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Abstract—A number of wave energy controllers tune the power
take-off (PTO) system to the frequency of incident waves. Since
real ocean waves are non-stationary by nature and not defined
by a single frequency component, the PTO can be either tuned
at a constant frequency characterized by the local spectrum,
or continuously tuned to a representative wave frequency. In
either case, a time-frequency representation of the waves is
expected since the wave profile changes over time. This paper
discusses about the PTO tuning problem for passive and reactive
controllers, in real waves, by comparing different methods
for time-varying frequency estimation: the extended Kalman
filter (EKF), frequency-locked loop (FLL), and Hilbert-Huang
transform (HHT). The aim is to verify the impact of such methods
on the absorbed and reactive powers, and the PTO rating. It is
shown that the mean estimated frequency of the EKF, and FLL,
converges respectively to the mean centroid frequency, and energy
frequency, of the excitation force spectrum. Moreover, the HHT
mean frequency has no correlation with the spectral statistical
properties. A comparison of the energy absorbed shows that up
to 37% more energy is obtained with the HHT over the other
estimation methods. Numerical simulations are performed with
sea elevation data from the Irish coast.

Index Terms—Energy harvesting, wave power, frequency esti-
mation, control systems.

I. INTRODUCTION

IN order to optimize the energy extracted from waves, a
number of control algorithms for wave energy converters

(WECs) tune the power take-off (PTO) system to the frequency
of incident waves, see, e.g., [1]–[6]. For regular waves, the
PTO tuning is well defined since the waves are characterized
by a constant frequency sinusoidal motion. Nevertheless, real
ocean waves are non-stationary by nature and not defined by a
single frequency. In deep water, wind-generated waves can be
categorized as a Gaussian stochastic process with statistical
properties evaluated through the frequency and probability
domains [7]. Thus, the PTO can be either tuned to a con-
stant representative frequency of the local wave spectrum, or
continuously tuned to a time-varying frequency.
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The PTO tuning consists of adjusting the damping of the
system, if a passive control method is adopted, or it may re-
quire adjustment of both the system damping and the stiffness
for a reactive control method. The tuning strategies usually
require knowledge of the incident wave frequency [1]–[5] or
the excitation force frequency [8], [9]. Since these frequencies
change with time for non-stationary signals, a time-frequency
representation for the waves is expected – i.e. the frequency
is a function of time.

By adopting different methods to estimate the time-varying
frequency for irregular waves and real ocean waves, some
studies show that continuously tuning the PTO result in greater
energy absorption than tuning the PTO to a constant frequency
of the wave spectrum [2], [9]. In [2], two methods have been
adopted to estimate the on-line dominant wave frequency. One
is based on the sliding discrete Fourier transform, while the
other uses an analysis of the low-pass filtered incident wave,
where wave characteristics, such as the zero-up crossing and
crest-crest periods are calculated. In [9], an estimation of the
instantaneous frequency of the excitation force is obtained
by means of the Hilbert-Huang transform (HHT), and such
information is used for tuning the PTO damping on a wave-
by-wave basis. Other methods have adopted the extremum-
seeking approach, where knowledge of the wave frequency is
not needed for tuning purposes [10], [11]. In such cases, the
PTO parameters are adapted on an hourly basis (according to
sea states variations) rather than a wave-by-wave basis.

Furthermore, a number of control algorithms also rely on the
estimation of a time-varying frequency or the energy period of
the waves [6], [8], [12]–[15]. An on-line estimate of the exci-
tation force frequency is obtained with the extended Kalman
filter (EKF) in [8]. In the proposed controller, the velocity
reference is set as the ratio between the excitation force and the
radiation damping, which is tuned to the estimated frequency
[8]. An adaptive vectorial control approach is proposed in [13],
where a frequency-locked loop (FLL) is adopted to estimate
the frequency of the WEC velocity.

The EKF-based method is based on a harmonic model
with one variable frequency [8]. Then, the EKF tracks only
a single dominant frequency. In contrast, the FLL method is
based on an adaptive filter structure and an integral controller,
where the selectivity of the filter and the tracking frequency
dynamics can be adjusted [16]. Moreover, the instantaneous
frequency, defined by the derivative of a phase function,
is a time-varying parameter which identifies the location of
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the spectral peak of the signal as it varies with time [17].
However, the instantaneous frequency has physical meaning
only for mono-component signals, i.e., signals with a single
frequency or a narrow range of frequencies varying as a
function of time [17]. In order to calculate the instantaneous
frequency of multi-component signals, the HHT method [18]
firstly decomposes the original signal into a number of mono-
component signals through the empirical mode decomposition
(EMD). Such a decomposition has an adaptive basis and relies
on the local characteristics of the signal. Thus, the EMD can
extract different oscillation modes present in a wave profile.

Although previous studies, e.g., [8], [9], [13], have focused
on the use of a WEC controller based on instantaneous
frequency estimates, a comparison of the effectiveness of
various methods to estimate the instantaneous frequency of
real ocean waves has not yet been performed. This paper
focuses on such a comparison. The aim is to verify the impact
on the WEC performance of adopting different frequency
estimation methods for tuning purposes in real ocean waves.
Three methods that have recently been used for wave energy
control purposes are adopted for frequency estimation: EKF,
FLL, and HHT. The methods are conceptually different and
fall into three diverse classes: state observer (EKF), adaptive
filtering (FLL), and empirical time-frequency analysis method
(HHT). The frequency estimates vary from a single dominant
frequency (EKF) to the instantaneous wave-to-wave frequency
of the oscillation modes present in a wave profile (HHT).

This study considers both passive and reactive controllers.
For reactive control, the total power consists of a combination
of active and reactive powers. Therefore, it is fundamental
to individually determine these two power components to
indicate the actual absorbed power, and the power that has
to be supplied by the PTO during the conversion process.
The WEC performance is then measured in terms of absorbed
power, peak-to-average power ratio (PTO rating), and ratio
of average reactive power and absorbed power. Numerical
simulations with real sea elevation data from the Irish west
coast are presented.

II. MODELING AND CONTROL OF WECS

A. Equations of Motion

This study considers a single oscillating-body represented
as a truncated vertical cylinder constrained to move in heave.
With the assumption of linear hydrodynamic theory, and
neglecting friction and viscous forces, the motion of the
floating cylinder is described by the superposition of the wave
excitation force (fe), radiation force (fr), restoring force (fs)
and the force produced by the PTO mechanism (fp):

mẍ(t) = fe(t) + fr(t) + fs(t) + fp(t) , (1)

where x ∈ R is the vertical position of the body, and m ∈
R+ is the body mass. The restoring force is given by fs =
−Sx, where S∈R+ is the buoyancy stiffness. From [19], the
radiation force is calculated as

−fr(t) = mr(∞) ẍ+

t∫
0

hr(t− τ) ẋ(τ) dτ , (2)

where mr(∞) ∈ R+ is the infinite-frequency added mass
coefficient, defined with the asymptotic values of the added
masses at infinite frequency. The kernel of the convolution
term hr(t− τ) is known as the fluid memory term:

hr(t) =
2

π

∞∫
0

Br(ω) cos(ωt− τ) dω , (3)

where Br(ω) ∈R+ is the radiation damping coefficient, and
ω∈R+ is the wave frequency. From (1) and (2),

Mẍ(t)+

t∫
0

hr(t− τ) ẋ(τ) dτ+Sx(t)=fe(t)+fp(t) , (4)

with M = [m + mr(∞)]. The excitation force, i.e., the force
due to the incident waves is given by

fe(t) =

∞∫
−∞

he(t− τ) ζ(τ) dτ , (5)

he(t) =
1

2π

∞∫
−∞

He(ω)eiωt dω . (6)

he is the inverse Fourier transform of the excitation force trans-
fer function He(ω), which has low-pass filter characteristics
for floating WECs, and ζ is the wave elevation. Notice that
(6) is non-causal, since in fact, the pressure distribution is the
cause of the force and not the incident waves [20].

B. Passive Control

A generic PTO mechanism, with a damper varying in time
(Bp∈R+), is considered for the passive control (PC). Thus,

fp(t) = −Bp(t)ẋ(t) . (7)

For the case when Bp(t) = Bp, for any time t, and for
monochromatic waves, the maximum absorption is obtained
when [20]:

Bp =
√

(Br(ω))2 + (ω(m+mr(ω))− S/ω)2 , (8)

where mr(ω)∈R is the added mass. Equation (8) is frequency
dependent, and indicates that there is an optimal damping for
each frequency when the WEC is submitted to real ocean
waves, or irregular waves with a mixture of frequencies.

Here, the PTO damping is continuously modified, and tuned
to the excitation force frequency. From (8),

Bp(t) =
√

(Br(ω̂))2 + (ω̂(m+mr(ω̂))− S/ω̂)2 , (9)

where ω̂(t) is the estimated time-domain frequency of the
wave excitation force. In order to examine the impact of
the time-varying frequency on the WEC performance, three
methods are adopted for the frequency estimation: EKF, FLL,
and HHT.



3

C. Reactive Control

For reactive control (RC), the PTO force consists of a
damping term and a spring term:

fp(t) = −Bp(t)ẋ(t)− Sp(t)x(t) , (10)

where Sp∈R is the stiffness coefficient. For incident regular
waves, if Sp(t)=Sp for any time t, and

Sp = ω2(m+mr(ω))− S , (11)

then the reactive part of the total impedance

[Rp +Rr(ω)] + jω[(m+mr(ω)− (S + Sp)/ω
2)]

is cancelled and the velocity of the floating body is in phase
with the excitation force [20]. In such a case, (8) becomes

Bp = Br(ω) , (12)

and the greatest wave energy absorption is obtained.
Following the same procedure for PC, Sp and Bp are tuned

to the excitation force frequency. From (11) and (12),

Sp(t) = ω̂2(t)(m+mr(ω̂(t)))− S , (13)
Bp(t) = Br(ω̂(t)) . (14)

Notice that, for practical application studies, the physical
limits of the body excursion and the PTO should be taken
into account. Here, a PTO force constraint is implemented as a
saturation. However, this is only a theoretical approach, since
the body motion is also a function of the excitation force,
which is an external force that cannot be manipulated. The
implementation of saturation on the force signals of a real
WEC is not physically possible.

D. Energy and Power

The mean power and energy absorbed by the WEC over a
time range T are, respectively,

P̄ =
E

T
, and E = −

∫ T

0

Bp(t)ẋ
2(t)dt . (15)

Notice that, for the reactive control, the delivered power has
two components: the absorbed power (or active power, that
is the power delivered to the damping Bp), and the reactive
power (the power delivered to the spring Sp) [20]. The mean
reactive power, and reactive energy, are respectively,

P̄r =
Er
T
, and Er = −

∫ T

0

Sp(t)x(t)ẋ(t)dt . (16)

Since the spring term in the PTO force (10) and the body
velocity can have opposite signs in (16), the PTO has to return
energy for some parts of the wave cycle. Then, the PTO system
should be able to implement bidirectional power flow for RC.

Here, the WEC performance in terms of mean absorbed
power (P̄ ) is measured by the capture width ratio [21],

CWR =
P̄

2rPζ
, (17)

where r is the cylinder radius and Pζ is the transported wave
power per unit width of the wave front. In deep water [20],

Pζ =
ρg

2

∫ ∞
0

Sζ(ω)

ω
dω , (18)

where Sζ is the wave spectrum, ρ is the sea water density, and
g is the gravitational acceleration.

III. ESTIMATION OF THE WAVE EXCITATION FORCE
FREQUENCY

A. Extended Kalman Filter

In order to estimate the frequency by means of the EKF,
we assume a harmonic model with a single time-varying
frequency component and amplitude, as proposed in [22].
Thus, fe(t) can be expressed in discrete-time (t = kTs) as:

fe[k] = A[k] cos (ω[k]kTs + ϕ[k]) + η[k] , (19)

where A[k] is the excitation force amplitude, ϕ[k] is the phase,
and Ts is the sampling time. Following the cyclical structural
model from [23], but with a slowly time-varying frequency:[
ψ[k+1]
ψ∗[k+1]

]
=

[
cos (ω[k]kTs) − sin (ω[k]kTs)
sin (ω[k]kTs) cos (ω[k]kTs)

][
ψ[k]
ψ∗[k]

]
+

[
%[k]
%∗[k]

]
fe[k]=ψ[k] + η[k] , (20)

where {ψ[k], ψ∗[k]}∈R are in-phase and quadrature signals,
and {%[k], %∗[k]} ∈R are assumed to be zero-mean uncorre-
lated noise processes with same variance. Such assumptions
are imposed here to reduce the complexity [23].

Thus, by defining a state vector as υ =
[
ψ ψ∗ ω

]T
, and

a noise vector as $ =
[
% %∗ ς

]T
, (20) can be written in a

recursive non-linear state space form as:

υ[k + 1] = f(υ[k]) +$[k]

fe[k] = h(υ[k]) + η[k]
(21)

where $[k]∈R3 and η[k]∈R are zero-mean, independent
noise processes with covariance matrices defined, respectively,
as E[$$T ]=Q and E[ηηT ]=R. Here, Q=diag(q1, q1, q2),
and R is a scalar, thus, R≡r. Functions f(·) and h(·) are,

f(υ[k]) =

cos (ω[k]Tsk) − sin (ω[k]Tsk) 0
sin (ω[k]Tsk) cos (ω[k]Tsk) 0

0 0 1

 υ[k],

and h(υ[k])=
[
1 0 0

]
υ[k], respectively [22].

The EKF obtains an estimate of the state vector υ[k] based
on observations of fe[k], and on the first-order linearization of
model (21) around the last state estimate. The EKF algorithm
is summarized in Table I, where I is the identity matrix of
order 3, Jf and Jh are the Jacobian matrices of f(.) and h(.),
denoted respectively by Jf [k] = ∇f |υ̂[k|k] and Jh[k + 1] =
∇h|υ̂[k+1|k]. Once an estimate of the state vector υ̂[k|k] is
available from the EKF (Table I), the amplitude and frequency
of the wave excitation force are, respectively, obtained as:

ÂEKF [k|k] =

√
ψ̂[k|k]2 + ψ̂∗[k|k]2 , (22)

ω̂EKF [k|k] = ω̂[k|k] . (23)
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TABLE I
EKF ALGORITHM.

Prediction step:
υ̂[k+1|k] = f(υ̂[k|k])
P [k+1|k] = Jf [k]P [k|k]Jf [k]T +Q[k]
Innovation step:
υ̂[k+1|k+1] = υ̂[k+1|k] +K[k+1](fe[k+1]− h(υ̂[k+1|k]))
K[k+1]=P [k+1|k]Jh[k+1]T(Jh[k+1]P [k+1|k]Jh[k+1]T+R[k+1])−1

P [k+1|k+1] = (I −K[k+1]Jh[k+1])P [k+1|k]

Theoretical guidelines for the design of stable EKF fre-
quency trackers are given in [24]. The covariance matrices
should be defined as Q≥0 and R>0. The choice of R and
Q affects the stability properties and the rate of response of
the EKF frequency tracker [24]. A high value of Q allows the
EKF to track signals with high rate of change of the frequency.
However, the filter will be oversensitive to noise, the estimates
will fluctuate widely around the true value of the frequency,
and the results might become inaccurate. Thus, it is important
to design a sufficiently conservative filter [24]. Moreover, a
high value of R reduces the sensitivity of the filter to noise,
but it decreases the speed response of the filter.

B. Frequency-Locked Loop

An adaptive filter is implemented by means of a second-
order generalized integrator (SOGI), where the FLL estimates
the frequency of the input signal. Such a scheme is termed
SOGI-FLL, and has been proposed for grid synchronization
of power converters [16]. Figure 1 illustrates the block dia-
gram of the SOGI-FLL, consisting of the SOGI-QSG (SOGI
quadrature signal generator) and the FLL. The method was first
adopted, within the wave energy control context, to estimate
the frequency of the WEC velocity [13]. Here, the method is
adopted for estimating the wave excitation force frequency.

X

X

X

+

+

+

+
−

−

fen(t)

ω̂
FLL

ξ(t)

ξ∗(t)

εω

ωe

∫

∫

∫

κ

−γ

1

Fig. 1. Frequency estimation by the SOGI-FLL method.

The SOGI-QSG acts as an adaptive bandpass filter with
two in-quadrature output signals (ξ, ξ∗), where ξ∗ lags ξ
by 90◦. The bandwidth of the filter is exclusively set by
the gain κ [16]. The FLL is responsible for estimating the
frequency of the input signal. Notice that in the nonlinear
frequency adaptation loop, ε = εωξ

∗ can be interpreted as
a frequency error variable, and the parameter γ represents
the gain of the integral controller [16]. The selectivity of the
adaptive bandpass filter and the tracking frequency dynamics
are respectively determined by the tuning parameters κ and γ.

From Fig. 1, the state-space equations of the SOGI-FLL are[
ξ̇
ν̇

]
=

[
−κω̂FLL −ω̂2

FLL

0 1

] [
ξ
ν

]
+

[
κω̂FLL

0

]
fen[

ξ
ξ∗

]
=

[
1 0
0 ω̂FLL

] [
ξ
ν

]
(24)

˙̂ωFLL = −γ(fen − ξ)ξ∗ ω̂FLL , (25)

where (ξ, ν) and (ξ, ξ∗) are, respectively, the state and output
vectors of the SOGI, and fen is the normalized excitation
force. The FLL state equation is represented by (25).

C. Hilbert-Huang Transform
In the HHT method, the wave excitation force fe(t) is firstly

decomposed into N mono-component signals (IMFs) by the
EMD. Then, the instantaneous frequency of the dominant IMF
is adopted for tuning purposes [9]. Figure 2 illustrates the
block diagram of the frequency estimation by this method.

HHT method

Hilbert

transform
EMD

identify
dominant

IMF

fe(t)
c1(t)
c2(t)
...

cn(t)

cd(t) ω̂
HHT

(t)

1

Fig. 2. Frequency estimation by the HHT method.

The EMD identifies local maxima and minima of fe(t), and
calculates upper and lower envelopes for such extrema using
cubic splines. The mean values of the envelopes are used to
decompose the original signal into frequency components in
a sequence from the highest frequency to the lowest one. The
EMD procedure is summarized in Table II.

TABLE II
EMD ALGORITHM.

Step 0: Set i=1; r(t)=fe(t);
Step 1: Identify the local maxima and minima in r(t);
Step 2: Calculate the upper envelope defined by the maxima,

and the lower envelope defined by the minima;
Step 3: Calculate the mean envelope m(t);
Step 4: Set h(t)=r(t)−m(t);
Step 5: If h(t) is an IMF, go to next step. Otherwise, set r(t)=h(t)

and go back to step 1;
Step 6: Set ci(t)=h(t); r(t)=r(t)− ci(t);
Step 7: If i=N , define the IMF components as c1(t), . . . , cN (t),

and the residue as r(t). Otherwise, set i= i+ 1 and
go back to step 1.

Then, the wave excitation force can be expressed as

fe(t) =

N∑
i=1

ci(t) + r(t) , (26)

where N is the total number of IMFs, which is defined here as
log2Ns−1 [25], Ns is the data length, and r(t) is the residue.

The dominant IMF is identified through the comparison of
the energy of the IMF signals (Eci ) with the energy of the
excitation force signal (Efe ),

Eci =

∫ T

0

|ci(t)|2dt , Efe =

∫ T

0

|fe(t)|2dt , (27)
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where ci(t) is the i-th IMF component. The dominant com-
ponent cd(t) is the IMF with the highest Eci/Efe ratio.

Finally, the Hilbert transform (HT) is applied to cd(t) [18]:

υd(t) =
1

π
P

∫ ∞
−∞

cd(τ)

t− τ
dτ , (28)

where P indicates the Cauchy principal value. Then, the
dominant IMF is represented as an analytic signal,

zd(t) = cd(t) + jυd(t) , (29)

with amplitude ÂHHT , phase φ̂HHT , and instantaneous frequency
ω̂HHT , respectively estimated as

ÂHHT(t) =
√
c2d(t) + υ2d(t) , φ̂HHT(t) = arctan

(
υd(t)

cd(t)

)
, (30)

ω̂HHT(t) = φ̇d(t) . (31)

IV. SIMULATION RESULTS

A. Hydrodynamic parameters

The same heaving cylinder adopted in [9] is considered
here. The cylinder has a radius of r= 5 m, draught d= 4 m,
mass m=3.2×105 kg and resonance frequency 1.2 rad/s. The
hydrodynamic coefficients were computed using the boundary
element solver WAMIT [26]. The added mass, radiation damp-
ing coefficients, and the frequency response of the excitation
force are shown in [9].

B. Real sea elevation data

The wave data was collected in 2010 from a data buoy in the
Belmullet wave energy test site, off the west coast of Ireland.
The wave data, provided by the Irish Marine Institute, consists
of wave elevation records of 30 minutes sampled at 1.28 Hz.

Six wave elevation records (referred as sea states S1-S6),
with different spectral distribution, were selected for our study.
Figure 3 illustrates the wave spectra of the sea states, and
Table III shows the significant wave height (Hs), the peak
frequency (ωp), the energy frequency (ωe), the mean centroid
frequency (ω1), and the mean zero-crossing frequency (ω2)
of the spectra. The statistical parameters are calculated as:
Hs = 4

√
m0, ωe = m0/m−1, ω1 = m1/m0, ω2=

√
m2/m0,

where mn=
∫∞
0
ωnS(ω)dω is the spectral moment of order n.

ωp is the frequency at which the wave spectrum is maximum.
Figure 4 shows the spectral density of the excitation force

for the selected sea states. Some of the high frequency waves
are filtered out by the transfer function He(ω), as can be noted
from Figure 3. The filtering characteristics are defined by the
shape of the floating body, so that the excitation force spectra
are characteristic of the cylinder adopted in this study.

C. Time-frequency estimation by EKF, FLL and HHT

1) Superposition of two regular waves: In order to illustrate
how the estimated excitation force frequency differs according
to the method adopted, firstly we consider a simple incident
wave defined as the superposition of two regular waves:
ζ(t) = 2 cos (2π/6t)+cos (2π/8t). The energy frequency and
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Fig. 3. Wave spectra of real wave data from Belmullet.

TABLE III
SIGNIFICANT WAVE HEIGHT Hs (M), PEAK FREQUENCY ωp , ENERGY

FREQUENCY ωe , MEAN CENTROID FREQUENCY ω1 , AND MEAN
ZERO-CROSSING FREQUENCY ω2 OF THE SELECTED SEA STATES.

FREQUENCIES IN RAD/S.

S1 S2 S3 S4 S5 S6
Hs 1.26 1.43 1.18 1.39 1.42 1.62
ωp 0.52 1.22 0.52 0.57 0.74 0.93
ωe 0.59 0.94 0.80 0.80 0.90 0.97
ω1 0.70 1.18 1.13 1.18 1.06 1.08
ω2 0.88 1.33 1.38 1.42 1.18 1.16
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Fig. 4. Excitation force spectra for sea states S1-S6.

the mean centroid frequency of the excitation force spectra
are, respectively, ωe,fe =0.94 rad/s and ω1,fe =0.96 rad/s.

Figure 5 illustrates the excitation force frequency estimated
by the EKF, FLL, and HT. The Hilbert spectrum shows that
the instantaneous frequency varies from about 0.92 to 1.4
rad/s, with the highest energy content (highest amplitude) in
the lowest frequency. In order to ensure accurate frequency
estimates by the EKF, q2 is set to a low value. By setting
r to 10 var[fe], q1 = r, and q2 = 10−5, the EKF frequency
is nearly constant. The EKF tracks a single frequency (0.96
rad/s) which represents the mean centroid frequency of the
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excitation force spectrum, and the mean frequency estimated
by the FLL (0.93 rad/s) is close to the energy frequency of
the spectrum. The frequency estimated by the EKF is nearly
constant, while the tracking frequency dynamics of the FLL
depends mainly on the selection of the parameters κ and γ.
To ensure high frequency selectivity, and accurate direct and
quadrature components within frequency range 0.6 to 1 rad/s,
κ is set to

√
2 and γ=0.16, as discussed in [13].
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Fig. 5. Frequency estimated (rad/s) by the EKF, FLL, and HT for the wave
ζ(t) = 2 cos (2π/6t) + cos (2π/8t). The plot on the right is the Hilbert
spectrum.

2) Sea Elevation Data: Table IV shows the energy and
mean centroid frequencies of the excitation force spectra, and
the mean frequencies estimated by the studied methods for
sea states S1 to S6. It can be noted that the mean values of
the frequencies estimated by the EKF converge to the mean
centroid frequency of the spectra, while the mean frequency
values of the FLL converge to the energy frequency of the
spectra. However, the mean values estimated by the HHT have
no correlation with the statistical parameters obtained from the
spectra. As has been remarked by Huang et al. [27], frequency
in the Hilbert spectrum has a different meaning from Fourier
spectral analysis. In Fourier spectral analysis, the existence of
energy at a frequency means that a component of a sine (or
a cosine) wave persisted through the entire time range of the
data, whereas in the Hilbert spectrum the wave representation
is local and the exact time of such oscillation is given [27].

TABLE IV
ENERGY FREQUENCY, MEAN CENTROID FREQUENCY, MEAN

ZERO-CROSSING FREQUENCY OF THE EXCITATION FORCE SPECTRA, AND
MEAN VALUES OF THE ESTIMATED FREQUENCIES (ω̄EKF , ω̄FLL , ω̄HHT ).

FREQUENCIES IN RAD/S.

S1 S2 S3 S4 S5 S6
ωe,fe 0.536 0.658 0.587 0.561 0.718 0.821
ω1,fe 0.550 0.728 0.629 0.592 0.760 0.865
ω2,fe 0.560 0.771 0.658 0.614 0.785 0.885
ω̄EKF 0.554 0.733 0.634 0.592 0.768 0.874
ω̄FLL 0.532 0.629 0.565 0.547 0.695 0.804
ω̄HHT 0.623 1.009 0.799 0.732 0.900 0.967

The estimated frequencies for sea states S1 and S2 are
illustrated in Figure 6. From the Hilbert spectrum of the first
IMF, it can be noted that the frequency ranges 0.5− 0.6 rad/s,
and 0.6 − 0.8 rad/s, have the highest energy content, respec-
tively, for S1 and S2. Such frequency values coincide with
the estimates from the EKF and FLL, but the HHT method
identifies the time at which such oscillations occur. Notice that
the HHT analysis returns nine IMFs, and the first IMF is the
dominant component in all studied cases, as shown in [9].
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Fig. 6. Frequency estimated (rad/s) by the EKF, FLL, and HHT for (a) S1
and (b) S2. The plots in the bottom represent the Hilbert spectrum of IMF 1.

D. Effect of the estimated frequency on the control strategy

In order to limit the body excursions to 2.5 m for the studied
cases, the PTO force of the PC (7) and each term of the RC
in (10) is limited to ±500 kN.

1) Passive Control: The performance of the WEC is illus-
trated in Figures 7 and 8, for the cases when the PC strategy
adopts the EKF, FLL or HHT methods to estimate the excita-
tion force frequency for sea states S1 to S6 (section IV-C2).

For all the studied cases, tuning the damping with frequency
estimates from the HHT gives greater energy capture than
tuning with EKF and FLL. The highest improvement is of
a factor of 1.27 when HHT is compared to EKF, or 1.37
when compared to FLL, for sea state S2. Moreover, the lowest
differences in the CWR is obtained for S1. Such behaviour can
be explained by the different energy spectral distributions of
both sea states. S1 is characterized by a narrowband spectrum
with a single dominant swell (low frequency waves generated
in other locations), with the energy concentrated in a narrow
band of frequencies. However, S2 is characterized by a two-
peak spectrum with mixed wind-sea (high frequency waves
generated by the local wind) and swell conditions, with the
energy spread over a wider band of frequencies than S1.
In such a case, a method that calculates the wave-to-wave
frequency is more beneficial for PC than a method that gives a
dominant sea state frequency. Nevertheless, the PTO rating and
the maximum PTO required for the HHT frequencies are also
higher than for the EKF and FLL, especially for S2 (Fig. 8).

2) Reactive Control: Figures 9 and 10 illustrate the perfor-
mance of the WEC, for the cases when the reactive control
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Fig. 7. CWR under PC tuned at frequencies from the EKF, FLL and HHT.
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Fig. 8. WEC performance under PC (a) Peak-to-average power ratio (b)
Maximum PTO force required.

strategy adopts the EKF, FLL or HHT methods to estimate
the wave excitation force frequency. For the unconstrained
cases, the CWR is very large, in most situations, and the
HHT obtains an energy improvement of up to 2.64 over
the EKF, or 1.67 over the FLL. However, the body motion
ranges from −10 to 10 m, which is practically impossible for
a WEC with a draught of 4 m. Moreover, the PTO rating for
the HHT approaches a factor of 50 and the ratio of average
reactive power and absorbed power is almost 60% in some
cases (Fig. 10.a). Such values would require oversized PTO
equipment, which would not be a rational economic choice.

For the constrained cases, the improvement obtained from
HHT over EKF or FLL is lower, but represents a more
realistic scenario: an average energy improvement of 1.13 is
obtained when the HHT is compared to the EKF, or 1.23 when
compared to the FLL. Although the PTO rating varies from
a factor of 7 to 10 for all the methods, the ratio of average
reactive power and absorbed power are much higher for the
HHT, reaching almost 14% (Fig. 10.b) for the studied cases.

In order to illustrate the effect of the frequency estimates on
the variables of the system, for the constrained RC, Figure 11
shows samples of time-series simulation, and Figure 12 shows
the absorbed and the reactive energy over a 30-min simulation
interval for sea states S1-S2. It can be noted that, for sea
state S2, the reactive energy required for the RC, tuned with
HHT frequency estimates is much higher than the FLL or EKF
cases. In such a case, the HHT reactive power represents about
4.2% of the total power, whereas the FLL reactive power is
about 0.7%. Nevertheless, the absorbed power is 18% greater
with the HHT than with the FLL.

E. Discussion

In the EKF, a sinusoidal extrapolation method is used to
model the excitation force as a monochromatic harmonic
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Fig. 9. CWR under RC tuned at frequencies from the EKF, FLL and HHT
(a) Unconstrained case (b) Constrained case.
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Fig. 10. WEC performance under RC: Peak-to-average power ratio (top) and
ratio of average reactive power and absorbed power as a function of CWR
(bottom) (a) Unconstrained case (b) Constrained case.

process, with varying amplitude and frequency. Thus, the
EKF follows a single dominant frequency. Simulation results
have shown that the estimated EKF frequency tracks the
mean centroid frequency of the excitation force spectrum.
The performance of the SOGI-FLL depends mainly on the
appropriate selection of two design parameters: κ and γ. Such
parameters define the bandwidth of the adaptive filter and the
FLL tracking frequency dynamics [16]. For the FLL, it has
been shown that the mean estimated frequency converges to
the energy frequency of the excitation force spectrum.

The HHT calculates the instantaneous frequency of the
excitation force by decomposing the signal into a number of
IMF components. Here, we have chosen only the IMF with the
highest energy content. This component has a wider bandwidth
than the estimates from the EKF or FLL, and the CWR of the
WEC is greater when the HHT frequency estimates are used
for PC and RC. Even with a low energy content, the resonance
frequency of the WEC is within the HHT estimates, which can
also explain why tuning the controllers with these estimates
result in the greatest energy absorption.
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Fig. 11. Time-series of the excitation force, position, and PTO force for the
constrained RC tuned with the EKF (dashed blue line), the FLL (solid red
line) and the HHT (dashed dotted black line) (a) S1; (b) S2.
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Fig. 12. Energy absorbed (top) and reactive energy (bottom) over a 30-min
simulation for the constrained RC tuned with the EKF (dashed blue line), the
FLL (solid red line) and the HHT (dashed dotted black line) (a)S1; (b) S2.

As expected, the PTO rating for PC is higher with the HHT
than with the EKF, or FLL, in most of the cases. However, for
the constrained RC, the greatest PTO rating does not indicate
the greatest energy absorption. The average value of the PTO
rating is about the same for all methods. Still, the greatest
energy absorption, obtained with the HHT, also requires the
greatest amount of reactive energy.

In both control strategies (PC and RC), the control signal
(PTO force) is parametrized as a function of the system
states (position and velocity), and requires the knowledge of
the wave excitation force. In practice, position sensors or
accelerometers can be used to estimate the states, and the
actuator and other related sensors will depend on the specific
type of PTO system. The excitation force can be determined
by using measurement of the wave elevation at some distance
from the floating body, or by using an array of pressure
transducers placed, e.g., on the wet surface of the body [20].

Here we have assumed the wave excitation force is known

completely over the simulation interval. Both the EKF and
FLL methods give an online estimate of the frequency, pro-
vided that an estimate of the excitation force is available. In
the HHT method, we have adopted an off-line EMD algorithm,
but a few implementation studies on the HHT have proposed
real-time EMD algorithms, see, e.g., [28].

Table V shows the mean computational speed required to
estimate the frequency of each sea state over the simulation
interval (30 min). The HHT and the EKF required about

TABLE V
MEAN COMPUTATIONAL SPEED OF THE METHODS OVER 30-MIN

SIMULATION INTERVAL.

EKF FLL HHT
1.34s 0.28s 1.29s

the same time to perform the calculations, while the FLL
was the fastest method. (Computer hardware used to run the
simulations: Intel(R) Core(TM) i7-7600U CPU @2.80GHz).

V. CONCLUSION

This paper has shown how different frequency estimation
methods, used for controller tuning purposes, impact the
energy absorbed by the WEC, the PTO rating and the required
reactive power during the conversion process. The effect of the
estimation methods on the WEC performance depend on the
control strategy employed, the PTO system constraints, and
the local wave spectrum.

For a control strategy that relies on the information of a
dominant frequency component, such as the schemes in [8]
and [14], the EKF or FLL should be adopted. The mean
frequency estimated by such methods converges, respectively,
to the mean centroid frequency or the energy frequency of
the spectrum. Moreover, if the sea state is characterized by a
narrowband spectrum, the benefit of adopting a method that
estimates the wave-to-wave frequency is relatively small.

By adopting the HHT method, an average improvement
in the energy absorbed of about 18% is obtained over the
EKF and FLL methods, for the constrained reactive control
strategy. For passive control, an average improvement of 16%
is also obtained for the HHT. The greatest improvements of
the HHT over the other methods are obtained for wideband
spectra. In contrast to the EKF and FLL methods, where the
bandwidth is narrow and the frequency estimates oscillate
around a dominant frequency component, the HHT frequency
estimates cover a wider range, and the location of the dominant
frequency component is identified.

In this study, the first IMF component is adopted for
the HHT approach. The frequency bandwidth of this IMF
component could be narrowed by applying techniques that
deal with mode mixing in EMD. Such an approach will be
explored in future studies.
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