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Superconductivity induced by interfacial coupling to magnons
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We consider a thin normal metal sandwiched between two ferromagnetic insulators. At the interfaces, the
exchange coupling causes electrons within the metal to interact with magnons in the insulators. This electron-
magnon interaction induces electron-electron interactions, which in turn can result in p-wave superconductivity.
We solve the gap equation numerically and estimate the critical temperature. In yttrium iron garnet (YIG)-Au-YIG
trilayers, superconductivity sets in at temperatures somewhere in the interval between 1 and 10 K. EuO-Au-EuO
trilayers require a lower temperature, in the range from 0.01 to 1 K.
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I. INTRODUCTION

The interactions between electrons in a conductor and
ordered spins across interfaces are of central importance in
spintronics [1,2]. Here, we focus on the case in which the
magnetically ordered system is a ferromagnetic insulator (FI).
The interaction at an FI-normal metal (NM) interface can
be described in terms of an exchange coupling [3–6]. In the
static regime, this coupling induces effective Zeeman fields
near the boundary [7–10]. The magnetization dynamics caused
by the coupling can be described in terms of the spin-mixing
conductance [4–6]. Such dynamics can include spin pumping
from the FI into the NM [11,12] and its reciprocal effect,
spin-transfer torques [5,13]. These spin-transfer torques enable
electrical control of the magnetization in FIs [14].

One important characteristic of FIs is that the Gilbert
damping is typically small. This leads to low-dissipation
magnetization dynamics [15], which in turn facilitates coherent
magnon dynamics and the long-range transport of spin signals
[5,13]. These phenomena should also enable other uses of the
quantum nature of the magnons.

Here, we study an effect that is also governed by the
electron-magnon interactions at FI-NM interfaces but is quali-
tatively different from spin pumping and spin-transfer torques.
We explore how the magnons in FIs can mediate supercon-
ductivity in a metal. The exchange coupling at the interfaces
between the FIs and the NM induces Cooper pairing. In this
scenario, the electrons and the magnons mediating the pairing
reside in two different materials. This opens up a wide range of
possibilities for tuning the superconducting properties of the
system by combining layers with the desired characteristics.
The electron and magnon dispersions within the layers as well
as the electron-magnon coupling between the layers influence
the pairing mechanism. Consequently, the superconducting
gap can also be tuned by modifying the layer thickness,
interface quality, and external fields.

Since the interactions occur at the interfaces, the conse-
quences of the coupling are most pronounced when the NM
layer is thin. We therefore consider atomically thin FI and NM
layers. This also reduces the complexity of the calculations.
For thicker layers, multiple modes exist along the direction
transverse to the interface (x), with different effective coupling

strengths. We expect a qualitatively similar, but somewhat
weaker, effect for thicker layers.

Paramagnonic [16] or magnonic [17] coupling may explain
experimental observations of superconductivity coexisting
with ferromagnetism in bulk materials [18–20]. Paramagnons
[16,21] and magnons [17,22] are predicted to mediate triplet
p-wave pairing with equal and antiparallel spins, respectively.
Reference [22] describes a model for a bulk ferrimagnetic
spinel, where magnons residing on one sublattice mediate a
superconductive pairing of electrons that reside on the other
sublattice. In that model, an external magnetic field com-
pensates the exchange-induced Zeeman splitting. By contrast,
we consider interface-induced superconductivity in a layered
system consisting of three thin films.

High-quality thin films offer new possibilities for super-
conductivity [23]. Consequently, the emergence of super-
conductivity at interfaces has recently received considerable
attention [23–31]. Theoretical studies have been conducted
on interface-induced superconductivity mediated by phonons
[27–29], excitons [32], and polarizable localized excitations
[31,33].

A model of interface-induced magnon-mediated d-wave
pairing has been proposed to explain the observed supercon-
ductivity in Bi/Ni bilayers [34]. A p-wave pairing of electrons
with equal momentum—so-called Amperean pairing—has
been predicted to occur in a similar system [35]. Importantly,
the electrons that form pairs in these models reside in a
spin-momentum-locked surface conduction band.

By contrast, we consider a spin-degenerate conduction band
in an FI-NM-FI trilayer. We find interfacially mediated p-
wave superconductivity with antiparallel spins and momenta.
These pairing symmetries are distinct from those of the two-
dimensional (2D) systems mentioned above.

II. MODEL

We assume that the equilibrium magnetization of the left
(right) FI is along the ẑ (−ẑ) direction; see Fig. 1. We
consider matching square lattices, with lattice constant a,
in all three monolayers. The interfacial plane consists of N

sites with periodic boundary conditions. The Hamiltonian is
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FIG. 1. A trilayer formed of a normal metal between two fer-
romagnetic insulators. The magnetizations are antiparallel. At the
interfaces, conduction electrons couple to magnons. This results in
effective electron-electron interactions in the metal.

H = HA
FI + HB

FI + HNM + Hint, where we use A (B) to denote
the left (right) FI.

The Heisenberg Hamiltonian

HA
FI = − J

h̄2

∑
i

∑
j∈NN(i)

SA
i · SA

j (1)

describes the left FI. Here, i is an in-plane site, NN(i) is the set
of its nearest neighbors, J is the exchange interaction, and SA

i

is the localized spin at site i. The expression for HB
FI is similar.

For the time being, we assume that the conduction electron
eigenstates in the NM are plane waves of the form cq,σ =∑

j exp(irj · q)cjσ /
√

N . Here, c
(†)
jσ annihilates (creates) a

conduction electron with spin σ at site j in the NM, and
q is the wave vector. For now, the NM Hamiltonian is
HNM = ∑

q

∑
σ Eqc

†
qσ cqσ with the quadratic dispersion Eq =

h̄2q2/(2m). Here,m is the effective electron mass. Below, when
estimating the coupling JI at yttrium iron garnet (YIG)-Au
interfaces, we consider another Hamiltonian with different
eigenstates and a different dispersion.

We model the coupling between the conduction electrons
and the localized spins as an exchange interaction [4,5,36,37],

Hint = −2
JI

h̄

∑
σσ ′

∑
j

∑
L=A,B

c
†
jσ σ σσ ′cjσ ′ · SL

j , (2)

where σ = (σx,σy,σz) is a vector of Pauli matrices.
After a Holstein-Primakoff transformation, we expand the

Hamiltonian of Eq. (1) up to second order in the bosonic opera-
tors. We represent SA

j by SA
jx + iSA

jy = h̄
√

2saj , SA
jx − iSA

jy =
h̄
√

2sa
†
j , and SA

jz = h̄(s−a
†
j aj ), where s is the spin quantum

number of the localized spins and a
(†)
j is a bosonic annihilation

(creation) operator at site j . The magnons in layer A, with
the form ak = ∑

j∈A exp(irj · k)aj/
√

N , are eigenstates of the
resulting Hamiltonian. Analogously, magnons in layer B are
denoted bk. The magnon dispersion is

εk = 4sJ [2 − cos(kya) − cos(kza)]. (3)

Disregarding second-order terms in the bosonic operators from
the interfacial coupling yields

H =
∑

k

εk(a†
kak + b

†
kbk) +

∑
qσ

Eqc
†
qσ cqσ

+
∑
kq

V (akc
†
q+k,↓cq↑ + bkc

†
q+k,↑cq↓ + H.c.), (4)

where V = −2JI

√
s/

√
2N is the coupling strength between

the electrons in the NM and the magnons in the FI layers.
There is no induced Zeeman field in the NM since the

magnetizations in the FIs are antiparallel. Even if the NM
contained more than one atomic layer, spin-up and spin-down
electrons would still be degenerate, as the system is invariant
under the combined operation of time reversal and spatial
inversion.

III. THE SUPERCONDUCTING GAP

Analogously to phonon-mediated coupling in conventional
superconductors, the magnons mediate effective interactions
between the electrons. For electron pairs with opposite mo-
menta, we obtain

Hpair =
∑
kk′

Vkk′c
†
k↓c

†
−k↑c−k′↑ck′↓, (5)

with the interaction strength

Vkk′ = 2|V |2 εk+k′

ε2
k+k′ − (Ek − Ek′)2

. (6)

We define the gap function in the usual manner, �k =∑
k′ Vkk′ 〈c−k′↑ck′↓〉. The gap equation becomes

�k = −
∑

k′
Vkk′

�k′

2Ẽk′
tanh

(
Ẽk′

2kBT

)
, (7)

where Ẽk =
√

(Ek − EF )2 + |�k|2 and EF is the Fermi en-
ergy.

A. Quadratic magnon dispersion

In the continuum limit, we replace the discrete
sum over momenta k with integrals over E = Ek
and the angle ϕ, where k = k[sin(ϕ), cos(ϕ)]. We
assume that only the conduction electrons close to the
Fermi surface form pairs. The magnon energy that
appears in Eq. (6) is then given by εk+k′ ≈ ε(ϕ′,ϕ) =
4sJ {2− cos(kF a[sin ϕ+ sin ϕ′])− cos(kF a[cos ϕ+ cos ϕ′])}.
Here, kF = √

2mEF /h̄ is the Fermi wave number. We assume
that the NM is half filled, kF = √

2π/a. We introduce an
energy scale E∗ = 4sJ k2

F a2 = 8πsJ and scale all other
energies with respect to E∗: δ = �/E∗, τ = kBT /E∗,
x = (E − EF )/E∗, x̃ = Ẽ/E∗, and ε = ε/E∗. In this way,
the gap equation presented in Eq. (7) simplifies to

δ(x,ϕ) = −√
2α

π

∫ xB

−xB

dx ′
∫ 2π

0
dϕ′

× ε(ϕ′,ϕ)δ(x ′,ϕ′)
x̃ ′[ε2(ϕ′,ϕ) − (x−x ′)2]

tanh

[
x̃ ′

2τ

]
, (8)

with the dimensionless coupling constant α =
J 2

I /(16
√

2πEF J ) = J 2
I ma2/(16

√
2π2h̄2J ). Here, the energy

integral is restricted to the range [EF − xBE∗,EF + xBE∗].
We choose xB—based on the value of α—such that all
contributions to the gap from regions outside this range are
vanishingly small. In the case α � 1, the gap function has
a narrow peak near x = 0, and therefore xB can be much
smaller than 1.
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FIG. 2. Numerical solutions to the gap equation (9) determined
through iteration. (a) Gaussian-shaped initial guess (dashed line) and
the results of the first eight iterative calculations of the gap f (x)
(from light blue to red) when the dimensionless temperature is τ = 0
and the coupling constant is α = 0.005. Note that f (−x) = f (x) and
that the energy cutoff xB ≈ 0.03 lies outside the range of the plot.
(b) Gap f at energy x = 0 as a function of τ for α = 0.005. (c) Ratio
between the maximum gap value fmax and the dimensionless critical
temperature τc as a function of α. (d) α dependence of fmax. The gray
line corresponds to a quadratic dependence, fmax ∼ α2.

To gain a better understanding, we first consider a quadratic
magnon dispersion, which matches that of Eq. (3) in the
long-wavelength limit. Then, the dimensionless magnon en-
ergy becomes εq(ϕ′,ϕ) = 1 + cos(ϕ′−ϕ). Below, we check
the correspondence between the solutions obtained using this
dispersion and those obtained with the full magnon dispersion.
For the quadratic magnon dispersion, the gap equation has
a solution with p-wave symmetry, δ(x,ϕ) = f (x) exp(±iϕ).
Applying this ansatz to Eq. (8), we calculate the integral over
the angle ϕ′ [38]. The gap equation becomes

f (x) = α

∫ xB

−xB

dx ′ V (x−x ′)
f (x ′) tanh

[√
x ′2+f (x ′)2

2τ

]
√

x ′2 + f (x ′)2
, (9)

where V (x−x ′) ≈ 1/
√|x−x ′| − 2

√
2. Conventional BCS the-

ory replaces V (x−x ′) by a constant with cutoffs in x and x ′, but
we take the details of the effective interaction and the magnon
dispersion into account.

Using a Gaussian centered at x = 0 as an initial guess,
we solve Eq. (9) numerically through iteration [39]. Figure 2
shows the results. For a fixed coupling α, the maximum value
occurs when x = 0 and τ = 0. The dimensionless critical tem-
perature τc is the temperature at which the gap vanishes. The
gap equation can be solved analytically by approximating V (x)
as a constant with a cutoff. Then, fmax/τc is approximately
1.76, which is slightly lower than what we find numerically;
see Fig. 2(c).

B. Full magnon dispersion

We check that the solutions to Eq. (9), with the quadratic
magnon dispersion, resemble the solutions to Eq. (8) for the full

FIG. 3. Numerical iteration of the gap equation (8), starting from
the solution to Eq. (9) as an initial guess, for τ = 0 and α = 0.005. (a),
(b) Absolute value and phase of δ3(x,ϕ), where the index 3 indicates
the number of iterations. (c) |δi(x,ϕ = 0)| for i = 0 (orange line),
i = 2 (black dashed line), and i = 3 (gray circles). (d) |δi(x = 0,ϕ)|
(left axis) for i = 0,2,3, with the same colors as in (c), and the phase
of δi(x = 0,ϕ) (right axis) for i = 0 (purple), i = 2 (blue, dashed),
and i = 3 (cyan, wide). Note that the difference from the second to
third iteration is nearly indiscernible.

magnon dispersion. To this end, we iterate Eq. (8), starting from
the solution to Eq. (9) [40]. We consider the zero-temperature
case, τ = 0. The symmetries δ(x,ϕ) = δ(−x,ϕ) = iδ(x,ϕ +
π/2) = δ∗(x, − ϕ), where δ∗ is the complex conjugate of δ,
imply that we need to consider only x > 0 and 0 < ϕ < π/4.
We show the results in Fig. 3. The third iteration of δ is
shown in Figs. 3(a) and 3(b). After only three iterations, the
differences between consecutive functions are already nearly
imperceptible; see Figs. 3(c) and 3(d). For Eq. (9), the gap as a
function of energy is peaked at the Fermi energy. The solutions
to Eq. (8) exhibit a similarly shaped—but slightly lower and
narrower—peak; see the inset of Fig. 3(c). Additional features
of δ(x,ϕ) are at positions [x,ϕ] = [ε(ϕ′,ϕ),ϕ] in the parameter
space where the derivative of ε(ϕ′,ϕ) with respect to ϕ′
vanishes. In the following, we will use the quadratic magnon
dispersion for further consideration, as we found only small
modifications to the main peak of the gap function.

C. Influence of the Coulomb interaction

To estimate the extent to which the Coulomb interaction in
the NM affects superconductivity, we add a screened Coulomb
potential to our model. Therefore, we replace the potential Vkk′

by [41]

Ṽkk′ = Vkk′ + VC

N (κ + |k − k′|) (10)

in Eq. (5) and in the following equations. Here, VC =
e2/(2a2ε0), e is the elementary charge, ε0 is the vacuum
permittivity, and κ is the inverse screening length. As an
estimate for the inverse screening length, we employ the result

115401-3



ROHLING, FJÆRBU, AND BRATAAS PHYSICAL REVIEW B 97, 115401 (2018)

FIG. 4. The influence of the Coulomb interaction on the solutions
of Eq. (9). (a) Dependence of the strength of the Coulomb interaction
in the p-wave channel on the inverse screening length κ . (b) Depen-
dence of the maximum value of the gap function fmax (black) and
of the dimensionless critical temperature τc (red) on the Coulomb
interaction strength C for the following values of α: 0.002 (solid
lines), 0.008 (dashed), and 0.03 (dotted).

of the Lindhard theory in the static limit, κ = mee
2/(2πh̄2ε0),

where me is the electron mass. We then find κ ≈ 3.8 Å
−1

and
VCa2 ≈ 9.0 × 10−9 eV m.

We express |k − k′| as a function of ϕ and ϕ′ using the ap-
proximation that |k| = |k′| = kF . In this approximation, |k −
k′| = √

2kF

√
1 − cos(ϕ−ϕ′). We account for the Coulomb

interaction by replacing V (x) with Ṽ (x) = V (x) − C/α in
Eq. (9), where C is given by

C = VC

8
√

2πkF EF

∫ π

−π

dϕ̃
cos(ϕ̃)

κ√
2kF

+ √
1 − cos(ϕ̃)

. (11)

The integral in Eq. (11) can be evaluated analytically [42].
We illustrate the dependence of the constant C on the inverse

screening length κ in Fig. 4(a). We determine how the gap and
the critical temperature depend on the value of C by solving the
modified version of Eq. (9). We use the same iterative method
to solve the gap equation as before. The results are presented
in Fig. 4(b).

IV. ESTIMATING PARAMETERS

Next, we estimate the critical temperatures Tc for two pos-
sible experimental realizations: one with yttrium iron garnet
(YIG) as the FI and one with europium oxide (EuO). The NM
layer is gold in both cases. We use different procedures for YIG
and EuO when we estimate the interface coupling JI . For YIG,
we estimate JI based on the spin-mixing conductance, whereas
for EuO, we use measurements of an effective Zeeman field.
For the FIs, we assume—encouraged by the results presented
in Fig. 3—that the low-energy magnons dominate the gap. The
relevant magnons are therefore well described by the quadratic
dispersion.

A. YIG-Au-YIG trilayer

Our model assumes the same lattice structure throughout
the YIG-Au-YIG trilayer. However, in reality, the unit cell of
YIG is much larger than that of Au. To capture the properties of
YIG in our model, we fit the parameters such that the FIs have
the same exchange stiffness (D/kB = 71 K nm2 [43]) and sat-
uration magnetization (Ms = 1.6 × 105 A/m [43]) as those of
bulk YIG. We assume that each YIG layer has a thickness equal
to the bulk lattice constant of YIG (aYIG ≈ 12 Å [43]). We use
the thickness, the saturation magnetization, and the electron
gyromagnetic ratio γe to estimate the spin quantum number
s = MsaYIGa2/(h̄γe). We determine the exchange interaction
J = D/(2a2s) using the quadratic dispersion approximation.
The lattice spacing a remains undetermined.

In the bulk, gold has an fcc lattice and a half-filled
conduction band. We use experimental values of the Fermi
energy (EB

F = 5.5 eV [44]) and the Sharvin conductance
(gSh = 12 nm−2 [6]) to determine the effective mass, mAu =
2πgShh̄

2/EB
F , of bulk gold. We assume that the monolayer is

half filled and has an effective electron mass mAu. Below, we
will define a simple cubic tight-binding model for bulk gold.
The lattice constant of that model at is approximately 20%
smaller than the bulk nearest-neighbor distance of actual gold.
We consider the case where the trilayer lattice constant a is
equal to at . We choose the lattice constant in this way because it
simplifies our estimate for JI . The effective mass and the lattice
constant in a physical realization might be slightly different,
but the agreement should be sufficient to estimate Tc to an order
of magnitude.

We now define a model for a YIG-Au bilayer using the
same interface exchange Hamiltonian—Hint of Eq. (2)—as in
the trilayer. We use a simple cubic lattice for the gold and
a square lattice for the YIG. We assume that the lattices of
YIG and Au are matched at the interface in the same way
as in the trilayer. Then, the lattice structure at the interface
is the same in both models. We therefore assume that the
interfacial exchange coupling JI of the trilayer is the same
as in the bilayer. We estimate JI based on measurements of
the spin-mixing conductance in YIG-Au bilayers [45–47].
Extrinsic effects related to the quality of the interface can
influence the electron-magnon coupling. We account for such
effects because we scale JI according to electron-magnon
transport measurements.

We use the same model for the YIG in the bilayer as
for the trilayer; however, for the gold, we employ a tight-
binding model of the form Ht = −tt

∑
σ

∑
i

∑
j∈NN(i) c

†
iσ cjσ .

The Hamiltonian of the bilayer is HB = Ht + HA
FI + Hint.

We disregard the proximity-induced Zeeman field in the
bilayer. The energy eigenstates ct

qσ and the dispersion Et
q =

4tt[3 − cos(qxat) − cos(qyat) − cos(qzat)] of Ht are well
known. Under the assumption of half filling, we find that tt =
EB

F /12 and at = √
0.63/gSh. We use the same experimental

values for EB
F and gSh [6,44] as before.

To first order in the bosonic operators, Hint =∑
kq Vtakc

t†
q+k,↓ct

q↑. The coupling strength Vt is proportional
to the amplitudes of the tight-binding-model eigenstates
at the interface, Vt = 2V sin(qxat) sin([kx + qx]at). The
spin-mixing conductance can now be calculated for the
ferromagnetic resonance (FMR) mode, resulting [37] in
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g↑↓ = 4a2
t V0sN/(2π )2, where

V0 =
∫∫

|V |2 sin(qxat)
2 sin(q ′

xat)
2δ(qy − q ′

y)

× δ(qz − q ′
z)δ

(
Et

q − EF

)
δ
(
Et

q′ − EF

)
d3qd3q′. (12)

We evaluate V0 numerically and use it to estimate the interfacial
exchange coupling JI = 0.33 × 2πttat

√
g↑↓/s. Using E∗ =

8πsJ , we find that E∗ is approximately 1.5 eV. We find the cou-
pling constant α from the relation α = J 2

I ma2/(16
√

2π2h̄2J ).
The reported experimental values for the spin-mixing conduc-
tance range from 1.2 to 6 nm−2 [45–47]. In turn, this implies
that α lies in the range of 0.0014–0.007. The corresponding
critical temperatures range from 0.5 to 10 K.

B. EuO-Au-EuO trilayer

Next, we consider a EuO-Au-EuO trilayer. EuO has an fcc
lattice structure with a lattice constant of 5.1 Å, a spin quantum
number of s = 7/2, and a nearest-neighbor exchange coupling
of J/kB = 0.6 K [48]. The nodes on a (100) surface of an
fcc lattice form a square lattice, in which the lattice constant
equals the bulk nearest-neighbor distance. We assume that the
monolayer has the same structure, and therefore set a equal to
the distance between nearest neighbors in bulk EuO. We use the
same effective mass mAu as for the YIG-Au-YIG trilayer. Then,
the Fermi energy EF is 1.8 eV, and the energy scale E∗/kB is
approximately 53 K. Values on the order of 10 meV have been
reported for the interfacial exchange coupling strengths JI [49]
in EuO/Al [7], EuO/V [8], and EuS/Al [9,10]. These estimates
were based on measurements of a proximity-induced effective
Zeeman field. Under the assumption that JI is in the range
of 5–15 meV, we find a wide range of values (0.004–0.03)
for α. We estimate the corresponding critical temperatures Tc

numerically, giving the range 0.01–0.4 K.

C. Coulomb interaction

We estimate the impact of the Coulomb interaction for the
YIG-Au-YIG and EuO-Au-EuO trilayers using the parameters
from Secs. IV A and IV B and the screened Coulomb potential
from Sec. III C. For the constant C of Eq. (11), we find the
values 1.3 × 10−2 (YIG-Au-YIG) and 9.4 × 10−3 (EuO-Au-
EuO). We see from Fig. 4(b) that the maximum value of the
gap function and the critical temperature both decrease by
approximately 10% when we include the screened Coulomb
potential. Therefore, the Coulomb interaction does not affect
our order-of-magnitude estimates for the critical temperature.

D. Normal metals with multiple atomic layers

As an estimate for thicker NM layers, one can scale the
electron-magnon coupling in Eq. (4) by V → V a/d, where d

is the thickness of the NM. In this approximation, the critical
temperature scales as Tc ∼ d−4 (for α � 1) and remains
experimentally accessible if the NM is a few atomic layers
thick.

V. CONCLUSIONS

In conclusion, interfacial coupling to magnons induces
p-wave superconductivity in metals. Our calculated critical
temperatures are experimentally accessible. The gap size
strongly depends on the magnitude of the interfacial exchange
coupling. The thickness dependence, the robustness against
disorder, and potential influence by the magnon self-energy
and renormalization effects should be explored in the future.
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