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Abstract: Assessment of physical performance by standard clinical tests such as the 30-sec Chair Stand 

(30CST) and the Timed Up and Go (TUG) may allow early detection of functional decline, even in 

high-functioning populations, and facilitate preventive interventions. Inertial sensors are emerging 

to obtain instrumented measures that can provide subtle details regarding the quality of the 

movement while performing such tests. We compared standard clinical with instrumented 

measures of physical performance in their ability to distinguish between high and very high 

functional status, stratified by the Late-Life Function and Disability Instrument (LLFDI). We 

assessed 160 participants from the PreventIT study (66.3 ± 2.4 years, 87 females, median LLFDI 72.31, 

range: 44.33–100) performing the 30CST and TUG while a smartphone was attached to their lower 

back. The number of 30CST repetitions and the stopwatch-based TUG duration were recorded. 

Instrumented features were computed from the smartphone embedded inertial sensors. Four 

logistic regression models were fitted and the Areas Under the Receiver Operating Curve (AUC) 

were calculated and compared using the DeLong test. Standard clinical and instrumented measures 

of 30CST both showed equal moderate discriminative ability of 0.68 (95%CI 0.60–0.76), p = 0.97. 

Similarly, for TUG: AUC was 0.68 (95%CI 0.60–0.77) and 0.65 (95%CI 0.56–0.73), respectively,  

p = 0.26. In conclusion, both clinical and instrumented measures, recorded through a smartphone, 

can discriminate early functional decline in healthy adults aged 61–70 years. 
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1. Introduction 

Early identification of people at risk of functional decline is essential for targeting preventive 

interventions for the ones at risk. Physical function is one’s ability to carry out discrete actions or 

activities of daily living [1] and can be reliably assessed with questionnaires such as the Late-Life 

Function and Disability Instrument (LLFDI) [2,3]. Although the application of these instruments is 

recommended and clinically useful to identify people at risk or assess changes over time, they have 

some limitations. For instance, they may suffer from floor or ceiling effects, and since they are self-reports, 

the accuracy of the data collected could be affected by social desirability or response biases [4]. 

Physical performance is one domain of physical function that can be objectively measured using 

standard clinical tests, such as counting repetitions in the 30-sec Chair Stand Test (30CST) and timing 

duration of a Timed up and Go test (TUG) [5–7]. Although the standard clinical outcomes of these 

physical performance tests are commonly used assessing older or patient populations [5,6], their 

ability to detect early signs of functional decline in relatively healthy and fit older adults is not clear.  

Instrumented assessments with the use of inertial sensors allow objective measurements of the 

quality of the task and its (sub-) movements while performing such physical performance tests [8]. 

Recent studies demonstrated that features obtained with inertial sensors, alone or in combination 

with the standard clinical outcome, can be of added value for identification or prediction of physical 

function, without compromising the simplicity of testing [9,10]. Furthermore, it was shown that 

instrumented physical performance tests were more strongly related to health status, functional 

status, and daily physical activity compared to the manually recorded version of the tests [11]. Still, 

the potential ability of such features to detect slight changes in functional status for an early  

detection of functional decline, when preventive and/or protective actions can be put in place, needs 

further investigation. 

The aim of this study was to assess whether standard clinical measures of physical performance 

and instrumented measures collected through a smartphone during 30CST and TUG tests, can 

distinguish between older individuals with a High and Very High Functional Status, stratified by  

the LLFDI. 

2. Materials and Methods 

2.1. Population 

To investigate the potential of standard clinical and instrumented measures in discriminating at 

high functional status, data from the baseline cohort of the H2020 PreventIT project [12] were 

analyzed. PreventIT [13] is a three-armed multicenter trial with three centers in Trondheim (Norway), 

Amsterdam (The Netherlands), and Stuttgart (Germany). The treatment arms include two behavior 

change exercise programs and a control group. It makes use of a new ICT-based behavioral change 

approach for young older adults for preventing functional decline and for motivating people to take 

care of their own health. Participants were invited by a random draw from local registries  

and included if they were (i) aged between 61 and 70 years, (ii) retired for more than six months,  

(iii) home-dwelling, (iv) able to read newspaper or text on smartphone (SP), (v) able to walk 500 m 

without walking aids, (vi) without cognitive impairments (Montreal Cognitive Assessment, MoCA > 24  

points [14]), and (vii) they were excluded if they participated in exercise classes more than once a 

week or did sport for more than 150 min per week.  

Within the larger PreventIT cohort, 160 participants (mean age 66.3 ± 2.4 years, 87 females) who 

met the inclusion/exclusion criteria also performed both the instrumented 30CST and TUG tests. 

During the baseline assessment, participants filled questionnaires about age, gender, body mass 

index (BMI), physical activity (PA), hand grip strength (HAND [15]), and cognitive status (MoCA [14]). 

2.2. Outcome 

The Late-Life Function and Disability Instrument (LLFDI) was used to measure the functional 

status of participants [16]. The LLFDI evaluates both function and disability, assessing the poor ability 
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to perform specific physical tasks encountered in daily routines. The function component, which was 

used in this study, evaluates self-reported difficulty to perform 32 activities in daily living consisting 

of three dimensions: upper extremity, basic lower extremity, and advanced lower extremity. 

Questions are phrased, “How much difficulty do you have doing a particular activity without the 

help of someone else and without the use of assistive devices?” with a rating scale from 1 to 5 (the 

higher the scoring category, the less difficulty the person has in doing activities). The overall function 

raw score is obtained adding the scores of all the 32 items [2].  

As no validated cut-off has been described in literature to distinguish between people with 

different levels of functional status, we dichotomized the scaled scores (ranged 0 to 100) of the 

function domain of the LLFDI based on the median value to classify the people in our cohort as high 

(HFS) and very high (VHFS) functional status. 

2.3. Standard Clinical Physical Performance Tests 

The physical performance of participants was objectively assessed by two physical performance 

tests under standard instructions given by the assessors: the 30CST and the TUG. During the 30CST, 

participants started seated, on the command “go”, they stood up and sat down repeatedly for 30 s as 

quickly as they could. The total number of repetitions performed during the 30CST were counted by 

the assessors as standard clinical outcome of the 30CST. During the TUG, participants started seated 

on a chair, on the command “go”, they rose from the chair, walked three meters ahead at a 

comfortable and safe pace, made a 180° turn, walked back to the chair, and sat down again. The 

stopwatch-based total time needed to perform the TUG test was recorded by assessors as standard 

clinical outcome of the TUG.  

2.4. Instrumented Physical Performance Tests 

While performing the two physical performance tests, participants were instrumented with a 

smartphone on their lower back (at the level of the 5th lumbar spine) through a waist-worn elastic 

belt. The smartphone-based system was developed within the FARSEEING project [17]. A custom 

Android application [18] running on the smartphone (Galaxy SIII, Samsung, sampling frequency 100 Hz, 

accelerometer ± 2g, gyroscope ± 250°/s) was used for recording the Triaxial components of inertial 

signals: Antero-Posterior (AP), Medio-Lateral (ML), and Vertical (V). The instrumented features 

computed from the collected inertial signals were used as instrumented outcome of the physical 

performance tests. Triaxial inertial signals were processed using MATLAB [19] to extract a set of 

instrumented features [20].  

Signals recorded during the 30CST were first segmented into two subphases: Sit-to-Stand and 

Stand-to-Sit transitions (Figure 1a). The AP acceleration signal and the angular velocity about the ML 

axis were used to identify postural transitions [21]. Twenty-one instrumented features were extracted 

from the 30CST test [21–23], including durations, measures of the intensity (Root Mean Square, RMS, 

m/s2) and smoothness (Normalized Jerk Score, NJS, m) in AP, ML, and V direction of each repetition. 

The features were computed for each Stand-to-Sit/Sit-to-Stand transition and then averaged over the 

Sit-to-Stand/Stand-to-Sit subphases (see Table 1).  
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Table 1. Instrumented features extracted from the 30-sec Chair Stand (30CST) test. 

Feature Sensor (Sub)Phases Description 

Repetitions 

[number] 

Accelerometer/ 

Gyroscope 
Total Total number of repetitions 

SD Duration 
Accelerometer/ 

Gyroscope 

Sit-to-Stand, Stand-to-Sit 

subphases  

Standard deviation of the duration of each subphase 

of the 30CST 

Duration [s] 
Accelerometer/ 

Gyroscope 

Sit-to-Stand, Stand-to-Sit 

subphases 
Duration of each subphase of the 30CST 

NJS 

AP ML V [m] 
Accelerometer 

Sit-to-Stand, Stand-to-Sit 

subphases 

Time-normalized Jerk Score of the acceleration: 

��� = �
��

2
� (�

.
)���

����

������

 

where T is the duration (Tend-Tstart) of the considered 

submovement and a is the acceleration measured in 

m/s2. 

RMS 

AP, ML, V 

[m/s2], [°/s] 

Accelerometer,

Gyroscope 

Sit-to-Stand, Stand-to-Sit 

subphases 

Root Mean Square of the signal, s, during the 

considered submovement (hence a measure of 

dispersion): 

��� = �
1

�
�(�� − �

�

���

)� 

where N is the total number of points of the signal s, 

and m is the mean value: ����(�) 

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; V: Vertical 

The TUG was divided into four subphases: Sit-to-Walk, Walk, 180Turn, and Turn-to-Sit (Figure 1b). 

The AP acceleration and the angular velocity on the ML axis were used to identify postural transitions 

and the walking phase, and the angular velocity around the V axis was used to identify turns [21]. 

Walking features were derived from the AP, ML, and V signals, excluding postural transitions and 

the turning phase, and concatenating the two episodes of straight walk [24]. Twenty-eight features 

were extracted from the TUG test [21–23,25–28] including durations, intensity (RMS), and 

smoothness (NJS) of each subphase, as well as the mean and maximum angular velocity during the 

turns and the number of steps performed while walking and turning (see Table 2). 
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Table 2. Instrumented features extracted from the Timed Up and Go (TUG) test. 

Feature Sensor (Sub)Phases Description 

Duration [s] 
Accelerometer/ 

Gyroscope 

Total, Sit-to-Walk, 

Walk, 180Turn, 

Turn-to-Sit  

Total duration and duration of each subphase of the 

TUG 

Number of Steps 
Accelerometer/ 

Gyroscope 
180Turn, Walk Number of steps during each subphase of the TUG 

RMS 

AP, ML, V [m/s2] 
Accelerometer 

Sit-to-Walk, 

Walk, 

Turn-to-Sit 

Root Mean Square of the signal, s, during the 

considered subphase (hence a measure of 

dispersion): 

��� = �
1

�
�(�� − �

�

���

)� 

where N is the total number of points of the signal s, 

and m is the mean value: ����(�) 

NJS 

AP, ML, V [m] 
Accelerometer 

Sit-to-Walk,  

Turn-to-Sit 

Time-Normalized Jerk Score of the acceleration: 

��� = �
��

�
∫ (�

.
)���

����

������
 

where T is the turn duration (Tend-Tstart) of the 

considered subphase, a is the acceleration measured 

in m/s2. 

NJS 

V [-] 
Gyroscope 

180Turn,  

Turn-to-Sit Turning 

Normalized angular Jerk Score: 

��� = �
��

���� ∫ (�
..

)���
����

������
;           

where T is the turn duration (Tend-Tstart) of the 

considered component, ɷ is the angular velocity °/s, 

and TA is the Turning Angle in °. 

�� = � ���
����

������

 

Mean Velocity [°/s] Gyroscope 
180Turn, 

Turn-to-Sit Turning 

Mean Velocity, as the mean value of the angular 

velocity along the vertical axis during the turn: 

���� �������� =
�

�����
∑ �(�)��

����  

where � is the angular velocity in °/s; NE and NS 

are the index of the end and the index of the 

beginning of the turn, respectively. 

Maximum Velocity [°/s] Gyroscope 
180Turn,  

Turn-to-Sit Turning 

Maximum Velocity as the maximum value of the 

angular velocity along the vertical axis during the 

turn: 

������� �������� = max (�)��
�� 

where � is the angular velocity in °/s; NE and NS 

are the index of the end and the index of the 

beginning of the turn, respectively. 

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; V: Vertical 
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Figure 1. Time series of acceleration and angular velocity of the two instrumented physical 

performance tests. (a) Time series of acceleration and angular velocity over the Sit-to-Stand (↑) and 

Stand-to-Sit (↓) subphases of the 30CST and (b) time series of acceleration and angular velocity over 

the subphases of the TUG cycles. 

2.5. Statistical Analysis  

Statistical analyses were performed in R for Windows version 3.4.3 [29]. Four logistic regression 

models were fitted and the area under the ROC Curve were compared to assess the performances of 

30CST and TUG standard clinical and instrumented outcome measures in distinguishing between 

HFS and VHFS. 

For each physical performance test, first a univariable logistic regression was fitted with the 

standard clinical measure as input (number of repetitions counted by assessor for 30CST and  
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stopwatch-based total time in s for TUG). Secondly, a step-wise backward multivariable logistic 

regression with the instrumented features as input was fitted. Note that for the comparison between 

models, we excluded the standard measures (number of repetitions for 30CST or total duration for 

TUG, obtained with inertial sensors) from the analyses for the instrumented models, as this allowed 

evaluation of the discriminative ability of purely the more detailed features. To do so, the 

instrumented features were pre-processed with the same procedure for both 30CST and TUG. The 

jerk scores (NJS for all the subphases in AP, ML, and V direction), which were not normally distributed, 

were log-transformed and all the instrumented features were normalized to compare measures by  

z-scores. The linearity of each instrumented measure was assessed by fitting a restricted cubic spline 

function (using the R package “Hmisc” [30] with three knots at 0.1, 0.5, and 0.9 quantiles) in the 

logistic regression model. Usually, in order to avoid overfitting, the assessment of multicollinearity 

is recommended before fitting the multivariable logistic regression on the dataset. Furthermore, the 

validity of the multivariable logistic regression model becomes problematic when the ratio of the 

numbers of subjects per variable inserted in the model is less than 10 [31]. We addressed these issues 

by following the next steps. Firstly, the multicollinearity between instrumented features was assessed 

(R package “mctest” [32]). To detect and deal with multicollinearity (i) the Variance Inflation Factor 

(VIF) was computed on the entire dataset; (ii) the instrumented measure with highest VIF was 

selected and removed from the dataset; and (iii) the VIF was computed on the new subset of 

measures. The procedure was repeated until no collinearity was found (i.e., all the elements in the 

VIF vector were below 10). Starting from the obtained subset of instrumented feature, we selected 

those features that better discriminate between participants with HFS and VHFS (p ≤ 0.15) fitting one 

univariable logistic regression for each instrumented feature. The resulting subset of instrumented 

features was entered into a step-wise backward multivariable logistic regression. The features with p 

≤ 0.05 were selected to fit the final model.  

To compare the standard clinical and instrumented models for both physical performance tests, 

the discriminative ability of the resulting models was assessed by comparing the Area Under the 

Receiver Operating Curve (AUC). We used the DeLong test to assess differences between AUC of the 

models [33] (p ≤ 0.05 was considered statistically significant). A bootstrapping method with backward 

step-down variable deletion (R package “rms” [34]) was applied to internally validate each model 

and assess the impact of outliers. 

Finally, to compare the added value of the instrumented features to the standard clinical 

measures, a sensitivity analysis was conducted for both the 30CST and TUG tests on the 

discriminative ability in distinguishing between HFS and VHFS of the following three models:  

(i) standard clinical model, obtained from the standard clinical measure (30CST number of repetitions 

or TUG duration); (ii) instrumented model, obtained from the selected subset of instrumented 

features; and (iii) combined model, obtained by including the instrumented 30CST number of 

repetitions or TUG duration in the instrumented model. 

3. Results 

The baseline cohort consisted of n = 160 (age 66.3 ± 2.4 years, 87 females) strong and active 

(HAND 33.41 ± 11.19 kg, 90% declared a PA level ≥ 3) participants. The population was divided into 

two groups, based on the median value of the LLFDI score: HFS (LLFDI range: 44.33–71.33) and VHFS 

(LLFDI range: 72–100). Demographics of the total population and of both groups are reported in Table 3. 
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Table 3. Description of the population stratified by High Functional Status (HFS) and Very High 

Functional Status (VHFS). 

 

Total population 

N = 160 

HFS 

N = 78 

VHFS  

N = 82 

Gender, Female 87 (54.38%) 52 (66.67%) 35 (42.68%) 

Age, years 66.29 (2.40) 66.13 (2.44) 66.45 (2.37) 

Height, cm 170.94 (9.35) 169.32 (9.86) 172.49 (8.63) 

Weight, kg 79.49 (15.61) 79.97 (16.35) 79.04 (14.95) 

Handgrip strength, kg 34.41 (11.19) 31.06 (10.75) 37.61 (10.71) 

Gait speed, m/s 2.05 (0.46) 1.82 (0.41) 2.27 (0.40) 

30CST, number of repetitions 13.41 (3.29) 12.36 (3.13) 14.40 (3.14) 

TUG duration, s 8.70 (1.60) 9.25 (1.85) 8.17 (1.10) 

PA >=3 144 (90%) 71 (91.03%) 73 (89.02%) 

Falls, number >=2 23 (14.38%) 15 (19.23%) 8 (9.76%) 

MoCA, points 27.08 (1.85) 27.06 (1.89) 27.09 (1.83) 

Medications, number >=4 44 (27.50%) 29 (37.18%) 15 (18.29%) 

LLFDI, points, median [range] 72.31 [44.33 100] 65.57 [44.33 71.33] 79.35 [72.31 100] 

Values are presented as mean (SD) or number (%) unless otherwise indicated. 

ACRONYMS: 30CST: 30-sec Chair Stand test; HFS: High Functional Status; LLFDI: Late-Life Function and 

Disability Instrument; MoCA: Montreal Cognitive Assessment; PA: declared physical activity level; TUG: Timed 

Up and Go test; VHFS: Very High Functional Status.  

3.1. Standard Clinical Physical Performance Measures 

The number of repetitions for the 30CST was higher in the VHFS than in the HFS (Table 3), with 

the discriminative ability, expressed as odds ratio (OR), determined by the univariable logistic 

regression of OR = 1.29 (95%CI [1.15–1.46]), p < 0.001). 

For the TUG, the VHFS were faster than the HFS (Table 3), with a discriminative ability of OR 

0.58, 95%CI [0.43–0.75] and p < 0.001).  

3.2. Instrumented Physical Performance Measures 

For the instrumented 30CST, six of the 21 features were excluded from the original datasets to 

avoid multicollinearity (Supplementary Table S1), resulting in 15 features for further analysis. From 

the univariable logistic regression, four features were selected (p ≤ 0.15) (Supplementary Table S2). 

Step-wise backward multivariable logistic regression analysis resulted in a model with three features 

with significant discriminative ability: “mean Stand-to-Sit G RMS MLs” (OR = 0.71, 95%CI [0.49 0.98], 

p = 0.045), “mean Duration Sit-to-Stand” (OR = 0.69, 95%CI [0.48 0.98], p = 0.041), and “SD Duration 

Sit-to-Stand” (OR = 0.62, 95%CI [0.41 0.89], p = 0.014). 

For the instrumented TUG, four of the 29 features were excluded from the original datasets to 

avoid multicollinearity (Supplementary Table S3), resulting in 25 features for further analysis. From 

the univariable logistic regression analyses, nine features were selected (p ≤ 0.15) (Supplementary  

Table S4). Step-wise backward multivariable logistic regression analysis resulted in a model with two 

features with significant discriminative ability: “Walk duration” (OR = 0.59, 95%CI [0.38–0.86],  

p = 0.045) and “Turn-to-Sit Turning maximum velocity” (OR = 1.50, 95%CI [1.05–2.18], p = 0.031).  

3.3. Comparison of AUC of Models with Standard Clinical, Instrumented, and Combined Measures 

Discriminative ability (AUC values) of each model is presented in Figure 2 and Table 4. The 

internal validation of each of the models was assessed by applying a bootstrapping method with 

backward step-down variable deletion (Supplementary Table S5). The original AUC and  

optimism-corrected AUCs were in the same range (with differences less than 0.04), indicating 

confirmation of the internal validity of the models. 
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Standard clinical or instrumented measures showed moderate discriminative ability with an 

equal AUC of 0.68 (95%CI [0.60–0.76], p = 0.97). Similar results were obtained for both models with 

either standard clinical or instrumented measures of TUG: AUC of 0.68, 95%CI [0.60–0.77] and AUC 

of 0.65, 95%CI [0.56–0.73], respectively, p = 0.26.  

The sensitivity analyses including the combined models of standard and instrumented features 

showed that no significant differences could be found between the standard clinical, instrumented or 

combined models (p-values all > 0.05), indicating equal ability to discriminate VHFS from HFS. 

 

Figure 2. Discriminative ability (AUC and DeLong test) of standard clinical (black line), instrumented 

(blue line), and combined (red line) measures of the 30CST and TUG test. 

Table 4. Sensitivity analysis. 

  AUC 95% CI p-Value of the DeLong test  

30CST 

Standard clinical 0.68 [0.60–0.76] Standard clinical—Instrumented  0.97 

Instrumented 0.68  [0.60–0.76] Instrumented—Combined  0.74 

Combined 0.69 [0.61–0.77] Standard clinical—Combined  0.48 

TUG 

Standard clinical 0.68  [0.60–0.77] Standard clinical—Instrumented  0.26 

Instrumented 0.65 [0.56–0.73] Instrumented—Combined  0.94 

Combined  0.69 [0.60–0.77] Standard clinical—Combined  0.12 

4. Discussion 

This study aimed to compare the discriminative ability of standard clinical with instrumented 

measures of physical performance assessments in distinguishing between HFS and VHFS in a 

relatively healthy population of community-dwelling adults aged 61–70 years. The 30CST number of 

repetitions and TUG duration (recorded with stopwatch as well as by the smartphone) showed 

moderate discriminative ability. These two types of measurement showed similar performances in 

the univariable logistic regressions. The results suggest that identification of minor differences in 

functional status is possible in this relatively healthy population, either by standard clinical or 

instrumented measures recorded through a smartphone. Physical performance assessments 

instrumented by means of a smartphone allow us to collect a number of additional features beyond 

the number of repetitions (30CST) or total duration (TUG). These features could have the potential to 

add more detailed information on the participants’ functional status.  

For the 30CST assessment, three of the 30CST instrumented features were entered as input to fit 

the final model: “mean Duration Sit-to-Stand”, “SD Duration Sit-to-Stand”, and “mean Stand-to-Sit 

G RMS ML”. The 30CST, by definition, is a measure of lower limbs strength and endurance. The time 

needed to stand up from a sitting position represents the dynamic balance and can be considered as 
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an index of the power generated from muscles to stand up against gravity. The shorter the duration, 

the higher the strength. The standard deviation (SD) of the duration is a measure of variability; the 

higher the SD, the higher the difference between the duration of this task among the repetitions. 

Indeed, high SD of the standing duration could be related to fatigue and weakness. The Stand-to-Sit 

G RMS in ML direction is a measure of the intensity of the forward trunk rotation while sitting. The 

sitting phase requires dynamic balance and lower limbs strength to control the lowering of the body 

to the seated position. A more intense trunk rotation during the Stand-to-Sit phase could be related 

to less muscle strength, as demonstrated in a recent study for the Sit-to-Stand phase [35]. 

The final model of the TUG included two instrumented features: “Walk duration” and  

“Turn-to-Sit Turning maximum velocity”. The duration of the straight walk is a predictor of health 

status in old age, and as such gait speed is commonly recorded to assess individuals’ functional 

abilities [36]. Difficulty in turning, i.e., slower turning velocity, has been associated with mild 

cognitive impairment in old age [37]. The turn before sitting differs from the 180Turn as it involves 

cognition, motor planning and visual capacities in preparation for sitting [37]. 

The DeLong test between the standard clinical and instrumented assessments did not result in 

significant differences between the types of assessments, suggesting that these two types of 

measurement have a similar discriminative ability. Yet, in contrast to the standard clinical measures, 

the instrumented features allow to objectively measure the participants’ capacities while performing 

specific (sub-) tasks, such as walking, turning, or sitting. Furthermore, the discriminative ability 

slightly increased, albeit not significantly, when the standard clinical and instrumented measures 

were combined, suggesting that the two types of assessment have small additional value in our target 

group. These results are in agreement with a recent study in which was demonstrate that standard 

clinical and instrumented measures of physical performance are associated with similar effect size to 

age-related changes in physical performance [38].  

This study does have some limitations to consider. First, we included a rather homogeneous 

population, characterized by a highly skewed distribution of relatively high LLFDI scores, which 

may have led to a decrease in the discriminative ability of the models. Yet, even in this homogeneous 

and healthy population, we found discriminative value of both types of assessments for as well 30CST 

as TUG. The second limitation was our dichotomization based on the median value of the LLFDI 

scores, in absence of a validated cut-off for discriminating between different LLFDI levels. A valid 

cut-off score can be helpful to identify people at risk of developing functional decline. This aspect 

might be the subject of future studies. Despite these limitations, instrumented 30CST and TUG 

features proved to be comparable to the standard clinical measures, with moderate discriminative 

ability, in detecting even small differences of LLFDI in this homogeneous population of highly 

functioning individuals. It is reasonable to assume that the detection of differences in the functional 

status would also be possible in less fit and more heterogeneous population of older adults, yet this 

needs to be confirmed in future studies. For future perspectives, the potential of instrumented 

assessments may be preferred over standard clinical assessments for example in the context of  

self-management or Active Assisted Living Programmes. Therefore, we recommend further 

investigation of the sensitivity to changes over time of instrumented features, as well as of their 

correlations with measures of functional status and health obtained by other systems for monitoring 

activities of daily living, such as daily life gait speed. 

5. Conclusions 

In a relatively healthy population of adults aged 61–70 years, standard clinical and instrumented 

measures recorded through a smartphone can distinguish between HFS and VHFS, albeit with 

moderate discriminative ability.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Collinearity 

analysis of the 30CST instrumented physical performance measures; Table S2: Univariable and multivariable 

analysis of the 30CST instrumented physical performance measures; Table S3: Collinearity analysis of the TUG 

instrumented physical performance measures; Table S4: Univariable and multivariable analysis of the TUG 
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instrumented physical performance measures; Table S5: Bootstrapping validation of the 30CST and TUG 

models. 
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