
June 2007
Håkon Tjelmeland, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Parallel Multiple Proposal MCMC
Algorithms

Haakon Michael Austad

Problem Description

The candidate will study Metropolis-Hastings algorithms with several proposals in each
iterations. In particular he will consider how parallel computation can be used in this
context, and how one can use also the rejected states to estimate quantities of interest.

Assignment given: 15. January 2007
Supervisor: Håkon Tjelmeland, MATH

i

Preface

This report represents my work on my Master’s thesis during the spring semester of 2007.
It represents 20 weeks of work and completes my five year Master of Science program at
the Department of Mathematical Sciences of the Norwegian University of Science and
Technology (NTNU) in Trondheim.

I have found the work on my thesis to be highly challenging but also very rewarding. In
this report I have tried to maintain a focus on the subject we wished to investigate. I
have tried to give intuitive explanations of the algorithms at hand, and at the same time
give a precise presentation of the theory behind them. The report should be accessible
for most students with a background in mathematics and statistics at a university level,
although some familiarity with MCMC algorithms would be advisable.

I would like to take the opportunity to thank my supervisor Associate Professor H̊akon
Tjelmeland for all his guidance and assistance. His ideas and opinions have been very
helpful throughout the project.

Trondheim, June 2007
Haakon M. Austad

ii

iii

Abstract

We explore the variance reduction achievable through parallel implementation of multi-
proposal MCMC algorithms and use of control variates. Implemented sequentially multi-
proposal MCMC algorithms are of limited value, but they are very well suited for paral-
lelization. Further, discarding the rejected states in an MCMC sampler can intuitively be
interpreted as a waste of information. This becomes even more true for a multi-proposal
algorithm where we discard several states in each iteration. By creating an alternative
estimator consisting of a linear combination of the traditional sample mean and zero
mean random variables called control variates we can improve on the traditional esti-
mator. We present a setting for the multi-proposal MCMC algorithm and study it in
two examples. The first example considers sampling from a simple Gaussian distribu-
tion, while for the second we design the framework for a multi-proposal mode jumping
algorithm for sampling from a distribution with several separated modes. We find that
the variance reduction achieved from our control variate estimator in general increases
as the number of proposals in our sampler increase. For our Gaussian example we find
that the benefit from parallelization is small, and that little is gained from increasing
the number of proposals. The mode jumping example however is very well suited for
parallelization and we get a relative variance reduction pr time of roughly 80% with 16
proposals in each iteration.

iv

CONTENTS v

Contents

1 Introduction 1

2 Markov chain Monte Carlo and the Metropolis-Hastings algorithm 2
2.1 MCMC . 2
2.2 The Metropolis-Hastings algorithm . 3

3 Combination of kernels and mode jumping proposals 4
3.1 Combination of kernels . 4
3.2 Mode jumping . 6

4 Multi-proposal MCMC 7
4.1 The idea, and initial setting . 8
4.2 Transition matrix . 9
4.3 Parallel implementation . 10

5 Mode jumping with multiple proposals 11
5.1 Multi-proposal mode jumping algorithm 11
5.2 Notation and Remarks . 12

6 Control variates and use of rejected states 13
6.1 Using control variates to estimate means 14
6.2 Using all proposed states to estimate the mean 14

7 Examples 17
7.1 Gaussian toy example . 18
7.2 Mode jumping example . 26

8 Closing remarks 31

vi CONTENTS

1

1 Introduction

This report focuses on two variance reduction techniques for MCMC algorithms, the mul-
tiple proposal technique and the control variate technique. Assume we want to estimate
the mean µ of a function f(x), with x distributed according to some target distribu-
tion π(·). MCMC algorithms are often the only viable alternative for estimating µ, in
particular if x is of a high dimension and π(·) is complex. The most common MCMC
algorithm, the Metropolis-Hastings scheme (Hastings 1970) runs as follows. Assuming
we are in the state x of the Markov chain, a new state y is proposed according to a
proposal distribution. The new state is then accepted or rejected according to an accep-
tance probability α. If the new state is accepted we continue with y as the current state
of the Markov chain, while if it is rejected the proposal y is discarded and we continue
with x. Once the algorithm has run long enough, and after discarding a burn-inn pe-
riod the selected states are roughly distributed according to the target distribution π(·).
The most common estimator for µ is then the sample mean of f(x). Several methods
exist for reducing the variance of our estimator, in Roberts & Casella (1999) and Casella
& Robert (1996) a Rao-Blackwellised version of the traditional estimator is shown to
give significant variance reduction. Liu (2001) also points out several variance reduction
techniques.
Our project has focused on the multi-proposal MCMC algorithm. The algorithm is based
on the idea of proposing several new states in each iteration instead of just one. Imple-
mented sequentially, there is little hope of the multi-proposal MCMC algorithm reducing
the variance of our estimator as a function of time. Tjelmeland (2004) explores this in
two relatively simple examples. However the multi-proposal algorithm can be improved
through parallel implementation and control variates. The algorithm is very well suited
for parallel implementation, with multiple proposals we can have each processor generate
its own proposal. The control variate technique is based around the idea that we can do
better than the sample mean by constructing an estimator that is a linear combination of
the original sample mean and other random variables called control variates. Intuitively
discarding proposals would seem like a waste of information, so our control variate is
based upon the use of rejected states. With several rejected proposals for each iteration,
as we have in the multi-proposal algorithm, the amount of information in the control
variates should increase. Tjelmeland & Hammer (2005) explore several control variates
of this type for the standard MCMC algorithm. One of the benefits of this method over
for example the Rao-Blackwellisation scheme is that the amount of computation time is
of order N oppose to N2, where N is the number of iterations in the algorithm.
In this report we explore the effectiveness of the techniques for two examples each im-
plemented in parallel. First we look at a toy Gaussian example similar to the examples
in Tjelmeland (2004) and then compare this to a more advanced example using a mode
jumping proposal technique inspired by Tjelmeland & Hegstad (2001). The paper starts
with Section 2 giving a short introduction to the Metropolis-Hastings algorithm, Sections
3 and 4 explain the mode jumping and multi-proposal MCMC algorithm and Section 5
combines the two ideas into a multi-proposal mode jumping algorithm. Section 6 then

22 MARKOV CHAIN MONTE CARLO AND THE METROPOLIS-HASTINGS ALGORITHM

explains theory behind control variates. In Section 7 we present the results from our two
examples, and finish with some closing remarks in Section 8.

2 Markov chain Monte Carlo and the Metropolis-Hastings
algorithm

In this section we will discuss the Markov chain Monte Carlo (MCMC) idea and give
a short outline of the Metropolis-Hastings algorithm. A more general introduction to
MCMC can be found in Roberts & Casella (1999) and a thorough discussion of the
Metropolis-Hastings algorithm in Hastings (1970).

2.1 MCMC

The primary purpose of MCMC is to simulate samples from a distribution and use these
samples to estimate a mean. Assume we have some distribution which is difficult to
simulate from, π(·). We wish to generate N samples from this distribution x1, . . . , xN ,
in order to estimate its mean,

µ = E[f(x)] =
∫

f(x)π(x)dx. (1)

The most common estimator is the sample mean,

µ̂ =
1
N

N∑
i=0

f(xi). (2)

The MCMC idea is to simulate these samples by constructing a Markov chain with a
transition kernel P , whose invariant distribution is equal to the target distribution π(·).
In this way samples can be generated by running the chain for a sufficiently long time
for the distribution to have converged to the limiting distribution. Assuming the target
distribution to be continuous on <n a transition kernel P defines a Markov chain with
invariant distribution π(·) if,∫

A
π(x)dx =

∫
<n

P (A|x)π(x)dx ∀A ∈ ζ, (3)

where ζ is the Borel σ-algebra on <n. In the case of a discrete target distribution on Ω
this simplifies into,

π(y) =
∑

x

π(x)P (x|y) ∀y ∈ Ω. (4)

Since equations (3) and (4) leave us with a lot of freedom in our choice of P it is common
to require the Markov chain to be time reversible, which gives us the more restricting
detailed balance condition,∫

A
π(x)P (B|x)dx =

∫
B

π(x)P (A|x)dx ∀A,B ∈ ζ. (5)

2.2 The Metropolis-Hastings algorithm 3

For a discrete target distribution this becomes,

π(y)P (x|y) = π(x)P (y|x) ∀x, y ∈ Ω. (6)

In MCMC algorithms it is often desirable to combine two or more transition kernels.
Assuming we have two transition kernels P 0 and P 1 who both fulfill (5) it is immediately
obvious that combining the two into a new transition kernel in the following manner,
P = αP 0 + (1 − α)P 1 for some α ∈ [0, 1], will also fulfill (5). We can take things one
step further and assume that we have a class of kernels P φ indexed with a continuous
parameter φ ∈ <d. Assuming that f(φ) is a distribution on <d it is clear that the
transition kernel,

P (A|x) =
∫
<d

P φ(A|x)f(φ)dφ (7)

also fulfills the detailed balance condition.

2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm gives us a general framework for MCMC algorithms.
It is based on splitting the transition kernel into a proposal kernel Q and an accep-
tance probability α. For a continuous distribution the Metropolis-Hastings algorithm
constructs the transition kernel as,

P (A|x) =
∫

A
q(y|x)α(y|x)dy + I(x ∈ A)r(x), (8)

where I(·) is the indicator function, q(y|x) is the proposal distribution and r(x) =∫
q(y|x)(1 − α(y|x))dy is the probability of remaining in x. For a discrete distribution

the transition kernel appears as,

P (y|x) = q(y|x)α(y|x) for y 6= x. (9)

The algorithm runs as a two step process, first a new state y is proposed from a proposal
distribution q(y|x). Calculating a probability of acceptance α(y|x), the new state is then
either accepted or rejected in favor of the old state x. There are many available choices
for α(y|x), in Hastings (1970) a general expression is shown to be,

α(y|x) =
s(x, y)

1 + π(x)
π(y)

q(y|x)
q(x|y)

(10)

for some symmetric function s(x, y) ≥ 0, that gives α(y|x) ≤ 1. It is then well known
that the optimal acceptance probability in respect to the asymptotic variance of the
estimates is given, as shown in Peskun (1973) by,

α(y|x) = min
{

1,
π(y)
π(x)

q(x|y)
q(y|x)

}
. (11)

4 3 COMBINATION OF KERNELS AND MODE JUMPING PROPOSALS

We should note that equations (10) and (11) hold for both the continuous and discrete
cases. As we discussed in the previous section, it is possible to combine two or more tran-
sition kernels. With the Metropolis-Hastings algorithm we can consider the possibility
of having to proposal kernels Q0 and Q1 available. There are two obvious ways in which
we can combine these and still fulfill the detailed balance condition. The first is to use
each of the proposal kernels to produce two separate transition kernels P 0 and P 1 and
combine these as before. The second is to create a proposal kernel Q = αQ0 +(1−α)Q1

and use this in the transition kernel. Both of these options can easily be shown to fulfill
the detailed balance condition. In the next section we discuss a third way of combining
kernels.

3 Combination of kernels and mode jumping proposals

This section is based on Tjelmeland & Hegstad (2001) and contains a description of
mode jumping in MCMC algorithms. Mode jumping is a technique used to achieve
good sampling from multi-modal distributions. These distributions appear as the one
illustrated in Figure 1 and are characterized by areas of high probability (modes) sepa-
rated by areas of low probability. The typical Metropolis-Hastings algorithm presented
in Hastings (1970) will often give bad mixing when sampling from such a distribution.
This is due to the fact that only small changes are proposed in the state vector, which
again is due to the fact that large changes will have a small probability of acceptance.
By only proposing small changes, the algorithm rarely moves between the modes and
the samples will be concentrated around one of the modes. We will discuss how you can
overcome this problem by using mode jumping. To explain it we first have to describe
a different way of combining proposal kernels than the one discussed in the previous
section. Then, using this we discuss the mode jumping idea.

3.1 Combination of kernels

Tjelmeland & Hegstad (2001) discuss an alternative way of combining two proposal
kernels in the design of an MCMC algorithm for a continuous Markov chain. We explore
the subject both for a continuous Markov chain and a discrete Markov chain, as we
apply the technique to a discrete distribution later in the report. In the previous section
we explained two ways of combining several proposal kernels in the Metropolis-Hastings
algorithm. Here we discuss a third way, which changes the algorithm slightly and defines
an acceptance probability different from equation (11). Although our new acceptance
probability is not optimal in relation to Peskun’s acceptance probability, we will argue
that in the case where sampling from Q0 and Q1 is computer intensive, this new way
of constructing the transition kernel may be better in respect to CPU time if not in the
number of iterations.
First, assume that we construct our new transition kernel as,

P (A|x) =
1
2

∫
A

q0(y|x)α0,1(y|x)dy +
1
2

∫
A

q1(y|x)α1,0(y|x)dy + I(x ∈ A)r(x), (12)

3.1 Combination of kernels 5

−φ

x

y

φ

Figure 1: Illustration of one iteration of the mode jumping algorithm. A new proposal
y is generated by adding φ and locating the center of the closest mode, from which we
can sample y. The return probability is found by adding −φ to y.

6 3 COMBINATION OF KERNELS AND MODE JUMPING PROPOSALS

for the continuous case and,

P (y|x) =
1
2
q0(y|x)α0,1(y|x) +

1
2
q1(y|x)α1,0(y|x) for y 6= x, (13)

for the discrete case. The acceptance probabilities α0,1(y|x) and α1,0(y|x) are given as,

αi,1−i(y|x) = min
{

1,
π(y)
π(x)

q1−i(x|y)
qi(y|x)

}
, for i = 1, 2. (14)

The rejection probability r(x) in (12) now becomes,

r(x) =
1
2

∫
<n

q0(y|x)(1− α0,1(y|x))dy +
1
2

∫
<n

q1(y|x)(1− α1,0(y|x))dy (15)

We show that the resulting transition kernel is in fact within the class of Metropolis-
Hastings defined by equations (8) and (10) by showing that all we have done is to combine
two proposal distributions as we did in Section 2. To get our transition kernel we have
simply defined q(y|x) = 1

2q0(y|x) + 1
2q1(y|x) and

s(x, y) =
1
2
(π(x)q0(y|x)α0,1(y|x)+π(y)q0(x|y)α0,1(x|y))(

1
π(x)q(y|x)

+
1

π(y)q(x|y)
). (16)

Inserting (16) in (10) gives us the acceptance probability as,

α(y|x) =
q0(y|x)α0,1(y|x) + q1(y|x)α1,0(y|x)

q0(y|x) + q1(y|x)
. (17)

The true difference lies in the way we perform the algorithm. Normally, we would
determine which of the proposal distributions Q0 and Q1 to use (with probability 1

2 for
each) and propose a new state using that proposal distribution. Then we would calculate
the acceptance probability in equation (17) to determine whether we should accept or
not. Instead of this we now use the acceptance probability in equation (14) corresponding
to our choice of i. We can think of this as using one of the proposal distributions to
perform the proposal step, and then the other to perform the return step to our previous
state. In other words, our acceptance probability depends on which Qi was used to
propose the new state. Of course this means that our acceptance probability is no longer
optimal with respect to the number of iterations. However, in the case where evaluating
Qi is computer intensive it has an advantage over the Peskun (1973) algorithm, as we
only need to compute qi(y|x) and q1−i(x|y) to find the acceptance probability. If we study
equation (17), we see that using that acceptance probability we would need to compute
qi(y|x), qi(x|y), q1−i(y|x) and q1−i(x|y). This means that our new algorithm may be
better in the case we are about to study, where evaluating Qi is computer intensive.

3.2 Mode jumping

In this section we discuss how to sample from a multi-modal distribution using a com-
bination of two specifically designed transition kernels. In a multi-modal distribution

7

we have areas of high probability separated by areas of low probability. With mode
jumping, we hope to achieve direct transitions between the areas of high probability, as
this will give us good mixing from the distribution. Transitions between these areas will
require large proposed changes in the state vector. However two problems immediately
occur with such proposals. First, how do we ensure that the proposed state is in the
high probability area, and second, how do we achieve a sufficiently large acceptance
probability for such a proposal. Mode jumping overcomes the first of these problems
using local optimization, and the second using a combination of kernels as described in
the previous section.
Assuming we are currently in a state x, the algorithm is illustrated in Figure 1. First we
add a sufficiently large random vector φ to our current state x. We then locate a mode by
performing a deterministic local minimization of the energy function U(x) = −ln(π(x)),
started in x + φ. We use the notation µ(x + φ) for the location of the minimum we find.
With this we can now construct a proposal distribution Qφ, as

qφ(y|x) = N(µ(x + φ),Σ(x + φ)), (18)

where Σ(x + φ) is the inverse Hessian at the minimum, i.e.

Σ(x + φ) = [(∇2U)(µ(x + φ)]−1.

In other words the idea is to locate the center of another mode in the distribution, and
then sample from a normal distribution centered in that mode. By proposing a new
state y in this manner we should achieve a transfer between the high probability areas,
thus we have overcome the first of our two problems. Now we have to construct another
proposal distribution to perform the return step, so as to ensure a high probability of
acceptance. Since y is located somewhere in the vicinity of the mode that µ(x+φ) found
for us, it is not unreasonable that y−φ should place us somewhere in the vicinity of the
mode we left. Again we can perform a deterministic local minimization and construct a
second proposal distribution,

q−φ(x|y) = N(µ(y − φ),Σ(y − φ)). (19)

The acceptance rate can then be calculated from equation (14). In this way, the ac-
ceptance rate should be sufficient to give us frequent jumps between the modes in the
distribution.

4 Multi-proposal MCMC

Traditional MCMC revolves around the concept of constructing a Markov chain with
a distribution that converges in time towards the distribution we wish to sample from.
We construct this chain according to the Metropolis Hastings algorithm by splitting the
transition probabilities into a proposal part and an accept/reject part. We then sample
from the Markov chain until we believe it to have converged. The Multi-proposal MCMC
algorithm is based on the same idea, the difference being that instead of proposing only

8 4 MULTI-PROPOSAL MCMC

one new state, we propose several at once. As in the traditional Metropolis-Hastings
algorithm we still only accept one new state for each iteration. This section is based on
Tjelmeland (2004) and establishes the basic framework for the multi-proposal MCMC
algorithm, then shortly discusses acceptance probabilities and parallel implementation
of the algorithm. For further information and examples of multi-proposal MCMC we
refer to Stormark (2006), Craiu & Lemieux (2005) and Liu, Liang & Wong (2000).

4.1 The idea, and initial setting

Assume we wish to sample from a target distribution π(·) continuous on <n, using a
multi-proposal MCMC algorithm. We start by defining m ≥ 1 as the number of new
proposals in each iteration and introduce the stochastic variable κ ∈ {0, 1, . . . ,m} as an
assistance variable to keep track of which proposal is the current accepted state, yκ. In
each iteration we generate m new proposals which we store, together with the old state
in a vector y = {y0, y1, . . . , ym}. We denote the m new states y−κ using the notation
where y−j = {y0, . . . , yj−1, yj+1, . . . , ym}. The idea behind the multi-proposal MCMC
algorithm is now to define a Markov chain over the states {{y1, κ1}, . . . {yN , κN}} with
an invariant distribution p(y, κ). If the invariant distribution p(·) is constructed correctly
each yi

κi should be distributed according to π(·). To define p(·) we start by letting κ
have a uniform distribution and define pκ(y) as the conditional distribution of y given
κ. Using Bayes law this gives us,

p(y, κ) =
1

m + 1
pκ(y), (20)

as the joint distribution of y and κ. We further define pκ(y) from π(·) as,

pκ(y) = π(yκ)qκ(y−κ|yκ). (21)

Here qk(y−k|yk), k = 0, 1, . . . ,m are the proposal densities for sampling a new set of
states given the current one. The proposal distribution can, as in standard MCMC be
chosen quite freely. The only real condition is that it is easy to sample from. Later, in
Section 7, we test the algorithm on two different proposal distributions. We note that
by constructing our invariant distribution in this way, yκ will be distributed according
to π(·). The Markov chain itself is then defined by switching between two types of
updates. To ensure that we get the correct invariant distribution for this Markov chain,
it is important that both steps are invariant with respect to our target distribution p(·).
Update (i) is to substitute all the current values of y−κ by values sampled from the
proposal distribution qκ(y−κ|yκ). This is the equivalent to sampling from p(y−κ|yκ, κ)
and is a Gibbs step and thus will automatically be invariant with respect to the target
distribution. For more background on the Gibbs algorithm see Roberts & Casella (1999).
Update (ii) is to replace the current value of κ with a new one sampled according to
a transition matrix P(y) = [Pk,l(y)]mk,l=0. To ensure that this update is invariant with
respect to p(y, κ) we need to have

p(y, l) =
m∑

k=0

p(y, k)Pk,l(y) for l ∈ {0, 1, . . . ,m} and y ∈ <n(m+1). (22)

4.2 Transition matrix 9

If we insert (20) into (22) this rewrites into

pl(y) =
m∑

k=0

pk(y)Pk,l(y) for l ∈ {0, 1, . . . ,m} and y ∈ <n(m+1). (23)

In addition to this, P(y) must also fulfill the requirements of a transition matrix, that is

Pk,l(y) ≥ 0 for k, l ∈ {0, 1, . . . ,m} and y ∈ <n(m+1) (24)
m∑

l=0

Pk,l(y) = 1 for k ∈ {0, 1, . . . ,m} and y ∈ <n(m+1). (25)

We discuss the construction of the transition matrix in Section 4.2. In studying the
algorithm it is important to realize that the invariant distribution of our Markov chain
is p(y, κ) and not π(·), as we are accustomed to. However, the yi

ki ’s will be distributed
according to π(·). Despite this we can easily compare our algorithms update steps to
the propose and accept/reject structure of the Metropolis-Hastings algorithm. Update
(i) is the proposal step, we propose m new states according to our proposal distribution
qκ(y−κ|yκ). Update (ii) is the accept/reject step, where a change of the value of κ
indicates an acceptance of a new state, whereas not changing the value of κ indicates a
rejection of all the new states. All that remains is to specify the proposal distribution
and transition matrix.
The fact that we propose several new potential states for each iteration means that there
are two options we should explore. The first of these is to use control variates to create
a new estimate for the mean. This is a technique that has been used in traditional
MCMC algorithms, but may become even more important in the multi-proposal setting.
Very often we are interested in estimating the mean based on our samples, and since
we generate several samples for each iteration it would seem like a waste of information
to not include them in our estimator. We explore this in Section 6. The second idea
is related to the implementation of the algorithm. Since several states are proposed for
each iteration, and especially if this is computer intensive (as we will later see that it can
bee) it would be optimal to apply parallelization. We discussed this further in Section
4.3.

4.2 Transition matrix

Unlike standard MCMC, where the choice of acceptance probability is practically given
by Peskuns optimization theory, in multi proposal MCMC we have several choices for
the transition matrix. Here we will outline one alternative that we have applied in our
examples. This is probably in no way the optimal choice, but it suffices for our examples.
An obvious choice of P which clearly fulfills the requirements set in the previous section
is,

Pk,l(y) =
pl(y)∑m

j=0 pj(y)
. (26)

10 4 MULTI-PROPOSAL MCMC

This is easily verified by inserting the expression in equations (23) and (25). However,
this choice of P can be easily improved by running it through a so called Peskunization
process. For more background on this algorithm we refer you to Tjelmeland (2004) where
the algorithm is presented in depth.
The algorithm then runs as follows.

1. Set t = 0 and let P 0(y) be the transition matrix defined in (26).

2. Set At = {k : P t
k,k > 0, k = 0, 1, . . . ,m}.

3. If |At| ≤ 1, set P (y) = P t(y) and end the process.

4. Set

ut = min
k∈At

(
1−

∑
l /∈At P t

k,l(y)∑
l∈At\{k} P t

k,l(y)

)
. (27)

5. Let P t+1(y) be defined as,

P t+1
k,l (y) = P t

k,l(y) if k /∈ At or l /∈ At (28)

P t+1
k,l (y) = utP t

k,l(y) if k ∈ At and k 6= l (29)

P t+1
k,k (y) = 1−

∑
l 6=k

P t
k,l(y) for k ∈ At (30)

6. Assign t = t + 1 and go to 2.

In the simulation algorithm one should of course modify this so that only row κ is
computed, as this is all you need.

4.3 Parallel implementation

A multi-proposal MCMC algorithm is ideally suited for parallelization. With paralleliza-
tion we mean distributing tasks among several processors, thus completing several task
simultaneously. A multi-proposal MCMC sampler will consist of some parallel code and
some sequential code. With m proposals we will need one ”master” processor, and m
”slave” processors. In each iteration the master starts by distributing the current state
yk to all the m slave processors. Each slave then generates a new proposal according
to our proposal scheme, and returns the proposal as well as the probability π(yl) of the
proposal. The Master then construct the transition matrix P(y) and selects a new state
κ, which completes one iteration. When discussing parallel programs we need to intro-
duce the concept of ”overhead”. When we speak of overhead in parallel programs we are
referring to the time lag that occurs from message passing between processors. Transfer-
ring messages between processors is not a simultaneous process, and the more processors
involved, the larger the overhead. Thus there is an increase in run time associated with a
large number of processors communicating. This means that if an MCMC algorithm has
a simple and fast proposal scheme, the time gain from having each processor generate
it’s own proposal may disappear because of the overhead. If however, the proposals are
CPU intensive, the time gain will become large compared to the overhead.

11

φ2,1

y0

y2

y1

φ0,1

φ0,2

φ1,0

φ1,2

φ2,0

Figure 2: Illustration of one iteration of a multi-proposal mode jumping algorithm. First
y1 and y2 are proposed by generating the vectors φ0,1 and φ0,2. The return probabilities
are then calculated by using the vectors φ1,0, φ1,2 and φ2,0, φ2,1 as illustrated in red and
green respectively.

5 Mode jumping with multiple proposals

We now wish to combine the two ideas presented so far in this paper and create a multi-
proposal MCMC algorithm with a mode jumping proposal distribution. This means
suggesting m new states in each iteration and using a proposal distribution as introduced
in the mode-jumping section. The two algorithms can be combined quite easily, requiring
only a small expansion of the notation. We start by illustrating the algorithm with a
walk-through of an iteration with m = 2. We then define the algorithm more precisely
and introduce necessary notation, before finishing with some remarks and comments
about the algorithm.

5.1 Multi-proposal mode jumping algorithm

Assume we have a probability distribution with several modes that we wish to sample
from, using multiple proposals in each iteration. A walk-through of an iteration with
m = 2 is presented here, and illustrated in Figure 2. Assume we have the multi proposal
framework introduced in Section 4, with states y = {y0, y1, y2} and assistant variable

12 5 MODE JUMPING WITH MULTIPLE PROPOSALS

κ. At the start of the iteration we assume that κ = 0. As in Section 3 we want to
move between the different modes. Each of our two proposals is generated by adding a
large independent random vector φ0,j for j = 1, 2. As before we then locate the local
center of high probability, through a deterministic local minimization routine, which we
denote µ(y0 + φ0,j). Our two independent proposals can then be generated as before
yj ∼ N(µ(y0 + φ0,j),Σ(y0 + φ0,j)), where Σ(y0 + φ0,j) again is the inverse Hessian at the
minimum. So far we haven’t really done anything new. The next step is to calculate the
acceptance probability. In Section 3 we created two different transition kernels to achieve
a high acceptance rate. Now we have to construct a family of m + 1 transition kernels.
We can see from equation (26) that in calculation of the acceptance probabilities we need
to calculate the probability of going from our new state to all the others. This means
that to achieve an acceptably high acceptance rate, we need to have a sufficiently large
probability of going to all the other states from our potential new states, not just the
previous state as in Section 3. A second important thing to keep in mind at this stage is
the performance speed of the algorithm in CPU time. In Section 3 we applied a second
minimization in the return kernel. If we where to perform a minimization for each of the
other states, we would have to perform m2 minimizations for each iteration. It is time
consuming to perform deterministic minimization, especially in high dimensions, so this
would be unacceptable as we increase m. This means that if possible, we would like to
reuse the minimizations we calculated during the generation of the proposals. With this
in mind we design a class of transition kernels for returning to the other states. Consider
first y1. To get back to state y0 we apply the same technique as in Section 3 and add
a vector φ1,0 = −φ0,1. As before, it is reasonable to assume, that a deterministic local
minimization routine started from y1 − φ0,1 should give us the location of a mode close
to y0. To get to state y2 however, we need to do something different. We add a vector
φ1,2 = φ0,2 − (y1 − y0), see Figure 2. This puts us in the location where we started
our previous local minimization, so we can use our results from that to find the local
center of high probability. For y2 we do exactly the same using the vectors φ2,0 = −φ0,2

and φ2,1 = φ0,1 − (y2 − y0). Figure 2 illustrates the process better than words. In this
manner we only perform 2m deterministic local minimization’s for each iteration, which
is acceptable.

5.2 Notation and Remarks

In this section we introduce some notation and explore the multi-proposal mode jumping
algorithm in more detail. We start by defining the invariant distribution of our Markov
chain, which is almost the same as in (31), we now have,

p(y, κ,φ−κ) =
1

m + 1
pκ(y,φ−κ), (31)

where we are using the same notation as before, and φ−κ = {φκ,0, . . . , φκ,κ−1, φκ,κ+1, . . . ,
φκ,m} contains the vectors introduced in the previous section. As in Section 4 we con-
struct pκ(·) in such a way that yκ ∼ π(·),

pκ(y,φ−κ) = π(yκ)f(φ−κ)qκ(y−κ|yκ,φ−κ). (32)

13

The vectors φκ,j are independent of each other and are typically distributed according
to a normal distribution with a large variance so that they are easy to sample. Our
proposal distribution qκ(y−κ|yκ,φ−κ) can now be considered a class of proposal kernels
defined as,

ql(y−l|yl,φ−l) =
m∏

j=0,j 6=l

Nn(µ(yl + φl,j),Σ(yl + φl,j))(yj), for l ∈ {0, . . . ,m}, (33)

where the vectors φl,j are defined as,

φl,j =

{
−φκ,j if j = κ and l 6= κ,

φκ,j − (yl − yκ) if j 6= κ and l 6= κ.
(34)

As before we intend to sample from this distribution by switching between two types
of updates, and we must ensure that both are invariant with respect to p(y, κ,φ−κ).
Update (i) generate a new φ−κ and sample y−κ from our proposal distribution. As
before this step is a Gibbs step since we condition on the remaining variables, and as
such automatically be invariant. Update (ii) sample a new κ according to the transition
matrix P(y) = [Pk,l(y)]mk,l=0 and update φ−κ according to equation (34). The require-
ments on the matrix P(y) will be equivalent to those in Section 4, and the matrix can
be constructed as before as described in Section 4.2.
There are several aspects of the algorithm which should be mentioned.

1. Obviously the algorithm should not be used on it’s own as it is presented here. As
with the single proposal mode jumping algorithm, it should be combined with a
standard Metropolis-Hastings algorithm to produce samples around the different
modes. Mode jumping is then used to move between the modes.

2. As discussed in Section 4.3 multi-proposal MCMC algorithms are very well suited
for parallelization. The multi-proposal mode jumping algorithm may be even better
suited for this as each of the proposals are very CPU intensive. We examine this
further in the examples in Section 7.

3. When implementing the algorithm one should keep in mind that it needs to be
quite robust. The generating of proposals includes several numeric optimization
steps and these will occasionally return errors. Steps must be taken to handle these
errors properly.

6 Control variates and use of rejected states

In this section we discuss the use of control variates for variance reduction in the estimate
of our mean. We start by giving a short introduction to what a control variate is,
and then show how we can design a control variate to use with the multi-proposal
MCMC algorithm. For further information we refer to Tjelmeland & Hammer (2005)
and Tjelmeland (2004).

14 6 CONTROL VARIATES AND USE OF REJECTED STATES

6.1 Using control variates to estimate means

Assume we have samples x1, . . . , xN from our sample distribution π(·) and wish to es-
timate the mean µ = E[f(x)]. It is desirable in a simulation setting to achieve a low
variance on our estimate of the mean, and as such it is natural to seek a way to reduce
the variance. We hope to achieve this by introduction of the control variate.
Assume that our estimate for the mean is the traditional sample mean (2), as usual.
The idea is then to introduce a random variable v, the control variate. Assuming that
we define v such that it is correlated to µ̂ and has expectation E(v) = 0 we can design
a new unbiased estimator for µ,

µ̃ = µ̂ + cv, (35)

for any value of c. Now we wish to minimize, as a function of c, the variance of our new
estimator (35),

Var(µ̃) = Var(µ̂) + c2Var(v) + 2cCov(µ̂, v). (36)

We find the minimum of this expression by taking the derivative with respect to c and
solving this when set equal to 0,

∂Var(µ̃)
∂c

= 2cVar(v) + 2Cov(µ̂, v). (37)

Setting this equal to 0 and solving with respect to c gives us,

copt = −Cov(µ̂, v)
Var(v)

. (38)

We can calculate the relative variance reduction we achieve by using copt,

Var(µ̂)−Var(µ̃)
Var(µ̂)

=
Var(µ̂)−Var(µ̂) + Cov(µ̂,v)2

Var(v)

Var(µ̂)

=
Cov(µ̂, v)2

Var(µ̂)Var(v)
= Corr(µ̂, v)2.

We see from this that we want to design our control variate so that it is has a high
correlation with µ̂. By achieving variance reduction of our mean in this manner, we
save time by being able to run our algorithm for a shorter time after convergence. With
control variates we may reduce the time it takes to produce a good estimate with low
variance. We discuss the estimation of copt in the next Section.

6.2 Using all proposed states to estimate the mean

This section is based on Tjelmeland (2004) and discusses the design of our control vari-
ate v. Assume we have run a multi-proposal MCMC algorithm, and have generated
{yi, κi}N

i=1 where yi = (yi
0, . . . , y

i
m) as discussed in Section 4. We wish to use all the

6.2 Using all proposed states to estimate the mean 15

proposed states to estimate the mean, using the control variate method in the previous
section. We consider the control variate,

v =
1
N

N∑
i=1

[m∑
l=0

wκi,l(y
i)f(yi

l)− f(yi
κi)
]
, (39)

where w(y) = [wk,l(y)]mk,l=0 is a weigth matrix function. As this is clearly correlated with
µ̂ we hope to reduce the variance of our estimate by applying the estimator in equation
(35). However for this to be a valid control variate, w(y) needs to be such that,

Ep(v) = 0. (40)

To find the requirements this puts on w(y), we insert expression (39) in the left hand
side of (40),

Ep(v) = Ep

(m∑
l=0

wκ,l(y)f(yl)− f(yκ)
)
. (41)

Since E[f(yκ)] = f(µ) we can rewrite this to,

Ep(v) =
m∑

k=0

[∫
1

m + 1
pk(y)

m∑
l=0

wk,l(y)f(yl)dy

]
− f(µ). (42)

We then separate wk,k(y) from the innermost sum,

Ep(v) =
1

m + 1

m∑
k=0

∫ pk(y)
m∑

l 6=k

wk,l(y)f(yl)dy

+

1
m + 1

m∑
k=0

[∫
pk(y)f(yk)wk,k(y)dy

]
− f(µ). (43)

By requiring
∑m

l=0 wk,l(y) = 1, we can rewrite this,

Ep(v) =
1

m + 1

m∑
k=0

∫ pk(y)
m∑

l 6=k

wk,l(y)f(yl)dy

+

1
m + 1

m∑
k=0

∫ pk(y)f(yk)
(
1−

m∑
l 6=k

wk,l(y)
)
dy

− f(µ). (44)

Since
∑m

k=0

[∫
1

m+1pk(y)f(yk)dy
]

= f(µ), we get,

Ep(v) =
1

m + 1

m∑
k=0

∫ pk(y)
m∑

l 6=k

wk,l(y)f(yl)dy

−
1

m + 1

m∑
k=0

∫ pk(y)f(yk)
m∑

l 6=k

wk,l(y)dy

 . (45)

16 6 CONTROL VARIATES AND USE OF REJECTED STATES

We then rewrite the sums and switch the summation indices k and l in the last sum,

Ep(v) =
1

m + 1

∫ m∑
k=0

m∑
l 6=k

wk,l(y)f(yl)pk(y)dy−

1
m + 1

∫ m∑
k=0

m∑
l 6=k

wl,k(y)f(yl)pl(y)dy. (46)

For Ep(v) = 0 we see that a sufficient condition is,

m∑
l 6=k

wk,l(y)pk(y) =
m∑

l 6=k

wl,k(y)pl(y) (47)

Again using
∑m

l=0 wk,l(y) = 1 we can write this as,

(1− wk,k)pk(y) =
m∑

l 6=k

wl,k(y)pl(y) (48)

Which in turn is equal to,

pk(y) =
m∑

l=0

wl,k(y)pl(y) (49)

This requirement combined with
∑m

l=0 wk,l(y) = 1 will thus be sufficient conditions for
our control variate to be unbiased. We notice that these conditions on w(y) closely
resemble the conditions on our transition matrix P(y), see equations (23) and (25),
the only difference being that there is no requirement that the elements of w(y) ≥ 0.
Therefore we can follow the same approach as in Section 4.2 and choose

wk,l(y) =
pl(y)∑m

j=0 pj(y)
for k 6= l and (50)

wk,k(y) = 1−
∑
l 6=k

wk,l(y).

(51)

Inserting this into equation (39), we get

v =
1
N

N∑
i=1

∑
l 6=ki

pl(yi)∑m
j=0 pj(y)

f(yi
l) +

(
1−

∑
l 6=ki

pl(yi)∑m
j=0 pj(y)

)
f(yi

ki)− f(yi
ki)

 ,

=
1
N

N∑
i=1

[∑
l 6=k pl(yi){f(yi

l)− f(yi
ki)}∑m

j=0 pj(yi)

]
. (52)

We can then use this as our control variate. To calculate copt we will need to estimate
the values of Cov(µ̂, v) and Var(v) since these are unknowns. Although there are other

17

ways of estimating these values, we have chosen a simple method applied in Tjelmeland
& Hammer (2005). We divide our N Metropolis-Hastings iterations after convergence
into M batches. By choosing M such that the batch length N/M is much larger than
the correlation length of the Markov chain, we can assume that the batches are close to
independent. If we denote the calculated mean and control variate in batch i as µ̂i and
vi respectively, then our estimate of copt becomes,

copt = −
1
M

∑M
i=1(µ̂

i − µ̂)(vi − v)
1
M

∑M
i=1(µ̂i − µ̂)2

. (53)

To chose M we plot the estimated auto-correlation function of the Markov chain. In
Figure 3 we have plotted an example of the estimated auto-correlation function.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 3: Auto-correlation function for the Markov chain with m = 16 in the mode
jumping example.

7 Examples

So far in the report we have introduced several techniques which can be applied to
MCMC algorithms, the mode jumping proposals, the multi-proposal MCMC algorithm,
and the control variate. In this section we test these techniques in two examples, both of
which are implemented according to the parallelization scheme in Section 4.3 and run for
various values of m. The first example is a toy example where we sample from a multi-
Gaussian distribution using random-walk proposals. In the second example we revisit a
mixture model for a data-set originally presented in Brooks, Morgan, Rideout & Pack
(1997) and later explored in Tjelmeland & Hegstad (2001) and Tjelmeland & Hammer
(2005). This example is our main focus where we test the multi-proposal mode jumping

18 7 EXAMPLES

algorithm. The algorithms were implemented in C and the runs performed on a cluster
of workstations at the students laboratory using MPI inter-process communication. We
were also given the opportunity to run the Gaussian example on the supercomputer
Njord at NTNU, which is capable of linking far more processors than the students labo-
ratory. Unfortunately, due to time restraints, we were not able to run the mode jumping
example on Njord as well. Our examples where chosen to illustrate how well parallel
implementation is suited for different kinds of MCMC algorithms. The proposal scheme
in the Gaussian example is very simple compared to the proposal scheme in the mode
jumping example. For the Gaussian example we use a simple random walk scheme while
in the mode jumping example each proposal requires several numerical optimizations,
which is CPU intensive. With a parallelization scheme like the one presented in Section
4.3 we expect the mode jumping example to be very well suited for parallelization, while
the Gaussian example should mark the other end of the scale. In our analysis of the
results from both examples we start with a general look at the results. This includes a
quick look at convergence and the distribution of our samples, as well as looking at the
acceptance rates and the time it takes for our sampler to finish (run-time). We denote
the run-time per iteration of a sampler with m proposals by tm. We also study the
variance of our estimators and give some confidence intervals. After this we get to the
primary focus of our analysis which is centered around three aspects of the algorithm.
First, how does the relative variance reduction achieved by using µ̃ instead of µ̂ change
for various values of m. Second, how much variance reduction do we get for increasing
values of m. And last, perhaps most importantly, how much variance reduction do we
get for increasing values of m as a function of time. To estimate the variance of our
estimators we applied the technique introduced at the end of Section 6.1. The samples
from a run are split into M batches, with M chosen so that the batches can be considered
approximately independent.

7.1 Gaussian toy example

In this example we set π(·) to be a two dimensional normal distribution with mean equal
to zero and a covariance matrix equal to the identity matrix. We look at the first element
of x and define f(x) = x1, which we of course know to have mean E(x1) = 0. To sample
from the distribution we apply a multi-proposal algorithm as it is presented in Section
4, and calculate control variates to produce two estimators for the mean, µ̂ and µ̃, as
discussed in Section 6. We define the proposal distribution qk(y−k|yk) by generating m
new proposals y−k according to the following algorithm,

1. sample φ ∼ N(yk,
1
2σ2I),

2. independently for j = 0, . . . , k − 1, k + 1, . . . ,m sample yj ∼ N(φ, 1
2σ2I).

Here σ2 is the variance we chose to use for our proposals. One should note that for
m = 1 this simplifies to the random-walk proposal. We ran the algorithm for 100000
iterations, for all combinations of m = 1, 2, 4, 8, 16 and σ2 = 1, 2, 4, 8. The algorithm
was implemented in parallel according to the description in Section 4.3.

7.1 Gaussian toy example 19

0 2000 4000 6000 8000 10000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

it

Histogram of samples

−2 0 2 4

0
20

0
40

0
60

0
80

0

Figure 4: (Gaussian example:) Convergence diagnostics for m = 16 and σ2 = 8. Cu-
mulative mean plot (left) and histogram (right) of f(x) for the last 10000 generated
values.

We start the analysis by taking a general look at the results. Figure 4 shows a cumu-
lative mean plot as well as a histogram of the last 10000 iterations from a run with
m = 16 and σ2 = 8. It is clear from the cumulative mean plot that the algorithm seems
to have converged, and as expected the distribution of the samples appears to be the
normal distribution centered in 0. We achieved similar results for the other runs. Figure
5 shows the acceptance rates as well as the relative run-times (tm

t1
) of the algorithm,

for various values of m. In the plot the colors red, green, blue and black correspond to
σ2 = 1, 2, 4 and 8 respectively. The x-axis corresponds to increasing values of m on a
log2 scale. As we can see from the figure the acceptance rates climb towards 1 as we
increase m. This is as one would expect, since by increasing the number of proposals
pr iteration we would expect to get more good proposals. From the same plot we also
see that the acceptance rates drop as σ2 increases, since an increase in σ2 means that
we will be attempting larger jumps, and as such will get a lower probability of accep-
tance. From the plot on the right in Figure 5 we can see that there is a certain amount
of overhead in the algorithm. Proposing a new state is not computer intensive and as
such only a little time is saved by having each processor propose its own state, since the
time saved partially disappears in the overhead increase. Running the algorithm with
16 proposals pr iteration takes approximately 8 times as long as running it with only 1
proposal pr iteration. The relative run-time also seems to increase faster as m becomes
larger. This is probably caused by two things. First the run-time of the sequential part
of the code will increase due to an increase in the size of the transition matrix P. And
second, as the number of processors that need to communicate increase the overhead
becomes larger. If we study the graph closely there appears to be a slight turning point
at m = 4 (log2(m) + 1 = 3 in the figure). The small differences in run-time for various

20 7 EXAMPLES

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

A
cc

ep
ta

nc
e

ra
te

s

1

1

1
1 1

2

2

2

2
2

4

4

4

4

4

8

8

8

8

8

1 2 3 4 5

0
2

4
6

8
10

log2(m)+1

tm
/t1

1

1

1

1

1

2

2

2

2

2

4

4

4

4

4

8

8

8

8

8

Figure 5: (Gaussian example:) Acceptance rates (right) and run-times (left) for σ =
1, 2, 4, 8 (red, green, blue and black respectivley) and m = 1, 2, 4, 8, 16.

m σ2 = 1 σ2 = 2 σ2 = 4 σ2 = 8 m σ2 = 1 σ2 = 2 σ2 = 4 σ2 = 8
1 0.0739 0.0646 0.0612 0.0933 1 0.0598 0.0519 0.0521 0.0816
2 0.0434 0.0388 0.0387 0.0465 2 0.0339 0.0299 0.0302 0.0381
4 0.0219 0.0206 0.0235 0.0279 4 0.0134 0.0138 0.0166 0.0206
8 0.0197 0.0176 0.0159 0.0198 8 0.0111 0.0103 0.0113 0.0135
16 0.0164 0.0133 0.0129 0.0130 16 0.0082 0.0068 0.0069 0.0084

Table 1: (Gaussian example:) Estimated variance of µ̂ (left) and µ̃ (right).

values of σ2 are random variances in the run time. We have verified this by running the
test procedure several times. Figure 6 shows the variance of our estimator for µ, the left
plot shows the estimated variance of µ̂, while the right plot show the estimated variance
of µ̃. The corresponding numbers are shown in Table 1. From the plots we can see that
the variance of µ̃ is somewhat smaller than the variance of µ̂ and the shape of the curves
appear to be roughly equal. From the plots we can see that the curves appear to level
out as m increases, the gain is the greatest for the smaller values of m. In this respect
the runs with σ2 = 8 distinguish themselves, we get a large decrease in variance when
going from m = 1 to m = 2. With large proposed changes, like we get with σ2 = 8, we
get a low acceptance rate and a doubling of the acceptance rate has a large impact on
the variance of our estimator. Figure 7 shows confidence intervals for µ as functions of
m for different values of σ2. Since we saw in Figure 6 that the variance decreased as a
function m, we would expect to see the confidence intervals behave as they do in Figure
7. As m increases our confidence intervals become smaller, and from the solid line we
can see that using µ̃ as an estimator further reduces the size of the intervals.

7.1 Gaussian toy example 21

1 2 3 4 5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

log2(m)+1

V
ar

ia
nc

e

1

1

1 1
1

2

2

2
2

2

4

4

4

4
4

8

8

8

8

8

1 2 3 4 5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

log2(m)+1

V
ar

ia
nc

e 1

1

1 1
1

2

2

2
2

2

4

4

4
4

4

8

8

8

8
8

Figure 6: (Gaussian example:) Estimated variance of µ̂ (left) and µ̃ (right) for σ =
1, 2, 4, 8 and m = 1, 2, 4, 8, 16.

1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

log2(m)+1

1
1

1 1 1

1
1

1 1 1

1
1

1 1 1

1
1

1 1 1

1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

log2(m)+1

2
2

2 2 2

2
2

2 2 2

2
2

2 2 2

2 2
2 2 2

1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

log2(m)+1

4
4

4 4 4

4
4 4 4 4

4
4

4 4 4

4
4 4 4 4

1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

log2(m)+1

8
8

8
8 8

8
8

8 8 8

8
8

8 8 8

8
8

8 8 8

Figure 7: (Gaussian example:) 95% Confidence intervals for µ using µ̃ (solid line) and
µ̂ (dashed line) for σ = 1, (upper left) 2, (upper right) 4, (lower left) 8 (lower right) and
m = 1, 2, 4, 8, 16.

22 7 EXAMPLES

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

log2(m)+1

R
el

at
iv

e
va

ria
nc

e
re

du
ct

io
n

1
1

1

1

1

2

2

2

2

2

4

4

4 4

4

8

8

8

8

8

Figure 8: (Gaussian example:) Relative variance reduction with µ̃ instead of µ̂ for
m = 1, 2, 4, 8, 16.

We now wish to study the variance reduction we get from the control variates for various
values of m. In Figure 8 we have plotted the relative variance reduction, Var(µ̂)−Var(µ̃)

Var(µ̂) ,
when using µ̃ instead of µ̂. From the figure we can see that we get a relative variance
reduction of 0.1 − 0.2 for m = 1, which increases to around 0.4 − 0.5 for m = 16. We
can see from the plot that the benefit of control variates increases as m increases. We
can also see that the gain from control variates seems to be less for large values of σ2.
Intuitively this is as one might expect, with more proposals we still only choose one,
so more information goes into the control variate, thus we would expect it to be more
valuable. With larger values for σ2 we would expect there to be less good proposals and
as such there will be less information in the control variate.
By increasing the number of proposals we would expect a reduction in variance pr itera-
tion. Figure 9 shows the relative variance reduction pr iteration achieved from increasing
m for our estimators µ̂ and µ̃. As we saw indications of in Figure 6, the reduction in
variance seems to level out as m increases and approach some limit.
We now come to our primary interest, which is the variance reduction pr time achieved
from increasing the value of m. We would like to measure the variance reduction achieved
for an equal run-time, since a run with m = 16 takes longer than a run with m = 1.
To investigate this we multiplied our variance estimates with the relative time difference
tm
t1

. This gives us an estimate of what the variance would be for different values of m,
if we only ran our simulations for a fixed time, in this case as long as it takes the run
with m = 1 to finish. In Figure 10 we have plotted the relative variance reduction that
we now get from increasing m. A negative value means that the variance has increased,
and as such we can see that the variance of our estimate does not necessarily improve
with increased m. This means that although a larger value of m will give a lower vari-

7.1 Gaussian toy example 23

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

R
el

at
iv

e
va

ria
nc

e
re

du
ct

io
n

1

1

1
1

1

2

2

2
2

2

4

4

4

4
4

8

8

8

8

8

1 2 3 4 5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

log2(m)+1

R
el

at
iv

e
va

ria
nc

e
re

du
ct

io
n

w
ith

 c
on

tr
ol

l v
ar

ia
te

s
1

1

1
1

1

2

2

2

2

2

4

4

4

4

4

8

8

8

8

8

Figure 9: (Gaussian example:) Relative variance reduction pr iteration from increasing
m for µ̂ (left) and µ̃ (right).

1 2 3 4 5

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

log2(m)+1

R
el

at
iv

e
va

ria
nc

e
re

du
ct

io
n 1

1

1

1

1

2

2

2

2
2

4

4

4

4

4

8 8

8

8
8

1 2 3 4 5

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

log2(m)+1

R
el

at
iv

e
va

ria
nc

e
re

du
ct

io
n

w
ith

 c
on

tr
ol

l v
ar

ia
te

s

1

1

1

1

1

2

2

2

2

2

4

4

4

4
4

8
8

8 8 8

Figure 10: (Gaussian example:) Relative variance reduction pr time from increasing m
for µ̂ (left) and µ̃ (right).

24 7 EXAMPLES

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

1

1

1 1
1

1

1

1
1

1

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

2

2

2
2

2

2

2

2
2

2

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

4

4

4
4

4

4

4

4

4
4

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

8

8

8
8

8

8

8

8

8
8

Figure 11: (Gaussian example:) Relative variance reduction from increasing m for µ̃
(solid line) and relative variance reduction from increasing the run-time (or number of
iterations) for m = 1 to the run time for m = 2, 4, 8, 16 (dashed line).

ance if run for the same number of iterations, the equivalent is not true if we run the
algorithms for the same amount of time. From the plots we can see that increasing m
is more valuable if we use control variates in our estimator. This is not unexpected as
we saw from Figure 8 that control variates become more valuable as m increases. So
by increasing m we get a further increased gain from the control variates, as well as the
increased acceptance rate. Common for all the different values of σ2 is a small peak for
m = 4. This indicates that m = 4 gives us a good balance between a high acceptance
rate and fast run time, which corresponds well with Figures 5 and 9. Again σ2 = 8
behaves a bit different from the others due to it’s lower acceptance rates. As we saw
in Figure 6 we gain a lot from increasing m when we have a low acceptance rate. In
general, however, increasing m is not very beneficial when sampling with a random walk
proposal from a Gaussian distribution. Figure 11 illustrates this quite well, where we
have simply estimated the relative variance reduction of our estimator for m = 1 if we
let the algorithm run as long as it takes to run m = 2, 4, 8, 16. The figure shows us that
we could achieve an almost equal or in some cases better variance reduction simply by
letting m = 1 run as long as it takes to run m = 2, 4, 8, 16. This corresponds to Figure 10
where we saw that there was little to gain in variance reduction pr time from increasing

7.1 Gaussian toy example 25

2 4 6 8

0
10

0
20

0
30

0
40

0
50

0

log2(m)+1

tm
/t1

n n n n n n

n

n

1 1 1 1 1n n n n n n n
n

n

1 2 3 4 5

0
5

10
15

20

log2(m)+1
tm

/t1

n n
n

n

n

1
1

1

1

1

n n
n

n

n

Figure 12: (Gaussian example:) Relative run-times for m = 1, 2, 4, 8, 16 on the original
cluster (black line), for m = 1, 2, 4, 8, 16, 32, 64, 128 on Njord (red line) and for m =
1, 2, 4, 8, 16, 32, 64, 128, 256 on Njord without Peskunizing the transition matrix (blue
line).

m further.
One final result should be mentioned for the Gaussian example. Shortly before this
report was due we were given the chance to run our Gaussian example on NTNU’s su-
percomputer Njord. Our previous runs where performed on a cluster where the number
of processors available was restricted to 24. With Njord we were able to perform runs
with up to almost 400 processors. This allowed us to explore the relative run time of our
algorithm as m increased even further. The results are shown in Figure 12. In the plot
the black line represents the runs on the student workstations, the red line represents the
runs made on Njord and the blue line represents the runs made on Njord excluding the
Peskunization process on the transition matrix P(y). As we can see from the right plot
the relative run-times are slightly improved on Njord, due to a reduced overhead. From
the left plot however, we can see that the relative run-times explode once m becomes
sufficiently large. We suspected that this was not because of the overhead but due to the
Peskunizing process that is applied to the transition matrix P (see Section 4.2). To test
this we ran the algorithm on Njord again, but this time simply applied the transition
matrix you get from equation (26). The results are shown in the blue line in the left plot,
and as we can see this greatly reduces the run-time. However as we also can see from
the plot, even without the Peskunization process, when m becomes sufficiently large the
overhead becomes more dominating.

26 7 EXAMPLES

7.2 Mode jumping example

In this section we consider an example selected from Tjelmeland & Hegstad (2001),
where a mixture model is used for a data-set concerning fetal deaths in litters of mice.
The model is a mixture of a beta-binomial and binomial distributions,

p(λ|η) = γ
[(η

λ

) λ−1∏
r=0

µ + rθ

1 + rθ

η−λ−1∏
r=0

1− µ− rθ

1 + rθ

]
+ (1− γ)

[(η

λ

)
νλ(1− ν)η−λ

]
, (54)

where λ is the number of deaths and η the number of implants or fetuses. The model
parameters are γ ∈ [0, 1], µ ∈ [0, 1], θ ≥ 0 and ν ∈ [0, 1], to which independent vague
priors are assigned. The distribution of interest is the posterior distribution for the
parameters given the data. Before the sampler is constructed the model is reparametrized
to ensure a posterior density which is positive on all <4. For the parameters we adopt
the transformations,

γ =
exp(γ̃)

1 + exp(γ̃)
, µ =

exp(µ̃)
1 + exp(µ̃)

, θ = ln(θ̃) and ν =
exp(ν̃)

1 + exp(ν̃)
, (55)

where γ̃, µ̃, θ̃ and ν̃ are the transformed parameters. The distribution of the transformed
parameters is distributed in two separated modes. For our example we will focus on ν̃,
chosen because this parameter separates the two modes clearly. We want to determine
the probability mass in the smaller mode, and design our function f(·) accordingly,

f(ν̃) =

{
1 if ν̃ ≥ −1.5,

0 if ν̃ < −1.5.
(56)

We sample from the distribution using a mode jumping algorithm with multiple proposals
as presented in Section 5 and calculate control variates as discussed in Section 6. We
alternate between one mode jumping step and 100 local random walk steps, calling the
total one iteration. In the design of the control variates we only used the mode jumping
steps. Since we are attemting to estimate the probability mass in the smaller mode
of ν, the local steps are of little interest to us when estimating µ. The algorithm was
run for 20000 iterations and as in the Gaussian example, we implemented the algorithm
in parallel according to Section 4.3. The vectors φk,j where sampled from a Normal
distribution centered in the origin and a covariance matrix with only diagonal elements,
all equal to 202.
Again we start with a general look at the results and look at convergence. In Figure 13 we
have plotted the last 1000 global steps for the four parameters from the run with m = 16.
Figure 14 shows a cumulative mean plot for f(ν̃) as well as the estimated distribution
of the smaller mode in ν. As we can see from the two figures, the algorithm appears
to have converged and we get frequent jumps between the two modes. The probability
mass in the smaller mode approaches a value of roughly 0.015. The acceptance rate and
relative run-time (tm

t1
) of the separate runs as a function of m are shown in Figure 15. In

contrast to the Gaussian example we can see that there is a large time gain to be found

7.2 Mode jumping example 27

0 200 400 600 800 1000

−
3

−
2

−
1

0

it

0 200 400 600 800 1000

−
3.

0
−

2.
0

−
1.

0

it

0 200 400 600 800 1000

−
4

−
3

−
2

−
1

0

it

0 200 400 600 800 1000

−
2

−
1

0
1

2
3

4

it

Figure 13: (Mode jumping example:) Trace plots for ν̃ (upper left), µ̃ (upper right), θ̃
(lower left) and γ̃ (lower right) for the last 1000 generated values.

0 5000 10000 15000 20000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

it

Histogram of samples

0.4 0.5 0.6 0.7

0
50

0
10

00
15

00
20

00
25

00

Figure 14: (Mode jumping example:) Convergence diagnostics, Cumulative mean plot
of f(ν̃) (left) and histogram of the samples in the smaller mode in ν (right).

28 7 EXAMPLES

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

A
cc

ep
ta

nc
e

ra
te

s

1 2 3 4 5

0
1

2
3

4

log2(m)+1

tm
/t1

Figure 15: (Mode jumping example:) Acceptance rate (left) and relative run-time (right)
for m = 1, 2, 4, 8, 16.

m Var(µ̂) Var(µ̃)
1 0.00569 0.00224
2 0.00363 0.00192
4 0.00139 0.00089
8 0.00075 0.00041
16 0.00049 0.00021

Table 2: (Mode jumping example:) Estimated variance of µ̂ and µ̃ for m = 1, 2, 4, 8, 16.

in implementing the algorithm in parallel. Since each new proposal is CPU intensive to
produce, the overhead becomes negligible and we see only a small increase in time as we
increase m. At the same time we can see that the acceptance rate is roughly proportional
to m (remember that we plot m on a log2 scale). Especially since the acceptance rate is
so low for m = 1, we would expect this to be very beneficial in reducing the variance of
our estimators. This can be seen in Figure 16, where we have plotted the variance of µ̂
(dashed red line) and µ̃ (solid line) for different values of m. The corresponding values
are presented in Table 2. In Figure 17 we have plotted the two confidence intervals
we get for µ. The dashed red line represents the confidence intervals we get without
using control variates while the solid line represents the confidence interval achieved
with control variates. We see that the intervals are reduced as m increases as one would
expect, and the use of control variates reduces them even further. It may seem strange
that the confidence intervals using control variates allow for negative probability masses,
but this is simply due to the fact that the control variates can have negative values.
We want to investigate how the variance reduction achieved from the control variates
changes for increasing values of m. To investigate this we have plotted the relative
variance reduction achieved from using µ̃ instead of µ̂ for different values of m, see
Figure 18. We immediately notice that this differs from the results we got in the Gaussian

7.2 Mode jumping example 29

1 2 3 4 5

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

log2(m)+1

Figure 16: (Mode jumping example:) Estimated variance of µ̂ (dashed red line) and µ̃
(solid line) as a function of m.

1 2 3 4 5

−
0.

1
0.

0
0.

1
0.

2
0.

3

log2(m)+1

Figure 17: (Mode jumping example:) 95%Confidence intervals for µ, using µ̂ (dashed
red line) and µ̃ (solid line) for m = 1, 2, 4, 8, 16.

30 7 EXAMPLES

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

log2(m)+1

Figure 18: (Mode jumping example:) Relative variance reduction achieved from using µ̃
instead of µ̂ for m = 1, 2, 4, 8, 16.

example where the relative variance reduction increased steadily with m (see Figure 8).
The reason for this is probably the low acceptance rate in the mode jumping example. We
can rewrite the relative variance reduction as Var(µ̂)−Var(µ̃)

Var(µ̂) = 1− Var(µ̃)
Var(µ̂) , so a decreasing

relative variance reduction may mean that the variance of µ̂ decreases faster than the
variance of µ̃ as m increases. If we study Figure 16 we see that this is the case for
small m, which again is due to the low acceptance rate. When the acceptance rate is so
low our estimator will have a relatively large variance, doubling the acceptance rate will
then greatly reduce the variance. By using control variates for m = 1 we have already
reduced the variance a great deal, and as such there is less to gain. Once the acceptance
rate increases beyond a certain point, due to m increasing, we approach the situation we
had in the Gaussian example where a larger m means more proposals discarded and thus
more information in each control variate. For small m the benefits from increasing the
acceptance rate are larger than the benefits from more information in the control variate.
But as m and the acceptance rate increase, the variance reduction from increasing the
acceptance rate decreases. This is verified when we look at the second area of focus for
our analysis, the relative reduction in variance pr iteration from increasing m.
In Figure 19 we have plotted the relative variance reduction pr iteration from increasing
m for µ̂ (dashed red line) and µ̃ (solid line). From the plot we see that the relative
variance reduction is larger for µ̂ than for µ̃ for small m while as m grows larger this
evens out.
Finally, as in the Gaussian example, we would like to get an idea of the relative variance
reduction pr time from increasing m. In the Gaussian example we discovered that there
was little to be gained from increasing m since the overhead in the algorithm was so
large. In this case we saw from Figure 15 that the overhead was much smaller due to

31

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

Figure 19: (Mode jumping example:) Relative variance reduction from increasing m for
µ̂ (dashed red line) and µ̃ (solid line).

each proposal being so CPU-intensive to calculate, and as such we might hope that there
is something to be gained from increasing m. This turns out to be the case, as we can see
in Figures 20 and 21. In Figure 20 we see the relative variance reduction from increasing
m for µ̂ and µ̃ when our variance estimates have first been multiplied by a factor tm

t1
.

As we can see we still get a significant reduction in variance, the exception being the
run for m = 2 with control variates. In particular there seems to be a significant gain
from increasing m from 2 to 4. This is further illustrated in Figure 21 where we have
compared the relative variance reduction we would have gotten from running the m = 1
run longer, to the variance reduction we get in µ̃ by increasing m. For m = 2 we see
that we get roughly the same variance reduction, but when we increase m to 4 there is
a significant gain compared to simply running the original algorithm longer.

8 Closing remarks

In this report we have considered the variance reduction achieved through use of control
variates and parallel implementation of multi-proposal MCMC algorithms. Tjelmeland
(2004) showed that multi-proposal MCMC gives little variance reduction per time imple-
mented sequentially, however, by implementing the algorithm in parallel we expected to
greatly increase the variance reduction per time. To investigate the benefits of these two
techniques we have implemented them in two examples. First a toy Gaussian example
where we sampled from a two dimensional normal distribution using a multi-proposal
random walk algorithm. Second we designed a multi-proposal mode jumping algorithm
inspired from the standard mode jumping algorithm in Tjelmeland & Hegstad (2001)
and applied it to an example originally gathered from Brooks et al. (1997). To a certain

32 8 CLOSING REMARKS

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

Figure 20: (Mode jumping example:) Relative variance reduction pr time from increasing
m for µ̂ (dashed red line) and µ̃ (solid line).

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2(m)+1

Figure 21: Relative variance reduction from increasing m for µ̃ (solid line) and relative
variance reduction from increasing the run time (or number of iterations) for m = 1 to
the run time for m = 2, 4, 8, 16 (dashed red line).

33

degree our examples were chosen to demonstrate two extremes within MCMC algo-
rithms. In the Gaussian example each proposal requires very little work, while in the
mode jumping example each proposal requires several numerical optimizations, and is
extremely CPU intensive. With a parallelization scheme where each processor proposes
its own proposal, we expected the mode jumping example to be well suited for paral-
lelization, while the Gaussian example would mark the other end of the scale. As we
can see from the results this turned out to be the case, in the Gaussian example the
overhead is much more prominent than in the mode jumping example.
The control variate scheme presented in this paper proves itself to be quite beneficial in
both examples. Calculating the control variates in the sampling algorithm is a simple
procedure with a computation time of order N , and calculating the value of the estima-
tor µ̃ after the sampler has completed requires little time. Thus there is very little cost
associated with the use of control variates. As we saw both in the Gaussian example and
the mode jumping example we achieved lower variance through the use of our control
variate. Except for small acceptance rates, where the gain from the increase in m became
dominant, the relative variance reduction achieved through control variates also seemed
to increase as m increased. Intuitively this is not surprising as an increase in m means
an increase in the number of rejected states pr iteration, and thus more information
stored in the control variate. If the acceptance rate is low however, there are very few
good proposals, and the rejected proposals stored in the control variate have little value
compared to an increase in the acceptance rate. It would be interesting to examine what
happens to the relative variance reduction achieved from control variates as m becomes
larger than 16.
We saw that an increased number of proposals pr iteration increases the acceptance rate
and as such reduces the variance of our estimator. However, increasing the number of
proposals also of course increases the run-time. If the algorithm is well suited for paral-
lelization, for example if the proposals are CPU intensive to compute, then the run-time
increase can be made small by implementing the algorithm in parallel on several pro-
cessors. In this case, as we saw in the second example, we can achieve a considerable
variance reduction pr time. In the first example however, the algorithm was not that
well suited for parallelization, and there was little gain to be had in increasing m. When
m becomes sufficiently large the sequential code and overhead will grow rapidly. Because
of this there is probably an ideal number of proposals where the relative variance re-
duction pr time is largest. We were given the opportunity to run our Gaussian example
on the supercomputer Njord for large values of m, which gave us an impression of how
the sampler behaved for large m values. As the acceptance rate approached 1 most of
the gain from increasing m comes from increased information in the control variates.
This combined with an increase in overhead and a time increase in the sequential code
means that a smaller value for m is preferable. It would be interesting to run the mode
jumping example for similar large values of m to see if some of the same behavior is
found there. The mode jumping example has a much lower acceptance rate and is much
better suited for parallelization, so we would expect it to be beneficial to increase m
even further. However, Figure 20 might indicate that the relative variance reduction per

34 REFERENCES

time is approaching a limit. It would also be interesting to test parallel multi-proposal
MCMC algorithms on other examples. As mentioned earlier our two examples where
chosen to demonstrate the two end of the scale, the technique should be tested for other
examples as well.

References

Brooks, S. P., Morgan, B. J., Rideout, M. S. & Pack, S. E. (1997), ‘Finite mixture models
for proportions’, Biometrics 53, 1097–1115.

Casella, G. & Robert, C. P. (1996), ‘Rao-Blackwellisation of sampling schemes’, Biomet-
rica 83, 81–94.

Craiu, R. V. & Lemieux, C. (2005), ‘Acceleration of the multiple-try Metropolis using
antithetic and stratified sampling’.

Hastings, W. K. (1970), ‘Monte Carlo sampling methods using Markov chains and their
applications’, Biometrika 57, 97–109.

Liu, J. S. (2001), Monte Carlo Strategies in Scientific Computing, Springer, Berlin.

Liu, J. S., Liang, F. & Wong, W. H. (2000), ‘The multiple-try method and local opti-
mization in Metropolis sampling’, Journal of the American Statistical Association
95, 121–134.

Peskun, P. H. (1973), ‘Optimum Monte-Carlo sampling using Markov chains.’, Biomet-
rica 60, 607–612.

Roberts, C. P. & Casella, G. (1999), Monte Carlo statistical methods, Springer, Berlin.

Stormark, K. (2006), Multiple proposal strategies for Markov Chain Monte Carlo, Mas-
ter’s thesis, Department of Mathematical Sciences, Norwegian University of Science
and Technology.

Tjelmeland, H. (2004), ‘Using all Metropolis-Hastings proposals to estimate mean val-
ues’, Statistics No 4/2004, Department of Mathematical Sciences, Norwegian Uni-
versity of Science and Technology .

Tjelmeland, H. & Hammer, H. (2005), ‘Control variates for the Metropolis-Hastings
algorithm’, Statistics No 8/2005, Department of Mathematical Sciences, Norwegian
University of Science and Technology .

Tjelmeland, H. & Hegstad, B. K. (2001), ‘Mode jumping Proposals in MCMC’, Scandi-
navian journal of statistics 28, 205–223.

