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Perceptually Validated Cross-Renderer
Analytical BRDF Parameter Remapping
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Abstract—Material appearance of rendered objects depends on the underlying BRDF implementation used by rendering software
packages. A lack of standards to exchange material parameters and data (between tools) means that artists in digital 3D prototyping
and design, manually match the appearance of materials to a reference image. Since their effect on rendered output is often
non-uniform and counter intuitive, selecting appropriate parameterisations for BRDF models is far from straightforward. We present a
novel BRDF remapping technique, that automatically computes a mapping (BRDF Difference Probe) to match the appearance of a
source material model to a target one. Through quantitative analysis, four user studies and psychometric scaling experiments, we
validate our remapping framework and demonstrate that it yields a visually faithful remapping among analytical BRDFs. Most notably,
our results show that even when the characteristics of the models are substantially different, such as in the case of a
phenomenological model and a physically-based one, our remapped renderings are indistinguishable from the original source model.

Index Terms—BRDF, SVBRDF, perceptual validation, virtual materials, surface perception, parameter remapping.
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1 INTRODUCTION

In most 3D applications, the appearance of a homogeneous,
opaque surface is represented by the Bidirectional Reflectance
Distribution Function (BRDF) [1]. A number of BRDF models
and resources are available, however they differ in the class of
materials they can represent. There is no efficient general BRDF
model that can be used for all classes of materials [2].

Within automotive and similar industries, design and develop-
ment teams routinely use virtual 3D models which evolve through
collaboration among several departments (for instance design,
marketing and development). In this workflow, it is common to use
many different commercial and in-house 3D tools. Traditionally,
little has been done to facilitate consistent exchange of material
models that preserve appearance across different renderers. This
is particularly complex, since the same material model can be
implemented differently between applications. Indeed, even within
the same rendering tool different shader implementations might be
used between versions. Consequently, there is no way to guarantee
visual consistency between different applications used in a typical
work-flow pipeline [3], [4].

Given a material represented using a specific (source) model,
that is unavailable or implemented differently, a digital artist can
only manually match appearance using a model available in the
rendering tool in use (target). This involves visually matching and
assigning a new set of parameters, to deliver a result that is as close
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as possible to the source reference material. Since their effect on
rendered images is subject to non-uniformities [5] and might also
depend on scene geometry [6], selecting appropriate parameters
for a BRDF model is far from straightforward. Further, due to
the physical interpretation of the parameters and their scale, the
effect of parameters with the same name in two different BRDFs
can visually differ substantially. Thus, when an artist matches
material appearance using only a visual reference encoding BRDF
parameters, guessing how to replicate this is time consuming and
error prone.

In this paper, we propose a novel, automatic, image-based
solution to find the best set of parameters for the target material
model. As input, our method uses a source BRDF model and
a few High Dynamic Range (HDR) images of a rendered sphere
(source BRDF probe). We define the term BRDF Difference Probe
to encode the mapping between source and target BRDF models.
Using an integer Genetic Algorithm (GA) based optimisation, we
find a set of parameters in the target BRDF model, such that
an object rendered using these parameters visually matches the
appearance of the source. A visually indistinguishable match is
only possible if the source and target BRDF models are sufficiently
compatible and cannot be guaranteed in the general case. Our
GA is driven by a computational metric of similarity, defined
in image-space, which compares renderings of a reference scene
under specially designed incident lighting.

The main components of our proposed solution are: a reference
scene, with known geometry and lighting, a set of renderings
(using known parameters) of the reference scene with the source
material model, a GA optimisation that can access the target
renderer and material model, and a fitness function driven by
a computational metric, accounting for the visual differences
between the source and the target model renderings. The efficacy
of our approach is evaluated through numerical validation, user
studies and psychometric scaling experiments. We demonstrate
that renderings of our target models are visually indistinguishable
from renderings using the source BRDF model (Figure 1), even
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when the parameters are spatially varying (SVBRDF).

2 RELATED WORK

Several techniques aim to facilitate material appearance design,
for instance providing an intuitive painting interface like BRDF-
shop [8], or through retargeting techniques that warp the re-
flectance properties of a source material according to the re-
flectance properties of a template material [9]. There is a signifi-
cant body of prior work on material editing, we refer the reader to
a recent survey [6].

The purpose of BRDF remapping techniques is different, since
they focus on parameter specification for analytical BRDF models.
Ngan et al. [5] defined an image-based L2 metric to measure
the distance between BRDFs. This is used to navigate variations
within a model and on the manifold spanned by analytical BRDFs;
reflectance neighbours in other models are found by using precom-
puted conversions and multi-linear interpolation. The use of a L2

norm metric is common in Computer Graphics for fitting measured
data to a BRDF model [10], [11] and for parameter remapping [4].
Another commonly used metric, proposed by Lafortune et al. [12],
tends to over-fit near the mirror direction and is unsuitable for
applications in which human perception is important [5].

Sztrajman et al. [4] address the problem of remapping isotropic
BRDF parameters. Their framework performs a non-linear optimi-
sation using the trusted region reflective method. Starting from an
initial guess of the parameters for the target model, they find a set
of parameters that minimises the L2 metric [10] in image space,
by comparing renderings of a scene with point light illumination.
We highlight the differences between Sztrajman et al. and our
work in Section 3.6, after proving a thorough description of each
component of our framework.

While BRDF fitting has some analogies with BRDF remap-
ping [4], they are very different techniques. Both aim to find
a set of parameters for a BRDF model; however fitting begins
with measured data, whereas remapping takes as input rendered
images. Instead of densely sampling material reflectance data, a
remapping technique samples both the source and target BRDFs
parameters space. In this case virtually each point represents a
different material, leading to a mapping between the two spaces.

3 PROPOSED REMAPPING FRAMEWORK

Our framework is aimed at parametric BRDF models of the
following form, the most common case among phenomenological
and physically based models [2], [13] and widely adopted in
current rendering systems:

ρ(vi,vr) = ρd +ρs(vi,vr) (1)

where ρ is the overall reflectance, ρd and ρs are the diffuse
and specular reflectance, vi and vr are respectively the incoming
and outgoing directions. This excludes models such as Oren-
Nayar [14] for diffuse, retro-reflective materials, non-parametric
[15] and data driven models [2], [13]. These are outside the scope
of our current remapping method.

We employ a GA optimisation, with access to a renderer
implementing the target BRDF model, see Figure 2. Formally,
given a distance metric M(·, ·)∈R in image space, a source model
S controlled by m parameters {pS1, pS2, . . . , pSm} ∈ PS, a target
model T controlled by n parameters {pT 1, pT 2, . . . , pT n} ∈ PT,
m,n ∈ N, m 6= n in general, remapping the source parameters into

the target ones means finding a function (BRDF Difference Probe)
fR : PS→ PT such that, ∀{pS1, pS2, . . . , pSm} ∈ PS:

fR ({pS1 , . . . pSm}) =
{

p∗T1
, . . . p∗Tn

}
=

= argmin{M (IS (pS1 , . . . pSn) , IT (pT1 , . . . pTn))}
(2)

where IS and IT are renderings of the same reference scene
obtained respectively with S and T .

Input to our system is simply a set of HDR renderings of a ref-
erence scene using the source BRDF model, potentially rendered
using other rendering applications or other BRDF models sup-
ported by the same renderer, together with the list of parameters
used for the source model. Our GA begins with a random guess for
the parameters of the target model and accesses the target renderer
to produce a set of images using these parameters. Driven by a
fitness function, which measures the visual difference between the
input and the output renderings, the optimisation requests a new
set of parameters to test, and a new set of renderings is produced.
This process is repeated until termination criteria, related to the
average relative change in the best fitness function value over
a given number of generations, are met and yields our BRDF
Difference Probe.

3.1 Reference Scene Geometry, Lighting and Renders

The reference scene used by the fitness function to perform com-
parisons between the source and target models contains a sphere,
placed on a diffuse checker-board; the incident illumination is, in
turn, a point light source and an environment map.

There are a number of factors we consider with the choice of
illuminant [16]. A point light source, with intensity that decreases
with the square of the distance and provides a smooth falloff in all
directions, allows us to assess how the BRDF spreads incoming
light over the surface, and it is related to parameters such as
the roughness, specularity and anisotropy. On the other hand,
an environment map enables us to describe the appearance of
a sphere receiving light from all directions, as found in natural
environments. An environment map including step edges allows
us to easily relate the edge spread visible on the surface to the
roughness of the surface itself. Hence, we design and use the
environment map shown in Figure 3, which displays sharp edges
between the white, red, green, blue and black colour bands, as
well as fine-scale colour variations in the lower half, together with
rich spectral content. The colours on the environment map allow
a clear analysis of the surface response to different spectral bands.

Almost every implementation of BRDF models in the required
form (Eq. 1) allows independent specification of parameters re-
lated to the terms ρd and ρs, thus allowing these to be rendered
independently, as in [4]. Theoretically, rendering the specular and
diffuse terms independently and adding them up afterwards leads
to the same result as rendering them simultaneously. However,
due to renderer specific implementation choices, related to energy
conservation for instance, this is not always the case, as shown in
Figure 4.

To account for the aforementioned issue, we opt for rendering
a diffuse only image (setting all the parameters related to the
specular term to zero) and a “complete” rendering, in which both
the specular and the diffuse terms have non-zero values, which
constitute the input to our system. This allows us to obtain the
specular term by subtracting the diffuse image from the complete
one (please see supplementary material for an example), further
reducing the dependency of our output on implementation choices.
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(a) (b) (c)

Figure 1: (a) Rendering of a colour checker, using the energy conserving Ward variant. The specular reflectance (range 0.05−0.35) decreases from the top to the
bottom row in equal steps, the isotropic roughness (range 0.01−0.51) decreases in equal steps from the left to the right column. (b), the corresponding remapped
rendering using GGX as a target model. (c) the L2 error plot, normalised for a better visualisation. Incident lighting from the “Uffizi Gallery” light probe [7].

Overall, for each set of source parameters, the following images
are provided as input:
• A diffuse only image, rendered under point light incident

illumination.
• A diffuse only image, rendered under environment lighting.
• A rendering including the diffuse and specular terms, ren-

dered under point light illumination.
• A rendering including the diffuse and specular terms, ren-

dered environment lighting.
The same images are rendered using the target model, upon
request by our GA optimisation. These together with the source
ones, provide input for the fitness function.

3.2 Fitness Function

The fitness function establishes the visual difference between input
and output images, for a given set of parameters. Defined in
image space, it computes a L2-based metric between each pair
of corresponding images (e.g. between the source diffuse image
under point light illumination and the target diffuse image under
point light illumination), thus implementing the metric M in Eq. 2.

Figure 2: Architecture of our automatic BRDF parameter remapping solution.

Figure 3: Our environment map and a rendering of a grey plastic sphere.

(a) (b) (c)
Figure 4: In (a) rendering of a scene using both diffuse and specular terms
at the same time, under environment map illumination. (b) shows the sum
of the specular and diffuse terms rendered independently. In (c) the absolute
difference between (a) and (b).

Table 1: Symbols used in Equation 3.

Symbol Description

I(ρd)SPL diffuse source image, point light.

I(ρd)TPL diffuse target image, point light.

I(ρd)SEM diffuse source image, environment map.

I(ρd)TEM diffuse target image, environment map.

I(ρs)SPL specular source image, point light.

I(ρs)TPL specular target image, point light.

I(ρs)SEM specular source image, environment map.

I(ρs)TEM specular target image, environment map.

‖·‖2 L2 norm.

wD, wS scaling factors for all the I(ρd) and I(ρs) terms respectively.

α scaling factor for the diffuse image pair, point light.

β scaling factor for the diffuse image pair, environment map.

γ scaling factor for the specular image pair, point light.

δ scaling factor for the specular image pair, environment map.

For dielectric materials, the specular term tends to be, on aver-
age over the whole sphere, roughly one order of magnitude smaller
than the diffuse term. Therefore, we introduce two weighting terms
wD and wS, where wS > wD. To allow for more flexibility in
the definition of the fitness function, a different weight can be
assigned to each pair of corresponding terms, by introducing the
additional scaling constants α,β ,γ,δ (see Table 1). The value fv
of the fitness function is computed using the Equation:

fv = wD
(
α‖I(ρd)SPL − I(ρd)TPL‖2 +β‖I(ρd)SEM − I(ρd)TEM‖2

)
+

+wS
(
γ‖I(ρs)SPL − I(ρs)TPL‖2 +δ‖I(ρs)SEM − I(ρs)TEM‖2

)
(3)

Table 1 contains a glossary of symbols used; Figure 5 illustrates
how the computations are performed by the fitness function.

When wD = wS = 1, α = β = γ = δ = 1 and the diffuse
and specular terms are converted into the CIELAB colour space
before computing the norm, Eq. 3 is equivalent to the ∆E76 colour
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difference formula [17].
Since Eq. 2 can be seen as a maximisation of the image

fidelity between source and target renderings, M (and hence the
fitness function which implements it) acts as a full-reference image
fidelity measure [18]. We exploit this concept, and the flexibility
allowed by the scaling factors in Eq. 3, tuning them in order
to maximise the correlation between Eq. 3 and the Gradient
Similarity (GM) metric [19]. See Section 4 for further details.
Other than colour differences, this effectively captures local image
structures, to which the human visual system is highly sensitive.

Many empirical BRDF models, such as Phong [20], Ward [21]
and Lafortune et al. [12], do not account for the Fresnel effect,
which has a significant impact on the appearance of a dielectric,
especially at grazing angles (see Figure 6). This implies that a
remapping from a model without the Fresnel term to a model
accounting for it (and vice-versa), will lead to high errors towards
object silhouettes, which might dominate the value of the fitness
function and lead to inaccurate results. To obtain a good fit this
must be taken into account, through an extra weighting function
which gives more importance to the central area of the sphere
in the reference scene, rather than the edges. We implement a
weighting function as a mask (“Optional mask” in Figure 5),
derived with the equation wp = 1− (‖p−C‖2/r)

1
2 , where p are

the coordinates of a pixel on the sphere in the image lattice, C are
the coordinates of the centre of the sphere and r is its radius.

Figure 5: Computations performed by the fitness function.

3.3 Integer Genetic Algorithm Optimisation
Genetic algorithms are a class of stochastic search strategies mod-
elled after evolutionary mechanisms. GAs have been successfully
used in Computer Graphics, for instance in the context of learning
new analytic BRDF models [11].

Given a fitness function to be optimised, a genetic algorithm
randomly selects some points in the definition domain, which
constitute the initial population. At each step of the optimisation,
the genetic algorithm accounts for the fitness function and selects
some individuals from the current population to be parents. From
these points the next generation of children is produced, either by
crossing over the vector entries of two parents (their “DNA”) or by

(a) (b)

Figure 6: In (a), rendering of a green plastic sphere under uniform incident
spherical lighting, accounting for the Fresnel term (GGX model, on the left)
and without accounting for it (Ward model, on the right). In (b), the normalised
specular reflectance profiles of the two models behaves in the opposite way.

applying small mutations to the “DNA” of a single parent. Finally,
the best performing individuals “survive” to the next generation.

GAs offer a suitable strategy to optimise both constrained
and unconstrained non-linear systems with a large number of
variables, in particular when it is challenging to accurately model
the interaction between them and incorporate such information
into an analytical cost function [22]. Hence, GAs can be used when
no information is available about the gradient of the function,
which does not need to be continuous nor differentiable. They
also provide good results even when the function has several local
minima. The evaluation of a BRDF model potentially involves a
high number of variables and the exact implementation is rarely
available. Therefore, it is impossible to accurately model the
interaction among all variables.

As with most optimisation techniques, a standard GA expects
as input a continuous variable. However, in image-based remap-
ping techniques, there is a high computational overhead for each
point to sample in a continuous space, due to the need to render
one or more images to compute the objective function [4].

Given the above, to reduce computational overhead it is desir-
able to set a step for each dimension involved in the optimisation,
thus fixing the resolution of a regular lattice in the target BRDF
parameter space. In our framework we employ integer GA opti-
misation, where the rules to create the initial population, parents
cross-over and mutation, force the variables to be integers [23].
Given a parameter x which assumes values x∈ [ψ−Ψ], a sampling
resolution ζ , a mapping x̄ ∈ {ψ,ψ + ζ . . . ,Ψ} → N+ can be
derived through i = b(x̄−ψ)/ζc+ 1, i ∈ {1, . . . ,b(Ψ−ψ)/ζc}.
Please note that other mappings from the discretised parameter
domain to N+, allow a non linear sampling. The fitness function
is augmented by a parameter-free penalty term, related to the
feasibility of the solution (i.e. whether each integer variable vk to
optimise is in the range vk ∈ {1, . . . ,b(Ψk−ψk)/ζkc}). If a mem-
ber is feasible, the penalty function is the fitness function itself;
otherwise, the penalty function is the maximum fitness function
among feasible members of the population, plus a sum of the
constraint violations of the point. To select individuals for the next
generation, pair-wise comparison in tournament selection is used.
In the tournament selection, two individuals are randomly picked
from the population and compared. Any feasible individual is
preferred to any infeasible one; between two feasible individuals,
the one with a lower value of the fitness functions is preferred.
Finally, between two infeasible solutions, the one with a smaller
constraint violation is preferred. Overall, the tournament selection
directs the optimisation towards the feasible region [24].
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3.4 Remapping Strategies
Finding the BRDF Difference Probe mapping the set of m source
parameters to the set of n target parameters is achieved in two
different ways, unconstrained and constrained remapping.

(i) Unconstrained remapping: given a m− tuple of source pa-
rameters, allow the GA to explore any n− tuple of target
parameters searching for the best mapping according to the
fitness function.

(ii) Constrained remapping: given a set of m− tuples of source
parameters, constrain the GA to explore variations in only
one source parameter at a time. The sequence of source
parameters must be provided in a monotonically increas-
ing fashion. The starting point of the search in the target
parameter space makes use of previously remapped param-
eters. It follows that the mapping between corresponding
parameters is monotonically non-decreasing: if for a given
source parameter pSi, related to a target parameter pT j, a
mapping {pSi = κ} →

{
pT j = υ

}
is found, then for a value

of pSi = κ +δ , δ > 0, a suitable mapping can only be greater
or equal to pT j = υ .

Strategy (i) can be immediately applied and does not require any
particular care. However, (ii) involves some additional consider-
ations and prior knowledge of the semantic relationship among
parameters, but with the benefit of a progressive reduction of
the search space and computational time and the inverse mapping
from target to source models.

3.5 BRDF Difference Probe
Once the GA discovers a set of parameters for the target BRDF,
for a given set of source renderings and parameters, these are
stored in a look-up table indexed by the parameters of the source
BRDF. The algorithm then starts the optimisation with a new
set of source renderings and parameters. When all the source
parameters/renderings provided as input have been remapped to
the target BRDF, the fitting module takes care of finding a smooth,
analytical relationship between the input and output parameters,
through local regression smoothing. When such a relationship
cannot be found, the output is the aforementioned look-up table.

3.6 Differences with Previous Work
In this Section we provide a summary of the main differences
between our work and the closest related one, by Sztrajman et
al. [4]. The first important difference is the objective function
used. While in [4] a standard L2 metric in image space is used, in
our work we modify the standard definition to allow our fitness
function to account (at the same time) for colour differences
(∆E76 [17]) and gradient differences (GSM [19]). Consequently,
we exploit two features to which the HVS is extremely sensitive,
thus providing a perceptually accurate remapping, as demonstrated
in the remainder of the paper. Finally, our fitness function, by
means of the optional masks, allows us to more robustly deal with
a remapping from a model with a Fresnel term to a model without
it, and vice-versa.

The second important difference is the type of optimisation
used. By means of integer GA optimisation, we are able to force
the search space in the target BRDF model to be a regular N-
dimensional lattice, sampled at a arbitrary resolution, thus enor-
mously reducing the number of rendered images during the opti-
misation. Further, we apply several computational optimisations to

reduce the computational complexity, as highlighted in Section 4,
such as the use of a Principal Component Analysis (PCA) based
synthesis, to increase the sampling resolution without the need for
actually rendering the images.

While we demonstrate our framework on both anisotropic
BRDFs and SVBRDFs, Sztrajman et al. [4] limit theirs to homoge-
neous, isotropic BRDFs. Furthermore, unlike Sztrajman et al., our
framework relaxes the need for users to provide an initial guess of
the target parameters, which for BRDF models with a high number
of parameters proves to be difficult, given also the non-uniformity
of their effects [5]. We provide the user with a tool that can be used
either as a “black-box” (unconstrained remapping) or incorporates
previous knowledge about the semantic and functional relationship
among source and target parameters (constrained remapping).

4 EXPERIMENTAL SETUP

Our framework is implemented using Matlab. Although any ren-
derer with a scripting interface can be used for the experiments
reported in this paper, we use the Mitsuba renderer [25]. All
experiments are performed on a mobile PC with an Intel R© CoreTM

i7-6700HQ CPU and 32GB memory. The images used to remap
the source into the target models (BRDF Difference Probe) are
rendered at 300×300 pixel resolution.

The scaling factors in Eq. 3 are computed by maximising
the correlation between Eq. 3 itself and the GM metric [19] on
a set of renderings used as a benchmark. We prefer to use our
fitness function rather than GM since the latter is defined on low
dynamic range (LDR) images, and its computation is more than
3 times slower than the fitness function (GM takes about 0.23
seconds for a pair of 512×512 LDR images, compared with 0.07
seconds required by our fitness function for two HDR images at
the same resolution). Hence, we set Wd = 0.25,Ws = 1−Wd ;α =
γ = 0.025,β = 1−α,δ = 1−γ , which gives an average non-linear
correlation (measured as the distance correlation [26]) of 0.783,
and up to 0.943 over the benchmark.

In the following we describe optimisations designed to further
reduce the computational cost of our framework.

Both Strategies. Since the GA involves some random steps,
for a given source input the fitness function could potentially be
computed several times for the same set of target parameters.
To avoid redundant computations we implement a lookup table,
indexed by the values of the source and target parameters. Every
time a new set of source input parameters and renderings are
provided to the remapping pipeline, if a new value of the fitness
function is computed it is stored for fast access. We implement
a database to keep track of all the renderings produced and the
parameters used for each of them. When requested by the GA if
the image already exists in the database, it is simply retrieved and
provided to the fitness function.

Constrained Strategy. For both the lighting conditions se-
lected for the reference scene, we pre-render a set of target images
at a half sampling rate in each target parameter direction with
respect to the rate used in the experiments. PCA is subsequently
applied on the set of pre-rendered images. Since the scene ge-
ometry is fixed and the only variations are due to non-linear
parameters, the first 10 principal components suffice to faithfully
reconstruct the input renderings. For each rendering, the loadings
derived by the PCA are fitted to its parameters, and used to
synthesise the missing renderings to achieve the full sampling rate
requested. This allows us to dramatically reduce the rendering
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time, without affecting the remapping results. PCA is commonly
used in this context [5].

5 REMAPPING OF ISOTROPIC BRDF MODELS

In this Section, we present a set of experiments involving isotropic
BRDF models. We demonstrate the usefulness of our framework
on both a 1D→ 1D remapping case, and on a more general 2D→
3D case, where the dimensionality of the remapping is given by
the number of parameters involved in the source and target models
specular lobes; please note that the remapping also involves the
diffuse component. We use this simpler cases to demonstrate the
main concepts, before addressing higher dimensional cases and
anisotropic models.

5.1 Isotropic BRDF Models - 1D Remapping
To test our framework on the simplest case we focus on metals,
and select as a source BRDF the phenomenological Ashikhmin-
Shirley model [27], whereas the target BRDF is the physically-
based Cook-Torrance model [28], with a Beckmann distribution
of microfacets. The user selectable parameters of the Ashikhmin-
Shirley source model used for the experiments are the real and
imaginary components of the material IOR (material dependent),
and the anisotropic roughness along the tangent and bitangent
directions (respectively RU as,RV as ∈ [0− 1]). Since the target
model (Cook-Torrance) does not support anisotropic materials, we
focus on isotropic conductors, we set Ras = RU as = RV as. As for
the parameters of the Cook-Torrance model, the parameters are
the real and imaginary components of the material IOR (material
dependent), and the isotropic roughness of the microgeometry
(Rct ∈ [0−1]).

To perform remapping we use measured real world con-
ductors, hence the real and imaginary components of the IOR
are determined by the material considered (iridium was used to
find the mapping). To summarise, given the parameters fixed
by the conductor selection, we search for a mapping between
{Ras} → {Rct}. Given the nature of the parameters involved, the
constrained strategy can be readily implemented. The parameters
available for the GGX and Cook-Torrance models are the same,
and we look for a mapping {Ras}→ {Rggx}.

Even the simple 1D remapping allows us to highlight some
challenging situations, for instance when remapping a microfacets
source BRDF, based on a Gaussian distribution, to the target model
GGX, which implements the Trowbridge-Reitz distribution [29].

Table 2: Min, max, mean and standard deviation σ of the NRMSD, per colour
channel, between source (Ashikhmin-Shirley model, A-S) and target (Cook-
Torrance, on the left side, and GGX, on the right side) renderings.

A-S→ Cook-Torrance A-S→ GGX
Red Green Blue Red Green Blue

min 0.0054 0.0046 0.0043 0.0166 0.0154 0.0123
max 0.0305 0.0320 0.0329 0.0546 0.0483 0.0404
mean 0.0107 0.0103 0.0100 0.0247 0.0259 0.0278

σ 0.0078 0.0084 0.0087 0.0097 0.0076 0.0059

Results - Isotropic BRDF Models (1D Remapping)
The test scene used in this set of experiments consists of three
spheres with the same radius, placed on a checker-board and
illuminated by the “At the Window” [30] light probe ( c©Bernhard
Vogl), which displays rich content (windows, statues, furniture,

Figure 7: Remapping of isotropic BRDF models, 1D case. We show the source
renderings (Ashikhmin-Shirley, first column), the corresponding remapped
target images for the Cook-Torrance (second column) and GGX models (third
column). In the insets we report the L2 error maps in RGB space between the
source and target renderings.

etc.); a point light is also included in the scene. We assigned
three different metals to the spheres in the scene (gold, silver and
copper). Figure 7 shows some of the source and our remapped ren-
derings (remapping from Ashikhmin-Shirley to Cook-Torrance),
respectively on the first and second columns. Table 2 gives the
per-channel Normalised Root Mean Square Deviation (NRMSD)
among source and remapped renderings, computed by normalising
the RMSD by the range observed in the source rendering. For
reference, the average NRMSD over ten renderings of the same
scene, due to the stochastic nature of the path tracer and sample
generator, is 0.015.

We repeated the experiment using the GGX model as a target;
while our framework managed to provide a visually satisfactory
remapping from the source to the target parameters (see Figure 7,
third column), the average NRMSD is up to 5.5 times higher than
in the previous case and about 2.5 times on average, as reported
in Table 2. This is due to the very different characteristics of the
microfacets distribution at the core of the GGX model with respect
to a Gaussian distribution, which is engineered to have a narrow
specular peak and a much longer tail than usual. As a consequence,
a rendering using the GGX model displays more shadowing than
many other BRDF models [2]. Figure 8 shows three renderings of
an iridium sphere, from left to right using the Ashikhmin-Shirley
model, the corresponding rendering with the remapped parameter
for the Cook-Torrance and the GGX model.

We note that this simple 1D case could be solved by pre-
rendering the reference scenes by spanning the range of the
roughness in the model (brute-force approach), and then applying
a simple regression on the minima given by Eq. 3. However, this
would not lead to any advantage with respect to our framework. In-
stead, since it would necessitate rendering all the aforementioned
images, even using a constrained strategy, it is equivalent to the
worst case scenario in our framework.

5.2 Isotropic BRDF Models - 2D to 3D Remapping
To test the robustness of the proposed framework on the 2D→ 3D
remapping of isotropic BRDF models, we present as a case study
the remapping from the Ward BRDF [21], in particular the Geisler-
Moroder-Dür energy conserving variant [31] and the BRDF com-
ponent of the GGX model [32], focusing on dielectric materials.
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(a) A-S (b) Cook-Torrance (c) GGX

Figure 8: Visual comparison about the effect of comparable values of surface
roughness on the Ashikhmin-Shirley (A-S), Cook-Torrance and GGX models.

Table 3: Parameters available to the user, in the implementation of the Ward
and GGX models used in the isotropic 2D to 3D remapping experiments.

Ward parameters (dielectrics)
Parameter description Symbol Plausible values
Diffuse reflectance Dw [0−1]
Specular reflectance Sw [0−0.4]
Anisotropic roughness along the tan-
gent direction

RU w ]0−0.7]

Anisotropic roughness along the bitan-
gent direction

RV w ]0−0.7]

GGX parameters (dielectrics)
Parameter description Symbol Plausible values
Diffuse reflectance Dggx [0−1]
Specular reflectance Sggx 0,1
Index of Refraction of the material Iggx ]1−1.85]
Isotropic roughness of the surface mi-
crogeometry

Rggx [0−0.7]

We select as source and target BRDFs two very different models,
the first one being a phenomenological model, not based on the
microfacets theory and with no support for the Fresnel effect.
The second one is a physically based model which describes
a microfacets distribution and accounts for the Fresnel effect.
We believe this case study is of particular interest not only in
computer graphics, but also in the colorimetry and human vision
communities for instance, where phenomenological models and in
particular the Ward BRDF, are widely used [33], [34].

Parameters which can be set by the user, in the implementation
of the Ward and GGX models used for this experiment are listed
in Table 3. Plausible values for dielectrics are derived from the
Mitsuba manual and empirically through additional experiments.
Since the implementation of the GGX model used for this exper-
iment does not support anisotropic materials, we use the isotropic
version of the Ward model, by setting the roughness along the
tangent and bitangent directions to the same value. To derive the
mapping in both models the diffuse reflectance colour is fixed to a
neutral value (grey), hence we aim to find a mapping between the
following sets of parameters:

PS→ PT ;PS = {Sw,Rw} ,PT = {Sggx, Iggx,Rggx} ,Rw = RU w = RV w.

The resolutions for source and target parameters used in our
experiments, spanning the range of plausible values (Table 3), is
reported in the supplementary material. No additional information
is required for the unconstrained remapping strategy; to implement
the constrained one we observe that:

• The specular reflectance in the GGX model, to fulfil energy
conservation, can be either 0 (lambertian material) or 1
(with the Index of Refraction controlling the specularity).
In the Ward model this is equivalent to setting the specular

reflectance respectively to null or any non-null positive value.
• A non-null specular reflectance in the Ward model can only

be related to the Index of Refraction (IOR) in the GGX
model, which controls the Fresnel effect and hence the
amount of energy reflected through pure specular reflection.

• The isotropic roughness in the Ward model can only be
related to the microgeometry roughness in the GGX model.

Results - Isotropic BRDF Models (2D to 3D Remapping)
The test scene used for this set of experiments is the same as in the
1D case; each sphere in the scene has a different diffuse reflectance
(Figure 9). In the first and second columns of Figure 9, we report
a visual assessment of the quality of the unconstrained remapping,
showing some of the source images, the corresponding remapped
target images and the L2 error maps in RGB space (in the insets);
Table 4, top half, summarises NRMSD for all the images used in
the first experiment.

Figure 9: Remapping of isotropic Ward to GGX. We show the source render-
ings (first column), the corresponding remapped target images for the GGX
model, using the unconstrained setting (second column) and the constrained
one (third column). The first row refers to a source roughness of 0.31, whereas
0.01 is used in the second row. In the insets we report the L2 error maps.

Table 4: Quantitative validation of the remapping strategies - isotropic dielec-
tric materials. Min, max, mean and standard deviation σ of the NRMSD, per
colour channel, between source and target renderings.

Unconstrained remapping Constrained remapping
Red Green Blue Red Green Blue

min 0.0105 0.0133 0.0114 0.0113 0.0144 0.0114
max 0.0323 0.0374 0.0440 0.0306 0.0366 0.0440
mean 0.0182 0.0222 0.0262 0.0187 0.0230 0.0268

σ 0.0059 0.0068 0.0097 0.0056 0.0067 0.0102

For the constrained remapping experiment, Figure 9 shows
a visual assessment of the quality of the remapping (compare
the first and third columns); Table 4, bottom half, summarises
NRMSD for all the images used in the experiment.

In both experiments most of the error is localised around the
edges of the spheres, as shown in the insets in Figure 9. This is due
to the lack of support for the Fresnel effect in the Ward model and,
as previously explained, cannot be fixed by a remapping algorithm.

Figure 10 shows an example of remapping a spatially varying
BRDF (SVBRDF), in which the roughness is controlled by a
texture map; once this remapping has been performed as described
in the above, its output can be applied on per texel basis. Similar
considerations apply to the spatially varying specularity (Fig. 1).
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(a) Source (Ward)

(b) Remapped (GGX)

Figure 10: Remapping of SVBRDFs. The roughness in the source rendering
(a) is controlled by a texture map. The remapped rendering is obtained by
applying the mapping to each texel of the roughness map.

Besides a similar NRMSD (Table 4), an important advantage
of the constrained strategy is the ability to derive smooth re-
lationships between corresponding parameters, whereas the un-
constrained remapping strategy might force the fitting module
to output a look-up table, since all the target parameters are
allowed to vary at once. This is particularly noticeable for the
selection of diffuse only/diffuse and specular (Figure 11(a)) and
roughness (Figure 11(c)) in the remapped GGX parameters. Also
the remapped IOR (Figure 11(b)) displays dependencies on both
the Sw and Rw. As a further consequence, the unconstrained
strategy must sample the whole parameter space of the source
model, since at any stage of the remapping it is not possible to
predict how a given set of input parameters will be remapped.

The constrained strategy conveys some important generalisa-
tion characteristics, which allow us to sample only a relatively
small portion of the source model parameter space, as reported in
Figures 11(e) and 11(f). The output of the GA is then used by the
fitting module to derive the relationships among source and target
parameters. Overall, this information can be inverted and used for
the inverse remapping, i.e. GGX → Ward.

In Table 5 we compare the runtime of a brute force approach,
with the unconstrained and constrained strategies runtime in the
worst-case scenario. In all cases we refer to a single-thread imple-
mentation; the runtime is dominated by rendering time, with the
constrained strategy being the fastest and requiring approximately
9 hours to perform a full remapping, making it suitable for use as a
overnight tool even on a mobile PC system. Overall, on a 48-core
Intel Xeon E7-8894 v4 platform, an optimised implementation of
the unconstrained remapping takes less than 1.7 hours, whereas
the constrained remapping requires about 52 minutes.

5.3 Isotropic BRDF Models - Higher Dimensional Cases
In this Section we describe the Remapping from the isotropic
microfacet BRDF model by Löw et al. [35] to GGX. While the

Table 5: Comparison of the running time for a full remapping Ward → GGX
(isotropic case), on the mobile PC described in Section 4.

Brute Force Unconstrained Constrained
remapping 22h 36m 1h 28m 0h 46 mi
rendering 31h 42m 31h 42m 8h 18m

total 54h 18m 33h 10m 9h 04m

(a) (b) (c)

(d) (e) (f)

Figure 11: Comparison between the output of the unconstrained and con-
strained strategies. In the first row we report the output of the unconstrained
remapping, showing (a) the binary choice between diffuse only (black) or
diffuse and specular (white) for the remapped target parameter Sggx, the
remapped target Iggx (b) and target Rggx (c). The second row, in (c)-(f) reports
the same information as derived by the constrained remapping.

Fresnel and shadowing/masking terms are the same as in Cook-
Torrance [28], the microfacet distribution is based on a modified
ABC distribution [36].

Other than the index of refraction ILöw, The parameters that
control the model are AR|G|BLöw, a per-channel specular scaling
term (hence, the distribution is not normalised and the model
does not obey to the energy conservation principle), BLöw which
controls the sharpness of the specular lobe and CLöw, which
controls the shape of the tail of the distribution and hence is
related to the fall-off rate at wide-angle scattering. As for the GGX
model, we modify it in order to allow a different SR|G|Bggx per
channel, in the range [0−1]. Hence, a naive implementation of the
remapping would lead to a 6D→ 5D case. However, the mapping
can be derived for a single channel, and applied to other channels
independently, thus reducing the dimensionality to 4D→ 3D.

To implement the constrained strategy we observe that the
AR|G|BLöw are clearly related to SR|G|Bggx, as well as ILöw and Iggx;
however, as reported by Löw et al. [35], ILöw does not have a
physical meaning and the range of values it assumes does not
correspond to real world materials. As for the roughness, the
combined effect of BLöw and CLöw can be related to Rggx.

Results - Isotropic BRDF Models (Higher Dimensional
Remapping)
To validate the remapping from Löw et al.’s BRDF model (re-
ferred to hereafter as ABC) to GGX we make use of the MERL
material database [37], through the following steps:
• We use the technique described in Löw et al. [35] to fit the

MERL materials, thus finding the optimal parameters for the
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ABC model to represent them;
• We apply our remapping ABC→ GGX to the find a suitable

representation of the materials in the GGX parameters space.
As a further comparison, we show the fitting of the MERL

materials to the GGX model, obtained using the method by Dupuy
et al. [38]. To display our results, we take advantage of the
perceptual validation of the optimised surface and light direction
suggested by [39] (see Figure 12). Please note that our input is not
a measured material. Hence, images are rendered using the surface
geometry, rather than mapping measured values directly on it.

While for most MERL materials the remapping leads to
convincing results, with the search space in the Iggx in the range
[1.01−2.1], in 29 cases (including many metals and the specular-
phenolic family) we had to extend it. This is due to the parameters
in the ABC source renderings, with values of ILöw as high as 99.99
and CLöw values largely outside the typical range [0.5−1.5] [35].
Overall, the remapping failed on the 3 gold-metallic paints.

6 REMAPPING OF ANISOTROPIC BRDF MODELS

In this Section we focus on anisotropic BRDF models and show
remapping between Lafortune to Ward and GGX to Ward models.

6.1 Anisotropic BRDF models - Lafortune to Ward
The empirical BRDF model by Lafortune et al. [12] is a generali-
sation of the cosine lobe model, allowing multiple steerable lobes.
Other than the specular reflectance SL, each of the specular lobes l
is controlled by the parameters Cx,l , Cy,l , Cz,l and the exponent
nl , which controls the shape of the lobe. The Cx,l , Cy,l , Cz,l
parameters allow control of retro-reflections (by setting them all
to positive values), anisotropy (when Cx,l 6=Cy,l) and off-specular
peaks (Cz,l ≤ (−Cx,l =−Cy,l)); the original Phong model [20] can
be obtained by setting ||l||= 1, Cx =Cy =−1, Cz = 1, whereas the
Lambertian model can be obtained by setting nl = 0.

We demonstrate the remapping from the Lafortune BRDF
model to Ward, in the anisotropic case, single lobe. For the
specular lobe we look for a mapping from {SL,Cx,Cy,Cz,n} →
{Sw,RU w,RV w}. Since the anisotropic Ward model does not
account for retro-reflection and off-specular peaks, we exclude
the corresponding Lafortune parameters from our analysis. For
the constrained remapping strategy, SL and Sw are corresponding
parameters. The anisotropy in Lafortune is controlled by Cx and
Cy, with n controlling the roughness, whereas in Ward anisotropy
and roughness are controlled concurrently by RU w and RV w.

Results - Anisotropic Lafortune to Ward
In Figure 13, the top row, shows a nuts and bolts cat rendered
using the Lafortune model, for different degrees and direction of
anisotropy. The anisotropy in the tangent directions decreases from
the leftmost image towards the centre one, which is isotropic, then
the anisotropy in the bitangent direction progressively increases
moving towards the rightmost image. The second row shows the
same images rendered with the anisotropic Ward model, where the
parameters have been derived by our remapping framework.

While our remapping is able to produce visually satisfactory
results for many points in the Lafortune parameter space, the
decoupling between roughness and anisotropy leads to failure
when trying to remap glossy, anisotropic surfaces (i.e. n > 128,
Cx 6= Cy) to the Ward model. In the latter, roughness in the
tangent/bitangent directions and anisotropy are strictly correlated.
No issues arise when remapping isotropic surfaces.

6.2 Anisotropic BRDF models - Ward to GGX
We present the remapping from the anisotropic Ward model to
the anisotropic GGX [40]. The remapping is performed between
the two sets of parameters {Sw,RU w,RV w}→

{
Sggx,RU ggx,RV ggx

}
(see Table 3), where RU ggx and RV ggx extend Rggx to the
anisotropic case. Given the implementation of GGX differs from
the one used in Section 5.2, previous remapping results cannot
even partially be reused. As in the corresponding isotropic case,
we make use of the additional mask in the fitness function
computation, to reduce the effect of the Fresnel in the remapping.

Results - Anisotropic Ward to GGX
The second row of Figure 13, shows a nuts and bolts cat rendered
using the Ward model, as explained in the previous section. The
third row shows the same images rendered with the anisotropic
GGX model, where the parameters have been derived by our
remapping framework. Besides the unavoidable differences due
to the Fresnel effect, our framework provides satisfactory results.

7 PERCEPTUAL VALIDATION: USER STUDIES AND
PSYCHOMETRIC SCALING EXPERIMENTS

A quantitative validation provides an initial assessment of the
quality of the remapping performed by our framework. However,
to ensure that the remapping produces visually plausible results,
regardless of the selected metric, results are also verified through
user studies and psychometric scaling experiments, focusing on
the isotropic BRDF models remapping.

7.1 User Studies
User studies are a common way to validate results in computer
graphics, with a range of available study methodologies and
metrics [41], we use similarity judgements. The goal of our user
studies is to establish if participants can distinguish between the
appearance of an image rendered using the source BRDF and the
same image rendered using the target BRDF, where the parameters
are derived by our remapping framework. In our study, participants
with corrected to normal vision are presented with a sequence
of two images next to each other (stimuli) on a uniform grey
background, on a calibrated display.

Each image pair consists of a scene rendered using the source
BRDF model and the same scene rendered with the target BRDF
using our remapped parameters. Each participant, after observing
an image pair for exactly 5 seconds, was asked to rate the simi-
larity between displayed images, using integer ratings on a scale
0 − 2, where 0 means “noticeably different”, 1 encodes “slightly
different” and 2 means “same”. Instructions were provided before
the start of the study. Image pairs were shown to subjects in a
randomised order and included a control set of image pairs in
which the images are actually the same, to provide a reference for
statistical analysis. Four user studies were conducted:
(1) Unconstrained remapping, dielectrics. The study used 36 test

pairs, generated by the unconstrained remapping experiment
in Section 5.2 (Figure 14(a)), and 5 control pairs.

(2) Constrained remapping, dielectrics. Source and target BRDFs
were the same as in the previous user study, but with different
diffuse colours for the spheres (Figure 14(b)). Like the first
study, participants were shown 41 pairs (36 test, 5 control).

(3) The third user study presents a set of conductors (metals)
with varying roughness, where the remapping from the source
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(a) “Green-metallic-paint”, measured (b) “Green-metallic-paint”, ABC fit (c) Our remapping ABC→ GGX (d) “Green-metallic-paint”, GGX fit

(e) “Purple-paint”, measured (f) “Purple-paint”, ABC fit (g) Our remapping ABC→ GGX (h) “Purple-paint”, GGX fit

(i) “Yellow-phenolic”, measured (j) “Yellow-phenolic”, ABC fit (k) Our remapping ABC→ GGX (l) “Yellow-phenolic”, GGX fit

Figure 12: The first column shows the measured MERL materials [37] applied to the scene with optimised geometry and lighting by Havran et al. [39]. The
second column reports the same scene rendered using the ABC model, where the model parameters have been derived by fitting as described in Löw et al. [35];
these renderings represent the source for our remapping. The third column reports the scene rendered using the GGX model, using the parameters derived from
our remapping ABC→ GGX. As a further comparison, the last column reports the scene rendered using the GGX model, with the parameters derived from the
fitting described in Dupuy et al. [38]. Please see the supplementary material for the complete list of materials in the MERL dataset.

Figure 13: A nuts and bolts cat rendered using the Lafortune model, for different degrees and direction of anisotropy. The second row shows the same images
rendered with the anisotropic Ward model, whereas the bottom row show the images rendered using the anisotropic GGX implementation.

(Ashikhmin-Shirley) to the target model (Cook-Torrance)
is performed with the constrained remapping strategy (Fig-
ure 14(c)). In this case the mapping is performed only in
one dimension (Ras → Rct ); 19 test pairs generated by the

unconstrained remapping experiment in Section 5.1 were
used together with 2 control pairs.

(4) In the final user study the shapes placed in the scene are the
“Stanford Bunny” [42], “Happy Buddha” [43] and “Dragon”
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(a) User Study 1 (b) User Study 2 (c) User Study 3 (d) User Study 4

(e) Average Ratings User Study 1 (f) Average Ratings User Study 2

(g) Average Ratings User Study 3 (h) Average Ratings User Study 4

Figure 14: (a)-(d) Examples of the test scenes used in the user studies; (e)-(h)
for each study we report the mean rating and the standard deviation. The grey
bar refers to the control pairs (same-image pairs), the yellow bar refers to the
ratings for all the test pairs (original-remapped). For studies 1 and 2 we give
the mean and standard deviation of the “green” and “red” groups of test pairs.

(Figure 14(d)). For each test pair, the source image was gen-
erated by randomly assigning to the objects one of the source
BRDF models Ward or Ashikhmin-Shirley, with parameters
randomly selected as well; the target image was generated
by assigning to each object the corresponding target BRDF
model and remapped parameters. Participants were presented
with 2 test pairs and 2 control pairs.

Participants reported that, for most image pairs, they had diffi-
culties spotting differences between the left and right renderings.
In fact, in many cases, similar average scores were given to the
original-remapped image pairs and to the control pairs.

Results of these user studies were analysed for statistical
significance, using both the one-tailed t−test and Welch’s t−test,
accounting for both the possibilities that the variances of the test
and control pairs are equal or unequal. Additionally, for each user
study we compared ratings given by users to the test pairs and
to the control pairs using the Wilcoxon signed rank test. All tests
were conducted at a significance level α = 0.05. A detailed report
of all the statistical tests is included in supplementary material, we
report the main findings below.

User Studies 1 and 2. The pairwise comparison results from
a multiple comparison test using the Tukey’s honestly significant
difference procedure, conducting the hypothesis tests at the 5%
significance level, allowed us to highlight that participants tend to
spot differences between source and remapped image pairs when
0<Rw≤ 0.06, or when Sw≥ 0.35. Accordingly, we partitioned the
test image pairs into red = {{0≤ Rw ≤ 0.06}∩{Sw ≥ 0.35}} and
green = {{Rw > 0.06}∩{Sw < 0.35}} groups. Both the t − test

and Welch’s t− test confirm that for renderings belonging to the
green area (a large portion of the parameter space) observers
are unable to reliably distinguish between source and remapped
renderings, irrespective of the remapping strategy. As for the
red group, both tests reject the null hypothesis; our results are
further confirmed by the Wilcoxon test. For details about the
partitioning of the Ward parameter space and the statistical tests,
see supplementary material.

User Study 3. The average rating for all the images is reported
in Figure 14(g). The statistical tests, performed by including all the
test pairs in one group, indicated no significant difference among
test and control pairs, confirming participants’ impressions that
most image pairs appeared to show the same image.

User Study 4. The purpose of the fourth user study was to
assess the efficacy of our framework when combining several
BRDF models and complex objects in one scene. Both tests,
performed by including all the test pairs in one group, indicated
no significant difference among the rating of test and control pairs.

7.2 Psychometric Scaling Experiments
The user studies allowed us to assess that the proposed framework
provides, with both the constrained and unconstrained strategies,
an effective tool to remap parameters from a given source model
to the parameters of an arbitrary target one. Further, they highlight
that when there are noticeable differences between source and
remapped renderings, this is due to deep differences between the
characteristics of source and target models, e.g. remapping from
Ward to GGX models (user studies 1 and 2). We further focus on
this particular case and extend our validation with psychometric
ranking experiments. The purpose of these is twofold:
• To provide validation that our framework provides the best

achievable remapping, on average, when considering the
parameter neighbourhood of the remapped values (Perceptual
Experiment 1).

• To provide stronger evidence that the phenomena that causes
the remapped renderings in the GGX model to be distin-
guishable from source renderings with parameters in the red
portion of the plane Sw×Rw (see supplementary material), is
actually the visually disruptive effect of the lack of Fresnel
effect on one side (Ward), and its presence on the other side
(GGX) (Perceptual Experiment 2).

We designed our experiments in Matlab, using the Psychophysics
Toolbox Version 3 extensions [44], [45].

Perceptual Experiment 1. In the first experiment, subjects are
presented with the source rendering on the right side of the screen
and nine renderings on the left (Figure 15(a)). Only one rendering
from 9 is generated using our remapped parameters, the others are
rendered with parameters in the reflectance neighbourhood of the
target parameter space. We focus on the plane given by Iggx×Rggx,
moving along one direction at a time.

The shapes are blobby objects, since they allow better discrim-
ination of material reflectance than other shapes [46]. Their exact
shape and order are randomised to avoid pixel-wise comparisons,
rather than focusing on the overall reflectance. The diffuse value
is fixed to a green shade, with values RGB = [0.1,0.3,0.1].
Observers were asked to select on the left side, the closest
rendering to the source one in terms of surface properties ignoring
the shape; once selected the image disappears and the observer
must then choose the closest one from the eight left and so on,
until all nine images are removed from the screen. For every
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observer, this process was repeated 30 times for each of the
selected 25 points in the Ward parameter space (on a 5× 5
grid given by Sw × Rw, Sw = {0.065,0.13,0.195,0.26,0.325},
Rw = {0.01,0.05,0.13,0.29,0.61}). The light probe used in this
experiment was the “Courtyard of the Doge’s palace, Venice,
Italy” [7]. Seven participants took part in this study, with each
session lasting 2 to 3 hours.

Our rationale for this experiment is that on average among
repetitions and observers, the visually closer target rendering to the
source one, corresponding to the best set of target parameters for
that given source, will have a lower ranking. This ranking should
increase with the distance of the neighbours to the best one, giving
rise to a “V” shape (centered on the latter) in a plot neighbourID×
rank. Flat areas indicate regions of the target parameter space, in
which the renderings do not show perceivable differences with
their immediate neighbours.

Figures 16(a) and 16(b) show the outcome of this experiment,
with the red lines reporting the polynomial fit of measured data.
For each of the plots on the x-axis we report the neighbouring iden-
tifiers, where “0” indicates the remapped parameters found by our
framework (constrained strategy), of coordinates {I0,R0} in the
Iggx×Rggx space. The coordinate of the neighbours {“−4”,“−3”,
. . ., “0”, . . ., “4”} are reported in the supplementary material.

The analysis of the neighbours in the Iggx direction shows
that in 56% of the cases the observer preferred the rendering(s)
corresponding to the parameters remapped by our framework
(“0”), and in 37.5% of the cases its immediate neighbour “−1”,
indicating a preference towards a slightly lower value of the IOR
and hence a slightly less visible Fresnel effect (Figure 16(e)).
As for the roughness direction, our remapped parameters were
preferred again in the 56% of the cases and “−1” in 28% of the
cases. In many cases the “−1’ neighbours have a very similar
value of the fitness function (see Figure 16(d)), and the selection
of {I0,R0} by our framework is due to the constrained strategy.

(a) Perceptual Experiment 1 (b) Perceptual Experiment 2

Figure 15: Interface of the two psychometric scaling experiments.

Perceptual Experiment 2. In the second experiment, ob-
servers are presented with a simpler interface shown in Fig-
ure 15(b). At the bottom of the interface, a source BRDF ren-
dering of a blobby shape is displayed. This image is used as a
reference. At the top, two different renderings of blobby shapes
are presented; one of them is rendered with the same model and
parameters of the reference, while the second one is rendered using
the remapped target parameters. In this forced-choice design the
user must select, from the two shapes at the top, the most similar
image to the reference in terms of surface properties.

The analysis of the results suggests that observers actually
use the Fresnel effect as a cue to distinguish between source and
remapped renderings, mainly located towards the silhouette of the
objects, whereas other areas do not show significant differences;

this confirms the empirical finding from user studies 1 and 2.
Please see supplementary materials for further details.

8 CONCLUSION

Frequently, digital artists face the problem of trying to match
an image rendered somewhere else using a BRDF model that is
unavailable within the rendering tool in use. Standard practice
is to manually tweak a range of parameters for the available
model, based on a subjective evaluation and experience, in a time-
consuming fashion. In this study, we consider a real world scenario
in which the source material model (BRDF) and parameters used
to render a reference image are known. The BRDF available on
the user side (target) is different from the source one. Despite
having no access to the implementations of the material models,
we propose an automatic solution to achieve consistent appearance
across different models (and renderers).

We validate our framework through a series of experiments
using both isotropic and anisotropic BRDF models. By employing
4 user studies and 2 psychometric scaling experiments, we are able
to perform a detailed analysis of user perception of our remapping
method. The results of these studies demonstrate that our param-
eter remapping framework allows us to obtain parameters, for the
target model, which enable virtually indistinguishable renderings
from those created with the source model, for a wide portion of the
source model’s parameter space. This is true, even in challenging
cases where the source and target models have extremely different
characteristics, such as empirical models versus physically-based
models with support for Fresnel reflectance. Further, our user
studies also confirm the validity of our approach on complex
scenes, which are more representative of a real world scenario.

Our experience with isotropic BRDF models provides a key
insight; the differences between the statistical distribution of the
microfacets used by the source and target models play a fundamen-
tal role in the quality achievable through remapping techniques.

REFERENCES

[1] F. Nicodemus, J. Richmond, J. Hsia, I. Ginsberg, and T. Limperis,
“Geometrical considerations and nomenclature for reflectance, natl,” Bur.
Stand. Rep., NBS MN-160, 1977.

[2] D. Guarnera, G. c. Guarnera, A. Ghosh, C. Denk, and M. Glencross,
“Brdf representation and acquisition,” Computer Graphics Forum,
vol. 35, no. 2, pp. 625–650, 2016.

[3] R. Schregle, C. Denk, P. Slusallek, and M. Glencross, “Grand Challenges:
Material Models in the Automotive Industry,” in Eurographics Workshop
on Material Appearance Modeling, R. Klein and H. Rushmeier, Eds.
The Eurographics Association, 2013.

[4] A. Sztrajman, J. Krivanek, A. Wilkie, and T. Weyrich, “Image-based
remapping of material appearance,” in Proc. 5th Workshop on Material
Appearance Modeling, ser. MAM ’17, R. Klein and H. Rushmeier, Eds.
Aire-la-Ville, Switzerland, Switzerland: The Eurographics Association,
Jun. 2017.

[5] A. Ngan, F. Durand, and W. Matusik, “Image-driven navigation of
analytical brdf models,” in Proceedings of the 17th Eurographics
Conference on Rendering Techniques, ser. EGSR ’06. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2006, pp. 399–407.

[6] T.-W. Schmidt, F. Pellacini, D. Nowrouzezahrai, W. Jarosz, and C. Dachs-
bacher, “State of the art in artistic editing of appearance, lighting and
material,” Comput. Graph. Forum, vol. 35, no. 1, pp. 216–233, Feb. 2016.

[7] U.S.C. ICT. (2017) High-resolution light probe image gallery. [Online].
Available: http://gl.ict.usc.edu/Data/HighResProbes/

[8] M. Colbert, S. Pattanaik, and J. Krivanek, “Brdf-shop: Creating physi-
cally correct bidirectional reflectance distribution functions,” IEEE Com-
puter Graphics and Applications, vol. 26, no. 1, pp. 30–36, 2006.

[9] X. An, X. Tong, J. D. Denning, and F. Pellacini, “Appwarp: Retargeting
measured materials by appearance-space warping,” ACM Trans. Graph.,
vol. 30, no. 6, pp. 147:1–147:10, Dec. 2011.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a) Reflectance neighbours along the IOR direction

(b) Reflectance neighbours along the roughness direction

(c)

(d)

(e)

Figure 16: Psychometric ranking experiment. The 25 plots are arranged according to the grid Rw×Sw, described in the text; the Ward roughness increases from
left to right, the specularity from top to bottom. For each plot, the x-axis is the neighbour ID, and the y-axis the average ranking, as in (c), which shows a
magnified version of the plot highlighted in green in (a). Some points in the reflectance neighbourhood have similar values for the fitness function (d). The green
arrow points to the remapped values found by our framework, labelled “0” in (c), whereas the red arrows indicates the point “−2”. In (e), from left to right, top
to bottom, renderings of the same object using the source model, neighbour “0” (our remapping),“−1” and “−2”. The renderings refer to the example in (c).

[10] A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of brdf
models,” in Proceedings of the Sixteenth Eurographics Conference
on Rendering Techniques, ser. EGSR ’05. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2005, pp. 117–126.

[11] A. Brady, J. Lawrence, P. Peers, and W. Weimer, “genbrdf: Discovering
new analytic brdfs with genetic programming,” ACM Trans. Graph.,
vol. 33, no. 4, pp. 114:1–114:11, Jul. 2014.

[12] E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg,
“Non-linear approximation of reflectance functions,” in Proceedings of
the 24th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’97. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1997, pp. 117–126.

[13] G. C. Guarnera, A. Ghosh, I. Hall, M. Glencross, and D. Guarnera,
“Material capture and representation with applications in virtual reality,”
in ACM SIGGRAPH 2017 Courses, ser. SIGGRAPH ’17. New York,
NY, USA: ACM, 2017, pp. 6:1–6:72.

[14] M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance
model,” in Proceedings of the 21st annual conference on Computer
graphics and interactive techniques. ACM, 1994, pp. 239–246.

[15] M. M. Bagher, J. Snyder, and D. Nowrouzezahrai, “A non-parametric
factor microfacet model for isotropic brdfs,” ACM Trans. Graph.,
vol. 35, no. 5, pp. 159:1–159:16, Jul. 2016.

[16] A. Bousseau, E. Chapoulie, R. Ramamoorthi, and M. Agrawala,
“Optimizing Environment Maps for Material Depiction,” Proceedings of
the Twenty-second Eurographics Conference on Rendering, Eurographics
Association, 2011, pp. 1171–1180.

[17] G. Wyszecki and W. S. Stiles, Color science: Concepts and Methods,
Quantitative Data and Formulae. New York, USA: Wiley, 1982, vol. 8.

[18] M. Pedersen and J. Y. Hardeberg, “Full-reference image quality metrics:
Classification and evaluation,” Found. Trends. Comput. Graph. Vis.,
vol. 7, no. 1, pp. 1–80, Jan. 2012.

[19] A. Liu, W. Lin, and M. Narwaria, “Image quality assessment based on

gradient similarity,” IEEE Transactions on Image Processing, vol. 21,
no. 4, pp. 1500–1512, April 2012.

[20] B. T. Phong, “Illumination for computer generated pictures,” Commun.
ACM, vol. 18, no. 6, pp. 311–317, Jun. 1975.

[21] G. J. Ward, “Measuring and modeling anisotropic reflection,”
SIGGRAPH Comput. Graph., vol. 26, no. 2, pp. 265–272, Jul. 1992.

[22] R. Rojas, Neural Networks - A Systematic Introduction. Springer Berlin
Heidelberg, 1996.

[23] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic
algorithm for solving integer and mixed integer optimization problems,”
Appl. Mathematics and Computation, vol. 212, no. 2, pp. 505–518, 2009.

[24] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer methods in appl. mechanics and engineering, vol. 186, no. 2-4,
pp. 311–338, 2000.

[25] W. Jakob, “Mitsuba renderer,” 2010, http://www.mitsuba-renderer.org.
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