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ABSTRACT 
In this paper, an analytical model is proposed to describe 

the nonlinear vibration of blades on floating offshore wind 

turbine (FOWT). The bending-torsion coupling equations are 

derived based on Hamilton's principle. Comparing with the 

classical Newtonian method, this approach is more 

mathematically rigorous and systematic. The flapwise and 

edgewise deformation, the torsion as well as axial extension of 

the blades are all included in the model. A set of partial 

differential equations governing the coupled nonlinear 

vibration is established, and the results are compared with the 

multi-body model. Some details about the solution of equations 

are discussed. The eigen values of a rotating blade is also 

calculated. The structural model proposed in this paper can be 

widely used in the future study. For example, it can be coupled 

with an aerodynamic model to study the aeroelastic properties 

of the wind turbine blades. The effect of platform motion on 

blade dynamic response can also be obtained based on this 

analytical model.  

INTRODUCTION 
Wind energy development has been paid more and more 

attention these years because of its contribution of relief the 

global warming and energy problem. With the technical 

advance and increasing demand for electricity, wind turbine has 

been developed from land to deep water with a larger capacity 

and structural scale. The length of wind turbine rotor blades is 

also enlarged for capturing more wind energy (see Fig.1). As 

the blade becoming longer, the flexibility of blade structure is 

also increased, and the blade deformation seems to be more 

complex. 

In the process of operation, the blade is subjected to 

gravity, centrifugal force, and aerodynamic force. These forces 

cause the blade deformed at four different directions including 

longitudinal vibration (named axial extension), out of-plane 

bend (named flap), in-plane/edgewise bend (named lead/lag) 

and torsion [1]. The aeroelastic response of wind turbine blades 

is influenced by the structural coupling between bending and 

torsion of the blade. Bending–torsion coupling creates a 

feedback between the aerodynamic forces, which induce 

bending moments in the blade, and the blade torsion, which is 

directly related to the angle of attack and thus the aerodynamic 

forces [2]. Usually there are two kinds of models of blade to 
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study the aeroelastic problem. One of the models is to 

concentrate the elasticity of the blade to the root, and the whole 

blade is taken as a rigid body. It seems that the rigid blade is 

installed on a spring. Chopra and Dugundji [3] studied the 

nonlinear dynamic behavior and stability problem of the blade 

by the rigid body model considering the flap-motion, lead-lag 

motion and feathering motion. But the other parts of the wind 

turbine such as nacelle and tower were all neglected. Bir and 

Stol [4][5] examined the operating modes of a two-bladed 

teetered wind turbine which is modeled with seven degrees of 

freedom. The modal parameters were extracted by the Floquet 

approach. However, the rigid body model is only suitable for 

small wind turbine blades. As for large wind turbine blades, the 

airfoil of blade section and pre-twist angle vary greatly along 

the spanwise direction. The deformation of the blade is also 

increased. The modal shape, geometry, and airfoil distribution 

of the blade cannot be accurately described by the rigid body 

model. It is more reasonable to use the flexible body model to 

study the vibration of large wind turbine blades. Larsen et al[6] 

derived the non-linear partial differential equations of motion 

by considering the blade as a Bernoulli-Beam. Kallesøe [7] 

establish the nonlinear equations of bending and torsion motion 

of a rotor blade including the effects from gravity, pitch action 

and varying rotor speed. Li et al [1] put forward a mathematical 

model describing the nonlinear vibration of horizontal axis 

wind turbine blades, and the structural damping of the blade 

was considered.  

 
Figure1 Rotor radius of floating offshore wind turbine  

 

Although a lot of research work has been done on the 

blade modeling of onshore wind turbines. There is little study 

about the offshore wind turbine blade modeling and the effect 

of platform motion on the blade deflection. In this paper, 

Hodges–Dowell’s [8] partial differential equations of blade 

motion are extended by considering the whole wind turbine 

system including the platform motion, the nacelle yaw and the 

rotor rotation, except for the deflection of tower. The nonlinear 

equations of motion for the elastic bending and torsion of wind 

turbine blades is derived to study the natural properties. The 

natural frequencies and mode shapes of a rotating blade at 

different rotor speed are calculated. The analytical model 

proposed in this paper can provide a basis for the analysis of 

blade vibration and aeroelastic stability for floating offshore 

wind turbines in the future work. 

COORDINATE SYSTEMS AND TRANSFORMATION  
Several coordinate systems will be used to describe the 

configuration and motion of the wind turbine system (see Fig. 

2). The orthogonal axes system
0 0 0, ,X Y Z and associated unit 

vectors 0 00, ,I J K  are fixed in the inertial frame. The origin of 

the system is point
0O . The orthogonal axes system 

1 1 1, ,X Y Z  is 

rigidly attached to the support platform which is used to define 

the translational (surge and heave) and rotational (pitch) 

motions of the platform. Its origin
1O  located at the mean sea 

level. The transformation matrix from
0 0 0X Y Z  to

1 1 1X Y Z  is 

given in the equation (1). 

cos 0 sin

0 1 0

sin 0 cos

pitch pitch

pitch pitch

 

 

    
    

     
        

1 0

1 0

1 0

I I

J J

K K

         (1) 

 

     

 
Figure 2 Description of the coordinate systems for FOWT 

Transfer the coordinate system
1 1 1X Y Z  along with the 

1X -axis. Then the orthogonal axes system 
2 2 2, ,X Y Z  is obtained 
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with origin 
2O  at the tower top. The tower deflection can be 

expressed by 
2 2 2, ,X Y Z . However, the flexibility of tower is 

negligible here now, the coordinate system 
1 1 1X Y Z  and 

2 2 2X Y Z are identical except for the position of the origin. The 

coordinate system 
3 3 3X Y Z is used to describe the motion of 

nacelle, which is first rotated about the 
2X -axis with the 

angle
yaw . Hereafter system 

3 3 3X Y Z  is rotated tilt  about 

the
3Y -axis, yielding a transformation matrix between 

coordinate system
2 2 2X Y Z  and

3 3 3X Y Z . The origin of the two 

systems are both point 
2O . Three blade wind turbines usually 

don’t have tilt motion. 
tilt is the tilt angle of the rotor shaft 

from the nominally horizontal plane and it is constant. 

tilt tilt

yaw yaw

tilt tilt yaw yaw

cos 0 sin 1 0 0

0 1 0 0 cos sin

sin 0 cos 0 sin cos

 

 

   

      
     

      
           

3 2

3 2

3 2

I I

J J

K K

  (2) 

Since the shaft in this model is assumed to be stiff, the 

only transformation between system 
3 3 3X Y Z  and system 

4 4 4X Y Z  is a rotation about the 
3Z （or

4Z ）-axis at constant 

angular velocity . The transformation matrix of these two 

systems is showed in equation (3). The plane 

containing
4X and

4Y is called the reference plane, or plane of 

rotation. The origin
4O of system 

4 4 4X Y Z  is located at the 

intersection of the rotor axis and the plane of rotation (non-

coned rotors) or the apex of the cone of rotation (coned rotors).  

cos sin 0

sin cos 0

0 0 1

 

 

     
    

     
         

4 3

4 3

4 3

I I

J J

K K

          (3) 

where the rotation angle 

t

0

= dt   for t second. 

The 
5X -axis, which lies along the elastic axis of the 

undeformed beam, is inclined to the plane of rotation (and to 

the
4X axis) at the pre-cone angle

p (negative as shown in Fig. 

2). So the relationship between the two 

systems
4 4 4X Y Z and

5 5 5X Y Z is: 

p p

p p

cos 0 sin

0 1 0

sin 0 cos

 

 

    
    

     
        

5 4

5 4

5 4

I I

J J

K K

          (4) 

Translating the
5 5 5X Y Z system from the apex of the cone of 

rotation to the centroid of the blade root (point o), a new 

system xyz and the corresponding unit vectors , ,i j k are 

established. The xyz system coincides with the
5 5 5X Y Z system 

except for the location of origin. Here the radius of the rigid 

hub, HubRad, is considered. 

The elastic deformation of a FOWT blade is shown in 

Figure 3. There are four components of deformation including 

axial extension, flap, lead/lag (in-plane/edgewise bending) and 

torsion. These deformations are described by the displacements 

of the elastic axis u, v, w, parallel to , ,i j k respectively, and the 

torsion angle  with respect to 'i  axis. A point on the elastic 

axis that is located at x, 0, 0 in the x, y, z coordinate system 

before deformation is located at x+u, v, w after deformation. 

The blade cross section is assumed to be symmetric with 

respect to the chord. Thus the center of mass, shear center and 

aerodynamic center of the blade section all locate on the chord 

line. The   and   axes shown in Figure 4 are the local 

coordinate system of the cross section. The origin of this 

system locates at the shear center. The   and  axes are 

inclined relative to the y and z axes at a twist angle   

( =
0 +

t , 0 is the setting angle and t  is the pre-twist 

angle). The angle of twist of the cross-section changes from 

 about the x axis to +   about the x' axis. 

 
Figure 3 Elastic deformation of the blade[8] 

 
Figure 4 Cross-section coordinates before and after 

deformation 

 

The complicated transformation from coordinate xyz 

undeformed system to ' ' 'x y z  deformed system is given by 

Ref 8. 
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2 2

2 2

2 2

1 1
1 ' ' ' '

2 2

' '
[ ' cos( ) ' sin( )] cos( ' ')(1 ) sin( )(1 )
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' '
' sin( ) ' cos( ) sin( ' ')(1 ) cos( )(1 )
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v w v w

v w
v w v w

v w
v w v w

       

       
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  

    
    

             
       
 

         
 

i' i

j' j

k' k (5) 

where '
v

v
x





 and '
w

w
x





. 

DERIVATION OF GOVERNING EQUATIONS  
The equations of motion for a FOWT blade rotating at 

constant speed are obtained from Hamilton's principle. The 

rotor blade can be regard as a long, slender, homogeneous, 

isotropic beam. The external forces acting on the beam are 

characterized by a set of generalized distributed loads. 

The expression of generalized Hamilton principle is: 
2

1

[ ( ) ] 0

t

t

U T W dt   
              (6) 

where U is the strain energy, T is the kinetic energy, and W is 

the virtual work of the external forces. Suitable expressions 

for U , V , and W are now determined and then combined 

to give the desired equations. 

Strain energy contributions 

The blade is regard as a long slender beam. According to 

Ref. 8, the nonlinear strain–displacement relation of the normal 

strain xx  as well as the shear strain component
x and 

x are obtained as: 

 

 

2 2 2
2 2' ' '

= ' ( )( ' ' )
2 2 2

       '' cos( ) sin( )

       '' sin( ) cos( )

'

'

xx

x

x

v w
u

v

w






    

     

     

 

 


    


   


   


 


 



         (7) 

The variation of the strain energy U is: 

0

( )  

R

xx xx x x x x

A

U E G G d d dx                (8) 

where E is the Young’s modulus of elasticity, G is the shear 

modulus.  

Kinetic energy contributions 

The derivation of kinetic energy of a blade is something 

different from the previous work. Because the effect of 

platform motion (surge, heave, pitch) for FOWT is considered 

in this part.  

Kinematics 

The whole analytical system consists of six rigid body 

(earth, support platform, tower, nacelle, shaft and hub) and 

three flexible blades. The hub is rigidly connected with the 

shaft. Thus they can be regard as one rigid body. Applying the 

addition theorem for angular velocities [9] yields the following 

form of the angular velocity of hub in the inertial frame 
E H E P P T T N N H= + + +               (9) 

where 
E P  is the angular velocity of the platform in the 

inertial frame. Because the tower is rigidly attached with 

platform and the flexibility of tower is also ignored. The 

angular velocity of tower top relative to the platform equals 

zero. In other words, 
P T =0 . The angular velocity of the 

nacelle relative to the tower-top base plate,
T N , has a 

component associated with the rate of yaw. 
N H is the 

angular velocity of the shaft (or hub) to nacelle which is related 

to the time derivative of the azimuth angle. The previous four 

terms can be combined to give the following form of the 

angular velocity of the hub in the inertial reference frame: 

E H
pitch yaw=   

0 2 4
J I K          (10) 

To simply the analysis, 
E H  can be written as the 

following form: 

E H

1 2 3=[ ]A A A

 
 
 
  

i

j

k

             (11) 

The explicit expression of 1A , 2A and 3A can be obtained 

by substituting equations (1) ~ (4) into equation (10). 

The velocity of the platform (Point
1O ) in the inertial 

frame is: 

1E =
O

heave surgev X Z
0 0

I K          (12) 

where heaveX and surgeZ represent the velocity of platform 

heave and surge respectively. 

The velocity of the tower top (point 2O ) in the inertial 

frame is: 

2 1

1      ( )

O OE E E T

OE E P P T

v v

v



 

  

   

1 2

1 2

O O

O O

r

r
       (13) 

where the position victor  TowerHt1 2O O

1
r I . TowerHt is the 

distance from mean sea level to the top of the tower. 

The velocity of the apex of the cone of rotation (point
4O ) 

in the inertial frame is: 
4 2 2 4O OE E E Hv v   

O O
r            (14) 

where the position victor 2 4 OverHang
O O

3
r K . OverHang is 

the distance along the rotor shaft from the
3 3X Y plane to the 

rotor apex. 

The velocity of the centroid of the blade root (point o) in 

the inertial frame is: 
4OE o E E Hv v    4O o

r             (15) 
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where the position victor  HubRad4O o
r i . HubRad is the 

distance from the apex of the cone of rotation to the centroid of 

blade root along the pitch axis. To make it easier to understand, 

the expression of some parameters here is the same as that in 

FAST Code. 

Like the angular velocity, the term
E ov can be simplified 

as: 

E o

1 2 3=[ ]v B B B

 
 
 
  

i

j

k

          (16) 

The explicit expression of
1B ,

2B and
3B can also be 

obtained by substituting equations (1) ~ (4) and (10) into 

equation (16). Here the effect of platform motion and other 

parts of the wind turbine system on blade dynamic response are 

all considered. 

Kinetic energy 

The vector position of a generic point S on the 

undeformed beam is given by (x, y, z) with respect to the unit 

vectors , ,i j k  where (x, 0, 0) is the elastic axis. After the 

blade deformed, the position of point S can be given by 

(
1x ,

1y ,
1z ). The high order terms have been ignored. Only the 

first and second order terms are retained. 

1

1

1

'[ cos( ) sin( )]

      '[ sin( ) cos( )]

cos( ) sin( )

sin( ) cos( )

x x u v

w

y v

z w

     

     

     

     

     


   


    
     

    (17) 

The velocity of point S in the inertial frame is: 
E S H S E o E H Sv v v     o

r            (18) 

where
H Sv is the velocity of the point S relative to the reference 

frame xyz, which can be written as: 

1 1 1

H Sv x y z  i j k                (19) 

 

By substituting equations (11), (16) and (19) into equation 

(18), one can obtain the expression of
E Sv : 

1 1 2 1 3 1 1 2 3 1 1 1

1 3 1 1 2 1

( ) ( )

        ( )

E Sv x B A z A y y B A x A z

z B A y A x

       

   

i j

k
 (20) 

The variation of the kinetic energy T of the rotating blade 

is: 

0

    

L

E S E S

A

T v v d d dx              (21) 

where L is the length of flexible blade, measured from the 

centroid of blade root to blade tip. The variation of the velocity 

of point S is: 

1 2 1 3 1 1 3 1 1 1

1 1 1 2 1

( ) ( )

          ( )

E Sv x A z A y y A x A z

z A y A x

      

  

     

  

i j

k
  (22) 

It is assumed that
E ov and 

E H   are both zero for a 

qusi-static method.  

Nonlinear equations of motion  

The virtual work W of the nonconservative forces can 

be expressed as: 

0
( ' ')

L

x y z y zW F u F v F w M M w M v dx             (23) 

where
xF ,

yF ,
zF and 

xM ,
yM ,

zM represent the resultant 

distributed forces and moments (including gravitational, 

aerodynamic and other external loading) in x-, y- and z-

directions respectively. 

By substituting equations (8), (21) and (23) into equation 

(6), the total variational equation in terms of u, v, w, and can 

be obtained. For arbitrary, admissible variations u , v , 

w and , the coefficients of the variations must vanish in 

the integrand for all x from 0 to L. This condition will yield 

four nonlinear partial differential equations. After linearization, 

the four governing equations of the axial motion, flap, lead/lag 

and torsion are as follows:

 

The axial motion: 
' ( ) ( )-T ( , , ', ') ( , ')u u

xC D F                                             (24) 

 

The flap motion: 
2 2

2 2 2 *

2

( ) ( )

{( sin cos ) '' ( )( ''sin cos '' cos 2 '' sin 2 ) (sin cos )

' 'sin ( ''sin cos ''sin '' cos 2 '' sin 2 ) ' 'sin }'' ( ') '

( , , ', ') ( ,

z y z y A

A A A

w w

EI EI w EI EI v v w Te

EAe k EAe v w v w EB Tw

C D

          

            

     

      

      

  ') 'z yF M 

        (25) 

The lead/lag motion: 
2 2 2 2

* 2 2 2

2

( )

{( cos sin ) '' ( )[sin cos '' 2 ''sin cos (cos sin ) '']

' 'cos [ (cos sin ) ' 'cos ( ''cos '' sin 2

''sin cos '' cos 2 ]}'' ( ') ' ( , , ',

z y z y

A A A A

v

EI EI v EI EI w v w

EB Te EAk e EAe v v

w w Tv C

         

           

      

     

     

    ( )') ( , ') 'v

y zD F M    

             (26) 
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The torsion motion: 
2 2 * 2 *

1 2

2 2 2

( )

{ ( ) '[ ' ' ( ''cos ''sin )] ' ' '( ''cos ''sin )}' ( ') '
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where  
2 2

2' '
' ' ' [ ''cos( ) ''sin( )]

2 2
A A

v w
T EA u k e v w     

 
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                (28) 

The associated boundary conditions are: 

0 0 0 0
0

x x x x
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0 0 0
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x L x L
v w

 
  , 0

x L
T


 , max0x

T T

 . 

 

In equations (24) ~ (27), the symbol represents taking 

all four variables u, w, v and . The expression of 
( )C 

and 

( )D 
 are presented in the Appendix A.  

Before solving for the motion equations, it is more 

convenient to eliminate u from the equation (24) ~ (27). 

According to equations (24) and (28), u can be expressed by 

terms T, v, w, and  . The expression of T can be written as: 

( ) ( )T= ( ( , , ', ') ( , '))
R

u u

x
x

F C D dx           (29) 

Thus 'u can be solved. The expression of u can be 

obtained by integrating 'u  over x and then differentiating 

with respect to t.  

VERIFICATION OF THE ANALYTICAL MODEL 

Method of solution 

Based on the normal mode summation method, the blade 

deformation can be expressed as a linear sum of known shapes 

of the dominant normal vibration modes [9].  

1

1

1

( ) ( )

( ) ( )

( ) ( )
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k
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wk wk

k

N

k k

k

v x q t

w x q t
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 
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
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





 








            （30） 

where ( )vkq t , ( )wkq t and ( )kq t are the generalized 

coordinates associated with the modal function ( )vk x , ( )wk x  

and ( )k x  respectively. 
vN , wN and N are the number of 

modal functions used to describe edgewise, flapwise and 

torsion motion respectively. 

Alternatively, the deflection of the blade can also be 

expressed using N other functions ( )x , which satisfy the 

boundary conditions and not unique to each normal mode, 

according to the assumed-modes method. The modal function 

can be written as linear combination of the shape function： 

1 1 1

, ,  
v w

NN N

vj wj jvk j wk j k j

j j j

a b c


     
  

     （31） 

The shape functions of different motion are: 

( ) ( / ) ^ ( -1)

( ) ( / ) ^ ( -1)

(2 -1)
( ) sin

2
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         （32） 

where the lateral deflection (edgewise and flapwise) of blade is 

assumed to be expressible as a polynomial and NP is the order 

of the first coefficient. To satisfy the geometric boundary 

conditions, NP must be no smaller than two. 

Substitute equations (30) (31) and (32) into equations (25) 

~ (27). Based on Galerkin’s method, the modal motion 

equations can be obtained through weighted integral by the 

shape function with respect to x. 

1
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            (33) 

where 
1( , , )E v w  ,

2 ( , , )E v w  and
3( , , )E v w  are the 

expression of equations (25), (26) and (27) after moving the 

right side terms to the left. The velocity terms and static 

deformation is neglected to analysis the natural properties of 

the blade. The modal motion equations can be written as: 

2

1 1 1 ( ) 1 ,..., , ,... , ,... 0
v w v w

T

N N N N N Na a b b c c
 

   
        

M K  (34) 

The coefficients 
1 1 1,..., , ,... , ,...

v wN N Na a b b c c


cannot equal to 

zero at the same time, thus 2  M K 0 .The natural 

frequencies and the associated undamped modal function can 

be obtained by solving the equation. 

Verification of the model 

The NREL 5MW wind turbine blade was chosen as an 

example to validate the analytical model in this paper. The 

geometric and material properties of the blade can be found in 
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Ref. [10]. FAST uses a program called Modes to generate mode 

shapes of blades. Here the program Modes was also used to 

validate the model. The number of modal functions in Modes 

and current model are set the same, which is 5, 3v wN N N   . 

Reference [11] did an eigen analysis by ADAMS, based on a 

multi-body model. The comparison of the results for a static 

blade are shown in table1. And the comparison of mode shapes 

can be found in Figure 5. 

The results in table1 showed that the flapwise and 

edgewise frequencies calculated by the current model are in 

good agreement with the associated results of Modes and Ref. 

[11]. The mode shapes also agree well. The natural frequency 

and mode shape of torsion motion was also calculated which is 

not included in Modes. Usually the torsional mode does not 

occur alone. It is coupled with other modes. The coupling of all 

kinds of deformation has an important influence on the 

aerodynamic stability of the blade. 

 

Table 1 Comparison of the natural properties for a static blade  

Natural 

Frequency(Hz) 
Modes(FAST) ADAMS [11] 

Current 

model 

First flapwise 0.6830 0.6745 0.6824 

Firsr edgewise 1.0968 1.1033 1.0925 

Second flapwise 1.9909 1.8394 1.9921 

Second 

edgewise 
4.0714 3.8997 4.0464 

First torsion - - 5.7446 
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(a) First flapwise mode shape 
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(b) First edgewise mode shape 
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(c) Second flapwise mode shape 
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(d) Second edgewise mode shape 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

T
o

rs
io

n
 A

n
g

le

x/L

 New Model

 
(e) First torsion mode shape 

Figure 5 Comparison of mode shapes with FAST-Modes 

 

Eigen analysis of the blade at different rotational speed 

The rotating blade is deformed by the effect of the 

centrifugal force. Because of the coupling between rigid 

motion and elastic deflection, the stiffness of the blades is 

increased. This phenomenon is called dynamic stiffening. The 

natural frequency of a rotating blade at different rotational 

speed was calculated. The geometric and material properties of 

the blade have been given previously. For different rotational 

speed, the value of coefficient iA and iB (i=1,2,3) will be 

changed. The natural frequencies can be obtained by solving 

equation (34). The results are shown in Table2 and the natural 

mode shapes can be found in Figure 6. 
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Table 2 Natural frequency of rotated blade(Hz) 

Rotor 

Speed 

Mode Shape 

First 

Flapwise 

Second 

Flapwise 

First 

Edgewise 

Second 

Edgewise 

0 0.6824 1.9921 1.0925 4.0464 

3r/min 0.7005 2.0304 1.0967 4.0584 

6r/min 0.7442 2.1328 1.1088 4.0933 

9r/min 0.7965 2.2732 1.1273 4.1484 

12r/min 0.8486 2.4300 1.1504 4.2207 

15r/min 0.8983 2.5923 1.1763 4.3072 
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(a) First flapwise mode shape 
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(b) First edgewise mode shape 
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(c) Second flapwise mode shape 
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(d) Second edgewise mode shape 

Figure 6 Mode shapes at different rotational speed 

It can be found that as the rotational speed increased, the 

natural frequency significantly changed. When the rotor speed 

increased from 0 to 15 r/min, the frequency of fist flapwise and 

second flapwise mode increased by 0.2159Hz,31.6% and 

0.6002Hz,30.1%, respectively. For the edgewise mode, as the 

rotor speed changed, the first edgewise frequency increased 

0.0838Hz, 7.7% and the second edgewise frequency increased 

0.2608Hz, 6.4%. The phenomenon is in accordance with the 

Ref. 12. It also can be seen that the change of rotor speed has a 

greater effect on the flapwise motion than edgewise. 

Meanwhile the frequency of low-order mode is easier to be 

changed as the rotor speed increased. In Fig.6, the flapwise 

mode shapes change more obviously than the edgewise. 

Basically, all the mode shapes don’t change a lot at different 

rotor speed. 

CONCLUSION AND FUTURE WORK 
In this paper, an analytical model for floating offshore 

wind turbine blades is put forward based on Hamilton's 

principle. The bending-torsion coupling effect is considered to 

derive the nonlinear motion equations. The governing 

equations of flapwise and edgewise deformation, the torsion as 

well as axial extension of the blades are obtained. NREL 5MW 

wind turbine blade is taken as an example to validate the 

analytical model. The frequencies and shapes of the natural 

modes of blade vibration are compared to results from FAST-

Modes and ADAMS (the multi-body model), showing good 

agreement. The accuracy of the analytical model in this paper is 

validated. The natural frequencies of both the flapwise and 

edgewise vibration is getting lager as the rotor speed increased 

because of the effect of dynamic stiffening. However, the 

change of mode shapes is not so obviously as that of frequency. 

Usually, the rotor speed has little effect on the mode shapes, but 

it will have a significant effect on the frequency of vibration. 

Based on the analytical model proposed in this paper, we 

can do more research work in the next step. We plan to 

combine the structural model in this paper with the 

aerodynamic model to study the aeroelastic properties of the 

blade and analyze the effect of different structural parameters 
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on blade dynamic response. At present, the wind turbine is 

fixed to study the natural properties of the blades. While, in the 

next step, the hydrodynamic load will be included to calculate 

the platform motion which can be regard as an input of the 

structural model. And then we can further explore the influence 

of platform motion on blade nonlinear dynamic response. The 

flexibility of tower can also be considered at that time. 

According to these research work, the instability mechanisms 

of wind turbine blades vibration can be revealed. And some 

suggestions about designs and control strategy to avoid 

instabilities can also be provided. 
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ANNEX A 

EXPRESSION OF THE COEFFICIENT TERMS IN MOTION EQUATIONS 
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