p∈P
CPp vp + Ω (E [O]) (23)

Consider a solution, i ∈ Ir. vip indicates whether or not patient p is included in the schedule,

and wicj indicates whether or not patient j in category c is included in the schedule. Thus, api = vip

and bci =
∑Mcat

c
j=1 wicj . The reduced cost of a schedule can be obtained by combining (21) and (23):

ci =
∑

p∈P

(
CPp − β

)
vp −

∑

c∈C

∑

j

γcwcj + Ω(E[O])− α (24)

Overtime, O, is computed on the basis of the included number of patients in each category. Hence,

the minimum reduced cost column can be found by solving the following binary problem:

min
∑

p∈P

(
CPp − β

)
vp −

∑

c∈C

Mcat
c∑

j=1

γcwcj + Ω(E[O])− α (25)

s.t. O =


∑

p∈P
vpZ

pat
p +

∑

c∈C

Mcat
c∑

j=1

wcjZ
cat
cj − T




+

(26)

vp ∈ {0, 1}, p ∈ P (27)

wcj ∈ {0, 1}, c ∈ C, j ∈
{

1, . . . ,M cat
c

}
(28)

This problem is a variant of a stochastic knapsack problem (see Kellerer et al. (2004)) where the

upper bound on the consumption of time is replaced by a cost of exceeding the upper bound. By

assumption, we do not have the distributions for the surgery times of individual patients and patient

categories. Only estimates of means and variances are available. For this reason we apply the central

limit theorem to obtain an approximation of the expected overtime as stated in Proposition 4:

Proposition 4. Let Z1, . . . , Zn be a set of independent stochastic variables with means µi and

variances σ2i for i = 1, . . . , n. Let Z = Z1 + . . . + Zn and O = (Z − T )+ for a constant T ≥ 0.

Denote µZ = µ1 + . . .+ µn and σ2Z = σ21 + . . .+ σ2n. Then

E [O] ≈ σZ (φ(k)− k(1− Φ(k)))

where φ(·) is the probability density function and Φ(·) is the cumulative distribution function for the

standard normal distribution and k = (T − µZ)/σZ .

Kleywegt et al. (2002) observe without proof an analogous result in the case where the Z variables

are normally distributed. Kosuch and Lisser (2010) proves the result in the case of normally dis-

tributed variables. Range et al. (2018) provide a proof for Proposition 4 and we have restated an
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abbreviated version of that proof in Appendix Appendix A for completeness. Proposition 4 allows

for a modification of (25)-(28) into a model, where accumulated mean and variance for total surgery

time provides the foundation for an approximation of expected overtime. The resulting model will

correspond to the pricing problem in the column generation:13

min
∑

p∈P

(
CPp − βp

)
vp −

∑

c∈C

Mcat
c∑

j=1

γcwcj + Ω(e)− α (29)

s.t. µZ =
∑

p∈P
vpµ

pat
p +

∑

c∈C

Mcat
c∑

j=1

wcjµ
cat
c (30)

σZ =

√√√√∑

p∈P
vp(σ

pat
p )2 +

∑

c∈C

Mcat
c∑

j=1

wcj(σcatc )2 (31)

k =
T − µZ
σZ

(32)

e = σZ (φ(k)− k(1− Φ(k))) (33)

vp ∈ {0, 1}, p ∈ P (34)

wcj ∈ {0, 1}, c ∈ C, j ∈
{

1, . . . ,M cat
c

}
(35)

Objective (29) minimizes the reduced cost coefficient of the solution found. The expected use of

time is calculated in (30) and the corresponding standard deviation in (31). The approximation of

expected overtime, e, is computed by constraint (33) utilizing Proposition 4, where k is computed

in constraint (32). Finally, known and future patients can only be selected once, which gives rise to

the requirement of binary variables vp and wcj stated in (34) and (35), respectively.

Model (29)-(35) is inherently non-linear and, consequently, we solve this by dynamic program-

ming. However, the binary nature of the problem as well as the close relation to the knapsack

problem allow us to solve the problem as a network problem. For the case where the cost of ex-

pected overtime is linear, Merzifonluoğlu et al. (2012) provide both exact and heuristic solution

methods. We use the method suggested by Range et al. (2018), which can accommodate the convex

cost function of expected overtime and where the knapsack problem is formulated as a resource

constrained shortest path problem on a directed acyclic graph. The authors show that when the

cost of expected overtime is convex, then the problem can in practice be solved fast.

4. Application in a dynamic setting

The GAP-based model presented in Section 3 can be embedded into a rolling horizon procedure.

We consider a discrete time horizon of D periods (d = 1, . . . , D) with each period representing, for

example, a working day in a regular week. On each day patients arrive into the system according

13An empty allocation of patients to a surgeon-day combination is allowed. Empty allocations correspond to the
case where the OR for a given surgeon-day pair is not opened.
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to a pre-specified arrival process. Let p ≥ 1 denote the period between optimizations, such that the

problem is to be solved at time t ∈ [0, p, 2p, . . . ]. Three different allocation policies are analyzed:

0. First-come-first-served (FCFS): Patients are assigned to the first day with an available

surgeon capable of performing the surgery. The surgeon with the lowest mean surgery time

for the patient is chosen if more than one surgeon is available. Optimization is not an integral

part of this policy.

1. Pre-allocation based fixing: Optimization is performed every pth period at the end of

the day. A feasible schedule is identified for each feasible surgeon-day pair, R = {(s, d) ∈
S × D|Tsd > 0}. Each schedule i defines the number of surgeries, bci ∈ N, for future patients

(excluding surgeries for known patients) in category c ∈ C. Patients in category c arriving

during the next p days are upon arrival given an appointment to a specific schedule, i, for which

bci > 0 using some arbitrary allocation rule (e.g., earliest date). The immediate allocation

of an arriving patient to a schedule limits the available amount of time in that schedule for

future patients. Patients arriving during the period between two successive optimizations are

fixed to a surgeon-day pair. Hence, Pu = ∅. The optimization is concerned with an allocation

of future surgeries only and is for this reason driven by the cost of violating the service level.

2. Pool allocation: In this allocation policy patients arriving between optimization runs are

pooled and await an assignment to day and surgeon until the next time the optimization is

run. Consequently, the set Pu = P \ Pf is not empty by construction. Both day and surgeon

are decided upon as an integral outcome of the optimization procedure.

The first-come-first-served policy provides a base allocation policy to be compared to the remaining

two policies. The pre-allocation-based fixing policy is convenient if a hospital wants to give an

arriving patient an immediate appointment to a specific surgeon on a specific day. After a consul-

tation with a surgeon patients are allowed to choose a day of surgery among the set of available

days for that particular surgeon. The pool allocation policy is more flexible, since patients must

wait for their assignment to a surgeon-day combination. The three policies are not to be considered

exhaustive, but are believed to cover the scheduling process in many hospitals.

5. Computational study

This section is concerned with the performance of the model in a dynamic setting with a rolling

time horizon. The two optimization-based allocation policies described above are compared to the

first-come-first-served (FCFS) approach. Focus is on utilization and overtime of surgeons as well

as waiting time and service level on the patient side. The numerical experiments are designed for

testing the performance of the model in a dynamic setting.

5.1. The base case

A base case has been constructed inspired by a real-life scenario at a Danish Hospital where

sub-acute and elective patients arrive to the hospital continually. These patients have to be booked
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for surgery on a future date within a time limit which is given by either regulations or the urgency

of the condition that the patients arrive with. In Denmark the patients have the right to choose a

private sector hospital for treatment, reimbursed by the public sector hospital, if the public hospitals

are not able to treat the patient within a guaranteed limit of 30 days. Thus, there is an economic

incentive to get patients treated within this limit. On the other hand, this incentive may cause

the patients who are more urgent to be treated beyond their time limit because the hospital has

to treat all within 30 days. The base case is constructed to reflect this trade-off. See Kozlowski

and Worthington (2015) for a queuing-theory-based analysis of the trade-offs in a system with a

maximal waiting time guarantee.

We consider a scenario with seven patient categories (see Table 1). Patients arrive 24/7 according

to seven i.i.d. Poisson processes. We consider three different arrival scenarios – low, medium, and

high arrival rates – reflecting an underutilized, a balanced, and an overutilized system, respectively.

Each already arrived and known patient in any given category faces a cost of waiting per day

labeled WC which reflects patients’ disutility, for example, caused by not being able to work fully

as well as the potential extended recovery period due to deterioration in the condition during the

waiting time. We assume that the cost of including the patient in a given schedule, CPp , increases

linearly at a rate WC per waiting day. This cost is dependent on the patient’s category and the

condition of the patient.14 Each patient is given a specific due date depending on category. Patients

who are not offered treatment before their due dates are outsourced. Outsourcing costs are listed

in the column labeled COPc of Table 1.

The target service level, Hc, is fixed to 95% for all categories, c. CVc measures the penalty for

violating the imposed service level (see Table 1). CVc is derived as a fraction of the outsourcing

cost. Three scenarios are considered, one with no penalty for violation of the service level, N, one

with half of the outsourcing cost imposed as a penalty, H, and one with the penalty set equal to

total outsourcing cost, F.15 Case N with no penalty imposed for a violation of the service level is

considered myopic, since information on future arrivals is ignored.

Daily arrival rate penalty CV
c

c Low Med. High Due date COP
c WC N H F

1 2.16 2.88 3.6 14 120 0.8 0 60 120
2 1.62 2.16 2.7 28 120 0.5 0 60 120
3 1.62 2.16 2.7 28 210 2.0 0 105 210
4 0.54 0.72 0.9 14 110 0.2 0 55 110
5 1.08 1.44 1.8 14 160 1.0 0 80 160
6 0.54 0.72 0.9 28 120 0.5 0 60 120
7 1.62 2.16 2.7 28 110 1.0 0 55 110

Total 9.18 12.24 15.3

Table 1: Patient category data

14The waiting cost may in practice not be linear but rather an increasing convex function where increasing time
more will increase the unit cost more i.e. a positive acceleration in cost. However, to simplify the model we have
chosen to keep this cost linear.

15Observe that service levels along with violation penalties can be used for prioritizing different types of patients.
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The test instances relate to scenarios with four surgeons available. Each surgeon has a number

of minutes available (0, 240, 360, or 420) on each day in his work schedule, which is repeated

in a 14-day cycle (see Table 2). The availability of resources as defined by Table 2 was decided

upon such that the normal work load for each surgeon in the OT is around 30 hours per week.

Arrival rates reflecting a balanced scenario were next set such that system performance reflected

a utilization of approximately 95%.16 Finally, scenarios reflecting under and over utilization were

obtained by decreasing and increasing arrival rates (listed in Table 1) for all patient categories by

30%, respectively.

days
s 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 420 420 - - 360 360 420 420 - - 360 360 360 -
2 420 420 - - 360 360 420 420 - - 360 360 360 -
3 - 420 420 - 360 360 420 420 - 400 360 - 360 360
4 420 - - 420 360 360 420 - - 420 360 360 360 240

Table 2: Availability of each surgeon (in minutes) for each day.

The heterogeneity among surgeons regarding their capabilities to handle different patient cat-

egories is reflected by physician-specific means and standard deviations for the relevant surgery

durations (see Table 3). In addition, a surgeon may simply not be qualified to perform certain

procedures.17

Surgeon 1 Surgeon 2 Surgeon 3 Surgeon 4
c µcatc1 σcat

c1 µcatc2 σcat
c2 µcatc3 σcat

c3 µcatc4 σcat
c4

1 71 19 75 24 70 20 - -
2 49 24 50 25 55 27 48 23
3 182 67 180 65 175 60 185 69
4 51 27 55 28 - - 50 25
5 98 21 - - 95 20 100 25
6 - - 75 17 80 25 77 20
7 85 20 88 25 - - 87 22

Table 3: Mean and std.dev. of the surgery times by category c

Table 3 reflects the a priori stochastic information for future patients to be adjusted upon patient

16Scheduled time serves as the reference when computing utilization. Hence, overtime on any given day implies an
expected utilization exceeding 100% that day.

17To illustrate, patients in category 1 are not allowed to be assigned to surgeon 4.
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arrival when more precise information becomes available. This is achieved as follows:18

X1 ∼ i.i.d. N (0, 1)

X2 ∼ i.i.d.Beta(2, 2)

µpatps = X1σ
cat
cs + µcatcs

σpatcs = (0.5 + X2)σ
cat
cs

Available surgeons have an OR and an operating team at their disposal. The cost of having an OR

open is either to be considered i) sunk and ignored in the optimization or ii) variable and charged

if and only if an OR is in use.

It is by assumption possible to extend the number of minutes available for each surgeon on each

day by using overtime. The cost of overtime is made up of the direct cost corresponding to the

overtime payment to staff and an indirect cost reflecting e.g. the cost of failure and the cost of

disutility of working overtime. Indirect cost is by assumption quadratic in expected overtime, e (in

minutes):

Ωs(e) := a1e+ a2e
2

We investigate for simplicity three scenarios with a1 = 0 and a2 ∈ {1, 0.1, 0.01} yielding an overtime

cost of 3600, 360 and 36 per hour of overtime, respectively.

The computational study is essentially a Monte Carlo experiment. Patient arrivals are in each

replication generated from a Poisson process along with expected surgery durations and their stan-

dard deviations.19 Appropriate warm-up periods must be chosen, since each experiment is initiated

with an empty system. For that purpose we have identified the point in time, 300 days, when the

average number of patients across 10 different replications has stabilized in a balanced system.20

Accordingly, each test instance is solved for a period of 365 days with the first 300 days considered

as a warm-up period to be followed by 65 days during which system performance is measured. The

reason for the warm-up period being 300 is that it takes many simulated days to fill up the system

with patients such that the full 28 day period is used and such that the system has stabilized.

The base case uses observed arrival rates for a number of different patient categories. These

rates are based on the average number of arrivals during a year from a real-life scenario. In practice,

there will be seasonality in the arrival rates for specific patient categories. We have not included

these in the study. We have set a slightly tighter time limit of 28 days compared to the waiting

time guarantee of 30 days given in Denmark.

The surgeons described are constructed to resemble actual surgeons at the OT. Their availability

18We have on purpose decided upon a data generation process that allows for very short surgery durations for
some patients. The arrival of patients with short surgery durations is believed to facilitate the performance of the
FCFS approach compared to the optimization approaches, since packing is made easier. However, we do not allow for
negative surgery durations; cases of this type are simply left out in the numerical experiments.

19Clearly, seeds differ between replications.
20Numerical experiments indicated that the longest time for stabilization was needed in the balanced system.
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schedules are consequently also constructed, such that they have at least four days off in a two week

period. The maximum amount of time on each day is seven hours. The surgery times (means

and variances) of specific categories for specific surgeons are based on domain expert knowledge,

i.e., the surgeons themselves. Obviously, it will be more precise if we used disaggregate data of

surgeries actually performed to identify means and variances, but this is not possible due to patient

confidentialities.

The cost components of the base case are fictive but are set such that the relative importance

of the different parts of the model is illustrated.21 In the computational study we vary these costs

to illustrate effects of different settings.

5.2. Implementational issues

We have implemented the model in C++ using the compiler GCC 4.8.2 with the option -O3

enabled. Gurobi 5.6.2 has been used as a linear programming solver and SIMLIB/C++ 3.02 as

a discrete event simulation library. The computational experiments have been conducted on a

Linux system with an Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz CPU and 24Gb memory. Each

experiment has been assigned to a single core of the processor.

The solution of the model is based upon a column generation procedure alternating between

solving a master problem with a restricted number of columns included and a pricing problem

generating new promising columns.

The sequence for solving the pricing problems is determined by calculating a lower bound on

the reduced cost for each surgeon-day combination and selecting the pricing problems in increasing

order of this lower bound. The bound is described by Range et al. (2018), who observe that a

deterministic variant of the stochastic knapsack problem can be used to provide a lower bound to

the solution when the cost of expected overtime is convex. The solution process for the pricing

problems is stopped prematurely whenever at least two pricing problems identify negative reduced

cost columns.

We apply limited extensions with only the best paths in a node extended to speed up the search

for negative reduced cost columns (see e.g. Burke and Curtois (2014)). The number of paths initially

allowed to be extended from a node is set to 5. The number is doubled if the pricing problem does

not yield a negative reduced cost column. The process is continued until a negative reduced cost

column is identified or no unextended paths are left.

Solving the LP relaxation of (9)-(20) does not necessarily lead to an integer solution. In order

to make the solution integral we apply the technique of aggressive variable fixing (see, e.g., Lusby

et al. (2012) or Range et al. (2014)). Accordingly, the integer variables are successively fixed at

their upper bounds, and the column generation for (9)-(20) is run again until a new LP relaxation

21While it is possible to obtain the monetary value of some of the cost components, it is hard for other parts of the
model. The increasing expected overtime cost function Ω(·) is subject to operational challenges, because it is a cost
composed of less tangible factors such as of fatigue or disutility for the surgeon, or the risk of failure or postponement of
patients. Hence the functional form of the expected overtime cost should be set relative to the other cost components
and is a decision on how averse one is on overtime.
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bound (with respect to the fixed variables) is obtained. This continues until a full integer solution

is obtained or the fixing of variables leads to an infeasible solution.

Let the solution for the LP relaxation of (9)-(20) be (λ,x,y,v), where λ is the vector of the

λi variable values, x is the vector of the xcdδ variable values, y is the vector of the ycdl variable

values, and v is the vector of the vcl variable values. Only λ is required to be integer, and the LP

solution is optimal for the full problem if the corresponding λ is integer. Otherwise, all λi for which

λi = 1 are fixed to unity. Let i = arg maxi
{
λi < 1

}
and fix λi = 1. λi is in this way forced into the

integer solution at the full value of one, which in turn forces other λi variables out of the solution,

for example, variables including the same known patients as λi will never be raised from the lower

bound of zero and can therefore be excluded from the solution.

There is in general a risk for not identifying an integer solution when fixing variables. This

is not the case for (9)-(20). The reason is that we only fix the λ-variables (as the other integer

variables are naturally integer) and the constraints (10) and (14) are soft constraints penalized in

the objective. Furthermore, all patients fixed to a specific surgeon-day combination are included in

all schedules corresponding to that combination. If a surgeon-day combination r ∈ R has patients

which are fixed to it then we do not allow it to be closed, i.e., we fix ρr = 1. Thus, exactly one of

the schedules for that surgeon-day combination is chosen. Due to the soft constraints and the fact

that we chose exactly one schedule for each surgeon-day combination with fixed patients assigned

to it, we will never obtain an infeasible solution.

The master problem for the first day is initialized with columns corresponding to empty schedules

for each surgeon-day pair, i.e., schedules where no known patients nor any potential future patients

are included. Columns can be reused from one period to the next provided that already treated

patients are not included. Columns with no already treated patients included and with reduced

cost equal to zero are carried forward from one period to the next. This feature provides a good set

of initial columns for the master problem and a significant speed-up of the solution process.

5.3. Computational results

The computational study involves 36 test scenarios for the underutilized, the balanced, and

the overutilized system, since two policies for the allocation of patients to schedules are considered

along with three levels of overtime cost, two scenarios for cost of opening operating rooms, and three

scenarios for cost of violating service level. Thus, the performance of the system has been analyzed

in 3 times 36 test scenarios. 10 replications are solved for each test scenario, because patient arrivals

and surgery times are stochastic. Hence, a total of 3 times 360 test instances have been solved.

System performance is measured during the 65 days following the warm-up period. For each

surgeon-day combination we compare the expected workload to available hours as defined in Ta-

ble 2.22 The expected utilization for each surgeon is next obtained by taking the average of all

22The expected workload is simply the sum of the expected surgery durations for the set of known patients scheduled
for a particular day. Clearly, utilization is only computed if the surgeon is assigned to at least one known patient.
Otherwise, the OT is by assumption considered closed.
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utilization measures across all days. The average expected utilization across all surgeons is finally

obtained as an overall performance measure reflecting the average level of workload. Expected over-

time is obtained in a similar way. However, in this case the central limit theorem must be invoked

for an estimation of the expected overtime for each surgeon on any given day (see Proposition 4).

Test statistics are reported in Tables 4-6. Results for the case with low arrival rates are reported

in Table 4, and results for medium and high arrival rates are given in Tables 5 and 6, respectively.

These tables are based on average performance measures. Results on the variances and ranges for the

performance measures are given in appendix Appendix B. Each row in the tables corresponds to the

solution of 10 replications in a given scenario for which system performance data is collected for the

65 days following the warm-up period. Column I indicates a counter for the run. The following four

columns list the run parameters. Column M indicates the allocation policy, where 0 is the FCFS,

and where 1 and 2 refer to the pre-allocation-based fixing policy and the pool allocation policy

described in Section 4. Column a2 reports the a2-coefficient in the penalty function for overtime,

and column CO states the cost of opening an OR. Column P.T indicates the size of penalties for

violating the service level, where N corresponds to no penalty, H is a penalty equal to half of the

outsourcing cost, and F is a penalty equal to the full outsourcing cost.23 The following three columns

report computational statistics as averages of the 10 replications for each scenario. Column RT(s)

is the time in seconds for solving the LP relaxation of model (9)-(20). Column TT(s) is the average

total time for obtaining an integer solution. The column labeled gap(%) indicates the average

percentage deviation between the integer solution and the LP relaxation. Aggregate performance

statistics across replications are reported in the remaining six columns. Surgeon statistics are given

in columns U(%) and E[O] measuring utilization percentage and expected overtime, respectively.

W (d) is the average waiting time in days and S(%) is the average service percentage; both are

reported for patient categories with deadlines of 14 and 28 days, respectively.24

The tests, N, with penalties CVc = 0 put no emphasis on future arrivals. There is no incentive

to put in tentative surgeries when no penalties are present. For this reason empty schedules will

be generated by the pre-allocation-based fixing policy. Consequently, no patients are allocated to

surgeries with CVc = 0, and the service level equals zero. The situation is reflected by instances 1,

4, 7, 10, 13, and 16 and maintained in the tables for completeness only; the results are indicated by

”-”.

5.3.1. Numerical results

The average time used to solve the problem for a single day ranges between a fraction of a second

to around 30 seconds with most of the time being used to solve the LP relaxation. The myopic

cases, N, are the easiest ones to solve, since no emphasis is put on future arrivals. The integrality

gaps are in general small and decreasing in a more utilized system.

In Figure 2 we illustrate the quality of the solution in terms of the relative gap between the

23The penalties can be seen in Table 1.
24Bear in mind that the service level measures the share of patients which is not outsourced.
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Instance Comp. Avg. Surgeon Avg. 14 day deadline 28 day deadline
I M a2 CO P.T. RT(s) TT(s) gap(%) U(%) E[O] W(d) S(%) W(d) S(%)
0 0 - - - - - - 81.90 0.61 1.59 100.00 1.58 100.00

1 1 1.00 0 N 0.07 0.07 0.00 - - - - - -
2 1 1.00 0 H 5.44 9.90 2.89 80.69 0.56 2.63 100.00 2.97 100.00
3 1 1.00 0 F 5.71 10.62 3.14 80.34 0.69 2.73 100.00 3.24 100.00
4 1 1.00 50 N 0.07 0.07 0.00 - - - - - -
5 1 1.00 50 H 2.76 6.25 1.14 79.50 0.62 2.77 100.00 3.34 100.00
6 1 1.00 50 F 3.44 7.08 1.62 80.64 0.72 2.72 100.00 3.13 100.00
7 1 0.10 0 N 0.08 0.08 0.00 - - - - - -
8 1 0.10 0 H 5.88 10.62 3.38 80.23 1.69 2.51 100.00 3.16 100.00
9 1 0.10 0 F 6.35 10.08 2.83 80.03 2.07 2.06 100.00 2.95 100.00

10 1 0.10 50 N 0.08 0.08 0.00 - - - - - -
11 1 0.10 50 H 3.18 6.42 1.32 79.16 1.71 2.80 100.00 3.45 100.00
12 1 0.10 50 F 4.06 6.83 1.45 80.33 2.14 2.10 100.00 2.94 100.00
13 1 0.01 0 N 0.08 0.08 0.00 - - - - - -
14 1 0.01 0 H 5.98 10.01 3.91 80.30 4.51 2.19 100.00 3.08 100.00
15 1 0.01 0 F 6.32 11.76 3.99 80.27 6.33 2.45 99.90 2.74 100.00
16 1 0.01 50 N 0.08 0.08 0.00 - - - - - -
17 1 0.01 50 H 3.37 6.69 1.52 80.48 4.66 1.97 100.00 3.11 100.00
18 1 0.01 50 F 4.12 8.55 1.82 80.26 6.47 2.33 100.00 2.74 100.00

19 2 1.00 0 N 0.41 0.46 3.40 81.25 0.06 1.74 100.00 1.72 100.00
20 2 1.00 0 H 8.14 13.73 3.62 80.97 0.30 1.56 99.91 1.62 100.00
21 2 1.00 0 F 9.04 15.09 3.77 81.00 0.40 1.57 99.98 1.62 99.97
22 2 1.00 50 N 1.83 2.45 17.23 80.01 0.35 2.37 100.00 2.31 100.00
23 2 1.00 50 H 5.41 10.60 1.19 80.01 0.38 1.83 100.00 1.81 100.00
24 2 1.00 50 F 7.25 12.54 1.84 80.89 0.48 1.61 100.00 1.66 99.98
25 2 0.10 0 N 0.46 0.52 3.90 81.32 0.21 1.68 100.00 1.65 100.00
26 2 0.10 0 H 8.65 15.05 4.10 80.90 1.04 1.55 99.95 1.54 99.98
27 2 0.10 0 F 9.74 15.22 3.53 80.89 1.55 1.51 100.00 1.53 99.98
28 2 0.10 50 N 1.74 2.31 17.42 80.51 1.36 2.30 100.00 2.19 100.00
29 2 0.10 50 H 6.19 11.78 1.29 79.73 1.41 1.78 100.00 1.74 100.00
30 2 0.10 50 F 8.00 12.69 1.67 80.77 1.84 1.54 100.00 1.57 100.00
31 2 0.01 0 N 0.50 0.55 3.20 81.39 0.83 1.61 100.00 1.57 100.00
32 2 0.01 0 H 9.27 15.14 4.88 81.00 4.31 1.45 100.00 1.48 100.00
33 2 0.01 0 F 9.76 17.62 4.60 80.96 6.00 1.45 100.00 1.46 100.00
34 2 0.01 50 N 1.81 2.39 18.10 80.37 6.16 1.99 100.00 1.89 100.00
35 2 0.01 50 H 6.26 11.41 1.54 80.09 5.92 1.63 100.00 1.63 100.00
36 2 0.01 50 F 7.58 14.06 2.07 80.82 7.65 1.44 100.00 1.50 100.00

Table 4: Results for the low arrival rate cases.

LP lower bound and the best upper bound solution found as well as the running time to reach the

upper bound solution. We have in both figures the cumulative share of instances on the vertical

axis. On the left-most figure we have the relative gap between the LP bound and the best upper

bound solution on the horizontal axis while on the right-most figure we have the running time in

seconds. The two curves in the figures illustrate how the pre-allocation based fixing policy (method

1) and the pool-allocation policy (method 2) behave, respectively. We observe that the relative gap

is no higher than 10% in 95% of the instances for the pool-allocation policy while it is no higher

than 10% in 99.9% of the instances in the pre-allocation based fixing policy. For the time to reach

the best upper bound solution we see that the running time is less than 30 seconds in 99.9% of the

instances for the pre-allocation based fixing policy. For the pool allocation policy the running time

is less than 30 seconds in 92% of the instances. We see that it is harder to solve the latter. We

note that a third of the instances for the pre-allocation based fixing policy correspond to the myopic

cases where the solution is trivial and the running time is negligible.
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Instance Comp. Avg. Surgeon Avg. 14 day deadline 28 day deadline
I M a2 CO P.T. RT(s) TT(s) gap(%) U(%) E[O] W(d) S(%) W(d) S(%)
0 0 - - - - - - 95.93 1.38 13.57 72.94 13.92 100.00

1 1 1.00 0 N 0.07 0.07 0.00 - - - - - -
2 1 1.00 0 H 3.89 5.32 0.50 96.84 1.55 11.82 88.76 19.02 80.11
3 1 1.00 0 F 4.32 5.79 0.56 97.62 2.29 11.97 89.58 18.62 80.02
4 1 1.00 50 N 0.08 0.08 0.00 - - - - - -
5 1 1.00 50 H 3.90 5.33 0.39 96.86 1.57 11.77 89.14 18.73 79.78
6 1 1.00 50 F 4.18 5.66 0.49 97.52 2.14 11.91 89.71 18.78 80.55
7 1 0.10 0 N 0.08 0.08 0.00 - - - - - -
8 1 0.10 0 H 4.20 5.56 0.53 99.59 4.96 11.21 93.04 18.04 85.42
9 1 0.10 0 F 4.51 6.06 0.65 100.54 6.93 10.28 93.80 18.09 88.45

10 1 0.10 50 N 0.07 0.07 0.00 - - - - - -
11 1 0.10 50 H 4.08 5.44 0.40 99.60 5.03 10.89 92.81 18.04 85.96
12 1 0.10 50 F 4.64 6.27 0.55 100.60 7.11 10.35 93.91 18.23 88.04
13 1 0.01 0 N 0.08 0.08 0.00 - - - - - -
14 1 0.01 0 H 5.41 8.13 0.92 104.81 19.18 9.13 97.11 12.79 99.69
15 1 0.01 0 F 6.90 10.22 1.02 107.10 29.12 7.18 99.15 10.25 100.00
16 1 0.01 50 N 0.08 0.08 0.00 - - - - - -
17 1 0.01 50 H 5.09 7.70 0.62 104.79 19.14 9.29 97.28 13.12 99.49
18 1 0.01 50 F 6.65 9.94 0.78 107.09 29.33 7.20 99.07 10.16 100.00

19 2 1.00 0 N 1.62 1.69 0.11 94.57 1.08 13.50 74.15 14.77 100.00
20 2 1.00 0 H 14.43 18.27 0.64 97.16 1.29 13.69 79.28 18.23 99.97
21 2 1.00 0 F 15.64 19.45 0.69 97.69 1.57 13.57 86.68 18.09 98.79
22 2 1.00 50 N 4.72 5.18 2.57 95.64 0.96 13.55 74.78 14.99 100.00
23 2 1.00 50 H 13.88 17.67 0.48 97.10 1.27 13.69 79.07 18.20 99.98
24 2 1.00 50 F 15.40 19.21 0.58 97.76 1.63 13.55 86.52 18.10 98.74
25 2 0.10 0 N 1.85 1.93 0.09 98.62 6.52 13.31 83.34 14.69 100.00
26 2 0.10 0 H 14.73 19.01 0.80 100.09 5.39 13.61 86.14 17.27 99.88
27 2 0.10 0 F 16.21 20.62 0.78 100.90 6.88 13.47 91.79 17.23 99.24
28 2 0.10 50 N 4.99 5.50 2.86 98.91 4.74 13.34 83.89 14.73 100.00
29 2 0.10 50 H 14.36 18.67 0.57 100.17 5.61 13.61 85.68 17.28 99.96
30 2 0.10 50 F 15.83 20.16 0.63 100.92 6.87 13.46 92.04 17.30 99.37
31 2 0.01 0 N 2.61 2.70 0.07 108.80 36.33 12.78 99.77 14.30 100.00
32 2 0.01 0 H 17.72 24.02 1.04 105.34 20.64 11.13 99.98 11.60 99.95
33 2 0.01 0 F 20.87 29.02 1.42 106.41 25.42 6.23 100.00 6.35 100.00
34 2 0.01 50 N 6.20 6.92 3.61 108.15 32.24 12.76 99.96 14.01 100.00
35 2 0.01 50 H 16.53 22.30 0.61 105.46 21.09 11.09 100.00 11.57 99.97
36 2 0.01 50 F 17.41 24.25 0.94 106.35 25.15 6.21 100.00 6.29 100.00

Table 5: Results for the medium arrival rate cases.

The gaps are large in instances 22, 28, and 34. This is due to the effect of the cost of opening

ORs while myopically optimizing the allocation of known patients. The model distributes patients

over more surgeons, which results in lower overtime cost. The full cost of ORs is not charged due to

fractional solutions. More ORs are opened with a low utilization when the corresponding columns

are fixed to unity. The effect is especially pronounced in the scenario with low arrival rates.

Consider first the underutilized system with low arrival rates (see Table 4). Most patients are

treated before their due dates. For this reason the service level is close to 100% in all instances, and

utilization is around 80%. Imposing the cost of opening an OR causes slight increases in waiting

time without changing service levels and resource utilization, since some ORs may remain closed in

some periods as a means to decrease operational costs. On the other hand, decreasing the cost of

overtime causes shorter waiting times, since some patients will be treated earlier during surgeons’

overtime. The results indicate that FCFS, with the exception of overtime, performs just as well as

the optimization-based policies in an underutilized system. In this case the key benefit of using the
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Instance Comp. Avg. Surgeon Avg. 14 day deadline 28 day deadline
I M a2 CO P.T. RT(s) TT(s) gap(%) U(%) E[O] W(d) S(%) W(d) S(%)
0 0 - - - - - - 96.20 1.47 13.78 22.47 15.17 100.00

1 1 1.00 0 N 0.07 0.07 0.00 - - - - - -
2 1 1.00 0 H 3.82 4.80 0.32 97.14 1.77 12.73 84.84 20.28 71.47
3 1 1.00 0 F 4.16 5.13 0.35 97.79 2.36 12.73 83.92 20.46 72.36
4 1 1.00 50 N 0.08 0.08 0.00 - - - - - -
5 1 1.00 50 H 3.90 4.86 0.28 97.05 1.73 12.75 84.70 20.39 71.69
6 1 1.00 50 F 4.15 5.12 0.32 97.78 2.32 12.78 83.72 20.35 72.66
7 1 0.10 0 N 0.07 0.07 0.00 - - - - - -
8 1 0.10 0 H 4.27 5.29 0.36 100.04 5.74 12.20 86.11 20.25 73.95
9 1 0.10 0 F 4.52 5.48 0.35 101.12 8.28 11.82 88.20 20.76 74.29

10 1 0.10 50 N 0.08 0.08 0.00 - - - - - -
11 1 0.10 50 H 4.21 5.22 0.32 100.05 5.78 12.27 86.57 20.26 73.75
12 1 0.10 50 F 4.52 5.48 0.33 101.24 8.46 11.71 88.13 20.61 73.78
13 1 0.01 0 N 0.08 0.08 0.00 - - - - - -
14 1 0.01 0 H 4.96 6.12 0.34 107.15 27.34 12.77 85.44 20.78 79.62
15 1 0.01 0 F 6.21 7.60 0.41 114.01 53.16 12.69 85.56 20.68 82.22
16 1 0.01 50 N 0.08 0.08 0.00 - - - - - -
17 1 0.01 50 H 5.02 6.20 0.31 107.05 26.96 12.85 85.15 20.81 79.99
18 1 0.01 50 F 6.14 7.52 0.38 114.18 53.71 12.65 85.80 20.71 81.73

19 2 1.00 0 N 2.28 2.34 0.04 95.02 1.52 11.75 27.40 16.74 100.00
20 2 1.00 0 H 17.57 19.98 0.24 97.40 1.33 13.94 26.53 23.68 99.88
21 2 1.00 0 F 22.31 26.54 0.51 97.91 1.73 13.62 84.95 18.48 88.40
22 2 1.00 50 N 6.28 6.68 1.26 96.09 1.15 13.45 26.80 16.50 100.00
23 2 1.00 50 H 17.46 19.90 0.22 97.39 1.33 13.90 27.01 23.64 99.84
24 2 1.00 50 F 21.51 25.59 0.47 97.88 1.71 13.63 84.78 18.39 88.44
25 2 0.10 0 N 2.67 2.75 0.04 100.60 10.17 12.66 45.24 16.06 100.00
26 2 0.10 0 H 18.33 20.91 0.29 100.67 6.67 13.81 39.81 23.21 99.97
27 2 0.10 0 F 21.51 25.35 0.49 101.25 7.71 13.69 87.19 18.30 89.60
28 2 0.10 50 N 6.75 7.19 1.22 99.88 6.71 13.31 41.53 16.25 100.00
29 2 0.10 50 H 18.21 20.75 0.26 100.62 6.58 13.77 39.45 23.32 99.97
30 2 0.10 50 F 20.99 24.85 0.44 101.21 7.63 13.67 86.58 18.25 89.66
31 2 0.01 0 N 3.75 3.84 0.03 120.80 78.84 13.08 82.60 15.66 100.00
32 2 0.01 0 H 21.29 24.77 0.34 122.69 86.07 13.13 86.91 21.99 99.95
33 2 0.01 0 F 24.61 29.77 0.55 119.18 72.57 13.10 92.43 17.76 97.09
34 2 0.01 50 N 8.69 9.21 0.88 121.64 82.06 13.06 84.79 15.76 100.00
35 2 0.01 50 H 21.40 24.86 0.29 122.79 86.50 13.11 86.94 21.99 99.95
36 2 0.01 50 F 24.70 29.76 0.50 119.30 73.12 13.04 92.71 17.75 97.17

Table 6: Results for the high arrival rate cases.

optimization approaches is a better control for overtime.

Consider next the more balanced system with medium arrival rates (see Table 5). In this case

there is no significant impact of the cost of opening ORs, since for most of the time the system

is running at capacity utilizing all resources. A high cost of overtime implies a rejection of more

patients because treatment before their due dates requires overtime. The pool allocation policy

with a low penalty for violating the service level – i.e., the N cases – prioritizes known patients over

future patients as a means to reduce penalties due to patients’ waiting times. Consequently, known

patients are allocated to earlier time slots, thus reducing the probability for treatment of patients

with a 14-day deadline, who are expected to arrive and to be put into the schedule later. This is

due to the myopic nature of the N cases. A similar phenomenon can be observed in the FCFS case.

This is in contrast to the F case, where the penalty for violating the service level is increased to the

level of the outsourcing cost. In the pool allocation approach slots are reserved for future patients

with the shortest deadline. The consequence is a significant improvement in terms of service level
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Figure 2: Left: cumulative distribution of the relative gap over instances. Right: cumulative distribution of time to
upper bound over instances.

for patients with short due dates accompanied by an expected overtime comparable to the FCFS

case along with a small reduction in service level for the 28-day patients and an increase in their

waiting times. To illustrate, the expected overtime is increased by 0.19 minutes, the service level for

28-day patients is reduced by 1.21% points, and their waiting time is on average increased by 4.17

days using the pool allocation policy in instance 21. At the same time, the service level for 14-day

patients is increased by 13.74% points without a change in their expected waiting time, reflecting a

significant performance improvement.25 Finally, a decrease in the cost of overtime results in shorter

waiting times and improved service levels for all patient categories, since more overtime is used.

Results for system performance in scenarios with the highest arrival rates are reported in Table 6.

The pattern is similar to the case of the more balanced system. It should come as no surprise that

the service level for 14-day patients is low under conditions of a myopic policy (e.g., 22.47% for

the FCFS) because arrival rates are higher. The optimization-based approaches improve upon this

situation by providing a balanced service level across all patient categories. Again, decreasing the

cost of overtime provides an incentive to extend capacity by increasing overtime. The increase in

overtime allows for a treatment of patients who would have been rejected otherwise. Observe that

an excessive use of overtime indicates that capacity is too low, and the amount of expected overtime

provides an indication of the additional capacity needed to attain the imposed service level.

It is clear that both FCFS and the pre-allocation-based fixing policy are outperformed by the

pool allocation policy in scenarios with high penalties for violation of service levels. To illustrate,

a comparison of scenarios 9 and 27 in Table 5 with arrival rates at a medium level reveals that the

pool allocation policy provides an approximately 11% points higher service level for 28-day patients

at the cost of a 2% points decrease in the service level for 14-day patients with almost the same

utilization of resources and overtime. A comparison of FCFS to the pre-allocation-based fixing

25Results like these reflect that a meaningful use of the pool allocation policy occurs in cases with a high penalty
for violating the service level.
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policy shows that the latter provides a balanced service level for patients with different deadlines

along with a higher rate of utilization accompanied by a higher expected overtime. The main reason

is that tentative slots are reserved equally for patients with different deadlines. A comparison of

cases 0 and 19 in the scenario with medium arrival rates reveals that the pool allocation policy

provides a slightly increased service level for 14-day deadline patients and a lower utilization of

resources along with a lower overtime at the cost of increasing the waiting time for 28-day deadline

patients by less than one day. Similar results can be observed in scenarios with high arrival rates.
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Figure 3: Left: the service level in percent for different arrival rates and allocation approaches. Right: the expected
overtime for different arrival rates and allocation approaches.

We can consider system performance across different arrival rates and different allocation ap-

proaches. The FCFS corresponds to the test instance with M=0 . In the following we consider

the pre-allocation based fixing policy (M=1) with full penalty (P.T. = F) for future non-allocated

patients and refer to this as pure prebook, as it corresponds to only allocate tentative slots for pa-

tients in the future. Furthermore, we consider the pool allocation policy (M=2) without a penalty

for non-allocated tentative patients (P.T. = N) which we refer to as the myopic pool, as we will

not allocate future tentative slots. Finally, we consider the pool allocation policy (M=2) with full

penalty for not allocating future patients (P.T. = F) and refer to this as the combined system.

In Figure 3 we illustrate system performance – service level and expected overtime as average

over the instances for each allocation approach – for an overtime penalty of a2 = 1.0, for the under-

utilized system (U), the balanced system (B), and the over-utilized system (O). In the under-utilized

system we see that the FCFS performs as well as the other approaches have the same service level

and approximately the same overtime. However, for the balanced system and the over-utilized

system the combined approach has the highest service level among the approaches. For the over-

utilized system FCFS has a service level of 68% while the combined approach has a service level of

87%. Furthermore, the combined approach manages this with almost the same expected overtime

as the FCFS and the myopic pool approach. Note that the myopic pool approach performs in

much the same way as the FCFS, i.e., just optimizing what we know today is not sufficient for

long term performance. Similar patterns prevail for other combinations and selections of a2. To

conclude, we see that when combining optimization with preallocation, then we obtain the best

system performance.
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6. Conclusion

We have developed a model for allocation of patients to surgeon-day combinations. The model

is based on a generalized assignment formulation augmented with constraints taking the stochastic

arrival processes of patients into account. The model allows to balance service levels for different

categories of patients. It is based on a set of underlying assumptions including independent patient

arrivals and that we can estimate surgeons’ means and variances of surgery durations for specific

patient categories.

Schedules for any given surgeon-day combination are generated by the solution of a stochastic

knapsack problem with an objective penalizing expected overtime in terms of an increasing strictly

convex function.

Two patient-allocation policies are tested: One with an allocation of individual patients based

on potential surgeries and another based on an optimization for groups of patients. The first policy

has the advantage that patients can be informed about their surgery date up front. The second

policy implies that patients must wait before being assigned to a surgeon-day combination. Both

policies are embedded into a rolling horizon simulation and compared to a FCFS policy.

The numerical experiments indicate that taking stochastic information about future job arrivals

into account in the assignment of jobs to agents implies an improved performance. It indicates

that the use of information on patients’ arrival distributions increases the level of service as well as

the utilization of surgeons compared to the myopic case, where this information is not taken into

account. System performance under conditions of the FCFS policy compares to performance based

upon a myopic optimization, and FCFS is competitive in scenarios with low arrival rates compared

to capacity. However, FCFS is outperformed in scenarios with high patient arrival rates compared

to capacity. The policies taking future arrivals into account improve system performance in terms

of levels of service, and the best performance is obtained using an explicit optimization approach.
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