
Kombinasjonen av eksplisitt og implisitt
løser for simulering av den elektriske
aktiviteten i hjertet.

Martin Kaarby

Norges teknisk-naturvitenskapelige universitet
Institutt for matematiske fag

Master i fysikk og matematikk
Oppgaven levert:
Hovedveileder:
Biveileder(e):

Juni 2007
Brynjulf Owren, MATH
Anne Kværnø, MATH

Oppgavetekst

I denne oppgaven vil vi se på en ny metode for å simulere den elektriske aktiviteten i hjertet.
Arbeidet vil være fokusert på utvikling, analyse og testing av den numeriske metoden. Winslow-
modellen vil alltid bli brukt som referanse, slik at den numeriske metoden vil bli optimalisert med
hensyn på disse ligningene. Vi ønsker å finne ut om det er hensiktsmessig å løse systemet med en
kombinasjon av en eksplisitt og implisitt løser, der vi bruker den eksplisitte løseren i den
transiente fasen, og implisitt på resten av løsningen.

Oppgaven gitt: 17. januar 2007
Hovedveileder: Brynjulf Owren, MATH

Abstract

Simulating an ECG signal on a computer could be a great help when trying to un-
derstand the relationship between the observed ECG signal and the heart condition.
In order to get a realistic simulation, a good mathematical model was suggested by
Winslow et al. in 1999, called the Winslow model. This model consists of a set of
31 ODE’s (Ordinary Differential Equation)s which describe these electrochemical re-
actions in a single heart cell. The cost of doing one single call to the Winslow ODE
system is so big that a measure of efficiency is almost entirely based on the number
of such calls. It is therefore of importance to reduce the number of calls to the ODE
system when solving the problem. A closer look at the solution of the Winslow model
unveils that it has an initial transient phase where an explicit method is more efficient
than an implicit. The idea is therefore to implement a method that is explicit in the
beginning, and switches to implicit as the problem becomes stiff. This method has
proved to increase the efficiency by decreasing the number of calls to the ODE system
with about 25%, while the accuracy is maintained.

ii

Preface

This is my master thesis at the Norwegian University of Science and Technology, De-
partment of Mathematical Sciences, spring 2007. In this thesis I study the Winslow
model, which is a system of ordinary differential equations describing the
electrochemical reactions in a heart cell. It is a study of how explicit and implicit
methods can be combined in order to solve the model as efficient as possible. All
results and plots are obtained by computing in MATLAB 7.0.

I want to thank my supervisors Brynjulf Owren and Anne Kværnø for their ability to
always see things in a new light and come up with brilliant new ideas when I have been
stuck.

iii

iv

Contents

I. Introduction 1

1. A mathematical model of the heart 4
1.1. Physiology . 4
1.2. The bidomain model . 5
1.3. The full mathematical model . 5

II. Theory, Methods and Numerical Examples 7

2. Runge-Kutta methods and Stiffness detection 9
2.1. Solving an ODE numerically . 9

2.1.1. Runge-Kutta methods . 9
2.1.2. Stability . 10
2.1.3. Stiffness . 11

2.2. The solvers used . 12
2.2.1. ESDIRK54a . 12
2.2.2. Radau5 . 13
2.2.3. DOPRI 5(4) . 15
2.2.4. Fehlberg 4(5) . 16

2.3. Detecting stiffness . 17
2.3.1. Constant step size . 17
2.3.2. Low-Order Comparison Formula 17
2.3.3. Lipschitz Constant Estimation 19
2.3.4. Other Stiffness Detection Methods 20
2.3.5. Numerical Examples . 21

3. Step size strategies 27
3.1. A new step size strategy for the explicit Runge-Kutta methods 27
3.2. Numerical computations . 29
3.3. Comparison of DOPRI 5(4) and Fehlberg 4(5) 33

III. Putting Everything Together 35

4. Putting everything together 37
4.1. Finding out when to switch . 38

4.1.1. Hard-coded switch . 38
4.1.2. Switch point determined by constant step size 40

v

4.1.3. Switch point determined by the Low-Order comparison stiff-
ness detection . 41

4.1.4. Switch point determined by the Lipschitz estimates 43
4.1.5. Global error and efficiency 47

5. Conclusion and further recommendations 49

IV. Appendix and Bibliography 51

vi

Part I.

Introduction

1

2

In this thesis we will solve numerically the set of ordinary differential equations (ODE)
suggested by Winslow et al in [4]. This is a system of 31 ODE’s describing the
electrochemical reactions in a heart cell and is called the Winslow model. The Winslow
model is only a part of a larger mathematical model for simulating an ECG signal, but
when simulating, most of the time is spent solving the ODE system. So, in order to
speed up the simulations it is necessary to find a numerical method that solves the ODE
system efficiently.

First we will describe, in Chapter 2, some basic physiology of the heart and how a
mathematical model can be derived from this.

In Chapter 3 we build up a theoretical base that will help the reader for the rest of
the thesis. This involves some classic Runge-Kutta theory and an explanation of the
concept stiffness. Further, we give a short description of the Runge-Kutta solvers to be
used throughout this thesis. We then discuss some stiffness detection techniques with
explicit Runge-Kutta methods and show how they work in practice.

Chapter 4 is dedicated to step size strategies. Here, we will derive a step size strategy
to be used in the explicit solvers when solving the Winslow equations.

At last, in Chapter 5, we wish to take advantage of the results of the previous chapters
and combine an explicit solver with an implicit. This involves using both stiffness
detection from Chapter 3, and our new step size strategy developed in Chapter 4. The
performances of the new combined methods are then compared to the classic solvers.

3

1. A mathematical model of the heart

1.1. Physiology

The heart is truly one of our most vital organs. Its main task is to pump blood around
in the body. It can be separated into four different valves, called the left/right atrium
and left/right ventricles.

The human circulatory system is a two-part system whose purpose is to bring oxygen
to all the tissues of the body. When the heart contracts it pushes the blood out into
two major loops or cycles. In the systemic loop, the blood circulates into the body’s
systems, bringing oxygen to all its organs, structures and tissues collecting carbon
dioxide waste. In the pulmonary loop, the blood circulates to and from the lungs, to
release the carbon dioxide and pick up new oxygen. The systemic cycle is controlled
by the left side of the heart, the pulmonary cycle by the right side of the heart. See [1]
for more.

One of the most common ways to study the heart is by measuring the electric activity
in it. This can be measured on the body surface, and the measurement is called an
electrocardiogram (ECG). An ECG provides a doctor with a lot of information about
the condition of the heart.

By simulating the electrical activity of the heart, the goal is to achieve a better under-
standing of the relationship between the heart condition and the ECG signal.

The electric signal is created in the heart and conducted1 through the heart tissue and
the surrounding torso. In the mathematical model to be presented here, the exterior of
the heart is treated as a passive conductive medium with a given conductance, while in
the interior the electric activity is modelled by the bidomain model (Winslow model),
proposed by Winslow et al [4] in 1999.

1Electrical conductivity is a measure of a material’s ability to conduct/lead an electric current

4

1.2. The bidomain model

1.2. The bidomain model

To better understand the bidomain model, it is useful to know the basic physiology of
the heart muscle tissue and the cells. A cell is delimited by the cell membrane, whose
task is to control the flow of substances into and out of the cell. These substances
pass the membrane through channels formed by the so called gating proteins. These
channels are specialized so that only a narrow choice of substances can pass through a
given channel.

The contraction of the heart is triggered by a change of electric potential over the cell
membrane. In the bidomain model we distinguish between the intracellular and the
extracellular potential, denoted by ui and ue. This leads us to the trans membrane
potential v = ui−ue, describing the potential difference in the two domains. At about
−90mV this potential is called the resting potential, otherwise it is called an action
potential.

The contraction is started in a point in the heart called the sinoatrial node. The special
property of this particular point, is that the cells there trigger before all the other cells
in a healthy heart, causing a chain reaction of triggering cells. The direction of this
reaction, and thus the direction of the electric field, is determined by the orientation
of the muscle fibres because the conduction of the electric signal is fastest along the
muscle fibres.

To be able to start the contraction of a cell, the cell has to depolarize. This means
that the trans membrane potential becomes less negative. The depolarization is mainly
caused by Na+ − ions passing through the Na+ − channel, giving a higher concen-
tration of positive ions in the cell. When the potential reaches approximately−40mV ,
the contraction is triggered. See [1] to learn more about the human heart and action
potentials.

The bidomain model proposed by Winslow et al describe how this trans membrane po-
tential changes over time, using 33 state variables to describe the complex dynamics of
the cells. By doing a few modifications to the system, it can be reduced to involving 31
state variables. Each variable is given by a differential equation, which leads to a sys-
tem of 31 ordinary differential equations to be solved. See Appendix for the equations.

1.3. The full mathematical model

The ODE system to be considered in this thesis, is only a small part of a full mathemat-
ical model for simulating an ECG on the body surface. The derivation of this global
model is explained in detail in [10].

To give the reader an idea of what part of the full model we are working on, we will
now give a quick motivation for the global set of equations.

If we denote by E the electrical field in the body and assume that it remains constant in
time, Maxwell’s equations says that ∇× E = 0. This vector field can then be written

5

1. A mathematical model of the heart

in terms of a scalar potential function uT ,

E = −∇uT (1.1)

If in addition Ohm’s law applies in the tissues of the body, JT = −MTE = MT∇uT
express the current. MT is the electric conductivity. By using conservation laws and
doing standard mathematic operations, it is possible to derive the following set of
equations [10, Paper I, p.11-18].

∂s
∂t = F (t, s(t, x), v(t, x);x) x ∈ H

∇ · (Mi∇v) +∇ · (Mi∇ue) = Cmχ
∂v
∂t + χIion(v, s) x ∈ H

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0 x ∈ H
∇ · (MT∇uT) = 0 x ∈ T
n · (Mi∇v) = 0 x ∈ ∂H

ue = uT x ∈ ∂H
n · ((Mi +Me)∇ue = n · (MT∇uT) x ∈ ∂H

n · (MT∇uT) = 0 x ∈ ∂T

As we see, the model is a combination of both ODE’s and PDE’s. The Winslow model
is the set of equations describing the state variables seen in the first equation. Although
solving ∂s

∂t looks like a small part of the problem, computer experiments have measured
that up to 90% of the total time is spent solving this particular system. In Figure 1.1
the action potential v for a heart cell is plotted.

Figure 1.1.: The action potential.

6

Part II.

Theory, Methods and Numerical
Examples

7

1. A mathematical model of the heart

8

2. Runge-Kutta methods and
Stiffness detection

2.1. Solving an ODE numerically

2.1.1. Runge-Kutta methods

Consider the differential equation

y′(t) = f(t, y(t)) y(t0) = y0 (2.1)

A numerical method tries to approximate a solution to the problem by advancing step-
wise from a given point (t0, y0). At every time step t1, t2, ..., tm it finds approximations
y1, y2, ..., ym to the real solution y(t1), y(t2), ..., y(tm), as explained in [8].

A general one-step method can be written as

yn+1 = yn + hΦ(yn, tn;h) (2.2)

where h is the step size and Φ is a compact notation of the increment function. For
example

Φ(ym, tm;h) = f(tm, ym)

is the well known Eulers method.

The method is called explicit as long as Φ does not depend on yn+1, and explicit
otherwise.

In hope to get a good approximation to the real solution, the error done in each time
step has to stay bounded in some way. The error done in each time step is called the
local truncation error, written as

rn+1 := y(tn+1)− hΦ(y(tn), tn;h). (2.3)

The residual error is said to be consistent if it satisfies

1
hrn+1 → 0 as h→ 0,

and the method is convergent if

yn − y(tn)→ 0 as h→ 0.

In this thesis we look at methods that belong to the Runge-Kutta family. In short, this
is a class of methods that splits the interval {tn, tn+1} into shorter intervals

9

2. Runge-Kutta methods and Stiffness detection

{tn+ c1h, tn+ c2h, ..., tn+ csh}, and finds an approximation to y(tn+1) by forming a
linear combination of the approximated values in the shorter intervals, see Figure 2.1.
A general s-stage one step Runge-Kutta method can be written as

gi = yn + h
∑s

j=1 aijf(t0 + cjh, gj), i = 1, ..., s

yn+1 = h
∑s

j=1 bjf(t0 + cjh, gj),

where the weights ci, aij and bi are given in a table called a Butcher-Tableau.

Figure 2.1.: A graphical representation of Runge-Kutta method

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass
b1 b2 · · · bs

Table 2.1.: The general form of a Butcher-tableau. If A = {a}ij is lower triangular,
the method is explicit.

2.1.2. Stability

Because there is a lower limit to the step size on a computer, we can not in practice
choose h arbitrary small. We therefore look for a property called weak stability. This
is a property that tells how well the numerical solution approaches the real solution for
finitely small step sizes.

If we apply our Runge-Kutta method to Dahlquist’s test equation

y′ = λy (2.4)

with solution y = exp (λt)y0, we find that the approximated value after advancing one
step can be written as

yn+1 = R(z)yn.

R(z) is called the stability function of the method, and is an approximation to e(z). If
the method is explicit with s stages and of order p then R(z) is of the form 1 + z +

10

2.1. Solving an ODE numerically

z2/2! + ...+ zp/p! + αp+1z
p+1 + ...+ αsz

s, and if it is implicit

R(z) =
P (z)
Q(z)

=
det(I − zA+ z1bT)

det(I − zA)
.

For yn to remain bounded for all n, a natural condition would be that the stability
function R(z) satisfies |R(z)| ≤ 1. The stability domain of the method is then the
region

S = {z ∈ C; |R(z)| ≤ 1}.

2.1.3. Stiffness

Stiffness is a concept of more practical meaning rather than mathematical. It is easy
to understand what stiffness is, but hard to find a precise mathematical definition of it.
The first definition of stiffness was (Cutiss and Hirschfelder 1952): stiff equations are
equations where certain implicit methods, in particular BDF, perform better, usually
tremendously better, than explicit ones. Stiffness is related to the eigenvalues of the
Jacobian ∂f/∂y to the ODE system. When the eigenvalues become large, an explicit
solver has to reduce the step size significantly in order to obtain a stable solution. So
when step size is restricted by stability rather than by accuracy, the system is stiff.
Since implicit methods are stable in most of the left half plane, and hence stable for
large eigenvalues, they become a natural choice of method for stiff systems.

Then why not always use implicit methods? This has to do with efficiency. To advance
one step with an implicit solver is usually a heavier operation involving more compu-
tations than the corresponding step with an explicit solver. Unless the problem is stiff.
Then, because of stability, the explicit solver is forced to take several smaller steps
to obtain a stable solution. This makes the implicit scheme more efficient. So, when
choosing solver, it is important to know the characteristics of the problem in order to
choose the most efficient one.

11

2. Runge-Kutta methods and Stiffness detection

2.2. The solvers used

In this thesis we will mainly be working with four different solvers. These are the two
implicit methods ESDIRK54a and Radau5, plus the explicit DOPRI 5(4) and Fehlberg
4(5). We will now give a short description of these.

2.2.1. ESDIRK54a

The ESDIRK (Singly Diagonally Implicit Runge-Kutta with Explicit first stage) meth-
ods suggested by Anne Kværnø in [7] are a special case of SDIRK methods (see [3]
for more on SDIRK). In ESDIRK, the first stage is explicit, meaning that Y1 = f(yn),
while all other stages are implicit. A general ESDIRK method is given by the Butcher-
Tableau

0 0
c2 γ γ
c3 a31 a32 γ
...

...
. . .

...
...

. . .
cs−2 as−2,1 as−2,2 as−2,3 · · · · · · γ

1 as−1,1 as−1,2 as−1,3 · · · · · · as−1,s−1 γ
1 as,1 as,2 as,3 · · · · · · as,s−2 as,s−1 γ

Table 2.2.: A general ESDIRK method, notice the explicit first stage.

12

2.2. The solvers used

The methods are constructed according to the following list of requirements:

1. Stiffly accuracy in both the advancing and the error estimating methods.

2. |R(∞)| = 0, and |R̂(∞)| as small as possible, at least less than one. This to
reduce the influence of inconsistent numerical values from the last step.

3. A-stability, or at least A(α)-stability for both methods.

4. As high stage order as possible.

The full method is of order p and constructed such that the first s − 1 stages define a
method of order p−1. This means that if requirement (1) is satisfied for both methods,
the error estimate is simply given by

err = Ys − Ys−1,

and the solution can be advanced using both local extrapolation, meaning that yn+1 =
Ys, or we could use Fehlberg, meaning that yn+1 = Ys−1. ESDIRK methods using
local extrapolation are denoted by ESDIRK p/p − 1a while those using Fehlberg are
denoted by ESDIRKp/p− 1b.

The 7 stage ESDIRK54a that is implemented takes yn+1 = Ys and uses γ = 0.26. The
full
Butcher-Tableau is listed in the appendix.

A major advantage of these methods is that the Jacobian only has to be computed at
most once per time step. In addition, since the first stage is explicit and yn+1 = Ys,
we have already computed the value Y1 = f(yn) when starting a new step, a so called
FSAL (First Step As Last) method. This means that they not only can be very efficient,
but they are also easy to implement.

2.2.2. Radau5

The Radau5 method is a 3 stage implicit Runge-Kutta method of order 5 with good
stability properties. It is a collocation method based on the Radau quadrature formula.
The abscissas in the collocation polynomial c1, ..., cs are chosen to be the zeros of

ds − 1
dxs − 1

(
xs−1(x− 1)s

)
(2.5)

while the other coefficients (bi, aij) satisfies

B(p) :
∑s

i=1 bic
q−1
i = 1

q q = 1, ..., p

C(η) :
∑s

j=1 aijc
q−1
j = cqi

q i = 1, ..., s q = 1, ..., η;

When these assumptions are fulfilled, it is a method of order 2s − 1. As we see, the
coefficients aij are found by imposing condition C(s).

13

2. Runge-Kutta methods and Stiffness detection

The Butcher-Tableau for the method that is used in this thesis, seen in Table 2.3.

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296−169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Table 2.3.: The Radau IIA method of order 5.

The stability function of the method is given by

R(z) =
P (z)
Q(z)

=
1 + 2z/5 + z2/20

1− 3z/5 + 3z2/20− z3/60
(2.6)

and the stability region is shown in Figure 2.2, taken from [2].

Figure 2.2.: Stability region for the Radau5 method used. Stability outside the white
area.

14

2.2. The solvers used

2.2.3. DOPRI 5(4)

This is an explicit method constructed by Dormand and Prince (1980). Like ES-
DIRK54a, it is an FSAL (First Step As Last) method of order 5 with 6 stages. It
uses local extrapolation for error control and step size calculation. This is the default
scheme used in the built in MATLAB solver ODE45, and the methods coefficients are
given in the Butcher-Tableau in Table 2.4. Its stability domain is plotted in Figure
2.2.3.

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

y1
35
384 0 500

1113
125
192 −2187

6784
11
84 0

ŷ1
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Table 2.4.: DOPRI5(4)

Figure 2.3.: The stability domains of the two explicit solvers DOPRI 5(4) and Fehlberg
4(5). We have stability inside the closed curves.

15

2. Runge-Kutta methods and Stiffness detection

2.2.4. Fehlberg 4(5)

The Fehlberg 4(5) is an explicit method of order 4, which uses a stage of order 5 for
error control and step size calculation. The coefficients of this method are given in the
Butcher-Tableau in Table 2.5, and the stability domain are plotted together with the
stability domain of DOPRI 5(4) in Figure 2.2.3.

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

7296
2197

1 439
216 -8 3680

513 - 845
4104

1
2 - 8

27 2 -3544
2565

1859
4104 -11

40

y1
25
216 0 1408

2565
2197
4104 -1

5 0

ŷ1
16
135 0 6656

12825
28561
56430 - 9

50
2
55

Table 2.5.: Fehlberg 4(5)

16

2.3. Detecting stiffness

2.3. Detecting stiffness

Although a problem is categorized as stiff, it does not necessarily mean that an implicit
solver is the most efficient one in the whole interval. There may be areas of the solution
where an ERK can be used. Often, stiff problems have an initial transient region where
the solution varies quickly. Here, the step size (hn) has to be small in order to obtain
the expected accuracy, and consequently hnλi is inside the stability domain of the
ERK method. Later the step size increases and hnλi falls outside the stability region.
To avoid that the error becomes large, the solver now proceeds with a step size hs such
that hsλi is close to the stability boundary. We know that the Winslow model has such
a transient phase, which makes it interesting to treat this part with an explicit solver,
and switch to implicit when the problem gets too stiff. To determine when to switch,
we need an indication that the problem is stiff. This is provided by the many existing
stiffness detection techniques. We will now a few of these and show some numerical
examples. The techniques are all explained in greater detail by Robertson in [9].

2.3.1. Constant step size

This is maybe the simplest way to detect stiffness and is based on the fact that when
a problem becomes stiff, the step size is restricted by stability rather than accuracy.
The eigenvalues of a stiff problem are usually constant or slow varying. This means
that the step size has to be small and almost kept constant in order to keep hnλi within
the stability region. Based on this, a good indication of stiffness is when the step size
drops significantly and the explicit solver proceeds with close to constant step size over
a number of steps. This is a very easy way of testing stiffness, but as we shall see, it
can be unreliable.

2.3.2. Low-Order Comparison Formula

The idea behind this technique is to take a step with both the basic formula and a com-
parison formula when attempting to advance the solution. The comparison formula is
of lower order (order 1 or 2) but has better stability properties. This means that the
comparison formula is supposed to yield a larger error estimate than the basic formula
when the problem is non-stiff, but in the stiff case the situation is different. Now, since
the comparison formula has a larger stability region than the basic formula we expect
that the comparison formula yields the smallest error estimate. In each step the error
estimate is

||en|| ≈ θTOL (2.7)

where θ ∈ [0, 1] is called the pessimist factor.1 If the error estimate ên of the compar-
ison formula satisfies ||ên|| ≤ ||en||, we have an indication that the problem may be
stiff.

For the two explicit solvers in this thesis we have used different comparison formulas,
one for each solver.

1The pessimist factor is added to try to avoid a large number of step rejections. Usually θ ∈ [0.8, 0.9]

17

2. Runge-Kutta methods and Stiffness detection

DOPRI 5(4)

A closer look at the Butcher-tableau of this method, Table 2.4, unveils that an Euler
step of length hnc2 is taken in each step of the basic formula.

yEn+1 = yn + hnc2f1

If we combine this formula with the result of the Heuns method of order 2,

yHn+1 = yn + hnc2

(
1
2

(f1 + f2)
)

we get the following estimate for the local error

leEn = yHn+1 − yEn+1 = (f2 − f1)hnc2/2. (2.8)

Since this method has a larger stability domain than DOPRI 5(4) scaled down by 1
5 , as

shown in Figure
2.4, we expect to get a smaller local error when the step size is chosen for stability
reasons. Thus, the test returns a flag indicating stiffness when

||leEn || ≤ ||len||

where len is the estimated local error in the basic DORPI 5(4) formula.

18

2.3. Detecting stiffness

Fehlberg 4(5)

For this specific method Shampine and Hiebert have developed a comparison formula
pair of order 1 and 2 that uses the full step size h, instead of h/5 as in DOPRI 5(4).
Another advantage is that the stability domain of this comparison formula is uniformly
larger than that for the basic formula, see Figure 2.5. The coefficients of the new pair
of comparison formula are

(b1, ..., b6) = (0.084227,−0.163140, 0.761013, 0.405846,−0.131970, 0.044024)
(b̂1, ..., b̂6) = (0.139682,−0.198633, 0.724442, 0.428953,−0.141485, 0.047041)

Figure 2.4.: Stability regions for the
comparison formula and the fifth order
formula DOPRI5 scaled 1/5

Figure 2.5.: Stability regions for both
the basic and the comparison formula
for the Fehlberg scheme

2.3.3. Lipschitz Constant Estimation

As mentioned earlier, stiffness has a close connection with the eigenvalues to the Ja-
cobian of the ODE system. A new approach to detecting stiffness could therefore be
to estimate the eigenvalues in some way. One obvious solution is to calculate the Ja-
cobian and its corresponding eigenvalues numerically in every step, and observe when
the spectral radius 2 ρ(J) becomes large. In an implicit solver this can be done without
too much of extra cost since we already need the Jacobian when advancing one step.
Explicit solvers are different. Here there is no information about the Jacobian, so we
have to find a clever way of estimating ρ(J). A good approximation has turned out to
be the Lipschitz constant estimate.

Assume that we are solving the initial value problem y′ = f(x, y), a < x < b, y(a) given.
If f satisfies a Lipschitz condition with respect to its second argument, i.e

||f(x, u)− f(x, v)|| ≤ L||u− v||, (2.9)

we have the condition
ρ(J) ≤ ||J || ≤ L, (2.10)

2The spectral radius is defined to be the modulus of the largest eigenvalue of the Jacobian

19

2. Runge-Kutta methods and Stiffness detection

where L is called the Lipschitz constant. If we could find a good estimate to the lower
bound of the Lipschitz constant, we could hope that

Lest ≈ ρ(J),

and if this estimate is big, it could be an indication that the problem may be stiff.

Since c6 = c7 = 1 in DOPRI 5(4) the approximation

Lest =
||k7 − k6||
||Y7 − Y6||

, (2.11)

is a possible way of estimating the Lipschitz constant. Here, we have used the notation
ki = f(xn + cihn, Yi). From (2.9) it follows that this is a valid lower bound on L.

For the Fehlberg 4(5) pair, Robertson [9] suggests

Lest =
||f(yn+1)− f(yn+1 +Ken+1)||

||Ken+1||
. (2.12)

WhereK is chosen to satisfy ||Ken+1|| =
√
u||yn+1|| and u is the computer precision.

A disadvantage of this estimate is that it requires one extra function call, which is
exactly what we are trying to avoid.

2.3.4. Other Stiffness Detection Methods

There are several other ways of detecting stiffness than the techniques just discussed
which we are not going to explain in detail. With some extra cost, more reliable stiff-
ness detection methods can be applied. In [9], Robertson goes through several other
stiffness detection techniques. In addition, Ekeland, Owren and Øines have in [6]
(1998) developed a stiffness detection scheme for explicit Runge-Kutta methods that
uses a Krylow space approximation to estimate the eigenvalues of the Jacobian to the
ODE system.

20

2.3. Detecting stiffness

2.3.5. Numerical Examples

In this section we want to show how the different stiffness detection techniques dis-
cussed work. The techniques are tested on both the Van der Pol equation (with ε =
1e−6) and the Winslow model, see Appendix for the respective ODE systems.

Constant step size

Figure 2.6.: Step size plot for the Van
der Pol oscillator. We have used the
Fehlberg 4(5) solver at TOL = 1e−4

Figure 2.7.: Step size chosen by
Fehlberg 4(5) when solving the
Winslow model. TOL = 1e−4

From Figures 2.6 and 2.7 we can see the unreliability of this stiffness detection tech-
nique. For the Van der Pol equation it is hard to conclude that the problem is stiff based
on the step size. Here, the step size seems to vary throughout the whole interval giving
no clear indication of stiffness. On the other hand, in Figure 2.7, we note that the step
size drops dramatically at t ≈ 2.6msec indicating that the problem has become stiff.

Although this technique seems to be unreliable it unveils the stiffness in the Winslow
model. Since the Winslow model is the ODE-system of interest we will keep this
technique in mind for later use.

21

2. Runge-Kutta methods and Stiffness detection

Low-Order Comparison

After some testing on the Winslow model we experienced that if this test succeeded
one or two consecutive times, indicating stiffness, it could still fail, but if it succeeded
5 consecutive times it never failed no more. From this, a flag is set indicating stiffness
when the test has succeeded 5 times in a row when applied to the Winslow model.
In Tables 2.6 and 2.7 we have summed up some stiffness detection statistics for the
two different solvers, tstiff is the time where the flag is set to stiff and Nstiff is the
corresponding step number.

TOL tstiff Nstiff

1e−4 1.081 57
1e−5 2.605 161
1e−6 2.624 287
1e−7 2.638 404
1e−8 2.651 555

Table 2.6.: DOPRI 5(4)

TOL tstiff Nstiff

1e−4 0.887 48
1e−5 2.605 167
1e−6 2.619 281
1e−7 2.633 409
1e−8 2.646 576

Table 2.7.: Fehlberg 4(5)

From the tables we see that the two methods are almost equal, with the comparison
formula for Fehlberg 4(5) detects stiffness just a little later (in time) than for the DOPRI
5(4) detection. In Figure 2.8 we have plotted the solutions of the Winslow model and
the points where stiffness is detected. The solutions are scaled so that they all are in
the interval [−1, 1].

We see that at about t = 2.6msec some of the components in the solution changes
dramatically. After this point the problem seems to be very stiff, and as we soon shall
see, this is reflected in the Lipschitz constant estimation.

22

2.3. Detecting stiffness

(a) solutions of the Winslow model. DOPRI 5(4)
with TOL = 1e−4.

(b) solutions of the Winslow model. Fehlberg 4(5)
with TOL = 1e−4.

(c) solutions of the Winslow model. DOPRI 5(4)
with TOL = 1e−6.

(d) solutions of the Winslow model. Fehlberg 4(5)
with TOL = 1e−6.

(e) solutions of the Winslow model. DOPRI 5(4)
with TOL = 1e−8.

(f) solutions of the Winslow model. Fehlberg 4(5)
with TOL = 1e−8.

Figure 2.8.: Solutions of the Winslow model. The red dashes indicates where the
stiffness test succeeds.

23

2. Runge-Kutta methods and Stiffness detection

In the next example we want to show the influence that the tolerance has on the stiffness
detection. Since the stiffness test should fail as long as the accuracy controls the step
size, it is obvious to expect that when the tolerance is strict it should fail more often.
For the solver, the problem appears to be less stiff as the tolerance get stricter. This is
illustrated in Figure 2.9 we have the results after applying the low-order comparison
technique to the Van der Pol equation at different tolerances. We see that, at strict
tolerances, the test never indicates stiffness.

(a) stiffness detection on Van der Pol with
TOL = 1e−4.

(b) stiffness detection on Van der Pol with
TOL = 1e−6.

(c) stiffness detection on Van der Pol with
TOL = 1e−7.

(d) stiffness detection on Van der Pol with
TOL = 1e−8.

Figure 2.9.: Plot of the first solution component of the Van der Pol equation and where
stiffness is indicated. At strict tolerances no stiffness is found.

24

2.3. Detecting stiffness

Lipschitz Constant Estimation

To compare the Lipschitz estimates with the dominant eigenvalue, λmax, we recorded
the values at several times t. The eigenvalues of the Jacobian were computed by MAT-
LAB to find |λmax|. Table 2.8 and Figure 2.10 sums up the results. Here, LFest is
the estimate obtained by (2.12) and LDest is calculated using (2.11). The estimates are
not very good in the less stiff region, but after t = 2.60 they both give good approxi-
mations. We notice here how fast the maximum eigenvalue is increased at this point.

t LFest LDest |λmax|
0.1 7.74 32.20 40.58
0.5 27.7 31.53 154.52
1.0 7.67 7.3 214.23
2.4 100.67 16.9 96.80
2.6 9149.61 810.27 865.59

2.61 16690.12 19440.8 16831.3
2.63 16870.14 16720.21 16810.62

Table 2.8.: Estimates to the Lipschitz constant with Fehlberg 4(5) and DOPRI 5(4),
compared to the maximum eigenvalue of the Jacobi matrix, computed numerically in
MATLAB. TOL = 1e−5.

(a) TOL = 1e−5. (b) TOL = 1e−7.

Figure 2.10.: Lipschitz constant estimation in the Winslow model and comparison to
the dominant eigenvalue.

25

2. Runge-Kutta methods and Stiffness detection

In the next figure, Figure 2.11, we have tried to illustrate that when the problem is
stiff and the step size is chosen for stability reasons, then hnλi is close to the stability
boundary. This is done by plotting the values for −Lesth when the low-order com-
parison formula indicate stiffness. At high tolerances we see that the values are not
necessarily close to the stability bound when stiffness is detected. This makes it a
rather unreliable test for stiffness. Luckily the problem is not to detect stiffness, but
rather to find out when it is best to advance with an implicit solver instead of an ex-
plicit. The estimate of the Lipschitz constant may not be the best stiffness detector,
but it may give some useful information about the Jacobian that can be used to find the
appropriate time to switch solver from explicit to implicit. Later we are going to see
that we are more interested in the order of Lest, rather than the exact value.

(a) DOPRI 5(4). TOL = 1e−4. (b) DOPRI 5(4). TOL = 1e−8.

(c) Fehlberg 4(5). TOL = 1e−4. (d) Fehlberg 4(5). TOL = 1e−8.

Figure 2.11.: Lesth when the low-order comparison formula technique indicates stiff-
ness.

26

3. Step size strategies

3.1. A new step size strategy for the explicit
Runge-Kutta methods

Based on the observation that when the step size is chosen for stability reasons in an
explicit
Runge-Kutta solver, usually the step sizes are rapidly oscillating and many step re-
jections occur, a new step size strategy was developed by George Hall [5] (1994). In
particular, Hall derives a strategy for the DOPRI 5(4) solver. It uses estimates of the
dominant eigenvalue to detect stiffness and to compute a new step size. It also utilizes
information about the stability region. The estimates are computed as follows.

Assume, as usual, that we are solving the initial value problem

y′(x) = f(x, y(x)), y(0) = y0 (3.1)

with an s stage explicit Runge-Kutta method

ki = f(xn + cihn, yn + hn
∑
aijkj

i−1
j=1) i = 1, ..., s,

yn+1 = yn + hn
∑
biki

s
i=1.

When this method is applied to the test equation y′ = Ay the ki-values takes the form

hnki = hnAyn + δ2(hnA)2 + · · ·+ δi(hnA)i i = 1, ..., s.

The idea is now to find weights βij such that a set of vectors di satisfies

di := hn
∑

βijkj
i
j=1 = (hnA)iyn.

If A has a single real dominant eigenvalue λ we have

di+1 ≈ hnλdi.

We are interested in an approximation to hnλ, and after solving for hnλ in the above
equation, we can define the estimates

ti := dTi di+1/(dTi di)

to be the desired approximations. The strategy also uses the quantities

ri := dTi+1di+1/(dTi di).

27

3. Step size strategies

We now have the 5 estimates t2, t3, t4, t5, t6 for hnλ. In addition we have the quantities
r2, r3, r4, r5, r6 as approximations to |hnλ|2. These values can be used to indicate that
hnλ is near the boundary of the stability region.

For DOPRI 5(4) the βij-weights has been computed, giving 7 d-vectors.

d1 = hnk1

d2 = 5hn(k2 − k1)

d3 = 100hn(2k3 − 3k2 + k1)/9

d4 = 25hn(9k4 − 64k3 + 60k2 − 5k1)/36

d5 = 25hn(−2187k5 + 4770k4 − 14720k3 + 12720k2 − 583k1)/2544

d6 = hn((550/7)k6 − (18225/212)k5 − (395000/3339)k3+

(500/3)k2 − (1475/36)k1)

d7 = hn(600k7 − (2750/7)k6 + (820125/848)k5 + (14375/8)k4+

(2210000/1113)k3 − 1125k2 − (11425/48)k1)

It is recommended to use the values t6 and r6 since they are expected to give the best
approximations and in Figure 3.1 we see how the t6/hn-approximations fit with the
dominant eigenvalue. We have here, also plotted the LDest, which can be used instead
of computing the ti-values.

Figure 3.1.: Comparison between LDest and t6/hn.

28

3.2. Numerical computations

In DOPRI 5(4) the old standard step size controller

hn+1 =
(
θTOL

||errn||

)(1/q)

hn (3.2)

is used, where q is the order of the method, θ is the pessimist factor (set to θ = 0.9)
and ||errn|| is the local error estimate calculated in each step. The step is rejected if
||errn|| > TOL, otherwise accepted.

For the new step size controller, Hall suggests the following strategy: Initially we
start with the old controller (3.2). We store the 5 last step size changes and let vn =
hn − hn−1. Characterize the problem as stiff once the condition

4∑
i=0

|vn−i| > 2
4∑
i=0

vn−i

is satisfied 5 times. This test checks if the step size is oscillating.

Further we use the information about the stability region and the interception of this
region with the negative real axis. For DOPRI 5(4) this is at HL = −3.3066. When
we have a real dominant eigenvalue we expect the values ti and ri to be close to HL

and |HL|2 respectively. So, after detecting oscillating step sizes we change to the step
size strategy

hn+1 =
3.3
γ

(
θTOL

||errn||

)(1/q)

hn

if

4 < r6 < 25 and −1 > t6 > −5,

where γ =
√
r6.

If any of these conditions are not met or after a step rejection, we go back to the old
strategy.

3.2. Numerical computations

In Figure 3.2 we have plotted the chosen step sizes with both the new and the old
strategy at some different regions of the solution. The new strategy clearly seems to
have a positive effect on the oscillating step sizes and in Table 3.1 we see that the
number of step rejections are also decreased.

29

3. Step size strategies

(a) Step sizes. Upper: New strategy, Lower: Old strategy.

(b) Step sizes. Upper: New strategy, Lower: Old strategy.

Figure 3.2.: Comparison of the new and the old step size strategies at two different
regions of the solution. Notice how the step size is smoothed in the new strategy.

30

3.2. Numerical computations

We saw from Figure 3.1 that the estimate given in (2.11) seemed to be a slightly sharper
estimate to the dominant eigenvalue than the estimate obtained by calculating the ti-
values. We therefore have implemented the new step size strategy based on this es-
timate as well. In Table 3.1 some statistics on the different step size strategies are
given.

Here, FEVS are the number of function calls and REJECTED are the number of re-
jected steps. DOPRI 5(4) and Fehlberg 4(5) use the old step size strategy, while SDO-
PRI 5(4) and LDOPRI 5(4) are using the new strategy. The difference between S- and
LDOPRI 5(4) is that LDOPRI 5(4) is implemented with the LDest-estimate (2.11) while
SDOPRI 5(4) utilizes the ti-values.

TOL Solver FEVS REJECTED
1e-4 DOPRI 5(4) 7268 88

SDOPRI 5(4) 6908 27
LDOPRI 5(4) 6914 28
Fehlberg 4(5) 7800 81

1e-5 DOPRI 5(4) 7160 57
SDOPRI 5(4) 6992 28
LDOPRI 5(4) 7022 33
Fehlberg 4(5) 7872 77

1e-6 DOPRI 5(4) 7382 66
SDOPRI 5(4) 7196 35
LDOPRI 5(4) 7256 45
Fehlberg 4(5) 8082 80

1e-7 DOPRI 5(4) 7676 66
SDOPRI 5(4) 7574 48
LDOPRI 5(4) 7610 55
Fehlberg 4(5) 8520 99

1e-8 DOPRI 5(4) 8138 59
SDOPRI 5(4) 8048 43
LDOPRI 5(4) 8126 57
Fehlberg 4(5) 9084 102

Table 3.1.: Comparison between the different step size strategies regarding function
calls and rejected steps.

From the table it seems that the SDOPRI 5(4) solver leads to both less function calls
and less rejected steps.

31

3. Step size strategies

Figure 3.3 shows the number of rejected steps as a function of the tolerance. It is
clear that SDOPRI 5(4) should be the favored solver, so from now on, DOPRI 5(4) is
implemented with the step size strategy suggested by George Hall [5].

Figure 3.3.: The number of step rejections as a function of the tolerance obtained with
the different step size strategies.

32

3.3. Comparison of DOPRI 5(4) and Fehlberg 4(5)

3.3. Comparison of DOPRI 5(4) and Fehlberg 4(5)

In the next chapter we want to put things together and make a solver that combines an
explicit with an implicit. This will hopefully improve the efficiency when solving the
Winslow model. In the last chapters we have looked at the two explicit solvers DOPRI
5(4) and Fehlberg 4(5). We have done stiffness testing and Lipschitz estimation with
both solvers but never compared them with respect to accuracy. It is now time to agree
on which explicit solver that is the most suited to combine with the implicit methods.
In our case, this is determined by the number of function calls and the accuracy.

TOL Solver FEVS Global err.
1e-4 DOPRI 5(4) 2414 5.676e−5

Fehlberg 4(5) 2670 3.8496e−5

1e-5 DOPRI 5(4) 2498 2.76e−6

Fehlberg 4(5) 2742 2.096e−6

1e-6 DOPRI 5(4) 2702 1.133e−7

Fehlberg 4(5) 2964 4.959e−7

1e-7 DOPRI 5(4) 3074 1.439e−8

Fehlberg 4(5) 3348 3.495e−8

1e-8 DOPRI 5(4) 3554 1.294e−9

Fehlberg 4(5) 3888 6.919e−9

Table 3.2.: The number of function calls and the global error when solving the
Winslow equation in the interval t ∈ [0, 2.65].

From Table 3.2 and Figure 3.4 we conclude that DOPRI 5(4) should be the chosen
explicit solver. It is both more efficient and accurate than the Fehlberg 4(5) scheme.
Another advantage by choosing this solver, is that it has the same order as the implicit
ones.

(a) Number of function calls as function of the
global error

(b) Global error as function of the tolerance.

Figure 3.4.: Comparison of the two explicit solvers.

33

3. Step size strategies

34

Part III.

Putting Everything Together

35

3. Step size strategies

36

4. Putting everything together

In the previous chapters we have discussed stiffness detection and step size strategies
in explicit Runge-Kutta methods. We have only been studying the initial transient
phase of the solution, trying to improve the efficiency in this particular region. It is
now time to move on, put it all together, and see whether it is of any use to involve
explicit solvers or if it is best not to. Our goal is, as always, to reduce the number of
calls to the ODE system. It is also of importance to investigate how the global error is
changed.

If we start off with an explicit solver, we need to know when to switch to implicit.
That is, we need to find a point that minimizes the number of function calls. To find
this point is not necessarily a trivial task, but we are left with two different options.
One option is to let the solver figure out itself when it is time to let the implicit solver
take over. This will involve using stiffness detection, Lipschitz constant estimation
etc. The other option is, since we are solving one specific problem, to explicit tell the
solver when to switch. Then the implicit solver takes over at this point regardless of
what the explicit solver finds out. The second option is of course the easiest one, but
it is not a very dynamic approach, and we shall see that it is very difficult to determine
the optimal point.

SESDIRK54a and SRadau5

The combined explicit/implicit solvers will in the following be called SESDIRK54a
(SwithingESDIRK54a) and SRadau5 (SwitchingRadau5). They will both initially start
with the explicit
DOPRI 5(4) solver just discussed, and later switch to the implicit ESDIRK54a and
Radau5 respectively.

37

4. Putting everything together

4.1. Finding out when to switch

We are now going to figure out when to switch, but first let us see what to improve.
Table 4.1 shows some details about how the implicit solvers perform alone on the
whole interval t ∈ [0, 300].

TOL Solver FEVS JACCALC Nsteps
1e-4 ESDIRK54a 5146 98 99

Radau5 4279 97 101
1e-5 ESDIRK54a 7504 141 142

Radau5 5756 132 139
1e-6 ESDIRK54a 10529 209 209

Radau5 7681 180 192
1e-7 ESDIRK54a 14294 296 296

Radau5 10501 248 275
1e-8 ESDIRK54a 18891 296 296

Radau5 14578 344 399

Table 4.1.: The number of function calls, Jacobi approximations and the number of
successful steps when solving the Winslow model in the interval t ∈ [0, 300] with the
implicit solvers. These are the numbers that we want to improve by solving the initial
transient phase with an explicit solver

4.1.1. Hard-coded switch

By experimenting, we start out by trying to find the optimal point to switch at each
tolerance. This is almost an impossible task because the total number of function calls
is very sensitive with respect to the switching point. We have given it a try, but as we
shall see, the points found here are not the ones that minimize the number of function
calls for all tolerances.

The routine takes in ts as a parameter and switches immediately when tn crosses this
switching point ts. That is when

tn ≥ ts.

This means that the actual point where the solver switches can be a little later than the
decided ts depending on the step size, but in this way we avoid unnecessary function
calls spent on hitting the switch point exactly.

38

4.1. Finding out when to switch

The results obtained and the switching points ts are all listed in Table 4.2. We see
that all ts > 2.60, except for SRadau5 at tolerance 1e−4. The column Improvement
shows the achieved improvements, in percentage, compared to the numbers in Table
4.1. The best result is at TOL = 1e−5 where we have decreased the number of FEVS
with 28% while at the other tolerances the improvements are about 10-20%, which is
also a significant change.

TOL Solver ts FEVS Improvement
1e-4 SESDIRK54a 2.61 4290 16.6%

SRadau5 0.97 3852 9.9%
1e-5 SESDIRK54a 2.609 5403 28.0%

SRadau5 2.6055 4579 20.4%
1e-6 SESDIRK54a 2.62 8517 19.1%

SRadau5 2.62 6283 18.9%
1e-7 SESDIRK54a 2.606 11443 19.9%

SRadau5 2.61 8036 23.5%
1e-8 SESDIRK54a 2.6535 16278 13.8%

SRadau5 2.65 11748 19.4%

Table 4.2.: Switching times, number of function calls and the improved efficiency with
respect to function calls obtained with the hard-coded switch.

39

4. Putting everything together

4.1.2. Switch point determined by constant step size

We saw in Chapter 3.3 that the stiffness detection technique based on the step size
is in general not very reliable, but for our specific problem it seemed to work. This
makes it interesting for us to use this technique to determine where to switch. Another
observation, seen in Figure 4.1, is that the step size, after the problem has become
stiff, is equal for all tolerances in our problem. The reason for this is obviously because
when the step size is chosen for stability reasons rather than accuracy, it becomes more
or less independent of the specified tolerance.

Figure 4.1.: Step size plot of the DOPRI 5(4) solver at the different tolerances

Since the step size seems to be equal in the stiff region at all tolerances, we hope that
this can be used to find a general switch point. Figure 4.1 unveils that the step size
drops dramatically and stays almost constant at about t = 2.60msecs. After taking
a closer look, we find that the problem may be categorized as stiff when the step
size drops below 2.5e−4. To be sure that we are in the stiff region, we don’t switch
before hn < 2.5e−4 has been satisfied 5 consecutive times. Table 4.3 shows how this
switching technique works. Here, tswitch is the time when the solver switches from
explicit to implicit.

TOL Solver tswitch FEVS Improvement
1e-4 SESDIRK54a 2.60578 4113 20.1%

SRadau5 ” 3733 12.7%
1e-5 SESDIRK54a 2.60322 5928 21.0%

SRadau5 ” 4787 16.8%
1e-6 SESDIRK54a 2.60253 8675 17.6%

SRadau5 ” 6276 18.3%
1e-7 SESDIRK54a 2.6019 12195 14.7%

SRadau5 ” 8465 19.4%
1e-8 SESDIRK54a 2.60134 16815 10.9%

SRadau5 ” 11625 20.2%

Table 4.3.: Switching times, number of function calls and the improved efficiency with
respect to function calls obtained with the hard-coded switch.

We note that some of the numbers here are better than the ones obtained by the hard-

40

4.1. Finding out when to switch

coded switch, which implies that the hard-coded switch has to be further tuned. Since
this is a very time-consuming task and since the expected gain is not very large com-
pared to the numbers found with the other switching techniques, we will not do this
here.

4.1.3. Switch point determined by the Low-Order comparison
stiffness detection

The idea is now to let the solver figure out itself when it is time to switch by using the
Low-Order comparison stiffness detection. We implemented this by switching when
the Low-Order comparison indicates stiffness g consecutive times.

As for the hard-coded switch, experiments shows that the number of function calls is
very sensitive with respect to the number g. This makes it hard to find a general value
for g. It is seen clearly from the oscillations in Figure 4.2 where we have plotted the
number of function calls for all values of g ∈ [1, 200]. From g to g + 1 the number of
function calls may differ by more than 200. In the figure we have minimum at g = 79.

Figure 4.2.: Number of function calls as a function of the number g at TOL = 1e−4

41

4. Putting everything together

By making similar plots to Figure 4.2 for all tolerances we find the number g that
minimizes the function calls. The results are listed in Table 4.4 together with the
switching times. As we can see, the switching times are very close to the values found
in the hard-coded switch.

The observation is that it seems reasonable to assume that g < 20 since all values,
except SESDIRK54a at TOL = 1e−4, of g is less than 20. In SRadau5 we can even
say that a suitable value is g ≤ 5.

TOL Solver g FEVS tswitch Improvement
1e-4 SESDIRK54a 79 4386 2.61935 14.8%

SRadau5 2 3858 0.971318 9.9%
1e-5 SESDIRK54a 8 5409 2.60915 28.0%

SRadau5 5 4585 2.60553 20.3%
1e-6 SESDIRK54a 6 8524 2.62315 19.1%

SRadau5 12 6367 2.62433 17.1%
1e-7 SESDIRK54a 19 11933 2.63942 16.5%

SRadau5 3 8677 2.63628 17.4%
1e-8 SESDIRK54a 19 16284 2.65363 13.9%

SRadau5 3 11749 2.65028 19.4%

Table 4.4.: The numbers g that minimizes the number of FEVS and the improvements
obtained.

42

4.1. Finding out when to switch

4.1.4. Switch point determined by the Lipschitz estimates

Again we want the solver to switch at a non-user specified point, but now based on the
value of the Lipschitz estimate. We know from earlier (Chapter 2) that we have two
ways of estimating the Lipschitz constant with DOPRI 5(4), namely (2.11) and t6/hn.
We are going to look at both options.

With the Lipschitz estimate we hope to, in some way, be able to know something about
what step size the implicit solver would have chosen. At every time step DOPRI 5(4)
needs 6 function calls. In ESDIRK54a this number depends on the number of Newton-
iterations at each stage. The method computes 6 stages and needs in each iteration
one function call. In addition we have the computation of the Jacobian, which for the
Winslow problem adds 31 function calls. So, if we assume that on average, the Newton
iteration converges after two iterations, ESDIRK54a calls the ODE-system a total of
31 + 6 · 2 = 43 times when advancing one step. Radau5 needs 3 function calls for
every Newton-iteration plus the 31 needed for calculating the Jacobian. If we again
assume that Newton converges after two iterations, we get 31 + 3 · 2 = 37 function
calls at every time step. This means that it is smart to switch when ESDIRK54a takes
a step that is about 7 times larger than the step suggested by DOPRI 5(4). For Radau5
the step has to be about 6 times larger.

Since we know the step size strategy of ESDIRK54a, we can plot the step size sug-
gested by ESDIRK54a and the Lipschitz estimates from DOPRI 5(4) and see if there
is a dependency. To be sure that it is best to proceed with the implicit method, we scale
down the step size in ESDIRK54a by 10 instead of 7 when compared to the step size
suggested by DOPRI 5(4). The idea is to switch when

hESDIRK54a ≥ 10hDOPRI .

In Figure 4.3 we see how the step sizes behave and the corresponding Lipschitz esti-
mates. We see that it is not easy to find any dependency between the Lipschitz esti-
mate and the step size. At the higher tolerances (1e−4 and 1e−5), it may be possible to
switch when the Lipschitz estimate Lest satisfies Lest > 100, but Lest > 10000 seems
to be a safer choice. This is also a choice that will make the solver switch at a point
t > 2.60, which is suitable for our problem.

43

4. Putting everything together

(a) TOL = 1e−4 (b) TOL = 1e−5

(c) TOL = 1e−6 (d) TOL = 1e−7

(e) TOL = 1e−8

Figure 4.3.: Plots that show the different step sizes and the two estimates to the Lips-
chitz constant in DORPI 5(4). The step sizes of the implicit methods are scaled 1/10.

44

4.1. Finding out when to switch

The routine is now implemented such that it switches once we know that the Lipschitz
estimate is greater than 10 000, i.e when the condition Lest > 10000 has been satisfied
5 times. The estimate used is (2.11) since this has proved to be a sharper estimate and
because it is available without any additional function calls. The results are presented
in Table 4.5. Also here we find better results than the results obtained by the hard-
coded switch.

TOL Solver FEVS tswitch Improvement
1e-4 SESDIRK54a 4112 2.60512 20.0%

SRadau5 3700 ” 13.5%
1e-5 SESDIRK54a 5730 2.60553 23.6%

SRadau5 4579 ” 20.4%
1e-6 SESDIRK54a 8494 2.60649 19.3%

SRadau5 6125 ” 20.2%
1e-7 SESDIRK54a 11663 2.60748 18.4%

SRadau5 8117 ” 22.7%
1e-8 SESDIRK54a 15988 2.6218 15.4%

SRadau5 11102 ” 23.8%

Table 4.5.: Number of function calls and the switching time t when Lest > 10000.

In general, this switching technique is best regarding function calls, but we want to
compare the different techniques with respect to the global error as well before we can
make a final decision. In Table 4.6 we have listed the global error for SESDIRK54a
and SRadau5 with the four different switches, and we can see the global error is almost
equal for all techniques. Figure 4.4 gives a visual representation of the comparisons.

45

4. Putting everything together

Since all methods seem to be almost equal it is not crucial what choice of switch we
do, but since the Lipschitz switch is independent of the tolerance, and usually leads to
fewer function calls, we choose to continue with this one.

TOL Solver Hard-Coded Const. step size Low-Order Lipschitz
1e-4 SESDIRK54a 3.52e−3 2.04e−3 3.0e−3 1.84e−3

SRadau5 8.1e−4 4.78e−4 8.1e−4 4.48e−4

1e-5 SESDIRK54a 8.3e−4 8.21e−4 8.3e−4 8.67e−4

SRadau5 2.61e−4 2.99e−4 2.61e−4 2.6e−4

1e-6 SESDIRK54a 2.9e−4 4.47e−4 2.5e−4 4.4e−4

SRadau5 3.78e−5 7.12e−5 4.17e−5 7.4e−5

1e-7 SESDIRK54a 1.6e−4 1.52e−4 1.53e−4 1.32e−4

SRadau5 2.12e−5 2.41e−5 2.92e−6 1.84e−5

1e-8 SESDIRK54a 6.61e−5 5.31e−5 3.77e−5 8.03e−5

SRadau5 3.70e−6 6.51e−6 3.41e−6 7.59e−6

Table 4.6.: The global error with the different switching techniques.

(a) Error as function of the tolerance (b) Function calls as function of the global error

Figure 4.4.: Comparison of the different switching techniques discussed with respect
to the global error and efficiency.

46

4.1. Finding out when to switch

4.1.5. Global error and efficiency

We now have put everything together. We know which explicit solver to use, and we
know where to switch. All we have left to do now is to sum up and see what the
improvements are, if any.

The plots in Figure 4.5 compares the old, and purely implicit solvers, ESDIRK54a
and Radau5 with the respective new combined explicit/implicit solvers SESDIRK54a
and SRadau5. From the plots we can see how the performance of ESDIRK54a has
been improved when combined with DOPRI 5(4). Both the accuracy and efficiency
with respect to the error has been increased. In the case of Radau5, the improvements
are less significant. Here it looks like the explicit/implicit combination has a negative
effect on the accuracy, which of course increases the number of function calls with
respect to the global error.

(a) Error as function of the tolerance (b) Function calls as function of the global error

Figure 4.5.: Performance of the combined solvers compared to the respective implicit
solvers.

Earlier studies have unveiled that the built in MATLAB multi step solver Ode15s
solves the problem very efficiently, and serves as a goal to reach for. We are there-
fore going to compare the performance of our combined solvers to this method. In
Table 4.7 we see how well this method solves the Winslow model, where Time is the
total time spent solving the problem, measured in seconds.

TOL 1e−4 1e−5 1e−6 1e−7 1e−8

FEVS 1730 2049 2595 3338 4266
Global error 4.8e−3 1.31e−3 3.1e−5 1.24e−5 8.36e−7

Time 3.18s 3.74s 4.8s 6.28s 8.14s

Table 4.7.: Performance of the MATLAB solver Ode15s on the Winslow model.

47

4. Putting everything together

The performance is also illustrated in Figure 4.6, where we have compared it to our
combined methods. The Ode15s seems still to be invincible.

(a) Error as function of the tolerance (b) Function calls as function of the global error

Figure 4.6.: Performance of the combined solvers compared to the MATLAB Ode15s
solver.

The last thing we are going to look at is the efficiency regarding the actual time spent.
This is because the aim is really to reduce the time, and not necessarily the number
of function calls spent solving the problem. But since we know that there is a close
relationship between the two when solving the Winslow model, we only hope to verify
that the work done on reducing the number of function calls speeds up the solver as
well. In Figure 4.7 we get this verification. The plot is almost equal to Figure 4.5(b)
which indicates that there is a direct link between the number of function calls and the
time spent.

Figure 4.7.: Performance of the combined solvers compared to the MATLAB Ode15s
solver.

48

5. Conclusion and further
recommendations

In this thesis we studied the solution of the Winslow model. This is an ODE system
of 31 equations, derived by Raimond L. Winslow et al. in [4]. Earlier studies have
unveiled, that there is a direct link between the number of function calls and the time
it takes to solve the problem. It is therefore important to find a solver that is cheap
on function calls in order to improve the efficiency. ERK’s (Explicit Runge-Kutta
methods) have this property, but they don’t work very well on stiff problems like the
Winslow model. Regardless of this, because the Winslow model has an initial transient
phase where explicit methods tends to be more efficient, the idea was to start with an
explicit solver and switch to an implicit when the problem became too stiff for the
ERK method. In order to be able to switch solver we needed a stiffness indicator in
the explicit solver.

In Chapter 3 we discussed different stiffness detection techniques for the two ERK
methods
DOPRI 5(4) and Fehlberg 4(5). Here, we found that both the Low-Order comparison
and the Lipschitz constant estimation techniques are good stiffness indicators. The
disadvantage with the Lipschitz estimate in the Fehlberg 4(5) method is that an extra
function call is needed, which makes it not of interest in our situation.

Another way to decrease the number of function calls, is to have a sound step size
strategy that leads to fewer rejected steps. In Chapter 4, a step size strategy was derived
for the DOPRI 5(4). This strategy was developed particularly for stiff problems by
George Hall in [5] . The goal was to reduce the number of function calls by smoothing
out the step sizes. To do this, he makes use of the properties of the stability domain to
DOPRI 5(4). The old step size controller

hn+1 =
(
θTOL

||errn||

)(1/q)

hn

was changed to

hn+1 =
3.3
γ

(
θTOL

||errn||

)(1/q)

hn,

when we had oscillating step sizes. With this substitution, we ended up with less step
rejections and a 5% decrease in function calls.

49

5. Conclusion and further recommendations

The goal in Chapter 5 was to put everything together. Of the three different switching
techniques discussed, the switch based on the Lipschitz estimate

Lest =
||k7 − k6||
||Y7 − Y6||

,

and a switch based on the step size seemed to be the only switches that did not have to
be modified for every tolerance. A comparison with respect to the global error and the
efficiency, made us decide on the Lipschitz estimate.

When everything were put together, we saw that treating the initial transient phase with
the
DOPRI 5(4) method had a very positive effect regarding both efficiency and accuracy.
The number of total function calls was decreased by up to 25% while the accuracy was
maintained. Because of the correspondence between function calls and the time to
solve the problem, the efficiency with respect to time was improved correspondingly.

We have seen the importance of the number of function calls. The 3-stage Radau5
was more efficient than the 7-stage ESDIRK54a solver. Future work could therefore
be to try to solve the problem with an implicit method of lower order. The lower
order methods usually have fewer stages, which could lead to fewer function calls.
It could also be of interest to track the stiffness of the system on the entire interval
t = [0, 300]msec, and see if there are other areas where it is appropriate to apply an
explicit method.

Another way of improving efficiency is to optimize the solvers regarding the Winslow
model by tuning the different method parameters. Here, the possibilities are endless,
and the optimal values have to be found by experimenting.

50

Part IV.

Appendix and Bibliography

51

5. Conclusion and further recommendations

52

Appendix

The Van der Pol oscillator

y′1 = y2 , y1(0) = 2
y′2 = ((1− y2

1)y2 − y1)/ε , ε = 10−6 , y2(0) = 0

The Winslow ODE system of 31 equations

The transmembrane potential

dV
dt = −(INa + ICa + ICa,K + IKr + IKs + Ito + IK1 + IKp

+INaCa + INaK + Ip(Ca) + ICa,b + INa,b)

K+- and Na+- gate variables

dm
dt = αm(1−m)− βmm

dh
dt = αh(1− h)− βhh
dj
dt = αj(1− j)− βjj
dXKr

dt = X∞Kr−XKr

τXKr

dXKs
dt = X∞Ks−XKs

τXKs

dXto
dt = αXto(1−Xto)− βXtoXto

dYto
dt = αYto(1− Yto)− βYtoYto

Here all coefficients only depend on the transmembrane potential V .

RyR-channel

dPC1
dt = −k+

a

[
Ca2+

]4
ss
PC1 + k−a PO1

dPO1
dt = −k+

a

[
Ca2+

]4
ss
PC1 − k−a PO1 − k+

b

[
Ca2+

]3
ss
PO1 + k−b PO2 − k+

c PO1 + k−c PC2

dPO2
dt = −k+

b

[
Ca2+

]3
ss
− k−b PO2

dPC2
dt = k+

c PO1 − k−c PC2

53

All the k-coefficients are constant. We will later see that the stiffness of the system is
to a great extent attributed to the state variable PC1 .
L-type Ca2+-channel

dC0
dt = βC1 + ωCCa0 − (4α+ γ)C0

dC1
dt = 4αC0 + 2βC2 + ω

bCCa1 − (β + 3α+ γa)C1

dC2
dt = 3αC1 + 3βC3 + ω

b2
CCa2 − (2β + 2α+ γa2)C2

dC3
dt = 2αC2 + 4βC4 + ω

b3
CCa3 − (3β + α+ γa3)C3

dC4
dt = αC3 + gO + ω

b4
CCa4 − (4β + f + γα4)C4

dO
dt = fC4 − gO
dCCa0

dt = β′CCa1 + γC0 − (4α′ + ω)CCa0

dCCa1
dt = aα′CCa0 + 2β′CCa2 + γaC1 − (β′ + 3α′ + ω

b)CCa1

dCCa2
dt = 3α′CCa1 + 3β′CCa3 + γa2C2 − (2β′ + 2α′ + ω

b2
)CCa2

dCCa3
dt = 2α′CCa2 + 4β′CCa4 + γa3C3 − (3β′ + α′ + ω

b3
)CCa3

dCCa4
dt = α′CCa3 + γa4C4 − (4β′ + f ′ + ω

b4
)CCa4

dy
dt = y∞−y

τy

Intracellular Ca2+ fluxes (slow buffers)

d[HTRPNCa]
dt = k+

htrpn

[
Ca2+

]
i
([HTRPN]tot − [HTRPNCa])− k−htrpn [HTRPNCa]

d[LTRPNCa]
dt = k+

ltrpn

[
Ca2+

]
i
([LTRPN]tot − [LTRPNCa])− k−ltrpn [LTRPNCa]

Intracellular ionic concentrations

d[K+]
dt = −(IKr + IKs + Ito + IK1 + IKp + ICa,K − 2INaK)AcapCsc

VmyoF

d[Ca2+]
i

dt = βi

(
Jxfer − Jup − Jtrpn − (ICa,b − 2INaCa + Ip(Ca))

AcapCsc

2VmyoF

)
d[Ca2+]

ss
dt = βss(Jrel VJSR

Vss
− Jxfer Vmyo

Vss
− ICaAcapCsc

2VmyoF
)

d[Ca2+]
JSR

dt = βJSR(Jtr − Jrel)
d[Ca2+]

NSR
dt = Jup

Vmyo

VNSR
− Jtr VJSR

VNSR

54

ESDIRK54a - The coefficients in the method And the numerical values

0
γ γ
a31 a32 γ
a41 a42 a43 γ
a51 a52 a53 a54 γ

a61 a62 a63 a64 a65 γ
a71 a72 a73 a74 a75 a76 γ

Table 5.1.: ESDIRK p/p-1

γ = 0.26
a31 = 0.13
a32 = 0.84033320996790809;
a41 = 0.22371961478320505;
a42 = 0.47675532319799699;
a43 = −0.06470895363112615;
a51 = 0.16648564323248321;
a52 = 0.10450018841591720;
a53 = 0.03631482272098715;
a54 = −0.13090704451073998;
a61 = 0.13855640231268224;
a63 = −0.04245337201752043;
a64 = 0.02446657898003141;
a65 = 0.61943039072480676;
a71 = 0.13659751177640291;
a73 = −0.05496908796538376;
a74 = −0.04118626728321046;
a75 = 0.62993304899016403;
a76 = 0.06962479448202728;

55

Bibliography

[1] J.E. Hall A.C. Guyton. Textbook of Medical Physiology, 10th edition. Number 10
in 10. W.B. Saunders Company, 2000.

[2] E.Hairer and G.Wanner. Solving Ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems. Number 3 in Springer Series. Springer-Verlag,
2002.

[3] S.P. Nørsett E.Hairer and G.Wanner. Solving Ordinary Differential Equations I,
Nonstiff Problems. Number 4 in Springer Series. Springer-Verlag, 1987.

[4] Raimond L. Winslow et al. Mechanisms of Altered Excitation-Contraction Cou-
pling in Canine Tachycardia-Induced Heart Failure, ii : Model Studies. Circula-
tion Research, 1(1), 1999.

[5] George Hall. A New Stepsize Strategy for Runge-Kutta Codes. University of
Manchester, Department of Mathematics, 1(14), 1994.

[6] Brynjulf Owren Kersti Ekeland and Eivor Øines. Stiffness Detection and Estima-
tion of Dominant Spectra with Explicit Runge-Kutta Methods. The Norwegian
University of Science and Technology, The Department of Sciences, 24(4), 1998.

[7] A. Kværnø. Singly Diagonally Implicit Runge-Kutta Methods with an Explicit
First Stage. The Norwegian University of Science and Technology, The Depart-
ment of Sciences, 10(6), 2002.

[8] B. Owren. Forelesningsnotater i TMA4215 Numerisk Matematikk. The Norwe-
gian University of Science and Technology, The Department of Sciences, 2005.

[9] Brian Christopher Robertson. Detecting Stiffness with Explicit Runge-Kutta For-
mulas. University of Toronto, Department of Computer Science, 87(193), 1987.

[10] J. Sundnes. Numerical Methods for Simulating the Electrical Activity of the
Heart. University of Olso,Faculty of Mathematics and Natural Sciences, 1(226),
2002.

56

