
THE INVESTIGATION OF APPROPRIATE
CONTROL ALGORITHMS FOR THE
SPEED CONTROL OF WIND TURBINE
HYDROSTATIC SYSTEMS

Magnus Johan Gulstad

Norges teknisk-naturvitenskapelige universitet
Institutt for matematiske fag

Master i fysikk og matematikk
Oppgaven levert:
Hovedveileder:
Biveileder(e):

Juni 2007
Brynjulf Owren, MATH
Peter Chapple, Vannkraftlabratoriet, NTNU

Oppgavetekst
As part of the ongoing programme of work on the application of hydrostatic transmissions to wind
power turbines the project was concerned with the simulation of the flow process in long pipes.

The proposed diploma work is concerned with further establishing the flow behaviour in long pipes
and evaluating suitable control algorithms for the control of either the speed of the turbine or
hydrostatic motor. It is intended to base the work on the turbine application at Kvalsundet which
has a pipe length connecting the turbine pump and hydrostatic motor that is in the order of 800m.

The control problem for this application with the generator running at synchronous speed can
often be resolved by the use of hydraulic pressure feedback. However where the volume of
hydraulic fluid is large or where the pipe lengths are such that the pipe line dynamics are
significant then alternative algorithms are required.

The following questions should be considered in the project work:
1. To continue the flow modelling into frequency dependent friction.
2. The use of a simulation of the hydraulic system where pressure feedback provides a
satisfactory technique evaluate the relative benefits of using various compensation algorithms
which could include:
• Proportional, Integral and derivative systems
• Phase advance or lead-lag type systems
3. To investigate the limits of these techniques when used with pipe lengths that make
normal proportional control ineffective.
4. To carry out a literature survey for alternative control techniques that can provide a
successful solution to the control problem.

Oppgaven gitt: 17. januar 2007
Hovedveileder: Brynjulf Owren, MATH

THE INVESTIGATION OF APPROPRIATE
CONTROL ALGORITHMS FOR THE SPEED

CONTROL OF WIND TURBINE HYDROSTATIC
SYSTEMS

Magnus Gulstad
Stud.techn.

Norwegian University of Science and Technology

June 28, 2007

0.1 Abstract

This report consists of two chapters. The first is concerned with a new approach to pipe flow

modelling and the second has to do with the simulation of the hydrostatic system which will

be applied to a wind turbine.

For the pipe flow model, the main focus has been to create a flow model which accounts for

the frequency dependent friction, i.e. the fluid friction which occurs at non-steady conditions.

The author is convinced that the solution to this problem lies in the velocity profile, as the

friction is a direct result of the shear stresses in the pipe. At the same time, it is possible to

keep track of the velocity profile in the pipe as the pressure evolves in time and space.

The new model utilizes the continuity equation for pipe flow and the equation of motion

for axisymmetrical flow of a Newtonian fluid to find both a pressure distribution in the pipe

and velocity profiles throughout the pipe. There are uncertainties whether the approach to

find these velocity profiles done in the new model is correct.

The modelling of the hydrostatic transmission to a wind power turbine is done using

SIMULINK software. The design of the system and basics of the modelling are described in

the second chapter. The motor speed is regulated using a PID-controller and the generator

torque is varied based on the pressure drop over the hydraulic motor. The PID-controller

for motor speed seems be of good-enough quality and speed deviations are within acceptable

limits.

Simulation results are given for one certain case with an initial rotor torque of 20kNm

and an additional step torque of 20kNm.

i

0.2 Acknowledgments

This diploma work has been a co-operation between the Department of Mathematical Sci-

ences (http://www.math.ntnu.no/english) and the Water Power Laboratory (http://

www.ivt.ntnu.no/ept/vk/) at the Norwegian University of Science and Technolog (http:

//www.ntnu.no/english).

Academic supervisors have been Torbjørn Nielsen, Brynjulf Owren and Peter Chapple.

ii

http://www.math.ntnu.no/english
http://www.ivt.ntnu.no/ept/vk/
http://www.ivt.ntnu.no/ept/vk/
http://www.ntnu.no/english
http://www.ntnu.no/english

List of Mathematical Symbols and
their Units

∆ Difference operator [dimensionless]

γ Spesific weight of hydraulic oil [kg/m2s2]

µ Dynamic viscosity [kg/ms]

ν Kinematic viscosity [m2/s]

π Approximately equal to 3.14159 [dimensionless]

ρ Density of hydraulic oil [kg/m3]

τ ′ Dimensionless time= νt/R2 [dimensionless]

τ ′′ Dimensionless time= ta/L [dimensionless]

τ Shear stress [kg/ms2]

τ0 Shear stress at pipe wall [kg/ms2]

A Area of the cross section of the pipe [m2]

a Sonic velocity in fluid [m/s]

D Inner diameter of pipeline [m]

F Force [kg/ms2]

g Acceleration of gravity [m/s2]

H Head [m]

hfl Friction headloss in laminar flow [dimensionless]

hft Friction headloss in turbulent flow [dimensionless]

iii

hf Friction headloss [dimensionless]

i Counter in axial direction [dimensionless]

j Counter in time [dimensionless]

k Counter in radrial direction [dimensionless]

L Length of pipe [m]

L′ Characteristic length of pipe [m]

mi Mass of plug i [kg]

NR Number of steps in radial direction [dimensionless]

NT Number of time steps [dimensionless]

NX Number of steps in axial direction [dimensionless]

p Pressure [kg/ms2]

R Pipe radius [m]

r Distance from pipe axis [m]

Re Reynolds number [dimensionless]

t Time [s]

V Average velocity in a cross section of the pipe [m/s]

v Velocity as a function of x, r and t [m/s]

x Distance along the x-axis [m]

A Area of the cross section of the pipe [m2]

Dgain Derivative gain [m/s]

Igain Integral gain [m]

Pgain Propotional gain [ms]

Cm Motor friction coefficient [(kg/s)]

Cdm Motor discharge coefficient [m3/s/(N/m2)]

Clm Motor leakage coefficient [m3/s/(N/m2)]

iv

Dm−max Maximum motor displacement [m3/rad]

Dm−min Minimum motor displacement [m3/rad]

Omegam−set Set motor speed [rad/s]

Omegam−start Initial motor speed [rad/s]

RotaryInertia−m Motor rotary inertia [kgm2]

Cdp Pump discharge coefficient [m3/s/(N/m2)]

Cfp Pump friction coefficient [kg/s]

Clp Pump leakage coefficient [m3/s/(N/m2)]

Dp Pump displacement [m3/rad]

Inertiart Rotor rotary inertia [kgm2]

Omegap−max Maximum pump speed [rad/s]

Omegap−min Minimum pump speed [rad/s]

Omegap−start Initial pump speed [rad/s]

Step−time Step time [s]

Steptorque−rt Step torque [Nm]

Torquert−max Maximum rotor torque [Nm]

Torquert−min Minimum rotor torque [Nm]

Torquert Rotor torque [Nm]

v

Contents

0.1 Abstract . i
0.2 Acknowledgments . ii

1 Pipe flow model 1
1.1 Introduction . 1
1.2 Background . 2
1.3 Earlier Models . 4

1.3.1 Steady state friction . 4
1.3.2 Zielke’s friction term . 5
1.3.3 Bratland’s cylinder shell model . 5

1.4 New model . 7
1.4.1 Solving the Navier Stokes equation 7
1.4.2 Solving the continuity equation . 9
1.4.3 Combining the two governing equations 9
1.4.4 Initial values and boundary conditions 11

1.5 Results of Simulation . 12
1.6 Conclusion . 18

2 Wind turbine hydrostatic gear system 23
2.1 Introduction . 23
2.2 Hydraulic design . 24
2.3 SIMULINK model . 25

2.3.1 Governing dynamic properties of the transmission 26
2.3.2 PID-Controller . 28
2.3.3 Generator torque . 29

2.4 Results of Simulation . 29
2.5 Conclusion . 30

A Flow Model 40
A.1 Matlab Code . 40

A.1.1 parameters.m . 40
A.1.2 initial.m . 40
A.1.3 main.m . 41
A.1.4 main2.m . 43

vi

A.1.5 sd.m . 45
A.1.6 ssd.m . 47
A.1.7 LaxWendroff.m . 49
A.1.8 shear.m . 50
A.1.9 average.m . 50

B Simulink Model 52
B.1 paramters.m . 52
B.2 Kvalsund.mdl . 53

vii

Chapter 1

Pipe flow model

1.1 Introduction

Pipe flow with unsteady boundary conditions occurs in hydraulic systems such as water power

plants and hydostatic transmissions. For these applications, the frequence dependency of the

friction might be of importance to the dynamic behaviour of the systems, and accurate flow

models must to be applied when modelling the systems.

One of the main focuses of this report is to develop an appropriate algorithm for the

pipe flow which accounts for the frecuency dependent friction in non-steady pipe flow. The

fundamentals of transmission line dynamics are given to some extent, and introduced to an

appropriate mathematical flow model.

The friction coefficient normally used when modelling pipe flow is quasi steady, i.e. it is

only dependent of the rate of fluid flow, and not of how the fluid flow changes with time. It is

important to understand that the energy dissipation essentially is not dependent on the rate

of flow, rather the shape of the velocity profile, which again is dependent of the history of

the pressure gradient. This is because the fluid friction is a result of shear stresses between

fluid layers. The application of the steady state friction term to non-steady flow, results in

poor approximation to experimental results and the actual pressure decay and energy loss

in the pipe are under-estimated.

The starting point of this work has been the modelling done in my student project in

the fall semester 2006. The project work describes some of the background theory in detail

1

and computer implementations of the method of characteristics were developped using both

steady state and Zielke’s friction term. An attempt was done to combine Bratland’s [1]1 flow

model with a solution of the governing equations (1.1) and (1.2) by means of the method of

characteristics.

The main idea behind this thesis, is to compute the velocity profile in the pipe sections

and to let the friction term depend on these velocity profiles. Solution methods to the Navier

Stokes (1.11) and the continuity equation (1.2) have been developped and this has been the

basis of the further analysis.

1.2 Background

The fundamental equations for transient pipe flow are the equation of continuity and the

momentum equation. The 1D equations for motion and continuity are written in terms of

V and H, the average fluid velocity and head2 in the crossection of the pipe and yield

g
δH

δx
+ V

δV

δx
+

δV

δt
+ ghf = 0 (1.1)

and

a2

g

δV

δx
+ V

δH

δx
+

δH

δt
= 0 (1.2)

respectively. x and t are independent variables in axial direction and time. hf designate a

friction loss due to wall shear. Both equations are derived in reference [4]. These equations

were solved by means of the method of characteristics, also discribed in [4], in my student

project, fall 2006. This was done with both steady state friction and Zielke’s friction term

included.

1Numers in brackets designate bibliography references
2Meter water column, mWC

2

(a) Motion (b) Continuity

Figure 1.1: Control volumes for the governing equations.

For steady state conditions, the headloss term is generally taken to be

hfl =
32ν

gD2
V (1.3)

and

hft =
f

2gD
|V |V (1.4)

for laminar and turbulent flow respectively [6]. However, for oscillatory flow where the

Renold’s number changes with time, equations (1.3) and (1.4) do not give satisfactory pre-

diction of the actual headloss. This has to do with the velocity profile in the pipe, which

constantly changes with pressure tansients.

Figure 1.2: Velocity profiles in a cross section of a circular pipe. U1 is a fully developped
Hagen-Poiseuille flow, while U2 is some flow profile resulting from variable pressure gradients.

3

Various approaches have been made to introduce the effect of frequency dependent friction

to the flow model. Among others, Zielke [6] bases the friction term on past velocity changes.

Bratland [1] divides the pipe into cylindrical shells and sets up a momentum equation for

each shell. The headloss is then found based on the velocity differences between the shells

[see figure 1.6 for illustration].

1.3 Earlier Models

1.3.1 Steady state friction

In it’s most basic form, the analysis of transient pipe flow problems is solved using the

equation of motion (1.1) and continuity (1.2). A friction term can be included to the equation

of motion. The steady state headloss (1.3) has proved not to give adecuate prediction of the

actual energy dissipation for ocillatory flow conditions. The solution to the water hammer

problem with steady state friction was implemented using the method of characteristics in

my student project fall 2006. The result is given in the figure below.

! " #! #"
!#

!!$%

!!$&

!!$'

!!$(

!

!$(

!$'

!$&

!$%

#

Steady State Headloss

Dimensionless time, ta/l

H
g/

av

)

)

*+,--.+,)/0)1/21,

Figure 1.3: Pressure fluctuations after instantaneous valve closure using the steady state
friction term. The dimensionless time is τ ′′ = ta/L

4

1.3.2 Zielke’s friction term

Zielke was the first who succeeded at including the effect of frequency dependent friction to

a flow model. His model assumes constant pressure throughout the pipe and solves

g
δH

δx
+ V

δV

δx
+

δV

δt
+ ghfz = 0 (1.5)

and

a2

g

δV

δx
+ V

δH

δx
+

δH

δt
= 0, (1.6)

also by means of the method of characteristics. Zielke’s friction term, hfz, is dependent on

the history of the velocity at a cross section [6]. Zielke finds the wall shear stress given by

τ0(t) =
4νρ

R
V (t) +

2νρ

R

∫ t

0

δV

δt
W (t − u)δu, (1.7)

where W (t) is a weighing function. The equation shows that the wall shear stress is given by

the instantainious shear plus a term in which weights are given to the past velocity changes.

Now the headloss can be found by

hfz =
4τ0

γD
(1.8)

1.3.3 Bratland’s cylinder shell model

In stead of solving the governing equations (1.1) and (1.2), Bratland devides the pipe into

plugs and sylindrical shells as in figure 1.6. The plugs represent the fluid and the interveaning

spaces represent the pressure acting on the fluid. For this discretization the equation of forces

yields
dvi

dt
=

1

mi

(
πd2

4
(pi−1 − pi) − FRi

)
, (1.9)

where i is the counter in axial direction. The plugs are devided into cylindrical shells which

5

! " #! #"
!#

!!$"

!

!$"

#

#$"

Dimensionless time, ta/l

Zielke’s friction

H
g/

av

%

%

&'())*'(%+,%-+.-(

Figure 1.4: Pressure fluctuations after instantaneous valve closure using Zielke’s friction
term. The dimensionless time is τ ′′ = ta/L

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

2

4

6

8

10

12

Zielke‘s weighting function

W

Dimensionless time

Figure 1.5: Zielkes weighting function as a function of the dimensionless time τ ′ = νt/R2.

6

Figure 1.6: Bratland’s plugs divided into cylindrical shells.

can move independently of each other, only effected by the fluicd friction which occurs

between them. The friction force between two shells is found by

Fi,k = 2πνρrk∆x
vi,k+1 − vi,k

∆r
, (1.10)

where rk is the distance between shell number k and k + 1.

1.4 New model

1.4.1 Solving the Navier Stokes equation

In the matlab code used, the Navier Stokes equation

δv

δt
= −1

ρ

δp

δx
+ ν

1

r

δv

δr
+ ν

δ2v

δr2
(1.11)

is solved by means of a semi-discretization in sd.m, Appendix A.1.5. The function is called by

v and ∆H, where v designates the velocity profile in the cross section of the pipe and ∆H is

the pressure difference over the plug we are looking at. The finite-difference approximations

to the space derivatives are

1

r

δv

δr

∣∣∣j
k
≈

uj
k+1 + uj

k−1

2∆r(k − 1)∆r
(1.12)

and
δ2v

δr2

∣∣∣j
k
≈

uj
k+1 − 2uj

k + uj
k−1

∆r2
(1.13)

7

for the convective term and the laplacian respectively. k denotes the counter in radial

direction and j is the current time step.

The matlab ode45 solver, which handles ordinary differential equations is then applied

to solve this system up until time tj+1 = tj + ∆t.

Figure 1.7 goes to show how this semi-discretization works in time and space.

0

R/2

R

0

0.5

1

0

0.1

0.2

0.3

0.4

0 R/2 R
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V
e
lo

c
it
y
 v

 [
m

/s
]

Time=0s

Time=1s

Figure 1.7: Solving the Navier Stokes equation in time and space.

8

1.4.2 Solving the continuity equation

The continuity equation is solved using the 1D Lax-Wendroff scheme [3]. Also here a semi-

discretization has been tried, but as the result turned out to be quite oscillatory more

solution methods have been tried. The Lax-Wendroff gave exactly the same answer as a

semi-discretization. Various ordinary differential equation solvers have been applied to see if

a semi-discretization could give acceptable results, without success. For the further analysis

the Lax-Wendroff scheme has been used.

The equation to be solved is

δH

δt
= −a2

g

δV

δx
− V

δH

δx
. (1.14)

Applying the Lax Wendroff scheme, the discretization yields

Hj+1
i = Hj

i −
V j

i ∆t

2∆x

(
Hj

i+1 − Hj
i−1

)
+

(
V j

i

)2
∆t2

2∆x2

(
Hj

i+1 − Hj
i + Hj

i−1

)
a2

g

(
− ∆t

2∆x

(
V j

i+1 − V j
i−1

)
+

∆t2

2∆x2

(
V j

i+1 − V j
i + V j

i−1

))
.

(1.15)

The Lax-Wendroff scheme is implemented in LaxWendroff.m, Appendix A.1.7.

1.4.3 Combining the two governing equations

Due to the fact that the Navier Stokes equation (1.11) is two-dimensional and the continuity

equation (1.14) is one-dimensional, some manipulations to the variables need to be done. v

and h are variables in radial and axial direction while H and V are constant throughout the

cross section and has x and t as independent variables.

To make the jump between these two, the average velocity of the cross section is found for

use in the continuity equation. This manipulation is quite drastic, and it is hard to predict

the result and whether it will be acceptable or not.

The matlab function average.m in Appendix A.1.9 takes on the velocity profile and

9

returns the average velocity:

V =
NR∑
i=1

vi
Ai

A

=
NR∑
i=1

vi
2πi∆r∆r

π(NR∆r)2

= 2
NR∑
i=1

vi
i

(NR)2
.

(1.16)

The matlab scripts main.m and main2.m, Appendices A.1.3 and A.1.4, solves a transient

flow problem and a water hammer problem respectively. They both initialize the same

velocity profile and pressure throughout the pipe. main.m predicts the flow and pressure

response to a sinusoidal pressure at the pipe outlet. main2.m calculates the response to a

water hammer. In the same fashon, initial values for pressure and flow are intialized, only

with 0 velocity at the valve.

v

r

Shear in a pipe

Po
sit

io
n

Velocity

Shear stress

gradient, dv/dr

Figure 1.8: Shear stress for fluid flow in a pipe.

10

For each time step, the actual pressure drop is computed for all the plugs throughout the

pipe using the matlab function shear.m given in Appendix A.1.8. A graphical illustration

of how shear stresses result from the velocity profile is given in figure 1.8

The shear stress

τ = −ρν
v(k + 1) − v(k)

∆r
(1.17)

results in a force

fk = −ρν
v(k + 1) − v(k)

∆r
· 2πk∆r∆x (1.18)

which acts on the respective interveaning space between the plugs and sum up to yeld a total

force of

F = −ρν

NR−1∑
k=1

v(k + 1) − v(k)

∆r
· 2πk∆r∆x · 2πk∆r∆r

πR2
(1.19)

hence a pressure drop given by

∆P =
F

πR2
= −4ρν

∆r2∆x

R4

NR−1∑
k=1

k2[v(k + 1) − v(k)]. (1.20)

1.4.4 Initial values and boundary conditions

I have assumed laminar flow and no-slip condition at the pipe walls for the flow model.

Values for velocity are initialized for steady state conditions. For these assumptions, the

Hagen-Poiseuille relation [5] yields:

v(r) =

(
∆p

L

)
1

4µ
(R2 − r2), (1.21)

11

where ∆p is the pressure drop over the length of the entire pipe L. The maximum velocity

is found in the centerline at r = 0:

vmax =

(
∆p

L

)
1

4µ
R2. (1.22)

The average velocity is then foud to be

V0 =
1

πR2

∫ R

0

2πrv(r)dr

=
1

πR2

∫ R

0

2πr

(
∆p

L

)
1

4µ
(R2 − r2)dr

=
∆p

R22νL

[
R2

2
r2 − 1

4
r4

]R

0

=

(
∆p

L

)
1

8µ
R2

=
1

2
vmax.

(1.23)

We can now initialize the velocity profiles by means of the average velocity V0. This is done

in the matlab script initial.m in Appendix A.1.2.

For both main.m and main2.m in Appendicies A.1.3 and A.1.4, the head at the reservoir

is set to 70meters. Using the same matlab functions, sd.m and LaxWendroff.m, main.m and

main2.m solves the pipe flow problem for variable head at the outlet and a water hammer

respectively.

1.5 Results of Simulation

The calculation of the velocity profile is working quite well. Fluctuant pressures have been

forced upon parabolic velocity profiles and the results show that the pressure gradient, which

is the driving force of the fluid, affects the flow in the inner region of the pipe and the

boundary layer close to the wall differently. The viscous effects are concentrated in a layer

close to the pipe wall. At the same time, the inertial forces here are small so that the velocity

12

0 R/2 R
0

0.05

0.1

0.15

0.2

0.25

Figure 1.9: Initialized velocity profile for steady-state laminar flow.

is in phase with the pressure gradient. This means that the boundary layer close to the wall

is first effected by the pressure gradient. For the inner layer which is not so much effected by

wall shear, but mostly dominated by inertial forces, the acceleration of the flow is in phase

with the pressure gradient.

The results tor the pipe flow where variable pressure at the pipe outlet was enforced,

has been reasonable, see figures 1.10, 1.11, 1.12 and 1.13. The pressure waves propagate

through the pipe with the right speed and amplitude. The acceleration of the main velocity

changes in phase with the pressure gradient. However, it is hard to tell whether the results

are reliable without any experimental verifications. The simulation run with ν = 0.00396

shows a much higher damping and that the boundary layer for shear forces in the cross

section of the pipe is much thicker than for a lower viscosity. This is in accordance with the

theory[5].

Various solution methods have been tried to solve the equation of continuity (1.2) for

the water hammer problem. Both the solution from applying the Lax Wendroff scheme and

13

0 L/2 L

60

65

70

75

80

85

90

95

Time=0.013629

Time=0.027257

Time=0.040886

Time=0.054514

0 L/2 L
0

0.05

0.1

0.15

0.2

0.25

0.3

Time=0.013629

Time=0.027257

Time=0.040886

Time=0.054514

Figure 1.10: Velocity and pressure distribution throughout the pipe with variable pressure
at pipe outlet.

14

0 R/2 R
!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Velocity profile at x = 27.0662 as it evolves in time

Radial position r [m]

Ve
lo

cit
y

v
[m

/s
]

Time=0.013629s
Time=0.027257s
Time=0.040886s
Time=0.054514s

Figure 1.11: Velocity profile as it evolves due to variable pressure at pipe outlet.

15

0 L/2 L
55

60

65

70

75

80

85

90

95

Time=0.013629s

Time=0.027257s

Time=0.040886s

Time=0.054514s

0 L/2 L
0

0.05

0.1

0.15

0.2

0.25

0.3

Time=0.013629s

Time=0.027257s

Time=0.040886s

Time=0.054514s

Figure 1.12: Velocity and pressure distribution throughout the pipe with variable pressure
at pipe outlet. ν is here 0.00396.

16

0 R/2 R
!0.1

!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time=0.013629s

Time=0.027257s

Time=0.040886s

Time=0.054514s

Figure 1.13: Velocity profile as it evolves due to variable pressure at pipe outlet. ν is here
0.00396.

17

a semi-descretizaion are given in figure 1.14. Numerous solution methods could be tried,

but I do not think that the oscillations are a solution method problem as such, rather that

the discretization of the physical system cause the oscillations. At the same time, it is hard

to tell whether the equations solved, the Navier Stokes (1.11) and the continuity equation

(1.2), would give a correct answer - regardless of solution method. The pressure process at

the valve does show the right shape, but overestimates the pressure slightly. The oscillations

botch up the results, so it is hard to tell whether the matlab scripts handle the frequency

dependent friction correctly.

1.6 Conclusion

It is an exciting thought to be able to predict the velocity profile in the pipe and to see

how it evolves in time for different flow conditions. The velocity profile gives information in

regards to shear stresses and energy dissipation in the pipe. Besides, the radial variation of

kinetic energy can be of importance in some applications. Braltand [1] showed that much

kinetic energy was still in the pipe after immediate closure of a valve, such that not all of

the fluid’s kinetic energy was obsorbed.

Jumping between the one dimensional continuity equation (1.2) and two dimensional

Navier Stokes equation (1.11) seems not have been such a great idea. The one dimensional

equations of momenutm (1.1) and continuity (1.2) both shear the same assumptions regard-

ing equally distributed fluid velocity and pressure throughout the cross section of the pipe.

And therefore the control volumes 1.1 satisfy the princilpes of momentum and continuity.

Violations to this has been done in this work.

One other violation that can be mentioned is the pressure losses which are a result of

shear stress. Pressure losses due to shear forces are, really, for specific cylinder shells, and

should not be averaged out over the cross section.

The solution method to find the velocity profiles seems to be working very well. However,

also here some violations are done. The velocity in the outer shell (closest to the pipe wall)

is constantly held to zero. I am uncertain whether this is the actual case or not, but the

18

0 0.04 0.08
30

40

50

60

70

80

90

100

110

LaxWendroff

Semi Discretization

(a) Lax Wendroff scheme and semi-discretization

0 0.27257 0.54514
30

40

50

60

70

80

90

100

110

(b) Lax Wendroff

Figure 1.14: Pressure at valve after immediate closure.

19

0 R/2 R
!0.3

!0.25

!0.2

!0.15

!0.1

!0.05

0

0.05

0.1

0.15

Time=0.020443s

Time=0.040886s

Time=0.061328s

Time=0.081771s

Figure 1.15: Velocity profile in a cross section of the pipe after immediate closure of valve.

20

0 0.04 0.08
30

40

50

60

70

80

90

100

110

(a) Steady state friction

0 0.04 0.08
30

40

50

60

70

80

90

100

110

(b) Zielke’s friction term

Figure 1.16: Pressure at valve after immediate closure using the method of characteristics
and (1.1) and (1.2) as governing equations.

21

non-slip condition is a normal assumption to make.

22

Chapter 2

Wind turbine hydrostatic gear system

2.1 Introduction

The main reason why it is interesting to introduce a hydrostatic transmission to wind turbines

is the offshore installations which are being planned. First of all, a reduction of the weight at

the nacelle is an absolute necessity and the hydrostatic pump and motor gives the possiblility

to place the heavy power geneartor at ground/water level. Besides, there will no longer be

use for the the mechanical gear which has been the weak link in chain so far.

The dynamic characteristics of a closed loop hydraulic system connecting a pump and

a motor, is a complicated area of research. This report aims at describing and evaluating

some of the dynamic properties of a system wich will be applied in a wind power turbine.

The dynamics of the hydrostatic transmission in a wind power tubine is related to the

wind speed which can vary much. With variable wind speeds the rotor torque changes and

therefor also the pump speed will vary. The speed of the hydraulic motor is controlled to

be constant so that the generator runs at syncronous speed. The motor displacement is

regulated by means of a PID1-controlling system which assures constant motor speed. The

generator torque is adjusted according to the pressure drop over the hydraulic motor in order

to take out as much electric power as possible.

1Proportional-Integral-Derivative control

23

I assume that the reader has some basic knowledge about control theory, and will therefore

not go into detail on the PID-controlling system. The whole SIMULINK model is given in

appendix B.

2.2 Hydraulic design

The hydraulic system which will be applied is sketched in figure 2.1. The hydraulic pump

is a fixed displacement unit with displacement Dp = 1.800679 · 10−3m3/rad. The pump

is connected directly to the rotor rod. The motor has variable displacement rating from

Dm−min = 2.0 · 10−5m3/rad to Dm−max = 8.0 · 10−5m3/rad.

A boost pump is included in the hydraulic circuit to assure that the pressure from the

pump, P1, does not drop below 80 · 105Pascal, and that the pressure in the pipe from the

motor back to the pump, P2, is always more than 40 · 105Pascal.

To make sure that the pressure differences over the motor and pump does not exceed

310 · 105Pascal, a pressure relief valve connects the hydraulic transmission lines. Based on

Wind Turbine

Power Generator

Figure 2.1: Design of the hydraulic gear to the wind turbine.

the pressures given above, the vind turbine should be able to operate at wind conditions

24

resulting in rotor torques from about

Torquert−min = ∆Pmin · Dp = 7.2 · 103Nm (2.1)

to

Torquert−max = ∆Pmax · Dp = 55.8 · 103Nm, (2.2)

where ∆Pmin = 40 · 105Pascal and ∆Pmax = 310 · 105Pascal.

The hydraulic motor is connected to the power generator which is runned at syncrounous

speed around 157rad/s. Without taking the effects of friction and leakage into account, the

pressure drops over the hydraulic motor and its displacement range, result in a motor power

rating from

Powermin = ∆Pmin · Dm−min · Omegam−set = 12.56kW (2.3)

to

Powermax = ∆Pmax · Dm−max · Omegam−set = 389.36kW. (2.4)

2.3 SIMULINK model

The hydraulic system has been implemented in SIMULINK. The model is limited to rotor,

hydraulic gear which includes the pump and motor and the torque of the power generator.

All parameters and simulation block diagrams are given in Appendix B. Only in the extent

necessary, block diagrams are included in this chapter.

The reader should not be confused by the use of P1/Q1 and P1f/Q2f and also P2/Q2

25

and P2f/Q2f . The P1’s and P2’s and Q1’s and Q2’s are essensially the same2.

Since the driving force to this system is the rotor torque, the authour has found it

natural to base the analysis of this hydraulic system on sudden changes in rotor torque. The

SIMULINK system takes on rotor torque plus some additional step torque and predicts the

system’s dynamic responce. A PID-controller regulates the motor displacement in order to

maintain constant motor speed and the generator torque is varied according to the motor

torque. This assures that as much electric power as possible is extracted from the system,

without stalling the wind turbine that is.

A list of hydrualic system coefficients is given in table 2.1

Abbrevation Value Description Unit

L 30.0 Pipe length [m]

A 0.05 Cross section of the pipe [m2]

B 1.5 · 109 Fluid bulk modulus [kg/ms2]

Clp 7.5 · 10−12 Pump leakage coefficient [(m3/s)/(N/m2)]

Cfp 0.01 Pump friction coefficient [(kg/s)]

Cdp 7.5 · 10−12 Pump discharge coefficient [(m3/s)/(N/m2)]

Clm 7.5 · 10−12 Motor leakage coefficient [(m3/s)/(N/m2)]

Cdm 7.5 · 10−12 Motor discharge coefficient [(m3/s)/(N/m2)]

Cm 0.005 Motor friction coefficient [(kg/s)]

Table 2.1: Constants used in the SIMULINK model.

2.3.1 Governing dynamic properties of the transmission

I have summarized the equations for the pump parameters below. The same principles apply

also for the motor, and the motor equations are therefore not stated in this chapter. However,

they can easily be derived from the block diagrams in Appendix B. The driving force to this

system is the rotor torque wich varies with the wind speed. When the rotor torque changes,

2The f-variables were ment for a pipe flow model that could be introduced with an embedded matlab
function.

26

!

"#$%&'()

*

+#,'$()

-

+#,'$(.

/

"#$%&'(.

"#$%&'(012(+#,'$

+-(3

+/

4)'50(.

"#$%&'(.

+#,'$(.

+&).("#$%&'(
012(+#,'$

+-(3

6

7-(3

+/

4)'50(.

7/

+&).

8() 6

+$'99&$:9'2(6#;&)'

+$'99&$'9

7-

+-

7-(3

+-(3

+:.'(<;#,(=#2';($'>&$1

+/

7/

+/(3

7/(3

+:.'(<;#,(=#2';

6

?0>&$0;(<$'%&'1@A(
012(80).:15

+/(3

8()

+-

4)'50()

"#$%&'()

+#,'$()

=#>#$("#$%&'(
012(+#,'$

+/(3

7/(3

6

8()

+-

4)'50()

7-

=#>#$

B

.$:1>'2BB-!!C&1!-DDEBB/EF!G .05'B/H/!

Kvalsund

HI9'$9H)051&95&;9>02H8'9J>#.HKJ#;'H8:.;#)HK:)&;:1JH.:2@#1>$#;;'2HLM0;9&12N)2;

Figure 2.2: Overview of the hydraulic system simultaion block diagram.

the pump either accelerates or slows down according to

δ(Omegap)

δt
=

(P2 − P1) · Dp − Omegap · Cfp + Torquert

Inertiart

. (2.5)

Simulink integrates this term over the last time step and computes the new pump velocity.

The integral is given a start value equal to Omegap−start and maximum and minimum values

of the integral are Omegap−max and Omegap−min, respectively. Omegap ·Cfp is a mechanical

loss due to friction.

The change of pressure from the pump is given by

δ(P1)

δt
=

B

V
[Omegap · Dp − (P1 − P2) · Clp − (P1 + P2) · Cdp − Q2] , (2.6)

where Omegap · Dp is the flow from the pump, (P1 − P2) · Clp is a loss due to leakage

and (P1 + P2) · Cdp is the discharge. Q2 is the flow into the pump and B/V is the bulk

modulus divided by the pressurised volume. In the same fashon as for the pump speed, also

27

this integral is given a start value and maximum and minimum values. The maximum and

minimum values are according to P1max and P1min.

The flow from the pump is given by the equation

Q1 = Omegap · Dp − (P1 − P2) · Clp, (2.7)

which can be understood quite easily. (P1−P2) ·Clp is a loss due to leakage. The increased

pump flow needs to be compensated for by regulating the motor displacement and/or in-

creasing the generator torque at the same time.

Pump torque and power are well known to engineers as

Torquep = (P1 − P2) · Dp (2.8)

and

Powerp = Torquep · Omegap. (2.9)

2.3.2 PID-Controller

To assure that the generator runs at syncronous speed, the motor displacement is varied

according to deviations from the set motor speed. The PID-controller in figure 2.3 takes on

the difference between actual motor speed and set speed. Proportional, integral and deriva-

tive gains are found using the build-in SIMULINK parameter estimator ”Ziegler-Nichols”.

It is worth mentioning that both integral and derivative terms are based on the most recent

time-step only.

The saturation block keeps the output of the PID-controller within the values of Dm−min

and Dm−max.

28

!

"#$
%&'()&'*+,

-#.&*,

/$0.&#$#10'

!
1

2,'0.)&'+)3

2#.&*,

"#.&*, 4(54'

"0)*6&'*60

"07'&#
/$0.&#$

!

/$0.&#$ 8

9)*,'0488:;!<(,!:==>88!>?;@ 9&.0835!;

Kvalsund/Motor/DisplacementControl

5A10)15$&.,(1.(71'&45"01B'+95%B+705"*97+$5%*$(7*,B59*4C+,')+77045D6&71(,4E$47

Figure 2.3: PID-control applied to regulate the motor displacement.

2.3.3 Generator torque

To assure maximum effect from the power generator, it’s torque is adjusted based on the

pressure drop over the hydraulic motor and the motor displacement, i.e. the motor torque.

The relationship between the generator torque and motor torque can not be linear due to

the losses from friction and leakage. The gains found are based on experimental using the

SIMULINK model. As it turned out, the system stalled fast if the gains were set to high.

2.4 Results of Simulation

Different combinations of initial torque and step torque have been applied to see the sys-

tems reaction. For the simulations run, pipe pressures, pump and motor speed and motor

displacement were initialized in the same manner. For the results given in this report, the

pump starts off with an initial rotor torque of 20kNm. After 500 seconds an additional step

torque hits in and the pump is run by a total torque of 40kNm. The adjustment of the

generator torque seems to work quite well in this model, without stalling the pump.

The problem we are left with, is that the pump speed goes up to it’s maximum value.

There after the speed adjustment of the motor is fairly simple as the flow remains constant.

29

5000 30000 55000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Figure 2.4: Generator gains.

2.5 Conclusion

The gains of the PID controllers are working quite well for this SIMULINK model. However,

the friction, leakage and discharge coefficients are not measured and they are of importance

for the dynamic response of the system, and therfore the PID gains need to be adjusted on

site.

As it turns out, this model might be a bit to limited to actually simulate the characteristics

of the rotor and pump. As it appears from the results, the pump will, under the given

conditions, accelerate up till the maximum pump speed. However, the rotor torque is very

much speed-dependent and the torque should decrease with increasing rotor speed. Hence,

another which also could be added to the motor torque is the pump speed. If the pump

speed goes up towards it’s upper limit, the generator torque should be increased - and vice

versa in the case where the pump speed approaches it’s minimum.

To be better able to measure the strength of this PID-controller, a step input to the pump

30

0 100 200 300 400 500 600 700 800 900 1000
0

500

000

500

2000

2500
Motor Torque

500

000

500

2000

2500
Generator Torque

Time offset: 0

Figure 2.5: Generator and motor torque.

31

! "!! #!! $!! %!! &!! '!! (!!)!! *!! "!!!
#

%

'

)

"!

"#

"%

+,"!
!$ -.#

$

%

&

'

(

)

*

"!
+,"!

' /.#
"&&

"&'

"&(

"&)

"&*
01234.1

#

$

%

&

'

(

)
+,"!

!& 5.1

6712,899:2;<,!,,,,,,,,,,,,,,,

Figure 2.6: Motor variables.

32

! "!! #!! $!! %!! &!! '!! (!!)!! *!! "!!!
!"

!!+&

!

!+&

"

"+&

#

#+&
,-./01-2!2,-./01-13.4

!"

!!+&

!

!+&

"

"+&

#

#+&
,-./01-!,-./013.4

56-.27883.492!222222222222222

Figure 2.7: Deviation between actual motor speed and set speed.

! "!! #!! $!! %!! &!! '!! (!!)!! *!! "!!!
"

"+&

#

#+&

$

,-"!
(.#!./0123/4

!

&

"!

"&
,-"!

' .#25!./01!67

8609-355:94;-!---------------

Figure 2.8: Pressures at pump inlet and pipe outlet.

33

0 100 200 300 400 500 600 700 800 900 1000
0

.005

0.01

.015
Q1

0.5

1

1.5

2

2.5

3

3.5
x 10

7 P1

0

1

2

3

4

5

6

7
Omega_p

0

1

2

3

4

5

x 10
4 Rotor_torque

Time offset: 0
Figure 2.9: Pump parameters.

34

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

5 Power_m

0

500

1000

1500

2000
Torque_m

0

0.5

1

1.5

2

2.5

3
x 10

5 Power_p

0

1

2

3

4

5
x 10

4 Torque_p

Time offset: 0
Figure 2.10: Pump and motor torque and power.

35

speed might be used in stead. Not too many re-arrangements in the SIMULINK model are

necessary to do this.

The leakage terms used in the SIMULINK model are only dependent of pressure differ-

ences over the motor and pump. However, the viscosity of the hydraulic oil varies with the

temperature and this might also play an important role. The same argumentation yields for

the friction coefficients.

36

Bibliography

[1] O. Bratland. Frequency-dependent Friction and Radial Kinetic Energy Variation in
Transient Pipe Flow. 5th International Conference on Pressure Surges, Hannover, F.R.
Germany, September 1986.

[2] L.F. Shampine. Solving Hyperbolic PDEs in MATLAB. Mathematics Department, South-
ern Methodist University, 2005.

[3] V. Streeter and E. B. Wylie. Fluid Transients. McGraw-Hill, 1978.

[4] F. M. White. Fluid Mechanics. McGraw-Hill, 2003.

[5] W. Zielke. Frequency Dependent Friction in Transient Pipe Flow. PhD thesis, The Uni-
versity of Michigan, University of Michigan, Department of Civil Engineering, December
1966.

37

List of Figures

1.1 Control volumes for the governing equations. 3
1.2 Velocity profiles in a cross section of a circular pipe. U1 is a fully developped

Hagen-Poiseuille flow, while U2 is some flow profile resulting from variable
pressure gradients. 3

1.3 Pressure fluctuations after instantaneous valve closure using the steady state
friction term. The dimensionless time is τ ′′ = ta/L 4

1.4 Pressure fluctuations after instantaneous valve closure using Zielke’s friction
term. The dimensionless time is τ ′′ = ta/L 6

1.5 Zielkes weighting function as a function of the dimensionless time τ ′ = νt/R2. 6
1.6 Bratland’s plugs divided into cylindrical shells. 7
1.7 Solving the Navier Stokes equation in time and space. 8
1.8 Shear stress for fluid flow in a pipe. 10
1.9 Initialized velocity profile for steady-state laminar flow. 13
1.10 Velocity and pressure distribution throughout the pipe with variable pressure

at pipe outlet. 14
1.11 Velocity profile as it evolves due to variable pressure at pipe outlet. 15
1.12 Velocity and pressure distribution throughout the pipe with variable pressure

at pipe outlet. ν is here 0.00396. 16
1.13 Velocity profile as it evolves due to variable pressure at pipe outlet. ν is here

0.00396. 17
1.14 Pressure at valve after immediate closure. 19
1.15 Velocity profile in a cross section of the pipe after immediate closure of valve. 20
1.16 Pressure at valve after immediate closure using the method of characteristics

and (1.1) and (1.2) as governing equations. 21

2.1 Design of the hydraulic gear to the wind turbine. 24
2.2 Overview of the hydraulic system simultaion block diagram. 27
2.3 PID-control applied to regulate the motor displacement. 29
2.4 Generator gains. 30
2.5 Generator and motor torque. 31
2.6 Motor variables. 32
2.7 Deviation between actual motor speed and set speed. 33
2.8 Pressures at pump inlet and pipe outlet. 33

38

2.9 Pump parameters. 34
2.10 Pump and motor torque and power. 35

39

Appendix A

Flow Model

A.1 Matlab Code

A.1.1 parameters.m

1 rho = 950;
2 g = 9.81;
3 nu = 0.00003967;
4 a = 1324;
5 L = 36.08832;
6 NX = 50;
7 dt = (L/(NX*a));
8 T = 0.08385;
9 NT = round(T/dt);

10 NR = 50;
11 dx=L/NX;
12 D = 0.254;
13 R = D/2;
14 A = pi*Rˆ2;
15 dr = R/NR;
16 t = linspace(0,T,NT);
17 r = dr:dr:R;
18 x = linspace(0,L,NX);
19 V0 = 0.128;
20 H0 = 70;
21 HL = H0−(32*nu/(Dˆ2*g))*V0*L;

A.1.2 initial.m

1 function vstart=initialflow
2

40

3 % The function "initialflow" computes the initial Hagen−Poiseuille flow
4 % profile (from r=0 to R) in the pipe assuming a no−slip condition at the
5 % wall and axi−symmetric flow steady state flow.
6

7 parameters;
8

9 for k = 1:NR
10 vstart(k) = (−2*V0/Rˆ2)*(r(k))ˆ2+2*V0; % +0.1*rand(1);
11 end
12 vstart(NR)=0;
13

14 % −−
15

16 % figure1 = figure('PaperSize',[20.98 29.68]);
17 % axes('Parent',figure1,'XTickLabel',{'0 ','R/2','R'},...
18 % 'XTick',[0 0.0635 0.127]);
19 % box('on');
20 % hold('all');
21 % plot(r,vstart)
22 % title('Initial velocity profile','Interpreter','latex','FontSize',12);
23 % xlabel('Axial position r [m]','Interpreter','latex','FontSize',11);
24 % ylabel('u(r,0) [m/s]','Interpreter','latex','FontSize',11);

A.1.3 main.m

1 function H=main
2

3 % "main.m" simulates a pressure flow process where the pressure at the
4 % outlet varies with time. H, V and v are initialized for steady state
5 % conditions and the function "sd.m" is used to find velocity profiles
6 % according to the pressure distribution found by means of "ssd.m". The
7 % result of "average.m" is V. To save storage and computational time, the
8 % variable v should be cleared for long simulations. Figure 2 must in so
9 % case be commented out.

10

11 parameters;
12

13 H(1:NX,1) = linspace(H0,HL,NX)
14 V(1:NX,1) = 0.1280;
15 % V(NX,1) = 0;
16 for i=1:NX
17 v(i,:,1)=initialflow;
18 end
19

20

21 for j=2:NT
22

23 j

41

24 % H(:,j) = ssd(H(:,j−1)',V(:,j−1)');
25 H(:,j) = LaxWendroff(H(:,j−1)',V(:,j−1)');
26 H(NX,j)=70+10*sin(0.09*j);
27 H(1,j)=H0;
28 v(1,:,j) = sd(H(2,j)−H(1,j),v(1,:,j−1));
29 V(1,j) = average(v(1,:,j));
30

31 for i=2:NX−1
32 H(i,j)=H(i,j)+shear(v(i,:,j));
33 v(i,:,j) = sd((H(i+1,j)−H(i−1,j))/2,v(i,:,j−1));
34 V(i,j) = average(v(i,:,j));
35 end
36 v(NX,:,j) = sd((H(NX,j)−H(NX−1,j)),v(NX,:,j−1));
37 V(NX,j)=average(v(NX,:,j));
38 % clear v(:,:,j−1)
39 end
40

41 % −−−
42

43 figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
44 subplot1 = subplot(2,1,1,'Parent',figure1,'XTickLabel',{'0','L/2','L'},...
45 'XTick',[0 18 36.1]);
46 box('on')
47 hold('all')
48 plot1 = plot(x,H(:,round(NT/4)),x,H(:,round(NT/2)),...
49 x,H(:,round(3*NT/4)),x,H(:,round(NT)));
50 title('Pressure','Interpreter','latex','FontSize',12);
51 xlabel('Axial position x [m]','Interpreter','latex',...
52 'HorizontalAlignment','center','FontSize',11);
53 ylabel('Head H [m]','Interpreter','latex','HorizontalAlignment',...
54 'center','FontSize',11);
55 set(plot1(1),'DisplayName',['Time=',num2str(dt*NT/4),'s']);
56 set(plot1(2),'DisplayName',['Time=',num2str(dt*NT/2),'s']);
57 set(plot1(3),'DisplayName',['Time=',num2str(dt*3*NT/4),'s']);
58 set(plot1(4),'DisplayName',['Time=',num2str(dt*NT),'s']);
59 legend(subplot1,'show');
60

61 subplot2 = subplot(2,1,2,'Parent',figure1,'XTickLabel',{'0','L/2','L'},...
62 'XTick',[0 18 36.1]);
63 box('on')
64 hold('all')
65 plot2 = plot(x,V(:,round(NT/4)),x,V(:,round(NT/2)),...
66 x,V(:,round(3*NT/4)),x,V(:,round(NT)));
67 set(plot2(1),'DisplayName',['Time=',num2str(dt*NT/4),'s']);
68 set(plot2(2),'DisplayName',['Time=',num2str(dt*NT/2),'s']);
69 set(plot2(3),'DisplayName',['Time=',num2str(dt*3*NT/4),'s']);
70 set(plot2(4),'DisplayName',['Time=',num2str(dt*NT),'s']);
71 title('Velocity','Interpreter','latex','FontSize',12);
72 xlabel('Axial position x [m]','Interpreter','latex','FontSize',11);
73 ylabel('Velocity V [m/s]','Interpreter','latex','HorizontalAlignment',...
74 'center','FontSize',11);

42

75 legend(subplot2,'show');
76

77 figure2 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
78 axes3 = axes('Parent',figure2,'XTickLabel',{'0','R/2','R'},...
79 'XTick',[0 0.0635 0.127]);
80 box('on');
81 hold('all');
82 plot3 = plot(r,v(round(3*NX/4),:,round(NT/4)),...
83 r,v(round(3*NX/4),:,round(NT/2)),...
84 r,v(round(3*NX/4),:,round(3*NT/4)),...
85 r,v(round(3*NX/4),:,round(NT)));
86 title(['Velocity profile at x = ',num2str(3*L/4),...
87 ' as it evolves in time'],'Interpreter','latex',...
88 'FontSize',12);
89 xlabel('Radial position r [m]','Interpreter','latex',...
90 'HorizontalAlignment','center','FontSize',11);
91 ylabel('Velocity v [m/s]','Interpreter','latex',...
92 'HorizontalAlignment','center','FontSize',11);
93 set(plot3(1),'DisplayName',['Time=',num2str(dt*NT/4),'s']);
94 set(plot3(2),'DisplayName',['Time=',num2str(dt*NT/2),'s']);
95 set(plot3(3),'DisplayName',['Time=',num2str(dt*3*NT/4),'s']);
96 set(plot3(4),'DisplayName',['Time=',num2str(dt*NT),'s']);
97 legend(axes3,'show');

A.1.4 main2.m

1 function H = main2
2

3 % "main2.m" simulates a pressure flow process where a valve at the pipe
4 % outlet is shout immediately. H, V and v are initialized for steady state
5 % conditions and the function "sd.m" is used to find velocity profiles
6 % according to the pressure distribution found by means of "ssd.m". The
7 % result of "average.m" is V. To save storage and computational time, the
8 % variable v should be cleared for long simulations. Figure 2 must in so
9 % case be commented out.

10

11 parameters;
12

13 H(1:NX,1) = linspace(H0,HL,NX)
14 V(1:NX,1) = 0.1280;
15 V(NX,1) = 0;
16 for i=1:NX−1
17 v(i,:,1)=initialflow;
18 end
19 v(NX,:,1)=0*initialflow;
20

21 for j=2:NT
22

43

23 j
24 % H(:,j) = ssd(H(:,j−1)',V(:,j−1)');
25 H(:,j) = LaxWendroff(H(:,j−1)',V(:,j−1)');
26 H(1,j)=H0;
27 v(1,:,j) = sd(H(2,j)−H(1,j),v(1,:,j−1));
28 V(1,j) = average(v(1,:,j));
29 for i =1:NX
30 H(i,j)=H(i,j)+shear(v(i,:,j));
31 end
32

33 for i=2:NX−1
34 % v(i,:,j) = sd((H(i+1,j)−H(i−1,j))/2,v(i,:,j−1));
35 v(i,:,j) = sd((H(i+1,j)−H(i−1,j))/2,v(i,:,j−1));
36

37 V(i,j) = average(v(i,:,j));
38 end
39 v(NX,:,j) = 0*initialflow;
40 V(NX,j)=0;
41 % H(NX,j) = ssd(H(:,j−1),V(:,j−1))
42 end
43

44 % −−−
45

46 figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
47 subplot1 = subplot(2,1,1,'Parent',figure1,'XTickLabel',{'0','L/2','L'},...
48 'XTick',[0 18 36.1]);
49 box('on')
50 hold('all')
51 plot1 = plot(x,H(:,round(NT/4)),x,H(:,round(NT/2)),...
52 x,H(:,round(3*NT/4)),x,H(:,round(NT)));
53 title('Pressure','Interpreter','latex','FontSize',12);
54 xlabel('Axial position x [m]','Interpreter','latex',...
55 'HorizontalAlignment','center','FontSize',11);
56 ylabel('Head H [m]','Interpreter','latex',...
57 'HorizontalAlignment','center','FontSize',11);
58 set(plot1(1),'DisplayName',['Time=',num2str(dt*NT/4),'s']);
59 set(plot1(2),'DisplayName',['Time=',num2str(dt*NT/2),'s']);
60 set(plot1(3),'DisplayName',['Time=',num2str(dt*3*NT/4),'s']);
61 set(plot1(4),'DisplayName',['Time=',num2str(dt*NT),'s']);
62 legend(subplot1,'show');
63

64 subplot2 = subplot(2,1,2,'Parent',figure1,'XTickLabel',{'0','L/2','L'},...
65 'XTick',[0 18 36.1]);
66 box('on')
67 hold('all')
68 plot2 = plot(x,V(:,round(NT/4)),x,V(:,round(NT/2)),...
69 x,V(:,round(3*NT/4)),x,V(:,round(NT)));
70 set(plot2(1),'DisplayName',['Time=',num2str(dt*NT/4),'s']);
71 set(plot2(2),'DisplayName',['Time=',num2str(dt*NT/2),'s']);
72 set(plot2(3),'DisplayName',['Time=',num2str(dt*3*NT/4),'s']);
73 set(plot2(4),'DisplayName',['Time=',num2str(dt*NT),'s']);

44

74 title('Velocity','Interpreter','latex','FontSize',12);
75 xlabel('Axial position x [m]','Interpreter','latex','FontSize',11);
76 ylabel('Velocity V [m/s]','Interpreter','latex','HorizontalAlignment',...
77 'center','FontSize',11);
78 legend(subplot2,'show');
79

80 figure2 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
81 axes3 = axes('Parent',figure2,'XTickLabel',{'0','R/2','R'},...
82 'XTick',[0 0.0635 0.127]);
83 box('on');
84 hold('all');
85 plot3 = plot(r,v(round(3*NX/4),:,round(NT/4)),...
86 r,v(round(3*NX/4),:,round(NT/2)),...
87 r,v(round(3*NX/4),:,round(3*NT/4)),...
88 r,v(round(3*NX/4),:,round(NT)));
89 title(['Velocity profile at x = ',num2str(3*L/4),...
90 ' as it evolves in time'],'Interpreter','latex','FontSize',12);
91 xlabel('Radial position r [m]','Interpreter','latex',...
92 'HorizontalAlignment','center','FontSize',11);
93 ylabel('Velocity v [m/s]','Interpreter','latex',...
94 'HorizontalAlignment','center','FontSize',11);
95 set(plot3(1),'DisplayName',['Time=',num2str(dt*NT/4),'s']);
96 set(plot3(2),'DisplayName',['Time=',num2str(dt*NT/2),'s']);
97 set(plot3(3),'DisplayName',['Time=',num2str(dt*3*NT/4),'s']);
98 set(plot3(4),'DisplayName',['Time=',num2str(dt*NT),'s']);
99 legend(axes3,'show');

100

101 figure3 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
102 axes4 = axes('Parent',figure3,'XTickLabel',...
103 {num2str(0*dt*NT),num2str(dt*NT/2),num2str(dt*NT)},...
104 'XTick',[0 NT/2 NT]);
105 box('on');
106 hold('all');
107 plot4 = plot(1:NT,H(NX,:));
108 title('Head at valve as it evolves in time','Interpreter','latex',...
109 'FontSize',12);
110 xlabel('Time t [s]','Interpreter','latex','HorizontalAlignment','center',...
111 'FontSize',11);
112 ylabel('Head H [m]','Interpreter','latex','HorizontalAlignment','center',...
113 'FontSize',11);

A.1.5 sd.m

1 function Vdt=sd(H,u)
2

3 % The function "sd(H,u)" takes on a pressure drop and a velocity
4 % profile. It solves the equation of motion for parallel
5 % axisymmetric flow for an incompressible fluidfor this velocity

45

6 % profile and the associated pressure drop axisymmetric flow for
7 % an incompressible fluid. The convective term is found using
8 % "conv(u)" and the laplacian is found using "lap(u)". The dynamic
9 % system is then solved using ode45 from time 0 to time dt.

10

11 % −−−
12

13 global dr
14 global nu
15 global rho
16 global NX
17 global dx
18 global px
19

20 parameters;
21

22 px = H*rho*g;
23

24 [t,Vt] = ode45(@mfun,[0 dt],u);
25

26 n = length(Vt(:,1));
27 Vt(:,end)=0;
28 Vdt = Vt(end,:);
29 Vdt(end)=0;
30

31 % −−−
32

33 figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
34

35 subplot1 = subplot(2,1,1,'Parent',figure1,'XTickLabel',...
36 {'0 ','R/2','R'},'XTick',[0 0.0635 0.127]);
37 view([−160.5 42]);
38 grid('on');
39 hold('all');
40

41 surf(r,t,Vt,'Parent',subplot1,'EdgeColor','none');
42

43 title('Velocity profile as it evolves in time','Interpreter','latex',...
44 'FontSize',12);
45 xlabel('Radial position r [m]','Interpreter','latex',...
46 'HorizontalAlignment','right','FontSize',11);
47 ylabel('Time t [s]','Interpreter','latex',...
48 'HorizontalAlignment','right','FontSize',11);
49 zlabel('Velocity v [m/s]','Interpreter','latex',...
50 'HorizontalAlignment','right','FontSize',11);
51

52 subplot2 = subplot(2,1,2,'Parent',figure1,'XTickLabel',...
53 {'0 ','R/2','R'},'XTick',[0 0.0635 0.127]);
54 box('on');
55 hold('all');
56

46

57 plot1 = plot(r,u,r,Vdt);
58

59 set(plot1(1),'DisplayName',['Time=',num2str(dt*0),'s']);
60 set(plot1(2),'DisplayName',['Time=',num2str(dt*1),'s']);
61

62 title('Velocity profile','Interpreter','latex','FontSize',11);
63 xlabel('Radial position r [m]','Interpreter','latex','FontSize',11);
64 ylabel('Velocity v [m/s]');
65 legend(subplot2,'show');
66

67 % −−−
68

69 function fv = mfun(t,u)
70 global nu
71 global rho
72 global NX
73 global px
74

75 fv = u*0;
76 fv = −px/rho+nu*conv(u)+nu*lap(u);
77

78 % −−−
79

80 function Cv = conv(u);
81 global dr
82 n=length(u);
83

84 Cv = u*0;
85 for i = 2:n−1
86 Cv(i) = (u(i+1)−u(i−1))/(2*dr*(i−1)*dr);
87 end
88 Cv(n) = (−u(n−1))/(2*dr*(n−1)*dr);
89

90 % −−−
91

92 function Av = lap(u)
93 global dr
94 n = length(u);
95

96

97 Av = u*0;
98 Av(1) = 2*(u(2)−u(1))/drˆ2;
99 for i = 2:n−1

100 Av(i) = (u(i−1)−2*u(i)+u(i+1))/drˆ2;
101 end
102 Av(n) = 2*(−u(n−1))/drˆ2;

A.1.6 ssd.m

47

1 function hdt=sdd(h,v)
2

3 % The function "sdd(h,v)" takes on the pressure and flow distribution
4 % in the axial direction of the pipe and solves the equation of
5 % continuity by means of ode24. The spacial derivatives are found
6 % using the function "der(u)".
7 global NX
8 global dx
9 global u

10 global dvdx
11 global x
12 u=v;
13 parameters;
14 dvdx=(aˆ2/g)*(deru(u));
15

16

17 [t,ht] = ode45(@mfun,[0 dt],h);
18

19 hdt = (ht(end,:))';
20 hdt(1)=H0;
21 % hdt(end)=h(end);
22

23 function fv = mfun(t,h)
24 parameters;
25 global u
26 global dvdx
27 fv = h*0;
28 fv= −uderh(h,u)−dvdx';
29

30 % −−−
31

32 function Cv = deru(u);
33 parameters;
34 n=length(u);
35

36 Cv = u*0;
37 Cv(1) = (u(2)−u(1))/dx;
38 for i = 2:n−1
39 Cv(i) = (u(i+1)−u(i−1))/(2*dx);
40 end
41 Cv(n) = (u(n)−u(n−1))/(dx);
42

43 % −−−
44

45 function vh = uderh(h,u);
46 parameters;
47 n=length(u);
48

49 vh = h*0;
50 vh(1) = u(1)*(h(2)−h(1))/(dx);
51 for i = 2:n−1

48

52 vh(i) = u(i)*(h(i+1)−h(i−1))/(2*dx);
53 end
54 vh(n) = u(n)*(h(n)−h(n−1))/(dx);
55

56 % −−−

A.1.7 LaxWendroff.m

1 function Hdt = LaxWendroff(h,u)
2

3 parameters;
4

5 Hdt = h−derh(h,u)+flux(h,u)+(aˆ2/g)*(−derua(u)+derub(u));
6

7

8

9

10 % −−−
11

12 function dua = derua(u);
13 parameters;
14 n=length(u);
15

16 dua = u*0;
17 dua(1) = (dt/(dx))*(u(2)−u(1));
18 for i = 2:n−1
19 dua(i) = (dt/(2*dx))*(u(i+1)−u(i−1));
20 end
21 dua(n) = (dt/(dx))*(u(n)−u(n−1));
22

23 % −−−
24

25 function dub = derub(u);
26 parameters;
27 n=length(u);
28

29 dub = u*0;
30 dub(1) = (dtˆ2/(dxˆ2))*(u(2)−u(1));
31 for i = 2:n−1
32 dub(i) = (dtˆ2/(2*dxˆ2))*(u(i+1)−2*u(i)+u(i−1));
33 end
34 dub(n) = (dtˆ2/(dxˆ2))*(u(n)−u(n−1));
35

36 % −−−
37

38 function fl = flux(h,u);
39 parameters;
40 n=length(u);

49

41

42 fl = h*0;
43 fl(1) = ((u(1)ˆ2*dtˆ2)/(2*dxˆ2))*2*(h(2)−h(1));
44 for i = 2:n−1
45 fl(i) = u(i)ˆ2*dtˆ2/(2*dxˆ2)*(h(i+1)−2*h(i)+h(i−1));
46 end
47 fl(n) = (u(n)ˆ2*dtˆ2/(2*dxˆ2))*(h(n)−h(n−1));
48

49 % −−−
50

51 function udh = derh(h,u);
52 parameters;
53 n=length(u);
54

55 udh = h*0;
56 udh(1) = (u(1)*dt/dx)*(h(2)−h(1));
57 for i = 2:n−1
58 udh(i) = ((u(i)*dt)/(2*dx))*(h(i+1)−h(i−1));
59 end
60 udh(n) = (u(n)*dt/dx)*(h(n)−h(n−1));

A.1.8 shear.m

1 function ∆h = shear(u)
2

3 % The function "shear(u)" takes on a velocity profile and
4 % computes the pressure drop over each sylinder shell by means
5 % of the shear stress between the shells. The average pressure
6 % drop/headloss for the whole crossection of the pipe is found
7 % after computing the contribution from each sylinder shell.
8

9 parameters;
10

11 n = length(u);
12

13 ∆p=0;
14 for k=1:NR−1
15 ∆p=∆p+4*nu*rho*(drˆ2*dx/Rˆ4)*kˆ2*(u(k+1)−u(k));
16 end
17

18 ∆h=∆p/(rho*g);

A.1.9 average.m

1 function AvVdt = average(Vdt)

50

2

3 parameters;
4

5 n = length(Vdt);
6

7 AvVdt=0;
8 for k = 1:n
9 AvVdt=AvVdt+2*(k/nˆ2)*Vdt(k);

10 end

51

Appendix B

Simulink Model

B.1 paramters.m

1 % Pipe
2

3 L = 30;
4 A = 0.05;
5 B = 1.5e9;
6

7

8 % Rotor
9

10 Inertia rt = 100000;
11

12 Torque rt max=310e5*1.800679e−3;
13 Torque rt min=40e5*1.800679e−3;
14

15 Torque rt = 20000;
16 Step torque rt = 20000;
17 Step time=500;
18

19

20 % Pump
21

22 Omega p min = 1.7438;
23 Omega p max = 5.7596;
24 Omega p start = 4.1888;
25 D p = 1.800679e−3;
26 Cl p = 7.5e−12;
27 Cf p = 0.01;
28 Cd p = 7.5e−12;
29

30

31 % Motor

52

32

33 Omega m start = 159;
34 Omega m set = 157;
35 Rotary Inertia m = 1500;
36

37 D m min = 2.0e−5;
38 D m max = 8.0e−5;
39

40 Cl m = 7.5e−12;
41 Cd m = 7.5e−12;
42 C m = .005;
43

44

45 % Generator
46 Torque vector = 1e3 * [5 10 15 20 25 30 35 40 45 50 55];
47 Gain vector = [2.7 2.2 1.9 1.7 1.5 1.30 1.25 1.15 1.05 .95 .87];
48

49

50 % PID control 40.000
51 P gain = 9.7286e−006;
52 I gain = 2.5e−007;
53 D gain = 4.9985e−5;
54

55

56 figure1 = figure('PaperSize',[20.98 29.68]);
57

58 axes('Parent',figure1,'XTickLabel',{'5000','30000','55000'},...
59 'XTick',[5000 3e+004 5.5e+004]);
60 box('on');
61 hold('all');
62

63 plot(Torque vector,Gain vector);
64 xlabel('Rotor torque','Interpreter','latex','FontSize',11);
65 ylabel('Gain','Interpreter','latex','FontSize',11);
66 title('Generator gains','Interpreter','latex','FontSize',12);

B.2 Kvalsund.mdl

53

!

"
#
$%
&
'
(
)

*

+
#
,
'
$(
)

-

+
#
,
'
$(
.

/

"
#
$%
&
'
(
.

"
#
$%
&
'
(
0
1
2
(
+
#
,
'
$

+
-
(
3

+
/

4
)
'
5
0
(
.

"
#
$%
&
'
(
.

+
#
,
'
$(
.

+
&
)
.
(
"
#
$%
&
'
(

0
1
2
(
+
#
,
'
$

+
-
(
3

67
-
(
3

+
/

4
)
'
5
0
(
.

7
/

+
&
)
.

8
(
)

6

+
$'
9
9
&
$:9
'
2
(
6
#
;&
)
'

+
$'
9
9
&
$'
9

7
-

+
-

7
-
(
3

+
-
(
3

+
:.
'
(
<
;#
,
(
=
#
2
'
;(
$'
>&
$1

+
/

7
/

+
/
(
3

7
/
(
3

+
:.
'
(
<
;#
,
(
=
#
2
'
;

6?
0
>&
$0
;(
<
$'
%
&
'
1
@
A
(

0
1
2
(
8
0
)
.
:1
5

+
/
(
3

8
(
)

+
-

4
)
'
5
0
(
)

"
#
$%
&
'
(
)

+
#
,
'
$(
)

=
#
>#
$(
"
#
$%
&
'
(

0
1
2
(
+
#
,
'
$

+
/
(
3

7
/
(
3

6

8
(
)+
-

4
)
'
5
0
(
)

7
-

=
#
>#
$

B

.
$:1
>'
2
BB-
!
!
C
&
1
!
-
D
D
E
BB/
E
F!
G

.
0
5
'
B/
H/
!

K
v
a
ls
u
n
d

HI
9
'
$9
H)
0
5
1
&
9
5
&
;9
>0
2
H8
'
9
J
>#
.
HK
J
#
;'
H8
:.
;#
)
HK
:)
&
;:1
J
H.
:2
@
#
1
>$#
;;'
2
HL
M
0
;9
&
1
2
N)
2
;

54

!"
$

%
&
'
(
)
*
&

#+
,

-
*
&

-
*
&

+
,
*
.

+
#

%
&
'
(
)
*
&

/
0
'
'
1

2
3
43
567
)
58)
9
:'
;

-
*
&

+
,
*
.

7"
,
*
.

%
&
'
(
)
*
&

+
#

"
#

<
:3
=

%
&
'
(
)
*
&

-
*
&

-
8;
0
:)
>
'
&
'
?
4@
3
?
453
:

$7#

"
,
*
.

,

+
,
*
.

6

0
58?
4'
1
66#
!
!
A
B
?
!
#
C
C
D
66,
D
E!
F

0
)
(
'
6#
G,
!

K
v
a
ls
u
n
d
/M
o
to
r

GH
;
'
5;
G&
)
(
?
B
;
(
B
:;
4)
1
G-
'
;
I
43
0
G/
I
3
:'
G-
80
:3
&
G/
8&
B
:8?
I
G0
81
>
3
?
453
::'
1
GJ
K
)
:;
B
?
1
L&
1
:

55

!

"
#
$

%
&
'(
)&
'*+
,

-
#
.
&
*,

/
$
0
.
&
#
$
#
1
0
'

!1

2,
'0
.
)&
'+
)3

2#
.
&
*,

"
#
.
&
*,

4
(
54
'

"
0
)*6
&
'*6
0

"
0
7'&
#

/
$
0
.
&
#
$

!

/
$
0
.
&
#
$

8

9
)*,
'0
4
88:
;
!
<
(
,
!
:
=
=
>
88!
>
?;
@

9
&
.
0
83
5!
;

K
v
a
ls
u
n
d
/M
o
to
r/D
is
p
la
c
e
m
e
n
tC
o
n
tro
l

5A
1
0
)1
5$
&
.
,
(
1
.
(
71
'&
4
5"
0
1
B
'+
9
5%
B
+
70
5"
*9
7+
$
5%
*$
(
7*,
B
59
*4
C
+
,
')+
770
4
5D
6
&
71
(
,
4
E$
4
7

56

!"
!

#$
!

#%

&'
()
*
+,
(-
+

.
/
0
1

.
20
1

3

4

5
1
)
*
,
0
1

6

"
#
0
7

89!

$
#
0
7

#

:
0
1

;

<
+='
()
/
;;!
6
!
>
?
'
!
!
@
@
A
;;#
A
B6
C

<
,
*
)
;6
D#
6

K
v
a
ls
u
n
d
/M
o
to
r
/F
lo
w

DE
%
)
+%
D1
,
*
'
?
%
*
?
2%
(,
/
D:
)
%
F
(-
<
DG
F
-
2)
D:
=<
2-
1
DG
=1
?
2='
F
D<
=/
H
-
'
(+-
22)
/
DI
J
,
2%
?
'
/
K1
/
2

57

!

"
#
$
%
&
'
#

(
)
*+
,
$
'
*-

(
)
*+
,
$
'
*-

(
)
*+
,
$
'
%
$
.
!

(
)
*+
,
$
'
%
$
.

/
0
1-2
3

/
-$
4
5

/
-$
4
!

6
6

7
$
8&
-1)
.
&
8

"
4
$
*&
-)
*

9
)
)
:
,
4
;(
&
<
8$

!=

>
$
.
$
*&
-)
*'
%
&
1.
=

>
$
.
$
*&
-)
*'
&
.
?
'

@
)
-)
*'
(
)
*+
,
$

A
'
#

7
)
-&
*B
'
C.
$
*-1&
'
#

DE
5 5

E
!
'
F

!

G
'
#

;

4
*1.
-$
?
;;5
H
!
I
,
.
!
5
J
J
K
;;!
K
LH
M

4
&
%
$
;N
O!
H

K
v
a
ls
u
n
d
/M
o
to
r/S
p
e
e
d

OP
=
$
*=
O#
&
%
.
,
=
%
,
8=
-&
?
OG
$
=
:
-)
4
O/
:
)
8$
OG
14
8)
#
O/
1#
,
81.
:
O4
1?
2
)
.
-*)
88$
?
OQ
R
&
8=
,
.
?
S#
?
8

58

!

"
#
$
%
&'
(

)

*
#
&+
,
%
'
(

-
#
.#
&/*
#
&+
,
%

0
1
2
/"
#
$
%
&

3

4
(
%
5
0
'
(

6"
! !

7
'
()

"
)
'
8

/

9
&:1
.%
2
//!
3
!
;
,
1
!
!
<
<
=
//)
=
>3
?

9
0
5
%
/@
A)
3

K
v

a
ls

u
n

d
/M

o
to

r_
T

o
rq

u
e

_
 a

n
d

_
P

o
w

e
r

AB
C
%
&C
A(
0
5
1
,
C
5
,
DC
.0
2
A7
%
C
E
.#
9
AF
E
#
D%
A7
:9
D#
(
AF
:(
,
D:1
E
A9
:2
G
#
1
.&#
DD%
2
AH
I
0
DC
,
1
2
J(
2
D

59

!
"
#$
%"
&'(
%)
*
$
)
+
,
-

"
+
.
'.
"
/
0
1+
2

$
3

$
3

4
*
%#

5
67
0

8
7
0

9+
)
%#1"
7
%#

5
&7
0

:
;3

<

9+
)
%#1"
7
%#

8
7
0

:=

'

0
%1+
#)
.
''3
>
!
?
$
+
!
3
@
@
A
'':
A
B>
C

0
"
2
)
'A
;:
>

K
v

a
ls

u
n

d
/N

a
tu

ra
l_

F
re

q
u

e
n

c
y

_
 a

n
d

_
D

a
m

p
in

g

;D
4
)
%4
;/
"
2
+
$
4
2
$
&4
#"
.
;8
)
4
E
#F
0
;G
E
F
&)
;8
10
&F
/
;G
1/
$
&1+
E
;0
1.
,
F
+
#%F
&&)
.
;H
I
"
&4
$
+
.
J/
.
&

60

!

"
#
$
%

#

&
#
$
%

!"
#&
#

'

(
)*+
,-
.
''!
/
!
0
1
+
!
!
2
2
3
''#
3
4/
5

(
6
7
-
'8
9#
/

K
v
a
ls
u
n
d
/P
ip
e
_
F
lo
w
_
M
o
d
e
l9:
;
-
);
9<
6
7
+
1
;
7
1
=;
,6
.
9>
-
;
?
,@
(
9A
?
@
=-
9>
*(
=@
<
9A
*<
1
=*+
?
9(
*.
B
@
+
,)@
==-
.
9C
D
6
=;
1
+
.
E<
.
=

61

!

"
!
#
$

%

&
!
#
$

!"
!%&
!

'

(
)*+
,-
.
''!
/
!
0
1
+
!
!
2
2
3
''%
3
4/
5

(
6
7
-
'5
8%
/

K
v
a
ls
u
n
d
/P
ip
e
_
F
lo
w
_
M
o
d
e
l_
re
tu
rn

89
:
-
):
8;
6
7
+
1
:
7
1
<:
,6
.
8=
-
:
>
,?
(
8@
>
?
<-
8=
*(
<?
;
8@
*;
1
<*+
>
8(
*.
A
?
+
,)?
<<-
.
8B
C
6
<:
1
+
.
D;
.
<

62

!"

#

#
$
%
&
'(

)

*
+,
-
-
$
.
'/,
%

!
01

2
3
4

!

2
3
5

6

4
+/%
'$
7
661
8
!
9
:
%
!
1
;
;
<
66!
<
=8
>

4
?
&
$
6!
;
0!
8

K
v
a
ls
u
n
d
/P
re
s
s
u
ris
e
d
_
V
o
lu
m
e

0@
-
$
+-
05
?
&
%
:
-
&
:
A-
'?
7
02
$
-
B
',
4
0C
B
,
A$
02
/4
A,
5
0C
/5
:
A/%
B
04
/7
.
,
%
'+,
AA$
7
0D
E
?
A-
:
%
7
F5
7
A

63

!"
$

%
&
'
(
)
*
+

#,
#

,
$
*
-

,
#

.
/
0/
1*
0/
12
3
'

%
&
'
(
)
*
+

4
+
'
'
5

,
3
&
+
6,
)
1)
&
'
0'
17

%
&
'
(
)
*
+

,
$
*
-

8"
$
*
-

,
#

"
#

9
:/
;

!

"
$
*
-

$8 #

,
$
*
-

6

+
1<=
0'
5
66$
>
!
?
3
=
!
$
@
@
A
66#
A
B>
C

+
)
(
'
6#
#
D#
>

K
v
a
ls
u
n
d
/P
u
m
p

DE
7
'
17
D&
)
(
=
3
7
(
3
:7
0)
5
DF
'
7
G
0/
+
D4
G
/
:'
DF
<+
:/
&
D4
<&
3
:<=
G
D+
<5
H
/
=
01/
::'
5
DI
J
)
:7
3
=
5
K&
5
:

64

!"
#$
#

#%

&'
()
*
+,
(-
+

.
/
0

1
2
/
0

1
3/
0

4

5

"
!
/
6

78!

$
!
/
6

#

9
:
)
*
,
/
0

;

0
+<'
()
2
;;!
5
!
=
>
'
!
!
?
?
@
;;#
@
A5
B

0
,
*
)
;#
!
C#
5

K
v
a
ls
u
n
d
/P
u
m
p
/F
lo
w

CD
%
)
+%
C:
,
*
'
>
%
*
>
3%
(,
2
C.
)
%
E
(-
0
CF
E
-
3)
C.
<0
3-
:
CF
<:
>
3<'
E
C0
<2
G
-
'
(+-
33)
2
CH
I
,
3%
>
'
2
J:
2
3

65

!

"
#
$
%
&
'
(

)

*
+
,+
-'
,+
-.
/
$

0
+
-.
/
$
'
-,

0
+
-.
/
$
'
-,

1
,$
(

)2

34
,$
%
-&
,+
-

5
6'
(

34
$
-,7&
'
-,

8
'
(

9
:
:
!

!;
))

;
!
'
6

<

(
-74
,$
:
<<!
=
!
>
/
4
!
!
?
?
@
<<)
@
A=
B

(
&
%
$
<)
C
D)
=

K
v
a
ls
u
n
d
/P
u
m
p
/S
p
e
e
d

DE
2
$
-2
D#
&
%
4
/
2
%
/
F2
,&
:
D8
$
2
G
,+
(
D1
G
+
F$
D8
7(
F+
#
D1
7#
/
F74
G
D(
7:
H
+
4
,-+
FF$
:
DI
J
&
F2
/
4
:
K#
:
F

66

!

"
#
$
%
&'
(

)

*
#
&+
,
%
'
(

"
,
-
(
.*
#
&+
,
%

/
0
1
."
#
$
%
&

2
'
(

3

4
-
%
5
/
'
(

!"
))

"
!
'
6

.

(
&70
8%
1
..!
9
!
:
,
0
!
!
;
;
<
..)
<
=9
>

(
/
5
%
.)
9
?)
9

K
v

a
ls

u
n

d
/P

u
m

p
_

T
o

rq
u

e
_

 a
n

d
_

P
o

w
e

r

?@
A
%
&A
?-
/
5
0
,
A
5
,
BA
8/
1
?2
%
A
C
8#
(
?D
C
#
B%
?2
7(
B#
-
?D
7-
,
B70
C
?(
71
E
#
0
8&#
BB%
1
?F
G
/
BA
,
0
1
H-
1
B

67

