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Abstract This work presents an optimization-based

motion planning system for trawling operations. The

formulation makes use of simplistic physical descrip-

tions of the vessel and fishing gear together with catch

dynamics of sweeping across moving fish schools. The

objective of the optimal control problem is to maxi-

mize harvest, while ensuring both feasible maneuvers

and well-behaved gear characteristics. The problem is

transcribed into a large-scale nonlinear programming

problem and solved in a receding horizon fashion using

simultaneous collocation. A numerical simulation illus-

trates the system’s usefulness.

Keywords Marine robotics · Trawling · Predictive

control.

1 Introduction

Pelagic trawling is a complicated operation that in-

volves continuous intervention from operators. Deci-

sions, such as how to maneuver the vessel for efficient

harvest and which region to explore next, require in-

sight to make. Modern fishing vessels are equipped with

various instruments and equipment that provide oper-

ators with useful information about the vessel and the

environment. The volume and velocity at which the in-

formation are made available may take its toll on the
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operators. Consequently, it is demanding for operators

to sufficiently process this information and make deci-

sions that align with the short-term objectives of the

operation. Also, the impact of short-term decisions in

the long run is often not immediately clear. This work

proposes a system that tries to alleviate some of the

workload on the operators by using model predictive

techniques in a vessel and fishing gear motion planning

problem. In particular, we want to autonomously pro-

duce feasible trajectories for both the vessel and trawl

net, given information about fish schools’ motion and

characteristics.

There exists some work on path-tracking controllers

for trawling, including approaches based on model pre-

dictive control [1], and fuzzy controllers [2–5]. Con-

trollers may help in performing trawl maneuvers pre-

scribed by the skipper [6], but there is a human-in-

the-loop component in such a paradigm. Literature on

autonomous motion planning for trawling operations,

on the other hand, is sparse.

Motion planning (see e.g. [7]) in general has a huge

body of literature, finding applications in various fields,

including driverless cars, robot navigation, path plan-

ning for target tracking, or dynamic coverage control.

The work herein finds similarities to path planning for

target tracking [8], and in particular approaches us-

ing dynamic vehicle models combined with information-

driven reward functions of visiting objects or regions

[9,10]. The notable difference from previous works is the

inclusion of an actuator removed from the rigid body

configuration of the moving vehicle. The location of the

actuator is connected to the vehicle through a link, but

there is no direct control of the link’s angular configu-

ration in relation to the vehicle’s motion. The motion

planning of the net thus needs to rely on manipulation

of both the vessel’s motion and the link’s length. The
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main contribution of this work is the formulation of an

optimal control problem that finds feasible trajectories

for both the vessel and the net in order to catch fish

autonomously.

Mathematical models involved in describing a trawl

operation are discussed in [1, Section 1.2.3]. Most com-

ponents can be modeled with high-fidelity, but at high

computational requirements. General cable models with

internal and external forces, such as gravity and hydro-

dynamics can be used to describe bridles, warps, and

other cable-like parts of the gear, see e.g. [11]. Trawl

doors function as hydrofoils and are often described us-

ing experimental data to parameterize the drag, lift,

and shear coefficients of the model [1]. Several methods

for constructing models for trawl nets exists, including

finite element approaches with super meshes [12], mass-

lumped models [13], and interconnected rigid bar mod-

els, see [1] and references therein. Hydrodynamic loads

are complex to evaluate due to hydroelasticity [14].

Models for vessel maneuvering is covered in [15].

2 Problem Overview

A pelagic trawling operation consists of a fishing vessel

that drags a submerged trawl net in mid-water, well

clear of the seabed. In a single trawl, the net is con-

nected to two trawl doors via so-called bridles (wires).

The doors’ task is to ensure that the net stays open,

backed by a floating head line and sinking fish line. The

doors are connected to winches on board the vessel via

warps (wires). The objective of the trawling operation

is to catch fish by sweeping the net opening through

fish schools by manipulating the vessel’s motion and
the warp lengths. See Fig. 1 for a pictorial overview of

the main components in mid-water trawling.

During trawling, the operators are aided by a fish

finding sonar. The sonar provides periodic snapshot im-

ages of what may be fish schools. This information

is then used by the operator to determine vessel tra-

jectories and warp lengths in order to achieve sweeps

through schools, while at the same time obeying ma-

neuverability constraints and preserving well-behaved

gear characteristics. Herein, our task is to propose a

motion planning system that mimics this operation and

thereby facilitates an autonomous trawling system.

Dynamic Catch Planning The vessel and fishing gear

serve as a mobile actuator on the environment, which

includes fish schools. Sensor measurements of the gear

and the environment are feedback for deciding subse-

quent actions. The motion planning component, de-

noted Dynamic Catch Planner, is responsible for au-

tonomously determining appropriate vessel and net tra-

Fig. 1 Trawling involves of a fishing vessel, warps, doors,
bridles, head line, fish line, trawl net, and fish schools. The
coordinate systems and variables are explained in throughout
the manuscript.

Fig. 2 A diagram with the main components in the proposed
system.

jectories. The objective of the planner is to catch fish in

an efficient and safe manner. The operators supervise

the motion planning and may provide overriding com-

mands or, if necessary, take over the operation. Fig. 2

depicts a diagram of the main components in the pro-

posed system. We proceed by defining a Path Plan-

ner, which is part of the Dynamic Catch Planner, and

demonstrate its usefulness in a numerical simulation,

which is provided in Section 4.

3 Path Planner

When a sector is being harvested, the tactical planning

entails producing trajectories that are feasible with re-

spect to the maneuverability constraints of the fishing

vessel. This task includes constructing paths that are

sufficiently conservative, which in turn makes sure that

the fishing gear behaves appropriately during maneu-

vering. The purpose of the maneuvering is to maximize

harvest of fish.

There are several principal components that dictate

the behavior of the harvest operation. If one can de-

scribe these components with sufficient fidelity, perhaps

the insight can be used in automating the tactical har-
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vest. We identify the following key components of the

harvest operation:

A. Fishing vessel;

B. Fishing gear;

C. Fish schools;

D. Trawl catch dynamics;

E. Fish harvest indication.

The rationale behind the component models is to pro-

vide a simple and computationally efficient control plant

model for a Path Planner. The Path Planner combines

descriptions of the above components to predict future

behavior – the purpose is to device a sound course of ac-

tion. We will later see that the planning algorithm em-

ploys a periodic re-planning scheme, so the combined

model does not need to accurately describe the oper-

ation for long time periods, as long as it retains the

system’s main response. We proceed by mathematically

modeling the components just listed, before arriving at

the combined system and the Path Planner ’s dynamic

optimization problem formulation. An overview of vari-

ables with descriptions, which will be defined through-

out the manuscript, has been added in Appendix A.

3.1 Fishing Vessel

We model the fishing vessel as a planar kinematic vehi-

cle. Let {NED} denote an inertial reference frame with

the axes x, y, and z pointing north, east, and down,

respectively. Define pv(t) ∈ R2 as the planar position of

the vessel, situated on the xy-plane of {NED}. Further,

let χv(t) ∈ R be the course of the vessel, that is, the an-

gle of the vessel’s velocity vector relative to the x-axis,

following the right-hand screw rule. U > 0 is the con-

stant speed of the vehicle model. We get the following

vehicle model with limited turn rate

ṗv(t) = U

[
cosχv(t)

sinχv(t)

]
, (1a)

χ̇v(t) = uv(t), (1b)

pv(t0) = pv,0, χv(t0) = χv,0, (1c)

where uv(t) ∈ [uv,min, uv,max] =: Uv is a constrained

control input. The constant speed property can eas-

ily be relaxed, either letting acceleration or speed itself

be a control input. For future reference, define the 3-

dimensional expressions for the vehicle’s position and

velocity as pv(t) = col(pv(t), 0) and vv(t) = col(ṗv(t), 0),

where the col operator indicates vertical stacking of col-

umn vectors to a combined column vector.

3.2 Fishing Gear

A real-world vessel is connected to trawl gear, which

consists of flexible wires, trawl doors, net(s), winches,

and other equipment. We significantly simplify the de-

scription to get an approximate model of the fishing

gear’s location in the ocean space.

Let pn(t), vn(t) ∈ R3 be the position and velocity of

the net opening centroid given in {NED}. We connect

pn(t) and pv(t) with a spring-damper system with nom-

inal length ln(t) ∈ [ln,min, ln,max] =: Xl. The dynamics

of the net opening is

ṗn(t) = vn(t), (2a)

v̇n(t) =
Fn(t)

mn
, (2b)

l̇n(t) = un(t), (2c)

pn(t0) = pn,0, vn(t0) = vn,0, ln(t0) = ln,0, (2d)

ln(t) ∈ Xl, (2e)

where Fn(t) ∈ R3 is the resultant force on a point

mass with mass mn and location pn(t), and un(t) ∈
[un,min, un,max] =: Un is a constrained control input.

Let vc(t) ∈ R3 be the known water current. The forces

acting on the point mass are: gravity fg, buoyancy fb,

hydrodynamic drag fh(t, vn, vc), spring force fk(t, ln, pn, pv),

damping force fd(t, vn, vv), and cross-track stabilizer

fq(t, pn, pv, χv). Define p̂nv(t) = (pv − pn)/‖pv − pn‖2,

which is a unit vector pointing from pn toward pv. The

forces are

fg = mng
[
0 0 1

]T
, (3a)

fb = −mng
ρw
ρn

[
0 0 1

]T
, (3b)

fh(t, vn, vc) =
1

2
ρwACd‖vc − vn‖2(vc − vn), (3c)

fk(t, ln, pn, pv) = kn(‖pv − pn‖2 − ln)p̂nv, (3d)

fd(t, vn, vv) = dn ((vv − vn) · p̂nv) p̂nv, (3e)

where the dot · indicates the inner product, and pa-

rameters are defined in Table 1. Except the two first

constants in the table, the remaining constants are con-

sidered variables to be determined. In particular, pa-

rameter identification using high-fidelity models or field

trials, combined with sound judgment, should be per-

formed to obtain values that give desired behavior of

the simplified model.

Cross-Track Stabilizer There is a pendulum-like response

between the net point and the vessel. The cross-track

angle ϕ(t) between the vessel’s velocity vector and p̂nv
projected onto the xy-plane may become undesirably

1 Defined in Cross-Track Stabilizer.
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Table 1 Physical Parameters of Fishing Gear

Description Symbol

Standard gravity g

Water density ρw
Gear point mass density ρn
Area drag coefficient ACd
Spring coefficient kn
Damper coefficient dn
Gear total mass mn
Stabilizing force constant qn1

large during aggressive maneuvers. A too aggressive

maneuver can cause the trawl net opening to collapse,

which is a catastrophic event. For this reason it may

be of interest to put a constraint on this angle. The

projection of p̂nv onto the xy-plane is

pnv,xy(t) = p̂nv − (p̂nv · ez)ez, (4)

where ez = col(0, 0, 1) is a basis vector. Let p̂nv,xy be

the normalized vector of pnv,xy. Using the inner product

between p̂nv,xy(t) and the normalized p̂v(t), the cosine

of ϕ becomes

zv(t, pn, pv, χv) = cosϕ := p̂nv,xy · p̂v. (5)

Suppose ϕ ∈ [−ϕmax, ϕmax] must hold, so we arrive at

the constraint requirement

zv(t, pn, pv, χv) ∈ [cosϕmax, 1]. (6)

A real-life trawl net is connected to trawl doors,

which open the net. During turning, the outer door at-

tains higher speed than the inner door and therefore

contributes to the net’s tendency to shift outward. This

phenomenon does, to some extent, stabilize the cross-

track angle. Our simplified model mimics the stabilizing

tendency with a planar force proportional to sin(ϕ) and

perpendicular to pnv,xy defined as

fq(t, pn, pv, χv) = qn
(
p̂v × p̂nv,xy

)T
ez︸ ︷︷ ︸

sin(ϕ)

[
0 −1 0
1 0 0
0 0 1

]
p̂nv,xy,

(7)

where qn > 0 is the stabilizing force constant and × is

the cross product.

3.3 Fish Schools

The information one receives from a sonar about fish

schools are usually the ones given in Table 2, see e.g.

[16]. We can use this data when describing fish schools

in a simplified manner. The shape of a school depends

on several factors, including species, number of individ-

uals, and velocity [17]. We assume that a fish school’s

Table 2 Key Information About a Fish School

Description Symbol

Position ps ∈ R3

Planar velocity vs,xy ∈ R2

Projected area As,xy > 0
Mass Ms > 0

shape can be approximated when its species, biomass,

area, and velocity are known. Let us model a fish school

as a collection of points that moves with uniform ve-

locity. Each point has its own mass that represents a

sub-volume of the school.

Suppose you are given the information in Table 2

about a fish school, which has known species. Let Vs ⊂
R3 be the inferred bounding volume of the fish school,

which has geometric center ps, decomposed in the {NED}
reference frame. We want to find a set of points that tes-

sellate the fish volume and therefore proceed by defin-

ing an axial coordinate system for a face-centered cubic

lattice as

pfcc : R3 → R3, (8a)

w 7→ ps + 2

√
3

3
rs

1 −1 −1

1 −1 1

1 1 −1

w, (8b)

where rs > 0 is a scalar constant2. Fig. 3a shows the

spanning directions of the lattice. The set of points in-

side Vs, excluding points whose distance to the bound-

ary are less than rs, can be defined using the above

lattice as

Q :={z ∈ Z3 : pfcc(z) ∈ Vs}\ (9)

{z ∈ Z3 : inf{x ∈ ∂Vs : ‖x− pfcc(z)‖2} < rs},

which is a set of 3-tuple integer coordinates, where ∂Vs
is the boundary of Vs, see Fig. 3b. For each ξ ∈ Q,

pfcc(ξ) is the center of a sphere with radius rs in a

cubic close packing of spheres [18]. Let ns = |Q| denote

the number of points representing the fish school. If we

assume uniform bounding volume density, each point

approximately represents a spheric fish volume V◦ =

4πr3s/3 with mass ms = Ms/ns.

Define ζ as the number of fish schools. For each

i ∈ Iζ , ξ ∈ Qi, declare the mass dynamics’ right-hand

2 This result can be achieved using a regular 3-simplex
(tetrahedron) with an arbitrary orientation in Euclidean 3-
space as a starting point. Let the geometric center of the
tetrahedron be the origin with 2-norm distance 2rs to any of
the four vertexes. Pick three vertexes and find their Cartesian
coordinates. These vectors constitute a spanning set for the
axial coordinate system.
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Fig. 3 (a) Face-centered cubic lattice spanning directions.
The symbols wx, wy , wz indicate coordinate vectors for
[1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T, respectively;
(b) Plane intersection of a possible volume Vs with boundary
∂Vs. The shaded band indicates the region inside the volume
at which coordinates will not be part of Q.

side and the corresponding initial mass of its point with

coordinate ξ as

fi,ξ : R≥0 × R3 × R→ R, (10a)

mi,ξ(t0) = mi,s. (10b)

The time-varying position of this point is ∀t ≥ t0

pi,ξ(t) = pi,fcc(ξ) + vi,s(t− t0), (11)

where vi,s = col(vi,s,xy, 0). Each point mass will have

a dynamic response on its mass that depends on the

position of the net opening pn(t) and its orientation.

Although we have restricted the description of the fish

school movement to uniform velocity, this assumption

can be relaxed. For instance, if the centroid mass point

moved with a description similar to that of the vessel

(1), all points would need to satisfy the movement as a

rigid body. This is because their relative position cannot

change if the points are to retain the property as a cubic

close packing of spheres.

Let us first elaborate on how to model the trawl

catch dynamics, before we resume to the definition of

the mass differential equation in Section 3.4.2.

3.4 Trawl Catch Dynamics

The interaction between the trawl net opening and the

fish schools is important for quantifying the reward of

the harvest. This mechanism involves the boundary of

the net opening and the movement of each individual

in the fish school. It therefore requires detailed descrip-

tions of both each individual’s behavior and the net

to determine catch or no catch with high accuracy. In-

spired by [10], we propose instead a reaction-like re-

sponse of each point mass in the fish school if it is

sufficiently close to the net opening centroid. The net

behaves as a ‘consumer’ of fish mass. The rate of con-

sumption increases as the distance between the net and

a fish point mass reduces. Next, we define some math-

ematical expressions based on bell-shaped exponential

functions, which is used to describe the desired behav-

ior.

Let w ∈ R and σ, r ∈ R>0. Consider the symmetric

exponential function

fexp(w) = exp

(
− w2

a(σ, r)

)
, (12)

where a(σ, r) is a constant to be determined. Suppose

that fexp(σ + r) = c, where c ∈]0, 1[ is a desired gain.

Solving (12) with respect to a gives

a(σ, r) = − (σ + r)2

ln c
. (13)

The resulting function fexp is a bell-shaped exponential

function with gain c at w = σ + r. We take the tensor

product of three exponential functions to get a gain

function with ellipsoidal level surfaces. Let σ1, σ2, σ3 ∈
R>0, r, and c be given constants, written together as

ϑ = col(σ1, σ2, σ3, c). For w ∈ R3 we get

K(ϑ, r) = diag

(
1

a(σ1, r)
,

1

a(σ2, r)
,

1

a(σ3, r)

)
,

(14a)

fexp,3(w;ϑ, r) = exp
(
−wTK(ϑ, r)w

)
. (14b)

Fig. 4 shows a snapshot of a simulation where the el-

lipsoidal level surface represents the net opening.

3.4.1 Distance Gain

We want to place the newly defined gain function at

the net opening, so that it constitutes the net’s actua-

tor on the fish masses. The net opening is assumed to

be perpendicular to the planar orientation of the link

that connects to the vessel. Let {T} denote a Carte-

sian coordinate system with origin pn(t) and x-axis

pointing along the normalized p̂nv,xy(t) and z-axis along



6 Joakim Haugen, Lars Imsland

Fig. 4 A snapshot of a 3D simulation with a vessel, net open-
ing and an ellipsoidal fish school, which is tessellated with a
cubic close packing of spheres. Spheres with volume outside
the ellipsoid are excluded.

{NED}’s z-axis. Let θ(t) be the angle rotation from the

xNED-axis to the xT-axis. We can write

cos θ = ex · p̂nv,xy, (15a)

sin θ = (ex × p̂nv,xy)Tez, (15b)

R(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , (15c)

where R(θ) is the rotation matrix that transforms vec-

tors given in {T} to {NED} and ex, ey, and ez are

basis vectors. Consider the coordinate wNED ∈ R3 de-

composed in the {NED} frame. The coordinate trans-

formation to {T} is

wT = RT(θ)(wNED − pn), (16)

so, if we substitute this expression into (14b), we get a

gain function for coordinates w given in {NED}:

fγ(t, w, pn, θ;ϑ, r) =

exp
(
−(w − pn)TR(θ)K(ϑ, r)RT(θ)(w − pn)

)
. (17)

The parameter vector ϑ can be set to produce an ellip-

soidal level surface that approximately covers the trawl

net’s opening with a specific c gain and thereby be-

haves as a reaction-like actuator on point masses with

radius r. The closer a point mass is to the net opening

centroid, the larger the reaction gain.

3.4.2 Fish School Mass Dynamics

We are now ready to define how the fish schools’ masses

are affected by the trawl net. Consider a volume with

radius rs, initial mass ms,0, center position p(t) ∈ R3,

and velocity vs(t) ∈ R3. The trawl net model influences

this mass in the following manner

ṁs(t) = −γfγ(t, p, pn, θ;ϑ, rs)ms, (18)

where γ > 0. This models a maximal amount of caught

fish when the net centroid is swept through the volume

center.

Define for each fish school i ∈ Iζ the mass state vec-

tor mi(t) := colξ∈Qi(mi,ξ(t)) ∈ R|Qi| with lexicograph-

ical ordering according to ξ and stacked time-varying

position vector pi(t) := colξ∈Qi(pi,ξ(t)). We apply (18)

on all mass points of all fish schools, so that ∀i ∈ Iζ

Ai(t, pi, pn, θ;ϑ, ςi) = diagξ∈Qi(−γfγ) (19)

is a |Qi| × |Qi| negative definite matrix, where we have

defined ςi = colξ∈Qi(ri,ξ), and

ṁi(t) = Ai(t, pi, pn, θ;ϑ, ςi)mi, (20a)

mi(t0) = diagξ∈Qi(mi,ξ(t0)), (20b)

is the mass dynamics for fish school i. This model does

not take into account mass redistribution within a school

during catch. It is, however, straightforward to extend

the model with for instance a semi-discretized diffusion

equation. A reshaping and shrinking bounding volume

is a more complicated matter that is not easily incor-

porated into this model.

Remark 1 By using a close packing of spheres with

uniform radius as outlined in (8), the radii of point

masses within a single school are identical. Hence, ςi
is uniform with the common radius ri,s.

3.5 Fish Harvest Indication

In our description, the reduction of mass in a school

equals a corresponding increase of harvested mass. De-
note $ : R≥t0 → R≥0 as harvested mass. The harvested

mass function is thus

$(t) =
∑

i∈Iζ ,ξ∈Qi

(mi,ξ(t0)−mi,ξ(t)). (21a)

3.6 Dynamic Optimization Problem

The Path Planner makes use of the models described

in the previous sections. Define the control input vector

u(t) := col(uv, un) ∈ U := Uv × Un. The objective

is formulated as an optimal control problem (OCP) of

Bolza-type, such that ∀i ∈ Iζ , ∀t ∈ [t0, tf ]

min
u∈U

∫ tf

t0

uT(t)Λu(t) dt− η$(tf ) (22a)

s. t. (1), (2), (6), (20), (22b)

where Λ and η are positive definite tuning variables.

This control problem tries to maximize harvest $ at
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the end of the time horizon, while at the same time be-

ing conservative with the control inputs, namely, vessel

turning and winch activity. Denote the solution to (22)

as u?(t) : [t0, tf ] → U, which plugged into the initial

value problems (1) and (2), gives desired trajectories

p?v(t) and p?n(t) for the vessel and net opening, respec-

tively. These trajectories are maneuvering tasks for the

vessel and winch path-tracking control systems.

3.7 Solution Strategies for the Path Planning Problem

3.7.1 Regularization

The reaction gain (17) is exponentially decaying with

increasing distance between the net and a school. A

consequence of this property is that the local iterative

algorithm may not understand (i.e. there is no gradient)

that moving toward a distant school is beneficial. To

overcome this issue, we extend the formulation with a

regularizing term

freg(t, w, pn, θ;ϑ2, r) = γ2(1− fγ(t, w, pn, θ;ϑ2, r)),

(23)

where ϑ2 and γ2 are tuning variables. The rationale be-

hind this function is that it helps the net seeking toward

distant schools. Note that this term is also based on an

exponential function, but by choosing ϑ2 appropriately

large, it will not vanish in the desired region of oper-

ation. We add the school-seeking term to the centroid

point mass dynamics of each school. For each i ∈ Iζ ,
the centroid mass dynamics becomes

ṁi,0(t) = −γfγmi,0 + freg(t, pi,0, pn, θ;ϑ2, ri,0). (24)

A downside of freg is that it is an artificial source, so

the mass will slowly increase when the net is far away.

3.7.2 Conditioning

The exponential expression (14b) can give numerically

ill-conditioned derivatives for large-valued optimization

variables. To improve conditioning, all position vari-

ables have been scaled by a factor λ, so ps = λp is

the scaled position.

3.7.3 Receding Horizon

The proposed OCP (22) grows with time horizon length

and will eventually become computationally too expen-

sive for practical applicability. Moreover, changing am-

bient conditions and modeling uncertainties motivate

the need for periodic re-planning. We therefore solve

the problem in a receding horizon fashion. For iteration

j, we optimize over a finite horizon Tj = [tj,0, tj,f ] and

realize a sub-interval Tj,c = [tj,0, tj,c], denoted the con-

trol horizon, where tj,c < tj,f . The subsequent interval

starts with tj+1,0 = tj,c.

3.7.4 Implementation

We employ a direct transcription approach that dis-

cretize both the state and control variables into a finite-

dimensional nonlinear programming (NLP) problem.

We use simultaneous collocation of finite elements to

get Lagrange interpolation polynomial descriptions of

the state variables. The control input are piecewise lin-

ear. For details on collocation, consult [19, 20]. The re-

sulting discrete problem is large, but also sparse with

structure. We therefore implement the problem in the

symbolic framework CasADi 2.4.1 [21] and use the primal-

dual interior-point NLP solver IPOPT 3.12.0 [22], with

OpenBLAS 0.2.13 [23] and the linear algebra sparse

solver MA57 3.7.0 [24] from HSL.

3.7.5 Constrained Control Input

The control signals uv(t) and un(t) are speed signals for

yaw and winch. A bounded piecewise linear signal that

are connected across elements will ensure that the ac-

celeration is bounded. We achieve this by constraining

both u and its time derivative within each collocated

element as follows. Consider element e with a control

input ue : [0, h]→ [umin, umax]. The following equations

ue(t) = a+ bt, (25a)

ue(h) = ue+1(0), (25b)

a ∈ [umin, umax], b ∈ [utmin, u
t
max], (25c)

ensure a bounded signal with bounded derivatives, as

long as the subsequent element also obeys the bounds.

4 Case Study

We explore the proposed path planner in an example

consisting of two (ζ = 2) fish schools that move with

constant velocity. Configuration parameters and vari-

ables for the simulation are selected for demonstrating

the method more than representing a specific trawl sys-

tem, and the numerical results are presented.

4.1 Setup

4.1.1 Vessel

The forward speed is U = 2 m s−1, and the initial con-

ditions are pv,0 = col(0, 0) and χv,0 = 0. The yaw
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Table 3 Parameters Relevant to the Fishing Gear

Symbol Value Unit

g 9.81 m s−2

ρw 1000 kg m−3

ρn 4000 kg m−3

ACd 10 m2

mn 2000 kg
kn 107 kg s−2

dn 2
√
knmn kg m−1 s−1

qn 5000 N

rate input is set to be piecewise linear with bounds

uv ∈ [−0.03, 0.03] and duv
dt ∈ [−10−3, 10−3].

4.1.2 Gear

The net centroid is set to have initial conditions pn,0 =

col(−165.83, 0, 250), vn,0 = col(2, 0, 0), and ln,0 = 300.

The ocean current is constant vc(t) = col(0.5, 0, 0).

Other relevant parameters are found in Table 3. De-

termining parameters without a high-fidelity model is

difficult because they represent the aggregation of com-

plex behavior into a simple model. The following char-

acteristics where considered when running simulations

that helped selecting the indicated parameters in Table

3:

– The lift from the doors and the net drag make net

opening lag behind the vessel and pulled toward the

surface. Tuned with ρn and ACd.

– The doors dampen lateral motion during turning.

Tuned with qn.

– The warps have a catenary curve between the vessel

and doors, which indicates a spring-damper-like re-
sponse between them. Tuned with kn and dn, where

kn was chosen to be much softer than a e.g. steel

wire.

– The water drag dampens oscillatory motion. Tuned

with all damping parameters and mn. We chose dn
to get a critically damped response.

By exploiting the physical characteristics of compo-

nents in the low-fidelity model, we can hand-tune the

parameters to get a desired response in the simulation

model. For instance, we ran straight-line and turning

maneuvers to scrutinize both the vertical and horizon-

tal response of the net position. The winch speed in-

put is piecewise linear with un ∈ [−0.4, 0.4] and dun
dt ∈

[−0.1, 0.1]. The link length is constrained to Xl := [150, 500]

and ϕmax = 45◦.

4.1.3 Schools

Each school is approximated by a single (ns = 1) point

mass situated in the origin of an ellipsoid, which is the

Table 4 Fish School Parameters

Symbol School 1 School 2

i 1 2
pi,0(t0) col(100, 50, 170) col(500,−150, 240)
vi,s col(0,−1, 0) col(−0.5, 0.5, 0)
ri,s 25 m 25 m
mi,s 3000 kg 3000 kg

assumed bounding volume of the fish school. Relevant

parameters for the schools are given in Table 4. The

schools are set up to capture a scenario where the fishes

congregate in limited sizes. This is a common scenario

when fishing for blue whiting early in the year/season

[25,26].

4.1.4 Catch Dynamics

The catch parameters are ϑ = col(10, 75, 40, 0.2) and

γ = 0.01. The school-seeking regularization term has

parameters ϑ2 = col(103, 103, 103, 0.2) and γ2 = 0.3.

4.1.5 Optimization

Objective function parameters are Λ = diag(10−2, 5 ×
10−3) and η = 1. The optimization problem is set up

with a horizon of (tj,f − tj,0) = 200 s and control hori-

zon of (tj,c − tj,0) = 60 s. The element time width is

10 s, which gives 20 collocation elements. Within each

element the control inputs are linear and the states are

discretized with Radau collocation of degree 2. Con-

ditioning variable λ = 10−2. There are in total 812

optimization variables. The simulation runs for a total

of 17 control horizons, which gives results in 1020 s of

simulated time.

4.2 Numerical Results

The receding horizon optimization problem was solved

on a Intel Core i5-4250U with 8 GB of memory. Com-

putation times for each optimization problem can be

found in Fig. 5. All problems solved well within the

control horizon of 60 s.

The planar positions of the vessel, net, and fish

schools are shown using a North-East plot in Fig. 6.

We see that the planned path first approached School

1, then School 2. The corresponding mass of each school

is given in Fig. 7. We see that the mass of each school

reduced rapidly in a limited time interval, indicating

that the fishing net consumed mass from the matching

school.

In Fig. 8 the optimal yaw rate and winch speed are

displayed from top to bottom, respectively. We see that
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the yaw rate was occasionally on the constraint bound-

ary, whereas the winch speed more often operated at

the limits of allowed speed. The resulting time series of

the link length between the vessel and the net is given

in Fig. 9. We see that the wire length never was close
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Fig. 8 The control inputs resulting from the receding opti-
mization. The dashed red lines indicate bounds in the control
signals. The upper figure shows the yaw rate, while the bot-
tom figure shows the winch speed.
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Fig. 9 The length of the link between the vessel and the net.
The dashed red lines are bounds on wire length.

to the prescribed constraints, which are indicated by

dashed lines. The wire length is a contributing factor

for controlling the depth of the net. In order to ensure

harvest, the depth of the net must be sufficiently close

to a school. In Fig. 10 we see the depth of each school

and the time-varying net depth. By simultaneously con-

ferring Fig. 7, we see that the net’s depth coincided

(approximately) with a school’s depth when it was har-

vested. One reason why the commanded winch speed

at times exhibits ‘bang-bang’-like control is that max-

imization of harvest dominates penalization of control

input in the objective function (with the chosen opti-

mization parameters). A curious observation with the

current formulation is that the planner pays out or in

winch length in order to minimize the net-to-school dis-

tance. This phenomenon can particularly be observed

by inspecting Figs. 9 and 10 from about 700 s, as the

vessel is actually moving away from School 2.

The path planner avoided too aggressive maneuvers,

since the angle between the vessel velocity and the pla-

nar link projection never exceeded 45◦, see Fig. 11. Ob-

serve that the maximal angle was a reality for a consid-

erable fraction of the simulated time.
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5 Discussion

The presented algorithm successfully finds feasible tra-

jectories that lead to harvest of the fish schools in real

time. However, there are some issues that should be

pointed out. We present trawl catch dynamics that only

depends on the distance between the net and a fish

point mass. This would indicate that minimization of

the distance between the net and the fish mass point(s)

results in the best harvest rate. This is not correct.

A better model should also include the relative sweep

velocity between the net and the fish points. In par-

ticular, the harvest rate should be maximal when the

net is close to a fish mass point and sweeps across the

point with an ‘optimal’ speed, neither too fast nor too

slow. Such a description would make the problem more

challenging to solve.

Another concern with the formulation is its scalabil-

ity. We have already limited the problem size by apply-

ing a bounded horizon size, which can result in greedy

solutions. The presented simulation exhibits real-time

capabilities on under-powered hardware, but this may

quickly change for increasing number of school points.

This may not be a big problem for the intended ap-

plication, since in a harvest operation there is rarely

focus on more than two or three schools at the same

time. Nevertheless, if one were to use multiple points for

each school (as described in Section 3.3), which may be

relevant for huge fish schools, computation challenges

will arise. This challenge may possibly be somewhat al-

leviated by choosing a different solution approach, for

instance by separating the system into a formulation

with both shooting and collocation descriptions [27].

The optimization problem may not solve within the

nominal time limit, which is the control horizon. One

may create mechanisms for aborting and trying a refor-

mulated optimization problem with a secondary time

limit (like the final optimization time point of the pre-

vious iteration). There is no guarantee that an optimal

solution will be found. As long as the purpose of the

system is to lessen the burden for the captain, human

intervention is a viable failure mitigation mechanism.

Entering a predefined ‘safe’ solution until a optimiza-

tion succeeds may also be an alternative.

A benefit of the proposed formulation is its flexibil-

ity of adding more constraints and other descriptions.

It is straightforward to add useful properties, such as

limiting the harvest rate, since harvesting fish too fast

may rupture the net, and avoidance constraints, either

collision with other vessels or capture of undesired fish

schools. Knowledge of other vessels and fish schools

are easily obtained from radar or sonar measurements.

Safety in a shared robots-human space [8] is a highly

relevant challenge for this application.

One possible validation strategy for the motion plan-

ning method is to make use of high-fidelity models de-

scribing the vessel, trawl gear, fish schools, and fish-

net interaction as a simulator for a real-world scenario.

The role of full-scale data may be to parameterize the

high-fidelity models. The benefit of a simulator is its

repeatability: Both manual operation with an experi-

enced captain, as well as autonomous motion planning

can be executed on the same capture scenarios for com-

parison.

6 Conclusion

We have proposed a motion planning system for au-

tonomous trawling. This work can contribute in making

the tactical harvest phase more efficient. Moreover, it

is a step toward reducing human intervention in trawl-

ing through seamless utilization of information about

the surroundings in the motion planning. Our formu-

lation demonstrates motion planning of a robot (ves-

sel) with an actuator (fishing net) that interacts with

the surroundings (fish schools). We have advocated the

flexibility of the formulation, and stated that exten-

sions can be uncomplicated. The system can also be

adapted to problems with similar composition. Chal-

lenges still remain, in particular, the formulation needs

further work on a solution approach for mitigating com-
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putational scalability issues, as well as definition of ro-

bustness mechanisms to enable practical usefulness.

A Path Planner Variable Descriptions

Table 5 gives a short description of the variables and

parameters used in the path planner formulation, while

Table 6 does the same for the optimal control problem

formulation.
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