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Abstract: Nowadays, several biometric databases already contain millions of entries of individuals. With an increasing number
of enrolled individuals, the response time of queries grows and can become critical. Fingerprint indexing offers a set of
techniques to reduce the workload of entries, which have to be compared thoroughly. This work surveys research on such
techniques. It focuses on the features of fingerprints, which are used as input. This survey also provides an assessment of the
quality of the body of research in this field. Deficiencies herein are identified, e.g. there is a lack of common datasets and
metrics used for testing.

1 Introduction
Biometric systems are a widespread means for identification of
individuals today. Response times of such systems mainly depend
on three aspects: the response time for an individual comparison of
two fingerprint (FP) samples, the size of the database to be
searched, and the actual hardware used for biometric comparison.
All three aspects result in the biometric system's throughput.

As biometric databases, in general, tend to grow over time, the
throughput declines over time. Nowadays, there are biometric
systems rolled out, which contain several million individuals. The
most prominent and largest example is the Aadhaar project in the
Republic of India. It already contains more than 100 million entries
and targets over one billion people.

In general, classical FP comparison of FP minutiae is
computationally expensive. This survey will refer to this
exhaustive comparison as the thorough comparison. Besides
scaling the hardware, there is another way to increase the
throughput. While some FPs are very similar, some FPs are very
different. When comparing FPs, only those comparisons are worth
a closer look, where both FP samples are similar. For many
comparisons, one can decide at the first glance that both FP
samples are not mated. Thus, one does not need to perform the
thorough comparisons on the entire database but only on a subset.
This reduces the mean response time for an individual comparison
indirectly. This reduction can be done by any kind of filtering the
entire dataset for those, which are most likely relevant for the
current identification query. The number of thoroughly evaluated
entries is, therefore, reduced. This is usually expressed as the so-
called penetration rate, i.e. what ratio of the dataset has to be
compared thoroughly against. If the combination of time for the
overhead of prefiltering and time for thorough comparison of the
remaining entries reduces the mean response time, the throughput
can be increased.

There are mainly two kinds of such prefiltering: FP
classification (FC) and FP indexing (FI). The former clusters all
FPs into distinctive classes. The most common clustering assigns
one out of five pattern types to FPs. FC can reduce the mean
response time. However, it has three drawbacks: the clustering may
be ambiguous for many FPs, it may fail, if the FP sample contains
only a small part of the finger's area, and the penetration rate is not
very low due to the small number of classes. FI assigns one or
more index values to each FP sample. Usually, a fixed number of
features are concatenated to a fixed-length feature vector. This, in
turn, allows a rough but computationally simple comparison. The
comparison is no hard classification such as in FC. It is continuous,

and therefore allows lower penetration rates. FI may, therefore, is
superior to FC. The generation of fixed-length feature values is
common also for other biometric traits. Examples are the so-called
Iris-Code [1] for iris recognition or Eigen-Faces [2] for face
recognition. For both biometric traits, such an indexing is
distinctive enough to allow not only prefiltering but even
identification.

Various approaches to FI have been proposed. This work
surveys the research on this topic. It focuses on the features of the
FP samples, which are used to generate the index vectors. There is
no other survey on the features for FI yet. In addition, the quality of
the body of research is assessed.

The rest of this work is organised as follows: Section 2 gives a
short introduction into FI. The actual survey process is described in
Section 3. Section 4 categorises and describes the reviewed
research items. Section 5 gives an overview of the datasets and
metrics, which have been used in the surveyed works. A summary
with conclusions of this survey can be found in Section 6.

2 Indexing
The technique of FI consists of multiple processing steps. FP
samples are taken as inputs. The final output is a candidate list C.

FI makes use of an index generating function F, which maps an
FP sample on an identifier. This identifier is called an index or an
index vector. An ideal index would be unique for every FP. Thus,
all FP samples of the same FP would be mapped to the same index.
In general, the index generating function is not injective, i.e. one
index may be assigned to more than one sample. It also is not
surjective, i.e. more than one sample might be mapped to the same
index vector. Thus, the index generating function is not distinctive
enough to generate a unique index.

However, the similarity between indices indicates the likelihood
of both being mated, i.e. from the same finger. The comparison of
indices results in an indexing score si representing the likelihood.
Without loss of generality one can assume that a higher score
indicates a higher likelihood. This means that the order of the
indexing scores matters. The actual values and relations in
magnitude do not necessarily have an explicit meaning.

A requirement for FI is that the comparison of indices has to be
way faster than the typical thorough comparison based on FP
minutiae. This aspect of speed is usually achieved by two
techniques: comparing index vectors of fixed length and a
computationally simple comparison, e.g. L2-norm of the difference
between indices.
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The result of an FI for a single query is a candidate list C of
identities. This list C contains a subset of those candidates in the
database, which are most likely targets for a given query sample. FI
can be interpreted as a fast prefiltering before the thorough
comparison will be performed. Fig. 1 visualises how FI can be
integrated schematically into the entire biometric comparison
workflow. The index generating function F generates an index F(q)
for a given query sample q. This index F(q) is compared against
the set of indices F(id): id ∈ DB  of all entries id in the database
DB. Each comparison between two indices F(q) and F(id) results
in an indexing score si F(q), F(id) . Then, an initial candidate list
C of identities is generated. If applicable, the initial candidate list
is reduced further in an additional list reduction process into a final
candidate list. If no list reduction is applied, the initial candidate
list can be passed as the final candidate list. For the sake of
simplicity, this survey will only deal with the final candidate list
and define it as the candidate list C. Finally, all identities in the
candidate list are evaluated by the thorough comparison against the
query q. The final biometric decision is then carried out only on the
remaining candidates. The candidate list C can be generated
according to several policies. Each represents its own idea of how
to use the indexing scores generated by the indexing. Cappelli et al.
identified the five typical policies on how to reduce the candidate
list C:

• Fixed threshold: All indexing scores are compared against a
fixed threshold θ. Only those candidates exceeding the threshold
θ are added to the candidate list C. Thus, the candidate list C is
of variable length. In this case, the indexing score si is
interpreted as a probability for being the mated comparison.
Therefore, the fixed threshold θ represents some kind of
probability, which is at least necessary for being a mated
comparison

C = id:si(F(q), F(id)) > θ, id ∈ DB
• Top N ranking: In this scenario, the candidate list consists of a

fixed number N of candidates, which achieved the highest
indexing scores for a single query q. The constant length of C
allows a forecast on the runtime of an entire query. Only the
order of the index scores is relevant in this case. The actual
values of the index scores are irrelevant. This may help in more
difficult comparisons, e.g. those in which indexing scores may
be low due to bad quality.

• Variable threshold on score differences: The maximum indexing
score smax(q) for a query is identified. The candidate list C
contains all candidates resulting in a comparison score not
smaller than the maximum indexing score reduced by a given
offset δ. This results in a candidate list C of variable length

C = id:s(F(q), F(id)) > smax(q) − δ, id ∈ DB

• Variable threshold on score ratio: This approach is similar to the
approach Variable threshold on score differences. The maximum
indexing score smax(q) for a query is identified. The list C
contains all candidates resulting in an index score exceeding a
given ratio ρ with respect to the highest found index score. This
also results in a candidate list C of variable length

C = id:s(F(q), F(id))/smax(q) > ρ, id ∈ DB
• Oracle: In this case, for every query, the candidate list is of

exactly the optimal size, which is required to include the correct
identity. This workflow would be to thoroughly compare the
candidates in the candidate list until the correct one is identified.
This implies a perfect thorough comparison. Therefore, this
policy is mainly of the theoretical value.

Generating the candidate list can be quite time-consuming, e.g.
if a very long list of indexing scores needs to be sorted. In such
cases, the candidate list generation can take a large amount of the
total time of the FI. The policy for the candidate list construction
might, therefore, be considered as a critical component. All
policies have their own reasoning and are reasonable to some
degree. None of the policies is superior to the others by design.
Every policy has its own to reasonable metrics. 

Other forms of candidate list reduction are possible. For
example, if one was able to decide or knew whether an FP sample
belongs to a male or a female, one could reduce the candidate list
by gender. Dantcheva et al. [3] provided a comprehensive review
of such approaches.

3 Survey
3.1 Survey process

I decided to search for relevant works in the four most relevant
archives in computer science which require a review: IEEE Xplore,
ScienceDirect from Elsevier, SpringerLink, and Association for
Computing Machinery (ACM). Table 1 reports the exact search
phrases. Only original research works have been included in the
survey. Therefore, some additional filtering had to be applied to the
search results. The table also lists the number of research items
found in the review. 

The first screening was to sort out roughly the irrelevant works
from all found results. This was done considering only publication
titles and abstracts. Mainly, there have been two criteria for
inclusion. First, a proposed approach had to be applicable to FP
samples. Second, it is needed to generate a fixed-length index
vector for samples or features, which could be used for FI. In case
of doubt, research was kept for closer inspection during the second
screening.

During the second screening, the remaining publications have
been analysed thoroughly. Some works, which had not been sorted
out before, have been filtered by this stage. No further criteria have

Fig. 1  FP recognition workflow incorporating FI
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been applied at this stage. Deficiencies in the quality of work have
been captured by using a survey questionnaire (see Section 3.2.).

The reference lists of the most popular publications found
during the regular survey have also been inspected. This allowed
identifying additional relevant works, which had been missed by
the search in the archives. Actually, this review is not complete
with respect to all publications ever done in the domain of FI. The
survey is limited by the described review process. To the best of
my knowledge, no ground-breaking features for FI were missed by
this review process.

3.2 Survey questionnaire

The approaches found during the survey have been evaluated
according to a defined catalogue of aspects. Those aspects are:

• [Level]: What is the level of detail?: This aspect shall estimate
how well the actual methods are described. This is very
important for reproduction of the claimed results. The clearer
and the more detailed the description is, the higher the chance of
reproducibility. However, this aspect is subject to the opinion of
the survey's author. This aspect's ratings range from a good level
( ), over a fair level ( ) to a bad level ( ) of
description.

• [Repr]: Is the approach working in a local or a global manner?:
Some approaches inspect local structures, e.g. neighbourhoods
of FP minutiae. Others use a global representation, e.g. the
orientation field of the entire FP sample.

• [Mod]: Which biometric modality is addressed?: This aspect
indicates whether an approach is bound to FP only. Some
approaches are also proposed to be applicable for the modality
palm (P) and some even to any modality (*).

• [Multi]: Is a solution provided to process more than one finger
at a time?: Some biometric systems use more than one FPs as an
identifier, e.g. all four FP of a hand. Checkmarks indicate
whether the approach provides a solution for the combination of
more than one FP.

• [Index]: Is a single index generated for a sample or are there
multiple indices for each feature?: In general, a single index
vector per sample allows a simpler comparison workflow,
because in the other case special consolidations on the sub-
results have to be performed. This aspect correlates slightly with
the aspect of Repr: most local approaches generate indices per
feature and most global approaches generate indices per sample.
However, there are counterexamples.

• O( ⋅ ) : Is there any assessment of computational complexity?:
FI is meant to improve a system's throughput. A proposed
approach shall, therefore, be evaluated on the effort which must
be performed to apply the approach. An approach is even
useless if it is so computationally expensive that there is no
benefit in terms of the throughput at the end. Checkmarks
indicate any assessment of the aspects.

• [·]: Is there any assessment on time consumption?: The aspects
of computational complexity O( ⋅ ) and timing · strongly depend
on each other. Nonetheless, the former is the more significant
one. Checkmarks indicate any assessment of this aspect.

• [Cit.]: How often has the work been cited?: The number of
citations can be interpreted as a rough indicator of the impact of
an approach. The actual number of citations was measured on
Google Scholar on 1st November 2017. The higher the count of
citations, the more important a publication can be assumed.
Google Scholar includes self-citations into the citation count.
Self-citations distort this indicator.

An additional aspect would be the memory consumption of an
approach. In general, this aspect is not addressed by the
approaches. However, it can be derived by the reader.

4 Relevant approaches
The found approaches can be grouped into four domains of
features: FP minutiae, FP ridges, orientation fields, and biometric
scores. Each domain will be described in its own section as
follows. Tables 2–6 give an overview of the found approaches with
respect to the aspects monitored by the survey questionnaire. 

4.1 Approaches using FP minutiae

The vast majority of approaches for FI uses FP minutiae (see
Fig. 2) as a feature. Owing to the use of minutiae, all approaches in
this domain are bound to the biometric modality of FPs. FP
minutiae are also the most common features used for thorough
comparison of FP samples. 

Minutiae are well suited even for biometric identification. Thus,
approaches using FP minutiae for FI make use of very descriptive
and powerful features. Another advantage over other features is the
fact that most of these approaches are applicable without any
knowledge about the original FP sample. They can, therefore, be
also applied to already deployed systems, in which no FP images
are available.

A set of approaches is working on sets of few minutiae. For
each set, features are calculated, which describe the relation of the
minutiae. Germain et al. [12] were the first to propose triplets (see
Fig. 2b) of FP minutiae. The triplets can then be represented by
their geometric features, e.g. angles and side lengths. The number
of possible combinations of minutiae to triplets is very large. When
no restrictions on the triplets apply and an index is generated for
every triplet, the number of triplet comparisons will be even larger.
Therefore, restrictions seem reasonable. Kovács-Vajna [23], Bhanu
and Tan [8], Reddy et al. [37], and Zhou et al. [45] proposed
variations in the selection of relevant triplets and features to be
extracted. These strategies allow keeping the number of triplets to a
reasonable order. Ross and Mukherjee [38] enriched triplet features
with the ridge curves associated with the vertices. The information
on adjacent curves is, of course, a valuable information. By the
way, this approach is quite similar to the methods’ human
examiners would apply. Biswas et al. [9] extended the features of
triplets with information on the local curvature of the ridge
structure. Each region in an FP sample has its own characteristic
curvature. Thus, adding curvature information significantly
increases the total information of a single minutia. The gain in
information of course increases by using not one but three
minutiae. Triplets become very descriptive in regions of strongly
varying curvature. Khodadoust and Khodadoust [22] proposed to

Table 1 Number of relevant research items after the distinctive review stages and instructions for a reproducible review search
Archive # Initial results # After first

screen
#After second

screen
Search command Additional filters

IEEE Xplore 139 40 31 (((Fingerprint) AND Indexing)
AND Biometric*)

‘Conference Publications
Journals’ or ‘Magazines’

ScienceDirect 52 21 16 (‘Fingerprint Indexing’) and
Biometric*

‘Journals’

SpringerLink 33 15 11 Biometric AND ‘Fingerprint
Indexing’

‘Conference Paper’ or
‘Article’

ACM 128 13 5 ( + Fingerprint + Biometric
Indexing)

no filter

from reference lists n/a n/a 19 n/a n/a
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use triplets containing two minutiae and a singularity as corners.
This approach, of course, depends on a reliable detection of the FP

singularities. Detection of the singularities is challenging especially
for FP samples of bad quality. Singularities may not be detected at

Table 2 Approaches making use of minutiae

 

Table 3 Approaches making use of ridges/texture
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all in partial FPs or in FPs with pattern types without singularities
at all, i.e. arches.

Several approaches propose to use a Delaunay triangulation for
selection of relevant triplets. Sampling triplets in such a manner is
a special and popular strategy in triplet selection. Bebis et al. [6]
were the first to use Delaunay triangulation. The advantage of
using this sampling strategy is that a Delaunay triangulation
generates unique sets of triplets. Even though the Delaunay

triangulation may slightly differ, when the minutia positions are
disturbed, most of the Delaunay triangulation usually works stable
for most of the entire FP sample. Liang et al. [29, 30] proposed to
variant integrate the minutia type as a feature. The type of a
minutia can either be a so-called ridge ending or a ridge
bifurcation. Adding such information to the description of minutiae
can enhance the information significantly. However, distinguishing
both types is challenging especially for FP samples of low quality.

Table 4 Approaches making use of biometric comparison scores

 

Table 5 Approaches making use of the orientation field

 

Table 6 Approaches making use of more than one characteristic

 

Fig. 2  Minutiae is characteristic point on the ridge structure: endings (green) and bifurcations (red). Other characteristic points are the singularities: delta
(orange triangle) and core (orange circle). Minutiae can be used for FI in various representations. Usually, neighbouring minutia is described in groups, e.g.
nearest neighbours (3a), triplets (3b), or a sequence (3c). In some cases, the neighbourhood is sampled at a tessellation grid (3d)
(a) Nearest neighbours, (b) Triplets, (c) Sequence, (d) Tessellation
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Vandana et al. [39] proposed to use triplets from a lower-order
Delaunay triangulation. This approach increases the amount of
generated triplets. The approach gets more tolerant to spurious and
missing minutiae. Muñoz-Briseño et al. [34] additionally used
distances to the next nearby singularity as a feature. This
information can be interpreted as a rough indicator of the region in
the FP sample. Again, detection of singularities can be challenging
or even impossible. They further proposed two variations of the
triplet selection by the Delaunay triangulation [33, 35].
Khodadoust and Khodadoust [21], Khachai et al. [20], and Gago-
Alonso et al. [13] also proposed further variations of the Delaunay
triangulation. Those approaches mainly deal with the challenges
arising due to missing and spurious minutiae or from positional
variations of the minutiae.

Some approaches use more than three minutiae. The more
minutiae one use, the more informative the set of minutiae
becomes. These approaches suffer from missing and spurious
minutiae too. Vij and Namboodiri [40] and Iloanusi [15] proposed
to use quadruplets of FP minutiae. In some cases of biometric
comparisons, two FP samples from the same FP share only a small
area. In such cases, finding shared quadruplets will be harder than
finding shared triplets. Thus, the strong gain in information comes
with drawbacks for mated comparisons with the small overlapping
area. Iqbal and Namboodiri [16] proposed to combine triplets and
quadruplets of minutiae and perform cascaded filtering on these.
This approach, therefore, tries to combine the benefits from triplets
and quadruplets. Cappelli et al. [10] proposed to represent minutiae
and their relative neighbourhood in a compact form called minutia
cylinder code (MCC). In this approach, a cylinder describes the
relative position and relative angles of the neighbouring minutiae
(see Fig. 3). The cylinders represent a special tessellation grid.
Neighbouring minutiae are represented as Gaussians on the grid.
This deals with the sampling errors on the grid and also enables
tolerance to slight positioning errors of minutiae. Each plane in the
cylinder represents a relative angle with respect to the central
minutia. By the way, actually it is not a cylinder but a torus, which
allows dealing with the cyclicity of angles. MCC is the only
approach, which was evaluated at benchmark FP verification
competition (FVC)-ongoing [47]. FVC-ongoing is the only
available independent benchmark for FI. There is an software
development kit (SDK) for MCC available by the way. MCC is the
base for some variations. Wang et al. [42] proposed to reduce the
size of the cylinders. Even though the original MCC has a compact
format, only a small share of each cylinder is non-zero, i.e. the
points where the neighbouring minutiae lie. This fact allows
reduction of the size. The original MMC also has a straightforward
tessellation grid. Sampling and quantisation leave space for
improvement here. Bai et al. proposed, therefore, to use statistics
on the cylinders for an improved quantisation of the cylinders [5].
Zhou et al. [46] proposed an alternative hashing for MCC. Li et al.
[27, 28] proposed two variants of descriptions of neighbourhoods,
described as minutiae discs. Neighbouring minutiae are represented

here in polar coordinates. Polar coordinates enable a more natural
dealing with positional and angular relations compared with
Cartesian coordinates. 

There are further approaches describing local neighbourhoods
of minutiae (see Fig. 2a). Those approaches usually use the nearest
neighbouring minutiae around a central minutia. These
neighbourhoods, therefore, are local descriptions. Such
descriptions can be interpreted as small puzzle pieces. Those
usually allow how to deal with a biometric comparison of FP
samples with a small overlap. In such cases, only very few puzzle
pieces match between the FP samples. Kumar et al. [24] proposed
to add some undefined features to minutiae. Mansukhani et al. [32]
and Bai et al. [4] proposed to use trees for fast comparison of local
minutia neighbourhoods. Hartloff et al. [14] used series of
neighbouring minutiae and concatenated them into sequences (see
Fig. 2c) of minutia. Those sequences have similar features such as
triplets or quadruplets. The concatenation of minutiae to sequences
can be interpreted as a sampling strategy of neighbours such as in
the approaches using triplets. However, this approach might be
promising for comparisons of mated FPs with very small overlaps.
This interpretation of minutia sequences as strings allows using
methods from string processing. Benhammadi et al. [7] proposed to
describe the minutia by their surrounding local orientations in so-
called minutia code. Local orientations give an idea, in which
region of an FP the sampled minutia is in. The representation is
especially expressive in regions of high curvature or near-
orientation field singularities.

Some approaches deal in more detail with the index generation
from the features. Le and Bui [25] and Le [26] improved the index
generation, e.g. with error-correcting codes. Wang et al. [41]
proposed a variation of locality-sensitive hashing (LSH) on FP
minutiae.

There are also ideas, which only aim at a fast comparison but do
not necessarily use a fixed-length representation. For example,
Nagati proposed to use only the minutiae in the central region for a
fast but thorough comparison [36]. This region usually contains the
highest curvature and dynamic. One can assume that most of the
information is clustered in this region. However, by doing so
available information is discarded. The reduction to a quite small
region automatically introduces the problems arising from the
small overlap between FP samples. Jayaraman et al. [19] described
the local neighbourhoods in the regions around the singularities.
Chen et al. [11] proposed to compare just a subset of minutiae in a
thorough manner. Both approaches suffer from the same drawbacks
as the approach proposed by Nagati.

Other approaches use minutiae for a global representation. Jain
and Prasad [17, 18] proposed two variations of a geometric
representation of all minutiae of an FP sample. This representation
is called spiral tree and can be used for feature extraction. The
generated representation looks like a snail shell. This
representation is quite helpful for visual inspection since it allows
easy comparisons between two FP samples. Weaknesses of the

Fig. 3  MCC encodes a neighbourhood of minutiae. Each neighbouring minutia (purple) is represented with its relative angle and position to a central
minutia

 

6 IET Biom.
© The Institution of Engineering and Technology 2018



approach might be the detection of the innermost point of spiral
tree and the disturbance from spurious and missing minutiae. Yang
et al. [44] proposed to assign a value from a random look-up table
and three pixels each to each pixel in an image. The random look
up induces revocability. Xu and Veldhuis proposed to use a
complex representation of the FP minutiae [43]. Each minutia is
represented by a complex impulse in the image domain. A
minutia's orientation is encoded into the phase of the impulse. By
applying Fourier transformation and mapping to polar coordinates,
this approach is invariant to translation and rotation. Fourier
transformation enables the invariance to translations. Rotations in
the image domain result in translations in the polar coordinates of
the Fourier spectrum. These translations can be dealt with by
application of correlation between two samples. Thus, this
approach nicely uses signal processing techniques. Liu et al. [31]
proposed to combine minutiae with a modification of BioCode
(which originally included an additional token). External tokens
induce extra effort for users but usually enable them to apply
verification approaches rather than identification approaches, of
course.

4.2 Approaches using FP ridges

Several approaches for FI make use of the ridges of the FP
samples. Thus, those methods are dealing with the textures in an
image. Such approaches usually assume that FPs actually look
similar between multiple impressions. This assumption does only
hold for some samples. Usually, two FP samples of the very same
FP vary. The stronger the variation is, the less applicable those
approaches are. Table 3 lists the found approaches. Four
approaches propose to use local descriptors, which are commonly
used for dealing with textures. Those techniques are often used for
the task of image registration, which can be seen as a similar task
to find out how two FP samples fit together. Shuai et al. proposed
to use a fixed number of scale-invariant feature transform (SIFT)
[48] features as a descriptor (see Fig. 4) [49]. SIFT features are
scale invariant and were quite popular for matching two images,
e.g. in computer vision with two cameras. Since actual sizes of
structures in an FP are known due to known image resolutions and
physiological limitations of FPs, the scale invariance of the SIFT
features might be an unnecessary restriction of the feature
description. For instance, a twice as large copy of an FP sample
would match the original FP perfectly, while two samples of such
scaling difference could never be originated from the same FP. FP
samples of low quality usually differ strongly. Such variations
make SIFT even less applicable. He et al. proposed a combination
of speeded-up robust features (SURF) [50] and DAISY [51]
features to describe the textures [52]. SURF features are similar to
SIFT features, while replacement of internal filters leads to a speed
up compared with SIFT features. The same restrictions as for SIFT
features apply for SURF features as well. The speed up is mainly
achieved during the feature index generation, in which timing is of
little relevance. Zheng et al. [53] used only SURF features but
combined it with clustering. Nanni and Lumini [54] proposed to
use a selection of local descriptors for FI. Some other approaches
focus on the description of a small region of the FP sample. Like in
the approaches for FPs, the reduction to sub-region has always
discarded information. Challenges from comparisons of samples

with small overlap do also apply here. Those approaches usually
detect the FP singularities first and process only the area around
those singularities. Liu et al. [55] were the first to describe this
central region. Zegarra et al. [56] proposed to use a wavelet
decomposition to describe this region. Representation with
wavelets usually requires a precise alignment of the input samples.
Alignment is a research field on its own, which brings its own
challenges. Wavelet approaches usually are also disturbed strongly
by elastic transformations. Komal et al. [57] described the central
region with a variation of the radon transformation. The radon
transformation can be understood as a representation for lines. This
makes it an appropriate means for the description of FP ridges.
However, the flow of FP ridges is disturbed by FP minutiae. Yang
and Park [58] proposed the usage of invariant moments in the
central region. These moments are invariant to position, scale, and
rotation. This makes a precise alignment irrelevant. 

Three other texture-based approaches have been proposed. Feng
and Cai [59] proposed to calculate so-called ridge invariants from
the ridge structures. This approach is related to the minutia-based
approaches as it describes ridges by minutia on them. However, the
focus here is on the ridges. Indices are generated for lines, which
cross over FP ridges. The ridges are identified by minutiae on
them. This approach imitates the method a human examiner might
use when he counts ridges between minutiae. The approach,
therefore, also might deal well with elastic distortions of the FP
since those disturbances cannot change the connections of ridges
between minutiae. Jakubowski and Venkatesan [60] proposed to
use the count of crossings of the ridge structure over several
random lines. This method does not only describe the texture but
also the orientations found in the FP samples. This approach would
require an alignment. Otherwise, the approach would fail since the
random lines would cross different ridges. This approach is not
tolerant to elastic deformations. Jazzar et al. proposed to use
Zernike moments for the description of an entire FP sample.
Zernike moments are invariant to rotation by definition and can be
modified to be also invariant to scaling and translation. Those
moments are derived from a set of complex polynomials, which
form an orthogonal base. This results in a compact description of
the FP ridge structure.

4.3 Approaches using scores

All approaches in this domain of features make use of the
conventional and thorough biometric comparison. Those
approaches use the biometric comparison scores as a biometric
feature on its own. The key to still achieve an improvement in
throughput is to compare only a small fraction of the entire search
database. The most charming aspect in such approaches is the fact
that one incorporates the same technology as in the thorough
comparison. What cannot be compared correctly during FI, will
most likely not be compared correctly during the thorough
comparison anyway. As the thorough comparison usually makes
use of FP minutiae, these approaches can also be linked to the
minutia-based approaches in Section 4.1. They make use and
benefit indirectly from these descriptive features. Improvements
over time made in the thorough comparisons may also result in
improvements in such FI approaches. On the other hand, all
approaches will suffer from the same challenges, which are also
present during the thorough comparison. Most challenging here are
partial FPs, which potentially result in mated comparisons with a
small overlap. Table 4 gives an overview of the five approaches in
this feature domain.

Gyaourova and Ross [62–64] proposed a total of three
approaches, which are all quite similar in their basic idea to use a
bag of approach. The idea here is to identify a set of samples in the
search database, which represents some prototypes of FPs. All
queries are compared only against this set (bag) of prototypical
FPs. Each score is a single feature in the index (see Fig. 5). It is,
therefore, a representation by means of the similarity to prototypes.
It is assumed that all impressions of the same FP will result in
similar biometric scores when compared with the prototypes. This
approach is slightly related to the so-called Doddington Zoo [65]
because it assumes that each FP will generate its individual

Fig. 4  Scale-invariant features can describe textures (coloured circles).
These descriptors can be matched (green lines) and may also be used for FI
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biometric score distribution. The fixed number of thorough
comparisons allows assumptions on the processing time. Partial
FPs may result in small biometric scores for all pattern types.
Depending on the policy for candidate list construction, partial FPs
will then result in very long candidate lists or the correct identity
might not be on the list at all. Cappelli et al. [66] proposed to
perform only a few comparisons. The idea of Doddington's Zoo
also applies in this case. For instance, there are some FPs matching
well with many others. These are called chameleons. For so-called
ghost FPs’ mated and non-mated comparisons both result in low
biometric scores. Murakami and Takahashi [67] proposed a slightly
related approach. They used a few scores to imitate a search
against an entire database. This approach strongly depends on the
predictive power of those few scores. 

4.4 Approaches using orientation fields

There are also approaches, which make use of the orientation field
of the FP samples. The orientation field is a representation for the
local orientations of the ridge structure. It is a so-called first-level
feature. The orientation field is such a distinctive feature that it can
be used especially for exclusion during FP comparison (see Fig. 6).
However, estimation of the orientation field is no trivial task. The
estimation may fail especially in regions of bad quality. Estimation
of the orientation field is a research field on its own [68].
Moreover, orientation fields are also the most frequently used
feature in FC approaches [69]. Approaches using the orientation
field, therefore, have similar advantages and drawbacks as
approaches in FC. The main advantage over FC is the fact that
there is no hard classification in pattern types. FI allows continuous
index vectors. This mainly allows dealing with two challenges in
FC. First, even though the classification sorts into single classes,
the classification is unambitious in some cases. There is a small
inter-class variance for some classes of pattern types. The transition
from one pattern type to another is continuous in those cases.

Second, two FPs from the same pattern type may still have really
different orientation fields. Actually, there is a quite large intra-
class variance for some FP classes. For instance, singularities may
be quite close to each other in one FP sample and far away in the
other. Descriptive power is not used if one uses only hard classes
such as in FC. Another advantage of using orientation fields for FI
is the fact that orientations fields are smooth and can be modelled
mathematically. This allows making estimations of what the
orientation field looks such as in regions close to the area of the
actual FP sample. This, in turn, allows dealing with biometric
comparisons with a small overlap. However, this hypothetical
advantage is not used by any approach. Another charming aspect of
using orientation fields is the fact that the orientation field is
visually perceivable and understandable for humans. One can
easily see and tell, why FI using orientation fields works in some
cases and fails in the other cases. Many approaches are neither
invariant to rotation nor to translation. Therefore, those approaches
rely on some kind of alignment before processing. All approaches
use a global representation and generate a single index for each
sample. 

Jain et al. [70] proposed so-called FingerCode. The idea is to
use eight Gabor filters for filtering the FP samples. The eight
resulting filter responses are sampled at a tessellation grid over the
FP sample. The tessellation grid is circular with its centre on a
detected reference point. By doing so, all local orientations and
their signal quality are encoded into a fixed-length vector. This fact
makes the features of this approach very descriptive as it uses the
advantages of the high intra-class variance. FingerCodes are an
appropriate example for visually perceivable and understandable
representation, as differences between different FingerCodes can
easily be identified even by visual inspection. Ross et al. [78]
proposed usage of a square tessellation. In addition, no reference
point is required. The FP sample is instead aligned using
information on the FP minutiae. This results in a more or less
simple description of orientation field for the entire FP sample.
Yang et al. used discrete wavelet transform instead of Gabors
filters for [81]. Invariant moments around core regions are used to
generate features. Maio and Nanni [77], Leung and Leung [72] and
Kavati et al. [71] proposed further variations of the MinutiaCode
approach.

Liu et al. proposed to use local symmetries for the alignment of
the FP sample [55]. The aligned orientation field is then used to
generate the index vector. Symmetries again are perceivable by
humans, which facilitate understanding of this approach. Li et al.
[73] used similar symmetric filters for a description of
characteristics in the orientation field. Liu et al. [75] proposed to
use complex filters on the orientation field to find singularities.
Those singularities are used as features. Of course, challenges will
arise, if no singularities are present, e.g. in small FPs.

Some approaches describe the orientation field more directly.
Lumini et al. [76] proposed to use a principal component analysis
(PCA) on the orientation field. With respect to orientation fields,
this approach was the first to evolve from FC to continuous FI.
This is a straightforward approach to generate a compact
representation from an orientation field. Xu and Hu [80] proposed
to use the method of total variation to reconstruct the assumed
orientation field of an FP sample. Total variation is a popular
method for modelling smooth vector fields such as an FP
orientation field. It is quite tolerant to disturbances of the vector
field. As orientation field estimation is no trivial task, this approach
might be quite robust against quality variations between FP
samples. This approach, therefore, makes use of the fact that FP
orientation fields are smooth. Finally, a sparse representation is
generated from the reconstructed orientation field. Turky and
Ahmad [79] proposed to use self-organising maps for a description
of the orientation field. The self-organising maps can also be
finally used to for generation of the index vector. Self-organising
maps have the capabilities to deal with disturbed inputs. This
approach may, therefore, be appropriate for FP samples of low
quality.

Fig. 5  Biometric scores can be used for FI. Comparison against a set of
prototypes will result in similar biometric scores for similar FPs

 

Fig. 6  Orientation field describes the local orientations (roughly indicated
as green lines) of the ridge structure. The orientation fields are dominated
by the positional relation and the presence of singularities (yellow and red
crosses). Orientation fields have already been used for FC, which classified
each FP into a distinctive pattern-type class. Each pattern-type represents a
large variation of orientation fields (compare Figs. 6b and c). Orientation
fields can also be used for FI
(a) Arch, (b) Right loop, (c) Right loop, (d) Whorl
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4.5 Hybrid approaches

A few approaches have been proposed, which use features from
more than one domain. These approaches, in general, do not
propose new features for generation of index vectors. They only
combine features proposed by others. Owing to the combination of
features and the fact that more information is processed, these
approaches may achieve higher accuracies. Another advantage is of
course that if a single sub-component such as the orientation field
estimation is improved, the entire FI may be improved. On the
other hand, such hybrid approaches may be prone to failures in the
single sub-component. Such approaches may unintentionally
combine not only the advantages but also the drawbacks of their
sub-components. In some cases, each feature is indexed for its
own, and in some cases the features are used jointly. All found
approaches use a global representation of the features.

Even though these approaches do not provide any new features,
they are still worth listing here. Lee et al. [82], Jiang et al. [83], Liu
et al. [84], and Cappelli [85] proposed to use the orientation field
and ridge frequencies (describing distances between neighbouring
ridges) as features for FI. Later, Cappelli and Ferrara [86] extended
this approach with the use of MCC. Paulino et al. [87] extended
this approach even further. They proposed to use a combination of
minutia triplet, MCC, the orientation field, FP singularities, and
ridge frequencies. Bazen et al. [88] combined orientation fields and
minutia. de Boer et al. [89] used orientation fields, FingerCode,
and triplets for FI. Pandey et al. proposed to use minutia triplet,
MCC, and the orientation field for FI [90]. All features are
compared individually. In the end, a fusion of all three results is
performed. Han et al. [91] proposed a hashing directly on the FP
minutiae and enriched the minutiae information with features
extracted from the FP image.

5 Usage of data and metrics
Standardisation organisation International Organization for
Standardization (ISO) is currently working on the topic of indexing
techniques. However by now, there is no standard to evaluate
biometric indexing. Thus, there is also no standard test set. The
surveyed works evaluated their proposed approaches on a
multitude of different datasets. Table 7 gives an overview of the
evaluations. 

There are datasets publicly available for evaluation. The
benchmark series FVC has four editions, which supply the
following volumes of datasets: 2000 [92], 2002 [93], 2004 [94],
and 2006 [95]. National Institute of Standard & Technology
(NIST) provides a so-called special database NIST SD4 of rolled
FPs [96]. There is a variant of this dataset available, which
reassembles a natural distribution of pattern types: NIST SD4 nat.
NIST also provides another dataset of rolled FP: NIST SD14. The
University of West Virginia provides the multi-modal dataset
WVU. This set also contains FP samples. All datasets have
individual characteristics. Table 8 provides information on the
characteristics of the datasets. Table 8 shows which approach has
been evaluated on which dataset. Some approaches have been
evaluated on the unknown, sequestered or only rarely used
datasets. Those datasets are summarised to the category Others.
Two datasets have been used for testing most often: FVC2002 DB1
and the NIST SD4 or rather its natural subset. Owing to their
frequent usage, both can be seen as some kind of pseudo-standard
test sets. In general, no reviewed work gave reasons for selection of
the evaluated datasets. 

When dealing with pattern recognition, generalisation is an
important aspect. Generalisation indicates how well a task can be
solved by an approach to unknown data. A method's degree of
ability to generalise can be assessed typically in two ways. First, a
strict splitting of the data into a part used for training and a part for
testing. Second, testing on multiple different test sets may reveal
the ability to generalise with respect to a larger variety of data.
Achieving good results on a single dataset may just be a fluke.

Most of the approaches have a tunable parameter. However, in
almost no case a training set to tune the parameters was declared. It
is, therefore, unclear, whether or not a strict splitting of the data has
been applied. This, in turn, allows doubts in the generalisation

ability of most of the approaches. Many approaches have been
tested only on one or two datasets. A larger variety of data would
have been desirable. Unfortunately, only very few approaches have
been tested thoroughly on a larger number of datasets.

FI is meant to be applied to large datasets. Unfortunately, no
really large datasets are publicly available. Some approaches have
been tested on large but sequestered datasets. This does not allow
reproducibility of the claimed results.

Besides the aspect of datasets, metrics are also important when
assessing an approach. There are several policies on how to
generate the candidate list (see Section 2). Each policy has its own
reasonable metrics. In general, no approach was evaluated with
respect to all policies. Usually, only a single policy was evaluated.
This results in a multitude of used metrics, which are not
comparable directly. In addition, even the naming of the metrics is
not following a standard. This results in the confusing usage of a
multitude of synonyms for metrics. Two metrics and their
synonyms are used most frequently: penetration rate and error
rate. The penetration rate is the ratio between the length of the
candidate list and the entire database. The error rate is the ratio of
candidate lists, which do not contain the genuine candidate. Both
rates usually depend on ranks in an ordered candidate list.

It is worth mentioning, that there is an independent benchmark
for FI: FVC-ongoing [47]. This benchmark evaluates on a large,
sequestered dataset. In addition, it would provide common metrics
for evaluation. Thus, FVC-ongoing would allow reasonable
comparison of approaches. Unfortunately, there is only one
approach with published results.

6 Conclusion
FI can be a key processing step when dealing with large FP
databases. Various approaches to FI have been proposed in the
past. This work has surveyed the approaches, which have been
found in the four relevant archives. The approaches can be grouped
into five categories with respect to the features which are
processed. Most approaches use FP minutiae as input features. A
few approaches work on ridges/textures, orientation fields, or
biometric scores. There are also some hybrid approaches.

It is almost impossible to identify a state of the art in FI for
several reasons: first, there is no standard protocol or common
metric. Usually, error rate is evaluated against penetration rate.
Second, there is no standard dataset for evaluation. Even though,
the datasets FVC2002 DB1 and the NIST SD4 are the most
commonly used, only about half the approaches evaluate on these
datasets. Some approaches even evaluated on sequestered data.
Claimed results are, therefore, not reproducible at all. Only very
few approaches have been evaluated on large datasets even though
this would be the use case for FI. Third, there is a lack of
independent external evaluation, even though the benchmark FVC-
ongoing would be available for this very task.

The level of description of the proposed approaches is quite
good in most of the reviewed works. This allows a fair chance of
reimplementation of the approaches.

Unfortunately, several deficiency in the quality of the body of
research has been observed. In almost all approaches, the methods
have a tunable parameter. However, only in very few cases, the
dataset used for optimisation of those parameters is declared. This
lack of declaration makes it impossible for those approaches to
claim separation of training and test data. Having no separation
between training and test data allows no conclusion on a
generalisation of the approaches. However, generalisation is an
important aspect in pattern recognition.

The aspect of computational complexity is a central aspect of
FI. Even approaches allowing lowest penetration rates are
worthless if computation just takes too much time. A very large
fraction of found publications simply neglect this aspect. After all,
about half of the approaches report some kind of timing of their
approaches – even though this is only a weak proxy for the
computational complexity.

Bit sizes of index vectors are especially of interest when
databases are large, which is essentially the use case for application
of FI. Almost no approach explicitly reports this aspect. However,
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Table 7 Checkmarks ✓ indicate reported results for a dataset. Brackets indicate that only a subset has been tested. Some
approaches explicity state a training set or claim splitting training and test data

Brackets indicate that only a subset has been tested. Some approaches explicitly state a training set or claim splitting training and test data.
Bold values indicate header columns and rows.
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thanks to quite good descriptions of the approaches, bit sizes are
derivable.
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