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Abstract. A shipping company operates a heterogeneous fleet of ships
to service a given number of voyages on a number of trade routes over
the planning horizon. Each ship has a predefined speed range within
which it can sail. Fuel consumption, and hence fuel cost, significantly
depends on the chosen speed. Furthermore, the shipping company makes
Contracts of Affreightments with the shippers stating that the voyages
on each trade route should be fairly evenly spread. This leads to the
maritime fleet deployment problem with speed optimization and voyage
separation requirements. We propose two formulations for this problem,
i.e. one arc flow and one path flow model. The non-linear relationship
for fuel consumption as a function of ship speed is linearized by choosing
discrete speed points and linear combinations of these. Computational
results show that the path flow model performs better than the arc flow
model and that incorporating speed decisions in the fleet deployment
gives better solutions and more planning flexibility.

Keywords: Maritime fleet deployment, Speed optimization, Voyage sep-
aration requirements

1 Introduction

Maritime transportation is the main distribution network for international trade
and has a key role in today’s globalized world. According to the International
Maritime Organization (IMO), 90% of all transported goods across borders
worldwide is transported by the shipping industry, corresponding to approxi-
mately 10 billion tons in 2015 [9]. Even though the global demand has steadily
been increasing over decades, there has been a tendency of overcapacity in the
fleet since the financial crisis around 2009 [9]. In 2015, the shipping industry,
with the exception of tankers, suffered from historic low levels of freight rates
and weak earnings. As a result, the margins are pushed down. For an industry
that has high investment and operational costs, the quest for profitable oper-
ations is of higher importance than ever. One of the main targets in order to
achieve this is to utilize the fleet capacity at all times and reduce ballast sailing
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(i.e. sailing without payload) to a minimum. Proper planning of maritime routes
and schedules is therefore important.

In this paper, we extend the problem studied by Norstad et al. [5]. They
considered a real maritime fleet deployment problem with voyage separation
constraints for a shipping company operating in the open hatch dry bulk seg-
ment. The voyage separation constraints arise from contracts with the shippers
which require that the trade routes are serviced regularly and that consecutive
voyages along each trade are sufficiently separated in time. The main task in this
problem is to assign available ships to the voyages on the different trade routes,
such as to utilize the fleet in an optimal manner. Two models, an a priori path
generation method and an arc flow method, were presented in [5], where the path
flow model performed best. Vilhelmsen et al. [10] developed a Branch-and-Price
procedure for the problem studied in [5]. They used a dynamic programming
algorithm and a modified time window branching scheme, and found solutions
that were at least as good as those by Norstad et al. [5] in shorter time.

Within other transportation modes, several examples of voyage separation
requirements and time dependencies between routes can be found, though in
a different context than ours. In vehicle routing, Reinhardt et al. [8] consider
a dial-a-ride problem for airport passengers with complicating synchronization
constraints. Dohn et al. [4] also consider synchronization and precedence con-
straints in two compact formulations of the vehicle routing problem with time
windows. Dantzig–Wolfe decompositions of these formulations are presented and
four different master problem formulations are proposed.

Most of the models found in the maritime transportation literature assume
fixed and known speeds for the ships, either as implicit input or explicit input
[7]. This is also the case in [5] and [10]. However, in reality fuel consumption,
and hence sailing costs, is strongly dependent on speed. Therefore, incorporat-
ing speed in ship routing and scheduling can yield significant improvements in
profits for the shipping company [6]. In addition, fuel consumption influences
the emissions of Greenhouse Gas (GHG). Many papers assume that daily fuel
consumption is a cubic function of ship speed. Andersson et al. [2] use a linear
combination of predefined discrete speed alternatives and interpolation in order
to provide the desired fuel consumption as a piecewise linear function of speed. It
should be noted that this problem differs from most other problems where speed
optimization have been incorporated, including [6] and [2], in that we cannot
optimize speed locally in each route due to the voyage separation requirements,
resulting in inter-dependency among the ship routes.

Based on these findings, we extend the models [5] and [10] by integrating
speed decisions along the different sailing legs, and we denote it the Maritime
Fleet Deployment problem with Speed Optimization and Voyage Separation re-
quirements (MFDSOVS). Our main contributions are to propose two models for
the MFDSOVS, i.e. an arc flow and a path flow model, both which are extended
based on [5] by integrating speed decisions. A number of realistic instances based
on data from a shipping company are used to test the performance of the models
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and the effect of incorporating speed optimization on the solution quality, and
it is shown that the path flow model performs better than the arc flow model.

2 Problem Description

We will now give a description of the MFDSOVS. Section 2.1 describes the fleet
deployment part of the problem, which basically consists of assigning voyages
to ships in the fleet (and implicitly ship routes). Section 2.2 describes the speed
optimization part of the problem. Section 2.3 describes the voyage separation
requirements before we end the section by summarizing the MFDSOVS.

2.1 Fleet Deployment

The fleet deployment problem can be described as a tactical planning problem
of assigning ships from a heterogeneous fleet to voyages on different trade routes
efficiently in terms of costs and service. A trade route is a predefined, typically
intercontinental, sailing route from an origin region (including one or more ports)
to a destination region (including one or more ports). Figure 1 shows intercon-

Fig. 1. Contractual and optional trade routes

tinental trade routes. A voyage is a sailing along a trade route. The number of
voyages to be serviced along each trade may vary according to some frequency
requirements. The trades can be separated into two types; contractual (manda-
tory) and optional trades. The shipping company seeks to maximize its profit
by servicing voyages on optional trades while satisfying all contractual voyages
on the contractual trades. If the company’s own fleet is not capable to carry
all contractual voyages, additional spot ships are chartered to serve contractual
voyages. It is assumed that the ballast sailing costs associated with chartering a
spot ship is included in the charter costs. The ships usually serve several voyages
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in a sequence within the planning horizon. To start the next voyage, a ship might
have to sail in ballast from the end of its previous voyage to re-position itself.

Each voyage has a predefined time window within which the voyage must
start, instead of a fixed start-up time as is common in container shipping [3],
which provide some flexibility for the shipping company.

2.2 Fuel Consumption and Speed

The operational costs of a fleet depend heavily on fuel consumption, which is also
an environmental concern. Thus, optimizing sailing speeds along the ships’ routes
should be integrated with the fleet deployment. Fuel consumption is typically a
cubic (quadratic) and convex function of speed per time (distance) unit.

Speed optimization means to adjust the sailing speed to seek higher profits.
Increasing the speed increases the total available fleet capacity, which can in some
cases be cheaper than chartering in spot ships to service contractual voyages.
Increased fleet capacity also enables the possibility for the company to service
optional voyages, which leads to additional revenue. On the other hand, higher
sailing speeds incurs higher sailing costs. Therefore, it is not straight forward to
find the optimal sailing speeds along all sailing legs that a ship performs during
the planning horizon. In addition, a ship’s fuel consumption also depends on the
load onboard the ship as illustrated in Figure 2.

Fig. 2. Fuel consumption curves for ballast, half-loaded, and fully-loaded sailing [11].

2.3 Voyage Separation Requirements

Shippers enter Contracts of Affreightment (CoAs) with the shipping company.
The most important part of the CoAs is where the cargo is heading, the amount
transported, at what time and the freight rate. A commonly used term in CoAs,
regarding the frequency and timing of voyages on a trade route, is ”fairly evenly
spread”. This means that consecutive voyages on the same trade should be suf-
ficiently spread in time. This introduces voyage separation requirements to the
MFDSOVS. Norstad et al. [5] shows an example of the spread of voyages on
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a trade with or without voyage separation requirements as in Figure 3, which
clearly shows that without voyage separation constraints some of the consecu-
tive voyages start very close in time to each other, which would possibly be in
conflict with the ”fairly evenly spread” terms that are stated in the CoAs.

Fig. 3. Starting days for voyages on a trade with or without voyage separation [5].

2.4 Problem Summary

The objective in the MFDSOVS problem is to maximize profit, i.e. total freight
income minus the sum of operation costs of ships in fleet and the charter costs
for spot ships. The decisions to be made are: 1) the ship routes (i.e. which ship
should perform which voyages and in what sequence), 2) the ships’ sailing speeds
for each sailing leg along their routes, 3) the start time for each voyage, 4) which
optional voyages to sail, and 5) which voyages should be serviced by spot ships.

The decisions must comply with 1) that all contractual voyages are serviced
within their given time windows, either by a ship from the company’s fleet or
by a spot ship, and 2) that all consecutive voyages along each trade route are
fairly evenly spread.

3 Mathematical Formulations

In this section, two mathematical formulations, one arc flow, and one path flow
model, for the MFDSOVS problem are given. Both are based on the ones from
[5], though extended with speed optimization.

3.1 Arc Flow Model

Notation Let V be the set of heterogeneous ships in the fleet of the shipping
company, indexed by v. The ships have individual starting positions and mainte-
nance schedules, and should therefore be treated individually, as treating them
as a group could lead to infeasible solutions. We use the same approach as An-
dersson et al. [2] for handling the non-linear relationship between speed and fuel
consumption/cost and sailing times, where we choose a number of discrete speed
alternatives from the non-linear function (see Figure 2) and allocate weights to
these speed points. The set S is an ordered set containing all available discrete
speed points, from minimum to maximum speed, indexed by s.
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The set R denotes the set of trade routes operated by the company, indexed
by r. Rv is a subset of R for which trade routes ship v can carry out. Let the
set Ir={1,2,3, ..., nr} be the set of voyages on trade route r, where nr is the
number of voyages on trade route r that has to be serviced over the planning
horizon. The set of voyages is indexed by i.

The given problem can be formulated on a directed graph G = (N ,A), where
N denotes nodes, and A represents the set of arcs. The set N consists of four
different kinds of nodes: Origin nodes, destination nodes, voyage nodes and main-
tenance nodes. The set Nv ⊆ N consists of the nodes that ship v can visit. For
each ship v, its origin node o(v) in set N represents the initial position and its
destination node d(v) in setN corresponds to an artificial destination which does
not exist physically. Each voyage i on trade route r is given by a voyage node
(r,i). There are two types of voyage nodes (contracted voyage nodes and optional
voyage nodes), which consists of two disjoint subsets of N . The set NC repre-
sents the contracted voyages that the shipping company must service, while the
set NO represents the optional voyages. The set NM

v is the set of maintenance
nodes for ship v, indexed by (r,i) like voyage nodes. For each ship v without
any maintenance requirements during the planning period, the set NM

v will be
empty. If ship v is due for maintenance, it is assumed to visit exactly one main-
tenance node during the planning period. The set A includes all arcs. The set
Av ⊆ A consists of the arcs that can be traversed by ship v. The arc ((r,i),(q,j ))
corresponds to sailing ballast directly from the end of voyage or maintenance
node (r,i) to the start of voyage or maintenance node (q,j ). The arcs sailing
directly from the origin node of ship v to voyage or maintenance node (r,i),
((o(v)),(r,i)), and the arcs travelling directly from the voyage or maintenance
node (r,i) to the destination node of ship v, ((r,i),(d(v))), are also included in
A. The set Av consists of the arcs (o(v),d(v)) such that the ship v sails directly
from its starting node o(v) to the ending node d(v), i.e. the ship is idle over the
planning horizon.

Let TB
vriqjs be the time ship v takes to sail ballast from the last unloading port

of voyage (r,i) to the first loading port of voyage (q,j ), or in other words sailing
the arc ((r,i),(q,j )), with speed alternative s. The corresponding cost is CB

vriqjs.
The time it takes to sail ballast from the starting position to start position of
voyage (r,i) with speed alternative s is TB

vo(v)ris, and the corresponding cost is

Cvo(v)ris. The time it takes to sail voyage (r,i) with speed alternative s is denoted
by Tvris, which corresponds to sailing time between all ports on a trade route
plus the operation time at all port calls. The corresponding cost is Cvris, which
mainly consists of fuel costs. The estimated freight income minus the port costs,
for sailing voyage (r,i) is Rri. C

S
ri is the cost of chartering a ship from the spot

market to service voyage (r,i). Each voyage has to start at its first port within a
given time window, [Eri, Lri]. The parameter Eri is the earliest time for starting
voyage i on trade r, while Lri is the latest time for starting the voyage. Let
Eo(v) be the earliest time ship v can depart from its initial starting position. Br

represents the minimum accepted time interval between two consecutive voyages
on trade r.
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Let variable xvriqj be a binary variable, which is 1 if ship v sails directly
from node (r,i) to node (q,j ), otherwise 0. The binary flow variable xvo(v)ri is 1
if ship v travels directly from it initial position to node (r,i), otherwise 0. Let
variable xvrid(v) equal 1 if (r,i) is the last node ship v services, and 0 otherwise.
Similarly, variable xo(v)d(v) is 1 if ship v is idle, and 0 otherwise. Let variable uS

ri

be 1 if voyage i on trade r is carried out by a spot ship, and 0 otherwise. The
start time of voyage i on trade r is defined by the variable tri. Let variable wvris

be the weight of speed alternative s for ship v sailing voyage (r,i). Let variable
wB
vriqjs be the weight of speed alternative s for ship v sailing ballast from the

last unloading port of voyage (r,i) to the first loading port of voyage (q,j ). Let
variable wB

vo(v)ris be the weight of speed alternative s for ship v sailing ballast

from its initial position o(v) to the first loading port of the voyage (r,i). The
weights of the speed alternatives should sum up to 1 if an arc is serviced by
that ship, and 0 otherwise. The maritime fleet deployment problem with speed
optimization and voyage separation requirements can be formulated as follows:

Objective function The objective function (1) maximizes the total profit by
summing the profits from servicing the voyages by ships in the fleet (the esti-
mated freight income minus the voyage costs minus ballast sailing costs) and the
spot ships (the estimated freight income minus the voyage costs).

max
∑
v∈V

∑
r∈Rv

∑
i∈Ir

[∑
s∈S

(Rri − Cvris)wvris −
∑
q∈Rv

∑
j∈Iq

∑
s∈S

CB
vriqjsw

B
vriqjs

−
∑
s∈S

CB
vo(v)risw

B
vo(v)ris

]
+
∑
r∈R

∑
i∈Ir

(Rri − CS
ri)u

S
ri

(1)

Service constraints Constraints (2) represent that each contracted voyage
should be serviced exactly once by either a ship in the fleet or a spot ship.
Constraints (3) state that each optional voyage can be serviced at most once by
a ship in the fleet. Constraints (4) ensure that all required maintenance for ships
in the fleet are performed.∑

v∈Vr

[ ∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v)

]
+ uS

ri = 1, (r, i) ∈ NC (2)

∑
v∈Vr

[ ∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v)

]
≤ 1, (r, i) ∈ NO (3)

∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v) = 1, v ∈ V, (r, i) ∈ NM
v (4)

Network flow constraints Constraints (5)-(7) ensure network flow for each
ship. Constraints (5) state that a ship must either be idle or leave its starting
position to a node (r, i), while constraints (7) state that a ship must either be idle
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or arrive at its ending position from a node (r, i). Constraints (6) ensure that each
voyage starts in an origin node, that every visited voyage or maintenance node
is also exited, and that each voyage ends up in a destination node. Constraints
(8)-(10) describe the relation between the flow variables and the speed weighting
variables for initial ballast sailing, ballast sailing and voyage sailing, respectively.

xvo(v)d(v) +
∑
r∈Rv

∑
i∈Ir

xvo(v)ri = 1, v ∈ V (5)

xvrid(v) +
∑
q∈Rv

∑
j∈Iq

xvriqj −
∑
q∈Rv

∑
j∈Iq

xvqjri − xo(v)ri = 0,

v ∈ V, r ∈ Rv, i ∈ Ir
(6)

xvo(v)d(v) +
∑
r∈Rv

∑
i∈Ir

xvrid(v) = 1, v ∈ V (7)

xvo(v)ri −
∑
s∈S

wB
vo(v)ris = 0, v ∈ V, r ∈ Rv, i ∈ Ir (8)

xvriqj −
∑
s∈S

wB
vriqjs = 0, v ∈ V, ((r, i), (q, j)) ∈ Av (9)

xvrid(v) +
∑
q∈Rv

∑
j∈Iq

xvriqj −
∑
s∈S

wvris = 0, v ∈ V, r ∈ Rv, i ∈ Ir (10)

Time constraints Constraints (11) state that time spent sailing ballast from
the initial position of ship v to its first voyage (r,i) does not exceed the latest
start time of voyage (r,i). Constraints (12) ensure the time spent on voyage (r,i)
and ballast sailing to the start of voyage (q,j ) does not exceed the latest start
time of voyage (q,j ). Constraints (13) secure that time window for each voyage
is not violated. Constraints (11) and (12) have been linearized by applying the
big-M method.

Eo(v) +
∑
s∈S

TB
vo(v)risw

B
vo(v)ris − tri − Eo(v)(1− xvo(v)ri) ≤ 0,

v ∈ V, r ∈ Rv, i ∈ Ir
(11)

tri +
∑
s∈S

(Tvriswvris + TB
vriqjsw

B
vriqjs)− tqj − Lri(1− xvriqj) ≤ 0,

v ∈ V, ((r, i), (q, j)) ∈ Av

(12)

Eri ≤ tri ≤ Lri, r ∈ R, i ∈ Ir (13)

Voyage Separation constraints Constraints (14) take care of the minimum
accepted time between two consecutive voyages on a trade route.

tr,i+1 − tri ≥ Br, r ∈ R, i ∈ Ir\{nr} (14)
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Binary and Non-negativity Constraints.

xvo(v)d(v) ∈ {0, 1}, v ∈ V (15)

xvo(v)ri, xvrid(v) ∈ {0, 1}, v ∈ V, r ∈ Rv, i ∈ Ir (16)

xvriqj ∈ {0, 1}, v ∈ V, ((r, i), (q, j)) ∈ Av (17)

wB
vo(v)ris, wvris ∈ [0, 1], v ∈ V, r ∈ Rv, i ∈ Ir, s ∈ S (18)

wB
vriqjs ∈ [0, 1], v ∈ V, ((r, i), (q, j)) ∈ Av, s ∈ S (19)

tri ≥ 0, r ∈ Rv, i ∈ Ir (20)

uS
ri,∈ {0, 1} r ∈ Rv, i ∈ Ir (21)

3.2 Path Flow Model

Notation Some of the notation presented for the arc flow model is still valid
for the path flow model. Only new notation for the path flow model is presented
in this section. Pv represents the set of all feasible paths for ship v. Pvriqj is a
subset of Pv including all paths where ship v travels directly from voyage i on
trade route r to voyage j on trade route q. Pvri is a subset of Pv, which contains
all paths where ship v services voyage i on trade route r. Another subset of Pv

, Pvo(v)ri, which contains all paths where ship v sails directly from its initial
position to voyage i on trade route r as its first voyage.

Let Evpri be a the earliest service start time for ship v at voyage i on trade
route r for a path p.

Let variable zvp be a binary variable, which equals 1 if ship v sails path p, and
0 otherwise. Let tvri be a variable that sets the start time of voyage i on trade
route r with ship v. Variable tSri applies when a spot ship starts sailing voyage
i on trade route r. A path flow model describing the fleet deployment problem
with speed optimization and voyage separation constraints can be described as
follows.

Objective function The objective function (22) aims to maximize profit by
finding the optional speed on the paths.

max
∑
v∈V

∑
r∈Rv

∑
i∈Ir

[∑
s∈S

(Rri − Cvris)wvris −
∑
q∈Rv

∑
j∈Ir

∑
s∈S

CB
vriqjsw

B
vriqjs

−
∑
s∈S

CB
vo(v)risw

B
vo(v)ris

]
+
∑
r∈R

∑
i∈Ir

(Rri − CS
ri)u

S
ri

(22)

Service constraints Constraints (23) ensure that all contractual voyages are
carried out exactly once, either by a ship within the fleet or by a spot ship,
where constraints (24) ensure that the optional voyages may be carried out at
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most once by a ship within the fleet. All ships have to be assigned to exactly
one path, as in constraints (25).∑

v∈Vr

∑
p∈Pvri

zvp + uS
ri = 1, (r, i) ∈ NC (23)

∑
v∈Vr

∑
p∈Pvri

zvp ≤ 1, (r, i) ∈ NO (24)

∑
p∈Pv

zvp = 1, v ∈ V (25)

Network flow constraints Constraints (26)-(28) ensure that the speed weight-
ing variables for each ship on a path can take non-zero values only when the ship
sails that path.

∑
s∈S

wvris =
∑

p∈Pvri

zvp, v ∈ V, r ∈ Rv, i ∈ Ir (26)

∑
s∈S

wB
vo(v)ris =

∑
p∈Pvo(v)ri

zvp, v ∈ V, r ∈ Rv, i ∈ Ir (27)

∑
s∈S

wB
vriqjs =

∑
p∈Pvriqj

zvp, v ∈ V, r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq (28)

Time constraints Constraints (29) say that the start time for a voyage has
to be within the time window. The same goes for the start time for a voyage
by spot ships as in constraints (30). Constraints (31) ensure that a ship can not
start a voyage before it has sailed ballast from its origin position to the start
point of the voyage. Likewise, constraints (32) ensure that a ship can not start
a voyage before it has completed the previous voyage and sailed ballast to the
start of the next voyage.

∑
p∈Pvri

Evprizvp ≤ tvri ≤
∑

p∈Pvri

Lrizvp, v ∈ V, r ∈ Rv, i ∈ Ir (29)

Eriu
S
ri ≤ tSri ≤ Lriu

S
ri, r ∈ R, i ∈ Ir (30)∑

s∈S

(
TB
vo(v)ris + Eo(v)

)
wB

vo(v)ris ≤ tvri, v ∈ V, r ∈ Rv, i ∈ Ir (31)

tvri +
∑
s∈S

(
Tvriswvris + TB

vriqjsw
B
vriqjs + (Lri + Tvri,1)wB

vriqjs

)
− Lri − Tvri,1 − tvqj ≤ 0, v ∈ V, r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq

(32)

Voyage Separation constraints Constraints (33) show the voyage separation
constraints, which ensures a minimum time spread between two consecutive
voyages on the same trade route.
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Br +
∑
v∈V

tvri + tSri −
∑
v∈V

tvr,i+1 − tSr,i+1 ≤ 0, r ∈ R, i ∈ Ir\{nr} (33)

Binary and Non-negativity Constraints.

zvp ∈ {0, 1}, v ∈ V, p ∈ Pv (34)

uS
ri ∈ {0, 1}, r ∈ R, i ∈ Ir (35)

wvris, w
B
vo(v)ris ∈ [0, 1], v ∈ V, r ∈ Rv, i ∈ Ir, s ∈ S (36)

wB
vriqjs ∈ [0, 1], v ∈ V, r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq, s ∈ S (37)

tSri ≥ 0, r ∈ Rv, i ∈ Ir (38)

tvri ≥ 0, v ∈ V, r ∈ Rv, i ∈ Ir (39)

4 Computational Study

The mathematical models presented in Section 3 have been implemented in
Mosel and solved using Xpress 31.01.09. All computational tests are performed
on a HP Elitedesk computer with Intel Core i7-7700 CPU (4 3.60 GHz) and 32
GB RAM running on Windows 10.

4.1 Test Instances

The instances are based on data from the case shipping company as in [5] and
shown in Table 1. The instances are divided into four sets, with three (six), five
(ten), seven (14) and nine (18) trades (ships), respectively. All four sets have also
been divided into planning horizons of 60, 90 and 120 days, totaling 12 instances.
For example, the nine trade routes instances shown in Figure 1 correspond to the
largest set, set 4 in Table 1. Instance sets 1-3 are reduced versions of instance set
4 where some trade routes and ships have been removed. The fifth column shows
the number of voyages that should be serviced for each instance. The numbers
represent the contractual voyages out of the total number of voyages (including
optional voyages). The optional voyages are organized as one trade that consists
of optional voyages only. All feasible paths for each instance are generated using
Matlab code as input to the path flow model in Section 3.2, and are shown in
the last column in Table 1. The fuel cost is set to 388 USD/ton, which is the
global average for the first quarter of 2018 for the 20 largest ports in the world
[1].
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Table 1. Summary of test instances

Set Instance Ships Trades Voyages Planning days Paths

1 6 3 11/11 60 159
1 2 6 3 15/15 90 299

3 6 3 20/20 120 985

4 10 5 13/15 60 364
2 5 10 5 18/21 90 823

6 10 5 24/28 120 3277

7 14 7 24/26 60 1886
3 8 14 7 34/37 90 8711

9 14 7 46/50 120 69776

10 18 9 30/32 60 3073
4 11 18 9 44/47 90 16199

12 18 9 59/63 120 138292

4.2 Comparison of the Arc Flow and Path Flow Models

The 12 test instances in Table 1 have been solved by both the arc flow and the
path flow models using three speed points (i.e. the minimum, maximum and the
middle speed points). The results of these comparisons are shown in Table 2.
The columns Time report the computational times in seconds. Here, we have
allocated a maximum running time of one hour (i.e. 3600 seconds). The columns
Obj val. show the objective values found by the two models. The columns Gap
show the gap in percentage between the best integer solution and the best bound
found after the time limit. The columns LP Rel. show the LP relaxation.

From the results in Table 2 we see that for the smallest problem instances (1,
2 and 4) there are no significant differences in performance between these two
models. They both find the optimal solutions to these instances in little compu-
tational time. For the larger problem instances, however, there is a tendency that
the path flow model is faster than the arc flow model (14.05% improvement in
time). For large test instances 8-12, both the arc flow and the path flow models
are not able to prove optimality within the time limit with an average of 17.25%
and 3.46% gaps, respectively.

Comparing the average performance of the two models, we see that that
the path flow models gives 11.5% improvement in solution quality with reduced
solution times compared to the arc flow model. The LP relaxation achieves
a 4.1% improvement for the path flow compared to the arc flow model. The
conclusion from this comparison is that using the path flow model gives better
(or equally good) solutions for all large instances due to smaller average gaps,
better LP relaxation, and less computational times. Therefore, only the path
flow model is used in Section 4.3 for analyzing the speed optimization in detail.
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Table 2. Comparison of arc flow and path flow models using three speed points.

Arc Flow Model Path Flow Model

Instance Time Obj val. Gap LP Rel. Time Obj. val. Gap LP Rel.

1 0.6 13,837 0.00% 14,742 0.1 13,837 0.00% 13,949
2 1.7 17,350 0.00% 19,874 1.2 17,350 0.00% 17,965
3 80.6 22,223 0.00% 26,123 10.6 22,223 0.00% 23,308
4 1.3 17,456 0.00% 18,035 0.3 17,456 0.00% 17,555
5 1857.1 22,949 0.00% 24,485 13.0 22,949 0.00% 23,845
6 3600.0 28,141 11.77% 32,018 3600.0 28,795 3.99% 31,090
7 3600.0 24,995 4.72% 26,186 1704.3 25,339 0.00% 25,835
8 3600.0 31,579 18.62% 37,752 3600.0 33,934 4.56% 35,967
9 3600.0 40,751 23.10% 50,587 3600.0 42,227 12.62% 47,621
10 3600.0 29,435 5.20% 31,610 3600.0 30,288 0.14% 30,621
11 3600.0 34,419 28.61% 44,466 3600.0 40,755 6.43% 43,465
12 3600.0 27,510 114.99% 59,340 3600.0 51,161 13.76% 58,223

Average 2261.8 25,887 17.25% 32,101 1944.1 28,860 3.46% 30,787

4.3 Comparison of using different speed points for linearization

All test instances in Table 1 with planning horizon of 120 days have been solved
using the path flow model with one, two, and three speed points, respectively.
When solving with one speed point (without speed optimization), we have used
the maximum speed, as this was shown to give better solutions compared to
planning with only the medium (or service) speed of the ships [6]. The results are
shown in Table 3. For a fair comparison, it should be noted that the column Profit
show the best solutions found by the model after a posteriori speed optimization
(using 10 points), and will therefore slightly deviate from Obj. value in Table 2
for three speed points. The columns Gap show the gap between the best integer
solutions and the best bounds found after the 3600 seconds time limit. The
columns #Spot show the number of voyages performed by spot ships in the
problem instance, while the columns Time report the computational time in
seconds.

Table 3. Comparison of different number of speed points.

1 speed point (max) 2 speed points (min/max) 3 speed points (min/avg/max)

Instance Profit Gap # Spot Time Profit Gap # Spot Time Profit Gap # Spot Time

3 20,175 0.00% 3 0.1 22,246 0.00% 3 11.1 23,308 0.00% 3 10.6
6 27,666 0.00% 1 0.2 28,555 5.56% 3 3600.0 28,852 3.99% 2 3600.0
9 41,207 0.00% 0 211.4 42,367 13.61% 7 3600.0 42,359 12.62% 6 3600.0
12 51,173 0.00% 0 994.3 50,781 16.16% 1 3600.0 51,553 13.76% 3 3600.0

Average 35,055 0.00% 1 301.5 35,987 8.83% 4 2702.8 36,518 7.59% 4 2702.7
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Comparing the average solutions from the different number of speed points,
we can see that using three speed points gives the best solution quality, though
with longer solution times. A larger number of speed points might provide better
results with longer solution times. As a compromise, three speed points are used
in our study. The one speed point instances are all solved to optimality within
the maximum time limit. The average number of voyages performed by spot
ships with two and three speed points are higher than that with one speed
point, especially for the medium and large instances (instances 9 and 12), which
implies that integrating speed optimization in a fleet deployment problem not
only achieves better profits, but also gives much more planning flexibility for
shipping companies.

4.4 Path Reduction Heuristics

It was shown in the previous sections that the gaps are large for the largest in-
stances with long planning horizons. We have therefore tested three simple path
reduction rules on instances 9 and 12. In the first, we remove all paths/routes
that have higher percentage ballast sailing than a threshold level. In the next two,
which will be used during the path generation, we remove paths with any bal-
last seiling leg and consecutive waiting time (assuming maximum speed) above
specified threshold levels. We show results for the following four combinations
of applying these rules in Table 4 (Max percentage ballast sailing - Max length
ballast sailing in nautical miles - Max consecutive waiting days): A) 45% - 10.500
- 20, B) 35% - 10.500 - 20, C) 40% - 10.500 - 10, and D) 30% - 10.000 - 10.

Table 4. Effect of heuristic combinations

Instance 9 Instance 12 Average
Comb. Paths Obj. val. Impr. Paths Obj. val. Impr. Obj. val. Impr.

None 69776 42,227’ - 138392 51,161’ - 46,694’ -
A 19603 42,716’ 1.2% 42338 51,841’ 1.3% 47,279’ 1.3%
B 8127 43,075’ 2.0% 20431 52,098’ 1.8% 47,587’ 1.9%
C 7542 43,208’ 2.3% 18294 52,305’ 2.2% 47,757’ 2.3%
D 2365 42,113’ -0.3% 6956 52,740’ 3.1% 47,427’ 1.6%

Table 4 shows both the number of paths and the solution improvement com-
pared to the results without any path reduction rules. We see that the number of
paths are significantly reduced and that we are able to obtain improved solutions
to both instances 9 and 12, except for combination D on instance 9, where we
obviously lose at least one of the optimal paths when using the path reduction
heuristic.
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5 Concluding Remarks

We have extended a previously studied problem [5, 10] by incorporating speed
optimization. This gives the Maritime Fleet Deployment problem with Speed
Optimization and Voyage Separation requirements (MFDSOVS). Two formula-
tions for this problem, one arc flow formulation and one path flow formulation,
are proposed in this paper. The non-linear relationship for fuel consumption as a
function of ship speed is linearized by choosing discrete speed points and linear
combinations of these. Computational results show that the path flow model
is faster and generate better results than the arc flow model. Furthermore, we
show that speed in the fleet deployment results in not only better profits, but
also gives much more planning flexibility for shipping companies by having more
voyages taken by spot ships. Finally, a priori path reduction heuristics are tested
to solve the large instances more efficiently.
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