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Abstract

Background: The relationship between cholesterol and prostate cancer has been extensively studied for decades,
where high levels of cellular cholesterol are generally associated with cancer progression and less favorable
outcomes. However, the role of in vivo cellular cholesterol synthesis in this process is unclear, and data on the
transcriptional activity of cholesterol synthesis pathway genes in tissue from prostate cancer patients are
inconsistent.

Methods: A common problem with cancer tissue data from patient cohorts is the presence of heterogeneous
tissue which confounds molecular analysis of the samples. In this study we present a general method to minimize
systematic confounding from stroma tissue in any prostate cancer cohort comparing prostate cancer and normal
samples. In particular we use samples assessed by histopathology to identify genes enriched and depleted in
prostate stroma. These genes are then used to assess stroma content in tissue samples from other prostate cancer
cohorts where no histopathology is available. Differential expression analysis is performed by comparing cancer and
normal samples where the average stroma content has been balanced between the sample groups. In total we
analyzed seven patient cohorts with prostate cancer consisting of 1713 prostate cancer and 230 normal tissue
samples.

Results: When stroma confounding was minimized, differential gene expression analysis over all cohorts showed
robust and consistent downregulation of nearly all genes in the cholesterol synthesis pathway. Additional Gene
Ontology analysis also identified cholesterol synthesis as the most significantly altered metabolic pathway in
prostate cancer at the transcriptional level.

Conclusion: The surprising observation that cholesterol synthesis genes are downregulated in prostate cancer is
important for our understanding of how prostate cancer cells regulate cholesterol levels in vivo. Moreover, we
show that tissue heterogeneity explains the lack of consistency in previous expression analysis of cholesterol
synthesis genes in prostate cancer.
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Background
Increased cholesterol levels in enlarged prostates and
prostate cancer have been observed for decades [1-3],
and extensive research has suggested that cholesterol
have a role in prostate cancer growth and progression
[3-5]. Cholesterol homeostasis is important for cell
viability, and is dynamically regulated by a balance
between synthesis, uptake, efflux and storage of chol-
esterol [4, 6-9]. For cellular cholesterol synthesis, the
conversion of 3-hydroxy-3-methylglutaryl coenzyme A
(HMG CoA) to mevalonate is the first rate limiting
step, which is followed by over 20 flux controlling en-
zymatic reactions before cholesterol is synthesized as
the final product. In prostate cancer cell-lines, ele-
vated activity of the cholesterol synthesis pathway
supports cancer growth and aggressiveness [10-16].
This has led to the general view that increased chol-
esterol synthesis in prostate cancer cells contributes
to cellular accumulation of cholesterol and prostate
cancer growth. A diet high in fat and cholesterol in-
crease the risk of prostate cancer, while statins dir-
ectly targeting the cholesterol synthesis pathway are
associated with improved clinical outcome (reviewed
in [17]). This is generally taken as support for the
relevance of increased cholesterol synthesis in vivo.
This notion was also in line with a recent study
showing increased activity of the cholesterol synthesis
enzyme squalene monooxygenase (SQLE) in lethal
prostate cancer [18]. Accordingly, one would expect
that genes in the cholesterol synthesis pathway are
upregulated when prostate cancer is compared to nor-
mal tissue. However, transcriptional changes in chol-
esterol genes are rarely highlighted when such
comparisons are performed in large patient cohorts.
We hypothesized that this is due to influence of con-
founding tissue components present in the samples. By
confounding we refer to the variations in gene expres-
sion pattern between cancer and normal tissue samples
which cannot be distinguished from variations caused by
the presence of other tissue components in the samples.
Gene expression analysis in human tissue is challenged
by the highly heterogeneous tissue composition in each
sample [19, 20]. The standard way to account for such
heterogeneity is to incorporate tissue type percentages
from histopathology during the analysis. Although con-
founding due to tissue composition is generally acknowl-
edged, data from histopathology are missing in most
publicly available patient cohorts, which may bias the
molecular analyses. In prostate cancer, the presence of
stroma tissue is shown to hide underlying molecular fea-
tures in a differential analysis [21, 22]. Prostate tissues
are usually histopathologically divided into benign epi-
thelium, stroma tissue and prostate cancer. It is previ-
ously shown that the different number of tissue types
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present in prostate cancer (three tissue types) and in
normal samples (two tissue types) leads to a systematic
sampling bias of increased stroma content in the normal
samples [23, 24]. Thus the presence of stroma tissue
confounds differential analysis when cancer and normal
samples are compared.Controlling for these biases will
potentiate the discovery of molecular pathways and fea-
tures otherwise hidden in the data.

To address this challenge we utilized two independent
patient cohorts where the tissue composition of prostate
cancer and normal samples has been thoroughly
assessed by histopathology. Based on the gene expres-
sion analysis of stroma-enriched genes in these two co-
horts, we used Gene Set Enrichment Analysis (GSEA)
[25] to assess the stroma content in five other patient
cohorts where no histopathology is available. In total
1713 prostate cancer and 230 normal samples were
assessed for their stroma content. To create datasets
from all cohorts where the confounding effect of stroma
tissue is accounted for, we used our recently published
approach of balancing tissue composition [23]. When
differential expression analysis is performed on these
datasets, consistent downregulation of genes in the chol-
esterol synthesis pathway is highlighted as one of the
most prominent features for primary prostate cancer.

Methods

Cholesterol pathway genes

Cholesterol genes were selected from KEGG [26] path-
way map for Steroid Biosynthesis and the Mevalonate
Pathway in the pathway map for Terpenoid Backbone
Biosynthesis. Twenty-five pathway genes were assessed
for differential expression, which represent the complete
pathways as mapped by KEGG. In addition, four genes
from KEGG involved in cholesteryl ester formation and
19 genes from various literature sources involved in
cholesterol regulation, uptake efflux and transport, were
assessed. The complete list of genes and their main role
in cholesterol homeostasis can be found in Table 2.

Datasets, processing and quality assessment

For expression analysis of genes in the cholesterol path-
way we used gene expression measurements from pros-
tate cancer and normal tissue samples from seven
publicly available patient cohorts. An overview of data
from the seven patient cohorts is given in Table 1. Can-
cer samples for all cohorts were from radical prostatec-
tomy specimens, except for the Sboner cohort which was
from a watchful waiting cohort. Normal samples were
adjacent normal prostate tissue from prostatectomy
specimens, except for four normal prostate samples in
the Chen cohort which were autopsy samples from sub-
jects without prostate cancer. Gene expression measure-
ments from each patient cohort were downloaded and
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Table 1 Data from the seven patient cohorts
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Abbreviation Source Dataset reference Article Analysis Platform Samples PCa Normal Unique HP on all
reference genes  samples
Bertilsson Array E-MTAB-1041 [27] Microarray, A-MEXP-2087 - lllumina 156 116 40 14149  Yes
Express Human HT-12 WG-DASL

Chen GEO GSE8218 [21, 28] Microarray, Affymetrix Human 136 65 71 12497 Yes
Genome U133A Array

Taylor GEO GSE21034 [29] Microarray, Affymetrix Human 160 131 29 18294 No
Exon 1.0 ST Array

TCGA TCGA  TCGA [30] RNA-Seq, lllumina HiSeq 2000/ 549 497 52 20,504  No
Genome Analyzer IIX

Prensner dbGaP  phs000443. v1.pl [31] RNA-Seq, lllumina Genome Analyzer 116 78 38 23,712 No

Sboner GEO GSE16560 [35] Microarray, Human 6 k Transcriptionally 281 281 0 6102 No
Informative Gene Panel for DASL.

Erho GEO GSE46691 [36] Exon array, Affymetrix Human Exon 545 545 0 17,163  No

1.0 ST Array [probe set (exon) version]

Footnote: HP histopathology, GEO gene expression omnibus, TCGA the cancer genome atlas, dbGap the database of genotypes and phenotypes, PCa

prostate cancer

processed in the following way: Gene expression and
metadata from Bertilsson were created by our group
and processed as previously described [27]. Data are
available at Array Express with accession E-MTAB-
1041. The best probe for each gene was selected as
the one with the highest average rank by p-value in
differential expression analysis (average over unstrati-
fied, balanced and unbalanced comparison, see below
or main text for explanation). Gene expression and
metadata from Chen [21, 28] were downloaded from
Gene Expression Omnibus (GEO) accession GSE8218.
Probes were matched to gene names by the hgl33a.
db reference using limma in R. The best probe for
each gene was selected as the one with the highest
average rank by p-value in differential expression ana-
lysis. Gene expression and metadata from Taylor [29]
were downloaded from GEO accession GSE21034.
Probes were matched to genes using the GPL10264
reference available at GEO. Probes with no matching
gene were removed from further analysis. The best
probe for each gene was selected as the one with the
highest rank in a differential expression analysis be-
tween prostate cancer and normal samples. In the
Taylor dataset, probes from the same gene generally
had very similar ranks. Normalized and raw RNA-Seq
read counts and gene names from 7CGA where
downloaded from The Cancer Genome Atlas [https://
cancergenome.nih.gov/], [30]. Normalized read counts
were log2-adjusted before further analysis. For the
Prensner cohort [31], RNA-Seq raw reads in fastg-for-
mat were downloaded with approval from dbGap
(project #5870) with accession phs000443.v1.pl. Raw
reads were mapped to the hgl9 transcriptome using
TopHat2 [32], and featureCounts [33] were used to
assign the reads mapping to each gene. Normalization
of gene counts were performed using the

normalization formula from the voom program [34].
Gene expression and metadata from Shoner [35] were
downloaded from GEO with accession GSE16560.
Probes were matched to gene names using the
GPL5474 reference available at GEO. Only four genes
in the Sboner cohort had more than one probe. For
these genes, the probes with the highest overall ex-
pression value were selected as the best probe. Quan-
tile normalized exon expression data and metadata
from the Erho cohort [36] were downloaded from
GEO with accession GSE46691. Exons identifiers were
matched to gene names using the GPL5188 reference
available at GEO. The total expression for each gene
was calculated as the average expression over all
exons for that gene. Differential expression of genes
from Bertilsson, Chen and Taylor were identified using
the limma package in R as described previously [27],
while voom on raw RNA-Seq read counts was used
for differential expression of genes from TCGA and
Prensner. In total, 1943 samples (1713 prostate cancer
and 230 normal) with 25,964 unique gene identifiers
were considered over all seven datasets (the seven-
study-cohort). Five of the cohorts (Bertilsson, Chen,
Taylor, TCGA and Prensner, referred to as the five-
study-cohort) contained both prostate cancer and nor-
mal samples (in total 1117 samples, 887 cancer and
230 normal). The seven-study-cohort contained 4804
shared genes, and the five-study-cohort contained
9527 shared genes over their respective cohorts.
Quality assessment of each cohort was performed by
evaluating the Pearson correlations between genes in
previously validated gene sets [25, 37] related to
ERG-fusion, an established feature of primary prostate
cancer [38] (Additional file 1: Figure S1). Samples
from the five-study-cohort consistently displayed a
higher average ERG-fusion gene correlation in
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prostate cancer samples compared to normal samples.
Cancer samples in the Erho cohort showed a similar
average correlation compared to cancer samples in
the five-study-cohort, while the Shoner cohort showed
weaker average correlation. Altogether six of the co-
horts performed well for the quality assessment, while
poorer quality was only indicated in the Shoner
cohort.

Stratification of a cohort into balanced and unbalanced
datasets

For the stratification of samples into datasets of bal-
anced and unbalanced stroma tissue composition we
used a strategy recently developed in our research group
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[23]. The strategy can be applied to any cohort, as long
as assessments of stroma content are available for both
cancer and normal samples in the cohort. We will here
use the Bertilsson cohort to briefly describe the proced-
ure (Fig. 1). The Bertilsson cohort consists of 116 pros-
tate cancer and 40 normal samples, where each sample
has been histopathologically assessed for its tissue com-
position (%) of stroma, cancer and benign epithelium.
We separate both cancer and normal samples according
to their stroma content where one group has low stroma
content and the other has high stroma content, resulting
in 4 groups altogether (58 cancer samples with highest
stroma content, 58 cancer samples with lowest stroma
content, 20 normal samples with highest stroma content

1 1
Bertilsson Balanced/ Differential Differential Balanced/ Chen
cohort p Unbalanced expression expression Unbalanced p  cohort
Bertilsson stroma Chen stroma
gene set gene set
Bertilsson Taylor TCGA Prensner Chen Sbhoner Erho 4
cohort cohort cohort cohort cohort cohort cohort
GSEA GSEA | GSEA | GSEA | GSEA | GSEA l GSEA l
Balanced/ Balanced/ Balanced/ Balanced/ Balanced/ High/Low High/Low 5
Unbalanced Unbalanced Unbalanced Unbalanced Unbalanced stroma stroma
Differential Differential Differential Differential Differential 6
expression expression expression expression expression
Five-study-cohort meta analysis
7

Seven-study-cohort meta analysis

Fig. 1 Flow chart illustrating the different computational steps for the analysis performed in this study. 1) Histopathology (HP) is used to create balanced
and unbalanced datasets independently for the Bertilsson (marked green) and Chen (marked red) cohorts. 2) Differentially expressed genes for the
HP-based balanced and unbalanced datasets are calculated for the Bertilsson and Chen cohorts. 3) Two stroma gene-sets are identified independently based
on gene p-value relationships between the HP-based balanced and unbalanced datasets in the Bertilsson and Chen cohorts, respectively. 4) Gene Set
Enrichment Analysis (GSEA) scores for all samples in all seven cohorts are calculated based on the two stroma gene-sets. These gene-sets are not
combined, ensuring two independent GSEA stroma predictions for each sample in each cohort. 5) The GSEA scores are used to separate the five cohorts
with both cancer and normal samples (including the cohorts from Bertilsson and Chen) into balanced and unbalanced datasets. The two remaining cohorts
(Sboner and Erho) are only separated into groups with high and low stroma content. 6) Differentially expressed genes are calculated individually for the five
cohorts with both cancer and normal samples. 7) Balanced and unbalanced datasets from the five-study-cohort are merged into one meta-analysis for
differential expression. Balanced and unbalanced datasets from the five-study-cohort, as well as high and low stroma datasets from the Sboner and Erho
cohorts are merged into one meta-analysis of the seven-study-cohort
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and 20 normal samples with lowest stroma content).
The balanced dataset is created by joining the 58 cancer
samples with the highest percentages of stroma with the
20 normal samples with the lowest percentages of
stroma, to create a dataset with balanced average
amounts of stroma in cancer and control samples. In
contrast, the unbalanced dataset is created by joining
the 58 cancer samples with lowest content of stroma
with the 20 normal samples with highest content of
stroma, thus maximizing the difference of average
stroma content between cancer and normal samples.
The balanced dataset represents a comparison be-
tween prostate cancer and normal samples where the
bias due to increased average stroma content in the
normal samples has been minimized. Molecular differ-
ences in the balanced dataset are thus directly attrib-
utable to differences between cancer and normal
tissue. The second dataset represent an umbalanced
comparison where molecular differences mostly repre-
sent differences between prostate cancer and stroma
tissue. Differentially expressed genes are then identi-
fied independently for the balanced and unbalanced
datasets. The equal number of prostate cancer and
normal samples in each dataset ensures a consistent
statistical power, meaning that p-values are directly
comparable for each gene between the balanced and
unbalanced datasets. The number of samples used for
balanced and unbalanced analysis in each cohort is
provided in Additional file 1: Table S2.

Identification of gene-sets for assessment of stroma
content in prostate tissue samples

Since the procedure for identification of gene-sets re-
quires histopathology on both prostate cancer and
normal samples in the same cohort, only the Bertils-
son and Chen could be utilized for this purpose. Both
these cohorts include detailed histopathological evalu-
ation on the percentage tissue composition of pros-
tate cancer, benign epithelium and stroma in both
prostate cancer and normal samples. Stroma gene-sets
were created independently from each of the two co-
horts by the exact same procedure. The difference in
average tissue composition between the balanced and
unbalanced datasets (described in the previous sec-
tion) facilitates the identification of genes specifically
up- or downregulated in stroma compared to benign
epithelium and cancer tissue by comparing p-values
between the two datasets. Specifically, genes which
display up or downregulation characteristic for stroma
tissue will have lower p-values in the umnbalanced
compared to the balanced dataset. We thus used the
following formula to rank all genes according to their
suitability for creating stroma gene-sets:
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Punbal
pscore = ug “ (1)
Pha

The squared term in the denominator was included to
reflect that more pronounced differences in p-values are
necessary for highly significant genes to be regarded as
stroma genes. (Compare a gene with p-value le-5 in the
unbalanced which is not significant in the balanced
dataset, to a gene with p-value 1e-20 in the unbalanced
and le-15 in the balanced. The former is more likely to
be a valid stroma marker than the latter, even though
the p-value ratio is the same). The stroma gene-sets in-
cluded were based on the top 1000 ranked upregulated
and top 1000 ranked downregulated genes. To avoid any
bias from the cholesterol pathway genes, any genes from
Table 2 were removed from all stroma gene-sets during
analysis.

Validation of stroma gene-sets in the histopathology
cohorts
The independent stroma gene-sets created from the Ber-
tilsson and Chen cohorts were validated by assessing the
percentage of shared genes between the two gene-sets
(Fig. 2a). This percentage was compared to the percent-
age of shared genes expected by chance in 50 randomly
generated gene sets of same size. The number of shared
genes was also compared in gene sets created using a
naive approach of Pearson correlation to histopatho-
logical stroma content, and four previously published
gene sets related to the content of stroma in prostate
cancer tissue samples from Wang et al. [21] (Fig. 2b).
The assessment of the stroma content in any single
sample from any cohort was performed using Gene Set
Enrichment Analysis (GSEA) [29]. Two measures will
influence the GSEA scores; the number of genes in the
applied gene-set, and the total number of genes used for
the calculation. We calculated 10 GSEA scores for each
sample using varying numbers of the top scoring stroma
genes (top 100, 150, 200, 250, 300, 350, 400, 450, 500
and 1000 genes), and normalized the scores in each of
the 10 calculations to a 0-100 range over all samples to
make them comparable. To enable comparisons between
datasets, we only used genes shared by all datasets in
each GSEA calculation. Two total gene selections were
made, one containing 9527 genes shared by the five-
study-cohort, and one with 4804 genes shared for the
seven-study-cohort. Averaging over the 10 GSEA scores
in each selection produced a total of four GSEA scores
for each sample in Bertilsson, Chen, Taylor, TCGA and
Prensner (using gene-sets from Bertilsson and Chen for
the five-study-cohort and the seven-study-cohort respect-
ively), and two GSEA scores for each sample in Shoner
and Erho (Bertilsson and Chen gene-set for the seven-
study-cohort). The main reason for the lower number of
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Table 2 Overview of genes related to cholesterol synthesis assessed for differential expression
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Gene symbol Alternative symbol Gene name Gene function

ACAT1 acetyl-CoA acetyltransferase 1 Synthesis

ACAT2 acetyl-CoA acetyltransferase 2 Synthesis

HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1 Synthesis

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 Synthesis

HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase Synthesis (rate limiting enzyme)
MVK mevalonate kinase Synthesis

PMVK phosphomevalonate kinase Synthesis

MVD mevalonate decarboxylase Synthesis

DN isopentenyl-diphosphate delta isomerase 1 Synthesis

IDI2 isopentenyl-diphosphate delta isomerase 2 Synthesis

FDPS farnesyl diphosphate synthase Synthesis

GGPS1 geranylgeranyl diphosphate synthase 1 Synthesis

FDFT1 farnesyl-diphosphate farnesyltransferase 1 Synthesis

SQLE squalene epoxidase Synthesis

LSS lanosterol synthase Synthesis

DHCR24 24-dehydrocholesterol reductase Synthesis

CYP51A1 cytochrome P450 family 51 subfamily A polypeptide 1 Synthesis

TM7SF2 transmembrane 7 superfamily member 2 Synthesis

FAXDC2 C5orf4 fatty acid hydroxylase domain containing 2 Synthesis

MSMO1 SC4MOL methylsterol monooxygenase Synthesis

NSDHL NAD(P) dependent steroid dehydrogenase-like Synthesis

HSD17B7 hydroxysteroid (17-beta) dehydrogenase 7 Synthesis

EBP emopamil binding protein (sterol isomerase) Synthesis

SC5D SC5DL sterol-C5-desaturase Synthesis

DHCR7 7-dehydrocholesterol reductase Synthesis (last step before cholesterol)
CEL carboxyl ester lipase Esterification

LIPA lipase A, lysosomal acid, cholesterol esterase Esterification

SOAT1 sterol O-acetyltransferase 1 Esterification

SOAT2 sterol O-acetyltransferase 2 Esterification

ABCA1 ATP-binding cassette, sub-family A Efflux

ABCG1 ATP-binding cassette, sub-family G Efflux

SLCO2B1 solute carrier organic anion transporter family member 2B1 Transport

SLCO1B3 solute carrier organic anion transporter family member 183 Transport

LDLR low density lipoprotein receptor Uptake

APOE apolipoprotein E Component for IDL, HDL and VLDL
SREBF1 sterol binding element transcription factor 1 Transcriptional activation
SREBF2 sterol binding element transcription factor 2 Transcriptional activation (main activator)
SCAP SREBF chaperone Transcriptional activation
MBTPS1 S1P membrane bound transcription factor peptidase site 1 Transcriptional activation
MBTPS2 S2P membrane bound transcription factor peptidase site 2 Transcriptional activation
INSIG1 insulin induced gene 1 HMGCR degradation
INSIG2 insulin induced gene 2 HMGCR degradation
AMFR GP78 autocrine motility factor receptor E3 ubiquitin protein ligase HMGCR degradation
NR1H3 LXRA nuclear receptor subfamily 1 group H member 3 Transcriptional repression



Rye et al. BMC Cancer (2018) 18:478

Page 7 of 17

Table 2 Overview of genes related to cholesterol synthesis assessed for differential expression (Continued)

Gene symbol Alternative symbol Gene name Gene function

NR1H2 LXRB nuclear receptor subfamily 1 group H member 2 Transcriptional repression
RXRA retinoid X receptor alpha Transcriptional repression
RXRB retinoid X receptor beta Transcriptional repression
MYLIP IDOL myosin regulatory light chain interacting protein Degradation of LDLR

shared genes in the seven-study-cohort is the relatively
few genes measured in Shoner (6100 unique genes). For
Bertilsson and Chen, GSEA scores for each sample were
converted to predicted stroma percentages using a linear
least squares fit, and compared to the stroma percent-
ages obtained from histopathology. Predicted stroma
percentages by the fit model based on the Bertilsson and
Chen stroma gene-sets respectively in each of the two
cohorts were also compared. Finally, GSEA score corre-
lations when using the Bertilsson and the Chen stroma
gene-sets were compared for all cohorts.

Defining balanced and unbalanced data-sets in cohorts
lacking histopathology

The GSEA scores representing the content of stroma in
each sample were used to separate samples in each new
patient cohort into balanced and unbalanced datasets
(as described in the section “Stratification of a cohort
into balanced and unbalanced datasets” above). This
was done independently for each patient cohort. Differ-
entially expressed genes for each cohort were calculated
and corrected for multiple testing by Benjamini Hoch-
berg false discovery rate (FDR) separately in each cohort,
based on the total number of analyzed genes in each co-
hort. For the Sboner and Erho cohorts, only the cancer
samples were separated into datasets with &igh and low
stroma content, and no differential analysis was
performed.

Rank based meta-analysis for combined cohorts

To identify differentially expressed genes in a meta-
analysis over the five-study-cohort the following proced-
ure was used: 1) Each gene was sorted according to its
expression value over all samples independently in each
cohort, and rank-normalized to a score-value between 0
and 100, where 0 is the rank based expression value for
the sample with the lowest expression value of the gene,
and 100 is rank-based expression value the sample with
the highest expression. 2) Rank-normalized values were
mean centered independently in each cohort, where the
mean centering was weighted by the relative number of
prostate cancer and normal samples in the cohort. This
was to avoid mean-value biases due to the huge relative
difference between cancer and normal samples in each
cohort. 3) Samples were separated into one balanced
and one unbalanced meta-dataset using their previous

assignment to balanced and unbalanced datasets in each
individual cohort. Differential analysis based on two
classifications were performed, one based on the stroma
gene-set from Bertilsson and one on the stroma gene-set
from Chen. 4) Differentially expressed genes for the un-
stratified, balanced and unbalanced datasets were calcu-
lated for weighted mean centered rank-normalized
values between prostate cancer and normal samples
combined for all five cohorts using the Mann-Whitney-
Wilcoxon test [39] for rank-based differential expression.
P-values of differentially expressed genes were corrected
for multiple testing using the Benjamini-Hochberg FDR
for the total number of genes analyzed (25,964 unique
gene identifiers). If a gene was not present in all data-
sets, only the datasets that contained that gene were
used for differential expression. The seven-study cohort
was analyzed in the same way, but with mean centering
rather than weighted mean centering used to adjust
gene-ranks between cohorts. This was due to the lack of
normal samples in the Shoner and Erho cohorts.

Gene ontology analysis

The top 500 and top 1000 differentially expressed genes
from the rank-based differential expression analysis
based on the both the Bertilsson and Chen gene-sets
(four lists of genes in total) were subjected independ-
ently to DAVID [40] for gene ontology analysis.

Results

Differentially expressed genes in seven publicly available
prostate cancer cohorts controlled for stroma tissue
confounding

We used seven publicly available cohorts of tissue sam-
ples from patients with prostate cancer (Bertilsson, Chen,
Taylor, TCGA, Prensner, Sboner and Erho, referred to as
the seven-study-cohort; N =1943 samples, 1713 prostate
cancer and 230 normal, Table 1). Gene expression mea-
surements in the various cohorts had been generated
using different microarray platforms and RNA-
sequencing. Of these seven cohorts, two cohorts (Bertils-
son and Chen, referred to as the histopathology cohorts,
Table 1) contained detailed histopathology on prostate
cancer, stroma and benign epithelium in each sample.
These two cohorts were used as a basis for stromal as-
sessment in all seven cohorts. A flow-chart of the differ-
ent steps in this assessment is provided in Fig. 1, and a
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(See figure on previous page.)

Fig. 2 Robust assessment of stroma content in cohorts where no histopathology is available. a Overlap between up- and downregulated stroma
genes in the gene-sets from Bertilsson and Chen for various numbers of the N top-ranked stroma genes. The random numbers of shared genes are the
average over 50 random gene selections for each N. b Overlap of prostate stroma gene sets from Wang et al. [21] with stroma gene-sets from
Bertilsson and Chen. ¢ Pearson correlation (c) between predicted stroma percentage from GSEA and histopathological determined stroma percentage
in the cohorts from Bertilsson and Chen. d Pearson correlation (c) between stroma percentage predicted by gene-sets from Bertilsson and Chen in each
of their respective cohorts (bottom). e Bias towards higher GSEA stroma scores in normal compared to cancer samples present in all unstratified
cohorts from the five-study-cohort. Dividing samples into balanced and unbalanced datasets minimizes and maximizes, respectively, the stroma bias
between cancer and normal samples. A difference in the average overall GSEA score between the cohorts is also evident in the figure

detailed description of each step is provided in the
Methods section. Of the seven cohorts, five cohorts con-
tained measurements of both prostate cancer and sam-
ples characterized as normal (Bertilsson, Chen, Taylor,
TCGA and Prensner, referred to as the five-study-cohort;
1117 samples, 887 prostate cancer and 230 normal).

Robust stroma assessment using gene set enrichment
analysis (GSEA) with sets of stroma-enriched genes

A key concept in this study is to utilize GSEA [25] to
assess the stroma content in each tissue sample from
the seven patient cohorts, and then use this assess-
ment to divide samples into sub-datasets where the
confounding effect of stroma tissue is accounted for
[23]. To achieve this, we first identified genes which
were up- or downregulated with respect to the con-
tent of stroma tissue in the two histopathology cohorts
(Methods). The top ranked genes from this analysis
were collected into gene-sets, which were used for
GSEA-based assessment of stroma in samples from
all seven cohorts. Robustness of stroma assessments
was assured by assessing each sample independently
by the two stroma gene-sets identified from the two
histopathology cohorts. Although the two stroma
gene-sets used were generated from independent co-
horts using different microarray platforms, the identi-
fied stroma related genes showed 44% overlap for the
top 2000 stroma associated genes, compared to 6%
for random genes (Fig. 2a). A comparison with four previ-
ously published prostate stroma gene lists [21], showed an
average overlap of 62%, compared to 8% for random genes
(Fig. 2b). Identified stroma genes were robust to two dif-
ferent methods for gene selection, with an average of 73%
overlap (Additional file 1: Figure S2).

When varying the size of the stroma gene-sets, as well
as the total number of genes used for the GSEA assess-
ment, we observed an average deviation in predicted
stroma content of only ~1% (Additional file 1: Table
S1). This shows that individual genes had minimal influ-
ence on the stroma assessments. In the two histopath-
ology cohorts, the predicted stroma percentage from
GSEA showed a mean deviation from histopathology be-
tween 10% and 11%, (r=0.77 and r=0.78), respectively
(Fig. 2c). These measurements are in agreement with

previously published comparisons between histopathology
and gene based stroma predictions in prostate cancer

[21, 41]. In both of the histopathology cohorts, the
predicted percentages of stroma were highly corre-
lated for the two gene-sets (r=0.98) (Fig. 2c), and
estimated GSEA scores in the additional five cohorts
were also highly correlated (r between 0.95 and 0.99)
(Additional file 1: Fig S3). GSEA scores for all co-
horts were also robust with respect to the size of
the stroma gene-sets, with an average standard devi-
ation for 0-100 normalized GSEA scores of ~2
(Additional file 1: Table S1). Variations in GSEA
scores were not dependent on the platform used for
gene expression analysis. As further support for the
validity of the stroma gene-sets, samples from sev-
eral prostate cancer cell-lines included in the Taylor
and Prensner cohorts, were consistently at the low
end of stroma content when estimated by GSEA as-
sessment. Overall, we conclude that the gene-sets
give a stable, robust and reproducible representation
of the stroma content in prostate cancer and normal
tissue samples in each cohort. However, we observed
a prominent baseline difference in the average GSEA
scores between the different cohorts (Fig. 2d). This
means that an absolute prediction of stroma percent-
age for each sample which can be compared between
cohorts cannot be made, but that relative stroma as-
sessment between samples within the same cohort is
feasible and robust.

Balancing the stroma content in cohorts with missing
histopathology

We wused our previously published strategy [23]
(Methods) to create stroma balanced and a stroma un-
balanced datasets in each of the five cohorts with both
cancer and normal samples. The balanced and unbal-
anced datasets from the same cohort are designed to
have the same number of cancer and normal samples,
making p-values from differential gene expression ana-
lysis directly comparable between the two datasets.
(Additional file 1: Table S2). In the balanced dataset
samples are selected such that prostate cancer and nor-
mal samples have a similar average stroma content, min-
imizing the tissue confounding introduced by stroma
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tissue in a conventional umstratified analysis using all
samples. Differential analysis in the balanced dataset is
thus designed to highlight changes between prostate
cancer and normal tissue. In contrast, samples in the un-
balanced dataset are selected to maximize the difference
in stroma content between cancer and normal samples.
In this setting, differentially expressed genes in prostate
cancer compared to stroma will be highlighted. For a
single gene, comparing results from the balanced and
unbalanced datasets can reveal whether a significant dif-
ferential expression truly results from changes between
the normal tissue and cancer, or is due to a difference in
the average stroma content between the sample groups.

To create balanced and unbalanced datasets, no abso-
lute estimation of stroma percentage in each sample is
necessary. A relative stroma assessment is sufficient,
which is here exemplified by GSEA using the two inde-
pendent stroma gene-sets. This ensures that samples in
the same cohort can be sorted according to their stroma
content, which enables balanced and wunbalanced ana-
lysis in cohorts where histopathology is not available.

We used the two stroma gene-sets identified inde-
pendently from the histopathology cohorts (Bertilsson
and Chen) to calculate GSEA scores for all 1943 samples
(1713 cancer and 230 normal) from all the seven patient
cohorts. In the five-study cohort containing 1117 samples
(887 cancer and 230 normal), the calculated GSEA
scores showed a systematic bias of increased average
stroma content in normal samples (Fig. 2d), which
should support the separation of each cohort into bal-
anced and unbalanced datasets. Balanced and unbal-
anced datasets were therefore created independently
using the two available stroma gene-set, resulting in two
independent balanced and unbalanced datasets for each
cohort. This stratification equalized the average stroma
content in the balanced datasets, and enhanced the dif-
ference in average stroma content in the umnbalanced
datasets (Fig. 2d). Differential expression analyses were
performed independently for each dataset, and differen-
tially expressed genes were ranked in each dataset ac-
cording to their p-value. In addition, combined rank-
based meta-analysis over the five-study-cohorts and
seven-study-cohorts were performed (Methods). The bal-
anced and unbalanced datasets from the two meta-
cohorts contained 558/115 and 971/115 prostate cancer/
normal samples each, respectively.

Transcriptional downregulation of genes in the
cholesterol synthesis pathway when adjusting for stroma
tissue confounding

Consistent and highly significant downregulation of
genes in the cholesterol synthesis pathway between can-
cer and normal samples was a prominent feature in the
balanced analysis of gene expression (Fig. 3a, Table 2,
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Additional file 1: Figure S4). In a meta-analysis of the
five-study-cohort, 21 of the 25 genes assessed were
downregulated. These included key genes of cholesterol
synthesis such as HMGCR and SQLE (rate limiting en-
zymes), FDFT1, LSS (catalyzes first step), DHCR7 (cata-
lyzes last step) in addition to NSDHL, MDMOI, EBP,
IDI1, CYP51A1, HMGCSI and SC5D. All these genes
had p-values to the power of —10 or less. The same
trend was observed in a meta-analysis over the seven-
study-cohort (Additional file 1: Figure S4). In addition,
four cohorts in the five-study-cohort individually showed
highly significant downregulation of cholesterol genes,
though the most highlighted genes varied somewhat be-
tween the cohorts (Additional file 1: Figure S4). In the
five-study-cohort, 10  central  cholesterol  genes
(HMGCS1, HMGCR, IDI1, FDFT1, SQLE, CYPS5IAI,
MSMOI1, NSDHL, EBP and SC5D) ranked among the
top 150 most differentially expressed genes in the bal-
anced dataset (average rank of 76) (Additional file 2).
This is in contrast to the umnstratified and unbalanced
datasets, where the average ranks of the same ten genes
were 9195 and 14,860, respectively. The unbalanced
analysis also shows that upregulation of cholesterol
genes is mostly due to differences between cancer tissue
and stroma (Fig. 3a). Cholesterol synthesis was a highly
important gene ontology term in the balanced dataset,
and a clustered set of related terms containing steroid,
sterol and cholesterol biosynthesis were among the top
three most significant gene ontologies when the 500
most significant genes from the five-study-cohort were
analyzed by DAVID (Table 3). In summary, the balanced
data prove a characteristic transcriptional downregula-
tion of the cholesterol synthesis pathway in primary
prostate cancer. All p-values presented in this and the
following sections, as well as Figs. 3 and 4, are conserva-
tively corrected for multiple testing using the total num-
ber of 25,964 unique gene identifiers from all cohorts.

Discussion

Expression of cholesterol pathway genes are confounded
by stroma tissue

The pronounced discrepancies between the balanced
and unbalanced datasets serve as an illustration of
how cholesterol pathway genes are confounded by
stroma tissue during differential analysis. Using
HMGCR (the rate-limiting enzyme of cholesterol syn-
thesis) as an example, this gene is strongly significant
in both datasets. However, it is downregulated when
cancer is compared to normal epithelium in the bal-
anced dataset, and upregulated when cancer is com-
pared to stroma in the wumnbalanced dataset. This
typical pattern occurs when a gene highly expressed
in the normal epithelium has an intermediate expres-
sion in cancer and is weakly expressed in stroma.
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Fig. 3 (See legend on next page.)
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Fig. 3 Genes in cholesterol synthesis pathway are coherently downregulated in prostate cancer compared to normal epithelium. a The figure
shows —log10 p-values multiplied by 1 for upregulated genes, and — 1 for downregulated genes. The results presented are for a rank-based
meta-analysis of the five-study-cohort. All p-values presented are corrected for multiple testing using the total number of 25,964 unique gene
identifiers from all cohorts. Results from individual cohorts as well as the seven-study-cohort can be found in Additional file 1: Figure S4. b The
schematic representation shows the cholesterol synthesis pathway with down- and upregulated genes color-coded in blue and red, respectively.
The strength of the color corresponds to the degree of down- or upregulation

Significant expression differences in these situations
can only be revealed when the confounding effects of
stroma is accounted for. Since this pattern is preva-
lent throughout the entire cholesterol pathway, we
hypothesize that stroma confounding is the main rea-
son that this pathway has not been identified in pre-
vious analysis of prostate cancer patient cohorts. The
only cohort that did not highlight cholesterol synthe-
sis was the cohort from Chen, which showed a con-
sistent absence of significant cholesterol genes in the
balanced dataset (Additional file 1: Figure S4). How-
ever, the cholesterol gene expression pattern from the
unbalanced dataset in Chen was similar to the other
cohorts.

The selection of stroma genes does not cause bias on
differential expression of cholesterol genes

It is important to establish that gene-sets representing
stroma content do not impose unwanted biases with re-
spect to the differential expression of cholesterol genes
in additional cohorts. Here we present three arguments
why this is unlikely for the cholesterol pathway genes in
this study. 1) The stroma gene-sets were generated from
two independent sources, but produced similar and
stable results. 2) Cholesterol genes were either absent or
ranked low in the stroma gene-sets. Nevertheless, all
genes involved in the cholesterol pathway and regulation
were excluded from any stroma gene-set during analysis
to ensure unbiased sample stratification. Moreover, re-
introduction of these cholesterol genes into the stroma
gene-sets did not affect the stratification of samples into
balanced and unbalanced datasets in any of the seven
cohorts, showing that cholesterol-genes had no impact
on the sample stratification. 3) The histopathology

cohort from Chen was the only cohort that did not high-
light cholesterol pathway genes as significant in the bal-
anced dataset. Yet, all the balanced datasets in the other
six cohorts still highlighted cholesterol genes as highly
significant when the stroma gene-set derived from the
Chen was used to balance the samples. Likewise, choles-
terol pathway genes were not highlighted as significant
in the balanced dataset from Chen when the stroma
gene-set from Bertilsson was used to balance the samples
in this cohort. This shows that both the Chen and the
Bertilsson stroma gene-sets maintained the divergent
balanced expression patterns for cholesterol genes when
used in these two cohorts.

We also investigated two additional studies from the
literature which could complement the findings in our
study. One study emphasized cholesterol biosynthesis as
a significant pathway in prostate tissue samples using
gene ontology analysis [42]. After analysis of the supple-
mentary data material, genes in the cholesterol pathway
showed negative cancer-to-normal fold-changes in that
study (Additional file 3). The second study consisted of
50 samples (36 prostate cancer and 14 normal) [43] col-
lected using laser micro dissected tissue to avoid con-
tamination from the stroma. Cancer-to-normal fold
changes were negative for all key cholesterol genes in
this study as well (Additional file 3). Thus the data in
both these studies support the findings in our study.

Decreased cholesterol synthesis may be beneficial for
prostate cancer

Given the positive association between cholesterol and
prostate cancer incidence, and the positive effect of sta-
tins on patient outcome, a consistent transcriptional
downregulation of the cholesterol synthesis pathway in

Table 3 Gene ontology analysis identifies steroid, sterol and cholesterol biosynthesis among the most significantly altered pathways

in prostate cancer

GO term g-value using Bertilsson gene- set g-value using Chen gene-set
Cell Adhesion 6.7e-8 6.6e-8
Signal 1.3e-7 1.6e-8
Glycoprotein 2.0e-8 1.1e-7
Steroid Biosynthesis 5.4e-6 43e-6
Cholesterol Biosynthesis 37e-4 1.7e-5

Footnote: The analysis was performed using the top 500 ranked genes from the balanced analysis in the five-study-cohort as input to DAVID. Only the top terms
are listed. All terms are from the category “SP_PIR_KEYWORDS". The top categories were the same when the top 1000 ranked genes were used. All terms related
to steroid, sterol and cholesterol synthesis were part of the same functional cluster in DAVID
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Fig. 4 Differentially expressed genes from involved in cholesterol regulation, uptake, efflux and transport. Results from individual cohorts as well
as the seven-study-cohort can be found in Additional file 1: Fig. S5. a The figure shows —log10 p-values multiplied by 1 for upregulated genes, and
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representation illustrates the cellular function of the selected genes, with down- and upregulated genes color-coded in blue and red, respectively.
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prostate cancer is a surprising observation. Although
studies in prostate cancer cell-lines have demonstrated a
role for cholesterol synthesis in tumor growth and ag-
gressiveness, we have, after an extensive literature
search, yet to see solid evidence for in vivo transcrip-
tional upregulation of cholesterol synthesis in prostate
cancer compared to normal tissue. Based on our results,
we thus speculate how our observations may fit into the
established mechanism of cholesterol metabolism for
prostate cancer and for cells in general.

The regulation of cellular cholesterol levels is a highly
complex and dynamic system, involving multiple feed-
back mechanisms (Fig. 4b), where downregulation of cel-
lular  cholesterol  synthesis is not necessarily
contradictory to other observations. Cholesterol homeo-
stasis in the cell is controlled by cholesterol synthesis,
transport and storage, but the true in vivo balance be-
tween these sources has yet to be elucidated. The most
established enzymes related to cholesterol homeostasis
are HMGCR and LDLR [8]. HMGCR is the rate limiting
enzyme for the cholesterol synthesis pathway in the cell,

while LDLR controls the uptake of cholesterol from cir-
culating Low Density Lipoprotein (LDL). In addition, the
cell can store excess cellular cholesterol in prostasomes
[4] or by cholesteryl esterification in lipid droplets [9].
Increased availability of cholesterol from the environ-
ment may allow cells to shift their source of cholesterol
from synthesis to uptake. Since cholesterol synthesis is
energetically expensive [44], this shift can be beneficial
for the cancer cell to save energy, and a recent study in
prostate cancer cell-lines showed that environmental
cholesterol can supplement cellular cholesterol levels as
a response to cholesterol synthesis inhibition [45]. Thus
molecular precursors for cholesterol in the cell can be
used in other pathways important for cancer growth.
The shift may also prevent the anti-tumor activity of side
products in the cholesterol pathway like oxysterols and
isoprenoids, though the in vivo relevance for this mech-
anism is debated [45-48]. Additionally, the shift can
provide an explanation why statins have a beneficial ef-
fect on prostate cancer patients. Statins mostly target
cholesterol synthesis in the liver leading to reduced
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circulating levels of cholesterol [4]. This may limit the
cholesterol available for cellular uptake, with activation of
the cholesterol synthesis pathway and delayed cancer
growth as a result. What contradicts this hypothesis is that
not only HMGCR is downregulated in prostate cancer, but
also LDLR. However, mechanisms alternative to LDLR for
cholesterol and sterol uptake and efflux have been sug-
gested, including changed activity of SLCO transporters
[49] (for example SLCO2BI is strongly upregulated in the
five-study-cohort, Fig. 4a) and modulation to cell-
membrane structures like lipid rafts [3, 7, 50]. Recently,
cholesteryl esters in lipid droplets in prostate cancer PC3
cells were shown to originate from uptake rather than syn-
thesis [51], supporting an increased attention to the role
of cholesterol uptake in prostate cancer. Alternatively, sta-
tins may upregulate HMGCR in prostate cancer directly
through feedback mechanisms [52], again with a possible
cancer-preventive effect. Finally, increased HMGCR pro-
tein levels have recently been shown to correlate with im-
proved clinical outcome in breast [53], colorectal [54] and
ovarian [55] cancer. This may indicate that upregulation
of the cholesterol pathway is a benign tumor characteris-
tic, which is in line with the results presented here.

Expression differences in regulatory genes suggest a
possible compensation in cellular cholesterol synthesis by
decreased HMGCR degradation

At the transcriptional level, HMGCR and LDLR mRNA
are regulated, in particular by SREBF2, and partly by
SREBF1I transcription factors, which also regulates most
of the enzymes in the cholesterol pathway [4, 44, 56]
(Fig. 4b). SREBF is located on the membrane of the
endoplasmic reticulum together with its cofactor SCAP.
SCAP has a sterol-sensing domain, which activates
SREBE-SCAP transport to the Golgi when sterol levels
are low (Fig. 4b). In the Golgi, SREBE-SCAP is enzymati-
cally cleaved twice, which creates the nuclear active form
of SREBFI1/2. In the balanced dataset, SREBF2 is down-
regulated while SCAP is upregulated (Fig. 4). However,
any potential increase in SREBF transport to the Golgi
by SCAP is again counterbalanced by downregulation of
both cleaving enzymes MBTPSI and MBTPS2. Thus the
effect of SCAP upregulation on transcriptional activity is
difficult to assess. HMGCR is also regulated at the trans-
lational level and at the level of degradation. We observe
a strong downregulation of several key genes involved in
HMGCR degradation [56], INSIGI, INSIG2 and AMFR
(Fig. 4). Especially INSIGI is one of the most highly
ranked genes differentially expressed in the balanced
dataset (average rank 9). This suggests that some
HMGCR activity can be maintained through downregu-
lation of INSIGI, and that targeting HMGCR degrad-
ation can be an interesting option for modulating
cholesterol levels in prostate cancer. Studies in model

Page 14 of 17

systems will be necessary to assess the combined effect
of decreased transcription on one hand and decreased
degradation on the other hand. The mechanisms of
translational regulation of HMGCR are not well known,
but may involve feedback regulation from side-products
of the cholesterol pathway [46].

Another pair of transcription factors implicated in
negative regulation of cholesterol is the liver-X-
receptors NRIH3 and NRIH2 (also called LXRA and
LXRB) (Fig. 4b), which dimerize with RXRA and
RXRB to exert their regulatory activity [57]. NRI1H3 is
upregulated in the balanced analysis (Fig. 4), while its
dimerization partner RXRA is strongly downregulated.
We observe an upregulation of NRIH3 targets, in-
cluding the cholesterol efflux genes ABCAI and
ABCGI1, the LDLR suppressor MYLIP and a very
strong upregulation of APOE (ranked highest among
all genes in the balanced dataset). APOE can be an
important constituent of High Density Lipoprotein
(HDL) particles, where formation partly depends on
the export by ABCA1 and ABCGI. However, here our
results are in disagreement with other in vivo reports,
which associates low levels of ABCAI and low levels
of circulating HDL with prostate cancer [58, 59]. We
finally emphasize that the discussion on how our data
relate cholesterol metabolism and homeostasis based
on transcriptional data are circumstantial, and that
more detailed analysis at protein levels in proper
model system is necessary to elucidate these mecha-
nisms further.

Statin use and possible impact on downregulation of
cholesterol synthesis pathway genes

A recent review reports that statins are ingested regu-
larly by 25% of adults aged 45 years and older in the
USA [17]. It is thus a possibility that statin use
among the patients may have influenced the molecu-
lar makeup of the tumor at the time of surgery. We
were not able to obtain sufficient data to conclude on
this issue. Nevertheless, we here discuss the limited
data and information we were able to find. Informa-
tion on statin use prior to surgery were available only
for the Bertilsson cohort, were a total of 26 samples
(18 cancer and 8 normal) were affected. Re-analysis
of the Bertilsson cohort did not change the pattern of
consistent downregulation of cholesterol pathway
genes (Additional file 1: Figure S6). There is one re-
port on the in vivo effect of statin on HMGCR levels
in breast cancer [52]. This report demonstrated that
statins do not necessarily downregulate HMGCR, and
that the effect of statin use was highly heterogeneous
among patients. Currently we find it unlikely that sta-
tin use has a major impact on the highly significant
and consistent results observed in our study, though
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we acknowledge that the information we have on this
issue is too limited to conclude.

Limitations to the histopathological tissue classification

In this study we have used a simplistic tissue classifi-
cation which divide prostate cancer tissue into three
tissue types; cancer, stroma and normal epithelium.
However, this classification does not completely ac-
count for all tissue characteristics observed in pros-
tate cancer, which can be heterogeneous with respect
to all three tissue types. Cancer tissue from the pros-
tate can be further classified into histological grades
by Gleason score [60]. Gleason grading of samples
was provided for six of the seven cohorts, and did
not show any bias with respect to balanced and un-
balanced dataset (Additional file 1: Table S2). We
thus conclude that Gleason grade is not a confound-
ing factor in our analysis. Several studies have shown
that normal stroma can transform into reactive
stroma when located adjacent to cancer tissue [61].
Thus the balanced analysis may also highlight genes
resulting from differences between reactive and nor-
mal stroma. The strength of these differences will de-
pend on the fraction of reactive stroma compared to
normal stroma in the cancer samples. Histopatho-
logical differences between normal and reactive
stroma were not assessed in the cohorts used in this
study, and thus represents a limitation. Finally, nor-
mal epithelium from the prostate can display various
precancerous aberrations with distinct molecular pro-
files [62]. We acknowledge that these are limitations
of the current classification, and that further research
and data generation in this field should focus on de-
lineating additional molecular tissue profiles as well.

Correlation between gene expression and protein levels
Finally, we should emphasize that the transcriptional
changes presented in this study are not directly indica-
tive of changes at the protein level [63]. Additional
protein-level experiments using immunohistochemistry
or mass spectrometry would be necessary to investigate
whether concordant protein changes are also present in
prostate cancer. Nevertheless, it has been shown that
transcriptional change is the most important mode of
HMGCR and LDLR regulation, and that correlations be-
tween HMGCR and LDLR mRNA and protein level are
comparable to correlatons between mRNA and protein
levels in general [64, 65].

Conclusion

Analysis of differentially expressed genes between pros-
tate cancer and normal samples in five patient cohorts,
as well as meta-analysis over seven cohorts, consistently
identified downregulation of nearly all genes in the
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cholesterol synthesis pathway in when the confounding
effect of stroma tissue is minimized. This surprising ob-
servation will have important implications for our un-
derstanding of the complex relationship of prostate
cancer and cholesterol metabolism.
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Additional file 1: Figure S1. Quality assessment of the seven patient
cohorts used in this study. Figure S2. Percentage of stroma genes
shared by comparing genes identified by our described selection
procedure to genes identified by a naive approach using only Pearson
correlation to normal stroma content over all samples. Figure S3. GSEA
score correlations using the stroma gene sets from Bertilsson and Chen
independently for samples in all cohorts. Figure S4. Significantly
differentially expressed genes (prostate cancer compared to normal)
related to the cholesterol synthesis pathway calculated for each of the
five patient cohorts having both prostate cancer and normal samples, as
well as the meta-study for the seven-study-cohort. Figure S5. Signifi-
cantly differentially expressed genes (prostate cancer compared to nor-
mal) related to regulation, uptake, efflux and transport of cholesterol,
calculated for each of the five patient cohorts containing prostate cancer
and normal samples, as well as the meta-study for the seven-study-
cohort. Figure S6. Significantly differentially expressed genes (prostate
cancer compared to normal) in the Bertilsson cohort after samples from
patients reported to have taken statin prior to surgery have been re-
moved (in total 26 samples, 18 cancer and 8 normal). Table S1. GSEA
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