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An Ice-Drift Estimation Algorithm
Using Radar and Ship Motion Measurements

Øivind K. Kjerstad, Sveinung Løset, Roger Skjetne, and Runa A. Skarbø

Abstract—This paper presents a novel automatic real-time remote
sensing algorithm that uses radar images and global positioning
satellite system measurements to estimate the ice-drift velocity
vector in a region around a free-floating and potentially moving
vessel. It is motivated by the low image frequency of satellite
systems together with the inconvenience of deploying and re-
trieving ice trackers (beacons) on the ice. The algorithm combines
radar image processing with two Kalman filters to produce the
estimated local drift vector decoupled from the ship motion. The
proposed design is verified using a full-scale data set from an
ice management operation north of Svalbard in 2015. It is found
that the performance of the algorithm is comparable with that
of trackers on the ice.

Index Terms—Ice, Remote Sensing, Radar, Marine vehicles,
Arctic, Kalman filtering.

I. INTRODUCTION

Sea-ice occurs in about 10% of the world ocean’s surface,
and lies mostly in the Arctic and Antarctic Seas. It grows
and melts under influence of solar, atmospheric, oceanic, and
tidal forcing where the ice covers break up, open, and close as
drifting ice floe fields [1]. Operating fixed or floating structures
in such environments impose several challenges related to the
movement of the sea-ice. Therefore, regardless of the purpose
of the human presence, it is important to monitor the sea-ice
and plan according to its movement to control the operational
risk level.

On a large scale, spaceborne satellite systems with optical
and microwave imagery, and synthetic aperture radars (SARs)
provide excellent images that are valuable in planning and
carrying out operations. From these, information about ice
concentration, ice cover composition, and ice-drift on a large
scale can be obtained [2]. However, the downside of these
intelligence sources is their data frequency. This may be on
a few-times-a-day scale, and the real-time availability of the
data in the range of several hours [3]. Thus, satellites in low
Polar orbit have limited capability to monitor the ice-drift for
online operational decision support, as the ice-drift is prone
to significant change within a few hours [4, 5]. To counter
this, real-time ice-drift monitoring is typically implemented by
either physically deploying (and retrieving) reference GNSS
sensors on large ice floes, or by an ice observer crew member
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evaluating the ice cover and ship status to provide a coarse
description of the local situation. Both of these methods have
notable limitations. Firstly, it may be difficult for a human
on a moving platform to perceive the slow movement of
the ice with good accuracy [6], not to mention difficulties
with darkness, harsh weather, and daily routines. Secondly,
placing and retrieving sensor and communication systems with
batteries on the ice will in many cases require helicopter
operations, often not possible to conduct, and in other cases it
may simply not be allowed from an environmental perspective.
This motivates the development of a robust onboard remote
sensing system capable of tracking the ice-drift velocity vector
in real-time during day and night, and in good and harsh
weather.

To improve local ice-drift monitoring we propose an automatic
real-time algorithm that estimates the ice-drift vector in the
vicinity of the vessel with high temporal resolution. Here,
local refers to an area with a few (0.5 to 6) nautical miles
in radius. The algorithm uses image processing techniques to
automatically detect and track the motion of N distinctive fea-
tures (DF) in a north fixed radar plan position indicator (PPI)
image, and two Kalman filters to select DFs and decouple the
vessel motion. Essentially, the proposed algorithm is a target
tracking system that combines multiple targets to provide an
estimate of the ice-drift in the area covered by the radar. Target
tracking of multiple objects using marine navigational radar is
not new, and several systems exists (see e.g. [7]). However,
to our best knowledge, no algorithm provides explicit ice-drift
measures and predictions decoupled from a moving platform
like a ship. From land-based or freely drifting platforms some
similar works exist [8].

The proposed algorithm is investigated using a dataset from the
Oden Arctic Technology Research Cruise in 2015 (OATRC15),
where two Swedish icebreakers, the Oden and the Frej,
conducted ice management (IM) trials in the Arctic sea-ice
north of Svalbard. On this expedition we had several beacons
deployed on the ice.

Mathematical notation: Bold font face is used to denote
vectors and matrices, and normal face is used for scalars. The
subscript k describes the discrete time instance of a variable.
A ◦ B denotes the Schur product, or entrywise product,
between two matrices A and B of equal size. In the Kalman
filter the notation k|k− 1 denotes the a priori, or predicted,
estimate, and k|k denotes the a posteriori, or updated estimate.

II. MODELING AND
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Fig. 1. The ship and DF kinematics shown in the North-East-Down frame.

PROBLEM FORMULATION

This paper considers the kinematic scenario illustrated in
Figure 1, where the vessel position is measured in a geo-fixed
North-East-Down (NED) frame (by global navigation satellite
system (GNSS) e.g. the global positioning system (GPS)), and
the DFs are captured in a vessel-centered NED frame image by
the onboard radar (an example is given in Figure 2). The key
problem of determining the ice-drift velocity from the latter is
that the observed motion of the DFs are a superposition of the
vessel and DF motion (due to the fact that the radar antenna
is shipborne). Hence, the objective is to estimate and predict
the geo-fixed NED ice-drift velocity vector vice ∈ R2 in the
radar-observed area.

Since radars do not distinguish between different objects, any
echo is a potential DF. By assuming that most echoes originate
from drifting sea-ice, we propose the algorithm structure
shown in Figure 3:

1) Find and track the relative position of N independent DFs
in the radar image.

2) Estimate the geo-fixed velocity of the N DFs individually.
3) Separate non-ice DFs from ice DFs.
4) Estimate vice using the ice DFs.

To express the vessel motion we apply the following two
degrees of freedom (DOF) NED frame model,

ps
k+1 = ps

k + hvs
k + wsp

k (1a)
vs

k+1 = vs
k + wsv

k (1b)
ys

k = ps
k + ns

k, (1c)

where ps ∈ R2 is the vessel position, h ∈ R is the time-step
of the model, vs ∈ R2 is the vessel velocity, wsp ∈ R2 and
wsv ∈ R2 are process noise vectors, ys ∈ R2 is the output
measurement, and ns ∈ R2 is measurement noise. A DF is
modeled similarly,

pd
k+1 = pd

k + hvd
k + wdp

k (2a)

vd
k+1 = vd

k + wdv
k (2b)

yd
k = pd

k − ps
k + nd

k, (2c)

where pd ∈ R2 is the DF position, vd ∈ R2 is its velocity,
wdp ∈ R2 and wdv ∈ R2 are process noise vectors, yd ∈ R2

is the model output measurement, and nd ∈ R2 is measure-
ment noise. Notice that in (2c) the term ps

k originates from
measuring the DF from the vessel.

To simplify the notation we write the complete ship and N
DF model in state space form as

xk+1 = Fxk + Ewk (3a)
yk = Hxk + Dξk (3b)

where x ∈ R4N+4 is a vector of the N DF states and the vessel
states. This is defined as

x=
[
pd1 vd1 . . . pdN vdN ps vs

]>
, (4a)

where the superscript numbering refer to a particular tracked
DF. Further in (3), w ∈ R4N+4 is the overall process noise
vector, and ξ ∈ R4N+4 is the measurement noise vector. These
are defined as

w=
[
wdp1 wdv1. . .wdpN wdvN wsp wsv

]>
, (4b)

ξ=
[
nd1 nd2 . . . ndN ns

]>
. (4c)

As in (4a), superscript numbering refer to a particular tracked
DF. The state-space matrices E ∈ R(4N+4) × (4N+4) and D ∈
R(4N+4) × (4N+4) are identity matrices, and F ∈ R(4N+4) × (4N+4)

and H ∈ R(2N+2) × (4N+4) are defined as

F =


I hI 0 0 . . . 0 0
0 I 0 0 . . . 0 0
...

. . .
...

0 0 0 0 . . . I hI
0 0 0 0 . . . 0 I

 , (5a)

H =


−I I 0 0 . . . 0
−I 0 I 0 . . . 0
...

. . .
...

−I 0 0 0 . . . I
I 0 0 0 . . . 0

 . (5b)

Based on the natural motion of the sea-ice [1, 4, 5], we propose
the following simplified kinematic ice-drift velocity model,

vice
k+1 = aksin(ωkt+ φk) + bk + hwice

k , (6)

where t ∈ R denotes time, and ak, ωk, φk, bk, and wice ∈ R2

represent the amplitude, frequency, phase, signal offset, and
process noise, respectively. The first four are assumed to be
unknown and slowly varying. Thus, they are modeled as

ak+1 = ak + hwa
k (7a)

ωk+1 = ωk + hwω
k (7b)

φk+1 = φk + hwφ
k (7c)

bk+1 = bk + hwb
k, (7d)

where wa
k, wω

k , wφ
k , and wb

k ∈ R2 are process noise terms.
On compact form (6)-(7) can be written

zk+1 = G(zk, h) + hwz
k (8a)

yice
k = Ckxk, (8b)
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Fig. 2. A unprocessed radar image captured from the operator workstation during ice management trials at the OATRC15.

where z and wice are defined as

z =
[
vice a ω φ b

]>
, (8c)

wice =
[
wz wa wω wφ wb

]>
. (8d)

In (8b), Ck ∈ RΥ × (4N+4) is a selection matrix calculated
based on the number of DFs complying with a criterion for
inclusion in calculation of z (from which the variable Υ ∈ R
follows). The definition of this will be presented later.

The remainder of this paper is devoted to presenting and
experimentally testing the proposed algorithm. Section III
presents the algorithm to estimate xk and zk based on radar
images and position measurements. Section IV investigates
the performance of the proposed estimation system using the
mentioned OATRC15 dataset. Finally, Section V concludes the
study.

III. ALGORITHM DESIGN

A. Image processing

As seen in Figure 3, the image processing of the radar images
acts as a ship-relative position sensor for the N DFs. Together
with vessel position measurements, it enables determination of
yk in (3), which is needed for the estimation of xk and zk.

The image processing considered in this paper is built on the
well-known and proven concept of corner detection, where

we define a DF as a point for which there are two dominant
and different edge directions in a local neighborhood. This
implies that a DF may be a corner, but it can also be an
isolated point of local intensity maximum or minimum, line
endings, or a point on a curve where the curvature is locally
maximal [9]. Although corner detection methods may provide
the DF locations in the radar images, they do not provide
a robust manner of linking the DFs found in one image to
those found in the next. Hence, it does not provide consistent
tracking between radar frames. Achieving this is inspired by
optical flow methods such as [10], but instead of computing
the DF velocities directly we leave this to the state estimation
sub-algorithm and focus on obtaining a robust DF match. This
will avoid direct differentiation, which is highly susceptible to
noise.

The three modules of the Image Processing block of Figure 3
are described and explained below.

1) Image preparation: As mentioned above, the data applied
in this paper are derived from the OATRC15, and the radar
images are in the format seen in Figure 2. To enable detection
and tracking of DFs on such images, pre-processing to a
suitable format is needed. This is done in the Prepare Image
module seen in Figure 3. Algorithm 1 provides pseudo-code
to explain the module.

Following Algorithm 1 the original radar image Fr ∈
R1920× 1200 is cropped to remove all non-PPI graphics, ob-
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Fig. 3. An overview of one iteration of the ice-drift velocity vector estimation algorithm.

Algorithm 1 Pseudo-code for preparing the radar frame for
further processing.

function Prepare Image

Input: RGB radar image, Fr
Output: Cornermetic matrix, Ω

1: Get Fc by cropping Fr to PPI
2: Compute Fw from Fc

3: Filter Fw and compute Ω

end function

taining Fc ∈ Rqx × qy , where qx, qy ∈ R are the cropped
image pixel dimensions. Secondly, Fc is converted to gray-
scale, Fw ∈ Rqx × qy , in order to facilitate DF detection by a
corner method. Thirdly, we scale out the image center by

Fw = Fc ◦ Z (9)

where Z ∈ Rqx × qy is a weighting matrix computed by

Z = J1 −
1

max(Γ)
Γ (10a)

Γ(i, j) =
1√
2π
e−(i−i0)θx−(j−j0)θy , (10b)

where J1 ∈ Rqx × qy is unit matrix, Γ ∈ Rqx × qy is a weighting
matrix, i ∈ R≥0 and j ∈ R≥0 are pixel rows and columns,
respectively, i0 and j0 denote the image center, and θx ∈ R>0

and θy ∈ R>0 are design weights. The foremost reason for
weighting down the center close to the ship, is the reduced
radar data quality in this area. Figure 2 illustrates this well.

Before computing the cornermetric matrix Ω ∈ Rqx × qy ,
we filter Fr with a median window filter to remove noise
while preserving edges. Finally, Ω is computed by the method
described in [11]. Figure 4 shows the Prepare Image output for
the radar image of Figure 2. Notice that it contains DFs that

are not originating from the ice, but from overlay graphics.
Such will be mitigated and discussed further in Section III-C.

2) Detecting DFs: The Detect DFs module of Figure 3 takes
Ω and pinpoints coordinates for n ∈ {1, . . . , N} DFs with
sub-pixel precision. It is used at initialization and whenever
one or more DF are lost (e.g. not re-found in the next frame
by the Track DFs module to be discussed below). The Detect
DFs module will search for and insert new DFs to keep the
number of tracked DFs constant at N . Algorithm 2 provides
pseudo-code to explain the module.

Algorithm 2 Pseudo-code for detecting DFs using the corner-
metric matrix Ω.

function Detect DFs

Input: Cornermetric matrix, Ω
Number of DFs to detect, n
List of existing DFs, Le

Output: List of existing DFs, Le

1: for 1 : n do
2: while DF not found do
3: Find DF candidate in Ω
4: if DF /∈ Le then
5: Compute sub-matrix Ww

6: Compute centroid point (Cx, Cy)
7: Store (Cx, Cy) in Le
8: end if
9: end while

10: end for

end function

Following Algorithm 2, for each of the n DFs to be detected,
the Detect DFs module will search for a DF candidate in Ω.
This is done by iteratively selecting the highest non-evaluated
peak γ ∈ R

γ = max(Ω(i, j)) (11)
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Fig. 4. Visualization of the Prepare Image module cornermetric matrix output together with several DFs found by the Detect DFs module for the radar image
shown in Figure 2. The white spots show potential DFs, and the circles mark selected DFs. The brightness and contrast have been adjusted.

and enforcing the following criteria on the selected peak:

• Minimum distance to the matrix edges.
• Minimum distance from all DFs in Le.

Although all γ values are associated with integer coordinates
(i, j), they are typically a part of a larger peak footprint area
in Ω. Here we define a DF as one such area, and its sub-pixel
coordinates is the centroid of that area. This is computed by

Cx =

∑qw
i=1

∑qw
j=1 Ww(i, j)i∑qw

i=1

∑qw
j=1 Ww(i, j)

+Ox(γ) (12a)

Cy =

∑qw
i=1

∑qw
j=1 Ww(i, j)j∑qw

i=1

∑qw
j=1 Ww(i, j)

+Oy(γ), (12b)

where (Cx, Cy) is the coordinates in Ω, Ww ∈ Rqw × qw is a
modified sub-matrix of Ω centered on γ, qw ∈ R is the sub-
matrix size, and Ox(γ) and Oy(γ) give the offset of Ww ∈
Rqw × qw in Ω. Ww is computed as

Ww = W ◦Wb, (13a)

where W ∈ Rqw × qw is the unmodified sub-matrix of Ω
centered on γ, and Wb ∈ Rqw × qw is a mask matrix given
by

Wb(i, j) =

{
1 if W(i, j) > κbγ

0 else,
(13b)

Fig. 5. The detection results of the DF in the green circle seen in Figure 4.
The red star in the right image shows the computed weighted centroid.

where 0 < κb < 1 is a static threshold design value.

If there are more than one unconnected area in Wb, the area
encompassing γ is preserved and the pixel values of the others
are set to 0. Figure 5 shows the different stages of finding the
DF coordinates for the DF with the green circle in Figure
4. This sub-entry precision, using the whole DF footprint in
Ω, is beneficial for precise state estimation, as it removes the
discrete nature of pixels while increasing robustness to noise
of the point measurement.

3) Tracking DFs: The Track DFs module of Figure 3 updates
the coordinates of the DFs in Le and determines if DFs are
lost and new needs to be detected. It is applied at each iteration
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besides initialization. Algorithm 3 provides pseudo-code to
explain the module.

Algorithm 3 Pseudo-code for tracking DFs using the corner-
metric matrix Ω.

function Track DFs

Input: Cornermetric matrix, Ω
List of existing DFs, Le

Output: List of existing DFs, Le
Number of DFs to detect, n

1: n = 0
2: for DFs in Le do
3: Compute DF projection
4: if not lost then
5: Compute sub-matrix Ww

6: Compute centroid point (Cx, Cy)
7: Store (Cx, Cy) in Le
8: else
9: n=n+1

10: end if
11: end for

end function

Tracking the DFs is achieved by solving an image regis-
tration problem to determine the translation of a sub-matrix
Λ ∈ RqΛ×qΛ in Ω for each of the N DFs from one radar
image frame to the next. To do this we apply the registra-
tion cross-correlation method described in [12]. This obtains
an initial estimate of the cross-correlation peak by the fast
Fourier transform (FFT) and refines the shift estimation by
up-sampling the discrete Fourier transform (DFT) in a small
neighborhood of that estimate by means of a matrix-multiply
DFT. By this, it allows all the peaks in Λ to be used when
computing the cross-correlation. Then, it is evaluated if the DF
is considered found or lost. A DF may be lost in two ways:

• If its position is too close to the Ω edge.
• If the peak value γ is lower than a threshold γ0 = κγσΩ,

where σΩ is the mean value of Ω and κγ > 0 is a design
threshold factor.

Following Algorithm 3, when a DF does not comply with
either of the two criteria above it is considered persistent,
and the procedure described in Section III-A2 to determine
the exact position is applied. This step is needed to avoid
numerical drift of the position values as the image registration
algorithm will not give an absolute position, but a translation
of the sub-matrix Λ. If the DF is lost, it is registered by an
increment increase in n, which if larger than zero triggers the
Detect DFs module to find n new DFs (as seen in Figure 3).

B. Conversions of measurement

Since the output of the image processing is Le is given
in pixels and the vessel GPS position is in latitude and
longitude, a conversion is needed to comply with the NED

frame definition of (3) and (8). With respect to Figure 3, this
is done in the block in the lower left corner.

To determine the vessel’s NED coordinates from the GPS lon-
gitude and latitude measurement a coordinate transformation
with respect to a set NED origin is needed. Such can be
found in e.g. [13]. The origin of the NED frame (in longitude
and latitude values) are typically at system initialization, or
selected by an operator to best suit the operation.

To comply with (2c), the individual DF measurement vectors,
ydk :=

[
ydx ydy

]>
, should be vessel relative in the NED frame.

Thus, it is calculated from the pixel values of Le at each time-
step as

ydx = −CRRr(Lex − xΩ) (14a)

ydy = CRRr(Ley − yΩ), (14b)

where CR ∈ R is a conversion coefficient, Rr ∈ R is the radar
range set by the operator, Lex, Ley ∈ R are the ship-relative
pixel position values of the DF (given in Le), and xΩ, yΩ ∈ R
are the vessel pixel position in Ω. The sign of (14a) is due
to the rotation of the row-column coordinate system of Ω to
NED (see Figure 4).

C. State estimation

A state estimator is a filter structure that is capable of
reconstructing the complete system state online, using output
measurement and system models (given that the system is
observable [14]). In this paper we consider such because they
allow model-based estimation, avoiding direct differentiation
of the position signals from the image processing and ship
position measurements. Another beneficiary property of state
estimators is their ability to perform dead reckoning. That
is, to produce reliable estimates for some time (based on
the mathematical model alone) without measurement updates
correcting the model.

We estimate xk and zk based on (3) and (8) using two Kalman
filters (KF) in cascade, connected by handling logic for
resetting DF estimates. With respect to Figure 3, these are the
DF motion estimator and the ice-drift estimator. The former
estimates the position and velocity of the vessel and individual
DFs, and the latter fuses a subset of the DF velocity signals
to form the ice-drift vector. Here the algorithms are presented
for completeness without in-depth details. For further details
see [14].

1) The DF motion estimator: As mentioned above, (3) is
applied to estimate the position and motion of the DFs and
the vessel. Since (3) is linear and time invariant (LTI), a linear
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KF is applied to estimate xk. This is written as

x̂k|k-1 = Fx̂k-1|k-1 (15a)

Pk|k-1 = FPk-1|k-1F
> + Qk (15b)

ỹk = yk −Hx̂k|k+1 (15c)

Kk = Pk|k-1H
>(HPk|k-1H

>+ Rk
)−1

(15d)
x̂k|k = x̂k|k-1 + Kkỹk (15e)
Pk|k = (I−KkH) Pk|k-1 (15f)

where x̂k ∈ R4N+4 is the estimate of xk, Pk ∈ R(4N+4) × (4N+4)

is the estimate covariance matrix, Qk ∈ R(4N+4) × (4N+4) is the
process noise matrix, Kk ∈ R(4N+4) × (2N+2) is the optimal
Kalman gain, and Rk ∈ R(2N+2) × (2N+2) is the measurement
noise matrix.

2) Resetting xk: As DFs are lost and new inserted on a regular
basis in the image processing, handling logic is needed to reset
the state estimation accordingly. The reason for this is to avoid
infeasible motion transients in the DF position and velocity
estimates. Thus, when a new DF is lost and a new added, the
following reset is applied before calculating (15),

xk-1|k-1 = Mkxk-1|k-1 + (I−Mk)βk (16a)
Pk-1|k-1 = MkPk-1|k-1Mk + (I−Mk)P0 (16b)

Qk = MkQ0 + κQ(I−Mk)Q0 (16c)
Rk = MkR0 + κR(I−Mk)R0 (16d)

where Mk ∈ R(4N+4) × (4N+4) is a diagonal matrix for which
the elements are set according to

Mii =

{
0 if new DF
1 else.

(17)

Moreover, I ∈ R(4N+4) × (4N+4) is an identity matrix, and β ∈
R4N+4 is a reset vector composed by the N DF vectors (and
the vessel position and velocity, as x), which is set by

βi =


[
ydk + ysk − hv̂ice

v̂ice

]
if new DF

0 else,

(18)

where βi ∈ R4. Furthermore, P0, Q0, and R0 are initial
covariance, process, and noise matrices, respectively, and κQ
and κR are tunable gains to manipulate the estimated DF
behavior of the first iteration after a reset.

3) Signal selection: The objective of the signal selection in
Figure 3 is to remove DFs that do not originate from the ice
cover around the vessel. This is done by calculating the error
norm of the individual DF velocities with respect to the global
estimated drift and using this to determine Ck in (8). The error
norm eDFi

k ∈ R is defined as

eDFi
k =

√
‖v̂d

k − v̂ice
k-1‖2, ∀i ∈ [1, N ]. (19)

To compute Ck, we define

C̄k =


0 CDF1

k 0 0 · · · 0 0 0

0 0 0 CDF2

k · · · 0 0 0
...

. . . 0 0 0

0 0 0 0 · · · CDFN
k 0 0

, (20)

where CDFi
k ∈ R2×2 for i = 1, 2, ..., N are unit selection

matrices. These are determined by

CDFi
k =

{
I if eDFik ∈ Dk ∪ Dmink

0 else.
(21)

We define here

Dk := {eDFi
k ≤ eM} (22a)

Dmin
k := minκe(e

DF1

k , eDF2

k , . . . , eDFN
k ), (22b)

where eM ∈ R>0 is a threshold value such that Dk is the set
eDFi

k values where eDFi
k ≤ eM holds. Dmin

k is the set of the κe
number of smallest eDFk values. The objective of Dmin

k is to
provide a minimum number of DFs to the ice-drift estimator.
Finally, Ck is computed from C̄k by removing its zero-rows.

Notice that this will effectively vote out DFs originating from
objects that are moving significantly faster than the ice-drift.
Examples of such include other ships, helicopters, and some
types of moving overlay graphics. These are then removed
from application in the ice-drift estimator. However, non-
ice DFs that are in Dk ∪ Dmin

k will be applied as measure-
ments. Although no mechanisms are introduced to handle
such, practice has shown that the selection of such DFs are
few, and their implication on the final estimate is minimal.
Therefore, no further action is taken to handle them in this
paper. If knowledge of positions of specific non-ice structures
are available, these can be removed by cropping or weighing
out part of the image in the Prepare image algorithm.

4) The ice-drift estimator: A linear KF, as seen in (15), cannot
be used to estimate zk since (8) is nonlinear. To deal with this
we choose an Unscented Kalman filter (UKF) instead. This
allows the nonlinearities of (6) to be implemented directly
without linearization. The UKF employs a deterministic sam-
pling technique to pick a minimal set of sample points, known
as sigma points, to estimate the state and covariance matrix.
Below is given a summary of the key equations. For more in-
depth details the reader is advised to [14]. The applied UKF
algorithm can be written as,

ẑ
(i)
k|k-1 = G(ẑ

(i)
k-1|k-1) (23a)

ẑ
(i)
k-1|k-1 = ẑk-1|k-1 + z̃(i) ∀i = 1, ..., 2ε (23b)

z̃(i) =
(√

εPice
k-1|k-1

)>
i

∀i = 1, ..., ε. (23c)

z̃(ε+i) = −
(√

εPice
k-1|k-1

)>
i
∀i = 1, ..., ε (23d)

ẑk|k-1 =
1

2ε

2ε∑
i=1

ẑ
(i)
k|k-1 (23e)

Pice
k|k-1 =

1

2ε

2ε∑
i=1

(ẑ
(i)
k|k-1 − ẑk|k-1)(ẑ

(i)
k|k-1 − ẑk|k-1)>

+ Qice (23f)

ẑk = ẑk|k-1 + Kice
k (yice

k − ŷice
k ) (23g)

Pice
k = Pice

k|k-1 −Kice
k PyK

ice>
k (23h)

Kice
k = PxyP

−1
y , (23i)
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Fig. 6. The icebreakers Oden and Frej in Longyearbyen September 16th 2015,
before embarking on the OATRC15 research cruise. Picture: of Thomas W.
Johansen.

where ẑk ∈ R10 is the estimate of zk, the superscript (i)
notation denotes one of the 2ε sigma points, ε is the number
of elements in z, Pice

k is the covariance matrix, Qice is the
process noise matrix, yice

k is defined in (8), and

Pxy =
1

2ε

2ε∑
i=1

(ẑ
(i)
k|k-1 − ẑk|k-1)(ŷ

(i)
k − ŷk)> (24a)

Py =
1

2ε

2ε∑
i=1

(ŷ
(i)
k|k-1 − ŷk|k-1)(ŷ

(i)
k|k-1 − ŷk|k-1)>

+ Rice (24b)

ŷk =
1

2ε

2ε∑
i=1

ŷ
(i)
k (24c)

ŷ
(i)
k = Cice

k ẑ
(i)
k|k-1 ∀i = 1, ..., 2ε, (24d)

where Rice is the process noise matrix. Since the UKF applies
the nonlinear model (8), which incorporates the cyclic behav-
ior often seen in drifting sea-ice, it may be used to predict the
ice-drift some hours ahead in time. This is done by running
the filter in dead reckoning. However, for the prediction to be
accurate, the estimates of a, ω,φ and b must be given time to
converge. Also, care must be taken as the prediction accuracy
will deteriorate with the length of the prediction horizon.

IV. EXPERIMENTAL RESULTS

As mentioned in the introduction, in September 2015 a 14-
day research expedition, OATRC15, was carried out north
of Svalbard. It was a two-ship operation using the Swedish
icebreakers Oden and Frej (shown in Figure 6) for studies
on IM and ship performance in ice. The expedition was
supported by the ExxonMobil Upstream Research Company
and performed by the Norwegian University of Science and
Technology (NTNU) in cooperation with the Swedish Polar
Research Secretariat and the Swedish Maritime Administra-
tion.

A. Setup and data logging

During the cruise, the radar images from Oden’s Consilium
Selesmar Selux ST-340 WS ARPA display was logged at 1
Hz using an Epiphan USB2DVI 3.0 video grabber unit. The
radar system can be set up to use both S-band and X-band, but
only X-band was used in the experiments. More details about
the radar system can be found in [15]. The Epiphan frame
grabber was connected to the video signal of an auxiliary
monitor on the bridge using a VGA splitter and to a laptop
running Windows 7 using a USB 3.0 cable. The laptop’s
clock was synchronized with an onboard time server, and a
proprietary Epiphan frame grabbing software was used to save
and timestamp the radar images. The position data of the vessel
was available as a part of an NMEA datasteam acquired via
Ethernet network (along with NMEA data from other sensors).
The complete datastream was logged by the same laptop
logging the radar images. For reference, all variables were
recorded with respect to coordinated universal time (UTC).

As a part of the IM operation, multiple ice-drift beacons were
deployed and retrieved by a helicopter to suitable ice floes in
the surroundings of the operation area. These are applied as
validation of the proposed algorithm.

It must be emphasized that the estimation algorithm was
not run online during the cruise, but the radar images and
position data were logged and stored for convenient desktop
reconstruction of the data-streams for algorithm development
and post-processing in Matlab.

B. Ice conditions and operation

The data presented in this paper is a 28 hour data segment
starting at 10:40 on 25th September 2015 and ends at 14:50
on the 25th September 2015. The ice conditions in the interval
were monitored by an experienced ice observer crew member
to vary between 9/10 and 10/10 ice concentration with ice
floes ranging from 500 m across to brash (predominantly in the
range 500-50 m). The visibility from the Oden bridge ranged
from 1 km to 10 km as fog and snow was occasionally present.
The wind direction varied between 308◦ and 2◦ (0◦ is true
north) with wind speed between 4.0 m/s to 6.7 m/s.

In Figure 7, both the traces of Oden and one beacon from
this time-segment can be seen along with the operation area.
The beacon track shows a general south-west ice-drift trend
that contains significant drift curvature and velocity changes.
The Oden position track shows heavy maneuvering as a part
of the IM operation. In general, the objective was to break
up the incoming ice so that the ice floe distribution hitting
a geographic position downstream of the IM operation was
reduced. As a part of the normal operation, the Oden crew
occasionally made adjustments to the radar display. Table
I summarizes these interaction events. Since radar images
originate from the display of operator station, all interaction
from the operator is embedded in the captured data.
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Fig. 7. The map shows the operation area of the OATRC15. The plot in the top left corner shows the ice-drift as recorded by an ice-drift beacon from the
28 hour data segment considered in this paper. The circles mark hour intervals. The plot in the lower left corner shows the position trace of Oden during the
same interval.

TABLE I
RADAR INTERACTION BY CREW OPERATORS.

Time Comment

20:19 Radar range set from 3 to 1.5 nmi
20:53 Radar gain reduced from 89% to 82%
20:53 Radar range set from 1.5 to 0.75 nmi
20:53 Radar range set from 0.75 to 1.5 nmi
21:18 Radar range set from 1.5 to 3 nmi
21:18 Radar range set from 3 to 0.75 nmi
21:18 Radar range set from 0.75 to 1.5 nmi
21:48 Radar view set to off-center PPI
21:48 Radar range set from 1.5 to 0.75 nmi
21:48 Radar range set from 0.75 to 1.5 nmi
21:48 Radar view set to centered PPI

C. Algorithm setup and parameters

As mentioned, the ice-drift estimation algorithm was tested by
an implementation in Matlab. The algorithm parameters were
set partly with signal analysis of the measurement and partly
by trial and error. Table II provides the values applied in the
image processing, and Table III provides the values applied
in the covariance resetting and the signal selection. Tables IV
and V provide the diagonal terms in R0, Q0, Rice, and Qice.
For both KFs, the initial covariance matrices, P0 and Pice

0 ,

were set to identity. For the ice-drift estimator, the initial state
ẑ was set to

vice
0 =

[
0 0

]>
(25a)

a0 =
[
0.12 0.115

]>
(25b)

ω0 = 10−4 ·
[
1.4 1.45

]>
(25c)

φ0 =
[
2.35 0.85

]>
(25d)

b0 =
[
−0.1 −0.06

]>
. (25e)

As seen in Table I the radar range and radar gain were adjusted
several times during the presented datasegment. This implies
that the radar display goes black before being filled with
data again, and thus makes the DF measurements unreliable
until the display is filled with consistent data again. To avoid
unfeasible transients in the estimated variables, the DF motion
KF is run in dead reckoning for 1 minute at each change.
This allows the image processing to regain consistent DF
measurements before they are allowed to affect the state
estimates.
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Fig. 8. The estimated position and velocity signals of one channel in the DF motion estimator.

TABLE II
PARAMETERS APPLIED IN THE IMAGE PROCESSING AND THE

COMPUTATION OF yk .

Param. Comment Value
h Step time, [s] 5
N DF count 100
qx Pixel count north 723
qy Pixel count east 1106
θx Center removal weight 6.6 · 10−5

θy Center removal weight 2 · 10−4

qw Window side length 21
κb Wb threshold 0.5
qΛ Window side length 101
κγ Ω mean threshold 5
CR yk coefficient 3704

1121
Rr Radar range [nmi] 3/1.5/0.75

D. Results and discussion

Figure 8 shows a one hour and ten minutes segment for one of
the hundred tracked DFs of the DF motion estimator. The top
plot shows the estimated position in the NED frame, where it
can be seen that the algorithm changes the tracked DF point
relatively often. The main reasons for this behavior is the
heavy maneuvering of the vessel during IM, which causes the

TABLE III
PARAMETERS APPLIED IN THE MOTION ESTIMATOR RESETTING AND THE

SIGNAL SELECTION.

Param. Comment Value
κQ Process noise reset 1000
κR Measurement noise reset 0.01
eM Acceptance threshold 0.0514
κe Minimum numer of DFs 15

TABLE IV
MEASUREMENT NOISE VALUES APPLIED IN R0 AND RICE . EQUAL VALUES

WERE APPLIED IN THE NORTH AND EAST DOFS.

Param. Comment Value
rs

p GPS measurement noise 0.0275
rDF

p DF measurement noise 11
rice

v DF velocity noise 0.02

radar blind zone (seen in Figure 2) to swipe around the PPI
on an irregular basis (causing loss of DFs). In the lower plot
of Figure 8, the estimated DF velocity in the NED frame is
shown.

It can be seen that significant velocity transients occur oc-
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Fig. 9. Estimated ice-drift velocity compared to differentiated GPS signals.

TABLE V
PROCESS NOISE VALUES APPLIED IN Q0 AND QICE . EQUAL VALUES WERE

APPLIED IN THE NORTH AND EAST DOFS.

Param. Comment Value
qs

p Vessel position 100
qs

v Vessel velocity 10
qDF

p DF position 0.001
qDF

v DF velocity 10−6

qice
v Ice velocity 0.5 · 10−7

qice
a Signal amplitude 0.5 · 10−8

qice
ω Signal frequency 5 · 10−16

qice
φ Signal phase 2.5 · 10−9

qice
b Signal offset 0.5 · 10−9

casionally after an estimator reset. Although convergence to
reasonable ice-drift velocity values is relatively fast, and well
handled by the signal selection, the behavior is unphysical. It
is not critical to the performance, but the transients may be
further improved by an alternative resetting mechanism, and
possibly by introducing a velocity constraint in the DF motion
estimator.

Figures 9 and 10 show the final ice-drift velocity estimate and
the UKF parameter estimates, respectively. In Figure 9 the esti-
mated ice-drift velocity vector is compared to the differentiated

position signals of six ice-drift beacons physically placed on
various ice floes in an area around the vessel. The fact that
the beacons have a large spatial distribution may explain the
spread in the measured velocity signal. Nevertheless, after the
ice-drift parameter estimates have converged (at approximately
13:00) the correspondence between the differentiated GPS
signals and the estimated is high. This indicates that the
proposed system is providing reasonable estimates based on
the radar pictures and GPS measurements alone. However,
more data are needed to fully validate the algorithm as the
convergence of the parameter estimates in ẑ must be evaluated
further. The current dataset offers only about two periods of
the ice-drift signal (as seen in Figure 9). This is insufficient
to conclude on the parameter convergence. Yet, the results are
encouraging. Alternatively, to avoid parameter estimation as
presented in this paper, a linear KF may be used instead of
the UKF as the ice-drift estimator. The major downside of
that is the loss of prediction capability including the cyclic
behavior, since the nonlinear model in (8) cannot be applied.

In general, the presented results indicate that remote sens-
ing of the operationally important ice-drift velocity vector
can be achieved by onboard sensors alone. The algorithm’s
incorporation of the nonlinear model (8) and a UKF also
allow for prediction of the ice-drift sinusoidal behavior. This
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Fig. 10. Paramter estimates of the ice-drift velcity signal from the UKF.

is operationally very important for decision support and
planning. However, the prediction capability is not studied

further in this paper as it requires more validation data. The
implication of the work is that the use of ice-drift beacons
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may be significantly reduced. That is beneficial, as fewer
helicopter operations are required (which reduce the risk
and environmental impact). Also, it offers ice-drift velocity
monitoring when helicopter operations are not possible (in
case of precipitation, fog, and other no-fly conditions).

It is also worth mentioning that the processing time in Matlab
per iteration of the algorithm was about 1 second. That suggest
that suitable real-time capability when implemented in a more
efficient programming language, can be achieved.

The sensor fusion nature of the KFs implies a potential for
further integration with other sensor technologies to provide
an enhanced operational decision support tool for surveillance,
detection, monitoring, and forecasting of the physical environ-
ment. Examples of extensions that may improve the presented
performance is:

• Incorporation of further vessel specific measurements
and models to improve the accuracy of the vessel state
estimation in the DF motion estimator. See [16] for
potential models and their required measurements.

• Apply radar data with higher resolution that have not been
processed for display to an operator.

• Improve (2) by choosing another integration method than
forward Euler.

Finally, this work may be enhanced and extended to form
an operational monitoring, detection, and surveillance tool by
incorporating different sensing technologies. Examples include
physical ice-drift beacons for special high risk hazards, wind
sensors, satellite images, computer vision systems, and LIDAR
systems.

V. CONCLUSIONS

This paper presents a novel remote sensing algorithm capable
of estimating the ice-drift velocity vector with comparable
accuracy of differentiating GNSS measurements. This was
achieved by detecting and tracking distinctive ice features in
radar images through image processing, removing the vessel
motion, and fusing multiple tracked points using two Kalman
filters in cascade. The main implications for the work is that it
may reduce helicopter operations, since ice-drift velocity mon-
itoring need not to rely solely on physical beacons deployed
on the ice cover.
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