
June 2007
Alexei Roudakov, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Security Analysis of the NTRUEncrypt
Public Key Encryption Scheme

Halvor Sakshaug

Problem Description

The NTRUEncrypt public key cryptosystem is a relatively new system. The work should give a
survey of the existing analysis of the system, especially lattice-based attacks.

Assignment given: 17. January 2007
Supervisor: Alexei Roudakov, MATH

Abstract

The public key cryptosystem NTRUEncrypt is analyzed with a main focus
on lattice based attacks. We give a brief overview of NTRUEncrypt and
the padding scheme NAEP. We propose NTRU-KEM, a key encapsulation
method using NTRU, and prove it secure. We briefly cover some non-lattice
based attacks but most attention is given to lattice attacks on NTRUEn-
crypt. Different lattice reduction techniques, alterations to the NTRUEn-
crypt lattice and breaking times for optimized lattices are studied.

i

ii

Preface

I would like to thank Kristian Gjøsteen for excellent supervision of this
project, Per Kristian Hove for quick and helpful assistance in C++ im-
plementations and the fellow students Børge Nordli, Asgeir Steine, Jørgen
Avdal and Øystein Thuen for proofreading, discussions and answers.

iii

iv

Contents

1 Introduction 1

2 Lattices and lattice reduction 1

2.1 Lattices . 1
2.2 Reduced lattice basis . 2
2.3 LLL reduced lattice basis and the LLL algorithm 3
2.4 The LLL floating point algorithm 4
2.5 Korkin-Zolotarev reduced lattice basis 5
2.6 Block Korkin-Zolotarev reduced lattice basis 6
2.7 Random sampling reduction 9

3 The NTRUEncrypt cryptosystem 11

3.1 Public key cryptosystems . 11
3.2 NTRUEncrypt . 12
3.3 The Ring . 12
3.4 NTRUEncrypt basics . 13

3.4.1 Security levels and parameter settings 13
3.4.2 Key generation . 13
3.4.3 Encryption . 13
3.4.4 Decryption . 14

3.5 Multiple transmission attack 14
3.6 Decryption failure attack . 14
3.7 Evolution of parameters . 15
3.8 Protection against adaptive chosen ciphertext attaks 17

4 Key Encapsulation Mechanism 19

4.1 NTRU-KEM . 19
4.2 Attack game . 20

5 Non-lattice attacks 24

5.1 Brute force attacks . 24
5.2 Meet-in-the-middle attack . 25

6 Lattice attacks 26

6.1 Attack on the NTRUEncrypt public key 27
6.2 Attack on individual NTRUEncrypt message 30
6.3 Attack by spurious keys . 31
6.4 Non-deterministic parallel reduction 31
6.5 Adjustments to the NTRUEncrypt lattice 35

6.5.1 Zero forcing . 35
6.5.2 Tricks exploiting p and optimizing lattice constants . . 37
6.5.3 An attack on the inverse of the public key 41
6.5.4 Removing rows . 42

v

7 Results 43

7.1 Results of improved lattices 44
7.2 Breaking times for NTRUEncrypt lattices 45
7.3 Other results . 47

8 Concluding remarks 48

References 49

vi

1 Introduction

The NTRUEncrypt public key cryptosystem was first presented at Crypto
’96 by NTRU Cryptosystems Inc and is now included in the IEEE P1363
standard. NTRUEncrypt offers high speed key creation, encryption and
decryption and can easily be implemented on constrained devices. It has
gained interest and customers in the electronics industry.

NTRUEncrypt is a probabilistic, lattice based cryptosystem. The hard
problem of NTRUEncrypt is based on finding very short vectors in a lat-
tice of high dimension. NTRUEncrypt has the unusual feature of decryp-
tion failures, namely that validly created ciphertexts may fail to decrypt
correctly. New parameter sets for NTRUEncrypt have been presented on
several occasions to increase security and efficiency. With the latest recom-
mended parameter sets from NTRU Cryptosystems decryption failuers are
extremely rare or do not occur at all.

We present the NTRUEncrypt cryptosystem, its evolution, paddings and
various attacks. We propose an NTRU-KEM and analyze its security in
section 4. Our main focus has been on lattice attacks on NTRUEncrypt
studying general lattice reduction methods in section 2 and methods specific
for the NTRUEncrypt lattice and adjustments to the lattice itself in section
6. We have also implemented lattice reduction of NTRUEncrypt lattices
testing various adjustments to the NTRUEncrypt lattice and run a series of
experiments to project breaking times for NTRUEncryt. Results are given
in section 7.

2 Lattices and lattice reduction

2.1 Lattices

A lattice is a discrete, additive subgroup of Rn. We may also restrict to
additive subgroups of Zn called integer lattices. An equivalent definition
of lattice is all integral linear combinations of a set of linearly independent
vectors,

L = {
m
∑

i=1

aibi | ai ∈ Z,bi ∈ Rn}

where {bi} is a set of linearly independent vectors in the vector space Rn.
A set of linearly independent vectors generating the lattice is called a basis,
and there are an infinite number of different bases for a lattice. All bases of
a lattice share the same number of elements, called the rank of the lattice.
If m = n, the lattice is said to have full rank.

We will often represent the lattice as a matrix with the basis vectors
as the columns of the matrix. Operations on the lattice are exchanging of
vectors and adding a multiple of one vector to another. This can be done

1

by multiplying by an n× n identity matrix with two columns exchanged or
with a non-zero off-diagonal element respectively. Such matrices for elemen-
tary column operations clearly have determinant ±1. These matrices and
products of them are called unimodular matrices.

The determinant of a lattice is denoted det(L) and also called the volume
of the lattice. It is given as det(L) =

√

|LT L|, with the lattice written as
a matrix and | · | the regular matrix determinant. For the special case of
full rank lattices the lattice determinant equals the matrix determinant. It
remains unchanged in lattice operations as multiplying by a unimodular
matrix has determinant ±1. The determinant can also be computed as the
product of the lengths of an orthogonalized system of vectors, hence the
name volume for the m-dimensional parallelepiped spanned by the basis.

For norms of vectors, ‖bi‖, the Euclidian length is used. Finding the
shortest vector in the lattice, or the vector closest to a given point not in
the lattice are central problems in the study of lattices. These problems
are called shortest vector problem (SVP) and closest vector point (CVP)
respectively, and defined as follows,

Shortest vector problem: SVP(L) = {x | x 6= 0,∀y ∈ L : |x| ≤ |y|}

Closest vector point: CVP(L,x0) = {x | ∀y ∈ L : |x− x0| ≤ |y − x0|}.

The shortest vector of a lattice is called the first minimum and denoted
by λ1(L) or simply λ(L). We can define successive minima of a lattice by
λi = λi(L) where λi is the radius of the smallest ball centered at the origin
containing i linearly independent vectors.

For the further treatment of lattices we will introduce some more no-
tation. Let b∗

1, ...,b
∗
m denote an orthogonalized system of lattice vectors

orthogonalized on increasing indices as in the Gram-Schimdt procedure.

The projection of a lattice vector onto another is given by µi,j =
〈bi,b

∗

j 〉

〈b∗

j ,b∗

j 〉

for 1 ≤ j ≤ i ≤ m. We will also use dxc = bx + 0.5c as rounding to the
nearest integer.

2.2 Reduced lattice basis

We are interested in lattice bases with certain good properties. Primarily we
seek a basis that has one or more short vectors. Finding the shortest vector
in a lattice of arbitrary rank is infeasible as solving SVP under randomized
reductions is NP-hard [1, 13], and it has also been shown that CVP is equally
hard [28]. To obtain a feasible bound on the computational time, we accept
reasonably short vectors by weaker bounds on the length.

Lattice basis reduction algorithms finds a lattice basis with short vectors
that are nearly orthogonal and sorted on length. We call such lattice bases
reduced.

2

There are different definitions of a reduced lattice basis and ways of ob-
taining such. Primarily there are different orderings of the vectors on which
the quality of reduction and efficiency of the reduction method depends. A
strict ordering of vectors by their length leads to a runnning time exponen-
tial in the dimension of the lattice. More lenient restrictions lead to running
times exponential in a factor lower than the dimension of the lattice and for
some orderings a polynomial running time. More efficient algorithms give
lower quality of reduction.

We will examine the upper bounds of vector lengths and running time
of some definitions of reduced lattice bases and corresponding methods for
obtaining them. We do not give all details here but refer to [21].

A general criterion for all definitions of reduced lattice basis is that the
basis is size reduced meaning that

|µi,j| ≤ 0.5

for all 1 ≤ j < i ≤ m. Size reduction of a lattice decreases vector lengths as
well as ensuring that the vectors are close to orthogonal. It is performed by
setting

bi ← bi − dµi,jcbj .

2.3 LLL reduced lattice basis and the LLL algorithm

We first present the LLL lattice basis reduction algorithm by Lenstra, Lenstra
and Lovász [14], which is an efficient algorithm for finding a reduced basis,
and the method also gives name to the following definition.

Definition 1. A lattice basis is Lovász reduced, if for a δ, 1
4 < δ < 1, and

all i, 2 ≤ i ≤ m the vectors satisfy the ordering

δ‖b∗
i−1‖2 ≤ ‖b∗

i − µi,i−1b
∗
i−1‖2. (1)

A lattice basis is LLL reduced with a given δ if it is size reduced and Lovász
reduced.

Proposition 1. The length of vectors in an LLL reduced lattice bases sat-
isfies

‖b∗
j‖2 ≤ 2i−j‖b∗

i ‖2, and

‖b1‖ ≤ 2
n−1

4 det(L)
1
n .

Proposition 2. An LLL reduced lattice basis can be obtained by at most
O(m3n log(B)) operations on integers that are O(m log(B)) bits long, where
B = maxi ‖bi‖2 in the initial lattice.

The two main operations of the LLL algorithm is the size reduction and
swap of consequtive vectors when (1) is not satisfied. Starting with i = 2

3

it builds a subset of vectors that are size reduced and Lovász reduced by
increasing the subset when (1) is satisfied and shrinks the subset when it is
not. At i = m the algorithm terminates as it will be size reduced and all
pairs are ordered.

The LLL algorithm is described in Algorithm 1. This variant focuses
on simplicity and ignores many obvious improvements. See [14] for a full
presentation of the LLL algorithm.

Due to its effectiveness, the LLL algorithm with different improvements
has become a standard method for lattice reduction. LLL also serves as the
basic reduction procedure in other lattice reduction methods.

Algorithm 1 LLL algorithm

Input: Lattice basis {b1, ...,bn} ⊂ Zn

Start
[Initial step] Compute orthogonalized vectors, b∗

1, ...,b
∗
n

[Reduction step]
for i from 2 to n do

for j from i− 1 to 1 do

bi ← bi − dµi,jcbj

[Swap step]
for i from 2 to n do

if δ‖b∗
k−1‖2 > ‖µk,k−1b

∗
k−1 + b∗

k‖2 then

bk−1 ↔ bk

goto Start
Output b1, ...,bn

2.4 The LLL floating point algorithm

The original LLL algorithm of Lenstra, Lenstra and Lovász operate on in-
teger lattices and also uses integers for representing the entries of rational
numbers originating in Gram-Schmidt orthogonalization. To speed up the
algorithm it is desireable to use floating point arithmetics for all non-integral
numbers, while keeping the lattice entries integral. This does however affect
stability, and due to round off errors the algorithm may fail to terminate,
or produce a basis which is not LLL reduced.

Several floating point versions of LLL with reduced running time have
been proposed. Different floating point precision, different orthogonalization
methods and special considerations when floats become very large or very
small are the main ideas of these proposed algorithms. Some reduction of
worst case running time is achieved, especially at low precision. To retain
stability in high dimension, a certain amount of precision is needed, as well
as more costly orthogonalization methods.

Choosing the best LLL procedure to use for a given lattice is hard. LLL

4

reduction generally behaves much better than the given worst case bounds
both in running time and lengths of vectors. Using methods extending LLL
such as BKZ or “deep insertions”, where not only consequtive vectors are
swapped, allow trade-offs between quality of reduction and running time.
Practical performance on individual matrices may also differ greatly.

2.5 Korkin-Zolotarev reduced lattice basis

The most natural definition of reduced lattice basis was introduced by Ko-
rkin and Zolotarev [12] and has a strict ordering of the vectors with respect
to their lengths. Let πi(bl) be the projection of bl orthogonal to b1, ...,bi−1.
Let Li be the lattice of rank m− i+1 with basis πi(bi), πi(bi+1), ..., πi(bm).
Note that in Li we have πi(bi) = b∗

i and πi(bl) = b∗
l +

∑l−1
k=i µl,kb

∗
k.

Definition 2. A Korkin-Zolotarev reduced basis is size reduced bases that
satisfies

‖b∗
i ‖ = λ1(Li) for all i.

As the basis is size reduced, we have µ2
i,j ≤ 1

4 for all j < i and for the
upper bound of vector lengths we have

‖bi‖2 ≤ ‖b∗
i ‖2 +

1

4

i−1
∑

j=1

‖b∗
j‖2 ≤ λi(L)2 +

1

4

i−1
∑

j=1

λj(L)2 ≤ i + 3

4
λi(L)2.

For j ≤ i we have that

‖b∗
j‖2 = λ1(Lj)

2 ≤ ‖bi‖2

and

‖bj‖2 ≤ ‖b∗
j‖2 +

1

4

j−1
∑

k=1

‖b∗
k‖2 ≤

j + 3

4
‖bi‖2,

so consequently

λi(L)2 ≤ i + 3

4
‖bi‖2,

which also gives us a lower bound for ‖bi‖ resulting in the following propo-
sition

Proposition 3. The length of the vectors in a KZ reduced basis satisfies

4

i + 3
≤ ‖bi‖2

λ2
i

≤ i + 3

4
for i = 1, ...,m. (2)

Given a Korkin-Zolotarev reduced lattice basis we would like to bound
the lengths of the orthogonal projections, namely to find the bound of the
constant αk in ‖b∗

i ‖2 ≤ αk‖b∗
i+j‖2, for j ≤ k − 1. Given that two vectors

bi,bi+j have the same length in Li, how much shorter can the orthogonal

5

projection of one to the other be? With size reduced vectors |µi+j,i| ≤ 1
2 we

can find the minimal length of ‖b∗
i+1‖2. For this set j = 1, k = 2 to imagine

two vectors of equal length in Li, ‖πi(bi)‖ = ‖πi(bi+1)‖ and consider them
spanning an equilateral triangle. As |µi,j| ≤ 1

2 , this construction maximizes

the value of α2. The height of this triangle is
√

3
4 , and hence ‖b∗

i+1‖2 ≥
3
4‖πi+1(bi+1)‖2. Combining with the equalities above we get α2 = 4

3 and
thus,

‖b∗
i ‖2 ≤

4

3
‖b∗

i+1‖2.

Similarly from the construction of a tetrahedron with edges of unit length

we get the height
√

2
3 resulting in α3 = 3

2 for k = 3.

The values of αk can be bounded above by the Hermite constants γk

which are defined as

γk = sup{λ1(L)2 det(L)
−2
k | L a lattice of rank k}. (3)

Exact values of the constants are only known for k ≤ 8 (see [3]), and we
will be using both αk and γk without further specifications. With j ≤
k − 1, i + j ≤ n, we get

‖b∗
i ‖2 ≤ αk‖b∗

i+j‖2.
Inductive application of this bound in steps of k−1 vectors with j ≤ l(k−1)
yields

‖b∗
i ‖2 ≤ αl

k‖b∗
i+j‖2. (4)

Proposition 4. A Korkin-Zolotarev reduced basis can be obtained by at

most
√

n
n+o(n)

+ O(n4 log(B)) arithmetic steps on integers no longer than
O(n log(B)) bits.

To find a Korkin-Zolotarev reduced basis we choose the shortest vector
in L, then find the shortest vector in L2, which is the shortest vector in
span(b1)

⊥ ⊂ L. Then we proceed to the shortest vector in L3, ..., Lm−1.
Size reductions must also be carried out, potentially requiring vectors to be
sorted again as lengths have decreased.

2.6 Block Korkin-Zolotarev reduced lattice basis

Schnorr develops a hierarchy of lattice reduction methods stretching from
LLL to Korkin-Zolotarev reduction in [19]. He introduces block Korkin-
Zolotarev reduced lattice basis, and a corresponding method that applies
Korkin-Zolotarev reduction to blocks of the lattice basis in a trade-off be-
tween algorithmic speed and bounds for the length of lattice vectors. The
resulting bases are locally Korkin-Zolotarev reduced, meaning that for block
size 1 < β < m, all blocks

πi(bi), πi(bi+1), ..., πi(bi+β−1)

6

are Korkin-Zolotarev bases for i = 1, ...,m − β + 1. This implies that b∗
i =

πi(bi) is the shortest non-zero vector in the block πi(L(bi, ...,bmin(i+β−1,m))),
and we call this a β-BKZ basis. With blocks of size β, we step β− 1 vectors
at a time, resulting in the following bounds from (2) and (4),

γ
−2 i−1

β−1

β ≤ ‖b∗
i ‖2λi(L)−2 ≤ γ

2 m−i
β−1

β for i = 1, ...,m

and

4

i + 3
γ

i−1
β−1

β ≤ ‖bi‖2λi(L)−2 ≤ γ
2 m−1

β−1

β

i + 3

4
for i = 1, ...,m.

Another relaxation of the requirements which allows proving polynomial
running time is to loosen the strict ordering of vectors to produce a semi
block Korkin-Zolotarev reduced lattice basis. The LLL algorithm is a semi
BKZ method with β = 2, that would have been a BKZ and not a semi BKZ
method if the factor 1

4 < δ < 1 in (1) had been replaced by δ = 1. The more
generalized algorithm with larger block size will also obtain a running time
polynomial in the dimension of the lattice. This will be discussed at the end
of this section.

The BKZ reduction algorithm initially uses LLL reduction to find a short
basis. Then it alternates between exhaustive search for short vectors in a
block and further LLL reduction. In this process the number of vectors
satisfying the BKZ condition is counted (variable j in Algorithm 2), and
when this number reaches dim(b1, ...,bm)−1, a BKZ reduced basis is output.

The underlying idea for the exhaustive search method ENUM is that in
the block bj , ...,bk all lattice vectors v =

∑k
s=j vsbs shorter than bj satisfy

‖v‖2 =

k
∑

s=j

(

k
∑

i=s

uiµi,s

)2

‖b∗
s‖ < ‖bj‖2

analogous to the inequality ‖bi‖ ≤
∑i

j=1 µ2
i,j‖b∗

j‖2 with µi,i = 1. We want
to find (uj , ..., uk) minimizing v and for this we find the maximal range of
each ui. Starting with index k and µk,k = 1 we have

|uk| <
‖b1‖
‖b∗

k‖
.

and for lower indices

k
∑

i=j

uiµi,j

2

‖b∗
j‖ < ‖b1‖2−

k
∑

v=j+1

(

k
∑

s=v

usµs,v

)2

‖b∗
v‖2 for j = 1, ..., n−1

and then ‖∑k
s=j usµs,j‖ < ‖b1‖

‖b∗

j ‖
bounding the number of possible values of

uj given uj+1, ..., uk to at most b2 ‖b1‖
‖b∗

j ‖
c + 1. With the restriction that we

7

Algorithm 2 BKZ algorithm

Input: Lattice basis b1, ...,bm, 1
2 < δ < 1, 2 < β < m

Perform LLL(b1, ...,bm, δ) and set z = 0, j = 0
while z < m− 1 do

j ← j + 1, k ← min (j + β − 1,m)
if j = m then

j ← 1, k ← β
ENUM(j,k):

find the vector (uj, ..., uk) ∈ Zk−j+1 − 0k−j+1 minimizing

cj(uj , ..., uk) =
∑k

s=j

(

∑k
i=s uiµi,s

)2
bs, return the minimal value

c̄j and bnew
j ←∑k

s=j usbs

h← min (k + 1,m)
if δ‖bj‖ > c̄j then

Perform LLL(b1, ...,bj−1,b
new
j ,bj , ...,bh, δ), z ← 0

else

z ← z + 1
Perform LLL(b1, ...,bh, 0.99) at stage h− 1

Output: b1, ...,bm, a basis β-reduced with δ.

only search for a shorter vector when ‖bj‖2 ≤ 2‖b∗
j+1‖2 we get that the

number of possible choices for uj, ..., uk is

k
∏

s=2

(b2‖bj‖/‖b∗
s‖c+ 1) ≤ 3k−1

k
∏

s=j

‖b1‖
‖b∗

s‖

≤ 3n−1(
√

2λ(L2))
k−1d(L2)

−1

≤ (18γk−1)
k−1

2 ,

using the definition of the Hermite constant γk−1. If a shorter vector v

is found it is added to the set of vectors as bnew
j , which is then linearly

dependent. Reduction will produce a zero vector which is removed to get a
linearly independent set of m vectors as before.

With the relation limn supγk/k ≤ (eπ)−1 [19] we get that (18γk−1)
k−1
2 =√

k
k+o(k)

bounding the running time for the ENUM procedure.
Time analysis of the LLL algorithm shows that with δ < 1, the number

of vector swaps is limited to n2 log(B). For every exchange of vectors in

BKZ, we perform up to n2 operations in the LLL procedure and/or
√

n
k+o(k)

operations in the ENUM procedure. The running time of the BKZ algorithm

is then O((n2 +
√

k
k+o(k)

)n2 log(B)).

8

2.7 Random sampling reduction

The ENUM method in BKZ reduction does exhaustive search in low dimen-
sion. Schnorr’s random sampling method [20] uses a random sampling in
high dimension to find a shorter lattice vector, which surprisingly has better
performance than the low dimensional exhaustive search.

In random sampling we are looking for short vectors πj(b) =
∑n

i=j µi,jb
∗
j

in πj(L(bj , ...,bn)). To find ‖πj(b)‖2 =
∑n

i=j µ2
i,j‖b∗

i ‖2 we need to find small
coefficients of µj+1,j, ..., µn,j . Schnorr notes that among the orthogonalized
vectors b∗

j , ...,b
∗
n, the vectors at higher indices are shorter than the vectors

at lower indices, giving small µi,j at low i a higher impact on the length of
‖πj(b)‖2.

Let the single indexed µj =
〈b,b∗

j 〉

〈b∗

j ,b∗

j 〉
be the projection of the sampled

b along bj. For ti ∈ Z and 1 ≤ u < n we are sampling a vector b =
∑n

i=1 tibi =
∑n

i=1 µib
∗
i such that

|µi| ≤
{

1
2 for i < n− u

1 for n− u ≤ i < n
, µn = 1.

This leaves no choice for i < (n−u) in a size reduced basis, but for (n−u) ≤
i < n we have two (and sometimes three) choices, leading to 2u possible
lattice vector outputs of the method. The method is given in Algorithm 3
which, counting the basic operation, clearly has a running time O(n2).

Algorithm 3 Sampling algorithm

Input: Lattice basis {b1, ...,bn}, coefficients µi,j, u
b← bn

for j from 1 to n− 1 do

µj ← µn,j

for i from n− 1 to 1 do

if i < n− u then

Select µ ∈ Z such that |µi − µ| ≤ 1
2

else

Select µ ∈ Z such that |µi − µ| ≤ 1
b← b− µbi

for j from 1 to i do

µj ← µj − µµi,j

Output: b, µ1, ..., µn

As the coefficients are updated (n−i) times, the distribution of µi will be
nearly uniform for small i. We assume in the randomness assumptions (RA)
that µi is uniformly distributed in the intervals [− 1

2 , 1
2] for i < n − 1 and

[−1, 1] for n− u ≤ i < n. In addition we might assume that the coefficients
µi, µ

′
i of distict vectors b,b′ are independent for distinct i.

9

We also need the geometric series assumption (GSA) which is satisfied if
‖b∗

i ‖
2

‖b1‖2 = qi−1 for i = 1, ..., n, a geometric series with quotient q, 3
4 ≤ q < 1. In

practice we can only approximate a geometric series, and do this by requiring
that

n
∑

i=1

(‖b∗
i ‖2

‖b1‖2
− qi−1

)

µ2
i < 0.1

for random and independent µi ∈ [−1
2 , 1

2].
If the GSA and RA hold, we can estimate the probability of finding a

shorter vector by random sampling. As the first vectors have the greatest
impact on the length of the sampled vector, we want to keep the projection
onto these vectors small. Specifically we are seeking projections of the first
k < n− u vectors such that

|µi|2 ≤
1

4
qk−i. (5)

Given that RA holds, the projections are uniformly distributed in the
interval [− 1

2 , 1
2] and the probability that (5) holds for k vectors is

k
∏

i=1

q
k−i
2 = q(

k

2)/2 = q
k(k−1)

4 . (6)

Schnorr claims in his article that bases reduced with an LLL-type reduc-
tion algorithm such as BKZ closely approximate GSA and that the sampling
algorithm (Algorithm 3) gives an approximation to RA [20]. He also states
that lattice reduction gets harder as the basis approximates a geometric
series making GSA the worst case for lattice reduction.

To advance the reduction at this point, the sampling algorithm is used to
sample a number of potentially shorter vectors. We require new short vectors
to satisfy ‖b‖2 < 0.9‖bj‖2. To estimate the quotient q and average number

of necessary samples, we set γk ≤ k
6 for k ≥ 24, which leads to q ≥ (6

k)
1
k .

From this and (6) we see that the probability of finding projections u1, ..., uk

that satisfies (5) is (6
k)

k−1
4 , so we would like to sample at least (k

6)
k−1

4 vectors.

Choosing u to be the minimal integer such that 2u ≥ 2(k
6)

k−1
4 we will then

need to sample on average (k
6)

k
4 vectors and can do so in O(n2(k

6)
k
4) average

time. The method can in this manner find vectors that are as short as (k
6)

n
2k

times the minimal length of a vector in the lattice. If the shortest vector
is longer than this bound, the random sampling algorithm should find a
shorter (by a factor

√
0.9) vector on average by the time given above.

When a shorter vector b is found by the sampling algorithm, we insert it
into the lattice basis b1, ...,bj−1,b,bj , ...,bn−1. We safely remove the last
vector bn from the basis as our construction of b starts with b = bn. Unlike
the regular BKZ method we do not need to work with a linearly independent
set and eliminate a redundant vector.

10

Schnorr notes that in practice, reduction of the new basis with the sam-
pled vector triggers sporadic jumps. Without introducing sampled vectors
the BKZ reduction shows no such behavior. The reason for this differ-
ence is explained by the fact that a BKZ reduced basis closely approxi-
mates GSA, while inserting a shorter sampled vector brings the basis away
from GSA. The sampled vector b likely has very small values for the first
µj, µj+1, µj+2, ... compared to bj. Consequently the resulting basis has large
orthogonal vectors b∗

j+1,b
∗
j+2, ... for the same first vectors. BKZ reduction

of this basis will then trigger big jumps as BKZ again reduces the lattice to
approximate GSA.

The random sampling reduction method finds a shortest vector no longer
than (k

6)
n
2k times the length of the minimal vector in the lattice. Schnorr

claims that this factor is less than the fourth root of other methods obtained
within the same computational time.

Another method called Sampling Reduction is introduced by Buchmann
and Ludwig [2]. As not all bases approximate the GSA of Schnorr’s method,
they introduce a procedure which without use of GSA finds the probability
that a shorter vector exists among 2u vectors. If this probability is above
a given limit, up to 2u vectors are sampled systematically, until a vector
shorter by some factor of the currently shortest vector is found or all the
vectors have been sampled. Empirical results of the efficiency is limited in
[2], but the authors give some theoretical observations. These are flawed in
several ways, primarily due to a misreading of Schnorr’s article [20].

3 The NTRUEncrypt cryptosystem

3.1 Public key cryptosystems

Public key cryptosystems are a class of cryptosystems allowing secret com-
munication without access to a shared secret key. They consist of algorithms
for key generation, encryption and decryption. The key generation algorithm
outputs a a pair of public and private keys of which the public key is made
publicly available and the private decryption key is kept secret and used
only by the decrypter. The encryption algorithm takes the public key and
a message as input and outputs a ciphertext. The decryption algorithms
takes the private key and the ciphertext as input and outputs the message.
Without the private key it should be infeasible to extract any information
about the message from the ciphertext. Due to the difference in keys, it is
also called asymmetric cryptosystems, in contrast to symmetric cryptosys-
tems where encrypter and decrypter possess the same key, which has to be
distributed and kept in secret.

11

3.2 NTRUEncrypt

The cryptosystem NTRUEncrypt was first presented at Crypto ’96, and is
patented by NTRU Cryptosystems, Inc. It has since been reviewed by the
cryptographic community, and is specified in the IEEE P1363.1 standard.
The main benefit of the system is the speed at which key generation, en-
cryption and decryption can be carried out and that it can be efficiently
implemented on very limited systems such as single 8-bit processors. The
quick key generation allows for the use of “disposable keys” allowing a new
key to be created for every transaction. NTRUEncrypt is often referred
to as a public key cryptosystem as it operates with private and secret keys.
However there exists validly encrypted messages that will fail to decrypt cor-
rectly in some parameter sets of NTRUEncrypt, violating the requirements
of public key cryptosystems.

NTRUEncrypt is often called a lattice based cryptosystem, meaning that
the hard problem of NTRUEncrypt reduces to certain hard lattice problems.
It is a probabilistic cryptosystem meaning that a random element is used
in encryption such that two encryptions of the same message with the same
key will yield different ciphertexts.

NTRU Cryptosystems has also presented the signing algorithm NTRUSign
which is based on the same hard problem as NTRUEncrypt. Our focus will
however solely be on NTRUEncrypt.

3.3 The Ring

Operations in NTRUEncrypt are carried out in the ringR = Z[X]/(XN−1),
the ring of truncated polynomials of degree N−1. To represent a polynomial
p we use the element f ∈ R, p = f + (XN − 1). We will write elements in
f ∈ R as polynomials, or vectors

f =

N−1
∑

i=0

fiXi = [f0, f1, ..., fN−1]

Definition 3. The star multiplication or convolution product is defined as

f ∗ g = h, hk =

k
∑

i=0

figk−i +

N−1
∑

i=k+1

figN+k−i =
∑

i+j≡k
(mod N)

figj .

Multiplication of a scalar p and a polynomial f will be written as pf .
Computing the star multiplication would normally require N 2 multiplica-
tions, but in most of NTRUEncrypt operations at least one of the poly-
nomials has a large number of zero coefficients allowing faster operations.
The term small polynomial will be used to denote polynomials with a large
portion of its coefficients being zero, and a specified number of coefficients

12

being 1 and possibly −1. We will also need to multiply and take inverses
of polynomials modulo an integer q, and reduce coefficients as expected.
Elements and operations will be in the ring Rq = R/q = Z/qZ[X]

(XN−1)
. As star

multiplication in the ringRq is the only polynomial multiplication we will be
concerned with, we simplify notation by dropping equivalences and modulo
q such that f ∗ h = pg is used instead of f ∗ h ≡ pg (mod q).

For NTRUEncrypt polynomials we will define the width of an element
f ∈ R as

|f |∞ = max
1≤i≤N

fi − min
1≤i≤N

fi,

serving as a modified L∞ norm.

3.4 NTRUEncrypt basics

We will first present NTRUEncrypt in its original form (initially the name
was just NTRU) to keep the inital presentation simple before introducing
new and enhanced parameters and padding schemes.

3.4.1 Security levels and parameter settings

In order to create a pair of keys in the NTRUEncrypt cryptosystem, a proper
security level must be chosen. Several security levels with corresponding pa-
rameter settings have been specified, for a list see [11]. The security level
is specified by the prime number N . Other parameters are the small and
large moduli p and q, which are relatively prime integers and the polyno-
mial generation parameters df , dg, dr and dm, which specify the number of
non-zero coefficients in the polynomials f, g, r and m and the polynomial
spaces Df ,Dg, Dr and Dm respectively. Binary polynomials in Df have df

coefficients set to 1 and the rest set to 0, likewise for polynomials in Dg and
Dr. For polynomials in the message space Dm we require that the number
of 1’s is larger than dm and smaller than N − dm.

3.4.2 Key generation

With parameters from the selected security level, choose polynomials f ∈ Df

and g ∈ Dg. Let f−1
p and f−1

q be the inverses of f modulo p and q, and
compute h = f−1

q ∗ pg. The private key is f and the public key is h. The
chosen security level and corresponding parameters are publicly known.

3.4.3 Encryption

The encrypter wants to encrypt the message m ∈ Dm, and chooses a random
blinding value r ∈ Dr. Encryption is done by computing e = r ∗ h + m.

13

3.4.4 Decryption

The decrypter first computes

a ≡ f ∗ e ≡ f ∗ f−1
q ∗ pg ∗ r + f ∗m ≡ pr ∗ g + f ∗m (mod q), (7)

then takes a (mod p) to get

b ≡ a ≡ f ∗m (mod p),

which will then retrieve the message m when star multiplied by f−1
p

c ≡ f−1
p ∗ f ∗m (mod p).

Hopefully c = m, but it might happen that coefficients grow too large
in (7), leading to decryption failures. When computing a we will normally
reduce the coefficients into the interval [0, q − 1], but if decryption fails
we might have to reduce the coefficients into other intervals [A,A+q−1]
for various A, a procedure known as centering. If a centering does not
produce a valid decryption it is called a wrap failure. If no A producing
a valid decryption can be found we have a gap failure and we know that
|a|∞ = |pr ∗ g + f ∗m|∞ ≥ q. If |a|∞ < q we may have wrap failures, but
there exists a centering producing a valid decryption.

For large values of q the chance of decryption failures decreases, and can
be eliminated completely by choosing q larger than the maximum possible
value of |pr ∗ g + f ∗m|∞. For such q, no centering will be needed. When
using parameters from the current standard [29], the chance of decryption
failure is estimated to be less than 2−104 for the security setting giving 80-bit
security [11].

3.5 Multiple transmission attack

If a padding scheme is not used and a message m is encrypted several times
with different random polynomials r, an attacker can recover m. If the
attacker gathers several ei = ri ∗ h + m, he may compute (ri − r1) ∗ h−1 to
find ri−r1. As the coefficients of r are small, ri−r1 can be found exactly. A
few such relations lets the attacker recover large parts of r making it possible
to find the rest by brute force. Then the single message m can be decrypted.

3.6 Decryption failure attack

The possibility of failure in decrypting an NTRUEncrypt ciphertext enables
new types of attacks and requires new security proofs [8]. If decryption
fails due to incorrect centering (wrap failure), new centerings must be tried
until one is found that allows successful decryption of the message. Some
knowledge about the private key can be gathered by analysis of decrytion

14

time when more attempts with different centerings are needed. If no suitable
centering is found a gap error has occured, leaking even more information
about the private key.

Decryption failure attacks can most easily be described using unpadded
early versions of NTRUEncrypt, although attacks exist for some suggested
paddings as well [18]. The attacker encrypts several messages m with differ-
ent blinding polynomials r until a pair (m, r) that produces an invalid de-
cryption occurs. On decryption at least one of the coefficients of pg∗r+f ∗m
falls outside all intervals of width q. If encryption of (0, r) produces a valid
decryption, the attacker can check several (m̄, r) and check if they decrypt
correctly or not. The aim is to find several pairs of m̄ flipping one bit such
that one produces a valid decryption while the others is not decryptable.
The coefficients in decryption after multiplication by f are

ci =
N−1
∑

j=0

m̄jfi−j + p
N−1
∑

j=0

rjgi−j

where some ci will fall outside the correct interval. If we know that changing
m̄j from 1 (or −1 in older trinary versions) to 0 makes decryption possible,
we know that fi−j is 1 (or −1 respectively). If it decrypts correctly with
m̄j = 0 and not with 1 or −1, we know that the value of fi−j is −1 or 1 re-
spectively. Thus finding just one pair (m, r) producing an invalid decryption
will in most cases let us recover large parts of f . As we know the number
of 1’s (and possibly −1’s) in f , exhaustive search can be used to decide the
remaining coefficients of f . Using the initial parameters of NTRUEncryp,
Proos [18] empirically finds this attack to be efficient and successful all pairs
(m, r) where decryption fails.

In decryption we obtain f ∗ e = pg ∗ r + f ∗m. The chance of wrap and
gap failures is related to the width of |pg∗r+(1+pF)∗m|∞. If |pg∗r+(1+
pF)∗m|∞ < q, no gap failures may occur, there will always exits a centering
reducing the coefficients into the correct interval. For binary polynomials
a, b ∈ R with da, db ones, we have |a ∗ b|∞ ≤ min(da, db), and consequently
|pg∗r+(1+pF)∗m|∞ ≤ pmin(dg, dr)+1+pmin(df , dm). As p = 2, dr ≤ dg,
df = dr and dm is on average N/2, we get |pg ∗r+(1+pF)∗m|∞ < 1+4df .

The NTRU team now recommends the use of parameters that eliminate
the chance of decryption failures [11]. We couldn’t find any published de-
cryption failure attack against the padding scheme recommended in [29],
but several such attacks against other proposed paddings exist [18].

3.7 Evolution of parameters

From the beginning it was suggested without a given reason to let N be
a prime. Gentry [5] shows that if N is not taken to be a prime number,
security is drastically weakened.

15

The small modulus p and the large modulus q must be relatively prime
in R, or equivalently XN − 1, p, q must generate the unit ideal in Z[X]. If
gcd(q, p) > 1, security is decreased, and if p|q the encrypted message satisfies
e ≡ m (mod p) and is hence completely insecure. The large modulus q was
first chosen to be a power of 2, such as 128 or 256, for their computational
efficiency, while [11] suggests using a prime number that has an order at
least (N − 1)/2 modulo N and which is large enough to make the chance
of decryption failures vanishingly small. The small modulus was first set to
p = 3, but it was later recommmended to use the polynomial X+2 with some
necessary alterations of the decryption proceduce. Now it is recommended
to set p = 2 [29].

Some changes to key creation and decryption have also been introduced
by setting the polynomial f to be f = 1 + p ∗ F with F ∈ Df . With f on
this form we know that f−1

p exists, but as the decryption process changes,
the need for f−1

p is eliminated. At decryption we will have

a ≡ f ∗ e ≡ (1 + p ∗ F) ∗ (pr ∗ h + m) ≡ p(r ∗ g + F ∗m) + m (mod q)

and the need to multiply by the inverse f−1
p vanishes as a (mod p) reveals

the message polynomial since p = 2 and m is chosen to be a binary message
polynomial. If an incorrect centering is used the output bits will be flipped
as the coefficients are first reduced by an odd number and then by 2.

Polynomials were first chosen to be trinary with a specified number of
coefficients set to 1 and −1 and the rest set to 0. This was later changed
to binary polynomials with a set number of 1’s among the coefficients as
described above. A third way to choose the coefficients of Df and Dr is by
product form polynomials on the form a1 ∗ a2 or a1 ∗ a2 + a3 where a1, a2, a3

are binary polynomials. This construction allows faster multiplication on
the cost of memory usage. Coefficients of this polynomial will have most
coefficients equal to 0, a large portion of the remaining equal to 1 and a few
coefficients larger than 1, the frequency and size increasing with the degree
of the resulting polynomial [11]. For decryption to work properly, f has to
be invertible modulo q.

The current standard for NTRUEncrypt is given in [29], which analyses
in this paper will be built upon. Other parameters have later been sug-
gested by the NTRU team in [11]. The most important changes are values
of q eliminating the possibility of decryption failures and changes to the
polynomial spaces. Instead of choosing df = dg = dr, they suggest choosing
a lower df = dr for efficiency, and increasing dg to N

2 as this has no impact
on efficiency, but will increase the lattice constant governing the hardness
of lattice reduction of the public key. The non-binary form of product form
polynomials leads to changes for some attacks, but as g is binary, most at-
tacks can be applied with some modification by attacking h−1 instead of
h.

16

3.8 Protection against adaptive chosen ciphertext attaks

Among other requirements, a cryptosystem should resist adaptive chosen
ciphertext attacks. In such attacks the attacker gains information from the
decrypter when messages can not be correctly decrypted and uses this infor-
mation in choosing subsequent ciphertexts, hoping to gain knowledge about
the message or the secret key. The presence of decryption failures leaves
NTRU especially prone to such attacks as they leak knowledge of the secret
key (see section 3.6). To protect against adaptive chosen ciphertext attacks,
an appropriate padding scheme which reduces the attacker’s ability in freely
choosing ciphertexts is needed. The NTRUEncrypt padding scheme NAEP
uses two hash functions in padding the message. One is a cryptographic
strong hash function, while the other is based on a hash function and called
a mask generation function (MGF).

When encrypting, we start by concatenating the binary message string
m, the length l of m, random data b and zeros 0̄,

M = b|l|m|0̄
to a total length of N bits.

m b h

M = b|m

r = MGF (M |h)

R = r ∗ h

m′ = Hash(R)⊕M

e = R + m′

Figure 1: Encryption with NAEP

The MGF takes as input a binary string consisting of m and b as above,
bits calculated from the public key h and some constant bits given by the
chosen parameter set. This input is hashed and the output functions as a
seed to a random number generator, and MGF outputs the polynomial r
based on the random number and the parameters for choosing polynomials
from Dr.

17

We compute R ≡ r ∗ h (mod q) as in unpadded encryption. We take
R modulo 2 and convert the result to a binary string which is the input of
the hash function. Then we xor the output of the hash function with M to
produce the string ms which we convert to the binary polynomial m′. We
add m′ to R to produce the encrypted message e. The process is shown in
Figure 1.

On decryption we apply the regular decryption process to recover m′
c

from e by the computation

f ∗ e = f ∗ f−1 ∗ pg + (1 + pF) ∗m′
c = m′

c (mod p).

We can then calculate the polynomial Rc = e−m′
c, which we reduce modulo

2 and convert to a bit string which we hash as in the encryption process.
We xor the output of the hash function with m′

c to recover Mc of which the
message mc is a subset. To check that decryption has been successful, we
call MGF with Mc and the public quantities to obtain the polynomial rc,
compute rc ∗ h and check that it is equal to Rc. The process is shown in
Figure 2. It can be shown [9] that this padding scheme provides security
against adaptive chosen ciphertext attacks even in the presence of decryption
failures.

e f h

m′
c = f ∗ e (mod p)

Rc = e−m′
c

Mc = Hash(Rc)⊕m′
c

mc rc = MGF (Mc|h)

rc ∗ h

Figure 2: Decryption with NAEP

In the original NTRUEncrypt system an attacker could freely choose
r and m, but with this construction an attacker is limited to choosing an
r produced by m and the random bits thwarting decryption failure and

18

adaptive chosen ciphertext attacks. Adding Hash(R) to M ensures that
unless an attacker knows all the bits of m′

c, he effectively has no knowledge
of m.

4 Key Encapsulation Mechanism

Public key cryptosystems are primarily used to encrypt short messages. We
can use a public key cryptosystem as a secure channel for exchange of a
symmetric key and transmit a message encrypted with the symmetric key.
This construction is called a hybrid cryptosystem and benefits from the
simple key distribution of the public key cryptosystem and the speed of
encryption and decryption in the symmetric cryptosystem.

It might be easier to encrypt random messages than to encrypt an arbi-
trary message. The idea is to encrypt random messages from which we will
derive the symmetric key. This is called a key encapsulation mechanism.
A good hash function is used to derive the symmetric key, ensuring that
partial break of the random bitstring does not reveal any information about
the symmetric key.

4.1 NTRU-KEM

No KEM is specified for NTRUEncrypt, but a KEM variation of NAEP is
drafted by the NTRU team in [30] and another suggestion can be found
in [27]. We will propose and analyze a simplification of the NTRU team
proposal, using parts of the NAEP scheme. A simple sketch of the encryption
process is given in Figure 3. The main differences between this KEM and
NAEP is that the whole message µ consists of random bits and only one hash
function is needed in the encryption process, while another hash function
scrambles µ to produce the key.

µ h

r = MGF (µ)

R = r ∗ h

K = KDF(µ) e = R + µ

Figure 3: NTRU-KEM proposal

The two hash functions are the key derivation function (KDF) and one

19

which is part of the mask generation function (MGF). Specifically MGF
consists of a hash function H and the polynomial generating function genr

with

H : {0, 1}N → {0, 1}N ,

genr : {0, 1}N → Dr,

MGF : {0, 1}N → Dr

such that MGF(µ) = genr(H(µ)).
To produce a key using NTRU-KEM, the encrypter generates a random

input string µ = {0, 1}N and encrypts it. The decrypter recovers µ and both
parties can compute the key K.

Encryption Decryption

r = MGF(µ) µ̃ = f ∗ e mod 2

e = m + r ∗ h if MGF(µ̃) ∗ h = e− µ̃

K = KDF(µ) then K = KDF(µ̃)

For ease of notation we view bitstrings of length N as binary polynomials
of degree N .

4.2 Attack game

We show that our NTRU-KEM is secure in the random oracle model. We
model all hash functions as random oracles, which produce a truly random
response to any new query, and the same response if a query is repeated.
This functionality is implemented with oracles keeping a list of all queries
and responses, creating a new entry for new queries and responding by the
stored value on repeated queries.

We prove security using “Sequences of Games” [24] bounding the ad-
vantage of the adversary A, a measure of A’s ability in making a correct
guess of a chosen bit. In different games we will use different simulators
interacting with the adversary A.

In all games the simulator first runs key generation to obtain a key pair
(h, f), finds a random bitstring µ ∈ {0, 1}N and a random bit b. We will
denote sampling x uniformly at random from the set S by x

r← S. We also
find the value of K using

K =

{

KDF(µ) if b = 0,

{0, 1}N if b = 1.

The goal of the adversary is to correctly guess the bit b.
The adversary A is given h,K and the encryption e of µ and may present

ciphertext messages e′ for the simulator to decrypt. Both the adversary and
the simulator has access the random oracles MGF and KDF.

20

Game 0

1. (h, f)← KeyGen, µ
r← {0, 1}N , b

r← {0, 1}, K ′ ← {0, 1}N .

2. K ←
{

KDF(µ) if b = 0,

K ′ if b = 1.

3. r ← MGF(µ), e = r ∗ h + µ.

4. Send (h,K, e) to A.

5. A queries the simulator with any ciphertext except e.

6. b̂← A.

7. Output 1 if b̂ = b, otherwise output 0.

The response to a decryption query is either K, or failure if it is not
possible to produce a valid decryption, which means that on a ciphertext
e′ with decryption µ′ and r′ = MGF(µ′), e′ 6= r′ ∗ h + µ′ due either to a
decryption failure or a malformed ciphertext.

Game 1

Game 1 is the same as Game 0 except that from now on the simulator
simulates the random oracles MGF and KDF.

Game 2

Game 2 is identical to Game 1 except that all queries µ′ to MGF and the
corresponding e′ are stored in a list, and even if e′ causes a decryption failure,
the simulator still responds by K ′ = KDF(µ′).

Game 3

Game 3 is equal to Game 2 except that the simulator always replies failure
on a decryption query unless the corresponding µ′ is previously queried to
MGF by A.

Game 4

In Game 4 the simulator keeps a list of queries as follows: Entries of
(µ, r, e,K) are stored such that r = MGF(µ), e = r∗h+µ and K = KDF(µ).
On every query, the simulator checks the list for the given value. If it already
exists, the simulator responds by K ′ on queries to KDF and decryption and
r′ on queries to MGF. If no such entry can be found, failure is returned on
decryption queries while MGF and KDF responds as usual and a new entry

21

for (µ, r, e,K) is added to the list.

In the games we consider the following events:

• T2: A properly generated ciphertext causing a decryption failure is
submitted.

• T3: A valid ciphertext c′ is submitted, but MGF(µ′) has not been
queried.

• T4: The adversary queries KDF with µ.

From A’s view Game 0 and Game 1 are identical. In Game 2 the event
T2 may occur. The probability of decryption failure is dependent on the
parameter set used, and is negligible or non-existent for current standardized
and recently recommended sets. Let εfail be the probability of a decryption
failure and ZMGF be the number of oracle calls to MGF. We will then have
that Pr[T2] ≤ ZMGFεfail.

Pr[G1 = 1]− Pr[G2 = 1]

= (Pr[G1 = 1|T2]− Pr[G2 = 1|T2]) Pr[T2]

+(Pr[G1 = 1|¬T2]− Pr[G2 = 1|¬T2]) Pr[¬T2]

= (Pr[G1 = 1|T2]− Pr[G2 = 1|T2]) Pr[T2]

≤ Pr[T2] ≤ ZMGFεfail.

For Game 3 we need to bound the probability of event T3. The simulator
responds by failure to all decryption queries for which MGF has not been
queried on the plaintext, and the event T3 is such a decryption query. As
there are |Dr| =

(N
dr

)

different r’s we get that Pr[T3] = |Dr|−1ZD where ZD

is the number of decryption queries. As the event T3 distinguishes between
games 2 and 3 we have:

Pr[G2 = 1]− Pr[G3 = 1]

= (Pr[G2 = 1|T3]− Pr[G3 = |T3]) Pr[T3]

+(Pr[G2 = 1|¬T3]− Pr[G3 = 1|¬T3]) Pr[¬T3]

= (Pr[G2 = 1|T3]− Pr[G3 = 1|T3]) Pr[T3]

≤ Pr[T3] ≤
ZD

|Dr|
.

From the adversary’s view, games 3 and 4 are identical such that Pr[G3 =
1] = Pr[G4 = 1]. In Game 4 the simulator makes an entry with µ, r, e and K
and e. As A can’t query this e, he can only gain knowledge of b by querying
KDF on µ. This is event T4. If T4 does not occur, Pr[G4 = 1] = 1

2 and we

22

have

|Pr[G4 = 1]− 1

2
| = |Pr[G4 = 1|T4] Pr[T4] + Pr[G4 = 1|¬T4] Pr[¬T4]−

1

2
|

= |Pr[G4 = 1|T4] Pr[T4] + (1− Pr[T4])
1

2
− 1

2
|

= |Pr[G4 = 1|T4]−
1

2
|Pr[T4]

≤ 1

2
Pr[T4].

The event T4 implies that A is able to invert the encryption function
for NTRU, thus solving the NTRU problem. To bound the probability of
Pr[T4] we use the algorithm A′ which is listed as Algorithm 4.

Algorithm 4 Algorithm A′

Input (h,e).

1. K
r← {0, 1}N .

2. Send (h,K, e) to A.

3. Respond to queries, if µ is queried to KDF such that µ = c− r ∗h, r =
MGF(µ) output µ.

4. If A stops, output fail.

Output µ or fail.

The NTRU-solver A′ also runs with A and its running time is essentially
the same as A. It solves the NTRU problem on event T3 and we can thus
use it to bound the probability of T3. Let SuccessNTRU(A′) denote the
probability that A′ is able to invert the NTRU one-way function.

Pr[G3 = 1]− Pr[G4 = 1]

= (Pr[G3 = 1|T4]− Pr[G4 = 1|T4]) Pr[T4]

+(Pr[G3 = 1|¬T4]− Pr[G4 = 1|¬T4]) Pr[¬T4]

= (Pr[G3 = 1|T4]− Pr[G4 = 1|T4]) Pr[T4]

≤ Pr[T4] = SuccessNTRU(A′).

23

Putting it all together we have that

Adv(A) = |Pr[G0 = 1]− 1

2
|

= |Pr[G0 = 1]− Pr[G1 = 1] + Pr[G1 = 1]− Pr[G2 = 1] + Pr[G2 = 1]

− Pr[G3 = 1] + Pr[G3 = 1] + Pr[G4 = 1]− Pr[G4 = 1]− 1

2
|

≤ |Pr[G0 = 1]− Pr[G1 = 1]|+ |Pr[G1 = 1]− Pr[G2 = 1]|
+ |Pr[G2 = 1]− Pr[G3 = 1]| + |Pr[G3 = 1]− Pr[G4 = 1]|

+ |Pr[G4]−
1

2
|

≤ Pr[T2] + Pr[T3] + Pr[T4]

≤ ZMGFεfail + |Dr|−1ZD + SuccessNTRU(A′),

which is the success probability the algorithm A′ has in solving a random
instance of the NTRU problem. We have proved the following theorem.

Theorem 1. For any random oracle adversary A against NTRU-KEM there
exists an adversary A′ against the NTRU one-way function with essentially
the same run-time and the advantage

AdvNTRU-KEM(A) ≤ |Dr|−1ZKDF + SuccessNTRU(A′).

5 Non-lattice attacks

5.1 Brute force attacks

To produce the secret key f = 1 + 2F , the polynomial F is drawn from the
polynomial space Df , consisting of polynomials with df ones and N − df

zeros. The number of possible such keys is then #Df =
(N
df

)

. Our guess of

f is correct if f ∗ h = pg. We do not know the polynomial pg, but we know
that it has dg coefficients equalling p and the rest 0. We may also guess
g ∈ Dg to find pg ∗ h−1 = f , where f has small coefficients. As df = dg in
the current standardized NTRUEncrypt settings, we get the same number
of keys to test as #Dg = #Df .

Similarly we can guess the blinding polynomial r used for encrypting
individual messages. Drawing r from Dr, we check if e − r ∗ h has small
coefficients. When padding is used, we guess the r produced by the mask
generation function. A correct guess of r will recover the encrypted message.
As #Dr = #Df = #Dg in some parameter sets and #Dr = #Df in others,
this should be as hard as attacks on the public key.

We found that the number of keys to test can be reduced slightly by a
partial precomputation of some of the coefficients of f ∗ h or g ∗ h−1. We
know that coefficients of pg are 0 and 2 and that coefficients of f are 0, 1 and

24

2. If we guess polynomials for f with only df − 1 ones and N −df +1 zeros,
the possible number of choices for the last coefficient of f giving the correct
sum modulo q for coefficients of pg is reduced. Assuming that coefficients of
h are randomly distributed in the interval [0, q− 1], the expected number of
potential f ’s we need to test is 2N

q

(N
df−1

)

if one coefficient of g is specified. If

more coefficients of g are included at this point, the number of keys where f ∗
h must be computed is reduced further. As we know the possible coefficient
values needed for a valid g we can produce a sorted list for direct look ups
of rotations of h to speed up further.

5.2 Meet-in-the-middle attack

If sufficient storage capacity is available, a meet-in-the-middle attack can
find the the secret key in a square root of the time needed for the brute
force attack. If we split f in two halves f = fa + fb setting different halves
of the coefficients of fa or fb to zeros, we get that f ∗h = fa ∗h+fb ∗h = pg.
The polynomial pg has coefficients 0 and p, and we may reduce p to 1 by
multiplying h by p−1

q .Then fa ∗ h and −fb ∗ h should have approximately
the same values of their coefficients modulo q.

We let fa and fb each be half the length of N and have
df

2 of the co-
efficients set to 1 in F . We know that fa and fb can share the non-zero
elements in this way as we can freely choose a rotation of f before splitting
into the two parts. We do however need to find the location of the constant
term in f by adding X i ∗ h, where i is the number of shifts in the rotation.
We choose to work with ga, gb and h−1 instead, as any rotation can be used
directly as all coefficients of g are either 0 or 1.

First we compute all pga ∗ h−1 and store the coefficients. Then we com-
pute −pgb ∗ h−1 and see if all coefficients are close to the other half and
continue until a match has been found. We need to compute and store
(N/2
dg/2

)

values of pga ∗ h−1 in the first part, and compute several pgb ∗ h−1

until a match has been found. The precomputed ga’s are put in different
“bins” which are then looked up in the next stage.

To save on space we might store only the leading coefficients in the
computed polynomial, or we might want want to store both ga and pga ∗h−1

such that only a subtraction is needed to compute f , as we do not have
to compute pga ∗ h−1 again. If we schedule the computations of pga ∗ h−1

such that we only change one coefficient of ga we can reduce the number
of computations from addition of dg/2 rotations to one subtraction and one
addition.

If we introduce the time costs tc and tm for computation and memory
access time respectively, the total time t1 in the first part of the process will
be

t1 =

(

N/2

dg/2

)

(tc + tm).

25

If we store k bits in each bin, we need 2k bins of storage, and for each bit
there is a 2

q chance that we need to check more bins if the number is close
to the one represented by the leading coefficient. Consequently we need to
check on average 2k

q different bins. For each hit on a bin we need to do

a calculation, and as
(N/2
dg/2

)

of 2k bins contain one or more entries, we can

calculate the expected number of hits. The maximal time in the second part
of the process can be found to be

t2 =

(

N/2

dg/2

)

tc +
2k

q
tm +

(N/2
dg/2

)

2k
tc

 .

If we increase k we may decrease the expected running time at the cost
of increased memory usage. It is claimed by the NTRU team [10] that
the increase in memory usage is not exponential in k. It is also clear that
increasing q to prevent gap failures and attacks based on them will increase
the strength of brute force and meet-in-the-middle attacks slightly.

6 Lattice attacks

Lattice attacks on NTRUEncrypt aim to recover the secret key f from the
public key h or the message m from the encrypted message e and h. We view
the polynomials as vectors, and use these vectors in construction of a lattice.
As lattice reduction finds short vectors in the lattice and the NTRUEncrypt
polynomials f, g, r and m produce very short vectors, we hope to find f or
m in the shortest vector in the lattice. Polynomials directly related to the
NTRU ring Rq will not be written bold face when considered as vectors.
Polynomial and vector notation and operations will be mixed as the natural
context will be clear.

In sections 2.3-2.7 we discussed basic lattice reduction methods and var-
ious improvements allowing improved performance in reduction quality and
speed. Even the best current lattice reduction algorithms are very slow in
high lattice dimension, and the security of NTRUEncrypt is based on the
hardness of reducing a high dimensional lattice. Any new and improved
lattice reduction algorithm increasing the efficiency of attacks on NTRUEn-
crypt will potentially jeopardize the security of the system.

Due to their iterative nature, LLL-type lattice reduction algorithms do
not yield themselves easily to parallel processing. As bases are continuously
updated, the need for communication between different processes in dis-
tributed methods gives little return on the increased computational power.
Even though each reduction method is hard to parallelize, several reductions
can be run in parallel with different input, letting us choose the best basis
among the different reductions. There is also no known quantum computing
algorithm for lattice reduction.

26

In the rest of this sections we will treat the basic NTRUEncrypt lattice
attack, a reduction technique with parts that are NTRUEncrypt specific, an
attack that uses vectors that are almost as short as the desired vector and
ways to change the NTRUEncrypt lattice to improve efficiency of lattice
reduction.

6.1 Attack on the NTRUEncrypt public key

Consider a 2N × 2N matrix composed of four N × N blocks consisting of
the coefficients of h, the large modulus q and a constant σ depending on the
parameters of the chosen security level,

(

σIN 0

cir(h) qIn

)

=

σ 0 · · · 0 0 0 · · · 0
0 σ · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · σ 0 0 · · · 0

h0 hN−1 · · · h1 q 0 · · · 0
h1 h0 · · · h2 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
hN−1 hN−2 · · · h0 0 0 · · · q

. (8)

The lower left block of coefficients of h is called the circulant matrix and
consists of the coefficients of the polynomials h, hX, hX 2, ..., hXN−1. We will
refer to this block as cir(h). The block qIN serves to reduce the coefficients of
the h-block modulo q, while the σ in the σIN -block is a balancing constant
for optimization of reduction efficiency. Let the columns of this matrix
generate the lattice L. We will then have det(L) = σNqN .

From the lattice L we want to recover the private key. We know that
the lattice contains the vector y = (σf T pgT), which will be know as the
target vector. For ease of notation, we present the computation producing
y using the matrix above and matrix-vector multiplication. We obtain the
target vector by multiplying the matrix by a 2N vector consisting of f and
the vector s reducing the last half of the target vector modulo q,

σ 0 · · · 0 0 0 · · · 0
0 σ · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · σ 0 0 · · · 0

h0 hN−1 · · · h1 q 0 · · · 0
h1 h0 · · · h2 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
hN−1 hN−2 · · · h0 0 0 · · · q

f0

f1
...

fN−1

s0

s1
...

sN−1

=

σf0

σf1
...

σfN−1

pg0

pg1
...

pgN−1

.

The first half of the product is easily seen to be σf , as the upper left block
of the matrix only has diagonal elements. For the second half, first recall

27

the definition of the public key

h = f−1 ∗ pg

which by a multiplication by f becomes

f ∗ h ≡ f ∗ f−1 ∗ pg ≡ pg ≡ 2g (mod q). (9)

In the practical implementations of lattice reduction we can’t work modulo
q, so s and the qIN block is needed to do the reductions.

For the details of this computation, consider firstf ∗ f−1 = 1, where all
coefficients but the constant term cancels out. When splitting into elements
we get

N−1
∑

i=0

fif
−1
−i+j =

{

1 mod q if j = 0

0 mod q if j 6= 0
(10)

as expected when multiplying a polynomial with its inverse. The reversed
order of coefficients in the rows of cir(h) gives a straightforward computation
of the star multiplication as the indices of f and h go in opposite directions
as in Definition 3. To prove (9) we let the shifts of cir(h) be denoted by
the term z added to the index, where z equals the row number in the cir(h)
block. With qs for reduction, the substitution i+j = −k and indices modulo
N we get

N−1
∑

i=0

fihN−i+z − qs =
N−1
∑

i=0

fi

N−1
∑

j=0

f−1
j pgN−j−i+z − qs

= p

N−1
∑

i=0

N−1
∑

j=0

fif
−1
j gN−j−i+z − qs

= p

N−1
∑

k=0

N−1
∑

i=0

fif
−1
−i−kgN+k+z − qs

= p

N−1
∑

k=0

gN+k+z

N−1
∑

j=0

fif
−1
−i−k − qs

= pgz − qs

using (10) in the last equality to remove all terms with non-zero k. Then
clearly the second half of the solution vector is pg with yN+z = pgz.

In lattice reduction we add or subtract multiples of one vector to an-
other. The other lattice operation of sorting the vectors by their length
helps us produce and find the shortest vector in the lattice. We can ob-
tain an individual lattice vector as above by multiplying the matrix by an
integral vector.

As lattice reduction should recover the shortest lattice vector we want
our target vector y to be the shortest non-zero vector. To ensure this we

28

need to find a suitable value for σ, and for this we must know what vector
lengths to expect. It is known that in a lattice of sufficiently large dimension
n, the Hermite constant satisfies

1

2πe
≤ γn

n
≤ 1.744

2πe

giving from the definition of the Hermite constant in (3) a bound for the
shortest vector

d(L)
1
n

√

n

2πe
≤ λ(L) ≤ d(L)

1
n

√

1.744n

2πe
.

Inserting our lattice dimension and determinant we get the expected smallest
vector length

EL = (σNqN)
1

2N

√

2N

2πe
=

√

Nσq

πe
.

As EL is the expected length of the shortest vector in a random lattice,
the attacker seeks to find a value of σ maximizing the ratio EL

‖y‖ making
the gap between our target vector and expected length of the next shortest
vector as large as possible. This will give the highest probability that a
vector of length y found by lattice reduction is the target vector. It will also
make lattice reduction easier, as finding the finding the shortest vector in a
lattice resembling a random lattice is hard [6]. Squaring the ratio EL

‖y‖ we
can easily find the optimal value of σ by maximizing

σ

σ2‖(σfT 2gT)‖2 .

The lengths ‖f‖ and ‖g‖ are public quantities, and with the current stan-
dardized key generation parameters [29], ‖f‖ ≈ ‖2g‖. As ‖(σf T 2gT)‖2 =
‖σf‖2 + ‖2g‖2 ≈ σ2‖f‖2 + ‖f‖2, the maximal value is found at σ ≈ 1. In
lattice reduction σ serves as a balancing constant giving equal weight to
elements in the vector and thereby increasing the effeciency of reduction.
We choose σ = 1 as it is more advantageous to keep L as an integral lattice
than to use a floating point value close to 1.

Let the ratio ch = ‖y‖
EL

be a measure of how far the length of the shortest
vector departs from the shortest vector of a random lattice. As ch decreases,
finding y will be easier as it gets considerably shorter than the expected
shortest vector. The value of ch can be deduced from public quantities

ch =

√

πe(‖σf‖2 + ‖2g‖2)
Nσq

.

The constant ch is called the lattice constant, and is sometimes defined with
a different norm on the target vector or with the dimension term N removed.

29

We have chosen this form of ch as it involves the most natural norm in lattice
reduction and gives a simpler analysis of lattices of reduced dimension and
varying N .

Another constant impacting the hardness of lattice reduction is the ratio
N
q , where lower values give easier recovery of the target vector. As a low q
leads to more decryption failures, a suitable value of q maximizing lattice
strength and minimizing the effectiveness of decryption failure attacks must
be chosen.

6.2 Attack on individual NTRUEncrypt message

The attack on individual NTRUEncrypt messages closely resembles the at-
tack on the public key. The lattice used is very similar to the public key
attack, but the dimension is increased by one to 2N + 1. Another vector
of length 2N + 1 consisting of N 0-entries, the N coefficients of the secret
message e and finally a 1 is added. The other vectors are appended by a 0
to obtain length 2N + 1.

The lattice is then generated by the vectors of the matrix

σ 0 · · · 0 0 0 · · · 0 0
0 σ · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · σ 0 0 · · · 0 0

h0 hN−1 · · · h1 q 0 · · · 0 e0

h1 h0 · · · h2 0 q · · · 0 e1
...

...
. . .

...
...

...
. . .

...
...

hN−1 hN−2 · · · h0 0 0 · · · q eN−1

0 0 . . . 0 0 0 · · · 0 1

.

We will once more be looking for a short vector. With s ∈ R, we are
looking for the short vector (rT −mT −1) = (rT (r∗h−e+qs)T −1). This
can be done by selecting multiples of each vector similarly to multiplying
the matrix above by (rT sT − 1). Determining the balancing constant will

similarly be done by setting σ = ‖r‖
‖m‖ . The value of ‖m‖ is not a public

quantity, but we can use the expected value N/2. Then we can find the
value

cm =

√

2πe‖(rT mT)‖
Nq

as we did with ch. It is desireable to make attacks on h and m equally
difficult with cm ≈ ch, ‖(r,m)‖ ≈ ‖(f, 2g)‖.

30

6.3 Attack by spurious keys

Shortly after the first presentation of NTRU, Coppersmith and Shamir [4]
showed how to make use of lattice vectors that are almost as short as the
target vector. The idea is to obtain partial information from several short
vectors and combine this in an attack on individual messages.

We define the centered L2 norm on R as the length of the projection
orthogonal to (1 1 . . . 1)

|f |⊥ =

(

N
∑

i=1

(fi − f̄)2

)

1
2

, with f̄ =
1

N

N
∑

i=1

fi.

For polynomials a, b we have that |a ∗ b|⊥ ≈ |a|⊥|b|⊥.
First we try to find f ′ and g′ not much longer than f and g such that

pg = f ∗ h (mod q). We then look at the polynomial a from (7), which has
a centered L2 norm

|a|2⊥ = |f ∗ e|2⊥ = |t1̄ + pg ∗ r + f ∗m|2⊥ ≈ p2|g|2⊥|r|2⊥ + |f |2⊥|m|2⊥
where t1̄ is a polynomial with all coefficients equalling t serving to reduce
the coefficients into the right interval. We require that

|a′|2⊥ = |f ′ ∗ e|2⊥ = |t1̄ + pg′ ∗ r + f ′ ∗m|2⊥ ≈ p2|g′|2⊥|r|2⊥ + |f ′|2⊥|m|2⊥
is smaller or not much larger than |a|2⊥. We also assume that

b′k =
∑

i

mif
′
k−i (mod p)

which gives a linear relation disclosing message bits. The success of the
method depends on the coefficients of b′ being in the correct interval, the
length of f ′ and g′ and the number of such alternative vectors found. If
we find two such pairs, their length may be up to 2.5 times longer than
the target, while finding several pairs allows us to use vectors four times as
long as the target vector. Longer vectors lead to more errors in the linear
relation, and techniques from error correcting codes must be used to find
the correct decryption.

Hoffstein, Pipher and Silverman [6] of NTRU claim based on experimen-
tal results that finding vectors almost as short as f and g is very unlikely
as they hardly saw them occur. It will often be easier and more efficient to
find the actual target vector. In addition, using the NTRUEncrypt padding
scheme, the linear relations needed for this method are removed.

6.4 Non-deterministic parallel reduction

In an attack by Seidel, Socek and Sramka, the symmetry of automorphism
groups of the NTRUEncrypt lattice is exploited [22]. The cyclic structure of

31

cir(h) enables the possibility to shift coefficients of single vectors to advance
reduction when BKZ type reductions can’t find shorter vectors. We seek to
find lattice bases with successively shorter vectors until, if successful, the
basis vector with the same length as our target vector is found. The core
components of the method are random permutations of vectors and BKZ
reduction in parallel and shifts of vectors.

By a rotation we mean a cyclic shift of coefficients in a vector or poly-
nomial. Let rotatec(v) be a cyclic shift of the vector v by c positions.
Similarly an NTRUEncrypt polynomial corresponding to v can be shifted
by multiplication by Xc. Due to the block structure of the NTRUEncrypt
lattice, we need to treat the two halves corresponding to different blocks
separately. For a vector w = (u v) we introduce birotation such that
birotatec(w) = (rotatec(u) rotatec(v)).

Let L be an NTRUEncrypt lattice and B be the matrix given in (8).
Any lattice vector can be written as a linear combination of vectors from B,
w = Bx where x is an integral vector x = (x1, ..., x2N). For a birotation we
have

birotatec(w) = B birotatec(x),

such that birotatec(w) ∈ L.
Let Pc be an N×N permutation matrix shifting each vector c positions.

We can then construct the block matrix

P =

(

Pc 0
0 Pc

)

with Pc and two N ×N zero matrices. We have the equality

birotatec(w) = Pw.

Using the identity above and multiplying by P we get

Pw = PBx = PBP−1Px.

From the construction of cir(h) (8) we get that

Pc cir(h) = cir(h)Pc

as shifting the rows or the columns of cir(h) c positions produces the same
result. Consequently

PBP−1 =

(

Pc 0
0 Pc

)(

I 0
cir(h) qI

)(

P−1
c 0
0 P−1

c

)

=

(

Pc 0
Pc cir(h) qPc

)(

P−1
c 0
0 P−1

c

)

=

(

PcP
−1
c 0

Pc cir(h)P−1
c qPcP

−1
c

)

=

(

I 0
cir(h) qI

)

= B

32

so clearly
birotatec(w) = B birotatec(x),

and we conclude that w ∈ L if and only if birotatec(w) ∈ L.
The birotation method works by replacing a long vector in the current

lattice basis B = (b1, ...,b2N) with the birotation of a short vector in the
same lattice. Let m,n ∈ Z such that 1 ≤ m < n ≤ 2N and ‖bm‖ < ‖bn‖
be vectors in the lattice and set

bn ← birotatec(bm), c = 1, ..., N − 1.

If the vectors in this new basis B ′ are linearly independent, we have obtained
a basis with smaller weight, wt(B) = ‖b1‖‖b2‖ · · · ‖b2N‖. To check for linear
independence we test if det(B) = det(B ′), if they are not equal we increment
c to test another birotation. If the birotation procedure succeeds we proceed
with the new lattice basis.

Permutation of basis vectors is another main part of this method. By
rearranging the vectors of a reduced basis, we hope to achieve further re-
ductions. Let α(B, k) be a permutation of B producing a new lattice basis
differing from B in exactly k vectors. As BKZ reduction is sensitive to
the order of vectors in the basis, we hope to achieve further reduction by
changing the ordering of vectors in the reduced basis. Permutations and
subsequent BKZ reduction is carried out in M parallel processes and the
basis with the shortest vector is chosen for further reduction.

The natural goal of the algorithm is to recover a short vector of the
same length as the target vector y. We define the function φ(B) = ‖b1‖

‖y‖
as the ratio of the length of the shortest vector in B to the length of the
target vector. With a basis Bi and a new and potentially shorter basis Bi+1,
we will change to the shorter basis if φ(Bi+1) < φ(Bi). If the basis is not
improved we will increase the blocksize of BKZ reduction or the number of
vectors to permute and perform another permutation and reduction.

The algorithm is shown schematically as Algorithm 5. Initially we have
the lattice basis B, k = 2 and l = 2. Seidel et. al. [22] does not specify how
to choose m,n for birotations, but a natural choice would be to use a low
index for m and a high for n as this would produce the greatest reduction
of bn.

If the algorithm is successful in finding a vector of the same length as the
target vector, the output should be the target vector or one of its rotations.
There are now only N rotations to check, and if the key generation procedure
setting f = 1 + pF is used with p = 2, we can find the correct rotation by
setting the odd coefficient in the first position.

Seidel, Socek and Sramka do not give an estimate of the performance
of the algorithm. Socek does however treat an earlier version of this attack
in his master thesis [26], finding that it in many cases outperforms BKZ
reduction with increasing blocksize, but that its behaviour sometimes is

33

Algorithm 5 Parallel symmetric non-deterministic attack

Start

2-BKZ End
‖b1‖=‖y‖

‖b1‖>‖y‖

B(1)← α(B, k) · · · B(m)← α(B, k)

l-BKZ · · · l-BKZ

B ← Bmin

Bmin ← Bi

for i with
φ(B(i))φ(Bmin)<φ(B)

φ(Bmin)≥φ(B)

k ← k + 1
k<2N

k=2N

l← l + 1 Bbr ←birotate(Bmin)

wt(Bbr)<wt(Bmin)

wt(Bbr)≥wt(Bbr)

B ← Bbr, k ← 2

worse. Due to the non-deterministic permutations, the effectiveness even on
repetitions of a single instance of the algorithm is unpredictable.

Our general experience with lattice reduction shows that with a l-BKZ
reduced lattice basis, finding a l+1-BKZ reduced lattice basis is generally
much faster than finding the l+1-BKZ basis directly. Permutation of vectors
in a reduced lattice basis leads to further reduction with a high time cost.
We can expect the parallelized part of the algorithm to produce good re-
ductions of the lattice. Meskanen [17] and we have found that reducing the
NTRUEncrypt lattice and the same lattice with its vectors permuted yields
very different reduction times, and we may expect that some of the permu-
tations in parallel may be much slower than the others. In this case other
processors stay idle, and some mechanisms should be implemented to select
the basis with the shortest vector, even if it is still being reduced, or let idle

34

processors work on lattices from slower processes with a new permutation.

6.5 Adjustments to the NTRUEncrypt lattice

Some properties of the NTRUEncrypt public key and the corresponding lat-
tice offer possibilities for improvements to the standard lattice based attacks
on NTRUEncrypt. Using these tricks we can alter lattices to achieve more
efficient lattice reduction and reduce the dimension of the lattice. Experi-
ments show that the time needed to discover the secret key can be reduced
significantly.

6.5.1 Zero forcing

The polynomials f and g created in NTRUEncrypt key generation have
a large portion of zero coefficients, and this is exploited in an attack by
May [15] and an improved attack by May and Silverman [16]. With the
NTRUEncrypt lattice

(

I 0
cir(h) qI

)(

f
s

)

=

(

f
2g

)

we see that to obtain the target vector we have to sum vectors corresponding
to the polynomial (fT sT). With the current NTRUEncrypt parameters,
the private key f has df or df − 1 twos, the constant term one or three and
the rest of the coefficients zero. Vectors in the lattice that correspond to a
zero in f will not be included in the set of vectors that sum to the target
vector. As lattice reduction has an emphasis on finding the short vectors of
a lattice and longer vectors will be handled less, we can give some vectors
less attention in reduction by making them longer. The idea is that this will
reduce the practical dimension of the lattice and speed up the reduction.

We do not know the location of any zeros in f , as they should be ran-
domly distributed except for the non-zero constant term. However, due to
the rotational symmetry of the NTRUEncrypt public key, we have that h∗X i

is a right rotation of the public key polynomial h, all coefficients shifted i
positions to the right. The same applies to products of polynomials. For
the public key

f ∗ h = pg

we have
(Xi ∗ f) ∗ h = X i ∗ (f ∗ h) = X i ∗ (pg)

which means that any rotation of the public key can be used. Consequently
we do not have to guess the exact location of zeros in f or g, as long as the
zeros create a pattern that exists somewhere in the desired polynomial.

May’s first idea was to look for a “zero run” in f or g, a number of
consecutive zeros appearing somewhere in the polynomial. By multiplying

35

columns or rows involving the cir(h)-block by a constant θ before reduction
we may guess the location of zeros in f or g respectively. By multiplying
a column by θ, the length is increased and linear combinations with this
vector will most likely be longer than others. By multiplying rows by θ we
guess the locations of zeros in g as nonzero elements in the last half of the
target vector now will be 2θ, contributing to longer vectors than the original
value of 2. It is also possible to alter both rows and columns, but in this
case we lose the rotational symmetry and the exact location of the zeros
must be guessed.

Important adjustments to May’s method have been suggested in [15, 17].
Instead of guessing a run of zeros in f or g, a pattern of zeros may be guessed
instead as the zeros do not have to be consecutive. Instead of multiplying a
column assumed to correspond to a zero in f by a constant we may instead
remove it. This leaves a zero row in the lattice among the first N vectors,
and this row may also be removed, reducing the dimension of the lattice by
the number of zeros in the pattern.

As the dimension is reduced we can in general expect that the time
needed for reduction is also shortened, although the target vector will not
be found at all if the selected pattern is not included in the intended part of
the target vector. With longer patterns the chance of guessing the correct
pattern decreases. There is no known way to run the LLL algorithm itself
in parallel, but this situation lets us run the same public key with different
patterns on several processors.

With a pattern of length l and an NTRUEncrypt key of length N created
by polynomials with d ones, we can calculate the probability of guessing
the correct pattern. If we have chosen our pattern correctly, all d nonzero
elements are among the remaining coefficients of the polynomial and the
probability for a specific location of the pattern is

Pr[ai1 = ai2 = · · · = ail = 0] =

(N−r
d

)

(N
d

) =

l−1
∏

i=0

(

1− d

N − i

)

.

Due to the rotational symmetry the pattern may be located anywhere in
the polynomial, resulting in the improved probability

Pr[ai1+k = · · · = ail+k = 0] = 1−
(

1−
l−1
∏

i=0

(

1− d

N − i

)

)N

where the indices are taken modulo N .
We say that the attacker “wins” if the chosen pattern corresponds to

zeros in a rotation of the polynomial. Theoretically nothing is gained if the
same pattern appears in different rotations of the polynomial, but practically
one rotation might be easier to find by LLL reduction than the other. As
the time needed to break an NTRUEncrypt key is found experimentally to

36

be exponential in the dimension of the lattice of the form log t = αN + β
the gain G for a single pattern containing of l zeros is

G = 1−
(

1−
l−1
∏

i=0

(

1− d

N − i

)

)

∗ 10αl.

If we parallelize the process nothing is gained if more than one pattern
wins. The gain in parallelization is therefore not linear in the number of
processors, and we should adjust the number of zeros in our pattern to the
number of processors available. Let T (l) be the time to run a pattern with l
zeros or l vectors removed and P (l) be the probability of guessing the valid
pattern. With C processors, the expected running time is Et(C, l) given by

Et(C, l) =
T (l)

Pr[at least one pattern wins]

=
T (l)

1− Pr[all patterns wrong]

=
T (l)

1− (1− P (l))C
=

10α(N−l)+β

1−
(

1−∏l−1
i=0

(

1− d
N−i

))NK
.

For very small P (l) we have Et(C, l) ≈ T (l)
CP (l) . With a very large number

of processors and constant P (l) we get limC→∞ Et(P, l) = T (l), but this
requires that P (l) is smaller than 1/C, which may not be the optimal value
for P (l).

May and Silverman [16] computes the gain of parallelizing to allow more
processor work on patterns with more zeros than would be optimal with just
one processor. Examining their results we find that the gain relative to a
single processor is slightly better than

√
C.

6.5.2 Tricks exploiting p and optimizing lattice constants

The standard NTRUEncrypt lattice as presented in section 6.1 turns out not
to be the optimal for lattice reduction. Several adjustments can be made
to improve the performance of lattice reduction to obtain the private key
or message polynomial. Starting with the lattice suggested by Coppersmith
and Shamir [4] and the vectors involved in the solution we have

(

I 0
cir(h) qI

)(

f
s

)

=

(

f
2g

)

if we use the current NTRUEncrypt key generation h = f−1 ∗ pg with p = 2
and set the value α = 1.

With the current parameter settings, polynomials with binary coeffi-
cients are used to create f and g. The private key f is produced by first

37

creating a polynomial F with df ones and the other coefficients zero, and
then taking f = 1 + pF . As h = f−1 ∗ pg, f ∗ h = pg. With the current
parameter settings, it turns out that the length of the target vector is ap-
proximately ‖y‖ ≈

√
8d, with d = df = dg. The actual length is either√

8d + 1 or
√

8(d− 1) + 32 depending on the constant term of f which is
either 1 or 3. For the NTRUEncrypt parameter set ees251ep4 (N = 251,
d = 72, p = 2 and q = 239), this leads to a value of ch ≈ 0.286. For the
attack on an NTRUEncrypt message, we get cm ≈ 0.267.

We found an adjustment to the NTRUEncrypt lattice that exploits the
structure of f by noting that all coefficients except the first are either 0 or
2. For the corresponding columns in the lattice, we multiply all elements by
2 and reduce (mod q). The value of ch is improved by a factor close to

√
2

to ch ≈ 0.202, which should make it easier for lattice reduction methods to
discover the target vector. We also suspect that this has other implications
on the lattice reduction. Experiments show an improvement in the time
and block size needed to find the target vector. Due to the structure of f ,
adding an odd number of some vectors can not produce the target vector,
and by eliminating the possibility of adding odd numbers of these vectors,
we reduce the number of unhelpful operations in the reduction. Our first
idea in this direction was to allow only addition and subtraction of vectors
in LLL for |µi,j| ≥ 1 in contrast to the regular |µi,j| ≥ 0.5, but this turns
out to be too rare in the NTRUEncrypt lattice. Multiplying the vectors by
2 turns out to be the better choice.

Meskanen also discovers this same method in a slightly different way in
his thesis [17]. He introduces a number of tricks to improve the value of
ch and reduce the time to find the target vector. By constructing adjusted
lattices, the target vector can be found more efficiently, but in many cases
the possibilities for combining with other improvements to lattice reduction
are reduced.

In his first trick, Meskanen adds a lattice vector that is always close to
f and 2g. Let this vector be a1̄ = (a a . . . a). To minimize the distance be-
tween (fT 2gT) and (a1̄ a1̄) an a is selected such that

√

‖f − a‖2 + ‖2g − a‖2
is minimized. This leads to a ≈ 2d

N ≈ 1
2 . As an integral lattice is preferred,

we multiply all elements of the lattice by 2 to obtain

(

2I 0 −1̄
cir(2h) 2qI −1̄

)

f
s
1

 =

(

2f − 1̄
2g − 1̄

)

which gives ch ≈ 0.243. Adding the vector (1̄ 1̄) leads to linear dependent
vectors and the new vector is now the shortest vector in the lattice. We do
not deal with these problems as subsequent tricks will give a solution.

This first trick can also be applied to the NTRUEncrypt message with

38

the lattice

2I 0 1̄
cir(2h) 2qI 2e + 1̄

0̄T 0̄T 1

f
s
−1

 =

(

2f − 1̄
2g − 1̄

)

which has a solution where all coefficients are ±1 and hence has a length of√
2N + 1 and has cm ≈ 0.134.

The second trick of Meskanen takes advantage of the same observation
as ours above. Noting that the first of his first trick leads to

f ∗ 2h + 2qs = 4g

we expand f to obtain

(1 + 2F) ∗ 2h + 2qs = 2F ∗ 2h + 2qs + 2h = F ∗ 4h + 2qs + 2h = 4g.

We then move 2h which will correspond to the constant term into the
second part of the vector we added above.

(

4I 0 −1̄
cir(4h) 2qI 2h− 1̄

)

F
s
1

 =

(

4f − 1̄
4g − 1̄

)

.

In addition to this we can exploit the parity of s by setting s = 2s1− s2.
First we go back a few steps and consider

(

2I 0 0̄
cir(2h) 2qI h

)

.

Noting that as our target vector is (2F 2g), all elements of the target vector
are 0 mod 2. In (6.5.2) all columns except the last have coefficients that are
0 mod 2. As the last column is included in the solution, this column must
also have coefficients that are 0 mod 2. This is obtained by subtracting q
from all elements as needed, written as the operation of subtracting qs2 from
h. All elements are then 0 mod 2 and we may move the coefficient 2 from
s1 into the lattice to obtain the following lattice and calculation

(

4I 0 −1̄
cir(4h) 2qI 2h− 1̄

)

F
2s1 − s2

1

=

(

4I 0 −1̄
cir(4h) 4qI 2h− 2qs2 − 1̄

)

F
s1

1

=

(

4f − 1̄
4g − 1̄

)

.

39

With this lattice we get ch ≈ 0.121. The last vector is not the shortest
anymore, and even though the lattice is not linearly independent, we can
make it linearly dependent by removing the first column if we assume that
the constant term f0 = 1, otherwise add the first and last column as f0 = 3.

In a third trick, further balancing is achieved by knowledge of the NTRU-
Encrypt parameter d. As we know that the last column must be part of the
solution we add d to all elements of this vector and 1 to all elements of the
first N vectors. Let 1̌ be a block with all elements 1, we then get the lattice

(

4I + 1̌ 0 −1̄− d̄
cir(4h) + 1̌ 4qI 2h− 2qs2 − 1̄− d̄

)

F
s1

1

 =

(

4f − 1̄
4g − 1̄

)

.

where we remove the first column to make the lattice linearly independent as
before. This lattice yields good performance results in our and Meskanen’s
experiments [17]. This is also expected as ch decreases slightly. The length
of the target vector is unchanged, and the expected length increases, but
this increase is dependent on h and we can therefore not give a general
calculation of ch.

By removing the first vector from the lattice, we assume that the constant
term of f is 1. For the NTRUEncrypt parameters N = 251, d = 72 this is
true with a probability of about 71%. If the constant term is 3, reduction
of this lattice will not be successful in finding the target vector. In this case
we add the first and last column together and should then find the target
vector.

When applying our own adjustment or the second or third trick of Meska-
nen, we lose the rotational symmetry of the NTRUEncrypt lattice. Zero
forcing and pattern guessing techniques of May and Silverman [16] will also
lose some of their effectiveness due to this. Guessing a run of zeros or a
pattern of zeroes is still possible, but the exact possition of the pattern has
to be guessed, greatly reducing the effectiveness of the attack. We may how-
ever guess the location of another 1 in F by adding the last vector above
to a vector other than the first. This enables us to test both values of the
constant term of F at once by guessing the location of another 1 in F , but
the chance of guessing correctly is only 29%. As we seek to locate any 1
in F , we can guess more locations hoping that exactly one is correct. By
adding the last vector to two, three or four other vectors the probability of
hitting exactly one correct vector is above 40%. There does however seem
to be practical problems probably due to the balancing weights cancelling
each other out during lattice reduction.

The birotation method proposed by Seidel, Socek and Sramka [22] can
also be used with caution for these lattices. Birotation of a vector normally
yields another vector in the lattice. Birotating a vector that involves the
vector corresponding to the constant term will not be helpful as this leads
to multiples of vectors that are not part of the solution. Elements in the

40

top left block can be used to determine if this is the case. For the message
attack lattice, we do not include the last element in the rotation. The last
element will tell us if a birotation is possible, as it can only be performed
when this element is 0 meaning that we only rotate a sum of h-vectors.

Another idea we tried is based a combination of the tricks by Meskanen
[17] and a comment by Coppersmith and Shamir [4]. If we multiply all the
elements of cir(h) by p−1 modulo q denoted as p−1

q , we get (f g) and not
(f 2g), a shorter target vector. If we guess the coefficient of the constant
term we may also substitute F for f to get the minimal target vector. This
causes an increase of ch, as the decrease in the expected shortest vector
is greater than the decrease of the target vector. If we use the lattice of
trick three substituting p−1

q h for h, we get that 4p−1
q h = 2h as 2p−1

q =
pp−1

q = 1. Hence the reduction block must now be set to 2qI, and the
parity considerations of s are obsolete. Experiments show that this lattice is
comparable to but does not appear to be better than trick three of Meskanen.
To retain the size and parity of the reductions modulo q we may multiply
h and q a constant other than 2 and find another constant a in the vector
(a1̄ · · · a1̄) to add in, but other natural choices increases the length of the
target vector even more.

6.5.3 An attack on the inverse of the public key

Using the tricks above, we lose the rotational symmetries because of the
way f is created, forcing us to locate and guess the constant term. We
may however search for g instead by replacing h by its inverse h−1. We get
2g ∗ h−1 = 1 + 2F . All the coefficients of 2g are either 0 or 2. We can then
construct the lattice as before

(

I 0
cir(h−1) qI

)(

2g
t

)

=

(

2g
f

)

and move the factor 2 into the lattice as before to obtain
(

2I 0
cir(2h−1) qI

)(

g
t

)

=

(

2g
f

)

.

This lattice can further be enhanced by tricks similar to the ones above.
We might add another vector of ones as before, resulting in a linearly de-
pendent system of vectors. This can be avoided by a similar consideration
of the parity of t as in trick two above, but using this method we lose the
rotational symmetry by choosing the location of the constant term in f .

We may however use a method similar to trick three above that retains
the symmetry. When computing 2g ∗ h−1 = f , a set number of reductions
modulo q has been performed. When adding together d rotations h−1, we
know that the sum of all the elements is 2g(1)h−1(1). The sum of the

41

elements of f is f(1), and hence the number of reductions is

t(1) =
2g(1)h−1(1)− f(1)

q
(11)

which we use to balance the lattice above. We increase the dimension of the
lattice by one to obtain

4I 0 −1̄
cir(4h−1) 2qI −1̄

0̄T m̄T −mt(1)

g
t
−1

 =

4g − 1̄
4f − 1̄

0

 . (12)

We may also balance by adding the scalar m to the end of the first N
vectors and set the last element in the last vector to −mdg. We will then
obtain

4I 0 −1̄
cir(4h−1) 2qI −1̄

m̄T 0̄T −mdg

g
t
−1

 =

4g − 1̄
4f − 1̄

0

 (13)

which is also fairly similar to the construction in (11) in terms of effective-
ness. There are also differences between the two lattices when it comes to
application of zero forcing methods. In (13) we can reduce the dimension
using zero forcing, as we have removed vectors that are not part of the solu-
tion, the last element still sums to 0. The value of (11) used in (12) will not
be correct if the dimension is reduced, as a part of h−1 is removed from every
vector in cir(h−1). May’s original zero forcing idea where some elements on
the diagonal in the upper left block is increased may however still be used.

If a specific pattern of 0’s and 1’s is sought, the vectors corresponding to
the selected 1’s can be added to the last vector in the lattice. In the case of
(13), this enables us to reduce the dimension the lattice by the total length
of the pattern including the ones.

If our guess is correct we get shortened rotations of f and g. We will
need to append the selected pattern or number of zeros to g and compute
2g ∗ h−1 = f as some coefficients of f are missing after reduction. When
f is retrieved, we may find the position of the constant term as this is the
only coefficient equal to 1 and use this to rotate both vectors to put the
coefficients in the correct positions.

When applying the birotation attack to these lattices, we do not have to
consider the location of any particular vectors. For the lattices of dimension
2N + 1 we do not include the last element of the vectors in the rotation.
This element can be left unchanged in the birotation, as it represents the
number and times selected vectors have been added or subtracted, and this
representation remains unchanged in the birotation.

6.5.4 Removing rows

To reduce the dimension of the lattice rows involving the cir(h) or cir(h−1)
block can be removed. As with column removal in zero forcing, removing a

42

row will leave a zero column, which can also be removed. A number of such
rows can be removed from the lattice, but as the qI block has a significant
contribution to the expected length of the lattice, reducing the dimension of
the qI block decreases s and hence ch is increased. Specifically for a public
key of length N with l rows and zero columns removed has expected length

EL = q
N−l

N

√

(2N − l)σ

πe

while the target vector new has average length

y =

√

22

(

d + d
N − l

N

)

.

The decrease in y is small compared to the decrease in EL causing an increase
in ch as the dimension is removed. The expected time needed to recover the
secret key is reduced by the reduction in lattice dimension, but increased
by the larger ch. The impact of ch on reduction time does not seem to
be well studied, and experimental results will be needed to determine the
effectiveness of row removal and finding the optimal number of rows to
remove.

7 Results

We have implemented lattice reduction using the BKZ method of Victor
Shoup’s NTL package [23]. NTL offers several choices when it comes to
floating point precision and orthogonalization techniques. We have primarily
used the floating point (FP) version of BKZ as this precision is sufficient and
thus offers the highest speed.

The LLL algorithm and improvements to it generally behaves much bet-
ter than expected by the worst case measures of both running time and
achieved reduction. Even though the results are generally much better than
expected, proving the improved performance seems to be hard. Running
times may vary greatly on fairly similar input, making it hard to predict
running times even for similar sized problems. Reduction algorithms are
for instance sensitive to the order the lattice vectors. Meskanen [17] finds
that randomizing the order of vectors generally reduces the required time
to recover the secret key. Our findings in section 7.3 does however dispute
this and examplify the unpredictability of lattice reduction methods.

The BKZ algorithm has a complexity that is polynomial in the dimension
of the lattice and exponential in the blocksize. We would therefore want to
keep the blocksize at a value offering an optimal trade-off between running
time and quality of reduction. Unfortunately it is hard to predict both the
needed blocksize and the optimal blocksize to find the target vector. The

43

smallest blocksize that finds the target vector may not be the optimal in
reduction time, and Meskanen [17] also finds that higher blocksizes may fail
to find the target vector.

When scalars like θ in the zero forcing methods are added or multiplied
into the NTRUEncrypt lattice, the optimal value must also be found ex-
perimentally. Large numbers will slow down the reduction process, while
small numbers may contribute too little to the desired effect, slowing down
the calculations. Due to the unpredictabilities described above, we need a
number of samples for problems of various sizes to find a optimal values. As
our trials have been run on lattices where no such scalars are needed, we
have not carried out such tests.

The LLL algorithm is originally specified with Gram-Scmidt orthogonal-
ization, but in NTL it is also with Givens orthogonalization. Gram-Schmidt
is the fastest, but becomes unstable as the dimension increases [23], and like
[17] we had to shift to Givens orthogonalization to regain stability at the
expense of speed.

We made some adjustments to the BKZ method of NTL. As we know the
structure of the target vector, we included a search for it in the BKZ method.
The search scans the half of each vector corresponding to the polynomial g
checking if the coefficients agree with the expected values. When a mismatch
is found the search proceeds to the next vector. As we only seek the target
vector and do not need a BKZ reduced lattice, we may abort BKZ reduction
as soon as the target vector has been found.

We also realized that the matrix representing the lattice in NTL’s BKZ
method was copied into another matrix on which all operations were per-
formed before it was copied back into the first matrix. We did not study
the reason for this redundant matrix, but as removing it didn’t cause any
problems we have removed it from our version of BKZ, enjoying a decrease
in reduction time.

We implemented key generation in MATLAB using the methods for find-
ing the inverse of truncated polynomials from [25]. Binary polynomials with
random distribution of ones were used. To mimic the lattice constants ch

and N
q of the standardized parameter set ees251ep4, q was chosen to be a

prime not much smaller than N and df , dg was chosen such that the ratio

of
df

N and
dg

N was preserved by setting approximately 29% of the coefficients
in F and g to zero.

7.1 Results of improved lattices

We tried lattice reduction using different lattices as explained in previous
chapters. On successful alterations of the lattice and reduction methods,
we experienced noticeable speed-ups. Due to the somewhat unpredictable
nature of lattice reduction in the BKZ algorithm, a change decreasing the
runtime of one instance might still cause an increase to others. We are

44

however interested in the general trend, and especially speed-ups that sig-
nificantly speeds up key recovery for large N .

Starting with the most basic tricks of exploiting p in f = 1 + pF , we
experienced a significant reduction in running time for all instances. The
time to recover the key with a given blocksize was shorter, and it was possible
to recover the key with a smaller blocksize. As a smaller blocksize generally
implies shorter runtime, this lattice allows even shorter breaking times.

Other adjustments to the lattices to arrive at trick three of Meskanen,
randomization of the order of vectors and adjustments to the BKZ routines
of NTL all improved the running time in most of the tested instances. We
found a good correlation with theory regarding the effect of the lattice con-
stant ch as expected. The same applies to other attacks such as attacks on
the inverse of the private key and removing rows, which turned out not to
be faster than trick three of Meskanen. Therefore we chose to carry out
experiments using the same construction.

7.2 Breaking times for NTRUEncrypt lattices

In the style of [17], we created NTRUEncrypt public keys with N rang-
ing from 100 to 112, keys that are possible to break within hours or days.
We have to choose between reduction methods solving lattices where f has
constant term 1 or 3. We have chosen reduction methods and keys with
constant term 1, which means that the constant term of F is 0 as this is
the most likely case. Five keys of each length were randomly generated and
broken.

Experiments where run on a server with two CPUs each of 3.6 GHz
with 2MB cache memory and 4GB common DDR2 main memory. As this
computer is a shared student facility, we only had access to one of the
processors most of the time as the other was in use by another student. At
times other processes were run on the computer slowing down all processes.
We did not monitor such events, but our experience is that they were limited
in number and duration, and thereby only had a small impact on some of
the broken keys.

The lattices we tested are equal to those of [17]. The framework for
producing lattices from the public key, randomizing the order of the vec-
tors, displaying and storing the result has no considerable impact on total
decryption time, essentially all the time is spent in BKZ reduction of the
lattice. We can therefore not expect any difference in running time due to
differences in the framework. We have however made changes to the NTL li-
brary as mentioned above, and would expect a speed-up due to the decrease
in memory usage and hopefully an increase due to termination of lattice
reduction by the test looking for the target vector.

We ran the tests with an initial blocksize value of 2 and increasing the
blocksize until the target vector was found. For LLL reduction we chose

45

δ = 0.99. In BKZ a parameter called pruning is specified. Our initial
experiments with different values of the pruning parameter showed that
predicting the optimal value for pruning was very hard and that some values
even may have a negative effect on running time. We used the pruning value
0 meaning that no pruning was performed.

The results of our experiments are given in Table 1 and breaking time
as a function of key length N is shown in Figure 4.

N b1 T1 b2 T2 b3 T3 b4 T4 b5 T5

100 24 1689 23 927 22 488 22 384 23 1066

101 23 1382 25 2180 22 933 22 420 23 1030

102 23 2435 25 1093 23 1454 24 2804 23 884

103 23 1115 26 16194 23 6433 23 914 23 3428

104 23 3245 25 17797 25 6673 24 2675 23 2564

105 23 2273 25 24143 24 13058 24 4220 25 37606

106 23 4379 24 19574 24 8748 25 4077 24 26293

107 25 6298 26 15718 24 21092 25 7746 24 17975

108 25 114688 23 7429 24 13965 24 21270 25 62126

109 25 21449 25 15681 24 15394 25 55802 25 54738

110 24 8465 26 241938 25 53030 26 77721 25 49661

111 24 32690 25 142474 25 243523 26 184976 27 124188

112 27 495544 26 690999 25 136306 25 145307 26 650550

Table 1: Needed blocksizes and breaking times in seconds for NTRUEncrypt
keys

Analyzing the block sizes and the breaking times we find that the average
blocksize as a function of N is 0.225 + 0.38N . For the breaking times we
find the regression line to be

log T = 0.20108N − 17.268.

Comparing the breaking times to Meskanen’s log T = 0.1749N − 14.15 [17]
found using a 700 MHz processor, our results is weaker for large N . Ex-
traplotating the regression lines we find that our results are better for keys
with N ≤ 119 but worse for larger keys. Extrapolating to N = 251 which is
the smallest key size in NTRUEncrypt recommendations we get a breaking
time of about 1.6 · 1033 seconds or 1.82 · 1029 MIPS years on this computer.

The NTRU team has also done similar tests obtaining running times
that are much better than ours and Meskanen’s [7]. They find log T =
0.1095N − 12.5402, but do however use a lattice constant ch that is much
smaller than ours, and their ratio for N

q is also much smaller, contributing
to the improved performance.

46

Figure 4: Breaking times of NTRUEncrypt lattices

7.3 Other results

Meskanen [17] notes that randomizing the order of vectors seems to speed
up the reduction. We implemented exactly the same code for randomizing
of vectors and used it for our key breaking trials given in Table 1. We have
also performed a test of the effect of randomization, comparing breaking
times for vectors given in the standard order, randomized order, doubly
randomized order and in reverse order. The aim of double randomization is
only to produce a randomization that differs from the single randomization.
The results are given in Table 2 and shows that breaking times are highly
dependent on the order of the vectors and that the effect of different order
changes is unpredictable. The randomization is also dependent on the seed
to the random number generator. We have used the same seed in all our
tests, but the randomization and hence the breaking time is also dependent
on the seed.

The NTRU team claims that experimental evidence suggests that finding
vectors almost as short as the target key as needed for the attack by spurious
keys (see 6.3) is unlikely and therefore the attack does not threaten the
security of NTRUEncrypt [6] and [7]. On one occasion using the standard

47

Randomization Key 1 Key 2 Key 3 Key 4 Key 5

None 1201 522 1158 252 492
Single 1688 925 487 384 1062
Double 549 2451 301 2969 598
Reverse order 800 1465 578 1004 320

Table 2: Breaking times for keys with N = 100 for various permutations.

lattice we discovered a solution vector that was almost as short as the target
vector, and it turns out that this vector really was the sum of two rotations
of the target vector, which we can not expect to be easier to find than the
target vector itself.

8 Concluding remarks

We have examined the public key cryptosystem NTRUEncrypt with a main
focus on lattice attacks, covering different lattice reduction algorithms and
lattices for attacks on NTRUEncrypt. We have shown that breaking NTRU-
Encrypt keys of recommended security levels in a reasonable time is infeasi-
ble with the current state of lattice reduction algorithms and the best known
lattices for attacking NTRUEncrypt. We did not have the possibility to test
a full range of lattice reduction methods on NTRUEncrypt lattices, but
would suggest a further survey of the impact of the lattice constant ch on
breaking times as well as the impact of trade offs between ch and N in the
methods of zero forcing and row removing. These methods for improving
the lattice as well as some some lattice reduction enhancements may serve
to improve lattice attacks on NTRUEncrypt further.

We have also proposed the key encapsulation method NTRU-KEM,
which similarly to NTRUEncrypt with a proper padding scheme is proven
secure against adaptive chosen ciphertext attacks.

48

References

[1] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Ran-
domized Reductions. Electronic Colloquium on Computational Com-
plexity, TR97-047, 1997.

[2] Johannes Buchmann and Christoph Ludwig. Practical Lattice Basis
Sampling Reduction. Cryptology ePrint Archive, Report 2005/072,
2005. http://eprint.iacr.org/.

[3] J.W.S. Cassels. An Introduction to the Geometry of Numbers. Springer,
Berlin, 1971.

[4] Don Coppersmith and Adi Shamir. Lattice Attacks on NTRU. In
Walter Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in
Computer Science, pages 52–61. Springer, 1997.

[5] Craig Gentry. Key Recovery and Message Attacks on NTRU-
Composite. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045
of Lecture Notes in Computer Science, pages 182–194. Springer, 2001.

[6] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-
Based Public Key Cryptosystem. In Joe Buhler, editor, ANTS, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer,
1998.

[7] Jeffrey Hoffstein, Joseph H. Silverman, and William Whyte. Estimated
breaking times for NTRU lattices. NTRU Cryptosystems Technical
Report # 012, Version 2.

[8] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John
Proos, Joseph H. Silverman, Ari Singer, and William Whyte. The Im-
pact of Decryption Failures on the Security of NTRU Encryption. In
Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Com-
puter Science, pages 226–246. Springer, 2003.

[9] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William
Whyte. NAEP: Provable security in the presence of decryption failures.
Cryptology ePrint Archive, Report 2003/172, 2003. http://eprint.

iacr.org/.

[10] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. A
Meet-In-The-Middle Attack on an NTRU Private Key. NTRU Cryp-
tosystems Technical Report # 004, Version 2.

[11] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte.
Choosing Parameter Sets for NTRUencrypt with NAEP and SVES-3.

49

In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture Notes in
Computer Science, pages 118–135. Springer, 2005.

[12] A. Korkine and G. Zolotarev. Sur les formes quadratiques. Mathema-
tische Annalen, 6(3):366–389, 1873.

[13] Jeffrey C. Lagarias. The computational complexity of simultaneous
diophantine approximation problems. SIAM Journal of Computing,
14:196–209, 1985.

[14] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factor-
ing Polynomials with Rational Coefficients. Mathematische Annalen,
261:515–534, 1982.

[15] Alexander May. Cryptanalysis of NTRU. Unpublished preprint, 1999.
http://www.informatik.uni-frankfurt.de/∼alex/ntru.ps.

[16] Alexander May and Joseph H. Silverman. Dimension Reduction Meth-
ods for Convolution Modular Lattices. In Joseph H. Silverman, editor,
CaLC, volume 2146 of Lecture Notes in Computer Science, pages 110–
125. Springer, 2001.

[17] Tommi Meskanen. On the NTRU Cryptosystem. PhD thesis, University
of Turku, 2005.

[18] John Proos. Imperfect Decryption and an Attack on the NTRU En-
cryption Scheme. Cryptology ePrint Archive, Report 2003/002, 2003.

[19] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53(2-3):201–224, 1987.

[20] Claus-Peter Schnorr. Lattice Reduction by Random Sampling and
Birthday Methods. In Helmut Alt and Michel Habib, editors, STACS,
volume 2607 of Lecture Notes in Computer Science, pages 145–156.
Springer, 2003.

[21] Claus-Peter Schnorr and M. Euchner. Lattice Basis Reduction: Im-
proved Practical Algorithms and Solving Subset Sum Problems. In
Fundamentals of Computation Theory, pages 68–85, 1991.

[22] Tanya E. Seidel, Daniel Socek, and Michal Sramka. Parallel Symmetric
Attack on NTRU using Non-Deterministic Lattice Reduction. Des.
Codes Cryptography, 32(1-3):369–379, 2004.

[23] Victor Shoup. NTL: A Library for doing Number Theory, version 5.4.
http://www.shoup.net/ntl.

50

[24] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
http://eprint.iacr.org/.

[25] J. Silverman. Almost Inverses and Fast NTRU Key Creation. NTRU
Cryptosystems Technical Report # 014.

[26] Daniel Socek. Deterministic and Non-deterministic basis
reduction techniques for NTRU lattices. Master’s thesis,
Florida Atlantic University, 2002. Available March 20 2007
from http://www.google.com/search?q=cache:KCUW t9HcikJ:

kaiso.cse.fau.edu/∼dsocek/Thesis.pdf+birot+ntru&hl=en&ct=

clnk&cd=2&client=opera.

[27] Martijn Stam. A Key Encapsulation Mechanism for NTRU. In Nigel P.
Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Com-
puter Science, pages 410–427. Springer, 2005.

[28] Peter van Emde Boas. Another NP-complete partition problem and the
complexity of computing short vectors in lattices. Technical Report 04,
Mathematics Department, University of Amsterdam, 1981.

[29] Efficient Embedded Security Standard (EEES) version 2.0. Consortium
for Efficient Embedded Security, June, 2003.

[30] William White. Choosing NTRUEncrypt Parameters. P1363 working
group presentation, March 2004. grouper.ieee.org/groups/1363/

WorkingGroup/presentations/Parameters-1363-2004-03.ppt.

51

