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INTRODUCTION

“Tallene og bokstavene møttes en dag og ville slåss. Vi vinner alltid,
sa tallene. Vi gir oss aldri, sa bokstavene. Dermed lå de der hulter
til bulter.”

Inger Hagerup

Partial differential equations (PDEs) describe the underlying physics in many
problems from areas such as heat transfer, structural mechanics, fluid mechanics,
or electromagnetics. Ever since the introduction of the modern computer there
has been a growing interest in computer simulation of such physical systems. In
parallel with the last decades’ rapid increase in available computer power, there
has been an impressive development of new and efficient numerical methods for
computer simulation. Numerical methods for PDEs is one field of research that
continues to be very active today.

One classical family of methods for the numerical approximation of PDEs is
finite element (FE) methods. Depending on the particular problem at hand (for
example regularity of the solution), a particular method (or class of methods)
is typically better suited than others. A good method minimizes the computa-
tional time required to find a numerical approximation at a prescribed level of
accuracy.

Most of the papers in this thesis are related to efficient numerical approxi-
mation of parametrized PDEs. In addition to the spatial and possibly temporal
variables, a parametrized PDE depends on one or several parameters that en-
ter into the equations as coefficients or through coefficient functions. These
parameters may be related to physical properties of the system such as mate-
rial properties or geometry, or interactions of the system with its environment
such as applied forces or boundary conditions. The parameter dependence thus
defines not only a single PDE but rather a family of PDEs which we wish to
approximate. Parametrized PDEs are relevant in many engineering applica-
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tions such as parameter estimation, design, or optimization; or for educational
or scientific purposes to understand the behavior of the solution as a function
of physical parameters.

Typically, one is interested in the solution to a parametrized PDE either for
many different input parameter values — many queries — or the solution is
required rapidly once the input parameter value is known — real time. In these
contexts classical methods may be prohibitively expensive: they do not provide
a sufficiently accurate solution within the time available for computation. How-
ever, the family of solutions induced by the underlying parameter dependence
often provides an opportunity for model reduction: the solution associated with
one parameter value is typically similar to the solution associated with a nearby
parameter value. The reduced basis method [1, 33, 44] is one method that
takes advantage of precisely this opportunity to provide computational speedup
of solutions to parametrized PDEs without compromise to the accuracy of the
approximation. The reduced basis method belongs to the large class of model
order reduction methods. The common goals of such methods are to reduce the
computational complexity of a given problem and preserve important properties
of the system such as accuracy and stability.

This introduction chapter is organized as follows. First, we motivate and
discuss in Section 1 model order reduction more generally. Then, in Section 2
we give an overview of the reduced basis method. Next, in Section 3 we give
an overview of the related empirical interpolation method; this method is used
for the approximation of parametrized functions, and is the focus of three of
the papers in this thesis. Finally, in Section 4, we summarize and discuss the
contributions from each of the papers.

1 Model Order Reduction

Classical numerical methods for PDEs, such as finite difference or finite element
methods (FE) [9, 10, 35, 40], are frequently used to solve engineering prob-
lems in areas such as heat transfer, structural mechanics, electromagnetics, and
fluid mechanics. Many of these problems can be solved efficiently with classical
methods. However, for complicated problems the number of degrees of freedom
required to resolve all features of the solution with sufficient accuracy may be
very large. As a result, the associated computational cost may be very large
and in some cases prohibitive.

When classical methods are too expensive, model order reduction methods
may in some cases be used to reduce the number of degrees of freedom and as
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Introduction

a result the required computational time. These methods attempt to replace
the original (FE, say) system of high order — many degrees of freedom — with
a reduced system of lower order — significantly fewer degrees of freedom — in
such a way that the solution associated with the lower order system is a good
approximation to the solution of the original higher order system. Model order
reduction methods must thus in some sense identify the degrees of freedom that
are important for the behavior of the system, and retain these degrees of freedom
in the reduced system.

Many of the traditional model order reduction techniques have been devel-
oped within the field of dynamical system simulation and control. A full order
system — a direct physical model or, say, the result of a highly accurate FE spa-
tial discretization of a PDE — may be computationally too costly in the optimal
control setting since the solution of the system is required for many (in advance
unknown) input controls. For this reason methods for model order reduction
have been considered. Classical approaches include Krylov subspace methods
[3] and balanced truncation [30]. An approach related to balanced truncation
which in fact for parabolic PDEs is relevant to the reduced basis context of this
thesis [20], is proper orthogonal decomposition (POD) (also known as principal
component analysis) [41, 43, 45]. All these model order reduction techniques
share a common goal: provide significant reduction of the computational com-
plexity and hence cost of the system and preserve important properties of the
system such as accuracy and stability.

Another branch of model order reduction methods is found in the context
of parametrized systems. In this case the input parameters may be physical
properties of the system such as material properties, geometrical factors, or
boundary conditions. Typically, the parameters enter as coefficients or through
coefficient functions in a partial or ordinary differential equation that describe
the physical system of interest.

In practical applications, the solution to the system — the state or the field
variable — is typically not the main interest per se. Decisions in engineering are
typically not based on how the solution “looks” but rather from more quantifiable
measures that may be inferred from the state or the field. The main interest is
thus certain outputs of interest derived from the solution, such as an average of
the field variable over a small region.

Parametrized model order reduction is of particular interest in contexts such
as optimal control, design, optimization, parameter estimation, or stochastic
simulation. In these contexts either immediate output response is required, or
the output is required for many different input parameters. Often, a full order
system (many degrees of freedom) is prohibitively expensive in these contexts
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— it may be impossible to solve the system to sufficient accuracy within the
amount of time or on the computer hardware available. Model order reduction
techniques on the other hand may reduce the number of degrees of freedom of
the system such that sufficiently accurate output approximations are computa-
tionally feasible within these constraints.

2 The Reduced Basis Method

The first four papers in this thesis are directly related to the reduced basis (RB)
method. In this section, we give a brief overview of the methodology, and a short
introduction to some of the technical details involved.

2.1 Overview
The RB method is a computational and mathematical framework for parametric
model order reduction of parametrized PDEs. The parameters enter into a
parametrized PDE as coefficients or through coefficient functions that specify
physical properties of the system or interactions between the system and the
environment. The key observation of the RB method is that the solution to
this equation resides on a typically low-dimensional manifold induced by the
parameter dependence. When this manifold is smooth — the solution to the
PDE varies smoothly with the parameters — it should be possible to reconstruct
a good approximation of the solution associated with any parameter value with
only limited knowledge of the manifold.

We now make this statement somewhat more precise. Let D ⊂ RP denote a
predefined and bounded parameter domain, and let μ ∈ D denote a particular
parameter value; P ≥ 1 is thus the number of parameters considered. For any
μ ∈ D, we may write the parametrized PDE on the form

Fμ(u(μ)) = 0, (2.1)

where Fμ is a parameter dependent (linear or non-linear) differential operator
and u(μ) denotes the solution to the system. The parametric manifold on which
the solution to this system resides is then given explicitly as

M = {u(μ) : μ ∈ D}. (2.2)

Now, say that we are given N parameter values μ1 ∈ D, . . . , μN ∈ D, and
associated snapshots u(μ1), . . . , u(μN ) of M. If M is smooth — u(μ) depends
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Introduction

smoothly on the parameters — and μ1, . . . , μN are well chosen, it is possible for
any μ ∈ D to compute a good approximation of u(μ) as a linear combination
of the N snapshots u(μ1), . . . , u(μN ). In particular, N may typically be chosen
relatively small, and hence this approximation to u(μ) may be calculated at
relatively low computational cost.

Of course, in general the snapshots u(μ1), . . . , u(μN ) are not known ex-
actly. In practice, we thus precompute highly accurate truth approximations,
uN (μ1) ≈ u(μ1), . . . , u

N (μ1) ≈ u(μN ), where N denotes the possibly very large
number of degrees of freedom associated with these truth approximations. We
shall consider here standard finite- or spectral element truth approximations
[9, 10, 35, 40]. However, other variational frameworks such as discontinuous
Galerkin methods [22] or finite volume methods [27] may be considered; see [13]
and [20] for the application within the RB framework of discontinuous Galerkin
methods and finite volume methods, respectively.

This “Lagrange” (snapshot-based) approach to the RB approximation seems
to be the most popular approach in recent RB literature. However, alterna-
tive “Taylor” [33] or “Hermite” [24] approaches that include information about
derivatives with respect to the parameters at one or more parameter values
may also be considered. In this thesis, we exclusively pursue the “Lagrange”
(snapshot-based) approach.

The RB method was originally developed in the context of non-linear struc-
tural analysis [1, 33]; the methodology was further considered for fluid flow
problems in [24, 36]. Early work on error analysis of the RB approximation
include [15, 37, 42]. More recent works have introduced

• rigorous a posteriori bounds for the error of the RB approximation with
respect to the underlying truth FE discretization [38, 44];

• quasi-optimal sampling procedures for snapshot selection [20, 47]; and

• strict offline-online computational decoupling between a N -dependent
(expensive) precomputation stage followed by a N -independent (much
less expensive) input-output prediction stage [31, 44].

We shall discuss each of these ingredients briefly below and more extensively
in the subsequent papers. The RB methodology is well developed for linear
elliptic coercive and non-coercive equations [23, 44], linear parabolic equations
[19, 20], and quadratically non-linear elliptic or parabolic equations such as the
incompressible Navier-Stokes equations [25, 32, 46]. A comprehensive overview
of both earlier and more recent contributions to the RB methodology can be
found in [39, 44].
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In particular with the recent development of rigorous a posteriori error
bounds, quasi-optimal sampling algorithms, and strict offline-online computa-
tional decoupling procedures, the RB method may provide speedup of several
orders of magnitude compared to the truth FE alternative with certifiable accu-
racy. The number of required RB snapshots (and thus degrees of freedom), N ,
is much smaller than the number of degrees of freedom associated with the truth
FE space, N . In addition, the error in the RB approximation can be rigorously
bounded with respect to the truth FE discretization.

The rapid and certifiable RB output approximation is of particular interest
in real time contexts such as parameter estimation [31] and optimal control
[14, 19, 21] problems, and in many query contexts, such as stochastic [7] or
multiscale [6, 26, 34] simulation. In both real time and many query contexts the
significant precomputation effort required by the RB method can typically be
justified. In the former the offline cost is often deemed irrelevant. In the latter,
the offline cost is amortized over the many online evaluations; in particular, as
the number of online evaluations n→∞, we obtain

lim
n→∞

offline cost + n(online cost)

n
= online cost. (2.3)

2.2 Abstract Framework
The point of departure for the RB approximation is the weak form of the PDE.
Let us now look at an example. Consider the particular parametrized differential
operator Fμ over the spatial domain Ω ⊂ Rd, d = 1, 2, 3, given by

Fμ(·) = −∇ · (g(μ)∇(·))− q, (2.4)

where, for any μ ∈ D, g(μ) : Ω→ R is a parametrized coefficient function, and
q : Ω → R is the load; we assume sufficient regularity of g and q. In this case
the strong form of the PDE is

−∇ · (g(μ)∇u(μ)) = q, in Ω, (2.5)

together with appropriate boundary conditions. We consider in this example

u(μ) = 0, on ΓD ⊂ ∂Ω, (2.6)
∂u(μ)

∂n
= 0, on ΓN ⊂ ∂Ω, (2.7)

where ∂Ω = ΓD ∪ ΓN is the boundary of Ω.
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We now introduce a function space V of test functions; in this case V =
H1
D(Ω), where H

1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}, H1(Ω) = {v : |∇v| ∈ L2(Ω)},
and L2(Ω) is the usual space of square integrable functions over Ω. We obtain
the weak form of (2.5) by multiplication with a test function v ∈ V ,

−∇ · (g(μ)∇)u(μ)v = qv, ∀v ∈ V, (2.8)

integration over Ω,

−
∫
Ω

∇ · (g(μ)∇)u(μ)v =
∫
Ω

qv, ∀v ∈ V, (2.9)

and finally integration by parts,∫
Ω

g(μ)∇u(μ) · ∇v =
∫
Ω

qv +

∫
∂Ω

∂u(μ)

∂n
v, ∀v ∈ V. (2.10)

In this case the last term on the right hand side of (2.10) vanishes due to the
boundary conditions (2.6) and (2.7) since either v = 0 or ∂u(μ)/∂n = 0 on ∂Ω.
The weak formulation of (2.5)—(2.7) then reads as follows: for any μ ∈ D, find
u(μ) ∈ V such that ∫

Ω

g(μ)∇u(μ) · ∇v =
∫
Ω

qv, ∀v ∈ V. (2.11)

More generally, we introduce a Hilbert space X associated with the exact
solution of the problem. We further introduce for any μ ∈ D a bilinear form
a(·, ·;μ) : X × X → R and a linear functional f(·;μ) : X → R. The exact
problem may then be stated as follows: For any μ ∈ D, find u(μ) ∈ X such that

a(u(μ), v;μ) = f(v;μ), ∀v ∈ X. (2.12)

We also introduce a linear and bounded output functional �(·;μ) : X → R. With
the solution u(μ) of (2.12) we evaluate the output of interest through � as

s(μ) = �(u(μ);μ). (2.13)

We note that if a(·, ·;μ) is stable and continuous with respect to the X-norm,
and f(·;μ) is bounded with respect to the X-norm, u(μ) ∈ X exists and is
unique [40].

For our particular example (2.11) we identify for all w ∈ V , v ∈ V ,

a(w, v;μ) =

∫
Ω

g(μ)∇w · ∇v, f(v;μ) =

∫
Ω

qv. (2.14)
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If g(μ) > 0 and g(μ) is bounded for all μ ∈ D, then a(·, ·;μ) is coercive and
continuous for all μ ∈ D. In this case, if q has sufficient regularity such that
f(·;μ) is bounded in V , existence of a unique solution u(μ) to the problem (2.11)
for any μ ∈ D is guaranteed by the Lax-Milgram Lemma [40].

2.3 Finite Element Discretization
We may now discretize (2.12) with (say) a classical FE method. To this end
we introduce a discrete space XN ⊂ X of finite dimension N ; for example XN

may be the space of piecewise polynomials up to a specified polynomial order.
The FE version of (2.12)–(2.13) then reads as follows: For any μ ∈ D, find
uN (μ) ∈ XN such that

a(uN (μ), v;μ) = f(v;μ), ∀v ∈ XN , (2.15)

and evaluate the output

sN (μ) = �(uN (μ);μ). (2.16)

In the RB framework, we shall suppose that XN is a high-fidelity FE space
such that uN is a good approximation to u(μ), and consequently sN (μ) is a
good approximation to s(μ). Under this assumption we shall neglect the error
u(μ)− uN (μ) and consequently the output error s(μ)− sN (μ): the FE solution
uN (μ) and output sN (μ) are truth approximations to the corresponding exact
quantities.

2.4 Reduced Basis Approximation
It is the computation of the truth approximation in (2.15)–(2.16) that we wish
to accelerate by the RB method without loss of accuracy or rigor. To this end
we introduce the RB approximation space

XN = span{uN (μ1), . . . , uN (μN )} (2.17)

of dimensionN � N . The RB space is thus spanned by truth FE snapshots that
reside on a presumably smooth parametric manifold MN = {uN (μ) : μ ∈ D},
as indicated in Figure 1.1 We note that MN is only a small subset of the FE
spaceXN ; many of theN degrees of freedom associated with the full FE space is

1Note that in actual practice, an orthonormal basis for XN is computed through a modified
Gram-Schmidt procedure [16] to provide numerical stability.
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uN (μ1)
uN (μ2)

uN (μ3)

uN (μN )

uN (μ)
XN

Figure 1: The RB approximation (green) is a linear combination of FE snapshots
(red) that reside on a typically smooth parametric manifold. (This figure is a repro-
duction of Figure 16 in [44].)

thus in some sense redundant when attention is restricted only to this manifold.
We expect that the RB space XN accommodates good approximations uN (μ) ≈
uN (μ) for any μ ∈ D provided that the parameters μ1, . . . , μN are well chosen.

The RB version of (2.15)–(2.16) now reads as follows: For any μ ∈ D, find
uN (μ) ∈ XN such that

a(uN (μ), v;μ) = f(v;μ), ∀v ∈ XN (2.18)

and evaluate the output

sN (μ) = �(uN (μ);μ). (2.19)

In addition, we may certify the RB solution or RB output prediction by rapid
evaluation of RB a posteriori error estimators ΔN (μ) or Δout

N (μ), such that

ΔN (μ) ≥ ‖uN (μ)− uN (μ)‖X , (2.20)

or

Δout
N (μ) ≥ |sN (μ)− sN (μ)|, (2.21)

respectively [44].
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Clearly, the choice of the parameter values μ1, . . . , μN is crucial to the quality
of the RB approximation. In particular, if MN is smooth and μ1, . . . , μN are
judiciously chosen, we expect rapid convergence (as we increase N) of the RB
approximation over D.

Algorithm 1 Greedy sampling strategy
Set N ← 1 and choose μ1 ∈ D (randomly, say)
Compute uN (μ1) and set XN = span{uN (μ1)}.
while N < Nmax do
μN+1 = argmaxμ∈Ξ⊂DΔN (μ)
Compute uN (μN+1) and set XN+1 = span{uN (μ1), . . . , uN (μN+1)}.
N ← N + 1

end while

In [47], the Greedy sampling stategy listed as Algorithm 1 was proposed.
With this strategy, the RB space is constructed iteratively starting from only
one (randomly chosen, say) parameter value μ1 ∈ D and associated (in practice
normalized) basis function uN (μ1). At iteration N of the Greedy algorithm,
the a posteriori error estimator ΔN (μ) is first evaluated over D. (In practice,
ΔN (μ) is evaluated over a finite training set Ξ ⊂ D — a rich computational
surrogate for D.) Denote by μN+1 the particular parameter value at which the
error estimator attains it maximum. The next RB space is then enriched with
the (orthonormalized) snapshot uN (μN+1). We finally set N ← N + 1 and
proceed to the next iteration; the procedure stops when a specified maximum
RB space dimension Nmax is reached (or alternatively when the maximum of
the a posteriori error estimator over Ξ reaches a specified tolerance).

In practice, the Greedy algorithm typically provides exponential convergence
(with N) of the RB approximation over D. It was first shown in [29] that for
certain simple problems it is possible to choose the parameter values μ1, . . . , μN

such that exponential convergence is achieved. More recently, it is shown in
[5, 8] that the Greedy algorithm achieves exponential convergence, if exponential
convergence is possible.

We note that for time-dependent PDEs the snapshots must be chosen at
judiciously chosen points in the combined time-parameter domain, and thus a
modification to the standard Greedy sampling algorithm is necessary. A first
extension of the Greedy algorithm to the time-dependent case was considered
in [19]. More relevant to this thesis is a combined POD/Greedy procedure
introduced in [20]; this procedure complements the standard Greedy procedure
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in the parameter domain with proper orthogonal decomposition in the temporal
domain.

The offline-online computational decoupling is crucial to the efficiency of
the RB method. The RB offline stage is essentially execution of the Greedy
sampling algorithm: selection and computation of N finite element truth snap-
shots. In addition, an online dataset of size independent of N is constructed in
the offline stage and stored for subsequent evaluation in the online stage. The
computational cost of this process is N -dependent, and hence the offline stage
may be rather expensive. However, the offline stage is performed only once as
preprocessing.

The RB online stage is evaluation of the RB solution, RB output, and RB
output error bound. Thanks to the online dataset constructed and stored in
the offline stage, the cost of the RB online stage depends on N and not on
N [44].2 Under the crucial assumption on parametric smoothness, N can be
chosen significantly smaller than N for acceptable numerical accuracy. The
N × N algebraic system associated with the RB problem (2.18) is in this case
significantly faster to solve than the N × N system associated with the FE
problem (2.15). The RB approximation is thus useful in the many query or real
time contexts.

3 The Empirical Interpolation Method

Papers 5, 6, and 7 of this thesis are related to the empirical interpolation method
(EIM) [4, 18]. We now give an overview of the method and a brief review of the
approximation procedure.

3.1 Overview

The EIM is a method for “affine” approximation of “non-affine” parameter de-
pendent functions. The EIM was introduced in [4] as a tool within the RB
framework for the approximation of non-affine differential operators. It was
further considered for the approximation of non-linear differential operators in
[18]; see also [17]. In the case of a linear differential operator, the efficient RB
offline-online computational procedures require a differential operator that is

2In addition, this dataset enables efficient evaluation of the RB error bound in the offline
stage. The training set Ξ ⊂ D in the Greedy sampling algorithm may thus be chosen rather
large to allow exhaustive exploration of the parameter domain.
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affine in functions of the parameter. In particular, for all μ ∈ D, the bilinear
form a(·, ·;μ) and the linear functional f(·;μ) must admit expansions

a(·, ·;μ) =
Qa∑
q=1

aq(·, ·)Θq
a(μ), (3.1)

f(·;μ) =
Qf∑
q=1

fq(·)Θq
f (μ). (3.2)

Here, for 1 ≤ q ≤ Qa, the aq : X × X → R are parameter independent bi-
linear forms and the Θq

a : D → R are parameter dependent functions, and for
1 ≤ q ≤ Qf , the fq : X → R are parameter independent linear functionals
and the Θq

f : D → R are parameter dependent functions. In particular, these
affine expansions enable the offline construction of the online dataset (of size
independent of N ), which in turn allows online evaluation of the RB solution,
RB output, and RB output error bound at computational cost dependent only
on N , Qa, and Qf , and not on N . In the case of a non-affine differential oper-
ator, the EIM serves to construct an affine approximation and thus recover the
efficient computational procedures.

In the case of a non-linear (in the solution u(μ)) differential operator, it
is only possible to develop efficient RB offline-online procedures for low-order
polynomial non-linearities. In the case of higher order or non-polynomial non-
linearities, the EIM serves to recover efficient offline-online procedures through
approximations of the non-linear terms.

The EIM has applications also outside the RB framework; several examples
are mentioned in [28]. A closely related method is the discrete empirical inter-
polation method [12], which combines a discrete version of the EIM with proper
orthogonal decomposition for model order reduction of non-linear dynamical
systems.

3.2 EIM Approximation
As in the previous section, Ω denotes here a spatial domain, and D denotes a
parameter domain. Consider the parametrized function g : Ω × D → R; we
assume that g(·;μ) ∈ L∞(Ω) for all μ ∈ D. For any μ ∈ D, the EIM serves to
construct an approximation gM (·;μ) ≈ g(·;μ) such that gM (·;μ) resides in an
approximation space

WM = span{g(·;μ1), . . . , g(·;μM )} (3.3)
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of finite dimesion M . We note that WM is spanned by M snapshots of a
parametric manifold

Mg = {g(·;μ) : μ ∈ D}. (3.4)

If Mg is smooth, and if the parameters μ1, . . . , μM are well chosen, it should
thus be possible to find a good approximation gM (·;μ) ≈ g(·;μ) in WM for any
μ ∈ D for M relatively small. In practice, μ1, . . . , μM are chosen through a
Greedy sampling procedure.

For any μ ∈ D, the EIM approximation is given as a linear combination of
the snapshots,

gM (·;μ) =
M∑

m=1

ϕm(μ)g(·;μm). (3.5)

Here, the coefficients ϕm(μ), 1 ≤ m ≤M , are determined by interpolation atM
judiciously chosen points t1 ∈ Ω, . . . , tM ∈ Ω. For 1 ≤ m ≤ M , and all μ ∈ D,
we thus determine ϕm(μ), 1 ≤ m ≤M , as the solution coefficients to the linear
system

M∑
m=1

ϕm(μ)g(tn;μm) = g(tn;μm), 1 ≤ n ≤M. (3.6)

Note that in contrast, the RB approximation is based on Galerkin projection.
We mention here the paper [28], which comprises a theoretical analysis of

the EIM approximation and an elaborate discussion of the EIM interpolation
nodes t1, . . . , tM . In particular, these nodes are compared with known optimal
point distributions in the context of polynomial interpolation on simple domains.
Because of a remarkable resemblence with optimal point distributions, the EIM
interpolation nodes are in [28] called the magic points.

A typical use of the EIM is evaluation of parametrized integrals. Consider
as an example

G(μ) =

∫
Ω

g(·;μ)ψ. (3.7)

Here, ψ : Ω→ R, and we assume that the product g(·;μ)ψ is integrable over Ω.
(Note that a parametrized bilinear form associated with a parametrized partial
differential equation may be viewed as a special case of (3.7).) Evaluation of
G(μ) with for example standard Gauss-Lobatto-Legendre quadrature may be

13



prohibitively expensive, in particular when G(μ) is required in real time or for
many different μ ∈ D. For any μ ∈ D the EIM provides an approximation
GM (μ) ≈ G(μ) as

GM (μ) =

∫
Ω

gM (·;μ)ψ =

M∑
m=1

ϕm(μ)

∫
Ω

g(·;μm)ψ. (3.8)

The key point here is that the integration can be performed as precomputation,
since the integrals to the right are parameter independent.

4 Summary of Papers

4.1 Overview

The topics of this thesis are either directly or indirectly related to the reduced
basis method. We now briefly discribe the contributions from each of the papers.

A first topic is the evaluation of a particular class of output functionals in
the reduced basis context: integrals of fluxes over parts of the boundary of the
spatial domain. If we explicitly define the output functional � as the integral of
the flux, then � is not an X-bounded functional. For this reason, flux integrals
are typically not evaluated directly but rather indirectly through the variational
problem formulation [2, 11]. This strategy necessitates the choice of a lifting
function. In a standard FE context it is obvious how to choose this lifting
function. In the RB context, this choice is not so obvious. In Paper 1 we
comment on “good” choices for the lifting function and demonstrate the impact
these choices have on the RB approximation error.

A second topic is the hp reduced basis method (hp-RB). This method is
a generalization of the standard RB method, and may provide an additional
online computational speedup of the RB approximation at additional offline
cost. With this method we first construct an adaptive partition of the parameter
domain D into parameter subdomains; subsequently, we construct standard RB
approximation spaces restricted to parameter values within each subdomain.
The idea is that these local (in parameter) spaces may be chosen significantly
smaller than the global spaces associated with a standard RB procedure.

With the hp-RB method we adopt the concepts of “h-type” and “p-type”
approximations from the “FE language” to the parametric context of the RB
method. The initial partition of the parameter domain is h-refinement; the sub-
sequent application of the standard RB method within a parameter subdomain
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is p-refinement. The combination of these two strategies thus yields the hp-RB
method. The hp-RB method is presented for elliptic equations in Paper 2 and
for parabolic equations in Paper 3. In Paper 4 we introduce a two-step RB
method. This method is of particular interest in the hp-RB context, since it
may significantly reduce the hp-RB offline cost.

The remainder of the thesis is related to the empirical interpolation method.
In Paper 5, we develop hp strategies for the empirical interpolation method.
These hp-EIM methods share the fundamental ideas with the hp-RB method:
partition of the full parameter domain into parameter subdomains, and appli-
cation of the standard EIM procedure independently within each subdomain.

In the original EIM papers [4, 18], estimators for the EIM error were intro-
duced. Although these estimators are typically very sharp, they are not rigorous
error bounds. In Paper 6 we introduce rigorous a posteriori error bounds for the
EIM approximation. These bounds work well and may be computed efficiently
in certain simple cases. In the general case, more work is required in particular
for the efficient computation of the bounds.

For a given parametrized function, the sharpness of the associated rigor-
ous EIM error bounds introduced in Paper 6 depends on the error in the EIM
approximation of derivatives of this parametrized function with respect to the
parameters (parametric derivatives). This is the motivation for the work in
Paper 7, in which we more generally consider the EIM approximation of para-
metric derivatives. In particular we show in this paper that, as we increase the
number of EIM basis functions, the error in the EIM derivative approximation
goes to zero if the error in the EIM approximation of the original function goes
to zero.

Although the motivation for our work in Paper 7 was to assess the sharpness
of the EIM error bounds in Paper 6, the results show that the EIM may be used
in practice for the efficient approximation of parametric derivatives. Moreover,
the convergence results in Paper 7 are in fact not restricted to the EIM, but apply
to a much larger class of approximation schemes. The results may be useful in
contexts such as optimization and parameter estimation, since Jacobians can be
evaluated at only minor additional cost.

4.2 List of Papers
This thesis consists of this introduction chapter and the following papers:

Paper 1: J. L. Eftang and E. M. Rønquist, Evaluation of flux integral outputs
for the reduced basis method. Mathematical Models and Methods in Applied
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Sciences, Vol. 20, No. 3 (2010), pp. 351-374.
In this paper, we consider the evaluation of flux integral outputs from re-

duced basis solutions to second-order PDE’s. In order to evaluate such outputs,
a lifting function v� must be chosen. In the standard finite element context,
this choice is not relevant, whereas in the reduced basis context, as we show,
it greatly affects the output error. We propose two “good” choices for v�, and
illustrate their effect on the output error by examining a numerical example.
We also make clear the role of v� in a more general primal-dual reduced basis
approximation framework.

Paper 2: J. L. Eftang, A. T. Patera, and E. M. Rønquist. An “hp” Certified
Reduced Basis Method for Parametrized Elliptic Partial Differential Equations.
SIAM Journal on Scientific Computing, Vol. 32, No. 6 (2010), pp. 3170–3200.

We present a new “hp” parameter multidomain certified reduced basis (RB)
method for rapid and reliable online evaluation of functional outputs associ-
ated with parametrized elliptic partial differential equations. We propose, and
provide theoretical justification for, a new procedure for adaptive partition (“h”-
refinement) of the parameter domain into smaller parameter subdomains: we
pursue a hierarchical splitting of the parameter (sub)domains based on prox-
imity to judiciously chosen parameter anchor points within each subdomain.
Subsequently, we construct individual standard RB approximation spaces (“p”-
refinement) over each subdomain. Greedy parameter sampling procedures and
a posteriori error estimation play important roles in both the “h”-type and “p”-
type stages of the new algorithm. We present illustrative numerical results for
a convection-diffusion problem: the new “hp”-approach is considerably faster
(respectively, more costly) than the standard “p”-type reduced basis method in
the online (respectively, offline) stage.

Paper 3: J. L. Eftang, D. J. Knezevic, and A. T. Patera. An hp Certified Re-
duced Basis Method for Parametrized Parabolic Partial Differential Equations.
To appear in Mathematical and Computer Modelling of Dynamical Systems,
2011.

In this paper we introduce an hp certified reduced basis method for parabolic
partial differential equations. We invoke a POD (in time) / Greedy (in parame-
ter) sampling procedure first in the initial partition of the parameter domain (h-
refinement) and subsequently in the construction of reduced basis approximation
spaces restricted to each parameter subdomain (p-refinement). We show that
proper balance between additional POD modes and additional parameter values
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in the initial subdivision process guarantees convergence of the approach. We
present numerical results for two model problems: linear convection-diffusion,
and quadratically nonlinear Boussinesq natural convection. The new procedure
is significantly faster (respectively, more costly) in the reduced basis Online
(respectively, Offline) stage.

Paper 4: J. L. Eftang, D. B. P. Huynh, D. J. Knezevic, and A. T. Patera.
A Two-Step Certified Reduced Basis Method. Accepted in Springer Journal of
Scientific Computing, 2011.

In this paper we introduce a two-step Certified Reduced Basis (RB) method.
In the first step we construct from an expensive finite element “truth” discretiza-
tion of dimension N an intermediate RB model of dimension N � N . In the
second step we construct from this intermediate RB model a derived RB (DRB)
model of dimension M ≤ N . The construction of the DRB model is effected at
cost O(N) and in particular at cost independent of N ; subsequent evaluation of
the DRB model may then be effected at cost O(M). The DRB model comprises
both the DRB output and a rigorous a posteriori error bound for the error in
the DRB output with respect to the truth discretization.

The new approach is of particular interest in two contexts: focus calculations
and hp-RB approximations. In the former the new approach serves to reduce
online cost, M � N : the DRB model is restricted to a slice or subregion of
a larger parameter domain associated with the intermediate RB model. In
the latter the new approach enlarges the class of problems amenable to hp-RB
treatment by a significant reduction in offline (precomputation) cost: in the
development of the hp parameter domain partition and associated “local” (now
derived) RB models the finite element truth is replaced by the intermediate RB
model. We present numerical results to illustrate the new approach.

Paper 5: J. L. Eftang and B. Stamm. Parameter Multi-Domain “hp” Em-
pirical Interpolation. NTNU Preprint Numerics No. 3/2011. Submitted to
International Journal for Numerical Methods in Engineering, 2011.

In this paper, we introduce two parameter multi-domain “hp” techniques for
the empirical interpolation method (EIM). In both approaches, we construct
a partition of the original parameter domain into parameter subdomains: h-
refinement. We apply the standard EIM independently within each subdomain
to yield local (in parameter) approximation spaces: p-refinement. Further, for a
particularly simple case we introduce a priori convergence theory for the parti-
tion procedure. We show through two numerical examples that our approaches
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provide significant reduction in the EIM approximation space dimension, and
thus significantly reduce the computational cost associated with EIM approxi-
mations.

Paper 6: J. L. Eftang, M. A. Grepl, and A. T. Patera. A Posteriori Error
Bounds for the Empirical Interpolation Method. Comptes Rendus Mathema-
tique, Vol. 348, No. 9-10 (2010), pp. 575-579.

We present rigorous a posteriori error bounds for the Empirical Interpolation
Method (EIM). The essential ingredients are (i) analytical upper bounds for
the parametric derivatives of the function to be approximated, (ii) the EIM
“Lebesgue constant,” and (iii) information concerning the EIM approximation
error at a finite set of points in parameter space. The bound is computed “offline”
and is valid over the entire parameter domain; it is thus readily employed in
(say) the “online” reduced basis context. We present numerical results that
confirm the validity of our approach.

Paper 7: J. L. Eftang, M. A. Grepl, E. M. Rønquist, and A. T. Patera. Ap-
proximation of Parametric Derivatives by the Empirical Interpolation Method.
NTNU Preprint Numerics No. 4/2011. To be submitted to Foundations of Com-
putational Mathematics, 2011.

We introduce a general a priori convergence result for the approximation
of parametric derivatives. We show — with rather general assumptions on the
particular approximation scheme — that the derivative approximation is con-
vergent provided that the approximation to the original function is convergent.
In this paper we focus on the approximation of parametric derivatives by the
Empirical Interpolation Method (EIM); we present numerical results with the
EIM to illustrate the general theory.
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Abstract

In this paper, we consider the evaluation of flux integral outputs from
reduced basis solutions to second-order PDE’s. In order to evaluate such
outputs, a lifting function v� must be chosen. In the standard finite
element context, this choice is not relevant, whereas in the reduced basis
context, as we show, it greatly affects the output error. We propose two
“good” choices for v�, and illustrate their effect on the output error by
examining a numerical example. We also make clear the role of v� in a
more general primal-dual reduced basis approximation framework.

1 Introduction

For many practical applications, one is interested in certain physical averages, or
outputs of interest, which can be defined as functionals of the solution to a partial
differential equation (PDE) that describes an underlying physical problem. For
example, the output of interest may be the average heat flux through (or average
temperature on) a surface, or the average force acting on a wall due to fluid flow.
In this paper, we are concerned with outputs of flux integral type, i.e., outputs
that can be written as surface integrals of the normal derivative of the solution to
the underlying PDE. We consider second-order equations, for which it is possible
to evaluate flux integral outputs directly via the weak problem formulation, and
in particular without the need for any numerical differentiation.

Mathematically, we consider a weakly written problem defined on a domain
Ω: Find u ∈ X(Ω) such that

a(u, v) = f(v), ∀v ∈ X(Ω), (1.1)

where a is a coercive, continuous and for simplicity also symmetric bilinear form
derived from some second-order differential operator, f is a linear and bounded
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Ω
ΓD

0

ΓD
1

ΓD
2

ΓD
3

Figure 1: Illustration of a general domain Ω in the particular case that the Dirichlet
boundary ΓD = ∪K−1

k=0 Γ
D
k consists of K = 4 disjoint sections.

functional, X(Ω) = {v ∈ H1(Ω) : v|ΓD = 0} is our exact space, and ΓD ⊂ ∂Ω
denotes the parts of the boundary of Ω on which we impose (for simplicity
homogeneous) Dirichlet boundary conditions. As usual, H1(Ω) denotes the
Sobolev space of functions with square integrable first order derivatives over Ω.
Henceforth, the Ω-dependence of our spaces is understood when no ambiguity
may arise.

We shall assume that the Dirichlet boundary, ΓD, may be written as ΓD =
∪K−1
k=0 Γ

D
k , where Γ

D
k ⊂ ∂Ω, 0 ≤ k ≤ K − 1, are disjoint sections, as illustrated

in Figure 1 for the special case K = 4. In addition, we require any two such
sections ΓDi and ΓDj (i �= j) to be separated by a section on which a Neumann
boundary condition is imposed. Our output of interest shall be the integral
of the flux through ΓD0 ⊆ ΓD, i.e., the integral of the flux through an entire
separate section of ΓD. We thus define the output functional

l̃out(w) ≡
∫
ΓD
0

∂w

∂n
ds, (1.2)

where ∂/∂n denotes the outward normal derivative and s is the surface measure
on ∂Ω. When solving e.g. Poisson or Helmholtz problems with the finite element
(FE) method, it is preferable [1, 2, 6, 10] to instead evaluate flux integral outputs
through an affine functional

lout(w) ≡ a(w, v�)− f(v�), (1.3)

where v� ∈ H1 is any function that is equal to unity on ΓD0 and equal to zero
on ΓD \ ΓD0 . Of course, even though (1.2) and (1.3) make sense for any w ∈ X,
they are only of interest for w ≈ u, where u is the solution of (1.1). One way
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to derive (1.3), is to recast the original problem (1.1) as a “Neumann problem”
for which there are no restrictions on the test and trial functions on ΓD0 . Thus,
if we suppose (1.1) is a Poisson or Helmholtz problem, this modified problem
reads: Find u ∈ X̃ such that

a(u, v) = f(v) +

∫
ΓD
0

∂u

∂n
v ds, ∀v ∈ X̃, (1.4)

where X̃ = {v ∈ H1 : v|ΓD\ΓD
0 =0

} ⊃ X. Moving f(v) to the left hand side and
choosing v = v� ∈ X̃, we see that l̃out(u) = lout(u).

Suppose we solve (1.1) numerically to obtain a FE approximation to u,
uN ∈ XN , satisfying

a(uN , v) = f(v), ∀v ∈ XN . (1.5)

Here, XN ⊂ X is a discrete FE space of dimension N . The FE output of
interest can now be evaluated in two ways, either as l̃out(uN ) or as lout(uN ). In
the latter case, we substitute uN for u and consequently ≈ for = in (1.4). With
v = v�, we get lout(uN ) ≈

∫
ΓD
0

∂uN
∂n ds. Hence, in general, lout(uN ) �= l̃out(uN ).

We shall refer to v� as a flux lifting function, and we shall denote the set of
possible such functions as V �. Specifically,

V � ≡ {v ∈ H1 : v|ΓD\ΓD
0
= 0, v|ΓD

0
= 1}. (1.6)

In [2], v� is called an extraction function, and the method described above
for flux integral output evaluation is an example of an extraction method. In
[10], the method — with more emphasis on pointwise quantities, rather than
on surface integrals — is called the consistent Galerkin FEM. A collection of
post-processing methods for flux integral and other types of outputs, including
pointwise quantities, can be found in [1].

Typically, lout(uN ) converges to lout(u) quadratically with the energy-norm
error of the field variable. In contrast, l̃out(uN ) typically exhibits only linear
convergence [2, 6]. Another advantage of lout over l̃out is that the former requires
no calculation of normal derivatives, which is particularly convenient in higher
dimensions and for problems on domains with curved boundaries.

Aside from the essential boundary condition in (1.6), we have not made
any particular choice for v� ∈ H1. In fact, within a standard finite element
framework, this choice is not a big issue due to Galerkin orthogonality and the
richness of the approximation spaces used [2, 6]. In contrast, as we will show
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numerically and theoretically, one should take a little more care when evaluating
flux integral outputs by way of the method described above within the reduced
basis (RB) framework. For a thorough introduction to RB methods, confer e.g.
[17] or [20].

In the next section, we shall consider a very simple numerical example which
illustrates how lout may be superior to l̃out in terms of numerical accuracy within
the FE framework. In Section 3, we first briefly review the RB method and then
elaborate on the discrepancy between the FE and RB methods with respect to
the choice of v�. We then propose two “good” choices for v� to use in the RB
context. We also make clear the role of v� in the more general primal-dual
RB approximation procedure which is used to speed up the convergence for
non-compliant problems [18, 20]. In Section 4, we remain in the RB context
and illustrate the effect of different v�’s by examining yet another numerical
example, and in Section 5 we end our discussion with some concluding remarks.

2 Flux Output Evaluation: a 1D Example

We consider a one-dimensional Helmholtz problem on Ω = (0, 2) with homo-
geneous Dirichlet boundary conditions. The weak formulation of the problem
reads: Find u ∈ H1

0 such that∫ 2

0

(
∂u

∂x

∂v

∂x
+ uv

)
dx︸ ︷︷ ︸

=a(u,v)

=

∫ 2

0

qv dx︸ ︷︷ ︸
=f(v)

, ∀v ∈ H1
0 , (2.1)

where H1
0 = {v ∈ H1 : v(0) = v(2) = 0}. For the purpose of this example, we

want the solution u to be weakly singular. In order to achieve this, we choose
the source term as q(x) = x2/3. Our output of interest is the derivative of u at
x = ΓD0 = {2}, and our two output functionals now reduce to

l̃out(w) =
∂w

∂x

∣∣∣∣
x=2

(2.2)

and

lout(w) = a(w, v�)− f(v�), (2.3)

where v� ∈ V �.
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With a spectral (high order polynomial) method, we discretise (2.1) and find
uN ∈ XN such that

a(uN , v) = f(v), ∀v ∈ XN , (2.4)

where

XN = {v ∈ PN : vΓD = 0} (2.5)

is our discrete space. Here, ΓD = {0, 2} and PN denotes the space of polynomials
of degree N (note that here, dim(XN ) = N − 1 due to the Dirichlet boundary
conditions).

We shall also consider the dual problem: Find ψ ∈ H1
0 such that

a(v, ψ) = −a(v, v�), ∀v ∈ H1
0 . (2.6)

The spectral discretisation of (2.6) reads: Find ψN ∈ XN such that

a(v, ψN ) = −a(v, v�), ∀v ∈ XN . (2.7)

Note that a(v, v�) — the (bounded) linear functional part of lout — enters on
the right hand side in the dual problem (with a minus sign). Thus, v� also plays
the role of a Dirichlet lifting function for the dual problem, with Dirichlet data
equal to unity on ΓD0 (i.e. at x = 2). Also note that the dual problem exhibits no
(singular) source term. Provided v� is smooth (deliberately choosing v� singular
seems somewhat peculiar), we expect ψ to be a smooth function and thus the
convergence of ψN to ψ to be of infinite order.

We are interested in the errors in the output of interest, which we define for
each of our two output functionals as

ẽN ,out ≡
∣∣∣∣∂u∂x ∣∣x=2 − l̃out(uN )

∣∣∣∣, (2.8)

and

eN ,out ≡
∣∣∣∣∂u∂x ∣∣x=2 − lout(uN )

∣∣∣∣ =
∣∣∣∣lout(u)− lout(uN )

∣∣∣∣, (2.9)

respectively. For eN ,out, we deduce that

eN ,out = |a(u− uN , v�)|
= |a(u− uN , ψ)|
= |a(u− uN , ψ − ψN )|
≤ ‖u− uN ‖‖ψ − ψN ‖, (2.10)
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Figure 2: Energy error (×) and output errors eN ,out (�) and ẽN ,out (◦) for increasing
polynomial degree, N , of the underlying spectral approximation.

by using the definition of eN ,out, the fact that u− uN ∈ H1
0 and the definition

of the dual problem (2.6), Galerkin orthogonality of u − uN and the Cauchy-
Schwarz inequality, respectively. Here, ‖·‖ =

√
a(·, ·) denotes the energy norm.

A consequence of this estimate is that if ψ happens to be a smooth function,
eN ,out will decay exponentially with N , even if u is singular. Note that in prac-
tice, we never actually compute the discrete solution ψN to the dual problem.

In Figure 2, we plot the energy norm error ‖u− uN ‖ and the output errors
ẽN ,out and eN ,out for 1 ≤ N ≤ 50. As our flux lifting function, we have made
the choice v� = x/2. As expected, the error ‖u−uN ‖ decays algebraically, while
eN ,out decays at an infinite rate due to the smoothness of ψ. Note that we reach
double precision accuracy for eN ,out for N � 10.

Let us make a few remarks concerning the above results. Firstly, although
for v, w ∈ XN the integrals a(v, w) and f(v) are easy to evaluate analytically,
we have chosen to perform all integration by using numerical quadrature since
we can then employ a very general computational framework (which can also
be used to solve more difficult problems in which analytic integration is not
possible). However, since q(x) = x2/3 is not a smooth function over Ω, the
integrand on the right hand side of the primal problem is singular, and hence
accurate evaluation of the integral f(v) requires quadrature of very high order.
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If f(v) is not computed with sufficient accuracy, uN will carry an additional
numerical integration error which will compromise Galerkin orthogonality —
which we exploited in the error bound (2.10) — and hence also the exponential
convergence of the output. In our numerical experiment, we assume negligible
numerical integration errors since all numerical integration is performed with
Gauss-Lobatto-Legendre (GLL) quadrature [5] over nq � N + 1 quadrature
points. Specifically, nq = 121.

Secondly, we note that the error ‖u−uN ‖ decays much faster than expected
from the standard error estimate. It can be shown that, for our problem, the
most singular term of u behaves like x8/3, and hence u ∈ Hσ for all 0 ≤ σ <
19/6. From the standard estimate [5], we would expect ‖u − uN ‖ ≤ cN 1−σ

for some positive constant c, and hence a slope of −13/6. In contrast, the
actual decay is in fact of order −4.33, which is twice as good as expected. The
reason for this superconvergence is related to the particular type of singularity
exhibited by the solution to our problem — it appears at an endpoint and is
of xα-type — and the rather good capability of polynomials to approximate
functions with such singularities [4, 12].

Thirdly, we note that for our simple one-dimensional problem, ẽN ,out decays
as fast as the error ‖u − uN ‖. We would expect similar results were we to
use a linear (h-type) finite element method. In fact, if uh denotes a linear
FE approximation to u on a mesh with elements of size h, we would from
standard FE error estimates [19] expect convergence of order O(h2) for the
output lout(uh), and of order O(h) for the energy-norm error ‖u − uh‖ (note
that for our particular problem, the singularity in u is weak enough that full
linear convergence (in h) is achieved). Based on the preceeding results, we
would also expect convergence of order O(h) for the output l̃out(uh). Indeed,
our results and comments here are consistent with results presented in [6] and
a note made in [2] for the h and and h-p finite element methods, respectively,
applied to the problem (2.4).

Finally, as noted in [2], any two choices of v� ∈ (V �∩X̃N ) produce the same
result for lout(uN ). To see this, let v�1 , v�2 ∈ (V � ∩ X̃N ). Then w� = v�1 − v�2 ∈
XN , and

[
a(uN , v�1) − l(v�1)

]
−
[
a(uN , v�2) − l(v�2)

]
= a(uN , w�) − l(w�) = 0, (2.11)

by (2.4). A convenient choice for v�, then, is the function that is equal to
unity at the node at x = 2 and equal to zero at every other node (or, in the
low-order finite element case, the function that is equal to unity at x = 2 with
support only on the element adjacent to the boundary). For this reason, we do
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not specifically emphasise our choice for v� when considering outputs from FE
solutions.

In the next section, we turn our focus to flux integral outputs in the reduced
basis context.

3 Flux Output Evaluation in the RB Framework

3.1 RB formulation

3.1.1 Parametrised weak form

Of interest within the reduced basis (RB) framework [9, 18, 20] is the solution —
and ultimately the corresponding output of interest — of parameter-dependent
PDE’s in cases where the output is either required in real time, or for a large
number of input parameters. In the following, D ⊂ RP shall denote the ad-
missible parameter domain, and μ ∈ D a parameter P -tuple that governs e.g.
boundary conditions or material or geometrical properties of the underlying
physical problem. We shall consider the following parametrised problem on a
domain Ω: Given any μ ∈ D, find u(μ) ∈ X such that

a(u(μ), v;μ) = f(v;μ), ∀v ∈ X, (3.1)

where, for each μ ∈ D, a(·, ·;μ) is a coercive, continuous and for simplicity also
symmetric bilinear form originating from a second-order differential operator,
and f(·;μ) is a linear and bounded functional. We also assume that a and f
are parametrically affine, in the sense that the μ-dependency of a and f take
the form

a(v, w;μ) =

Qa∑
q=1

aq(v, w)Θq
a(μ), f(v;μ) =

Qf∑
q=1

fq(v)Θq
f (μ), (3.2)

for finite numbers Qa and Qf , where the aq and fq are parameter indepen-
dent bilinear and linear forms, respectively, and the Θq

a and Θq
f are parameter

dependent functions.
We still impose homogeneous Dirichlet boundary conditions on ΓD ⊂ ∂Ω,

and take as our exact output of interest the flux integral

s̃(μ) =

∫
ΓD
0

∂u(μ)

∂n
ds, (3.3)
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where ΓD0 ⊆ ΓD is an entire separate section of the Dirichlet boundary.
Finally, we define the now parameter dependent “energy” norm

‖·‖μ ≡
√
a(·, ·;μ), (3.4)

and the equivalent parameter-independent X-norm

‖·‖X ≡
√
a(·, ·; μ̄), (3.5)

where μ̄ ∈ D is some fixed, preselected reference parameter. Note that by the
assumptions of symmetry, coercivity and continuity, a(·, ·;μ) defines an inner-
product, and ‖ · ‖μ a norm equivalent to the H1-norm, for each μ ∈ D.

3.1.2 FE “truth” approximation

The reduced basis approximations will be built upon snapshots of “truth” finite
element approximations to solutions of (3.1), computed for wisely selected points
in the admissible parameter domain. Let XN be a standard finite element
discrete space of dimension N . The “truth” discretisation of (3.1) reads: For
any μ ∈ D, find uN (μ) ∈ XN such that

a(uN (μ), v;μ) = f(v;μ), ∀v ∈ XN . (3.6)

The corresponding “truth” output of interest is

sN (μ) ≡ lout(uN (μ);μ) ≡ a(uN (μ), v�;μ)− f(v�;μ). (3.7)

By the appellation “truth”, we here understand that, for all μ ∈ D, the FE
solution and output errors are assumed smaller than some prescribed (problem
dependent) tolerance. Moreover, for any given μ ∈ D, the RB a posteriori error
estimators (to which we return in Section 3.3) provide upper bounds only for the
gap between the RB field, or output, and the corresponding “truth” FE field, or
output, respectively. Hence, the RB fields and outputs are both built upon and
estimated relative to the “truth” fields and outputs, respectively, which thus in
effect serve as surrogates for the exact fields and outputs, respectively.

3.1.3 RB approximation

For 1 ≤ N ≤ Nmax, the RB approximation space, XN , will be the span of
precomputed snapshots taken of uN at N different points in D. Specifically,
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given a set of N wisely selected parameter vectors μ1,μ2, . . . ,μN ∈ D, we
define the corresponding RB space as

XN = span{uN (μ1), . . . , uN (μN )}. (3.8)

We assume the uN (μn), 1 ≤ n ≤ N , to be linearly independent. The reduced
basis problem now becomes: Given any μ ∈ D, find uN (μ) ∈ XN such that

a(uN (μ), v;μ) = f(v;μ), ∀v ∈ XN , (3.9)

and evaluate the RB flux integral output

sN (μ) ≡ lout(uN (μ);μ) = a(uN (μ), v
�;μ)− f(v�;μ). (3.10)

Starting from an initial (e.g. randomly chosen) μ1 ∈ D, the parameter vec-
tors μN , 2 ≤ N ≤ Nmax, are chosen one at a time in a greedy manner. For each
value of N , we evaluate the a posteriori (e.g. field energy norm) error estimator,
ΔN−1(μ), for every μ in a finite training sample, Ξtrain ⊂ D. We then choose
μN equal to μ ∈ Ξtrain that maximises ΔN−1(μ), and compute the correspond-
ing snapshot uN (μN ) as the next RB basis function. The greedy parameter
selection procedure was introduced in [22]. For a detailed description, see also
[17, 20].

Note that we have assumed evaluation of the “truth” and RB flux integral
outputs in (3.7) and (3.10), respectively, by using a flux lifting function v� ∈ V �,
although we have not yet made any particular choice for v�.

Under the assumption that uN (μ) varies smoothly with μ ∈ D, we may
expect that — for any μ ∈ D — very few RB basis functions will suffice in
order to reproduce a very good RB approximation, uN (μ), to the correspond-
ing “truth” approximation, uN (μ), via the Galerkin formulation (3.9). Conse-
quently, the corresponding RB output, sN (μ), will be very close to the “truth”
output, sN (μ). In particular, for a fixed level of accuracy relative to the exact
field, u(μ), or output, s̃(μ), we expect that the number of required degrees of
freedom associated with the RB approximations, N , is much lower than the
number of required degrees of freedom associated with the “truth” approxi-
mations, N , since the RB approximation space is specifically taylored to the
problem at hand. As a result, only a small system of algebraic equations needs
to be solved for each new given μ, once a sufficiently large RB space, XN , is
constructed.

Imperative to the efficiency of the RB method is a computational decoupling
in offline (preprocessing) and online stages. The offline stage — which is per-
formed only once — may be computationally very costly and includes the greedy
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parameter selection process and the computation of the corresponding “truth”
snapshots, i.e., the RB basis functions. The online stage — in which, given
any new μ ∈ D, the RB solution, uN (μ), and RB output of interest, sN (μ),
are computed — is very fast. In particular, owing to the assumptions (3.2) on
parametric affinity, the computational complexity of the RB online stage can be
made independent of N [17, 20].

Of interest within the RB context is the concept of a compliant problem.
A problem is said to be compliant if, for all μ ∈ D, i) the output functional
lout(·;μ) (more generally, in the case of lout(·;μ) affine, the linear functional
part of lout(·;μ)) is equal to the right-hand-side f(·;μ) of (3.1), and ii) a(·, ·;μ)
is symmetric. In the compliant case, the error in the RB output of interest
is equal to the square of the energy-norm error of the primary field variable
[17, 18, 20].

In our case, lout(·;μ) as defined in (3.7) (or (3.10)) above is a non-compliant
output functional since its linear functional part a(·, v�;μ) is, in general, differ-
ent from the right-hand-side f(·;μ) of (3.1). We make a comment in Section
4.4 on a very particular case in which lout(·;μ) is, in fact, compliant.

3.2 Relevance of the flux lifting function

In Section 2, we saw that any two choices for v� belonging to (V �∩X̃N ) produced
the same output lout(uN ) within a standard FE framework. This is of course
a consequence of Galerkin orthogonality and, when compared to the RB space,
XN , the richness and generality of the FE space, XN . Within the RB framework
however, the choice of flux lifting function does affect the numerical value of the
output. To see this, let v�1 , v�2 ∈ (V � ∩ X̃N ), and define w� ≡ v�1 − v�2 . In order
to denote the RB output for a particular μ ∈ D, computed with a particular
v�, we write

sN (μ; v
�) ≡ a(uN (μ), v

�;μ)− f(v�;μ). (3.11)

Hence, the outputs corresponding to v�1 and v�2 are given by

sN (μ; v
�
1) = a(uN (μ), v

�
1 ;μ)− f(v�1 ;μ), (3.12)

sN (μ; v
�
2) = a(uN (μ), v

�
2 ;μ)− f(v�2 ;μ), (3.13)
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respectively. But then,

sN (μ; v
�
1)− sN (μ; v�2) = a(uN (μ), v

�
1 ;μ)− f(v�1 ;μ)

−
(
a(uN (μ), v

�
2 ;μ)− f(v�2 ;μ)

)
= a(uN (μ), w

�;μ)− f(w�;μ), (3.14)

which by (3.9) is equal to zero for all w� ∈ XN . However, there must clearly
exist w� ∈ XN such that a(uN (μ), w�;μ) − f(w�;μ) is nonzero. Otherwise,
uN (μ) would have been identical to uN (μ), which is provably not the case for a
general μ ∈ D. In conclusion, the two evaluations sN (μ, v�1) and sN (μ, v�2) are
not in general equivalent (unless v�1 − v�2 happens to belong to XN ). Naturally,
this raises the question of which v� we should choose within the RB framework.

3.3 A posteriori error estimation
Before we proceed to our actual choices for “good” RB flux lifting functions, we
shall consider the a posteriori error upper bound associated with the output
sN (μ). To arrive at such a bound, we first require a bound for the error in the
field variable. We assume that we have available a lower bound αLB(μ) > 0 for
the coercivity constant of a(·, ·;μ) over XN with respect to the X-norm defined
in (3.5). Specifically, for all μ ∈ D,

αLB(μ) ≤ α(μ) = inf
v∈XN

a(v, v;μ)

‖v‖2X
. (3.15)

We also define the residual

rN (v;μ) ≡ f(v;μ)− a(uN (μ), v;μ) (3.16)

for all v ∈ XN . In particular, with eN (μ) = uN (μ)− uN (μ), we have

a(eN (μ), v;μ) = rN (v;μ), ∀v ∈ XN . (3.17)

Hence, with êNN (μ) ∈ XN that satisfies

a(êNN (μ), v; μ̄) = rN (v;μ), ∀v ∈ XN , (3.18)

we may write

a(eN (μ), eN (μ);μ) = a(êNN (μ), eN (μ); μ̄)

≤ ‖êNN (μ)‖X‖eN (μ)‖X

≤ ‖êNN (μ)‖X
‖eN (μ)‖μ
(αLB(μ))1/2

, (3.19)
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where we have used v = eN (μ) ∈ XN in (3.17) and (3.18), the Cauchy-Schwarz
inequality and the definition (3.15) of the coercivity lower bound. Hence,

‖uN (μ)− uN (μ)‖μ ≤
‖êNN (μ)‖X(
αLB(μ)

)1/2 ≡ ΔN (μ), (3.20)

where ‖êNN (μ)‖X = supv∈XN (rN (v;μ)/‖v‖X) is the dual norm of the residual.
Again, due to the affinity assumptions (3.2), an efficient offline-online computa-
tional approach for ΔN (μ) can be developed. For a detailed derivation of (3.20)
and the corresponding computational procedure, see [17, 18, 20].

Now, we let X̃N ⊃ XN be a discrete FE space identical to XN except for the
restriction on its members vanishing on ΓD0 . Then we let ψN (μ) ∈ (V � ∩ X̃N )
be the solution of the problem

a(v, ψN (μ);μ) = 0, ∀v ∈ XN . (3.21)

Note that since ψN (μ) ∈ (V �∩X̃N ), we impose the essential Dirichlet condition
ψN (μ)|ΓD

0
= 1.

Next, if we choose any v� ∈ (V � ∩ X̃N ), our “truth output” — to which the
RB output will be compared — is given from (3.7) as

sN (μ) = a(uN (μ), v�;μ)− f(v�;μ), (3.22)

and we obtain the error estimate

|sN (μ)− sN (μ; v�)| = |a(uN (μ), v�;μ)− a(uN (μ), v�;μ)|
= |a(eN (μ), v�;μ)|
= |a(eN (μ), v� − ψN (μ);μ)|
≤ ‖eN (μ)‖μ‖v� − ψN (μ)‖μ, (3.23)

by using (3.21) with eN (μ) ∈ XN , and the Cauchy-Schwarz inequality. Thus,
|sN (μ) − sN (μ; v

�)| ≤ ΔN (μ)‖v� − ψN (μ)‖μ, and a good v� is also a good
approximation to ψN (μ), making the term ‖v� − ψN (μ)‖μ small.

To bound the term ‖v�−ψN (μ)‖μ, we view v� as an approximation to ψN ,
and define the residual rv�(v;μ) ≡ −a(v, v�;μ). Analogously to (3.20), we have

‖v� − ψN (μ)‖μ ≤
‖êNv�(μ)‖X(
αLB(μ)

)1/2 ≡ Δv�(μ), (3.24)
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where êNv�(μ) belongs to XN and solves a(êNv�(μ), v; μ̄) = rv�(v;μ) for all v ∈
XN . We thus arrive at

|sN (μ)− sN (μ; v�)| ≤ ΔN (μ)Δv�(μ) ≡ Δout
N,v�(μ) (3.25)

as an upper bound for our output of interest.
Note that if we write ψN (μ) = ψN ,0(μ)+ψD, where ψD ∈ (V �∩X̃N ) is some

chosen Dirichlet lift, we can write (3.21) as: Given μ ∈ D, find ψN ,0(μ) ∈ XN

such that

a(v, ψN ,0(μ);μ) = −a(v, ψD;μ), ∀v ∈ XN . (3.26)

Thus, if we choose ψD equal to v�, (3.26) is in fact the dual problem correspond-
ing to the primal problem (3.6) with the output functional lout(·;μ) given in
(3.7), since a(·, v�;μ) is the linear functional part of lout(·;μ). We elaborate on
this in Section 3.5.

3.4 “Good” flux lifting functions
We must keep two things in mind when choosing the flux lifting function v�.
Firstly, it is important that the term ‖v� − ψN (μ)‖μ in the estimate (3.23)
is small. Secondly, we must make sure that the computational cost associated
with the computation of v� is small in the RB online stage.

Note that actually solving (3.21) for every new μ and setting v� = ψN (μ)
will result in a zero error in the RB output, but obviously also in an unaffordable
“truth FE complexity” online computational cost.

We next consider two alternative choices of “good” v�’s which both meet the
two requirements mentioned above.

3.4.1 Coarse finite element approximation

Our first choice is to construct a coarse finite element approximation to ψN (μ).
That is to say, we first find ψM(μ) ∈ (V � ∩ X̃M) ⊂ (V � ∩ X̃N ) such that

a(v, ψM(μ);μ) = 0, ∀v ∈ XM, (3.27)

where the coarse FE space XM ⊂ XN has dimension M � N , and X̃M is
equal to XM except for the restriction on its members vanishing on ΓD0 . We
then choose v� = ψM(μ) as the flux lifting function. In particular, M should
here be chosen small enough that it is affordable to compute ψM(μ) in the RB
online stage, without compromising the rapid online RB output evaluation.
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Now, to bound the term ‖ψM(μ) − ψN (μ)‖μ, we use the result (3.24) to
arrive at ‖ψM(μ) − ψN (μ)‖μ ≤ ΔM(μ) (we here use M to indicate that the
v� in (3.24) is now a coarse FE approximation to ψN (μ)). Then, we define
Δout

N,M(μ) ≡ ΔN (μ)ΔM(μ), and conclude that for all μ ∈ D,∣∣sN (μ)− sN (μ;ψM(μ))
∣∣ ≤ Δout

N,M(μ). (3.28)

3.4.2 Reference parameter approximation

Alternatively, we may take v� = ψN (μ̄) as our approximation of ψN (μ) for any
μ ∈ D. Since v� = ψN (μ̄) is the solution to (3.21) for the preselected reference
parameter, it can be precomputed in the RB offline stage and then reused every
time we evaluate the RB output of interest, without any additional RB online
cost.

From (3.24), an upper bound for the term ‖ψN (μ) − ψN (μ̄)‖μ is given by
Δμ̄(μ) (where we substitute μ̄ for v� to remember our particular choice for v�).
We thus get

|sN (μ)− sN (μ;ψN (μ̄))| ≤ ΔN (μ)Δμ̄(μ) ≡ Δout
N,μ̄(μ) (3.29)

as an upper bound for the error in the RB output of interest.

3.5 Primal-dual RB approximation

Evidently, one way to approximate ψN (μ) is by way of a reduced basis approx-
imation ψM (μ). The RB problem corresponding to (3.26) (and (3.21)) reads:
Find ψ0M (μ) ∈ Xdu

M such that

a(v, ψ0M (μ);μ) = −a(v, ψD;μ), ∀v ∈ Xdu
M , (3.30)

and set ψM (μ) = ψ0M (μ) + ψD. Here, Xdu
M denotes the RB dual approximation

space, given by

Xdu
M = span{ψN (μm)− ψD}Mm=1, (3.31)

where the ψN (μm) are snapshots taken of ψN atM different points in parameter
space. In fact, the formulation of the two problems (3.9) and (3.30), together
with the output of interest given in (3.10), correspond to a standard RB primal-
dual formulation, which is the standard way of speeding up the convergence of
RB solutions to general non-compliant problems [18, 20]. Let us spend a few
lines elaborating on this.
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First, we choose a v� ∈ (V � ∩ X̃N ) and let ψD = v�. Hence, the right-hand-
side of (3.30) is precisely the linear functional part of the output functional (with
a minus sign), and v� is the Dirichlet lifting function for the dual problem. The
standard “dual-corrected” RB output reads

ŝM,N (μ) ≡ sN (μ;ψ
D)− rN (ψ0M (μ);μ), (3.32)

where rN (v;μ) = f(v;μ) − a(uN (μ), v;μ)
)
is the primal residual and ψ0M (μ)

is the homogeneous part of the solution to (3.30). In the below expression, we
drop the argument μ of functions in all intermediate steps for brevity. With
eN (μ) = uN (μ)− uN (μ), we see that

|sN (μ)− ŝM,N (μ)| = |sN (μ)− sN (μ;ψD) + rN (ψ
0
M ;μ)|

= |a(eN , ψD;μ) + rN (ψ
0
M ;μ)|

= |a(eN , ψN ,0;μ)− rN (ψ0M ;μ)|
= |a(eN , ψN ,0;μ) + a(uN , ψ

0
M ;μ)− f(ψ0M ;μ)|

= |a(eN , ψN ,0;μ) + a(uN , ψ
0
M ;μ)− a(uN , ψ0M ;μ)|

= |a(eN , ψN ,0 − ψ0M ;μ)|
≤ ‖eN (μ)‖μ‖ψN ,0(μ)− ψ0M (μ)‖μ. (3.33)

In the two first steps, we here use the expression (3.32) for ŝM,N and then
arbitrarity (up to functions in (V � ∩ X̃N )) of the flux lifting function for the
“truth” output (we can thus write sN (μ) − sN (μ;ψ

D) = a(eN (μ), ψ
D;μ)). In

the third and fourth steps, we invoke (3.26) with v = −eN (μ) and then (3.16)
with v = ψ0M . Next, we use the definition of the “truth” primal problem, then
linearity and lastly the Cauchy-Schwarz inequality. Hence, if we solve the RB
primal and dual problems in parallel with M ≈ N , we get a “quadratic” effect
in the convergence of the output of interest.

Next, it is straightforward to deduce that ŝM,N (μ) = sN (μ;ψM (μ)), i.e.,
that these two output evaluations are equivalent. We start with the expression
(3.32), and then appeal to the (bi)linearity of a(·, ·;μ) and f(·;μ). Again, we
drop the μ-dependence of functions for typesetting convenience:

ŝM,N (μ) = sN (μ;ψ
D)− rN (ψ0M ;μ)

= a(uN , ψ
D;μ) + a(uN , ψ

0
M ;μ)− f(ψD;μ)− f(ψ0M ;μ)

= a(uN , ψ
D + ψ0M ;μ)− f(ψD + ψ0M ;μ)

= sN (μ;ψM ). (3.34)
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In other words, the standard dual-corrected output with v� = ψD produces the
same result as the non-corrected output with v� = ψM (μ) = ψ0M (μ) + ψD.
Thus, for flux integral outputs, the standard RB primal-dual approximation
framework may be viewed as a technique for improving upon any initial choice
v� = ψD.

Up to this point, we have only considered a single output of interest. Surely,
it could in a practical application be desirable to evaluate several outputs of
interest, all being functionals of the solution of the same underlying PDE. For
example, we might want the integral of the flux through J entire disjoint sections
ΓD0 ,Γ

D
1 , . . . ,Γ

D
J−1 of the boundary, resulting in J different output functionals

and thus in turn J different dual problems. Of course, in the case of multiple
outputs, no more than one can be compliant.

When J is small, solving the primal and dual problems in parallel with (say)
M ≈ N basis functions may drastically reduce the RB output error(s) and error
bound(s). However, for many outputs (large J), online computation of the solu-
tion to every corresponding dual problem (when M ≈ N) may be impracticable
— O(N3) and O(M3) operations are required for direct computation of the
solutions to the primal and dual RB problems, respectively — and we are thus
forced to trade numerical accuracy for computational speed. In this situation,
choosing good flux lifting functions seems important.

On the other hand, if we do proceed with RB approximations to the solu-
tion(s) to the dual problem(s) as well, making good choices for the dual Dirichlet
liftings would surely be of interest (obviously, ψD = ψN (μ) would be the opti-
mal, though an impractical, choice).

3.6 Computational approach for output evaluation

In the RB online stage, and without regard to our particular choice for v�, we
need to compute

sN (μ) = lout(uN (μ);μ) = a(uN (μ), v
�;μ)− f(v�;μ), (3.35)

once the RB solution is obtained. Note that also when we pursue a primal-dual
approximation, we are still left with an evaluation on this form, due to the result
(3.34).

Since, for each μ ∈ D, a(·, ·;μ) and f(·;μ) are, by assumption, parametri-
cally affine, lout(·;μ) will also be parametrically affine. Hence, we can compute
the RB output at an additional computational cost of O(N) operations. To see
this, we write a(v, w;μ) and f(v;μ) in their parametrically affine expansions
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(3.2) as

a(v, w;μ) =

Qa∑
q=1

aq(v, w)Θq
a(μ), f(v;μ) =

Qf∑
q=1

fq(v)Θq
f (μ), (3.36)

for any v, w ∈ X. With uN (μ) =
∑N

n=1 uN,n(μ)ζn, where the ζn are the or-
thogonalised RB basis functions (in order to get a reduced system of equations
that is well conditioned, the basis functions uN (μn), 1 ≤ n ≤ N , are orthonor-
malised with respect to the norm ‖·‖X , cf. [20]) and uN,n(μ) are the RB solution
coefficients, we get

lout(uN (μ);μ) =

Qa∑
q=1

aq(uN (μ), v
�)Θq

a(μ)−
Qf∑
q=1

fq(v�)Θq
f (μ)

=
N∑

n=1

uN,n(μ)

Qa∑
q=1

aq(ζn, v
�)Θq

a(μ)−
Qf∑
q=1

fq(v�)Θq
f (μ), (3.37)

which is a QaN+Qf operations summation, assuming that the values aq(ζn, v�),
1 ≤ q ≤ Qa, and fq(v�), 1 ≤ q ≤ Qf are precomputed in the RB offline stage,
and that the function values Θq

a(μ) and Θq
f (μ) are readily computable. Note

that we have here assumed for simplicity that v� is μ-independent (according to,
for example, the reference parameter approximation discussed in Section 3.4.2).

Thus far, we have assumed that a and f are parametrically affine. In the
more general case of a non-affine problem, it is possible to construct parametri-
cally affine expansions that are good approximations of a(·, ·;μ) and f(·;μ) for
any μ ∈ D by invoking the empirical interpolation method [3, 9, 14]. In this
case, the additional computational cost for output evaluation is still only O(N)
in the RB online stage, but the RB problem solved is slightly modified.

4 An Illustrative Example

4.1 Problem formulation
We consider the electrostatic potential, u, inside a square domain Ω = (0, 3)×
(0, 3) which contains an “insulating” square anomaly, Ωan, with edges of length
0.6, as depicted in Figure 3.

Attached to the boundary of Ω, ∂Ω, are four electrodes of unity length,
centred on each of the edges of Ω. The electrodes constitute the Dirichlet
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(0, 0)

(3, 3)

Γsouth

Γeast

Γnorth

Γwest

ΓN

Ω
Ωbg

Ωan

1

0.6
μ

Figure 3: Physical domain Ω with an electrode attached to each edge.

boundary ΓD ≡ Γsouth∪Γnorth∪Γeast∪Γwest, on which the potential is presicribed
as

u =

{
1, on Γsouth,
0, on Γnorth ∪ Γeast ∪ Γwest.

(4.1)

On the Neumann boundary, ΓN ≡ ∂Ω \ ΓD, we assume electrostatic insulation,
i.e.

∂u

∂n
= 0, on ΓN. (4.2)

We define the “background material” as Ωbg ≡ Ω\Ωan. The electric permittivity,
ε, inside Ω is given as

ε ≡
{
εbg ≡ 1, in Ωbg,
εan ≡ 0.1, in Ωan.

(4.3)

Finally, in Ωbg ∪ Ωan, the electrostatic potential is governed by the Laplace
equation,

−∇2u = 0. (4.4)

Our problem is parametrised by the parameter vector μ ≡ (μ1, μ2) ∈ D,
which determines the position of the centre of Ωan. Here, D ⊂ Ω is our parameter
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Ω1 Ω2 Ω3

Ω4 Ω5
Ω6

Ω7 Ω8
Ω9

Figure 4: Decomposition of the physical domain into nine (deformed square) spectral
elements.

domain, defined as D ≡ [1, 2]×[1, 2]. Hence, the shape of Ωbg and the position of
Ωan depend upon μ. For typesetting convenience however, we do not explicitly
denote these dependencies in formulas.

Our output of interest is the accumulated charge on the eastern electrode,
i.e., the capacitance corresponding to the “south-east” pair of electrodes, given
by the flux integral

s̃(μ) ≡ −εbg
∫
Γeast

∂u(μ)

∂n
ds. (4.5)

4.2 RB treatment

4.2.1 Parametrised weak form

Let uD ∈ H1 be a lifting of the Dirichlet data (4.1), and write u(μ) = u0(μ)+uD.
With the boundary conditions (4.1) and (4.2), together with the assumption of
flux continuity on the interior boundary and global continuity of the solution, the
parametric weak form of our problem reads: Given any μ ∈ D, find u0(μ) ∈ X
such that

a(u(μ), v;μ) = 0, ∀v ∈ X, (4.6)
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where u(μ) = u0(μ) + uD,

a(u(μ), v;μ) = εbg

∫
Ωbg

∇u(μ) · ∇v dΩ + εan

∫
Ωan

∇u(μ) · ∇v dΩ (4.7)

and X = {v ∈ H1 : v|ΓD = 0}.
In order to treat our problem numerically, we decompose our domain into

nine subdomains, as depicted in Figure 4. Next, we introduce a reference domain
Ω̂ ≡ (−1, 1) × (−1, 1) and standard transfinite mappings [8] Fi : Ωi → Ω̂,
1 ≤ i ≤ 9. We may then write our bilinear form, a, in terms of the reference
variables (ξ, η) on the reference domain as

a(u(μ), v;μ) =

9∑
i=1

εi

∫
Ω̂

(∇̂ûi(μ))TGi(μ)∇̂v̂i dΩ̂, (4.8)

where ∇̂ is the gradient operator in the reference variables and, for 1 ≤ i ≤ 9,
εi denotes the electric permittivity in Ωi, v̂i(ξ, η) ≡ v(x, y)|Ωi ◦ Fi, and Gi is a
parametrically and spatially dependent 2×2 symmetric positive definite matrix
comprising the geometrical factors induced by Fi.

4.2.2 “Truth” spectral element approximation

In order to construct the snapshots upon which to build the RB approximations,
we define the “truth” discretisation of (4.6). To this end, we shall employ a
standard spectral element method based on high-order polynomials [15].

As our discrete “truth” approximation space, we define

XN ≡ {v ∈ H1(Ω) : v|ΓD = 0, v̂i ∈ PP (Ω̂), 1 ≤ i ≤ 9}, (4.9)

where PP (Ω̂) denotes the space of polynomials of degree P in each direction
over Ω̂. With N = dim(XN ), we note that N ∼ P 2. For the Dirichlet and flux
lifting functions, we shall also use (mapped) polynomials. We thus require the
spaces

X̃N
east ≡ {v ∈ H1(Ω) : v|ΓD\Γeast

= 0, v̂i ∈ PP (Ω̂), 1 ≤ i ≤ 9}, (4.10)

X̃N
south ≡ {v ∈ H1(Ω) : v|ΓD\Γsouth

= 0, v̂i ∈ PP (Ω̂), 1 ≤ i ≤ 9}, (4.11)

and we also define

V � ≡ {v ∈ H1 : v|ΓD\Γeast
= 0, v|Γeast

= 1}. (4.12)
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We now state the “truth” discretisation of (4.6) as: For any μ ∈ D, find
uN ,0(μ) ∈ XN such that

a(uN (μ), v;μ) = 0, ∀v ∈ XN , (4.13)

where uN (μ) = uN ,0(μ) + uD and uD ∈ X̃N
south is some chosen (μ-independent)

lifting of the Dirichlet data (4.1). The corresponding “truth” output of interest
is

sN (μ) = lout(uN (μ);μ) = a(uN (μ), v�;μ), (4.14)

In (4.14), we have omitted the minus sign (that appeared in (4.5) since the
capacitance is positive by definition). Also note that for the “truth” problem,
any two v� ∈ (V � ∩ X̃N

east) will produce the same numerical output, as we saw
in Section 2.

As basis functions for the three discrete spaces above, and as shape functions
for the “truth” approximations, we use the Lagrange polynomials over the (P +
1)2 tensorised GLL nodes (on Ω̂) [5]. Specifically, we have made the choice
P = 35.

Due to the change from Neumann to Dirichlet boundary conditions at the
electrode edges, u exhibits known singularities [2, 11] which will limit the con-
vergence of the high order polynomial approximation. Although there exist
techniques to improve the finite element convergence rate when singularities are
present, (e.g. using an adaptive h-p finite element method [2]) we restrict our-
selves here to a standard spectral element approximation based on high order
polynomials since our focus in this paper is the accuracy of the RB approxima-
tion relative to the “truth” approximation.

4.2.3 Reduced basis approximation

The RB approximation spaces are defined as

XN ≡ span{uN ,0(μn)}Nn=1, (4.15)

for 1 ≤ N ≤ Nmax. If we move the term comprising the Dirichlet lifting to
the right-hand-side, the RB problem may be written as: For any μ ∈ D, find
u0N (μ) ∈ XN such that

a(u0N (μ), v;μ) = −a(uD, v;μ), ∀v ∈ XN , (4.16)
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and set uN (μ) = u0N (μ) + uD. We then evaluate our output of interest as

sN (μ; v
�) ≡ a(uN (μ), v

�;μ), (4.17)

where we choose v� ∈ (V � ∩ X̃N
east).

In order to construct XN , 1 ≤ N ≤ Nmax, we use the greedy parameter
selection process outlined in Section 3.1.3. We start by choosing μ1 randomly
from D and then compute the corresponding first snapshot uN ,0(μ1). Next,
for 2 ≤ N ≤ Nmax, we choose μN from a training sample Ξtrain ⊂ D in a
greedy manner based on a posteriori upper bounds ΔN−1(μ) — computed for
every μ ∈ Ξtrain — for the energy-norm errors ‖uN ,0(μ) − u0N−1(μ)‖μ, and
then compute the next snapshot as uN ,0(μN ). (A detailed description of the
procedure can be found in [17, 20].) Here, we have chosen Ξtrain as an equidistant
“grid” of 225 points in D.

Unfortunately, the elements of the matrices Gk do not permit a paramet-
rically affine expansion of a, as assumed in (3.2). For this reason, our compu-
tations do not immediately decouple into the very desirable offline and online
stages. However, as commented in the previous section, the empirical interpo-
lation method provides means to this end [3, 9, 14]. In fact, we can make the
empirical interpolation error negligible if we make sure to include enough terms
in the approximate affine expansion of a. If the number of required terms is
not too large, we can at the same time use an efficient offline-online computa-
tional approach. In the numerical tests that follow, however, we have chosen to
not use an offline-online decoupling approach, since this is not critical for our
conclusions.

4.2.4 A posteriori error estimation: a coercivity lower bound

If we were to use an offline-online decoupling approach for our particular prob-
lem, we should also include additional terms in the a posteriori error estimators
in order to account for the empirical interpolation error [3, 16]. However, the
standard estimators from Section 3 are still valid under the assumption of a
negligible interpolation error because the additional terms will vanish as the
interpolation error goes to zero. Hence, if we for any μ ∈ D can establish a
coercivity lower bound αLB(μ), we can compute an energy-norm error bound
ΔN (μ) and output error bounds Δout

N,M(μ) and Δout
N,μ̄(μ) as described in Sec-

tions 3.3, 3.4.1 and 3.4.2. In fact, if we for 1 ≤ k ≤ 9 let σk(μ) denote the set of
eigenvalues of the (symmetric and positive definite) matrix Gk(μ) of geometrical
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factors, and define

λ−(μ) ≡ min
(ξ,η)∈Ω̂
1≤k≤9

σk(ξ, η;μ), λ+(μ) ≡ max
(ξ,η)∈Ω̂
1≤k≤9

σk(ξ, η;μ), (4.18)

it can be shown (c.f. [7, 13]) that a coercivity lower bound for our particular
problem is given by

αLB(μ) =
λ−(μ)
λ+(μ̄)

. (4.19)

Our particular choice for the reference parameter vector is μ̄ = (1.5, 1.5), i.e., the
centre of D. We make a remark here that we in practice realise the maximum
and minimum of the σk(·, ·;μ) over the tensorised GLL nodes. An efficient
offline–online decomposition procedure for the coercivity lower bound — the
successive constraint method — can be found in [20].

4.3 Numerical results

Here, we present results for the RB output error, defined as

eoutN (μ; v�) ≡ |sN (μ)− sN (μ; v�)|, (4.20)

and the RB output error bound Δout
N,v�(μ). For v� ∈ (V � ∩ X̃N

east), we shall
make use of three different functions: The reference parameter approximation
ψN (μ̄) discussed in Section 3.4.2 with μ̄ = (1.5, 1.5), the coarse finite element
approximation ψM2(μ) discussed in Section 3.4.1, which corresponds to the
solution of (3.27) using quadratic polynomials as basis functions, and a “naive”
choice, v�naive, given as

v�naive ≡
{
1, on Γeast,
0, at every other GLL node.

(4.21)

Note that in a spectral element context, the naive choice would be the natural
and computationally convenient choice to make for v�.

In order to test the RB approximations, we introduce a test sample Ξtest ⊂ D
consisting of 200 random points with a uniform distribution over D. We assume
that Ξtest is dense enough that the behavior of the RB output for μ ∈ Ξtest
gives a good representation of the behavior of the RB output for all μ ∈ D.
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Figure 5: Maximum (left) and mean (right) of the output errors eoutN (μ; v�) over Ξtest

for the three choices ψN (μ̄) (×), ψM2(μ) (◦) and v�naive (�) for v�, as functions of the
number of reduced basis functions, N .

In Figure 5, we plot the maximum (to the left) and mean (to the right) of
the output errors eoutN (μ;ψN (μ̄)), eoutN (μ;ψM2(μ)) and eoutN (μ; v�naive) over all
μ ∈ Ξtest as functions of the number of RB basis functions, N . We conclude that
the two “good” choices for v� in general perform about an order of magnitude
better than the naive choice.

Next, for all μ ∈ Ξtest, and for the particular case of N = 25, we compute
the effectivity associated with the output error estimator Δout

N,μ̄, defined as

νoutN,μ̄(μ) ≡
Δout

N,μ̄(μ)

eoutN (μ;ψN (μ̄))
. (4.22)

Associated with the other two choices for v�, we define the effectivities νoutN,M2
(μ)

and νoutN,v�
naive

(μ) in a similar way. For most μ ∈ Ξtest, the effectivity νoutN,μ̄(μ) is
in the range O(100) < νoutN,μ̄(μ) < O(1000), as shown in Figure 6. For the other
two effectivities, νoutN,M2

(μ) and νoutN,v�
naive

(μ), the results are similar (not shown).
We also find that, for most μ ∈ Ξtest, νoutN,M2

(μ) < νoutN,μ̄(μ) < νoutN,v�
naive

(μ). This
is, however, not generally true for other choices of N .

The reason for the output error estimators being rather conservative is the
large “angle” between the error of the primal problem, uN (μ) − uN (μ), and
the error of the dual problem, ψN (μ̄) − ψN (μ). Thus, the Cauchy-Schwarz
inequality, used in (3.23), becomes unsharp. This point is readily verified for the
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Figure 6: Output error bound effectivity νoutN,μ̄(μ) for all μ ∈ Ξtest for N = 25 (in no
particular order).

estimator Δout
N,μ̄ by separate computation of the effectivities associated with the

estimators ΔN (μ) and Δμ̄(μ) for the primal and dual problems, respectively,
which are indeed close to unity (of course, the same argument works for the
other estimators as well). For N = 25, we find

max
μ∈Ξtest

ΔN (μ)

‖uN (μ)− uN (μ)‖μ
≈ 2.68 (4.23)

and (irrespective of N)

max
μ∈Ξtest

Δμ̄(μ)

‖ψN (μ)− ψN (μ̄)‖μ
≈ 2.94. (4.24)

Hence, we do have a quite sharp bound for the right hand side of (3.23) for all
μ ∈ Ξtest, and the unsharpness of the RB output error bound must be ascribed
to the Cauchy-Schwarz inequality. Another implication of the sharpness of the
individual error bounds is that our coercivity lower bound, αLB(μ), must be
very sharp for all μ ∈ Ξtest.
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4.4 A note on a special compliant problem
Since the governing equation for our problem is the Laplace equation (4.4), the
parametrised bilinear form a(·, ·;μ) is symmetric for each μ ∈ D, and the only
term that enters on the right-hand-side in the weak formulation is the Dirichlet
lifting term −a(uD, v;μ) (as in (4.16)). Now, in the very special case that we
would like to evaluate the flux integral output over the same electrode on which
a unity potential is imposed, we may choose v� = uD as the flux lifting function.
In this case, our RB output of interest is sN (μ;uD) = a(uN (μ), u

D;μ). With
eN (μ) = uN (μ)− uN (μ), we get

|sN (μ)− sN (μ;uD)| = |a(eN (μ), uD;μ)|
= |a(uD, eN (μ);μ)|
= |a(uN ,0(μ), eN (μ);μ)|
= |a(eN (μ), eN (μ);μ)| = ‖eN (μ)‖2μ, (4.25)

where we use the symmetry of a(·, ·;μ), then (4.13) (with uN (μ) = uN ,0(μ) +
uD(μ)) and the fact that eN (μ) ∈ XN , and finally again symmetry of a(·, ·;μ)
and Galerkin orthogonality. Hence, the RB output error converges quadratically
with the energy-norm error without any simultaneous primal-dual treatment.

In the multi-electrode case, it is of little practical interest to evaluate the
capacitance over the electrode with unity Dirichlet data, since this evaluation
would only yield the total capacitance, as if we were to sum up the capacitances
between the selected electrode and each of the other electrodes. However, for
the sake of argument, suppose our system consists of only two electrodes. Then
the exact output over one of the electrodes is equal to the exact output over the
other, with a minus sign. We can thus choose to evaluate the output over the
electrode with unity Dirichlet data (and multiply by (−1)).

We emphasise again that this compliant effect is restricted to the special case
in which f = 0, the unity Dirichlet input electrode coincides with the output
electrode and a(·, ·;μ) is symmetric for each μ ∈ D.

In [7], the numerical example discussed in Sections 4.1–4.3 is extended to
incorporate three outputs (specifically, the capacitances between the south elec-
trode, Γsouth, and each of the other electrodes, Γeast, Γnorth and Γwest). Also,
several symmetries of the problem are exploited — which we have not done in
this paper for the sake of simplicity of exposition — and the empirical interpo-
lation method is used in order to achieve an efficient offline-online decoupling
of the RB computations. Finally, we also mention [21], in which a very similar
electrostatics problem is solved with the h-p finite element method. As in our
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example, the outputs of interest are the capacitances corresponding to pairs of
electrodes, and evaluation of the outputs both via a flux lifting function and by
direct computation is considered.

5 Concluding Remarks

We have shown that the flux lifting function, which we call v�, should be chosen
with care when evaluating flux integral outputs from reduced basis approxima-
tions. Our two different proposals for a “good” v� have been seen to give better
results (a smaller RB output error) than a naive v� in a simple (Laplace equa-
tion) numerical example. In contrast, we note that the naive v� would have
performed equally well as the “good” ones within a standard finite element con-
text. (In fact, the naive choice is convenient in terms of implementation, and is
thus often used in practice for the FE method.)

In the case of many (flux integral) outputs of interest that are all functionals
of the same RB solution, a standard primal-dual error reduction technique may
become too expensive. In this case, choosing a good v� is important to make
sure that the RB (primal only) output error is not unnecessarily large.
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Abstract

We present a new “hp” parameter multidomain certified reduced basis
(RB) method for rapid and reliable online evaluation of functional out-
puts associated with parametrized elliptic partial differential equations.
We propose, and provide theoretical justification for, a new procedure for
adaptive partition (“h”-refinement) of the parameter domain into smaller
parameter subdomains: we pursue a hierarchical splitting of the param-
eter (sub)domains based on proximity to judiciously chosen parameter
anchor points within each subdomain. Subsequently, we construct in-
dividual standard RB approximation spaces (“p”-refinement) over each
subdomain. Greedy parameter sampling procedures and a posteriori er-
ror estimation play important roles in both the “h”-type and “p”-type
stages of the new algorithm. We present illustrative numerical results for
a convection-diffusion problem: the new “hp”-approach is considerably
faster (respectively, more costly) than the standard “p”-type reduced ba-
sis method in the online (respectively, offline) stage.

1 Introduction

The certified reduced basis (RB) method provides a computational framework
for rapid and reliable evaluation of outputs associated with parametrized partial
differential equations. Given any input parameter vector—such as geometric
factors or material property coefficients—the RB field approximation is con-
structed as a Galerkin linear combination of precomputed “truth” finite element
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(FE) “snapshots” at optimally chosen parameter values; the RB output approx-
imation is then evaluated as a functional of the RB field approximation. The
methodology was originally introduced in [1, 21] and then further analyzed in
[22, 23]; for a review of both earlier and more recent contributions, see [24].

For problems in which the field variable varies smoothly with the parame-
ters, good RB approximations can be obtained with very few snapshots: the RB
approximation converges exponentially fast [5, 8]. Furthermore, rigorous a pos-
teriori upper bounds for the error in the RB approximation (with respect to the
truth discretization) can be readily developed [24]. Finally, under an assump-
tion on “affine” parameter dependence (perhaps only approximate [4, 13]), both
the RB output approximation and the associated RB output error bound can be
computed very efficiently by offline-online computational procedures [24]. The
RB method is especially attractive in engineering contexts in which low marginal
(online) computational cost is advantageous: “real-time”—such as parameter es-
timation [19] and optimal control—and “many-query”—such as multiscale [6] or
stochastic simulation [7].

The RB approximation space is specifically constructed to provide accu-
rate approximations for any parameter value in a predefined parameter domain.
Hence, larger parameter domains typically induce larger RB spaces and greater
computational cost. In this paper we propose, and provide theoretical jus-
tification for, a new procedure for adaptive partition (“h”-refinement) of the
parameter domain into smaller parameter subdomains: we pursue a hierarchi-
cal splitting of the parameter (sub)domains based on proximity to judiciously
chosen parameter anchor points within each subdomain. Subsequently, we con-
struct individual standard RB approximation spaces (“p”-refinement) over each
subdomain. Greedy sampling procedures and rigorous a posteriori error esti-
mation play important roles in both the “h”-type and “p”-type stages of the
algorithm.

In this new approach, the RB approximation associated with any new pa-
rameter value is, as always, constructed as a linear Galerkin combination of
snapshots from the parameter (sub)domain in which this new parameter value
resides. However, we expect the online computational cost of the new approach
to be greatly reduced relative to the online cost of the standard RB approach
due to the smaller parameter (sub)domains and hence lower-dimensional local
RB approximation spaces associated with the “hp” approximation. The method
should be particularly effective for problems in which the solution has very dif-
ferent structures in different regions of the parameter domain—problems for
which a snapshot from one parameter region may be of limited value for the RB
approximation in another parameter region.

62



An hp-RB Method for Elliptic Equations

The notion of parameter domain refinement within the model order reduc-
tion framework is considered in several earlier works. In [2, 3], a reduced-order
parameter multielement “interpolation” procedure is introduced for aeroelastic-
ity problems; this interpolation procedure and our approach here share a similar
error-adaptive domain-decomposition foundation. However, the two approaches
are quite different: interpolation on a manifold rather than Galerkin projection
(here); parameter domain partition based on a Voronoi diagram rather than a
hierarchical tree structure decomposition (here); heuristic error indicators rather
than rigorous error bounds (here); and less strict rather than strict offline-online
segregation (here). However, our own approach cannot yet treat problems of
the complexity considered in [2, 3].

In other related work [14, 15, 25], adaptive train sample refinement is consid-
ered to render the Greedy parameter sampling procedure more efficient: richer
samples are considered only as needed in the Greedy iterations [25] and only
where needed in the parameter domain [14, 15]. Our approach invokes a similar
technique: we include new points in the train sample within each subdomain
at each new level of “h”-refinement; we thus effectively adapt the train sample
to the more “difficult” parameter regions which require many subdomains. Ref-
erence [14] also proposes a multiple-bases (“hp”) approach which shares certain
features with our approach here but also differs in several important ways in
particular related to the “h”-refinement partition strategy.

In section 2 we give the general problem statement along with various def-
initions required throughout the paper. In section 3 we review the standard
(“p”-type) RB method; in section 4 we present the new “h”-type RB method
and provide an a priori convergence theory for a zeroth-order approximation in
the one-parameter case; in section 5 we present the new “hp”-type RB method
as a combination of the “p”- and “h”-type methods. In section 6 we present
numerical results for a convection-diffusion model problem and in particular
we compare the computational cost of the new “hp”-approach to the standard
“p”-type method. We conclude in section 7 with some final remarks.

2 Problem statement

We shall consider linear, elliptic, coercive, second-order partial differential equa-
tions. We denote the physical domain by Ω ⊂ R2, and we introduce the spaces
L2(Ω) = {v :

∫
Ω
v2 dΩ < ∞}, H1(Ω) = {v ∈ L2(Ω) : |∇v| ∈ L2(Ω)}, and

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. We further define the space associated with

the exact solution (hence e) Xe ≡ Xe(Ω) such that H1
0 (Ω) ⊆ Xe(Ω) ⊆ H1(Ω).
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We introduce a compact parameter domain D ⊂ RP ; a point in D shall be
denoted μ = (μ1, . . . , μP ).

For each μ ∈ D, a(·, ·;μ) is an Xe-coercive and Xe-continuous bilinear form
and f(·;μ) is an Xe-bounded linear functional. To accommodate an efficient
offline-online computational procedure, we assume that a and f admit affine
expansions as

a(·, ·;μ) =
Qa∑
q=1

aq(·, ·)Θq
a(μ), f(·;μ) =

Qf∑
q=1

fq(·)Θq
f (μ) (2.1)

for modest Qa and Qf , where the aq and fq are μ-independent continuous
bilinear forms and linear functionals, respectively, and the Θq

a and Θq
f are μ-

dependent continuous functions. (The assumption (2.1) can be relaxed with
the empirical interpolation method [4, 13] for the construction of good affine
approximations to a and f .) For simplicity, we introduce Q = max{Qa, Qf}.

The exact problem statement reads as follows: Given any μ ∈ D, find
ue(μ) ∈ Xe such that

a(ue(μ), v;μ) = f(v;μ) ∀v ∈ Xe. (2.2)

The output of interest can then be evaluated as a functional of the field variable,
say, s(μ) = l(ue(μ);μ) for some Xe-bounded linear functional l(·;μ). In this
paper, however, for simplicity of exposition, we consider no particular output(s)
of interest; our “hp” procedure does not depend on the output functional(s)
chosen.

We next introduce a “truth” finite element (FE) space X ≡ XN (Ω) ⊂ Xe(Ω)
of finite dimension N . The truth discretization of (2.2) reads as follows: For
any μ ∈ D, find u(μ) ∈ X such that

a(u(μ), v;μ) = f(v;μ) ∀v ∈ X. (2.3)

We assume that X is rich enough that the error between the truth and exact
solutions is in practice negligible. The RB approximation will be built upon
truth snapshots u(μn) ≈ ue(μn), 1 ≤ n ≤ N , for judiciously chosen μ1 ∈
D, . . . ,μN ∈ D, and the RB error shall be measured with respect to the truth
FE approximation.

For any μ ∈ D, let as(·, ·;μ) denote the symmetric part of a(·, ·;μ): for any
μ ∈ D and for all v, w ∈ X, as(w, v;μ) = 1

2 (a(w, v;μ) + a(v, w;μ)). Further,
let μ̄ ∈ D denote a fixed reference parameter. We then define the parameter-
independent X-inner product and corresponding X-norm as

(·, ·)X ≡ as(·, ·; μ̄), ‖ · ‖X =
√
(·, ·)X , (2.4)
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respectively. By our assumptions, ‖ · ‖X is equivalent to the H1-norm.
Finally, we introduce for all μ ∈ D the coercivity and continuity constants

of a(·, ·;μ) with respect to the X-norm,

α(μ) ≡ inf
w∈X

a(w,w;μ)

‖w‖2X
, γ(μ) ≡ sup

v∈X
sup
w∈X

a(v, w;μ)

‖v‖X‖w‖X
, (2.5)

respectively. For any particular μ ∈ D, we further require lower and upper
bounds,

0 < αLB(μ) ≤ α(μ), (2.6)
∞ > γUB(μ) ≥ γ(μ), (2.7)

which shall play a role in our computational procedures. We shall also invoke
lower and upper bounds over D,

α = min
μ∈D

α(μ), (2.8)

γ = max
μ∈D

γ(μ), (2.9)

for the purposes of our theoretical arguments.
We shall later need the following lemma.

Lemma 1. Let Θq
a : D → R, 1 ≤ q ≤ Qa, Θ

q
f : D → R, 1 ≤ q ≤ Qf , satisfy

Lipschitz conditions

|Θq
a(μ1)−Θq

a(μ2)| ≤ Ca|μ1 − μ2| ∀μ1,μ2 ∈ D, 1 ≤ q ≤ Qa, (2.10)
|Θq

f (μ1)−Θq
f (μ2)| ≤ Cf |μ1 − μ2| ∀μ1,μ2 ∈ D, 1 ≤ q ≤ Qf . (2.11)

Then, given any μ1,μ2 ∈ D, there exists a positive constant C̃ such that

‖u(μ1)− u(μ2)‖X ≤ C̃|μ1 − μ2|. (2.12)

Proof. We have

a(u(μ1), v;μ1) = f(v;μ1) ∀v ∈ X, (2.13)
a(u(μ2), v;μ2) = f(v;μ2) ∀v ∈ X. (2.14)

By bilinearity of a, we thus have for all v ∈ X

a(u(μ1)− u(μ2), v;μ1) = f(v;μ1)− f(v;μ2)
+ a(u(μ2), v;μ2)− a(u(μ2), v;μ1). (2.15)
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We first examine the right-hand side of (2.15).
By the triangle inequality and the affine expansions (2.1) for a and f , we

have for all w, v ∈ X and any μ1,μ2 ∈ D

|a(w, v;μ1)− a(w, v;μ2)| ≤
Qa∑
q=1

|aq(w, v)
(
Θq

a(μ1)−Θq
a(μ2)

)
| (2.16)

and

|f(v;μ1)− f(v;μ2)| ≤
Qf∑
q=1

|fq(v)
(
Θq

f (μ1)−Θq
f (μ2)

)
|, (2.17)

respectively. By our hypothesis, (2.10) and (2.11) on Θq
a, 1 ≤ q ≤ Qa, and Θ

q
f ,

1 ≤ q ≤ Qf , respectively, and continuity of aq, 1 ≤ q ≤ Qa, and fq, 1 ≤ q ≤ Qf ,
there exist constants c̃1 and c̃2 (independent of μ1 and μ2) such that

|a(w, v;μ1)− a(w, v;μ2)| ≤ c̃1‖v‖X‖w‖X |μ1 − μ2| (2.18)

and

|f(v;μ1)− f(v;μ2)| ≤ c̃2‖v‖X |μ1 − μ2|. (2.19)

Recall that Qa and Qf are fixed and finite.
We now let v = u(μ1) − u(μ2) in (2.15) and deduce from the triangle in-

equality, (2.18), and (2.19) that

a(u(μ1)− u(μ2), u(μ1)− u(μ2);μ1)
≤
(
c̃1‖u(μ2)‖X + c̃2

)
‖u(μ1)− u(μ2)‖X |μ1 − μ2|. (2.20)

By coercivity and the bound (2.8), we get

‖u(μ1)− u(μ2)‖X ≤
1

α

(
c̃1‖u(μ2)‖X + c̃2

)
|μ2 − μ1|. (2.21)

Finally, by the Lax–Milgram lemma, (2.8), the boundedness of f(·;μ) for any
μ ∈ D, and the fact that D ⊂ RP is closed,

‖u(μ2)‖X ≤
‖f(·;μ2)‖X′

αLB(μ)
≤ max

μ∈D
‖f(·;μ)‖X′

α
(2.22)
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(here X ′ denotes the dual space of X), and we thus obtain the desired result
with

C̃ = max
μ∈D

c̃1‖f(·;μ)‖X′ + c̃2α

α2
. (2.23)

(We can develop a constant C̃ that is furthermore independent of N by replac-
ing the truth entities α and ‖f(·;μ)‖X′ in (2.23) by the corresponding exact
entities.)

3 The “p”-type RB method

In the standard RB approach, a single approximation space is enriched with new
basis functions until the space is considered sufficiently rich; we shall refer to this
approach as the “p”-type RB method. The new “h”-type and “hp”-type methods
will borrow and adapt several of the ingredients from the standard approach: a
posteriori error estimation; greedy parameter sampling; and offline-online com-
putational decoupling of the RB discretization and the truth FE discretization
through a construction–evaluation decomposition. Below, we summarize the
standard RB method with particular emphasis on these key ingredients.

3.1 Approximation

The RB approximation space XN ≡ XN (Ω) ⊂ XN (Ω) is defined in terms of a
set of parameter vectors μ1 ∈ D, . . . ,μN ∈ D as

XN = span{u(μ1), . . . , u(μN )}. (3.1)

(Note that, in practice, an (·, ·)X -orthonormal basis for XN is constructed by a
Gram–Schmidt procedure.) The RB approximation reads as follows: Given any
μ ∈ D, find uN (μ) ∈ XN such that

a(uN (μ), v;μ) = f(v;μ) ∀v ∈ XN . (3.2)

Under the assumption that u(μ) depends smoothly on the parameters, we expect
that N—the dimension of the RB space—can be chosen much smaller than N—
the dimension of the truth space X—for comparable numerical accuracy.

We finally formally define the “order” p of the RB approximation as p ≡
N1/P − 1. We shall return to this point and elaborate on this interpretation in
Remark 5.
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3.2 A posteriori error estimation
We recall here the derivation of an a posteriori X-norm bound for the error in
the RB field approximation relative to the corresponding truth approximation
[24].

Given any μ ∈ D, we obtain the RB approximation, uN (μ), from (3.2); we
then define for all v ∈ X the RB residual as

rN (v;μ) ≡ f(v;μ)− a(uN (μ), v;μ). (3.3)

The Riesz representation of the residual, RN (μ) ∈ X, satisfies

(RN (μ), v)X = rN (v;μ) ∀v ∈ X. (3.4)

We can now state the following lemma.

Lemma 2 (a posteriori X-norm error bound). For any μ ∈ D, the RB error
bound

ΔN (μ) ≡
‖RN (μ)‖X
αLB(μ)

(3.5)

satisfies

‖u(μ)− uN (μ)‖X ≤ ΔN (μ), (3.6)
ΔN (μ)

‖u(μ)− uN (μ)‖X
≤ γUB(μ)

αLB(μ)
(3.7)

for αLB(μ) and γUB(μ) given by (2.6) and (2.7), respectively.

Proof. The RB error, eN (μ) = u(μ)− uN (μ), satisfies the error-residual equa-
tion

a(eN (μ), v;μ) = rN (v;μ) ∀v ∈ X. (3.8)

To obtain (3.6), we choose eN (μ) for v in (3.8) and invoke (3.4) and the Cauchy–
Schwarz inequality to get

a(eN (μ), eN (μ);μ) = (RN (μ), eN (μ))X ≤ ‖RN (μ)‖X‖eN (μ)‖X ; (3.9)

we then invoke coercivity and (2.6) to arrive at

αLB(μ)‖eN (μ)‖2X ≤ ‖RN (μ)‖X‖eN (μ)‖X . (3.10)

68



An hp-RB Method for Elliptic Equations

The result (3.6) now directly follows from the definition (3.5).
To obtain (3.7), we choose RN (μ) for v in (3.8) and invoke (3.4), continuity,

and (2.7) to get

‖RN (μ)‖2X = a(eN (μ),RN (μ);μ) ≤ γUB(μ)‖eN (μ)‖X‖RN (μ)‖X ; (3.11)

hence ‖RN (μ)‖X/‖eN (μ)‖X ≤ γUB(μ), and the result (3.7) follows from the
definition (3.5).

3.3 Construction-evaluation decomposition
Thanks to the assumption (2.1) on affine parameter dependence, the compu-
tational procedures for the RB solution and error bound admit construction-
evaluation decompositions (see also [18, 20]): the construction stage is compu-
tationally expensive—the operation count depends on N ; however, in the sub-
sequent evaluation stage we can then rapidly—independently of N—evaluate
the RB approximation and RB error bound for any μ ∈ D. (In actual practice
we would of course also evaluate the RB output and RB output error bound
at negligible additional cost.) The construction-evaluation decomposition in
turn permits the full offline-online computational decoupling described in the
introduction; we further discuss this decoupling below.

We first describe the construction-evaluation decomposition for the RB ap-
proximation: Let {ζ1 ∈ XN , . . . , ζN ∈ XN} denote an X-orthonormal basis
for XN . In the construction stage, we assemble the matrices Aq

N ∈ RN×N ,
1 ≤ q ≤ Qa, and the vectors F q

N ∈ RN , 1 ≤ q ≤ Qf , the elements of which are
defined by

Aq
N,mn ≡ aq(ζn, ζm), F q

N,m ≡ fq(ζm), 1 ≤ m,n ≤ N, (3.12)

respectively. In the evaluation stage, given any μ ∈ D, we evaluate the functions
Θq

a(μ), 1 ≤ q ≤ Qa, and Θq
f (μ), 1 ≤ q ≤ Qf , in O(Q) operations; we then

construct the RB stiffness matrix and load vector as

AN (μ) =

Qa∑
q=1

Θq
a(μ)A

q
N , FN (μ) =

Qf∑
q=1

Θq
f (μ)F

q
N , (3.13)

respectively, in O(QaN
2 + QfN) = O(QN2) operations; finally, we solve the

associated system of equations

AN (μ)uN (μ) = FN (μ) (3.14)
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for the RB basis coefficients uN (μ) ≡ [uN,1(μ), . . . , uN,N (μ)]
T in O(N3) oper-

ations (we must anticipate that AN (μ) is dense).
We next describe the construction-evaluation decomposition for the dual

norm of the residual. By linearity, we can write (3.4) as

(RN (μ), v)X =

Qf∑
q=1

Θq
f (μ)f

q(v)−
Qa∑
q=1

N∑
n=1

Θq
a(μ)uN,n(μ)a

q(ζn, v) (3.15)

≡
N̂∑

n=1

Γn(μ)Ln(v), (3.16)

where N̂ = Qf +NQa. By linear superposition, we can thus write

RN (μ) =

N̂∑
n=1

Γn(μ)Gn, (3.17)

where, for 1 ≤ n ≤ N̂ ,

(Gn, v)X = Ln(v) ∀v ∈ X. (3.18)

We thus have

‖RN (μ)‖2X = (RN (μ),RN (μ))X (3.19)

=

N̂∑
m=1

N̂∑
n=1

Γm(μ)Γn(μ)Gmn, (3.20)

where the Gmn are defined as

Gmn ≡ (Gm,Gn)X , 1 ≤ m,n ≤ N̂ . (3.21)

In the construction stage we first perform the truth Poisson solves (3.18) for Gn,
1 ≤ n ≤ N̂ ; we then compute and store the inner products Gmn, 1 ≤ m,n ≤
N̂ . In the evaluation stage, we evaluate the functions Γn(μ), 1 ≤ n ≤ N̂ , in
O(NQa+Qf ) = O(NQ) operations and then perform the summation (3.19) in
O((NQa +Qf )

2) = O(N2Q2) operations.
In general, the coercivity lower bound αLB(μ) will not be known analytically

and must be computed. An efficient construction-evaluation decomposition for
the coercivity lower bound—the successive constraint method—can be found in
[17, 24]; the evaluation complexity is independent of N . We do not discuss
this component further here in particular because for our numerical example of
section 6 an analytical lower bound αLB(μ) is, in fact, available.
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Algorithm 1 Greedy1(Ξ, μ1, εtol, Ñmax).
initialize: N ← 0, ε0 ←∞, X0 ← span{0}
while εN > εtol and N < Ñmax do
N ← N + 1
XN ← XN−1 ⊕ span{u(μN )}
εN ← maxμ∈ΞΔN (μ)
μN+1 ← argmaxμ∈ΞΔN (μ)

end while
Nmax ← N

3.4 Greedy parameter sampling
We now discuss the construction of the hierarchical RB approximation spaces
XN = span{u(μn)}Nn=1 ⊂ X, 1 ≤ N ≤ Nmax (see also [24, 26]). We first
introduce a finite train sample Ξ ⊂ D; a (random, say) initial parameter vector
μ1 ∈ D; an error tolerance εtol; and a maximum RB dimension Ñmax. We then
perform Algorithm 1. The output of the algorithm is the RB spaceXNmax

, where
Nmax ≤ Ñmax. Note that the construction-evaluation decomposition allows us
to use a dense train sample: each evaluation of the error bound in the max is
very inexpensive; the truth is invoked only for the “winning” candidates, μN ,
1 ≤ N ≤ Nmax.

3.5 Offline-online computational decoupling
We now describe the full offline-online decoupling procedure for the “p”-type RB
approximation: the offline stage—performed only once as preprocessing—may
be very expensive (N -dependent); however, the subsequent (N -independent)
online stage—performed many times for the computation of the RB solution
(and output) and RB error bound (and output error bound)—is very fast.

The offline stage is essentially the Greedy1 algorithm (Algorithm 1). The
parameter-independent entities Aq

Nmax
∈ RNmax×Nmax , 1 ≤ q ≤ Qa, F

q
Nmax

∈
RNmax , 1 ≤ q ≤ Qf , and (Gm,Gn)X , 1 ≤ m,n ≤ QaNmax + Qf , are retained
from the construction stage of the last iteration. The permanent online storage
requirement is thus O(QaN

2
max + QfNmax) = O(QN2

max) for the Aq
Nmax

and
F q
Nmax

, and O((QaNmax + Qf )
2) = O(Q2N2

max) for the (Gm,Gn)X . We note
that since the RB spaces are nested, we can extract subarrays from the stored
entities in order to construct RB approximations of any order 1 ≤ N ≤ Nmax

(hence providing for online adaptivity).
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(1)

(1,0)

(1,0,0) (1,0,1)

(1,1)

(1,1,0) (1,1,1)

Figure 1: A perfect binary tree and associated Boolean vectors corresponding to
L = 3.

The online stage is, for the “p”-type method, equivalent to the evaluation
stage: given any μ ∈ D, we assemble the RB system in O(QaN

2 + QfN) =
O(QN2) operations, compute the RB solution in O(N3) operations, and finally
evaluate the RB error bound in O((NQa +Qf )

2) = O(N2Q2) operations.

4 The “h”-type RB method

In this section we formulate the “h”-type RB method. We first provide prelimi-
naries required throughout the paper; we next present the “h”-type approxima-
tion algorithm; we then consider a posteriori error estimation; we subsequently
describe the offline-online computational decomposition; finally, we develop a
new a priori convergence theory for the zeroth-order approximation in the case
of one parameter.

4.1 Preliminaries: Tree-subdomain structure
We first define the set of Boolean vectors of length l,

Bl ≡ {1} × {0, 1}l−1; (4.1)

we shall denote a particular member of Bl as

Bl = (1, i2, . . . , il) ∈ Bl. (4.2)

We next introduce a perfect binary tree with L levels and K = 2L−1 leaf nodes
as shown in Figure 1 (for the particular case L = 3); we then associate each
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Bl ∈ Bl, 1 ≤ l ≤ L, to a node in the tree. We note that appending a “0” to
a vector Bl corresponds to a left bend in the tree and appending a “1” to a
vector Bl corresponds to a right bend in the tree; we define these “bends” by
the concatenation

(Bl, i) ≡ (1, i2, . . . , il, i), i ∈ {0, 1}, (4.3)

and we say that Bl is the parent of the two children (Bl, i), i ∈ {0, 1}.
Given an initial parameter domain D, we shall perform the “h”-refinement

by recursive splitting of D into smaller parameter subdomains. The subdomains
will be defined hierarchically and thus can be associated to a tree; we assume
for the moment that we can organize the 2L− 1 subdomains in a perfect binary
tree. We denote the subdomains as

VBl
⊂ D, Bl ∈ Bl, 1 ≤ l ≤ L, (4.4)

and we require the parent-child hierarchy

V(Bl,0) ⊂ VBl
, (4.5)

V(Bl,1) ⊂ VBl
. (4.6)

We associate to each subdomain VBl
a set of N̄ parameter values denoted by

MN̄,Bl
= {μ1,Bl

, . . . ,μN̄,Bl
}, Bl ∈ Bl, 1 ≤ l ≤ L, (4.7)

in which μ1,Bl
∈ VBl

, . . . ,μN̄,Bl
∈ VBl

; we may then define the RB approxima-
tion spaces (of dimension N̄) associated with the “models” MN̄,Bl

and subdo-
mains VBl

, Bl ∈ Bl, 1 ≤ l ≤ L, as

XN̄,Bl
= span{u(μ1,Bl

), . . . , u(μN̄,Bl
)}, Bl ∈ Bl, 1 ≤ l ≤ L. (4.8)

(The actual bases are, as always, orthonormalized.)
To each model MN̄,Bl

and corresponding subdomain VBl
we associate a

parameter anchor point, μ̂Bl
, defined as

μ̂Bl
≡ μ1,Bl

. (4.9)

We shall further impose (by construction) that, for 1 ≤ l ≤ L− 1,

μ̂(Bl,0)
= μ̂Bl

, (4.10)

μ̂(Bl,1)
�= μ̂Bl

; (4.11)
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the anchor point is thus inherited only by the “left” child. The partition of D
into subdomains is inferred from proximity to the anchor points.

To this end, we introduce for any Boolean vector Bl ∈ Bl, 1 ≤ l ≤ L, a
“proximity function” dBl

: D → R+. For example, we can choose the Euclidean
distance between two points,

dBl
(μ) = ‖μ− μ̂Bl

‖2. (4.12)

We then successively evaluate the proximity function to determine, for any given
1 ≤ l ≤ L, which subdomain V(1,i∗2 ,...,i∗l ) ⊂ D contains a given μ ∈ D,

i∗2 = arg min
i∈{0,1}

d(1,i)(μ),

i∗3 = arg min
i∈{0,1}

d(1,i∗2 ,i)(μ),

...
i∗l = arg min

i∈{0,1}
d(1,i∗2 ,...,i∗l−1,i)

(μ).

(4.13)

We discuss the computational complexity shortly.
In general, the partition will not have the same number of refinement levels

along every branch of the associated binary tree: in practice, the tree is not
necessarily perfect. In this case, L shall denote the maximum number of levels
in the tree—the tree depth. Branches are terminated with “empty leaf models”
MN̄,(Bl,0) = MN̄,(Bl,1) = ∅ for some Bl ∈ Bl, 1 ≤ l ≤ L. (For any such Bl

associated with empty child models we adopt the convention d(Bl,0) = d(Bl,1) ≡
∞; we then terminate the search (4.13) whenever d(1,i∗2 ,...,i)(μ) = ∞ (for i =
0, 1).) We now define K as the number of leaf nodes in the tree (exclusive of
the terminator empty models). The uniformity of the tree associated with the
partition of D can be measured by a relative tree depth

ηdepth =
tree depth (= L)

log2K + 1
; (4.14)

note that ηdepth ≥ 1 and that ηdepth = 1 corresponds to a perfect binary tree.
In what follows we shall need Algorithm 2, which is largely a restatement

of Greedy1 (Algorithm 1) restricted to a particular subdomain VBl
for given

Bl ∈ Bl. The evaluation of the a posteriori error bound ΔhRB
N (to be defined

shortly) is now performed over ΞBl
⊂ VBl

. The output of the algorithm is an
RB space XNmax,Bl

and an associated model MNmax,Bl
,Bl

. Note that even for
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Algorithm 2 Greedy2(ΞBl
, μ1,Bl

, εtol, Ñmax,Bl
).

initialize: N ← 0, ε0,Bl
←∞, X0,Bl

← span{0}, M0,Bl
← ∅

while εN > εtol and N < Ñmax,Bl
do

N ← N + 1
XN,Bl

← XN−1,Bl
⊕ span{u(μN,Bl

)}
MN,Bl

←MN−1,Bl
∪ {μN,Bl

}
εN,Bl

← maxμ∈ΞBl
ΔhRB

N (μ)

μN+1,Bl
← argmaxμ∈ΞBl

ΔhRB
N (μ)

end while
Nmax,Bl

← N

Ñmax,Bl
= 1 we perform one pass of the whole loop and hence identify (and

retain) μ2,Bl
; however, in general, we compute only at most Ñmax,Bl

snapshots.
For the “h”-type RB approximation of this section we shall require Nmax,Bl

≡
Ñmax,Bl

≡ N̄ for all Bl.

4.2 Approximation

We now introduce the equi-order “h”-type RB approximation algorithm. We
start from the original parameter domain V(1) = D (l = 1, Bl = (1)); we
introduce a finite train sample Ξ(1) ⊂ V(1); we choose an initial parameter
anchor point μ̂(1) ∈ D; we choose the error tolerance ε1tol; we set the desired
maximum RB space dimension N̄ ≥ 1. The partition is then determined as
follows.

1. Construct a model with N̄ parameter values for the current subdomain
VBl

with the standard Greedy2 algorithm (Algorithm 2). The RB space
XN̄,Bl

and the model MN̄,Bl
are outputs from Greedy2(ΞBl

, μ̂Bl
, 0, N̄).

Note that we set the argument εtol = 0 to enforce an RB space of dimension
N̄ .1

2. Compute the maximum a posteriori error bound over the train sample

1We assume here that the parametric manifold M = {u(μ),μ ∈ D} cannot be approxi-
mated exactly by N̄ � N snapshots. We also assume here that the train sample over each
subdomain is sufficiently rich.

75



Paper 2

associated with the current subdomain

εN̄,Bl
= max

μ∈ΞBl

ΔhRB
N̄ (μ). (4.15)

3. If εN̄,Bl
< ε1tol, the refinement is sufficiently good. Set

MN̄,(1,i2,...,il,0) = ∅, (4.16)

MN̄,(1,i2,...,il,1) = ∅; (4.17)

we thus terminate the branch of the associated binary tree.

4. If εN̄,Bl
≥ ε1tol, do the following.

(i) Define anchor points for two new models MN̄,(Bl,0) and MN̄,(Bl,1)

as μ̂(Bl,0)
= μ̂Bl

and μ̂(Bl,1)
= μ2,Bl

, respectively. The model
MN̄,(Bl,0) inherits the anchor point from its “parent,” while the
modelMN̄,(Bl,1) takes as anchor point the first parameter value cho-
sen by the Greedy2 algorithm; in the sense of the a posteriori error
estimator, these two points are maximally different and hence good
places to “anchor” the new models. When N̄ ≥ 2 the remaining N̄−2
parameter values of MN̄,Bl

, as well as the associated snapshots and
approximation spaces, are discarded.

(ii) Define a new and denser train sample Ξ̃Bl
⊂ VBl

of size |Ξ̃Bl
| =

2|Ξ(1)|. (The temporary sample Ξ̃Bl
is thus twice as large as the

initial train sample.)

(iii) Construct Ξ(Bl,0) ⊂ V(Bl,0) and Ξ(Bl,1) ⊂ V(Bl,1) from Ξ̃Bl
based

on proximity to μ̂(Bl,0)
and μ̂(Bl,1)

, respectively: a point μ ∈ Ξ̃Bl

belongs to Ξ(Bl,0) if and only if d(Bl,0)(μ) ≤ d(Bl,1)(μ); otherwise μ
belongs to Ξ(Bl,1).

5. Split the current branch into two new branches: set Bleft
l+1 = (Bl, 0) and

Bright
l+1 = (Bl, 1); update l← l+1 and proceed to step 1 first for Bl = Bleft

l

and then for Bl = Bright
l .

The procedure may be more precisely defined by hRB(Ξ(1), μ̂(1), N̄ , ε1tol),
where hRB is the recursive function defined in Algorithm 3. The output from
Algorithm 3 isK subdomains associated with theK leaf nodes of the binary tree
(exclusive of the terminator empty models). Each subdomain is associated to an
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Algorithm 3 hRB(ΞBl
, μ̂Bl

, N̄ , ε1tol).

Find XN̄,Bl
and MN̄,Bl

from Greedy2(ΞBl
, μ̂Bl

,∞, N̄)
εN̄,Bl

← maxμ∈ΞBl
ΔhRB

N̄
(μ);

if εN̄,Bl
< ε1tol then

Terminate branch: MN̄,(Bl,0) = ∅ and MN̄,(Bl,1) = ∅
else

Define μ̂(Bl,0)
= μ1,Bl

and μ̂(Bl,1)
= μ2,Bl

Construct Ξ(Bl,0) ⊂ V(Bl,0) and Ξ(Bl,1) ⊂ V(Bl,1)

hRB(Ξ(Bl,0),μ̂(Bl,0)
, N̄ , ε1tol)

hRB(Ξ(Bl,1),μ̂(Bl,1)
, N̄ , ε1tol)

end if

N̄ -parameter model and an N̄ -dimensional approximation space. We emphasize
that the intermediate models and approximation spaces—associated with non-
leaf nodes at earlier levels in the tree—are discarded and do not “survive” with
respect to the online stage. Finally, we note that the depth of the tree, L, is
simply the number of nodes in the longest branch (exclusive of the terminator
empty models).

Remark 1 (train sample refinement). In step 4(ii) in the algorithm above, ad-
ditional points are added to the train sample such that the number of points in
the two new train samples will be roughly the same as in the old train sam-
ple, and in particular always much larger than N̄ . As a result, the “global”
train sample over D—the union of all the points in the train samples over all
parameter subdomains—is adaptively refined as the “h”-type RB approximation
becomes more accurate: the train sample is denser in regions of D with smaller
subdomains. We thus effectively include more train points where the solution
varies more rapidly with the parameters.
The train sample refinement is performed by a simple accept-reject Monte

Carlo procedure: we draw from the uniform distribution over D; we then use
the search (4.13) to determine whether a point belongs to a subdomain and thus
can be included as a new point in the associated train sample. In the case that
the proximity function is Euclidean distance (as in (4.12)), we need not sample
from the entire parameter domain D: we first compute the bounding box of the
old train sample; we then sample the new points from a larger box that contains
the bounding box with some safety margin—the assumption is that this larger
box contains the entire subdomain. In the case in which the proximity function
is the error bound (as we describe shortly), we sample from the entire domain
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V(1) = D

V(1,0)

V(1,1) V(1,1)

V(1,0,0)

V(1,0,1)

V(1,0,0)

V(1,1,0)

V(1,1,1)

V(1,0,1)

Figure 2: Two levels of “h”-refinement and associated binary tree; here L = 3.

D since we have no a priori knowledge of the shape or connectedness of the
subdomains.
An alternative and clearer approach to the train sample refinement 4(ii)–

4(iii) might be to first split the current train sample into train samples associated
with each subdomain and then enrich each of these samples to achieve size |Ξ(1)|.
However, for the numerical results in this paper we pursue the “first enrich then
split” procedure described in step 4 above. We note that as long as the train
samples are sufficiently rich the particular refinement procedure will not affect
the numerical results significantly.

Remark 2 (“redundant” truth solves). The Greedy algorithm—in particular in
the case of a low-order (small N̄) approximation—is likely to choose parameter
values close to the boundaries of the parameter subdomains. As a result, two
or more models may comprise some identical (or nearly identical) parameter
values, and thus some of the offline truth solves are in some sense redundant.
One way to reduce this snapshot redundancy is to share basis functions between
approximation spaces if the associated greedily selected parameter values are suf-
ficiently close. The development of an efficient algorithm for automatic sharing
of basis functions is the subject of future work.

In Figure 2 we illustrate the first two levels of “h”-refinement together with
the associated binary tree for an “h”-type approximation with N̄ = 1. The
initial domain is V(1) = D and the initial model is M1,(1) = {μ̂(1)}, where the
anchor point μ̂(1) = μ1,(1) is chosen as the upper-right corner of the parameter
domain. The method then greedily chooses the point μ2,(1) near the lower-
left corner of V(1); the initial anchor point is then relabeled as μ̂(1,0) = μ̂(1)
and the greedily chosen point is relabeled as μ̂(1,1) = μ2,(1). We now define
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two new models M1,(1,0) = {μ̂(1,0)} and M1,(1,1) = {μ̂(1,1)}, whose associated
subdomains V(1,0) and V(1,1) are determined from proximity—here Euclidean
distance—to the two anchor points. Next, V(1,1) and V(1,0) are partitioned in
the same fashion (we assume here that the tolerance is satisfied within V(1,0,0)
and V(1,0,1)).

Finally, we may now define the “h”-type RB approximation. Given any
μ ∈ D we first determine the subdomain VB∗

l
containing μ from the search

(4.13); for a perfect binary tree, l = L; however, more generally l ≤ L. We then
find uhRB

N̄
(μ) ∈ XN̄,B∗

l
such that

a(uhRBN̄ (μ), v;μ) = f(v;μ) ∀v ∈ XN̄,B∗
l
. (4.18)

(Note that B∗
l depends on μ.) We discuss computational complexity shortly.

Finally, we formally define the “order” of the “h”-type approximation as p ≡
N̄1/P − 1. We elaborate on this interpretation in Remark 5.

4.3 A posteriori error estimation
We can apply the same a posteriori bound developed for the “p”-type RB approx-
imation in section 3.2 to the “h”-type (and below, “hp”-type) RB approximation.
However, we shall require some new notation for the “h”-type error bound.

Given any μ ∈ D and a partition of D into subdomains, we determine B∗
l

from the binary search (4.13) and compute the RB solution uhRB
N̄

(μ) from (4.18).
The RB residual is

rhRBN̄ (v;μ) = f(v;μ)− a(uhRBN̄ (μ), v;μ) ∀v ∈ X; (4.19)

the Riesz representation of the residual is denoted by RhRB
N̄

(μ). Our upper
bound for the X-norm error ‖u(μ)− uhRB

N̄
(μ)‖X is then given by

ΔhRB
N̄ (μ) ≡

‖RhRB
N̄

(μ)‖X
αLB(μ)

. (4.20)

Lemma 2 now directly applies with an appropriate change of notation.

Remark 3 (the error bound as proximity function). For any Bl ∈ Bl (associated
with a nonempty model), 1 ≤ l ≤ L, and any μ ∈ D, we can derive the RB
error bound associated with the RB approximation to u(μ) in the space XN̄,Bl

;
we denote this error bound by ΔN̄,Bl

(μ). As an alternative to the proximity
function introduced in (4.12), we can use

dBl
(μ) = ΔN̄=1,Bl

(μ) (4.21)
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to measure the “distance” between the points μ̂Bl
and μ. Note that we use the

error bound associated with the RB approximation for N̄ = 1 (which is simply
a multiple of the snapshot associated with the anchor point) even when N̄ > 1;
hence evaluation of (4.21) does not depend on N̄ . In section 6, we provide
results with the proximity function defined both as in (4.12) and as in (4.21).

Remark 4 (multiple inner products). The “h”-type RB approximation offers a
natural way of introducing multiple X-inner products (2.4) in the computation
of the dual norm of the residual for the a posteriori error bounds—we may
choose a different X-inner product for each subdomain. For example, we could
choose the anchor point in any subdomain to be the reference parameter, and
thus define an “optimized” inner product, associated with that subdomain. With
this approach, we would expect sharper error bounds and thus a better parameter
domain partition (as well as, ultimately, greater online efficiency).
To compute the dual norm of the residual we must (in the construction stage)

solve a number of problems of the form (3.4) with different right-hand sides.
If we solve the discrete system directly, we must invert one operator for each
inner product; hence there is a computational advantage associated with only
a single inner product. If we solve the discrete system iteratively, however,
we can introduce individual inner products within each subdomain at very little
computational penalty. In this paper, however, we have not pursued a multiple
inner product approach for our numerical examples.

4.4 Offline-online decomposition

In the offline stage, we determine the partition of the parameter domain and
construct the corresponding RB models and spaces: we execute the command
hRB(Ξ(1), μ̂(1), N̄ , ε1tol). For the purposes of this subsection, we assume a perfect
binary tree; note that a perfect binary tree with K leaf nodes has 2K− 1 nodes
in total. We also assume that the cardinality of the train sample over each of
the subdomains is equal to ntrain.

The offline stage computational cost derives from several components:

1. Snapshot truth solves. In the case N̄ ≥ 2 each node in the tree except
the root node inherits one snapshot from its parent. We must thus com-
pute N̄ snapshots for the model associated with the root node, and N̄ − 1
additional snapshots for each of the 2K − 2 models associated with all
nodes except the root node. Note that we retain only the basis functions
associated with the K leaf nodes; we thus discard N̄−2 snapshots for each
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intermediate (nonleaf) model. In the case N̄ = 1 we compute N̄K snap-
shots in total since the snapshot associated with an intermediate model is
inherited by one of the children.

2. RB preprocessing. In the case N̄ ≥ 2 we must compute (QaN̄
2 + Qf N̄)

truth inner products to form the parameter-independent “stiffness” matri-
ces and loads (e.g., as in (3.12)) for the model associated with the root
node, and (2K−2)(Qa(N̄

2−1)+Qf (N̄ −1)) additional truth inner prod-
ucts in total to form the parameter-independent “stiffness” matrices and
loads for the remaining 2K − 2 models. In the case N̄ = 1 we must com-
pute (2K − 1)(QaN̄

2 + Qf N̄) truth inner products in total to form the
parameter-independent “stiffness” matrices and loads.

3. Error bound preprocessing. In the case N̄ ≥ 2 we must compute N̄Qa+Qf

truth Poisson solves of the form (3.18) for the model associated with the
root node, and (2K−2)(N̄ −1)Qa additional truth Poisson solves in total
for the remaining (2K − 2) models. We must also compute (N̄Qa +Qf )

2

truth inner products of the form (3.21) related to the dual norm of the
residual for the model associated with the root node, and (2K−2)((N̄Qa+
Qf )

2 − (Qa + Qf )
2) additional truth inner products in order to evaluate

the dual norm of the residual for the (2K − 2) remaining models. In the
case N̄ = 1 we must compute (2K − 1)N̄Qa +Qf truth Poisson solves in
total and (2K − 1)(N̄Qa +Qf )

2 truth inner-products in total.

4. Error bound evaluations. For N̄ ≥ 1 we must solve ntrainN̄(2K − 1) RB
systems to obtain the residual coefficients and evaluate ntrainN̄(2K−1) RB
error bounds during the Greedy sampling including both the intermediate
and final models. This results, to leading order, inO(ntrainN̄(2K−1)(N̄3+
N̄2Q2)) operations in total.

In the case N̄ ≥ 2 the combined 1–4 offline cost is thus approximately 2N̄K
truth snapshot computations, 2QaN̄K +Qf truth Poisson solves, 2K(QaN̄

2 +
Qf N̄)+2K(N̄Qa+Qf )

2 truth inner products, and O(ntrain2N̄K(N̄3+ N̄2Q2))
operations to evaluate the error bounds. Note that the additional cost associ-
ated with the (ultimately discarded) K−1 intermediate models required for the
construction of the parameter domain partition is not onerous—a factor of two.
In the case N̄ = 1 we retain all computed entities associated with the inter-
mediate models during the partition procedure for the final models, and there
is thus only minor additional cost (anchor point identification in 4) associated
with the partition procedure.
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The link between the offline and online stages is the parameter-independent
data constructed in the offline stage and stored (permanently) for evaluation in
the online stage. Since we retain only the data associated with the final models,
the online storage for the “h”-type RB approximation is QaK matrices of size
N̄ × N̄ and QfK vectors of size N̄ ; the online storage associated with the RB
error bound is K(N̄Qa + Qf )

2/2. (If we were to retain intermediate models
for purposes of online adaptivity, clearly the online storage would increase; we
do not consider this case further since in actual practice online adaptivity is
typically pursued through the “hp”-approach.)

In the online stage, given any μ ∈ D, we first determine the subdomain which
contains μ via the binary search (4.13) in O(log2K) operations. Thanks to the
construction-evaluation decomposition, we can then assemble and solve the cor-
responding system of algebraic equations in O(QN̄2) and O(N̄3) operations,
respectively, and compute the associated a posteriori error bound in O(N̄2Q2)
operations. Note that the search (4.13) is an O(log2K) operation only under
the hypothesis that the depth of the tree associated with the partition of D, L, is
proportional to log2K; we provide numerical results to support this hypothesis
in section 6. We also emphasize that the efficient O(log2K) search is a partic-
ular property of our hierarchical partition construction; if we were to partition
the parameter domain based on (say) a Voronoi diagram, determination of the
subdomain which contains μ ∈ D would be less efficient.

4.5 A priori theory: N̄ = 1, P = 1

In this section we develop an a priori convergence theory for an “h”-type RB
approximation of zeroth order (N̄ = 1) in the one-parameter case (P = 1)
when the Euclidean distance is used as the proximity function. We focus on
N̄ = 1 since in fact N̄ = 1 is crucial to the “hp”-approach of section 5: the
theory developed here demonstrates that an N̄ = 1 Greedy approach can indeed
generate a reasonably efficient partition; convergence is crucial for offline and
also ultimately online performance. We consider P = 1 for simplicity; at the
conclusion of this section we provide a remark addressing (nonrigorously) the
N̄ > 1 (higher “order”) and P > 1 cases.

For our purposes here, we do not need the Boolean indexing of the anchor
points and subdomains: we shall consider Algorithm 3 after the generation of
K subdomains; we relabel the K anchor points as μ̂′

1, μ̂
′
2, . . . , μ̂

′
K (numbered

in the order in which they are chosen by Algorithm 3). When Algorithm 3
identifies a new anchor point (and thus subdomain), the parameter domain
partition changes; we introduce mappings IK̃ : D → {1, . . . , K̃}, 1 ≤ K̃ ≤ K,
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such that with K̃ anchor points, for any μ ∈ D,

μ̂′
IK̃(μ)

= μ̂B∗(μ;K̃), (4.22)

where B∗(μ; K̃) is the Boolean index of the particular subdomain (among the
K̃ subdomains) containing μ. Below, we omit the ′ for brevity.
For the purpose of this section, given K̃ anchor points and corresponding

subdomains, we denote by uK̃(μ) the zeroth-order (N̄ = 1) “h”-type RB ap-
proximation for any μ ∈ D. With the implicit mapping above, we have

uK̃(μ) = ωK̃(μ)u(μ̂IK̃(μ)
), (4.23)

where the coefficient ωK̃(μ) is given by the Galerkin projection as

ωK̃(μ) =
f
(
u(μ̂IK̃(μ)

);μ
)

a
(
u(μ̂IK̃(μ)

), u(μ̂IK̃(μ)
);μ
) . (4.24)

Note that (4.23) holds since we consider N̄ = 1: a single RB basis function asso-
ciated with each subdomain. We denote by rK̃(v;μ) = f(v;μ)− a(uK̃(μ), v;μ)
the RB residual and let RK̃(μ) ∈ X satisfy (RK̃(μ), v)X = rK̃(v;μ) for all
v ∈ X. Our X-norm error upper bound is then written in this subsection as

ΔK̃(μ) =
‖RK̃(μ)‖X
αLB(μ)

, (4.25)

which is simply a specialization of (4.20).
We need two further preliminary results. First, it is clear from Cea’s lemma

(with respect to the X-norm), (2.9), and (2.8) that for any K̃, 1 ≤ K̃ ≤ K, and
any μ ∈ D,

‖u(μ)− uK̃(μ)‖X ≤
γ

α
‖u(μ)− u(μ̂IK̃(μ)

)‖X , (4.26)

since u(μ̂IK̃(μ)
) is a particular member of the (one-dimensional) RB space. Sec-

ond, from (3.7) of Lemma 2, we obtain for any K̃, 1 ≤ K̃ ≤ K, and any μ ∈ D,

ΔK̃(μ) ≤
γ

α
‖u(μ)− uK̃(μ)‖X , 1 ≤ K̃ ≤ K. (4.27)

We can now state the following proposition.
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Proposition 1 (convergence in the case N̄ = 1, P = 1). The “h”-type RB ap-
proximation terminates for finite K(ε1tol) subdomains. Further, the convergence
is first order in the sense that

K(ε1tol) ≤ max

{
1,

C

ε1tol

}
(4.28)

for a constant C given by

C =
2γ̄2C̃|D|
α2

, (4.29)

where C̃ = (c̃1maxμ∈D ‖f(·;μ)‖X′+αc̃2)/α
2 is the constant developed in Lemma

1 and |D| is the length of D ⊂ R.

Proof. Algorithm 3 provides a sequence of anchor points μ̂1, . . . , μ̂K for K ≥ 1.
We have by construction of our algorithm that either K = 1 or K > 1 and

ε1tol < ΔK̃(μ̂K̃+1), 1 ≤ K̃ ≤ K − 1. (4.30)

In the former case the proof is complete; we henceforth consider the latter case.
We deduce from (4.27), (4.26), and Lemma 1, respectively, that

ΔK̃(μ̂K̃+1) ≤
γ

α
‖u(μ̂K̃+1)− uK̃(μ̂K̃+1)‖X (4.31)

≤ γ2

α2
‖u(μ̂K̃+1)− u(μ̂IK̃(μ̂K̃+1)

)‖X (4.32)

≤ γ2

α2
C̃|μ̂K̃+1 − μ̂IK̃(μ̂K̃+1)

| (4.33)

for 1 ≤ K̃ ≤ K − 1; hence from (4.30)

|μ̂K̃+1 − μ̂IK̃(μ̂K̃+1)
| > α2ε1tol

γ2C̃
(4.34)

for 1 ≤ K̃ ≤ K − 1.
For K̃, 1 ≤ K̃ ≤ K−1, the algorithm selects the next anchor point μ̂K̃+1 and

the intermediate subdomain associated with anchor point number IK̃(μ̂K̃+1) is
divided into two new subdomains. It is clear that the length of each of the two
new subdomains is at least as large as half the distance between the new anchor
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point μ̂K̃+1 and anchor point μ̂IK̃(μ̂K̃+1)
, namely, |μ̂K̃+1− μ̂IK̃(μ̂K̃+1)

|/2 (recall
that the distance function is the Euclidean distance and that we consider P = 1
parameter). Let δKk denote the length of the subdomain associated with anchor
point μ̂k, 1 ≤ k ≤ K. We note that each of the K subdomains generated by
Algorithm 3 results from the splitting of the intermediate subdomain associated
with anchor point μ̂IK̃(μ̂K̃+1)

for some K̃ ∈ {1, . . . ,K−1}; hence for 1 ≤ k ≤ K,

there exists a K̃ ∈ {1, . . . ,K − 1} such that

δKk ≥ |μ̂K̃+1 − μ̂IK̃(μ̂K̃+1)
|/2, (4.35)

and thus by (4.34)

δK ≡ min
1≤k≤K

δKk >
α2ε1tol
2γ2C̃

. (4.36)

Note that δK is not the smallest distance between two anchor points: rather, it
is the smallest length of any of the K subdomains.
Let |D| denote the length of D. With K subdomains, it is clear that KδK ≤

|D|. We now assume K > C/ε1tol. From (4.36) it then follows that

KδK >
C

ε1tol
δK ≥

(
2γ̄2C̃|D|
α2ε1tol

)(
α2ε1tol
2γ2C̃

)
= |D|, (4.37)

which is clearly false. We have thus reached a contradiction: the “h”-type RB
approximation cannot generate a sequence of anchor points μ̂1, . . . , μ̂K for K >
C/ε1tol; thus the algorithm must terminate for 1 ≤ K ≤ C/ε1tol subdomains.

Remark 5 (convergence in the case N̄ ≥ 1, P ≥ 1). We first recall a polynomial
approximation result. Consider approximation of a sufficiently smooth function
on a bounded domain in RP by piecewise polynomial interpolation of order p
over K subdomains: we expect the error to decrease as (1/K)(p+1)/P , or as
(1/K)(N̄

1/P )/P if we associate N̄ = (p+1)P degrees of freedom to each subdomain
(consistent with our earlier definition of “order”).
In the zeroth-order multiparameter case (N̄ = 1, P > 1) we expect (but do

not prove) that our method converges for

K < max

{
1,

C

(ε1tol)
P

}
(4.38)
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subdomains for some positive constant C. This poor convergence for P � 1
suggests the advantage and indeed necessity of “p”-convergence [25] or “hp”-
convergence rather than solely “h”-convergence. Next, in the higher order, one-
parameter case (N̄ > 1, P = 1), we might expect convergence

K < max

{
1,

C

(ε1tol)
1
N̄

}
(4.39)

for some positive constant C. Finally, in the general case (N̄ ≥ 1, P ≥ 1), we
might expect convergence

K < max

{
1,

C

(ε1tol)
P

N̄1/P

}
. (4.40)

We shall consider these heuristic arguments again in the context of numerical
results.
Note that our bound (4.28) and estimates (4.39) and (4.40) should capture

the correct order, but of course the constant will be very pessimistic: by de-
sign, the Greedy algorithm should adapt the sample to best accommodate local
variations.

Remark 6 (a sharper convergence result). We show in the appendix that the
constant C in Proposition 1 can be improved to Cim = 2C̃|D|(1 + γ/α) by
an approach that, instead of (4.31)–(4.33), directly considers the equation for
the Riesz representation of the residual. However, the approach above is more
general and applicable in other (e.g., interpolation [11]) contexts.

5 The “hp”-type RB method

With the “hp”-type RB method, we combine the “h”- and “p”-type methods:
we first construct a partition of the parameter domain with “h”-refinement; we
then compute independent approximation spaces restricted to each parameter
subdomain with “p”-refinement—in general, the approximation spaces will have
different dimensions.

5.1 Approximation

The parameter domain partition is first constructed by an N̄ = 1 “h”-type
approximation for a prescribed error bound tolerance ε1tol. We first construct the
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initial train sample Ξ(1) ⊂ D, choose an initial parameter anchor μ̂(1) ∈ D, and
specify ε1tol; we then execute Algorithm 3, hRB(Ξ(1), μ̂(1), 1, ε

1
tol). The output

from hRB(Ξ(1), μ̂(1), 1, ε1tol) is K subdomains associated with the K leaf nodes
of the binary tree. Each subdomain has an associated one-parameter model
and a one-dimensional approximation space; we denote by B1, . . . , BK the K
associated Boolean indices. We also store the train sample over each of the final
subdomains.
We now append additional basis functions to each approximation space by

a standard “p”-type procedure over each train sample: we specify the max-
imum RB space dimension Ñmax,Bk = Ñmax > N̄ , 1 ≤ k ≤ K; we spec-
ify a new error bound tolerance ε2tol < ε1tol; we then execute Algorithm 2,
Greedy2(ΞBk ,μ1,Bk , ε2tol, Ñmax,Bk) for 1 ≤ k ≤ K. (Note that we must re-
place the “h”-type error bound ΔhRB

N in Algorithm 2 by the “hp”-type error
bound ΔhpRB

N , which we introduce shortly.)
The final output is thusK RB approximation spacesXN

max,Bk ,Bk and associ-
ated modelsMN

max,Bk ,Bk , 1 ≤ k ≤ K. Note that Nmax,Bk is in general different
for different k since the error bound tolerance ε2tol might be satisfied by the differ-
ent approximation spaces over the different train samples with different numbers
of basis functions; we define in the “hp” case Nmax = maxk=1,...,KNmax,Bk .
Finally, we may now define the “hp”-type RB approximation. First, given

any μ ∈ D, we determine the subdomain VB∗
l
containing μ from the search

(4.13). Then, given 1 ≤ N ≤ Nmax, we find u
hpRB
N (μ) ∈ XN∗,B∗

l
such that

a(uhpRBN (μ), v;μ) = f(v;μ) ∀v ∈ XN∗,B∗
l
, (5.1)

where N∗ ≡ min{N,Nmax,B∗
l
}. (Note that B∗

l and thus N
∗ depend on μ.)

5.2 A posteriori error estimation

We shall require some new notation for the “hp”-type a posteriori error bound.
Given any μ ∈ D and a partition of D into subdomains, we determine B∗

l

from the binary search (4.13) and compute the RB solution uhpRBN (μ) from (5.1).
The RB residual is

rhpRBN (v;μ) = f(v;μ)− a(uhpRBN (μ), v;μ) ∀v ∈ X; (5.2)

the Riesz representation of the residual is denoted by RhpRB
N (μ). Our upper
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bound for the X-norm error ‖u(μ)− uhpRBN (μ)‖X is then given by

ΔhpRB
N (μ) ≡ ‖RhpRB

N (μ)‖X
αLB(μ)

. (5.3)

Lemma 2 now directly applies with an appropriate change of notation.

5.3 Offline-online decomposition

In the offline stage, we determine the partition of the parameter domain and
construct the corresponding RB models and spaces as discussed above. For the
purposes of this subsection, we assume a perfect binary tree. We also assume
that the cardinality of the train sample over each of the subdomains is equal to
ntrain. It is crucial to note that, since the initial “h”-refinement is performed for
N̄ = 1, we reuse all computed entities in the later “p”-type stage, and there is
thus only minor additional cost associated with the partition procedure.
The offline cost derives from several components.

1. Snapshot truth solves. We must compute (at most) NmaxK snapshots
associated with the partition and final approximation spaces.

2. RB preprocessing. We must compute (at most) K(QaN
2
max + QfNmax)

truth inner products to form the parameter-independent “stiffness” matri-
ces and loads (e.g., as in (3.12)) for the partition and final models.

3. Error bound preprocessing. We must compute (at most) KNmaxQa +Qf

truth Poisson solves of the form (3.18) for the partition and final models.
We must also compute (at most) K(NmaxQa+Qf )

2 truth inner products
of the form (3.21) related to the dual norm of the residual associated with
the partition and final models.

4. Error bound evaluations. We must solve ntrain(K − 1) RB systems (of
size N̄ = 1) to obtain the residual coefficients and evaluate ntrain(K − 1)
RB error bounds (for N̄ = 1) during the Greedy2 sampling for the “h”-
refinement partition process. We must also solve (at most) ntrainNmaxK
RB systems to obtain the residual coefficients and evaluate ntrainNmaxK
RB error bounds during the Greedy2 sampling for the final models. This
results, to leading order, in O(ntrainNmaxK(N

3
max +N2

maxQ
2)) operations

in total.
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The combined 1–4 offline cost is thus NmaxK truth snapshot computations,
NmaxKQa + Qf truth Poisson solves, K(QaN

2
max + QfNmax) + K(NmaxQa +

Qf )
2 truth inner products, and O(ntrainNmaxK(N

3
max + N2

maxQ
2)) operations

to evaluate the error bounds.
For each model, we must construct and retain the parameter-independent

data necessary to accommodate the efficient evaluation stage for the RB approxi-
mation and the associated a posteriori error bound, as discussed in section 3.3 for
the standard RB method. The online (permanent) storage requirement associ-
ated with the RB approximation is QaK matrices of maximum size Nmax×Nmax

and Qf vectors of maximum size Nmax; the online storage associated with the
RB error bound is K(NmaxQa +Qf )

2/2.
In the online stage, given any μ ∈ D, we first determine the subdomain

containing μ via the binary search (4.13) in O(log2K) operations. (Recall that
we presume here a perfect binary tree.) Thanks to the construction-evaluation
decomposition, we can then, given 1 ≤ N ≤ Nmax, assemble and solve the cor-
responding system of algebraic equations in O(QN2) and O(N3) operations,
respectively, and compute the associated RB error bound in O(N2Q2) opera-
tions.

6 A convection-diffusion model problem

6.1 Formulation and truth discretization

We now apply the “p”-, “h”-, and “hp”-type RB methods to a steady convection-
diffusion model problem parametrized by the angle and magnitude of the pre-
scribed velocity field: Let μ = (μ1, μ2) and defineV(μ) = [μ2 cosμ1, μ2 sinμ1]

T.
The governing equations for the exact field variable ue(μ) are

−∇2ue(μ) +V(μ) · ∇ue(μ) = 10 in Ω, (6.1)
ue(μ) = 0 on ∂Ω. (6.2)

The physical domain is Ω = {(x, y) ∈ R2 : x2+ y2 ≤ 2} and ∂Ω is the boundary
of Ω.
We next define for all w, v ∈ Xe ≡ Xe(Ω) ≡ H1

0 (Ω) the parametrized bilinear
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Ω5

Ω3

Ω1
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Figure 3: The circular physical domain partitioned into five spectral elements.

form

a(w, v;μ) ≡
∫
Ω

∇w · ∇v dΩ +

∫
Ω

(
V(μ) · ∇w

)
v dΩ

≡
∫
Ω

∇w · ∇v dΩ + μ2 cosμ1

∫
Ω

∂w

∂x
v dΩ + μ2 sinμ1

∫
Ω

∂w

∂y
v dΩ (6.3)

and the linear functional

f(v) ≡ f(v;μ) ≡ 10

∫
Ω

v dΩ; (6.4)

thus (2.1) obtains for Qa = 3 and Qf = 1. We can then state the exact problem
in the standard variational form: Given any μ ∈ D, find ue ∈ Xe such that

a(ue(μ), v;μ) = f(v) ∀v ∈ Xe. (6.5)

Note that for this particular problem, as(w, v;μ) =
∫
Ω
∇w ·∇v dΩ is parameter-

independent; thus a(v, v;μ) = ‖v‖2X for all v ∈ Xe and we may choose αLB ≡ 1
as the coercivity lower bound.
Next, we introduce a truth spectral element space X ≡ XN (Ω) ⊂ Xe(Ω) of

dimension N = 481 based on five spectral elements of order ten: we introduce
a computational domain Ω̂ = (−1, 1)2 and standard transfinite mappings Fi :
Ω̂→ Ωi, 1 ≤ i ≤ 5 [12]; we then define

X ≡ XN (Ω) = {v ∈ H1
0 (Ω) : v|Ωi

◦ Fi ∈ P10(Ω̂), 1 ≤ i ≤ 5}, (6.6)
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Figure 4: Solutions to (6.7) for different parameter values μ = (π, 10) (left), μ =
(0, 0) (middle), and μ = (0, 10) (right).

where P10(Ω̂) denotes the space of polynomials of degree 10 (in each spatial
direction) over Ω̂. The partition of the physical domain into five spectral el-
ements is illustrated in Figure 3. The truth discretization of (6.5) reads as
follows: Given any μ ∈ D, find u(μ) ∈ X such that

a(u(μ), v;μ) = f(v) ∀v ∈ X. (6.7)

In Figure 4, we plot the solution of (6.7) for three different parameter values.
Clearly, the three solutions have very different structures—this particular prob-
lem is thus a good candidate for “hp” treatment.
We define three parameter domains,

DI ≡ {0} × [0, 10], DII ≡ [0, π]× {10}, DIII ≡ [0, π]× [0, 10]; (6.8)

we shall thus consider P = 1 (DI or DII) or P = 2 (DIII) parameters.
Admittedly, the computational benefit of the RB approximation for this

particular problem is minimal since the truth approximation space is of rather
low dimension N = 481. However, our problem here is a good vehicle for
exposition of the “p”-type, “h”-type, and “hp”-type RB methods and is amenable
to extensive theoretical and experimental analysis. In [9] we apply the “hp”-type
RB method to problems that require and demonstrate the speedup provided by
the RB approximation.

6.2 “p”-type RB approximation results
In this section, we present the standard (“p”-type) RB convergence results for
our model problem.
We introduce uniformly distributed random train samples ΞI ⊂ DI, ΞII ⊂

DII, and ΞIII ⊂ DIII of size 103, 103, and 104, respectively. We recall that εN =
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Figure 5: Standard RB (“p”-type) convergence results: εN as a function of N for the
one-parameter cases D = DI (left) and D = DII (right).
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Figure 6: Greedy parameter choices (left) and associated standard RB (“p”-type)
convergence results (right) for the two-parameter case D = DIII.
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Figure 7: “h”-type RB convergence results: KN̄ (ε
1
tol) for N̄ = 1, N̄ = 2, and N̄ = 3

for the one-parameter cases D = DI (left) and D = DII (right). Both the Euclidean
distance (dotted lines) and the a posteriori error bound (dashed lines) are considered
for the proximity function.

maxμ∈ΞΔN (μ) is the maximum X-norm error bound over the train sample
associated with the space XN . In Figure 5 we plot εN as a function of N
for the two one-parameter cases D = DI and D = DII: we note that N can
be quite small even for εN ≈ 10−6. In Figure 6 (right) we plot εN for the
two-parameter case D = DIII. The quite poor convergence of the “p”-type
RB is not surprising given the very different solution structures obtained for
different parameter values; variations in μ1 are particularly difficult to resolve—
as indicated by the slower convergence for the case D = DII in Figure 5 (right)—
due to the “movement” of the boundary layer. In Figure 6 (left) we present the
parameters chosen by the Greedy1 algorithm: the points are clearly denser for
larger velocities, which yield thinner boundary layers.

6.3 “h”-type RB approximation results

We now present convergence results for equi-order “h”-type RB approximation;
the dimension of the approximation spaces is thus fixed. The convergence results
are obtained by first specifying the desired tolerance ε1tol as well as the RB space
dimension N̄ , the initial train sample Ξ(1), and the initial anchor point μ̂(1);
we then perform hRB(Ξ(1), μ̂(1), N̄ , ε1tol). Given N̄ , we let KN̄ (ε

1
tol) denote the

number of subdomains in the partition for specified ε1tol.
We start with the one-parameter cases D = DI and D = DII. In both cases,

the initial train samples consist of 100 random points, and the initial anchor
point is μ̂(1) = (0, 0). In Figure 7 we present KN̄ (ε

1
tol) for N̄ = 1, 2, 3 for each
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Figure 8: “h”-type RB convergence results: KN̄ (ε
1
tol) for N̄ = 1 and N̄ = 4 for the

two-parameter case D = DIII. Both the Euclidean distance (dotted lines) and the a
posteriori error bound (dashed lines) are considered for the proximity function.

of the two cases. The proximity function is either dBl
(μ) = ‖μ− μ̂Bl

‖2 (dotted
lines) or dBl

(μ) = ΔN̄=1,Bl
(μ) (dashed lines): we observe that the choice of the

proximity function has little impact on the results. We indicate the slopes for
first, second, and third order convergence: for the N̄ = 1 approximation, the
convergence rates are in good agreement with the theoretical result (4.28); for
the N̄ > 1 approximations, the convergence is approximately N̄th order and
hence in agreement with our conjecture (4.38). (We recall that, here, a steeper
slope implies slower convergence.)
We next consider the two-parameter case D = DIII. The initial train sample

Ξ(1) consists of 103 random points, and the initial anchor point is μ̂(1) = (0, 0).
In Figure 8 we present KN̄ (ε

1
tol) for N̄ = 1 and N̄ = 4. The proximity function

is either dBl
(μ) = ‖μ − μ̂Bl

‖2 (dotted lines) or dBl
(μ) = ΔN̄=1,Bl

(μ) (dashed
lines): now the choice of the proximity function has some, but very slight, impact
on the results but only for the N̄ = 1 approximation. It is clear from the slopes
provided that we achieve roughly K1 ∼ (ε1tol)

−2 and K4 ∼ (ε1tol)
−1, as expected

from our conjectures (4.39) and (4.40).
Finally, we empirically examine the depth of the associated binary trees.

Ideally, we would like the relative tree depth (4.14) to be a constant close to
unity; for K subdomains the search (4.13) is in this case an efficient log2K
operations binary search. In Figure 9 we plot the relative tree depth against
the number of subdomains for the N̄ = 1 approximation for each of our three
parametrizations. (Note that the scatter in the plots is induced by the range
of ε1tol considered.) Although from these results it is difficult to reach general
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Figure 9: Relative tree depths ηdepth as functions of the number of subdomains
(leaf nodes) KN̄ (ε

1
tol) for the N̄ = 1 “h”-type approximation for each parametrization

D = DI (left), D = DII (middle), and D = DIII (right). Both the Euclidean distance
(◦) and the a posteriori error bound (+) are considered for the proximity function.

conclusions, the relative tree depths are all fairly close to unity and increase
with increasing K only very modestly even for 1 ≤ K ≤ 104.

6.4 “hp”-type approximation results

We now present convergence results for an “hp”-type RB approximation. For a
partition with K subdomains, let Ξ denote the union of the associated K train
samples; we then define εhpRBN ≡ maxμ∈ΞΔ

hpRB
N (μ).

We start with the one-parameter cases D = DI and D = DII. The initial
train sample consists of 100 random points, and the initial anchor point is
μ̂(1) = (0, 0). We use dBl

(μ) = ‖μ − μ̂Bl
‖2 as the proximity function. For

the case D = DI, we specify ε1tol = 5 and ε1tol = 0.1, for which we obtain
K = 4 and K = 211 subdomains, respectively; for the case D = DII, we specify
ε1tol = 5 and ε1tol = 0.1, for which we obtain K = 8 and K = 260 subdomains,
respectively. In Figure 10 we plot εhpRBN as functions of N for each of the
two parametrizations. Given any error bound tolerance, we note a significant
reduction in the required approximation space dimension (in any subdomain)
when compared to a standard RB (K = 1) approximation. Of course, the total
number of snapshots NK (for any given tolerance) will increase with K: greater
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Figure 10: “hp”-type RB convergence results: εhpRB
N as a function of N for the

one-parameter cases D = DI (left) and D = DII (right).

suitability of local snapshots does not compensate for lower order in terms of
global approximation properties.

We next consider the two-parameter case D = DIII. We use dBl
(μ) =

‖μ − μ̂Bl
‖2 as the proximity function. The initial train sample consists of 103

random points, and the initial anchor point is μ̂(1) = (0, 0). In Figure 11 we
show partitions of the parameter domain for specified ε1tol = 5 and ε1tol = 2, for
which we obtain K = 72 and K = 417 subdomains, respectively. We note—
similarly to the “p”-type Greedy2 parameter choices in Figure 5(left)—that the
subdomains are smaller for larger velocities. In Figure 12, we plot for each of
the two partitions in Figure 11 the maximum error bound εhpRBN as a function
of N ; we include the results for the standard RB approximation (“p”-type or
“hp”-type with K = 1) as well. Again, the local order reduction is significant.

In Tables 1 and 2 we summarize for K = 72 and K = 417 subdomains,
respectively, the offline and online performance of the “hp” approach relative to
that of the standard RB method. For given tolerances ε2tol, we report in the
four rows of the tables the relative number of truth solves, the relative num-
ber of operations for online evaluation of the RB approximation, the relative
number of operations for online evaluation of the RB error bound, and relative
online storage, respectively. The reported values are based on the theoretical
operation count and storage, which we recall here. For N basis functions and
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Figure 11: Parameter domain partitions for the case D = DIII. The number of
subdomains is K(ε1tol) = 72 for ε1tol = 5 (left) and K(ε1tol) = 417 for ε1tol = 2 (right).
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ε2tol = 10−2 ε2tol = 10−3 ε2tol = 10−4

Offline truth solve relative cost 1.66E+1 1.57E+1 1.59E+1
Online RB solution relative cost 3.35E−2 2.82E−2 2.70E−2
Online RB error bound relative cost 1.09E−1 9.57E−2 9.23E−2
Online relative storage 3.96E+0 3.51E+0 3.58E+0

Table 1: Operation count and storage requirement for the “hp”-type RB with K = 72
relative to that of the standard RB (K = 1) for the two-parameter case D = DIII.

ε2tol = 10−2 ε2tol = 10−3 ε2tol = 10−4

Offline truth solve relative cost 6.58E+1 6.19E+1 6.33E+1
Online RB solution relative cost 1.15E−2 1.03E−2 8.00E−3
Online RB error bound relative cost 5.48E−2 4.97E−2 4.18E−2
Online relative storage 1.08E+1 9.39E+0 9.81E+0

Table 2: Operation count and storage requirement for the “hp”-type RB withK = 417
relative to that of the standard RB (K = 1) for the two-parameter case D = DIII.

K ≥ 1 subdomains the number of offline truth solves is KN(1 + Qa) + Qf .2
(We assume roughly equal computation times for the convection-diffusion and
Poisson solves.) The online operation count is roughly O(N3) for the RB so-
lution and O((QaN + Qf )

2) for the RB error bound; we neglect the O(QN2)
cost of forming the RB system and the O(log2K) cost of finding the correct
subdomain via the binary search. The online (permanent) storage requirement
is dominated by the O(KQ2N2) data required for the RB error bounds.
Admittedly, the “hp”-approach requires more truth solves—a larger offline

cost—than the standard method. However, the online computational savings
are significant: in our example with K = 72 subdomains the online cost relative
to that of the standard RB method is about three percent for the RB solution
and about ten percent for the RB error bound; in our example with K = 417
subdomains the online relative cost is only about one percent for the RB solution
and about five percent for the RB error bound. (Typically the contributions
to the total online cost from RB solution and RB error bound computation are

2We assume that the truth solves (including both the snapshot computation and the Pois-
son solves related to the dual norm of the residual) constitute the most expensive part of
the total offline cost. In fact, this assumption favors the standard “p”-type RB since the
error bound sampling is superlinear in N and thus scales more advantageously for the “hp”-
approach. We thus expect in particular for ntrain large that the (total) offline relative cost
will be lower than reported in the tables.
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comparable.) The online storage requirement is somewhat larger with the “hp”-
approach, though in general the storage requirements are quite modest; the N2

scaling moderates the growth due to K.

7 Concluding remarks

The “hp”-type RB method has been shown to significantly reduce the online
computational cost. On the other hand, the new approach is more expensive
than the standard (“p”-type) RB method in the offline stage. Hence we must
trade offline cost for online performance. The online effort is often our main
concern in the real-time or many-query contexts.
We expect the new approach to be particularly beneficial for problems for

which the solution structure is very different in different parts of the param-
eter domain. While our model problem is specifically constructed to exhibit
this property, there are many realistic problems which exhibit similar behav-
ior. As an example, we mention an application of RB to the solution of the
Fokker–Planck equation [18]; here, the solution is required for many different
parameter values, but the required (“p”-type) RB spaces are rather large. Also
of interest are problems which exhibit nonsmooth parameter dependence; the
“hp”-approach should automatically refine the parameter domain around singu-
larities and hence perform better than the standard approach.
There are several opportunities for extensions. First, we can generalize our

approach to POD-Greedy sampling [16] for parabolic problems [9, 10]: the crit-
ical new ingredient is proper balance between additional POD modes and ad-
ditional Greedy parameter values in the initial subdivision process. Second,
we can extend the approach to quadratically nonlinear problems such as the
incompressible Navier–Stokes equations [9]; in this case the “hp”-approach is
particularly advantageous since the (online) computation of the error bound
requires O(N4) operations for N basis functions, and hence the “smaller N for
larger K” trade is particularly favorable. Third, we can consider, in the offline
stage, a parallel “hp” approach; we can subdivide the parameter domain along
each branch of the associated binary tree independently and hence concurrently.

A An improvement of Proposition 1

Let μ∗ ∈ D be such that the RB error boundΔN (μ
∗) = 0; hence μ∗ corresponds

to a parameter value associated with a truth snapshot residing in the RB space.
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In this case the residual satisfies rN (v;μ∗) = 0 for all v ∈ X. We now consider
any μ ∈ D. The Riesz representation of the residual at μ, RN (μ) ∈ X, satisfies

(RN (μ), v)X = rN (v;μ) = rN (v;μ)− rN (v;μ∗) ∀v ∈ X. (A.1)

By the definition of the residual and the triangle inequality we obtain

|(RN (μ), v)X | ≤ |f(v;μ)− f(v;μ∗)|
+ |a(uN (μ∗), v;μ∗)− a(uN (μ), v;μ)| ∀v ∈ X. (A.2)

For the first term on the right-hand side of (A.2) we invoke (2.19) to obtain

|f(v;μ)− f(v;μ∗)| ≤ c̃2‖v‖X |μ− μ∗| ∀v ∈ X. (A.3)

For the second term on the right-hand side of (A.2) we note that

|a(uN (μ∗), v;μ∗)− a(uN (μ), v;μ)|
=
∣∣a(uN (μ∗), v;μ∗)− a(uN (μ), v;μ) +

(
a(uN (μ

∗), v;μ)− a(uN (μ∗), v;μ)
)∣∣

≤ |a(uN (μ∗), v;μ∗)− a(uN (μ∗), v;μ)|+ |a(uN (μ∗)− uN (μ), v;μ)| (A.4)

for all v ∈ X. (Note that the term in parentheses on the second line is equal to
zero.)
For the first term on the right-hand side of (A.4) we invoke (2.18) and the

Lax–Milgram lemma to obtain

|a(uN (μ∗), v;μ∗)− a(uN (μ∗), v;μ)| ≤ c̃1‖uN (μ∗)‖X‖v‖X |μ− μ∗|

≤ c̃1
α
‖f(·;μ∗)‖X′‖v‖X |μ− μ∗|

≤ c̃1
α
max
μ∈D

‖f(·;μ)‖X′‖v‖X |μ− μ∗|
(A.5)

for all v ∈ X. For the second term on the right-hand side of (A.4) we invoke
the continuity of a(·, ·;μ) and (2.9), and then Lemma 1, to obtain

|a(uN (μ∗)− uN (μ), v;μ)| ≤ γ‖uN (μ)− uN (μ∗)‖X‖v‖X
≤ C̃γ|μ− μ∗|‖v‖X (A.6)
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for all v ∈ X. We now combine (A.2) with (A.3), (A.4), (A.5), and (A.6) to
obtain

(RN (μ), v)X ≤ |μ− μ∗| ‖v‖X
(
c̃2 +max

μ∈D
c̃1
‖f(·;μ)‖X′

ᾱ
+ C̃γ

)
, (A.7)

and hence with v = RN (μ) and the expression for C̃ from Lemma 1,

‖RN (μ)‖X ≤ |μ− μ∗| C̃(α+ γ). (A.8)

We now invoke the result (A.8) above in the context of our partition algorithm.
Assume that we have K̃ subdomains, and let μ∗ correspond to the anchor

point associated with the the particular subdomain that also contains μ. For
the RB error bound we then get

ΔK̃(μ) ≡
‖RK̃(μ)‖X
αLB(μ)

≤ |μ− μ∗| C̃
(
1 +

γ

α

)
. (A.9)

Finally, we can now replace the arguments (4.31)–(4.33) by (A.9) in order to
replace the constant in Proposition 1,

C =
2γ2C̃|D|
α2

, (A.10)

by the constant

Cim = 2C̃|D|
(
1 +

γ

α

)
. (A.11)

We note that Cim is an improvement over C for γ/α sufficiently large.
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Abstract

In this paper we introduce an hp certified reduced basis method for
parabolic partial differential equations. We invoke a POD (in time) /
Greedy (in parameter) sampling procedure first in the initial partition of
the parameter domain (h-refinement) and subsequently in the construc-
tion of reduced basis approximation spaces restricted to each parameter
subdomain (p-refinement). We show that proper balance between addi-
tional POD modes and additional parameter values in the initial subdi-
vision process guarantees convergence of the approach. We present nu-
merical results for two model problems: linear convection-diffusion, and
quadratically nonlinear Boussinesq natural convection. The new proce-
dure is significantly faster (respectively, more costly) in the reduced basis
Online (respectively, Offline) stage.

1 Introduction

The certified reduced basis (RB) method is a model-order reduction framework
for rapid evaluation of functional outputs, such as surface temperatures or fluxes,
for partial differential equations (PDEs) which depend on an input parameter
vector, for example related to geometric factors or material properties. There
are four key ingredients to the certified RB framework:

• Galerkin projection: optimal linear combination of N pre-computed N -
degree-of-freedom “truth” finite element (FE) field snapshots [1, 17];
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• POD/Greedy sampling: POD (in time) / Greedy (in parameter) [9] opti-
mal selection and combination of FE field snapshots;

• a posteriori error estimation: rigorous upper bounds for the error in the
RB (output) approximation with respect to the “truth” FE discretization
[7, 19];

• Offline–Online computational decomposition: O(N •)-complexity prepro-
cessing followed by O(N•)-complexity certified input-output prediction
[15, 19].

We shall describe each ingredient further in subsequent sections.
We shall assume that the field variable depends smoothly on the parameters.

In that case we can expect, and we can rigorously confirm a posteriori, thatN �
N ; we can then furthermore anticipate rapid Online evaluation of the RB output
approximation and associated RB output error bound. The certified RB method
is thus computationally attractive in two important engineering contexts: “real
time,” such as parameter estimation and optimal control; “many query,” such as
multiscale or stochastic simulation. In both instances, the Offline effort is either
unimportant or can be amortized over many input-output evaluations. In both
instances, rigorous error control without direct appeal to the “truth” is crucial.
For many problems, the field variable may be quite different in different

regions of the parameter domain, and hence a snapshot from one region may
be of little value to the RB approximation in another region. To exploit this
opportunity we introduce in [5] an hp reduced basis method for linear elliptic
equations. In the Offline stage we first adaptively subdivide the original param-
eter domain into smaller regions (h-refinement); we then construct individual
RB approximation spaces spanned by snapshots restricted to parameter values
within each of these parameter subdomains (p-refinement). In the Online stage,
the RB approximation associated with any new parameter value is then con-
structed as a (Galerkin) linear combination of snapshots from the parameter
subdomain that contains the new parameter value. The dimension of the local
approximation space, and thus the Online cost, shall be very low: every basis
function contributes significantly to the RB approximation. We note that an
alternative “multiple bases generation” procedure is introduced in [8]; a different
“interpolation” approach to parametric reduced order modelling with parameter
subdomains is described in [2].
In this paper, we extend the work in [5] to linear and non-linear parabolic

equations through a POD (in time) / Greedy (in parameter) procedure. The
POD/Greedy sampling approach [9] is invoked both in the initial partition of the

108



An hp-RB Method for Parabolic Equations

parameter domain (h-refinement) and subsequently in the construction of RB
approximation spaces restricted to each parameter subdomain (p-refinement).
Much of the elliptic machinery from [5] extends to the parabolic case since we
only subdivide the parameter (and not the temporal) domain. The critical new
issue for the hp-POD/Greedy algorithm for parabolic problems is proper balance
between additional POD modes and additional parameter values in the initial
subdivision process.
The hp-POD/Greedy procedure was first introduced in the conference pro-

ceedings paper [6]. We extend [6] here in several important ways. First, we
introduce an improvement to the algorithm: an additional Offline splitting step
which permits direct control of the Online computational cost. Second, we in-
troduce (for a simple but illustrative case) a new a priori convergence theory for
the initial subdivision process; we show in particular that the procedure is con-
vergent provided sufficiently many POD modes are included in the RB spaces.
Good convergence of the subdivision process is critical both to Offline and Online
performance. Third, and finally, we extend our considerations to quadratically
nonlinear parabolic problems. This class of problems is particularly “ripe” for
the hp approach due to the O(N4) computational cost associated with RB error
bound evaluation [12, 16]: even a small reduction in N—the number of RB basis
functions—will result in significant Online computational savings.
We begin in Section 2 with the problem statement(s). In Section 3 we intro-

duce the hp-RB approximation, the associated RB error bounds, and the nec-
essary computational procedures. In Section 4 we present the hp-POD/Greedy
algorithm and the new a priori convergence theory. Finally, in Section 5, we
present numerical results for two model problems: a linear time-invariant (LTI)
convection–diffusion problem, and a quadratically nonlinear Boussinesq natural
convection problem; we focus our discussion on computational cost and Online
economization compared to the standard (p-type) RB method.

2 Problem Statement

We directly consider a discrete-time parametrized parabolic PDE defined over
a spatial domain Ω ⊂ R2 for discrete time levels tk = kΔt, 0 ≤ k ≤ K; here
Δt = tf/K, and tf is the final time. We further introduce a P -dimensional
parameter domain D ⊂ RP and denote by μ ∈ D a particular parameter value.
For a given μ ∈ D we shall denote the exact solution to our discrete-time
parabolic PDE as uk(μ) ≡ u(tk, μ), 0 ≤ k ≤ K.
We consider Euler Backward (θ = 1) and Crank Nicolson (θ = 0.5) temporal
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discretization schemes (more generally we may consider 0.5 ≤ θ ≤ 1); we define
uk+θ(μ) ≡ θuk+1(μ)+(1−θ)uk(μ). The exact formulation reads: for any μ ∈ D,
find uk(μ) ∈ X, 1 ≤ k ≤ K, such that

1

Δt
m(uk+1(μ)− uk(μ), v;μ) + a(uk+θ(μ), v;μ)

+ b(uk+θ(μ), uk+θ(μ), v;μ) = f(v;μ), ∀v ∈ X, (2.1)

subject to initial condition u0(μ). In the sequel we shall always assume zero
initial conditions. We then evaluate our output of interest as sk(μ) = �(uk(μ);μ)
for 0 ≤ k ≤ K. Here, X denotes a Sobolev space over Ω ⊂ R2; typically
(H1

0 (Ω))
d ⊆ X ⊆ (H1(Ω))d, where H1(Ω) = {v : |∇v| ∈ L2(Ω)}, H1

0 (Ω) =
{v ∈ H1(Ω) : v|∂Ω = 0} where ∂Ω is the boundary of Ω, L2(Ω) is the space of
square integrable functions over Ω, and d is the dimension of the field. (In our
exposition d = 1; later, for the Boussinesq problem, d = 3.)
We suppose that X is equipped with an inner product (·, ·)X and induced

norm ‖ · ‖X = (·, ·)1/2X ; we further denote by (·, ·) the standard L2(Ω) inner
product and by ‖ · ‖L2 = (·, ·)1/2 the standard L2(Ω) norm. For any μ ∈ D,
m(·, ·;μ) is a coercive and continuous bilinear form over L2(Ω), a(·, ·;μ) is a
coercive and continuous bilinear form over X, b(·, ·, ·;μ) is a continous trilinear
form over X, f(·;μ) is an X-bounded linear functional, and �(·;μ) is an L2(Ω)-
bounded linear “output” functional. We introduce coercivity constants

α(μ) ≡ inf
v∈X

a(v, v;μ)

‖v‖2X
, σ(μ) ≡ inf

v∈X

m(v, v;μ)

‖v‖2L2

; (2.2)

under our assumptions, α(μ) > 0 and σ(μ) > 0 for any μ ∈ D. Note for b = 0
our problem is linear and coercive.
In order to develop efficient Offline-Online computational procedures for the

RB field approximation, RB output approximation, and RB error bound, we
shall suppose that all our forms admit “affine” expansions in functions of μ.
Specifically, for any μ ∈ D

a(·, ·;μ) =
Qa∑
q=1

aq(·, ·)Θq
a(μ), (2.3)

where Qa < Q and Q is finite and preferably modest. We suppose that m, b,
and f admit similar expansions in at most Q terms. Many problems (includ-
ing the examples of this paper) admit an affine expansion; for other problems,
approximate affine representations can be developed [3, 4].
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We now introduce the “truth” spatial discretization of the PDE.We suppose a
regular triangulation T N (Ω) of Ω and introduce a corresponding high-resolution
finite element (FE) space XN ⊂ X of dimension N . The truth discretization of
(2.1) reads: for any μ ∈ D, find uN k(μ) ∈ XN , 1 ≤ k ≤ K, such that

1

Δt
m(uN k+1(μ)− uN k(μ), v;μ) + a(uN k+θ(μ), v;μ)

+ b(uN k+θ(μ), uN k+θ(μ), v;μ) = f(v;μ), ∀v ∈ XN , (2.4)

subject to initial condition uN 0 = 0; then evaluate the truth output approxima-
tion as sN k(μ) = �(uN k(μ);μ) for 0 ≤ k ≤ K. It is this truth FE approximation
that we wish to accelerate by RB treatment. We shall assume that XN is rich
enough that the exact and truth solutions are indistinguishable at the desired
level of numerical accuracy. As we shall observe below, the RB Online computa-
tional cost is independent of N , and the RB approximation is stable as N →∞.
We can thus choose N conservatively.

3 hp Reduced Basis Approximation

For a parameter domain D ⊂ RP , the hp-RB method serves to construct a
hierarchical partition of D into M distinct parameter subdomains VBm ⊂ D,
1 ≤ m ≤ M . Each of these subdomains VBm has associated nested RB ap-
proximation spaces X1,Bm ⊂ · · · ⊂ XNmax,Bm ,Bm , where dim(XN,Bm) = N ,
1 ≤ N ≤ Nmax,Bm . We define Nmax ≡ max1≤m≤M Nmax,Bm . The procedure for
the construction of the parameter domain partition and associated RB spaces,
as well as the form of the “identifiers” Bm, shall be made explicit in Section
4. In this Section, we discuss the RB approximation, the RB a posteriori error
estimators, and the associated computational procedures given the parameter
domain partition and associated RB spaces.

3.1 Reduced Basis Approximation

For any new μ ∈ D we first determine m∗ ∈ [1,M ] such that μ ∈ VBm∗ (⊂ D).
Given any N , we define N̂ ≡ min{N,Nmax,Bm∗ }. The RB approximation of
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(2.4) reads: for any μ ∈ D, find ukN (μ) ∈ XN ≡ XN̂,Bm∗ , 1 ≤ k ≤ K, such that

1

Δt
m(uk+1N (μ)− ukN (μ), v;μ) + a(uk+θ

N (μ), v;μ)

+ b(uk+θ
N (μ), uk+θ

N (μ), v;μ) = f(v;μ), ∀v ∈ XN , (3.1)

subject to initial condition u0N = 0; then evaluate the RB output approximation
as skN (μ) = �(ukN (μ);μ) for 0 ≤ k ≤ K.

3.2 A posteriori error estimation
A rigorous a posteriori upper bound for the RB error is crucial for the Offline
hp-POD/Greedy sampling procedure as well as for the Online certification of
the RB approximation and RB output. The key computational ingredients of
the RB error bound are the RB residual dual norm and lower bounds for the
stability constants.
Given an RB approximation, ukN (μ), 0 ≤ k ≤ K, for μ ∈ D, we write the

RB residual, rkN (v;μ), 1 ≤ k ≤ K, as

rk+1N (v;μ) = f(v;μ)− 1

Δt
m(uk+1N (μ)− ukN (μ), v;μ)

− a(uk+θ
N (μ), v;μ)− b(uk+θ

N (μ), uk+θ
N (μ), v;μ), ∀v ∈ XN . (3.2)

The Riesz representation of the residual êkN (μ) ∈ XN , 1 ≤ k ≤ K, satisfies

(êkN (μ), v)X = rkN (v;μ), ∀v ∈ XN . (3.3)

We denote by εkN (μ) = ‖êkN (μ)‖X = supv∈XN
rkN (v;μ)
‖v‖X

the residual dual norm.
We next introduce positive lower bounds for the coercivity constants of m

and a, σLB and αLB, respectively, such that for all μ ∈ D

0 < σLB(μ) ≤ σ(μ), 0 < αLB(μ) ≤ α(μ). (3.4)

We also introduce a lower bound for the (possibly negative) stability constant

ρN (t
k+1;μ) ≡ inf

v∈XN

2b
(
uk+θ
N (μ), v, v;μ

)
+ a(v, v;μ)

‖v‖2L2

, 0 ≤ k ≤ K − 1, (3.5)

which we shall denote ρLBN (tk;μ): ρLBN (tk;μ) ≤ ρN (t
k;μ) for 1 ≤ k ≤ K and all

μ ∈ D. We further define τLBN (tk;μ) = min(ρLBN (tk;μ), 0).
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We can then develop the L2(Ω) error bound

Δk
N (μ) =

√√√√√Δt
∑k

k′=1

(
εN (tk

′ ;μ)2

1−(1−θ)Δt τLB
N (tk′ ;μ)

∏k′−1
j=1

1+θΔt τLB
N (tj ;μ)

1−(1−θ)Δt τLB
N (tj ;μ)

)
αLB(μ)σLB(μ)

∏k
k′=1

1+θΔt τLB
N (tk′ ;μ)

1−(1−θ)Δt τLB
N (tk′ ;μ)

(3.6)

for which it can be demonstrated [7, 12, 16] that ‖uN k(μ)−ukN (μ)‖L2 ≤ Δk
N (μ),

1 ≤ k ≤ K, ∀μ ∈ D.1 We can furthermore develop an RB output error bound

Δk
N,s(μ) ≡

(
sup

v∈XN

�(v;μ)

‖v‖L2

)
Δk

N (μ), (3.7)

for which it can be demonstrated that |sN k(μ)−skN (μ)| ≤ Δk
N,s(μ), 1 ≤ k ≤ K,

∀μ ∈ D.

3.3 Computational Procedures

Construction-Evaluation. Thanks to the “affine” assumption (2.3) we can
develop Construction-Evaluation procedures for the RB field, RB output, and
RB error bound. We first consider the RB field and RB output. In the Construc-
tion stage, given the RB basis functions, we form and store all the necessary
parameter-independent entities at cost O(N •). In the Evaluation stage, we
first determine the subdomain to which the given new parameter μ belongs: an
O(log2M) binary search suffices thanks to the hierarchical subdomain construc-
tion which we will make explicit in the next section [5]. We next assemble the
RB system (3.1) at cost O(QN2) (N ≤ Nmax) in the LTI case [15] and at cost
O(nNewtonQN3K) in the quadratically nonlinear case [12, 16]; we then solve
this system at cost O(N3 +KN2) in the LTI case and at cost O(nNewtonKN3)
in the quadratically nonlinear case. (Here nNewton is the number of Newton
iterations required to solve the nonlinear equations at each timestep.) Given
the RB field, the RB output can be evaluated at cost O(KN).
We next consider the RB error bound (3.6). We invoke the Riesz represen-

tation of the residual and linear superposition in order to develop Construction-
Evaluation procedures for the residual dual norm.2 In the Construction stage,

1In the linear case b = 0, and it thus follows from (3.5) and the definition of τLB
N (we recall

that a(·, ·;μ) is coercive) that (3.6) simplifies to Δk
N (μ) =

(
Δt

αLBσLB(μ)

∑k
k′=1 εN (tk

′
;μ)2

)1/2.
2We refer to [10, 16] for details on the Construction-Evaluation procedure for the compu-

tation of lower bounds for the stability constants—a Successive Constraint Method (SCM).
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we again compute and store all the necessary parameter-independent entities at
cost O(N •). In the Evaluation stage, we can evaluate the residual dual norm at
cost O(KN2+Q2N2) for LTI problems [15] and at cost O(KQ2N4) for quadrat-
ically nonlinear problems [12, 16]. (In the sequel we shall assume Q = O(1),
as is the case in our numerical examples.) We note that the O(N4) cost for
quadratically nonlinear problems compromises rapid evaluation for larger N
and in practice limits Nmax—motivation for an hp approach.

Offline-Online Decomposition: The Construction-Evaluation procedures
enable efficient Offline-Online decomposition for the computation of the RB
field approximation, RB output approximation, and RB output error bound.
The Offline stage, which is performed only once as preprocessing, can be very
expensive—N -dependent complexity; the Online stage, which is typically per-
formed many times, is comparably inexpensive—N -independent complexity.
We note that our RB formulation (3.1) inherits the temporal discretization of
the truth (2.4); we may thus not chooseΔt arbitrarily small without compromise
to RB Online cost.
In the hp-RB Offline stage we perform the hp-POD/Greedy sampling pro-

cedure which we discuss in the next section and which is the focus of this paper:
we invoke Construction-Evaluation procedures to identify good RB spaces and
to compute and store the Construction quantities required in the Online stage.
The link between the Offline and Online stages is the permanent storage of the
Online Dataset; the storage requirement for the hp-RB method is O(MN2

max)
in the linear case and O(MN4

max) in the quadratically nonlinear case. We recall
that M is the number of subdomains identified by the hp-POD/Greedy. In the
hp-RB Online stage we perform Evaluation based on the Online Dataset: we
calculate the RB field approximation, the RB output approximation, and the
RB error bound at the given new parameter in O(N•) complexity.

4 hp-POD/Greedy Sampling

In this section, we discuss the hp-POD/Greedy procedure for the construction
of the parameter subdomain partition and the associated RB approximation
spaces. We employ a hierarchical parameter domain splitting procedure and
hence we may organize the subdomains in a binary tree. Let L denote the
number of levels in the tree. For 1 ≤ l ≤ L, we introduce Boolean vectors

Bl = (1, i1, i2, . . . , il) ∈ {1} × {0, 1}l. (4.1)
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For any Bl, 1 ≤ l ≤ L− 1 we define the concatenation (Bl, i) ≡ (1, i1, . . . , il, i),
i ∈ {0, 1}. The M subdomains of D are associated to the M leaf nodes of the
binary tree; we denote by Bm, 1 ≤ m ≤M , the Boolean vectors that correspond
to the leaf nodes; we can thus label the parameter subdomains as VBm ⊂ D,
1 ≤ m ≤M . Similarly, we denote by X1,Bm ⊂ · · · ⊂ XNmax,Bm ,Bm (⊂ XN ) the
set of nested RB approximation spaces associated to VBm , 1 ≤ m ≤M .

4.1 Procedure

The hp-POD/Greedy algorithm introduced here applies to both the linear and
non-linear case. However, we adopt the notation of the linear (b = 0) and scalar
(d = 1) problem for simplicity.

Algorithm 1 [{χi ∈ X, 1 ≤ i ≤ ΔN}] = POD({wk ∈ XN , 1 ≤ k ≤ K},ΔN)
1: Ci j ← (wi, wj)X/K, 1 ≤ i, j ≤ K;
2: Solve Cψi = λiψi, (ψi)TCψi = 1

K , for (ψ
i ∈ RK , λi ∈ R) associated with

the ΔN largest eigenvalues of C;
3: Compute χi =

∑K
k=1 ψ

i
kw

k for 1 ≤ i ≤ ΔN .

We introduce as Algorithm 1 the POD algorithm (the Method of Snapshots
[20]). For specified ΔN and {wk ∈ XN , 1 ≤ k ≤ K}, Algorithm 1 returns
ΔN ≤ K X-orthonormal functions3 {χi ∈ X, 1 ≤ i ≤ ΔN} such that PΔN =
span{χi, 1 ≤ i ≤ ΔN} satisfies the optimality property

PΔN = arg inf
Y⊂span{wk,1≤k≤K}

dimY≤ΔN

(
1

K

K∑
k=1

inf
w∈Y

‖wk − w‖2X
)1/2

. (4.2)

The set {χi, 1 ≤ i ≤ ΔN} returned by Algorithm 1 contains the ΔN first POD
modes of span{w1, . . . , wK}.
We next introduce as Algorithm 2 the POD/Greedy sampling procedure of

[9] (see also [13]). Let V ⊆ D. For specified ΔN , an RB space dimension upper
boundN , an initial parameter value μ∗ ∈ V, a finite train sample Ξtrain ⊂ V, and
an error bound tolerance ε, Algorithm 2 returns Ñmax ≤ N nested RB spaces
X1 ⊂ . . . ⊂ XÑmax

(note that since the spaces are nested by construction we
only specify XÑmax

as the return argument) and εmax = maxμ∈Ξtrain Δ
K
Ñmax

(μ)

3We note that (χi, χj)X =
∑K

k=1

∑K
l=1 ψ

i
kψ

j
l (w

k, wl)X = K(ψi)TCψj = δi j .
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Algorithm 2 [XÑmax
, εmax] = POD/Greedy(ΔN,N, ε, μ∗,Ξtrain)

1: Set XN = {0}, N = 0, εmax =∞;
2: while εmax > ε and N < N do
3: ekN,proj(μ

∗)← uN k(μ∗)− projXN
(uN k(μ∗)), 1 ≤ k ≤ K;

4: for i = 1, . . . ,min{ΔN,N −N} do
5: XN+i ← XN ⊕ span{POD({ekN,proj(μ

∗), 1 ≤ k ≤ K}, i)};
6: end for
7: μ∗ ← argmaxμ∈Ξtrain Δ

K
N (μ);

8: εmax ← ΔK
N (μ

∗);
9: N ← N +ΔN ;
10: end while
11: Ñmax ← N ;

such that either εmax ≤ ε or Ñmax = N . (Note in the POD/Greedy we may
take the L2([0, tf ];X) RB error bound ΔK

N,X rather than the L2(Ω) RB error
bound ΔK

N [13]; for the linear coercive case, Δ
K
N,X(μ) = σ

1/2
LB (μ)Δ

K
N (μ).)

We initialize the POD/Greedy by setting N = 0, XN = {0}, and εmax =∞.
Then, while the dimension of the RB space is less than N and the tolerance
ε is not satisfied over Ξtrain, we enrich the RB space: we first compute the
projection error ekN,proj(μ

∗) = uN k(μ∗)− projXN
(uN k(μ∗)), 1 ≤ k ≤ K, where

projXN
(w) denotes the X-orthogonal projection of w ∈ XN onto XN ; we next

increase the dimension of the RB space by adding the ΔN first POD modes of
the projection error to the current RB space; we then greedily determine the
next parameter value over Ξtrain based on the a posteriori error estimator at the
final time. We invoke Construction-Evaluation procedures for the computation
of the maximum RB error bound over Ξtrain (line 7 of Algorithm 2); since the
RB error bound calculation is very fast (N -independent in the limit of many
evaluations), we may choose Ξtrain very dense.
We finally introduce as Algorithm 3 the hp-POD/Greedy algorithm. For

specified ΔN , an RB space dimension upper bound N , error bound tolerances
ε1tol and ε

2
tol, an initial parameter anchor point μ̂

0
(1), and an initial train sample

Ξtrain,(1) ⊂ D of cardinality ntrain, Algorithm 3 constructs a hierarchical splitting
of D into M = M(ε1tol, N) subdomains VBm , 1 ≤ m ≤ M , and associates to
each parameter subdomain an RB space XNmax,Bm ,Bm of dimension Nmax,Bm ≤
Nmax ≤ N such that for each subdomain VBm the tolerance ε1tol > 0 is satisfied
over Ξtrain,Bm ⊂ VBm by Δ̃K

R,Bm and the tolerance ε2tol is satisfied over Ξtrain,Bm

116



An hp-RB Method for Parabolic Equations

Algorithm 3 hp-POD/Greedy(Ξtrain,Bl
, μ̂0Bl

, ε1tol, ε
2
tol, N , ΔN)

1: Set R← 0, X̃R,Bl
← {0};

2: Compute uN k(μ̂0Bl
), 1 ≤ k ≤ K;

3: while Δ̃K
R,Bl

(μ̂0Bl
) > ε1tol/η do

4: R← R+ 1;
5: X̃R,Bl

← span{POD({uN k(μ̂0Bl
), 1 ≤ k ≤ K}, R)};

6: end while
7: μ̂1Bl

← argmaxμ∈Ξtrain,Bl
Δ̃K

R,Bl
(μ) and set μ̂0(Bl,0)

← μ̂0Bl
, μ̂0(Bl,1)

← μ̂1Bl
;

8: if maxμ∈Ξtrain,Bl
Δ̃K

R,Bl
(μ) > ε1tol then

9: Determine Ξtrain,(Bl,0),Ξtrain,(Bl,1);
10: XNmax,(Bl,0)

,(Bl,0) ← hp-POD/Greedy(Ξtrain,(Bl,0), μ̂
0
(Bl,0)

, ε1tol, ε
2
tol, N,ΔN);

11: XNmax,(Bl,1)
,(Bl,1) ← hp-POD/Greedy(Ξtrain,(Bl,1), μ̂

0
(Bl,1)

, ε1tol, ε
2
tol, N,ΔN);

12: else
13: [XNmax,Bl

,Bl
, εmax] = POD/Greedy(ΔN,N, ε2tol, μ̂

0
Bl
,Ξtrain,Bl

);
14: if εmax > ε2tol then
15: Discard XNmax,Bl

,Bl
;

16: Determine Ξtrain,(Bl,0),Ξtrain,(Bl,1);
17: XNmax,(Bl,0)

,(Bl,0) ← hp-POD/Greedy(Ξtrain,(Bl,0), μ̂
0
(Bl,0)

, ε1tol, ε
2
tol, N,ΔN);

18: XNmax,(Bl,1)
,(Bl,1) ← hp-POD/Greedy(Ξtrain,(Bl,1), μ̂

0
(Bl,1)

, ε1tol, ε
2
tol, N,ΔN);

19: else
20: Let m = (number of spaces returned so far +1) and set Bm ≡ Bl;
21: return XNmax,Bm ,Bm ≡ XNmax,Bl

,Bl
;

22: end if
23: end if
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V(1) = D

V(1,0)

V(1,1) V(1,1)

V(1,0,0)

V(1,0,1)

V(1,0,0)

V(1,1,0)

V(1,1,1)

V(1,0,1)

Figure 1: Two levels of h-refinement and associated binary tree; here L = 3.

by ΔK
Nmax,Bm . We introduce here Δ̃K

R,Bl
as the RB error bound associated

with the temporary space X̃R,Bl
, and we recall that ΔK

Nmax,Bm is the RB error
bound associated with the returned space XNmax,Bm ,Bm . (In the hp-RB Online
stage we may readily extract spaces XN,Bm ⊂ XNmax,Bm of any dimension N ,
1 ≤ N ≤ Nmax,Bm .)
We now comment on the constant η > 1, which in turn determines the di-

mension R of the temporary spaces X̃R,Bl
(lines 3-6): we successively increment

R and evaluate Δ̃K
R,Bl

(μ̂0Bl
) until Δ̃K

R,Bl
(μ̂0Bl

) < ε1tol/η. For η > 1, the tolerance
ε1tol is then satisfied by Δ̃

K
R,Bl

in a neighborhood of the anchor point μ̂0Bl
, and

we thus avoid arbitrarily small subdomains. We note that η = ∞ corresponds
to R = K; however, typically R � K is sufficient and we may thus choose η
close to (but larger than) unity.
We next consider the splitting of any particular subdomain VBl

⊂ D into
two new subdomains V(Bl,0) ⊂ VBl

and V(Bl,1) ⊂ VBl
. We suppose that VBl

is
equipped with a train sample Ξtrain,Bl

⊂ VBl
. Given a parameter anchor point

μ̂0Bl
∈ VBl

, we first compute the truth field uN k(μ̂0Bl
), 1 ≤ k ≤ K, and define

the temporary RB space X̃R,Bl
associated with the subdomain VBl

as discussed
above. The next step is to evaluate Δ̃K

R,Bl
(μ) for all μ ∈ Ξtrain,Bl

in order to
identify a second anchor point (line 7) μ̂1Bl

= argmaxμ∈Ξtrain,Bl
Δ̃K

R,Bl
(μ). We

note that the two anchor points μ̂0Bl
and μ̂1Bl

are maximally different in the sense
of the RB error bound, and thus provide good initial parameter values for two
new RB spaces.
We now introduce a distance function, δ : D × D → R; for example we

may choose Euclidean distance. We can then implicitly define two new subdo-
mains V(Bl,0) ⊂ VBl

and V(Bl,1) ⊂ VBl
based on the distance to the two anchor
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points: V(Bl,0) = {μ ∈ VBl
: δ(μ̂0Bl

, μ) < δ(μ̂1Bl
, μ)}, and V(Bl,1) = {μ ∈ VBl

:
δ(μ̂0Bl

, μ) ≥ δ(μ̂1Bl
, μ)}. Note that by this definition, parameter values that are

equidistant from the two anchor points μ̂0Bl
and μ̂1Bl

belong to V(Bl,1). The
final step of splitting is to construct a new train sample associated with each
of the two new subdomains (line 9). We first enrich (by adding random points,
say) the current train sample Ξ̃train,Bl

⊃ Ξtrain,Bl
such that Ξ̃train,Bl

⊂ VBl
has

cardinality 2ntrain; we then define

Ξtrain,(Bl,i) ≡ Ξ̃train,Bl
∩ V(Bl,i), i = 0, 1. (4.3)

We note that we may choose the initial train sample for the hp-POD/Greedy to
be rather sparse compared to the train sample for the standard POD/Greedy,
since we effectively construct an adaptively refined train sample (over D) dur-
ing the parameter domain partition process. The adaptively generated hp-
POD/Greedy (local) train sample associated with a given subdomain is typ-
ically much smaller than the (global) train sample associated with the standard
POD/Greedy.
We apply this splitting scheme recursively in order to partition D into the

final M subdomains; we can thus organize the subdomains in a binary tree. In
Figure 1 we illustrate the procedure, as well as the associated binary tree, for
two levels of recursive splitting.
The final step is p-refinement: we identify the nested RB spaces to be associ-

ated with the subdomain (line 13). If the POD/Greedy returns with εmax > ε2tol,
we discard the generated basis and successively perform additional subdomain
splitting and POD/Greedy steps until the tolerance is satisfied with at most
N basis functions (lines 15-18). This additional splitting step permits simul-
taneous control over ε2tol and Nmax. We note that ΔN—the number of POD
modes to include at each Greedy iteration during p-refinement—is typically cho-
sen small: small ΔN leads to more optimal spaces albeit at a higher (Offline)
computational cost.
Under the assumption that N is chosen such that R is always smaller than N

(note we can always “re-specify” N if at any point R > N) the hp-POD/Greedy
algorithm provides an Online dataset such that the RB error bound tolerance
ε2tol is satisfied (over the train samples) with at most Nmax ≤ N basis functions.4
We hope to achieve this goal without the expensive execution of lines 15–18: it
is our intent that if ε1tol is satisfied with R basis functions, then ε

2
tol < ε1tol will be

4We note that when an additional splitting step is performed (lines 17-18), we might have
to increase R beyond the requirement in line 3 in order to ensure that the anchor point μ̂1

Bl

identified in line 7 is different from μ̂0
Bl
.
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satisfied with at most N > R basis functions; whenever this is true, we discard
only R basis functions at each level of splitting.
We regard lines 15–18 as insurance: if ε2tol is not satisfied with at most

N basis functions—even if ε1tol was satisfied with R basis functions—we dis-
card the computed candidate space, split the subdomain, and again execute
hp-POD/Greedy in a recursive manner. Ideally ε1tol is chosen such that the in-
surance is rarely invoked and Nmax,Bm ≤ N is close to N for most m ∈ [1,M ].
If the insurance is invoked too often—ε1tol is too large with respect to the target
N—the Offline computational cost will be large. If the insurance is rarely or
never invoked and Nmax,Bm � N for most m ∈ [1,M ], then ε1tol is too small
with respect to the target N .

Remark 1. We note that as the number of subdomains M increases, the hp-
POD/Greedy algorithm in general requires a larger (Offline) computational cost
and generates a larger Online Dataset than the standard (p-type) POD/Greedy
method. However, in the nonlinear case, the O(N4) cost and storage associated
with the RB error bound helps to moderate this increase: an increase in M
provides a decrease in N such that the product MN4 grows only modestly. We
further note that, thanks to the efficient log2(M) subdomain search, M can be
very large without compromise to the Online computational cost. In practice we
thus seek M to balance Offline cost and Online storage against Online speed.

Remark 2. As discussed in [12, 16], we must employ a “nominal” lower bound
ρ∗ for the stability factor ρN for nonlinear parabolic problems during execution of
the POD/Greedy: the SCM, which allows for construction of the rigorous lower
bound ρLBN , can only be performed after generation of the RB space. In this
context ρ∗ is a conservatively chosen constant or (say) a linear function of μ.
Note that the rigor of our error bounds in the Online stage is not compromised:
after completion of the POD/Greedy we perform the SCM,5 and subsequently
the Online RB error bounds are rigorous.

4.2 A Priori Convergence Analysis
We now introduce an a priori convergence theory for Algorithm 3. Selection of
relatively few and optimal subdomains—smallM for specified ε1tol—is crucial to
reduce both Offline cost and Online cost and storage. We consider here the class
of linear scalar problems (b = 0, d = 1). For simplicity, we consider the case of a

5We note that after completion of the hp-POD/Greedy we can apply the SCM algorithm
independently for each parameter subdomain; we thus expect a reduction in the SCM (Online)
evaluation cost since the size of the parameter domain is effectively reduced.
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single parameter (P = 1); we assume a Backward Euler temporal discretization
(θ = 1); and we consider the case in which m(·, ·;μ) is parameter-independent
and in particular equal to the L2(Ω) inner product: m(w, v;μ) ≡ m(w, v) ≡∫
Ω
wv.
We recall that the bilinear form a and the linear functional f admit the

affine expansions

a(·, ·;μ) =
Qa∑
q=1

aq(·, ·)Θq
a(μ), f(·;μ) =

Qf∑
q=1

fq(·)Θq
f (μ), (4.4)

for all μ ∈ D. For our purposes in this section, we shall require that

a(·, ·;μ) = a1(·, ·) +
Qa∑
q=2

aq(·, ·)Θq
a(μ) ≡ a1(·, ·) + aII(·, ·;μ), (4.5)

where a1 is an X-inner product and aII is L2-continuous in its second argument.
Specifically we require, for any v ∈ X, w ∈ X,

a1(v, w) ≤ ‖v‖X‖w‖X , (4.6)
aq(v, w) ≤ γq‖v‖X‖w‖L2 , 2 ≤ q ≤ Qa. (4.7)

We also require that the fq : X → R are L2-bounded:

fq(v) ≤ ‖fq‖L2‖v‖L2 , 1 ≤ q ≤ Qf . (4.8)

For simplicity we suppose that ‖ · ‖X = ‖ · ‖H1 ; hence ‖v‖L2 ≤ ‖v‖X for all
v ∈ X. We further require that the Θq

a : D → R and Θq
f : D → R are

Lipschitz continuous: for any μ1 ∈ D, μ2 ∈ D, there exists constants Lq
a and

Lq
f , 1 ≤ q ≤ Qa, such that

|Θq
a(μ1)−Θq

a(μ2)| ≤ Lq
a|μ1 − μ2|, 1 ≤ q ≤ Qa, (4.9)

|Θq
f (μ1)−Θq

f (μ2)| ≤ Lq
f |μ1 − μ2|, 1 ≤ q ≤ Qf . (4.10)

We introduce lower and upper bounds over D for the coercivity and continuity
constants of a(·, ·;μ):

0 < α ≡ min
μ∈D

α(μ) = min
μ∈D

inf
v∈X

a(v, v;μ)

‖v‖2X
, ∞ > γ ≥ max

μ∈D
sup
v∈X

sup
w∈X

a(v, w;μ)

‖v‖X‖w‖X
,

(4.11)
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respectively. For simplicity of notation we suppose, for v, w ∈ X and any μ ∈ D,
that

aII(w, v;μ) ≤ γ‖w‖X‖v‖L2 . (4.12)

For our theororetical arguments below we assume α ≤ 1 and γ ≥ 1. The coer-
civity lower bound αLB(μ) shall be given as αLB(μ) = α for all μ ∈ D. We em-
phasize that all our assumptions in this section are satisfied by our convection-
diffusion numerical example of Section 5.1.
We consider Algorithm 3 with N = ∞. Hence p-refinement—execution of

POD/Greedy in line 13—will converge (εmax ≤ ε2tol) for any specified ε
2
tol >

0. We thus focus here on h-refinement; we show in particular that the hp-
POD/Greedy algorithm generates a finite number of parameter subdomains.
To this end, we shall require the following continuity result.

Lemma 1. For any μ1 ∈ D, μ2 ∈ D, and any v ∈ X, w ∈ X, there exist
positive constants ca and cf such that

|a(v, w;μ1)− a(v, w;μ2)| ≤ ca|μ1 − μ2|‖v‖X‖w‖L2 , (4.13)
|f(v;μ1)− f(v;μ2)| ≤ cf |μ2 − μ2|‖v‖L2 . (4.14)

Proof. We refer to Appendix A for the proof.

We next define, for any μ ∈ D and any vk ∈ X, 1 ≤ k ≤ K, the “energy-
norm”

|||vk|||μ ≡
(
m(vk, vk) + Δt

k∑
k′=1

a(vk
′
, vk

′
;μ)

)1/2
. (4.15)

We shall require the following stability result.

Lemma 2. For any μ ∈ D, the solution uN k(μ) ∈ XN , 1 ≤ k ≤ K, of (2.4)
for θ = 1 satisfies

|||uN k(μ)|||μ ≤ max
μ∈D

‖f(·;μ)‖X′

√
tk

α
, 1 ≤ k ≤ K. (4.16)

Proof. We refer to Appendix B for the proof.

For μ1 ∈ D, μ2 ∈ D, and for 1 ≤ k ≤ K, we define ΔukN ≡ ukN (μ1)−ukN (μ2).
We shall require the following continuity result.
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Lemma 3. Assume that μ1 ∈ D and μ2 ∈ D belong to the same parameter
subdomain (say) VBl

⊂ D, and let XN denote the RB space associated with
VBl
. Let ukN (μ1) ∈ XN and ukN (μ2) ∈ XN , 1 ≤ k ≤ K, satisfiy (3.1) for θ = 1.

Then

|||ΔukN |||μ2
≤ C̃|μ1 − μ2|, 1 ≤ k ≤ K, (4.17)

where

C̃ =

(
2tk

α3

(
α2c2f + c2amax

μ∈D
‖f(·;μ)‖2X′

))1/2
(4.18)

Proof. We refer to Appendix C for the proof.

We shall finally require the following continuity result, which is a discrete
counterpart of Proposition 11.1.11 of [18].

Lemma 4. Assume that μ1 ∈ D and μ2 ∈ D belong to the same parameter
subdomain (say) VBl

⊂ D, and let XN denote the RB space associated with
VBl
. Let ukN (μ1) ∈ XN and ukN (μ2) ∈ XN , 1 ≤ k ≤ K, satisfiy (3.1) for θ = 1.

Then the finite difference (ΔukN −Δuk−1N )/Δt is L2-bounded in time:

(
1

Δt

k∑
k′=1

‖Δuk′
N −Δuk

′−1
N ‖2L2

)1/2
≤ Ĉ|μ1 − μ2|, (4.19)

where

Ĉ =

(
3

α2

(
γ2αC̃2 + tkα2c2f + tkc2amax

μ∈D
‖f(·;μ)‖X′

))1/2
(4.20)

Proof. We refer to Appendix D for the proof.

We now claim

Proposition 1. Let D ⊂ R and let |D| denote the length of D. For specified
ε1tol, Algorithm 3 terminates for finite M = M(ε1tol) subdomains; moreover, the
convergence of the h-refinment stage is first order in the sense that

M(ε1tol) ≤ max

{
1,

C

ε1tol

}
, C = C(η, |D|). (4.21)
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Proof. The proof has two steps. We first show that the RB error bound is
Lipschitz continuous. We then relate this result to our particular procedure to
prove convergence of the hp-POD/Greedy algorithm.
Step 1. We recall that for μ ∈ D, the Riesz representation êkN (μ) of the

residual rkN (·;μ), 1 ≤ k ≤ K, satisfies

(êkN , v)X = rkN (v;μ), ∀v ∈ XN . (4.22)

Let μ1 ∈ D, μ2 ∈ D. We define ΔêkN ≡ êkN (μ1)− êkN (μ2). From (4.22) we note
that by linearity

(ΔêkN , v)X = f(v;μ1)− f(v;μ2)︸ ︷︷ ︸
I

+ a(ukN (μ2), v;μ2)− a(ukN (μ1), v;μ1)︸ ︷︷ ︸
II

+
1

Δt

(
m(ukN (μ2)− uk−1N (μ2), v)−m(ukN (μ1)− uk−1N (μ1), v)

)
︸ ︷︷ ︸

III

, (4.23)

for all v ∈ XN and for 1 ≤ k ≤ K. For the term I we invoke Lemma 1 directly
to obtain

|f(v;μ1)− f(v;μ2)| ≤ cf |μ1 − μ2|‖v‖X , ∀v ∈ X. (4.24)

For the term II we first write

|a(ukN (μ2), v;μ2)− a(ukN (μ1), v;μ1)|
= |a(ukN (μ1), v;μ2)− a(ukN (μ1), v;μ1)− a(ΔukN , v;μ2)|. (4.25)

Then, by the triangle inequality, Lemma 1, continuity, and (4.11), we obtain

|a(ukN (μ2), v;μ2)− a(ukN (μ1), v;μ1)|
≤ |a(ΔukN , v;μ2)|+ ca‖ukN (μ1)‖X‖v‖X |μ1 − μ2|

≤ γ‖ΔukN‖X‖v‖X + ca‖ukN (μ1)‖X‖v‖X |μ1 − μ2|. (4.26)

For the term III we invoke linearity, the Cauchy-Schwarz inequality, and the
Poincaré inequality6 to obtain

|m(ukN (μ2)−uk−1N (μ2), v)−m(ukN (μ1)−uk−1N (μ1), v)| = |m(ΔukN−Δuk−1N , v)|
≤ ‖ΔukN −Δuk−1N ‖L2‖v‖L2 ≤ ‖ΔukN −Δuk−1N ‖L2‖v‖X . (4.27)

6We suppose here for simplicity that ‖ · ‖X = ‖ · ‖H1 ; hence ‖v‖L2 ≤ ‖v‖X for all v ∈ X
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We now insert the expressions for I, II, and III into (4.23); for v = ΔêkN we
then obtain

(ΔêkN ,Δê
k
N )X ≤ cf |μ1 − μ2|‖ΔêkN‖X + γ‖ΔukN‖X‖ΔêkN‖X

+ ca‖ukN (μ1)‖X‖ΔêkN‖X |μ1 − μ2|+
1

Δt
‖ΔukN −Δuk−1N ‖L2‖ΔêkN‖X . (4.28)

We divide through in (4.28) by ‖Δêk‖X , square both sides, and invoke the
inequality (A + B + C + D)2 ≤ 4(A2 + B2 + C2 + D2) for A,B,C,D ∈ R to
obtain

‖Δêk‖2X ≤ 4|μ1 − μ2|2
(
c2f + c2a‖ukN (μ1)‖2X

)
+

4

Δt2
‖ΔukN −Δuk−1N ‖2L2 + 4γ2‖ΔukN‖2X . (4.29)

We multiply through in (4.29) by Δt, substitute k for k′, and sum over k′ to
obtain

Δt

k∑
k′=1

‖Δêk′‖2X ≤ 4|μ1 − μ2|2
(
c2f t

k + c2aΔt

k∑
k′=1

‖uk′
N (μ1)‖2X

)

+ 4γ2

(
1

Δt

k∑
k′=1

‖Δuk′
N −Δuk

′−1
N ‖2L2 +Δt

k∑
k′=1

‖Δuk′
N‖2X

)
. (4.30)

Next, from coercivity and Lemma 2 we note that

Δt

k∑
k′=1

‖uk′
N (μ1)‖2X ≤

|||ukN (μ1)|||2μ1

α
≤ tk

α2
max
μ∈D

‖f(·;μ)‖2X′ . (4.31)

Further, from coercivity and (4.11), and Lemma 3 and Lemma 4, we note that

4γ2

(
1

Δt

k∑
k′=1

‖Δuk′
N −Δuk

′−1
N ‖2L2 +Δt

k∑
k′=1

‖Δuk′
N‖2X

)

≤ 4γ2

(
1

Δt

k∑
k′=1

‖Δuk′
N −Δuk

′−1
N ‖2L2 +Δt

k∑
k′=1

a(Δuk
′

N ,Δu
k′
N ;μ2)

α

)

≤ 4γ2|μ1 − μ2|2
(
Ĉ2 +

C̃2

α

)
(4.32)
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From (4.30) with (4.31) and (4.32) we thus obtain

Δt
k∑

k′=1

‖Δêk‖2X ≤ c2|μ1 − μ2|2, (4.33)

where

c ≡ 2

(
tk

α2

(
α2c2f + c2amax

μ∈D
‖f(·;μ)‖2X′

)
+ γ2

(
C̃2 +

Ĉ2

α

))1/2
. (4.34)

By the definition of the RB error bound (recall that we use αLB(μ) = α) and
the reverse triangle inequality we finally obtain

|Δk
N (μ1)−Δk

N (μ2)| ≤
∣∣∣∣∣
(
Δt

α

k∑
k′=1

‖êkN (μ1)‖2X

)1/2
−
(
Δt

α

k∑
k′=1

‖êkN (μ2)‖2X

)1/2∣∣∣∣∣
≤
(
Δt

α

k∑
k′=1

‖ΔêkN‖2X

)1/2
≤ c√

α
|μ1 − μ2|. (4.35)

Step 2. The next step is to relate (4.35) to the convergence of Algoritm 3.
The algorithm generates a partition of D into M subdomains. Either M = 1,
in which case the proof is complete, or M > 1. We now examine the case
M > 1. We consider the splitting of any particular subdomain VBl

⊂ D into
two new subdomains V(Bl,0) ⊂ VBl

and V(Bl,1) ⊂ VBl
. We denote here by

μ̂0 = μ̂0Bl
= μ̂0(Bl,0)

the anchor point associated with VBl
and V(Bl,0), and by

μ̂1 = μ̂1Bl
= μ̂0(Bl,1)

the anchor point associated with V(Bl,1). We assume that
the error tolerance at the final time is not satisfied over (a train sample over)
VBl
; hence ε1tol < Δ̃K

R,Bl
(μ̂1). We recall that by construction of our procedure

Δ̃K
R,Bl

(μ̂0) ≤ ε1tol/η for specified η > 1. We can thus invoke (4.35) for μ1 = μ̂1,
μ2 = μ̂0, and Δk

N replaced by Δ̃
K
R,Bl

to conclude that

ε1tol −
ε1tol
η

< |Δ̃K
R,Bl

(μ̂1)− Δ̃K
R,Bl

(μ̂0)| ≤
c√
α
|μ̂1 − μ̂0|, (4.36)

and hence

|μ̂1 − μ̂0| >
ε1tol
√
α(η − 1)

cη
. (4.37)

126



An hp-RB Method for Parabolic Equations

We now split VBl
into V(Bl,0) and V(Bl,1) based on Euclidean distance to the

two anchor points. It is clear that

|V(Bl,i)| ≥
1

2
|μ̂1 − μ̂0| >

ε1tol
√
α(η − 1)

2cη
, i = 0, 1. (4.38)

The partition procedure generates M > 1 distinct subdomains VBm , 1 ≤ m ≤
M .7 Each of these subdomains is the result of a splitting of a “parent” subdomain
VBl

⊃ VBm (for some Bl, 1 ≤ l ≤ L− 1). Since Bl above was arbitrary, we can
successively set VBl

to be the parent of each of the M “leaf” subdomains and
conclude that

|VBm | > ε1tol
√
α(η − 1)

2cη
, 1 ≤ m ≤M. (4.39)

We define δM ≡ min1≤m≤M |VBm |; hence in particular δM >
ε1tol

√
α(η−1)
2cη .

We complete the proof by a contradiction argument. Assume that M ≥
|D|2cη

ε1tol
√
α(η−1) . Thus

MδM >
|D|2cη

ε1tol
√
α(η − 1)

ε1tol
√
α(η − 1)

2cη
= |D|, (4.40)

which is clearly a false statement. We conclude that the number of subdomains
M = M(ε1tol) < C(η, |D|)/ε1tol with C(η, |D|) =

|D|2cη√
α(η−1) . We finally note that

Algorithm 3 is convergent since the POD/Greedy (line 13) will be able to satisfy
the error bound tolerance ε2tol within each of theM final subdomains (recall that
we set N =∞).

Remark 3. The requirement η > 1 reappears in the proof in (4.36). We note
that we can not obtain a positive lower bound for the distance between the two
anchor points if η ≤ 1.

Remark 4. If we assume only f ∈ X ′ (and not in L2) and furthermore aII
only X-continuous in both arguments (and not L2-continuous in the second
argument), then we can still obtain Proposition 1 albeit with an additional factor
1/Δt in the “constant” C. However, we note that this 1/Δt factor is in this case
relatively “benign”: we can not in any event let “Δt→ 0” in practice because of

7In fact, we should interpretM here as the number of subdomains generated by Algorithm
3 so far; the VBm , 1 ≤ m ≤ M , are not necessarily the final M subdomains. With this
interpretation we thus do not presume termination of the algorithm.
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the increase in Online computational cost. (In contrast, we can let “N → ∞”
since larger N affects only Offline cost.)
We recall that all the hypotheses of Proposition 1 are satisfied by our numer-

ical example in Section 5.1.

Remark 5. Proposition 1 guarantees that the h-refinement partition algorithm
is convergent. However, the convergence is very slow and hence subsequent p-
refinement is in practice necessary. But note that with only a global Lipschitz
constant c in our proof, our bound (4.21) is very pessimistic, and in particular
does not reflect any adaptivity in the partition. In practice we expect that the
algorithm adaptively generates smaller subdomains in areas of D for which the
field exhibits larger variations with the parameters.

5 Numerical Results

We now present numerical results for two model problems. We demonstrate
that in both cases the hp-RB method yields significant Online computational
savings relative to a standard (p-type) RB approach; we also show that the
partitions of D may reflect the underlying parametric sensitivity of the prob-
lems. All our computational results are obtained via rbOOmit [14], which is
an RB plugin for the open-source FE library libMesh [11]. All computations
are performed on a 2.66 GHz processor. For the hp-RB approximations below,
we have used a “scaled” Euclidean distance for the distance function δ(·, ·): we
map D (a rectangle in both our examples) to D̂ = [0, 1]P (via an obvious affine
transformation) and compute the Euclidean distance on D̂. For the constant η
in Algorithm 3 we choose η = 1.1.

5.1 Convection-Diffusion Problem
We consider the nondimensional temperature u which satisfies the convection-
diffusion equation in the spatial domain Ω = {(x1, x2) : x21 + x22 < 2} for the
discrete time levels tk = 0.01k, 0 ≤ k ≤ 100; we employ Backward Euler tem-
poral discretization (hence θ = 1). We impose a parameter-dependent velocity
field V (μ) ≡ V (ν, ϕ) ≡ (ν cosϕ, ν sinϕ) and we prescribe a constant forcing
term q = 10. We specify homogeneous Dirichlet boundary conditions and zero
initial conditions. We denote a particular parameter value μ ∈ D by μ = (ν, ϕ)
and we introduce the parameter domain D = [0, 10] × [0, π] ⊂ RP=2. For this
problem, we focus for simplicity on the RB field approximation and thus we do
not consider any particular outputs.
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We next introduce the forms

m(w, v;μ) =

∫
Ω

wv,

a(w, v;μ) =

∫
Ω

(
∇w · ∇v + (V (μ) · ∇w)v

)
,

f(v;μ) = q

∫
Ω

v = 10

∫
Ω

v,

(5.1)

for v, w ∈ X, where X = H1
0 (Ω). Our problem can then be expressed in

the form (2.4) with b = 0; note that our only parameter-dependent form is
a, which admits an affine expansion (2.3) with Qa = 3. We note that this
problem satisfies all the theoretical hypothesis of Proposition 1.8 For our truth
approximation we choose a P2 FE space XN ⊂ X of dimension N = 1889.
To obtain a benchmark for comparison we first perform a standard (p-type)

POD/Greedy: we specify ε = 10−5 for the target tolerance, ΔN = 1 for the
number of POD modes to include at each greedy iteration, μ∗ = (0, 0) for the
initial parameter value, and a train sample Ξtrain ⊂ D of size 900. We then
execute Algorithm 2 (we also “specify” N = ∞ such that the POD/Greedy
terminates for ε satisfied over Ξtrain). The tolerance is in this case satisfied for
Nmax = Ñmax = 129.
We next perform two hp-POD/Greedy computations. In the first we specify

ε1tol = 5, ε2tol = 10−5, N = 65, ΔN = 1, μ̂0(1) = (0, 0), and a train sample
Ξtrain,(1) of size 64. In this case Algorithm 3 terminates forM = 22 subdomains
with Nmax = N = 65 (recall that Nmax ≡ max1≤m≤M Nmax,Bm). In the second
case we specify ε1tol = 1.5, ε2tol = 10−5, N = 45, ΔN = 1, μ̂0(1) = (0, 0), and
a train sample Ξtrain,(1) of size 25. In this case Algorithm 3 terminates for
M = 278 subdomains with Nmax = N = 45. The maximum RB L2(Ω) error
bound εmaxN,M (over the train samples) over all M subdomains for each of the
cases M = 22 and M = 278, as well as the p-type reference case M = 1, are
plotted in Figure 2 as functions of N . We note that larger M yields smaller N ,
as desired.
We show the two partitions of D in Figure 3.9 Note that the field variable

8Eq. (4.5) is satisfied with aII(w, v;μ) =
∫
Ω(V (μ) · ∇w)v. We note that aII is L2(Ω)

continuous in its second argument since by the Cauchy-Schwarz inequality aII(w, v) ≤(∫
Ω(V (μ) · ∇w)2

)1/2(∫
Ω v2

)1/2.
9To ensure a good spread over D of the rather few (25 or 64 for our two examples) initial

train points, we use for Ξtrain,(1) a deterministic initial regular grid. (For the train sample
enrichment, we use random points.) Since some train points belong to a regular grid, the
procedure may produce “aligned” subdomain boundaries, as seen in Figure 3.

129



Paper 3

0 20 40 60 80 100 120 140

10−4

10−2

100

101

10−3

10−5

10−1

N

εm
a
x

N
,M

Figure 2: Convergence: hp-RB (triangles (M = 22) and squares (M = 278)) and
p-type RB (circles). In the hp-RB cases, the error bound is the maximum over all
subdomains for a given N .

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

ν

ϕ

(a) M = 22

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

ν

ϕ

(b) M = 278

Figure 3: Parameter domain partitions VBm , 1 ≤ m ≤ M , for the convection-
diffusion problem.
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exhibits larger variations with ϕ for larger ν, and hence we would expect the
subdomain size to decrease with increasing ν. However, this is not the case in
Figure 3(b) except for smaller ν. By way of explanation we note that when
the field varies significantly with time, which is indeed the case for large ν,
R—the number of POD modes in the temporary space X̃R,Bl

—will be larger.
We suspect that the additional POD modes included in the X̃R,Bl

associated
with subdomains for ν larger than approximately 5 may also represent some
parametric variations in the field and hence account for the “non-monotonic”
(in ν) subdomain size.
We note that the hp-RB method indeed yields a significant Online speedup.

Online p-type RB calculation of the RB solution coefficients and error bound
for N = 129 basis functions requires 1.4 · 10−2 seconds. In contrast, Online
hp-RB calculation of the RB solution coefficients and error bound for the case
with M = 22 subdomains and N = 65 requires 3.3 · 10−3 seconds, and for
the case with M = 278 subdomains and N = 45 requires 1.8 · 10−3 seconds; in
both cases, the search for the subdomain containing the new online parameter is
negligible (O(10−6) seconds). (The timing results are averages over 100 Online
calculations for randomly selected μ ∈ D.)
Of course Offline cost and Online storage are larger for the hp-RB than for

the standard (p-type) RB: the Offline stage requires 29.6 minutes and 3.5 hours
for the hp-RB computations (M = 22 andM = 278, respectively) and only 13.4
minutes for the standard RB; the Online Dataset requires 25.3Mbytes and 142.9
Mbytes for the hp-RB computations (M = 22 and M = 278, respectively) and
only 5.7 Mbytes for the standard RB. In particular Offline cost for theM = 278
computation is admittedly very large compared to the Offline cost for the p-type
computation. Of course, even in our “real time” and “many query” contexts, the
larger Offline cost associated with the hp-RB method may be an issue; we must
thus seek to balance the increase in Offline cost against the decrease in Online
cost by appropriate choices of the parameters ε1tol and N . We note that for this
problem, our M = 22 hp-RB computation provides significant Online speedup
at only modest increase in Offline cost.
The additional splitting step—the “insurance” provided by lines 15–18 in

Algorithm 3—was never invoked for either hp-POD/Greedy computation. For
the computation with specified N = 65, the average of Nmax,Bm , 1 ≤ m ≤
M = 22 is 57.3. For the computation with specified N = 45, the average of
Nmax,Bm , 1 ≤ m ≤M = 278, is 37.9. We conclude that in both cases we could
have chosen ε1tol somewhat larger (at the risk of invoking insurance) in order to
obtain a more optimal partition with respect to the target N .
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We finally note that calculation of the truth (2.4) for this problem with
N = 1889 requires about 0.9 seconds. The average speedup relative to a truth
calculation is approximately 64 for the p-type Online calculation with N = 129,
and approximately 273 and 500 for the hp-RB Online calculations (N = 65,
M = 22, and N = 45, M = 278, respectively).

5.2 Boussinesq Problem

We consider natural convection in the two-dimensional enclosure Ω = (0, 5)2\P,
where P is the “pillar” (2.5− 0.1, 2.5 + 0.1)× (0, 1), for the discrete time levels
tk = 0.0016k, 0 ≤ k ≤ 100; we employ Crank-Nicolson temporal discretization
(hence θ = 0.5). The direction of the acceleration of gravity is defined by the
unit vector (− sinφ,− cosφ). We solve for the field variables V1, V2 (the x and y
components of the fluid velocity) and ϑ (the temperature) over Ω; hence the field
has dimension d = 3. The “roof” of the enclosure is maintained at temperature
ϑ = 0, the sides and base of the enclosure are perfectly thermally insulated, and
the top and sides of the pillar are subject to a uniform heat flux of magnitude
Gr (the Grashof number); we impose no-slip velocity conditions on all walls.
We denote a particular parameter value μ ∈ D by μ = (μ1, μ2) = (Gr, φ) and
we introduce the parameter domain D = [4000, 6000] × [0, 0.2] ⊂ RP=2. Note
we set the Prandtl number, Pr, here to 0.71 (for air).

Our goal is to study parametric dependence of the temperature in regions
at or near the top of the heated pillar (or “fin”) in the presence of natural
convection, and hence we are interested in local average-temperature outputs.
These outputs can be expressed as L2(Ω)-bounded functionals of ϑ, namely,

sn(t;μ) = �n(ϑ(t;μ), μ) =
1

μ1|Dn|

∫
Dn

ϑ(t;μ) ; (5.2)

here D1 = [2.2, 2.4] × [1, 1.1], D2 = [2.4, 2.6] × [1, 1.1], D3 = [2.6, 2.8] × [1, 1.1]
are three small rectangles above the pillar. The domain geometry and output
regions are depicted in Figure 4.
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Figure 4: The computational domain; note that Ω does not include the pillar, which
is shaded in red. The output regions D1, D2 and D3 are also indicated.

We introduce the forms

m(w, v;μ) =

∫
Ω

wivi,

a(w, v;μ) =

∫
Ω

(
∂w1
∂xj

∂v1
∂xj

+
∂w2
∂xj

∂v2
∂xj

+
1

Pr

∂w3
∂xj

∂v3
∂xj

)
,

b1(w, v;μ) = −
√
μ1Pr sinμ2

∫
Ω

w3v1 −
√
μ1Pr cosμ2

∫
Ω

w3v2,

b2(w, z, v;μ) =
1

2
√
μ1Pr

∫
Ω

(
∂wizj
∂xj

+ zj
∂wi

∂xj

)
vi,

f(v;μ) =
μ1
Pr

∫
∂Ωp

v3,

(5.3)

for w = (w1, w2, w3) ∈ X, v = (v1, v2, v3) ∈ X, and z = (z1, z2, z3) ∈ X; in
these expressions, i = 1, 2, 3 and j = 1, 2. Here, X = Z ×W , where Z is the
divergence-free subspace of (H1

0 (Ω))
2, and H1

0 (Ω) ⊂W ⊂ H1(Ω) is the subspace
of H1(Ω) of functions which vanish on the enclosure roof.
Our problem can then be expressed in the form (2.4) with b(w, z, v;μ) =

b1(w, v;μ)+b2(w, z, v;μ) (we have used a skew-symmetric form of the nonlinear
convection operator b2(w, z, v;μ) in order to generate certain discrete stability
properties [18]); note that all forms satisfy the “affine” assumption. For our
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Figure 5: (a) Convergence: hp-RB (triangles) and p-type RB (circles). (b) Parameter
domain partition: we show the anchor point (a circled white dot) and the Greedily
selected parameters (white dots) in each subdomain; note that, within a subdomain,
parameters are often selected more than once by the POD/Greedy algorithm.

truth FE space, we choose XN = ZN ×WN of dimension N = 7248, where ZN

denotes a discretely divergence-free P2 space for the velocity (developed from the
P2 − P1 Taylor-Hood velocity-pressure approximation) and WN is a standard
P2 FE space for the temperature. For further details on the formulation of this
problem see [12].
We note that for the computational results for this problem, we consider

a “relative L2(Ω) error bound” version of Algorithm 2 and hence Algorithm 3.
To obtain a benchmark for comparison we first perform a standard (p-type)
POD/Greedy computation: we specify ε = 2 · 10−3 for the target tolerance,
ΔN = 3 for the number of POD modes to include at each Greedy iteration,
μ∗ = (6000, 0) for the initial parameter value, and a train sample Ξtrain of size
200. In this case Algorithm 2 terminates for Nmax = Ñmax = 72. Recall that in
the quadratically nonlinear case the POD/Greedy terminates when the nominal
error bound reaches the prescribed tolerance.
We then perform an hp-POD/Greedy computation: we specify ε1tol = 1.2,

ε2tol = 2 · 10−3, N = 45, ΔN = 3, μ̂0(1) = (6000, 0), and a train sample Ξtrain,(1)
of size 9. In this case Algorithm 2 terminates after generation of M = 45
subdomains with Nmax = 45. The maximum relative RB L2(Ω) error bound
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Figure 6: The RB outputs sN,1(t
k;μ) (red, solid line), sN,2(t

k;μ) (blue, solid line),
sN,3(t

k;μ) (green, solid line), and associated error bars (dashed lines) as functions of
time for three values of μ.

εmaxN,M (over the train samples) over all subdomains for the hp-RB approximation
as well as for the p-type RB approximation are shown in Figure 5(a). As in the
linear case, the hp approach trades reduced N for increased M . We show the
hp-RB parameter domain partition in Figure 5(b).
In Figure 6 we show for N = 45 the RB output approximations to the

three outputs (5.2) for three parameter values (Gr, φ) = (4000, 0.05), (Gr, φ) =
(5000, 0.1), and (Gr, φ) = (6000, 0.2). We also indicate the corresponding error
bars [skN,j(μ) −Δk

N,sj
(μ), skN,j(μ) + Δk

N,sj
(μ)], 1 ≤ k ≤ K, 1 ≤ j ≤ 3, in which

the true result sN k
j must reside. We recall that the RB output error bounds

ΔN,sj are obtained as the product of the RB field error bound ΔN and the dual
norm of the output functional (Eq. (3.7)).10 We remark that the accuracy of
these hp-RB outputs is comparable with the accuracy of the p-type RB outputs
since the hp-POD/Greedy and p-type POD/Greedy calculations terminate for
the same specified tolerance. Note that time is measured in diffusive units and
hence the final time of 0.16 is sufficient to observe (at these Gr) significant
nonlinear effects.
The standard (p-type) RB method yields a significant Online speedup rela-

tive to the expensive Boussinesq truth FE solves (one truth solve requires 239
seconds); nevertheless, these p-type RB computations are still rather expensive
due to the O(N4) complexity of the RB error bound for quadratically nonlin-
ear problems. The hp-POD/Greedy method of this paper provides a significant
additional speedup in the hp-RB Online stage due to the direct control of Nmax

10We note that sup
v∈XN

�n(v;μ)

‖v‖L2

=
1

μ1|Dn|
sup

v∈XN

∫
Dn

v

‖v‖L2

≤ 1

μ1

√
|Dn|

√√√√
∫
Dn

v2∫
Ω v2

≤ 1

μ1

√
|Dn|

.
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and hence reduction in N : Online p-type RB calculation of the output and er-
ror bound with N = 72 basis functions requires 6.48 seconds, whereas Online
hp-RB calculation of the output and error bound with M = 45 subdomains and
N = 45 requires only 0.845 seconds. Of course Offline cost and Online storage
are larger for the hp-RB than for the standard RB: the Offline stage requires
about 69 hours for the hp-RB and only about 5.2 hours for the standard RB;
the Online Dataset requires 2.3 Gbytes for the hp-RB and only 481 Mbytes for
the standard RB.
We finally note that the additional splitting step (“insurance”) was invoked

for ten subdomains for the hp-POD/Greedy computation, and the average of
Nmax,Bm , 1 ≤ m ≤M , is 40.1. This suggest that ε1tol in this case was reasonably
well chosen with respect to the target N .

A Proof of Lemma 1

From (4.5), (4.7), and (4.9) we obtain (4.13) with

ca = Qamax2≤q≤Qa
(γqLq

a). (A.1)

From (4.4), (4.8), and (4.10) we obtain (4.14) with

cf = Qfmax1≤q≤Qf
(‖fq‖L2Lq

f ). (A.2)

B Proof of Lemma 2

From (2.4) with v = uN k(μ) we obtain

1

Δt
m(uN k(μ), uN k(μ)) + a(uN k(μ), uN k(μ);μ)

=
1

Δt
m(uN k−1(μ), uN k(μ)) + f(uN k(μ);μ). (B.1)

We next recall Young’s inequality AB ≤ (A2/κ + κB2)/2 (for A,B, κ ∈ R).
For the first term on the right we first invoke the Cauchy-Schwarz inequal-
ity and then Young’s inequality for A = m(uN k−1(μ), uN k−1(μ))1/2, B =
m(uN k(μ), uN k(μ))1/2, and κ = 1 to obtain

m(uN k−1(μ), uN k(μ)) ≤ m(uN k−1(μ), uN k−1(μ))1/2m(uN k(μ), uN k(μ))1/2

≤ 1

2

(
m(uN k−1(μ), uN k−1(μ)) +m(uN k(μ), uN k(μ))

)
. (B.2)
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For the second term on the right we first invoke boundedness of f(·;μ) and then
Young’s inequality with A = ‖f(·;μ)‖X′ , B = ‖uN k(μ)‖X , and κ = α(μ) to
obtain

f(uN k(μ);μ) ≤ ‖f(·;μ)‖X′‖uN k(μ)‖X ≤
1

2

(
‖f(·;μ)‖2X′

α(μ)
+α(μ)‖uN k(μ)‖2X

)

≤ 1

2

(
‖f(·;μ)‖2X′

α(μ)
+ a(uN k(μ), uN k(μ);μ)

)
, (B.3)

where the last step follows from coercivity of a(·, ·;μ). We combine (B.2) and
(B.3) with (B.1), invoke (4.11), substitute k′ for k, and sum over k′ to obtain
(4.16).

C Proof of Lemma 3

From linearity of (3.1) we obtain, for 1 ≤ k ≤ K,

1

Δt
m(ΔukN −Δuk−1N , v) + a(ΔukN , v;μ2)

= f(v;μ1)− f(v;μ2) + a(ukN (μ1), v;μ2)− a(ukN (μ1), v;μ1), ∀v ∈ XN .
(C.1)

Next, from Lemma 1 we obtain

1

Δt
m(ΔukN −Δuk−1N , v) + a(ΔukN , v;μ2)

= f(v;μ1)− f(v;μ2) + a(ukN (μ1), v;μ2)− a(ukN (μ1), v;μ1)
≤ cf |μ1 − μ2|‖v‖X + ca|μ1 − μ2|‖ukN (μ1)‖X‖v‖X . (C.2)

For the first term on the right we invoke Young’s inequality for A = cf |μ1−μ2|,
B = ‖v‖X , and κ = α/2 to note that

cf |μ1 − μ2|‖v‖X ≤
1

2

(
2c2f
α
|μ1 − μ2|2 +

α

2
‖v‖2X

)

≤
c2f
α
|μ1 − μ2|2 +

1

4
a(v, v;μ2), (C.3)
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where the second inequality follows from coercivity of a(·, ·;μ2). For the second
term on the right we invoke Young’s inequality for A = ca|μ1 − μ2|‖ukN (μ1)‖X ,
B = ‖v‖X , and κ = α/2 to note that

ca|μ1 − μ2|‖ukN (μ1)‖X‖v‖X ≤
1

2

(
2c2a
α
|μ1 − μ2|2‖ukN (μ1)‖2X +

α

2
‖v‖2X

)

≤ c2a
α2
|μ1 − μ2|2a(ukN (μ1), ukN (μ1);μ1) +

1

4
a(v, v;μ2), (C.4)

where the second inequality follows from coercivity of a(·, ·;μ). With (C.2),
(C.3), and (C.4) we obtain for v = ΔukN ,

m(ΔukN ,Δu
k
N ) +

Δt

2
a(ΔukN ,Δu

k
N ;μ2) ≤ m(Δuk−1N ,ΔukN )

+
Δt

α2
|μ1 − μ2|2

(
αc2f + c2aa(u

k
N (μ1), u

k
N (μ1);μ1)

)
. (C.5)

For the first term on the right we note by the Cauchy-Schwarz inequality and
Young’s inequality for A = m(Δuk−1N ,Δuk−1N )1/2, B = m(ΔukN ,Δu

k
N )

1/2, and
κ = 1 that

m(Δuk−1N ,ΔukN ) ≤ m(Δuk−1N ,Δuk−1N )1/2m(ΔukN ,Δu
k
N )

1/2

≤ 1

2
m(Δuk−1N ,Δuk−1N ) +

1

2
m(ΔukN ,Δu

k
N ). (C.6)

Hence

m(ΔukN ,Δu
k
N )−m(Δuk−1N ,Δuk−1N ) + Δt a(ΔukN ,Δu

k
N ;μ2)

≤ 2Δt

α2
|μ1 − μ2|2

(
αc2f + c2aa(u

k
N (μ1), u

k
N (μ1);μ1)

)
. (C.7)

We now substitute k′ for k and sum over k′ to obtain

|||ΔukN |||2μ2
≤ 2

α2
|μ1 − μ2|2

(
αc2f t

k + c2aΔt

k∑
k′=1

a(uk
′

N (μ1), u
k′
N (μ1);μ1)

)
. (C.8)

We finally note that Δt
∑k

k′=1 a(u
k′
N (μ1), u

k′
N (μ1);μ1) ≤ |||ukN (μ1)|||2μ1

. Hence,
by Lemma 2 we obtain (4.17) for C̃ given in (4.18).
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D Proof of Lemma 4

From linearity of (3.1) we obtain, for 1 ≤ k ≤ K,

1

Δt
m(ΔukN −Δuk−1N , v) + a(ΔukN , v;μ2)

= f(v;μ1)− f(v;μ2) + a(ukN (μ1), v;μ2)− a(ukN (μ1), v;μ1), ∀v ∈ XN .
(D.1)

We choose v = (ΔukN −Δuk−1N )/Δt ∈ XN and obtain

1

Δt2
‖ΔukN −Δuk−1N ‖2L2 +

1

Δt
a(ΔukN ,Δu

k
N −Δuk−1N ;μ2)

=
1

Δt
f(ΔukN −Δuk−1N ;μ1)−

1

Δt
f(ΔukN −Δuk−1N ;μ2)

+
1

Δt
a(ukN (μ1),Δu

k
N −Δuk−1N ;μ2)−

1

Δt
a(ukN (μ1),Δu

k
N −Δuk−1N ;μ1), (D.2)

for all v ∈ XN . From Lemma 1 we obtain

1

Δt
f(ΔukN −Δuk−1N ;μ1)−

1

Δt
f(ΔukN −Δuk−1N ;μ2)

≤ cf
Δt
‖ΔukN −Δuk−1N ‖L2 |μ1 − μ2| (D.3)

and

1

Δt
a(ukN (μ1),Δu

k
N −Δuk−1N ;μ2)−

1

Δt
a(ukN (μ1),Δu

k
N −Δuk−1N ;μ1)

≤ ca
Δt
‖ukN (μ1)‖X‖ΔukN −Δuk−1N ‖L2 |μ1 − μ2|. (D.4)

We thus obtain

1

Δt2
‖ΔukN −Δuk−1N ‖2L2 +

1

Δt
a(ΔukN ,Δu

k
N −Δuk−1N ;μ2)

≤ cf
Δt
‖ΔukN −Δuk−1N ‖L2 |μ1 − μ2|

+
ca
Δt
‖ukN (μ1)‖X‖ΔukN −Δuk−1N ‖L2 |μ1 − μ2|. (D.5)
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We now recall from (4.5) that a(·, ·;μ) = a1(·, ·)+aII(·, ·;μ). We may thus write

1

Δt2
‖ΔukN −Δuk−1N ‖2L2 +

1

Δt
a1(ΔukN ,Δu

k
N )

≤ 1

Δt
a1(ΔukN ,Δu

k−1
N ) +

1

Δt
|aII(ΔukN ,ΔukN −Δuk−1N ;μ2)|

+
cf
Δt
‖ΔukN −Δuk−1N ‖L2 |μ1 − μ2|

+
ca
Δt
‖ukN (μ1)‖X‖ΔukN −Δuk−1N ‖L2 |μ1 − μ2|. (D.6)

Next, we apply the Cauchy-Schwarz inequality to the first term on the right and
continuity to the second term on the right; we then apply Young’s inequality to
each term on the right to obtain

1

Δt2
‖ΔukN −Δuk−1N ‖2L2 +

1

Δt
a1(ΔukN ,Δu

k
N )

≤ 1

2Δt

(
a1(ΔukN ,Δu

k
N ) + a1(Δuk−1N ,Δuk−1N )

)
+
γ

2

( 1

3γΔt2
‖ΔukN −Δuk−1N ‖2L2 + 3γ‖ΔukN‖2X

)
+
1

2

( 1

3Δt2
‖ΔukN −Δuk−1N ‖2L2 + 3c2f |μ1 − μ2|2

)
+
1

2

( 1

3Δt2
‖ΔukN −Δuk−1N ‖2L2 + 3c2a‖ukN (μ1)‖2X |μ1 − μ2|2

)
, (D.7)

or

1

Δt
‖ΔukN −Δuk−1N ‖2L2 + a1(ΔukN ,Δu

k
N )− a1(Δuk−1N ,Δuk−1N )

≤ 3γ2Δt‖ΔukN‖2X + 3|μ1 − μ2|2
(
c2fΔt+ c2aΔt‖ukN (μ1)‖2X

)
. (D.8)

We then substitute k′ for k and sum over k′ to obtain

1

Δt

k∑
k′=1

‖Δuk′
N −Δuk

′−1
N ‖2L2 + a1(ΔukN ,Δu

k
N )

≤ 3γ2
k∑

k′=1

Δt‖Δuk′
N‖2X + 3|μ1 − μ2|2

(
c2f t

k + c2aΔt

k∑
k′=1

‖uk′
N (μ1)‖2X

)
. (D.9)
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Finally, we first invoke coercivity of a(·, ·;μ), and then Lemmas 2 and 3 to obtain

1

Δt

k∑
k′=1

‖Δuk′
N −Δuk

′−1
N ‖2L2 + a1(ΔukN ,Δu

k
N )

≤ 3γ2

α
Δt

k∑
k′=1

a(Δuk
′

N ,Δu
k′
N ;μ2)

+
3

α
|μ1 − μ2|2

(
αc2f t

k + c2aΔt

k∑
k′=1

a(uk
′

N (μ1), u
k′
N (μ1);μ1)

)

≤ |μ1 − μ2|2
3

α2

(
γ2αC̃2 + tkα2c2f + tkc2amax

μ∈D
‖f(·;μ)‖X′

)
. (D.10)

The desired result thus follows since a1(ΔukN ,Δu
k
N ) ≥ 0.
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Abstract

In this paper we introduce a two-step Certified Reduced Basis (RB)
method. In the first step we construct from an expensive finite element
“truth” discretization of dimension N an intermediate RB model of di-
mension N � N . In the second step we construct from this intermediate
RB model a derived RB (DRB) model of dimension M ≤ N . The con-
struction of the DRB model is effected at cost O(N) and in particular
at cost independent of N ; subsequent evaluation of the DRB model may
then be effected at cost O(M). The DRB model comprises both the DRB
output and a rigorous a posteriori error bound for the error in the DRB
output with respect to the truth discretization.
The new approach is of particular interest in two contexts: focus cal-
culations and hp-RB approximations. In the former the new approach
serves to reduce online cost, M � N : the DRB model is restricted to a
slice or subregion of a larger parameter domain associated with the in-
termediate RB model. In the latter the new approach enlarges the class
of problems amenable to hp-RB treatment by a significant reduction in
offline (precomputation) cost: in the development of the hp parameter
domain partition and associated “local” (now derived) RB models the fi-
nite element truth is replaced by the intermediate RB model. We present
numerical results to illustrate the new approach.

1 Introduction

The Certified Reduced Basis (RB) method is a computational and mathematical
framework for model order reduction of parameter dependent partial differential
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equations (PDEs). In particular, the RB method provides rapid and certifiable
computation of linear functional outputs — such as average field values or av-
erage fluxes — associated with the solution to the PDE for any set of input
parameter values that configure the PDE in terms of (say) applied forces, mate-
rial properties, geometry, or boundary conditions. The RB method is of interest
in two particular contexts: real-time — such as parameter estimation [23] and
optimal control [13] — and many-query — such as multiscale [3, 20] or stochas-
tic simulation [4]. In these contexts, a computational preprocessing (offline)
stage is typically justified. Early contributions to the RB methodology include
[1, 24, 25]. For a review of these as well as more recent contributions, see [26].
Given any input parameter value from a predefined parameter domain, the

RB field approximation is a Galerkin-optimal linear combination of N precom-
puted highly accurate (“truth”) N -degree-of-freedom Finite Element (FE) snap-
shots of the solution to the PDE associated with N judiciously chosen parameter
values. The RB output approximation is then evaluated as a linear functional
of the RB field approximation. When the solution depends smoothly on the
parameters an accurate RB approximation may be computed based on rather
few precomputed snapshots: N � N . Moreover, a rigorous a posteriori RB
output error bound for the difference between the truth output and RB output
may also be developed.
The efficiency of the RB method in the real-time and many-query contexts is

effected through an offline-online computational strategy. The RB offline stage
comprises FE snapshot selection and computation. This stage may be expensive
— N -dependent — but is performed only once as preprocessing. The RB online
stage comprises evaluation of the RB output and RB output error bound for
any given input parameter value. This stage is inexpensive — N -independent
— and may thus be effected in real-time and many-query contexts. The keys to
the N -independent online stage are efficient construction–evaluation computa-
tional procedures that link the offline and online stages through a stored dataset
of size independent of N . These procedures also provide efficient and exhaus-
tive exploration of the parameter domain in the offline selection of optimal FE
snapshots through a Greedy sampling algorithm.
In this paper we introduce a two-step Certified RB method. In the first

step we construct from an expensive FE truth discretization of dimension N an
intermediate RB model of dimension N � N . In the second step we construct
from this intermediate RB model a derived RB (DRB) model of dimension
M ≤ N . The construction of the DRB model is effected at cost O(N) and in
particular at cost independent of N ; subsequent evaluation of the DRB model
may then be effected at cost O(M). The DRB model comprises both the DRB
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output and a rigorous a posteriori error bound for the error in the DRB output
with respect to the truth discretization.
The DRB model is defined over a parameter subdomain (typically a sub-

region or submanifold of the original parameter domain associated with the
underlying intermediate RB model) and hence typically M can be chosen sig-
nificantly smaller than N ; the DRB model thus enables an additional speedup.
The key innovations of this paper are efficient DRB precomputation — the con-
struction cost of the DRB model is N -independent — and rigorous and efficient
a posteriori bounds for the error in the DRB approximation — the error may
be bounded rigorously with respect to the N -complexity FE truth at evaluation
cost independent of N and N .
The notion of two-step model order reduction has been considered in earlier

works, albeit in different contexts and with different emphasis than our approach
here. In [29], a “Fourier model reduction method” for large (non-parametric)
control problems is presented. The Fourier method is first applied to the orig-
inal equation in order to construct an “intermediate order” reduced system; a
computationally more intensive reduction method, such as balanced truncation
[22], may then be applied to this intermediate order system. A two-step strategy
is also pursued in [18], where a Krylov subspace method is followed by balanced
truncation in the context of circuit component design.
In this paper, we consider parametric model order reduction in two contexts

in which our new approach is of particular interest:

Focus calculations. We consider the case in which we require many (or real-
time) RB output evaluations in a parameter subdomain or submanifold D′ ⊂ D.
For an accurate approximation over this smaller parameter subdomain, a smaller
DRB model may be sufficient and hence provide faster output computation
compared to the standard RB alternative. Applications include parameter es-
timation and in particular Bayesian inference [23] and frequentistic validation
[14], as well as visualization or indeed design or optimization of an RB output
or RB error bound over a 1-parameter or 2-parameter slice of the full parameter
domain.

hp-RB approximation. The hp-RB method was recently introduced in [7].
This approach provides an online speedup of the RB approximation through an
optimal and automatic partition (h-refinement) of the full parameter domain D
into K parameter subdomains Vk ⊂ D, 1 ≤ k ≤ K. A standard RB model of
dimension Nk is then constructed for each parameter subdomain (p-refinement);
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presumably we may choose Nk � N since each “local” approximation space
is invoked for a smaller range of parameter values. However, although the
online speedup associated with an hp-RB approximation may be significant, the
offline cost can be rather large: the dimension reduction effected within each
subdomain does not balance the number of parameter subdomains in terms of
total offline computational cost. Thus, in particular, the hp-RB offline stage
requires

Ntotal =

K∑
k=1

Nk > N (1.1)

truth FE snapshot computations in total.
With the new two-step approach introduced in this paper, we replace the

Ntotal expensive offline FE truth snapshot computations in the hp-RB offline
stage with much less expensive RB snapshot approximations; we then replace
the standard RB model associated with each parameter subdomain by a DRB
model. Through this hp-DRB approach, we may significantly reduce the hp-
RB offline cost and hence broaden the class of problems amenable to hp-RB
treatment. We include a summary of the hp-RB method in Section 5.1.
We may also pursue a mixed approach (for focus calculations or hp-RB

approximations), in which the underlying intermediate RB model is in fact an
hp-RB model. However, in particular with an hp-DRB approach, there is in
this case a delicate balance in the offline stage between additional FE snapshot
computations (for the underlying hp-RB model) and faster hp-RB snapshot
computation (for the DRB models). We do not consider this mixed approach
further in this paper.
The paper is organized as follows. We introduce in Section 2 the problem

statement as well as notation required later; we also introduce two model prob-
lems to which we shall apply the new method. We introduce in Section 3 the
new two-step approximation scheme; we discuss the (Greedy) construction of
the RB and DRB approximation spaces, a posteriori error estimation, and the
associated (construction-evaluation) computational procedures. We consider in
Section 4 and Section 5 the new approach in the context of focus calculations
and in the context of hp-RB approximations, respectively. In each context we
discuss the associated offline-online computational decoupling, and we present
numerical results for our two model problems; for all our numerical results we
use rbOOmit [21], which is an RB plugin for the open source FE library libMesh
[19]. Finally, in Section 6, we summarize the paper and discuss some areas of
future work.
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2 Problem Statement

2.1 Abstract Framework
We consider linear elliptic second order partial differential equations. For sim-
plicity in the exposition of our approach we consider the formulation only for
real-valued fields, however the extension to complex fields is straightforward and
in fact in our second model problem (Helmholtz acoustic horn) we present results
for this complex case. We introduce the spatial domain Ω ⊂ Rd (d = 1, 2, 3); we
shall denote a particular spatial point x ∈ Ω as x = (x(1), . . . , x(d)). We further
specify the function spaces L2(Ω) = {v :

∫
Ω
v2 <∞}, H1(Ω) = {|∇v| ∈ L2(Ω)},

andH1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0}; we then introduce the spaceXe associated

with the exact solutions of the parametrized PDE as H1
0 (Ω) ⊆ Xe ⊆ H1(Ω).

We next introduce a parameter domain D ⊂ RP ; we shall denote a particular
parameter value μ ∈ D as μ = (μ(1), . . . , μ(P )).
We next introduce a parametrized bilinear form a and a parametrized linear

functional f such that for any parameter value μ ∈ D, a(·, ·;μ) : Xe ×Xe → R
is coercive and continuous over Xe, and f(·;μ) : Xe → R is bounded over Xe.
We also introduce an Xe-bounded linear output functional � : Xe → R which
we for simplicity assume is parameter independent. We shall further assume
that a and f admit parametrically affine expansions

a(·, ·;μ) =
Qa∑
q=1

aq(·, ·)Θq
a(μ), (2.1)

f(·;μ) =
Qf∑
q=1

fq(·)Θq
f (μ), (2.2)

respectively, where Qa ≤ Q, Qf < Q, and Q is finite and relatively small. The
assumptions (2.1) and (2.2) accommodate the construction-evaluation compu-
tational procedures which we shall discuss in detail in Section 3.4. However,
we note that these assumptions may be relaxed by the Empirical Interpola-
tion Method [2, 5, 9], which in the non-affine case serves to construct affine
expansions that are good approximations to the non-affine forms.
We denote by μ̄ ∈ D a fixed “reference” parameter value; we then introduce

the X-inner product and the associated X-norm for any v, w ∈ Xe as

(w, v)X =
1

2
(a(w, v; μ̄) + a(v, w; μ̄)), ‖v‖X =

√
(v, v)X , (2.3)
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respectively (more generally we may consider any inner product with induced
norm equivalent to ‖ · ‖X). We further introduce the coercivity and continuity
constants of a,

αe(μ) = inf
v∈Xe

a(v, v;μ)

‖v‖2X
, γe(μ) = sup

v∈Xe

sup
w∈Xe

a(v, w;μ)

‖v‖X‖w‖X
, (2.4)

respectively.
We may now introduce the abstract formulation of the exact problem. Given

any parameter value μ ∈ D, find ue(μ) ∈ Xe such that

a(ue(μ), v;μ) = f(v;μ), ∀v ∈ Xe, (2.5)

and then evaluate the exact output of interest as

se(μ) = �(ue(μ)). (2.6)

We next introduce a high-fidelity truth FE approximation space X ≡ XN ⊂
Xe of finite dimension N . We may then introduce the truth FE discretization
of (2.5)–(2.6): given any μ ∈ D, find u(μ) ∈ X such that

a(u(μ), v;μ) = f(v;μ), ∀v ∈ X, (2.7)

and then evaluate the truth output of interest as

s(μ) = �(u(μ)). (2.8)

We shall assume that X is chosen rich enough (and thus N large enough) that,
for any μ ∈ D, the error between the exact solution ue(μ) and the truth approx-
imation u(μ) is negligible at the desired level of numerical accuracy for the RB
approximation; the RB approximation shall be built upon, and the RB error
shall be bounded with respect to, this FE truth approximation.
We now introduce the coercivity and continuity constants of a with respect

to X,

α(μ) = inf
v∈X

a(v, v;μ)

‖v‖2X
, γ(μ) = sup

v∈X
sup
w∈X

a(v, w;μ)

‖v‖X‖w‖X
, (2.9)

respectively; for our a posteriori error estimators, we shall also require a co-
ercivity lower bound αLB: 0 < αLB(μ) ≤ α(μ), for all μ ∈ D. An efficient
computational procedure for the computation of a coercivity lower bound is
possible through the Successive Constraint Method (SCM) [16, 17, 26].
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x(1)

x(3)
x(2)Ωout

Ω0 Ω1

Ω2 Ω3

Ω4 Ω5

Ω6 Ω7

Γbase

Γtop

Γwall

Γwall

Figure 1: The thermal block.

The RB method [26] provides an acceleration of the truth (2.7)–(2.8) by the
construction of an approximation space of low dimension N � N . This space
is optimized for the particular problem at hand, and thus provides accurate
approximations despite the relatively low cost. The DRB method, which is the
focus of this paper, further accelerates the RB approximation in contexts such
as focus calculations and hp-RB approximations by the construction of an ap-
proximation space derived from an intermediate RB approximation space. This
DRB approximation space is tailored to a parameter subdomain or submanifold
of the original parameter domain, and is of even lower dimension M ≤ N .

2.2 Model Problems

2.2.1 A 3D Thermal Block

We introduce here a “thermal block” linear elliptic model problem. We specify
the spatial domain (the thermal block) Ω = (0, 1)3, which is partitioned into
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eight subblocks

Ω0 = (0, 0.5)× (0, 0.5)× (0, 0.5), (2.10)
Ω1 = (0.5, 1)× (0, 0.5)× (0, 0.5), (2.11)
Ω2 = (0, 0.5)× (0.5, 1)× (0, 0.5), (2.12)
Ω3 = (0.5, 1)× (0.5, 1)× (0, 0.5), (2.13)
Ω4 = (0, 0.5)× (0, 0.5)× (0.5, 1), (2.14)
Ω5 = (0.5, 1)× (0, 0.5)× (0.5, 1), (2.15)
Ω6 = (0, 0.5)× (0.5, 1)× (0.5, 1), (2.16)
Ω7 = (0.5, 1)× (0.5, 1)× (0.5, 1), (2.17)

as shown in Figure 1. We shall consider the nondimensionalized temperature
ue(μ) in Ω. We specify unity (inward) heat flux on the floor Γbase = {x ∈ ∂Ω :
x(3) = 0}; we specify thermal insulation ∂ue/∂n = 0 on the walls Γwall = {x ∈
∂Ω : x(1) = 0 or x(1) = 1} ∪ {x ∈ ∂Ω : x(2) = 0 or x(2) = 1} (here n denotes the
outward normal unit vector); and we specify zero temperature ue = 0 on the top
Γtop = {x ∈ ∂Ω : x(3) = 1}. We require continuity of the temperature and of
the heat flux across interior boundaries. We next specify the parameter domain
D = [0.5, 2]7; the thermal conductivity in the seven subblocks Ωi, 1 ≤ i ≤ 7, is
given by μ(i), 1 ≤ i ≤ 7. The thermal conductivity in Ω0 is equal to unity.
We now specify the exact space Xe = {v ∈ H1(Ω) : v|Γtop

= 0}. We then
specify, for all μ ∈ D and for any w, v ∈ Xe, the bilinear form and linear
functional

a(w, v;μ) =

∫
Ω0

∇w · ∇v +
7∑

i=1

μ(i)

∫
Ωi

∇w · ∇v, (2.18)

f(v;μ) =

∫
Γbase

v, (2.19)

respectively. We also specify, for any v ∈ Xe, the output functional

�(v) =
1

|Ωout|

∫
Ωout

v, (2.20)

where Ωout = (0, 0.25) × (0, 0.25) × (0, 0.25) and |Ωout| = 0.253 is the size
of Ωout. The exact weak formulation for the temperature ue(μ) in Ω is then
given by (2.5); the exact output se(μ) = �(ue(μ)) corresponds to the average
temperature over Ωout. We note that our affine assumptions (2.1)–(2.2) hold
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a l1
2b1
l2 2b

Γo,w
2b2

Γo,R

Γo,in

Figure 2: The acoustic horn.

for Qa = 8 and Qf = 1. We choose for this problem the reference parameter
μ̄ = (1, 1, 1, 1, 1, 1, 1) ∈ R7; thus (w, v)X =

∫
Ω
∇w · ∇v.

For our numerical results of Section 4.2.1 (focus calculations) and Section
5.4.1 (hp-RB approximations) we use for our truth calculations a standard P1(Ω)
FE approximation space X = XN of dimension N = 9261, which is deemed
sufficiently rich. The truth FE formulation of the problem is then given by (2.7).
We note that with our choice of inner product our problem is coercive with a
coercivity lower bound given for all μ ∈ D by αLB(μ) = min{1, μ(1), · · · , μ(7)}.
(In fact here αLB(μ) ≤ αe(μ) (≤ α(μ)).)

2.2.2 A 2D Acoustic Horn

We introduce here a Helmholtz linear elliptic model problem, first proposed in
[27]. We specify a parametrized two-dimensional domain Ωo(μ) ⊂ R2, which
corresponds to a parameter dependent acoustic horn inside a truncated circular
domain as shown in Figure 2. (The subscript o denotes an “original” quantity;
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for our computational procedures we consider Ωo(μ) as the image of a parameter
independent “reference” domain under a piecewise affine mapping.) The horn
consists of a straight channel of width a = 1 and length l1 = 3, followed by a
flared section of length l2 = 5. The outlet is of width 2b = 10. The expansion
channel is divided into 3 sections of equal length 5/3. The wall Γo,W of the
symmetric expansion channel is modeled as a piecewise linear function; the
heights of the sections, b1 and b2, are considered as our (geometric) parameters.
The domain is truncated at the circle Γo,R of radius R = 12.5 centered slightly
away from the outlet of the horn.
We shall consider the nondimensionalized (complex) pressure ueo(μ) in Ωo(μ);

in this subsection i =
√
−1. We specify a source, ∂u

e
o(μ)

∂no
+ iμ(3)u

e
o(μ) = 2iμ(3),

at the inlet Γo,in; we specify a first order (Sommerfeld) radiation boundary

condition,
∂ueo(μ)

∂no
+

(
iμ(3)+

1

2R

)
ueo(μ) = 0, at the radiation boundary Γo,R; and

we specify a Neumann boundary condition, ∂ueo(μ)/∂no = 0, on the horn wall
Γo,W. We next specify the parameter domain D = [1.0, 1.8] × [1.8, 2.5] × [0, 2];
we denote a particular parameter value as μ = (μ(1), μ(2), μ(3)) = (b1, b2, k) ∈ D,
where k is the nondimensional frequency or wave number.
We now define our complex spaceXe

o = {v = vR+ivI : vR ∈ H1(Ωo(μ)), vI ∈
H1(Ωo(μ))}. Let v̄ denote the complex conjugate of v. We then specify, for all
μ ∈ D and for any w, v ∈ Xe

o , the sesquilinear form and anti-linear functional

ao(w, v;μ) = (1 + iε)

∫
Ωo(μ)

∇w · ∇v̄ − μ(3)
∫
Ωo(μ)

wv̄

+

∫
Γo,in

wv̄ +

(
1

2R
+ iμ(3)

)∫
Γo,R

wv̄, (2.21)

fo(v;μ) = 2iμ(3)

∫
Γo,in

v̄, (2.22)

respectively. Here ε = 0.001 represent a small dissipation in the medium. We
also specify, for any v ∈ Xe

o , the output functional

�o(v) =

∫
Γo,in

v̄; (2.23)

the output thus corresponds to a measurement of the pressure at the inlet Γo,in.
We then apply a domain decomposition technique (see [26]) to represent the

bilinear and linear forms in our usual affine expansions: we divide Ωo(μ) into
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μ = [1.0, 1.8, 0.5] μ = [1.0, 2.5, 1.4] μ = [1.53, 1.8, 2.0]

Figure 3: The magnitude of the pressure field in Ωo(μ) for different parameter values.

20 subdomains and consider each subdomain as the image of a parameter inde-
pendent “reference subdomain” under an affine transformation; we denote the
union of these reference subdomains by Ω (≡ Ωo(μ̄), where μ̄ = (1.4, 2.15, 0)).
We also introduce a space Xe such that any v ∈ Xe maps to vo ∈ Xe

o through
our piecewise affine transformation. The exact weak formulation for the pres-
sure ue(μ) ∈ Xe in the reference domain Ω is then given by a complex version
of (2.5). Furthermore, through the domain decomposition technique we obtain
complex versions of (2.1) and (2.2) for Qa = 25 and Qf = 1, respectively. We
finally define, for all w, v ∈ Xe, our X-inner product for this problem as

(w, v)X =

∫
Ω

∇w · ∇v̄ +
∫
Ω

wv̄. (2.24)

For our numerical results in Section 4.2.2 (focus calculations) and Section
5.4.2 (hp-RB approximations) we use for our truth calculations a standard P1(Ω)
FE approximation space X = XN ⊂ Xe of dimension N = 30108, which is suf-
ficiently accurate for our choice of frequency range. For purposes of illustration
we show in Figure 3 three solution fields corresponding to different parameter
values.
Although with the dissipation (and radiation) condition this problem is in

fact coercive, it is preferable to consider for our a posteriori error estimators not
a coercivity constant lower bound but rather an inf-sup constant lower bound
βLB: 0 < βLB(μ) ≤ β(μ). Here,

β(μ) = inf
w∈X

sup
v∈X

|a(w, v;μ)|
‖w‖X‖v‖X

, (2.25)
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for all μ ∈ D, where | · | denotes complex modulus. Typically, this positive inf-
sup lower bound is constructed by a natural norm version of the SCM procedure
[16]. However, in this paper, for simplicity1 we choose βLB to be a constant:
the minimum of the SCM lower bound over a dense set in D. Admittedly, this
choice will compromise both sharpness (since we invoke a minimum) and rigor
(since this minimum is taken over a subset of D) of our a posteriori error bound.

3 The Certified Derived Reduced Basis Method

In this section we introduce the new two-step RB method. For simplicity our
development here is for coercive linear elliptic equations with real-valued fields.
However, the extension to non-coercive equations and complex fields — required
for our Helmholtz acoustic horn model problem — is straightforward.

3.1 Derived RB approximation

We introduce the intermediate (standard) RB approximation space XN ⊂ X
of dimension N � N . The space XN is spanned by solutions of (2.7) for
judiciously chosen (see Section 3.3) parameter values μ1 ∈ D, . . . , μN ∈ D,

XN ≡ span{u(μ1), . . . , u(μN )} ≡ span{ζ1, . . . ζN}; (3.1)

here, {ζ1, . . . , ζN} denotes an X-orthonormal basis for XN , obtained through
(say) a modified Gram-Schmidt procedure.2

We may then introduce the RB approximation: given any μ ∈ D, find
uN (μ) ∈ XN such that

a(uN (μ), v;μ) = f(v;μ), ∀v ∈ XN , (3.2)

and then evaluate the RB output approximation as

sN (μ) = �(uN (μ)). (3.3)

1The natural-norm SCM procedure in [16] has a multi-parameter domain structure different
from the multi-parameter domain structure of the hp-RB approach considered in this paper;
a streamlined merger of these approaches is the subject of future work.

2In the modified Gram-Schmidt procedure we compute ζ̃i = u(μi)−
∑i−1

n=1(ζn, u(μi))Xζn,
2 ≤ i ≤ N , in an iterative fashion in order to preserve numerical stability in finite precision
as described in [8]. Here ζ1 = u(μ1)/‖u(μ1)‖X and ζi =

ζ̃i
‖ζ̃i‖X

, 2 ≤ i ≤ N .

158



A Two-Step Certified Reduced Basis Method

We now introduce a parameter subdomain or submanifold D′ ⊂ D to which
the DRB model shall be specifically tailored. In the context of focus calculations,
we wish to speed up evaluation of the RB solution, RB output, and RB error
bound for any parameter value in the subdomain D′ ⊂ D; in the context of
hp-RB approximations, we wish to speedup evaluation of the RB solution, RB
output, and RB error bound for any parameter value in D through a partition
of D into many (K) subdomains Vk ⊂ D, 1 ≤ k ≤ K subdomains.3 With
regard to the hp-RB approximation, D′ denotes in this section any of the K
subdomains Vk, 1 ≤ k ≤ K; the hp-RB approximation is discussed in greater
detail in Section 5.
We introduce the DRB approximation space XN,M ⊂ XN of dimension

M ≤ N . The space XN,M is spanned by solutions of (3.2) for judiciously
chosen (see Section 3.3) parameter values μ′

1 ∈ D′, . . . , μ′
M ∈ D′,

XN,M ≡ span{uN (μ′
1), . . . , uN (μ

′
M )} ≡ span{ψ1, . . . ψM}. (3.4)

Here, {ψ1, . . . , ψM} denotes anX-orthonormal basis forXN,M , obtained through
a Gram-Schmidt procedure; however we note that in practice, we shall not re-
quire the explicit (N -dependent) computation of ψ1, . . . , ψM . The computa-
tional link between the intermediate and derived RB models will be discussed
later in Section 3.4.
We may now finally introduce the DRB approximation: given any μ ∈ D′,

find uN,M (μ) ∈ XN,M such that

a(uN,M (μ), v;μ) = f(v;μ), ∀v ∈ XN,M , (3.5)

and then evaluate the DRB output approximation as

sN,M (μ) = �(uN,M (μ)). (3.6)

3.2 A Posteriori Error Estimation
We first recall the a posteriori error estimator for the (standard) RB approxi-
mation [26]. We define the residual

rN (·;μ) = a(uN (μ), ·;μ)− f(·;μ) ∈ X ′; (3.7)

3As described in the introduction, the DRB provides an offline (and not online per se)
speedup of the hp-RB approximation. This offline speedup enlarges the class of problems
amenable to RB treatment. However, this offline speedup may also accomodate larger K —
smaller subdomains — and thus implicitly a speedup of the hp-RB online cost.
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we then introduce the Riesz representation of the residual, RN (μ) ∈ X, which
satisfies

(RN (μ), v)X = rN (v;μ), ∀v ∈ X. (3.8)

We may then define the RB error bound as4

ΔN (μ) =
‖RN (μ)‖X
αLB(μ)

. (3.9)

We may readily demonstrate that ‖u(μ) − uN (μ)‖X ≤ ΔN (μ): We first note
that the error eN (μ) = u(μ)− uN (μ) satisifes

a(eN (μ), v;μ) = rN (v;μ), ∀v ∈ X. (3.10)

We then choose v = eN (μ) and invoke (3.8) to obtain

a(eN (μ), eN (μ);μ) = (RN (μ), eN (μ))X . (3.11)

We apply coercivity to the left hand side and the Cauchy-Schwarz inequality to
the right hand side to obtain

αLB(μ)‖eN (μ)‖2X ≤ ‖RN (μ)‖X‖eN (μ)‖X , (3.12)

from where we readily derive (3.9). We shall discuss the computation of ΔN (μ)
— in particular the dual norm of the residual ‖RN (μ)‖X — in Section 3.4;
however we note here that we may in the RB evaluation stage, for any given μ ∈
D, compute ΔN (μ) at cost O(Q2N2) — independently of the truth complexity
N .
The a posteriori error estimator for the DRB approximation is very similar.

We define the residual

rN,M (·;μ) = a(uN,M (μ), ·;μ)− f(·;μ) ∈ X ′; (3.13)

we then introduce the Riesz representation of the residual, RN,M (μ) ∈ X, which
satisfies

(RN,M (μ), v)X = rN,M (v;μ), ∀v ∈ X. (3.14)

4We note that for our Helmholtz acoustic problem the RB error bound is given as in (3.9)
with the coercivity constant lower bound αLB replaced by an inf-sup constant lower bound
βLB.
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We then define the error bound

ΔN,M (μ) =
‖RN,M (μ)‖X

αLB(μ)
, (3.15)

for which we may show that ‖u(μ)− uN,M (μ)‖X ≤ ΔN (μ) by arguments anal-
ogous to (3.10)–(3.12). We emphasize that ΔN,M (μ) bounds the error in the
DRB approximation with respect to the truth upon which the intermediate RB
model is built. We shall discuss the computation of ΔN,M (μ) in detail in Sec-
tion 3.4; however we note here that we may in the DRB evaluation stage, for
any given μ ∈ D′, compute ΔN,M (μ) at cost O(Q2M2) — independently of the
truth complexity N and the RB complexity N .
For our sampling algorithm which we discuss in the next section we shall

also require a bound for the error in the DRB approximation with respect to
the intermediate RB approximation. We introduce the Riesz representation of
the DRB residual in the RB space, R̃N,M (μ) ∈ XN , which satisfies

(R̃N,M (μ), v)X = rN,M (v), ∀v ∈ XN . (3.16)

We then define the error bound

Δ̃N,M (μ) =
‖R̃N,M (μ)‖X

αLB(μ)
; (3.17)

for which we may show that ‖uN (μ) − uN,M (μ)‖X ≤ Δ̃N,M (μ) by arguments
analogous to (3.10)–(3.12).
Finally, we note that we may readily develop error bounds for the RB (or

DRB) output approximation. For example, for any μ ∈ D,

|s(μ)− sN,M (μ)| = |�(u(μ)− uN,M (μ))| (3.18)

≤ sup
v∈X

�(v)

‖v‖X
‖u(μ)− uN,M (μ)‖X (3.19)

≤ ‖�‖X′ΔN,M (μ). (3.20)

3.3 Greedy Parameter Sampling

For the construction of both the intermediate RB space XN and the DRB space
XN,M , we invoke a Greedy parameter sampling procedure [26, 28], which we
now discuss.
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Algorithm 1 XNmax
= GreedyRB(μ1, εRBtol )

N ← 1
XN = span{u(μN )}
εmaxN = maxμ∈ΞD

train
ΔN (μ)

while εmaxN > εRBtol do
N ← N + 1
μN = argmaxμ∈ΞD

train
ΔN−1(μ)

XN = XN−1 ⊕ span{u(μN )}
εmaxN = maxμ∈ΞD

train
ΔN (μ)

end while
Nmax = N

We first consider the construction of the intermediate RB approximation
space. We introduce a training set ΞD

train ⊂ D of finite cardinality |ΞD
train| which

shall serve as a computational surrogate for D. We then introduce as Algo-
rithm 1 the GreedyRB sampling procedure. For a specified tolerance εRBtol and
an initial parameter value μ1 ∈ D, Algorithm 1 returns a space XNmax ⊂ X
of dimension Nmax such that ΔNmax

(μ) ≤ εRBtol for all μ ∈ ΞD
train. We typically

choose ΞD
train “dense” and hence we may anticipate that ΔNmax

(μ) ≤ εRBtol for
most μ ∈ D. We note that due to the hierarchical structure of the spaces —
X1 ⊂ · · · ⊂ XNmax

— we may readily extract spaces of dimension N < Nmax

from XNmax .
We next consider the construction of the DRB approximation space. We

introduce a training set ΞD′
train ⊂ D′ (⊂ D) of finite cardinality |ΞD′

train| which shall
serve as our computational surrogate for D′. We then introduce as Algorithm 2
the GreedyDRB sampling procedure. For a specified tolerance εDRBtol , a desired
intermediate RB space (upon which the DRB space is built) dimension N ≤
Nmax, and an initial parameter value μ′

1 ∈ D′, Algorithm 2 returns a space
XN,Mmax

⊆ XN of dimension Mmax ≤ N such that Δ̃N,Mmax
(μ) ≤ εDRBtol for

all μ ∈ ΞD′
train. We note that due to the hierarchical structure of the spaces —

XN,1 ⊂ · · · ⊂ X1,Mmax
—we may readily extract spaces of dimensionM < Mmax

from XN,Mmax . We emphasize that Algorithm 2 is identical to Algorithm 1
except for the procedures for snapshot computation and error bound evaluation.
We note that in Algorithm 2 we invoke the error bound (3.17) with respect

to the intermediate RB approximation in order to ensure convergence of the
algorithm: the maximum error bound εmaxN,M → 0 as M → N and hence any
specified tolerance εDRBtol > 0 will eventually be satisfied. We also note that, for
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Algorithm 2 XN,Mmax
= GreedyDRB(μ′

1, N, ε
DRB
tol )

M ← 1
XN,M = span{u(μ′

M )}
εmaxN,M = maxμ∈ΞD′

train
Δ̃N,M (μ)

while εmaxN,M > εDRBtol do
M ←M + 1
μ′
M = argmaxμ∈ΞD′

train
Δ̃N,M−1(μ)

XN,M = XN,M−1 ⊕ span{uN (μ′
M )}

εmaxM = maxμ∈ΞD′
train

Δ̃N,M (μ)

end while
Mmax =M

any μ ∈ ΞD′
train, the error in the DRB approximation with respect to the truth

can be bounded as

‖u(μ)− uN,M (μ)‖X ≤ ‖u(μ)− uN (μ)‖X + ‖uN (μ)− uN,M (μ)‖X
≤ ΔN (μ) + Δ̃N,M (μ) ≤ εmaxN + εmaxN,M . (3.21)

However, we can not reduce the term εmaxN since we increase only M (and not
N) during the GreedyDRB sampling procedure. As a result we typically choose
in practice εDRBtol > εRBtol in order to avoid Greedy

DRB iterations that do not
provide significant error (with respect to the truth) reduction.
We emphasize that in the online stage we bound the error in the DRB

approximation with respect to the truth. We note that in practice we do not
invoke ΔN (μ) + Δ̃N,M (μ) (in (3.21)) as an error bound, since evaluation of
ΔN (μ) is expensive (N -dependent). We thus invoke in the online stage the less
expensive (evaluation cost depends on M , and not on N) bound ΔN,M (μ) in
(3.15). We discuss computational procedures and associated computational cost
next.

3.4 Construction-Evaluation Computational Procedures

The key ingredients in our computational procedures are the affine expansions
(2.1) and (2.2) of a and f , respectively. The construction–evaluation proce-
dures which we introduce here enable efficient offline–online computational pro-
cedures. We discuss application of the construction–evaluation procedures to
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the offline–online decoupling for each of our two particular applications, focus
calculation and hp-RB approximation, in Section 4 and Section 5, respectively.

3.4.1 Output Approximation

RB output. We first expand the RB field approximation in terms of the basis
functions ζ1, . . . , ζN of XN as

uN (μ) =

N∑
n=1

uN,n(μ)ζn. (3.22)

With (2.1) and (2.2) we may then write (3.2) as the linear system

N∑
j=1

uN,j(μ)

(
Qa∑
q=1

aq(ζj , ζi)Θ
q
a(μ)

)
=

Qf∑
q=1

fq(ζi)Θ
q
f (μ), 1 ≤ i ≤ N, (3.23)

in the coefficients uN,j(μ), 1 ≤ j ≤ N . We obtain the RB output approximation
(3.3) as

sN (μ) = �(uN (μ)) =

N∑
n=1

uN,n(μ)�(ζn). (3.24)

We now identify the construction and evaluation stages. In the construction
stage we compute for 1 ≤ q ≤ Qa the “stiffness matrices” A

q
N ≡ {aq(ζj , ζi)} ∈

RN×N ; we compute for 1 ≤ q ≤ Qf the “load vectors” F
q
N ≡ {fq(ζi)} ∈ RN ;

we also compute the terms �(ζi) (1 ≤ i ≤ N) required for the output. The
construction stage is performed at cost O(N •). In the evaluation stage, given
any μ ∈ D, we evaluate Θq

a(μ), 1 ≤ q ≤ Qa, and Θ
q
f (μ), 1 ≤ q ≤ Qf , at cost

O(Q); we then perform the two summations over q in (3.23) at cost O(QaN
2+

QfN), and solve the N × N linear system for the RB coefficients uN,n(μ),
1 ≤ n ≤ N , at cost O(N3) (we must anticipate that the RB system matrix is
dense). We finally evaluate the RB output approximation (3.24) at cost O(N).

DRB output. We first expand the basis functions ψ1, . . . , ψM of XN,M in
terms of the basis functions ζ1, . . . , ζN of XN as

ψi =

N∑
n=1

κi,nζn, 1 ≤ i ≤M ; (3.25)
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recall that

span{ψ1, . . . , ψM}︸ ︷︷ ︸
XN,M

= span{uN (μ′
1), . . . , uN (μ

′
M )}︸ ︷︷ ︸

XN,M

⊂ span{ζ1, . . . , ζN}︸ ︷︷ ︸
XN

, (3.26)

where ψ1, . . . , ψM is an X-orthonormal basis for XN,M . We may obtain the
coefficients κm,n, 1 ≤ m ≤ M , 1 ≤ n ≤ N , from the Gram-Schmidt procedure
for ψ1, . . . , ψM as follows. For m = 1, we obtain

ψ1 =
uN (μ

′
1)

‖uN (μ′
1)‖X

=

∑N
n=1 uN,n(μ

′
1)ζn(∑N

m=1

∑N
n=1 uN,n(μ′

1)uN,m(μ′
1) (ζm, ζn)X︸ ︷︷ ︸

δm,n

)1/2 (3.27)

=

∑N
n=1 uN,n(μ

′
1)ζn(∑N

n=1(uN,n(μ′
1))

2
)1/2 ≡

N∑
n=1

κ1,nζn, (3.28)

where δi,j is the Kroenecker delta symbol. For 2 ≤ m ≤ M , we further obtain
ψm = ψ̃m/‖ψ̃m‖X where, from (3.22) and (3.25),

ψ̃m = uN (μ
′
m)−

m−1∑
s=1

(ψs, uN (μ
′
m))Xψs, (3.29)

=

N∑
n=1

uN,n(μ
′
m)ζn −

m−1∑
s=1

N∑
n=1

N∑
k=1

N∑
l=1

uN,l(μ
′
m)κs,k (ζk, ζl)X︸ ︷︷ ︸

δk,l

κs,nζn (3.30)

=
N∑

n=1

(
uN,n(μ

′
m)−

m−1∑
s=1

N∑
k=1

uN,k(μ
′
m)κs,kκs,n

)
ζn ≡

N∑
n=1

κ̃m,nζn. (3.31)

We thus identify κm,n = κ̃m,n/‖ψ̃m‖X , 1 ≤ n ≤ N , with

‖ψ̃m‖X =
( N∑
n=1

N∑
k=1

κ̃m,nκ̃m,k (ζn, ζk)X︸ ︷︷ ︸
δn,k

)1/2
(3.32)

=
( N∑
n=1

κ̃2m,n

)1/2
. (3.33)

In practice, we do not explicitly perform this (N -dependent) Gram-Schmidt
procedure since we do not explicitly require the DRB basis functions ψm, 1 ≤
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m ≤M . From (3.28), (3.31), and (3.33), we readily obtain the coefficients κm,n

at cost independent of N .5
We next expand the DRB field approximation in terms of the basis functions

of XN,M as

uN,M (μ) =

M∑
m=1

uN,M,m(μ)ψm. (3.34)

With (2.1) and (2.2) we may then write (3.5) as the linear system

M∑
j=1

uN,M,j(μ)

(
Qa∑
q=1

aq(ψj , ψi)Θ
q
a(μ)

)
=

Qf∑
q=1

fq(ψi)Θ
q
f (μ), 1 ≤ i ≤M (3.35)

in the coefficients uN,M,j(μ), 1 ≤ j ≤ M . We obtain the DRB output approxi-
mation (3.6) as

sN,M (μ) = �(uN,M (μ)) =

M∑
m=1

uN,M,m(μ)�(ψm). (3.36)

With (3.25), we note that we may write aq(ψj , ψi), fq(ψi), and �(ψi) as

aq(ψj , ψi) =

N∑
n=1

κj,n

(
N∑

m=1

κi,ma
q(ζn, ζm)

)
, 1 ≤ q ≤ Qa, 1 ≤i, j ≤M,

(3.37)

fq(ψi) =
N∑

n=1

κi,nf
q(ζn), 1 ≤ q ≤ Qf , 1 ≤i ≤M, (3.38)

�(ψi) =

N∑
n=1

κi,n�(ζn), 1 ≤i ≤M, (3.39)

respectively. We may then identify the construction and evaluation stages. In
the construction stage we first obtain, for 1 ≤ q ≤ Qa, the matrices A

q
N,M ≡

5In (3.28), (3.31), and (3.33) we invoke the fact that (ζk, ζl)X = δk,l; however this is only
true in infinite precision. An improvement to the numerical stability of our approach is thus
to compute and store (ζk, ζl)X , 1 ≤ k, l ≤ N ; we may then obtain κ1,n from (3.27) rather
than from (3.28), and κ̃m,n and ‖ψ̃m‖X , 2 ≤ m ≤ M , from (3.30) and (3.32) rather than
from (3.31) and (3.33), respectively. Note that this approach is still N -independent.
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{aq(ψj , ψi)} ∈ RM×M from the matrices Aq
N ∈ RN×N by (3.37) at costO(N2M)

through a sum factorization technique as follows: for 1 ≤ q ≤ Qa, we first
compute and store (temporarily) the terms

τ qi,n =

N∑
m=1

κi,ma
q(ζn, ζm), 1 ≤ i ≤M, 1 ≤ n ≤ N, (3.40)

at cost O(N2M); we then perform the outer summation

aq(ψj , ψi) =
N∑

n=1

κj,nτ
q
i,n, 1 ≤ i, j ≤M, (3.41)

at cost O(M2N). The total cost of (3.37) is thus O(N2M) (for each q) since
M ≤ N .
We next obtain, for 1 ≤ q ≤ Qf , the vectors F

q
N,M ≡ {fq(ψi)} ∈ RM

from the vectors F q
N ∈ RN by (3.38) at cost O(MN); and we obtain �(ψi),

(1 ≤ i ≤ M) from �(ζi), 1 ≤ i ≤ N , by (3.39) at cost O(MN). The cost of the
construction stage is thus N -independent. In the evaluation stage, given any
μ ∈ D′, we evaluate Θq

a(μ), 1 ≤ q ≤ Qa, and Θ
q
f (μ), 1 ≤ q ≤ Qf , at cost O(Q);

we then perform the two summations over q in (3.35) at cost O(QaM
2+QfM),

and solve the M ×M linear system for the DRB coefficients uN,M,m(μ), 1 ≤
m ≤ M , at cost O(M3). We finally evaluate the DRB output approximation
(3.36) at cost O(M).

3.4.2 A Posteriori Error Bound

We discuss here the computational procedures associated with the residual dual
norms required for our a posteriori error estimators. We refer to [16, 17, 26] for
the computational procedures associated with the coercivity (or stability factor)
lower bound (the SCM).

RB residual dual norm. We now discuss the construction-evaluation pro-
cedure for the dual X-norm of the RB residual. With (2.1), (2.2), and (3.22),
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we may expand (3.8) as

(RN (μ), v)X =

Qf∑
q=1

fq(v)Θf
q (μ)−

N∑
n=1

uN,n(μ)

Qa∑
q=1

aq(ζn, v)Θ
q
a(μ) (3.42)

=

N̄∑
i=1

φi(μ)Li(v), (3.43)

for all v ∈ X. Here N̄ = Qf + NQa, and the Li ∈ X ′ and φi : D → R are
defined explicitly as

Li = f i, 1 ≤i ≤ Qf , (3.44)

LQf+i+(n−1)Qa = ai(ζn, ·), 1 ≤i ≤ Qa, 1 ≤ n ≤ N, (3.45)

φi = Θi
f , 1 ≤i ≤ Qf , (3.46)

φQf+i+(n−1)Qa = uN,nΘ
i
a, 1 ≤i ≤ Qa, 1 ≤ n ≤ N. (3.47)

We then define li ∈ X, 1 ≤ i ≤ N̄ , such that

(li, v)X = Li(v), ∀v ∈ X. (3.48)

Hence, by linearity,

RN (μ) =

N̄∑
i=1

φi(μ)li. (3.49)

We may now identify the construction and evaluation stages. In the con-
struction stage we solve (3.48), 1 ≤ i ≤ N̄ , and compute the inner products
(li, lj)X , 1 ≤ i, j ≤ N̄ , at cost O(N •). In the evaluation stage, given the RB
solution coefficents for any μ ∈ D, we evaluate φi(μ), 1 ≤ i ≤ N̄ , at cost
O(Qf +QaN), and perform the summation

‖RN (μ)‖2X =

N̄∑
i=1

N̄∑
j=1

φi(μ)φj(μ)(li, lj)X , (3.50)

at cost O(N̄2) = O(Q2N2).
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DRB residual dual norm. We next discuss the construction-evaluation pro-
cedure for the dual X-norm of the DRB residual. With (2.1), (2.2), and (3.34),
we may expand (3.14) as

(RN,M (μ), v)X =

Qf∑
q=1

fq(v)Θf
q (μ)−

M∑
m=1

uN,M,m(μ)

Qa∑
q=1

aq(ψm, v)Θ
q
a(μ) (3.51)

=

M̄∑
i=1

ϕi(μ)Hi(v), (3.52)

for all v ∈ X. Here M̄ = Qf +MQa, and the Hi ∈ X ′ and ϕi : D′ → R are
defined explicitly as

Hi = f i, 1 ≤i ≤ Qf , (3.53)

HQf+i+(m−1)Qa = ai(ψm, ·), 1 ≤i ≤ Qa, 1 ≤ m ≤M, (3.54)

ϕi = Θi
f , 1 ≤i ≤ Qf , (3.55)

ϕQf+i+(m−1)Qa = uN,M,mΘ
i
a, 1 ≤i ≤ Qa, 1 ≤ m ≤M. (3.56)

We then define hi ∈ X, 1 ≤ i ≤ M̄ , such that

(hi, v)X = Hi(v), ∀v ∈ X. (3.57)

Hence, by linearity,

RN,M (μ) =

M̄∑
i=1

ϕi(μ)hi. (3.58)

We now note, by (3.25), that we may further expand the HQf+i+(m−1)Qa in
(3.54) in terms of the intermediate RB basis {ζn}Nn=1 as

HQf+i+(m−1)Qa = ai(ψm, ·) =
N∑

n=1

κm,na
i(ζn, ·), (3.59)

for 1 ≤ i ≤ Qa and 1 ≤ m ≤M ; thus, by linearity,

hQf+i+(m−1)Qa =

N∑
n=1

κm,nl
Qf+i+(n−1)Qa , (3.60)
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for 1 ≤ i ≤ Qa and 1 ≤ m ≤M . We recall the definition of li, 1 ≤ i ≤ Qf+NQa,
from (3.48), (3.44), and (3.45).
We next consider the inner products (hi, hj)X , 1 ≤ i, j ≤ M̄ . First, it is

clear that

(hi, hj)X = (li, lj)X , 1 ≤ i, j ≤ Qf ; (3.61)

further, we note that

(hQf+i+(m−1)Qa , hj)X =

N∑
n=1

κm,n(l
Qf+i+(n−1)Qa , lj)X , (3.62)

(hj , hQf+i+(m−1)Qa)X =

N∑
n=1

κm,n(l
j , lQf+i+(n−1)Qa)X , (3.63)

for 1 ≤ i ≤ Qa, 1 ≤ m ≤M , and 1 ≤ j ≤ Qf ; we finally note that

(hQf+i+(m−1)Qa , hQf+j+(m′−1)Qa)X

=

N∑
n=1

κm,n

(
N∑

n′=1

κm′,n′(lQf+i+(n−1)Qa , lQf+j+(n′−1)Qa)X

)
, (3.64)

for 1 ≤ i, j ≤ Qa, 1 ≤ m,m′ ≤ M . The key observation here is that once
(li, lj)X , 1 ≤ i, j ≤ N̄ , are given from the intermediate RB construction stage,
the analogous data (hi, hj)X , 1 ≤ i, j ≤ M̄ , for the DRB model may be obtained
at cost O(N•) — independently of the truth complexity N .
We may now identify the construction and evaluation stages. In the con-

struction stage we obtain (hi, hj)X , 1 ≤ i, j ≤ M̄ , from (li, lj)X , 1 ≤ i, j ≤ N̄ ,
by (3.61)–(3.64). The cost is dominated by the summation (3.64), for which we
invoke a sum factorization technique: we first compute and store the term in
parentheses for 1 ≤ i, j ≤ Qa, 1 ≤ n ≤ N and 1 ≤ m′ ≤M at cost O(Q2

aN
2M);

we then perform the outer summation (over n) for 1 ≤ i, j and 1 ≤ m,m′ ≤M
at cost O(Q2

aM
2N). The total cost is thus O(Q2

aN
2M) since M ≤ N . (Direct

evaluation of (3.64) requires O(Q2N2M2) operations.) In particular, the DRB
construction stage is N -independent. In the evaluation stage, given the DRB
solution coefficents for any μ ∈ D′, we evaluate ϕi(μ), 1 ≤ i ≤ M̄ , at cost
O(M̄) = O(Qf +QaM), and perform the summation

‖RN,M (μ)‖2X =

M̄∑
i=1

M̄∑
j=1

ϕi(μ)ϕj(μ)(hi, hj)X (3.65)

at cost O(M̄2) = O(Q2M2).
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DRB residual dual XN -norm. We next discuss the construction-evaluation
procedure for the dual norm of the DRB residual with respect to the interme-
diate RB approximation space, ‖R̃N,M (μ)‖X . With (2.1), (2.2), and (3.34), we
may expand (3.16) as

(R̃N,M (μ), v)X =

Qf∑
q=1

fq(v)Θf
q (μ)−

M∑
m=1

uN,M,m(μ)

Qa∑
q=1

aq(ψm, v)Θ
q
a(μ) (3.66)

=

M̄∑
i=1

ϕi(μ)Hi(v), (3.67)

for all v ∈ XN . We then define h̃i ∈ XN , 1 ≤ i ≤ M̄ , such that

(h̃i, v)X = Hi(v), ∀v ∈ XN . (3.68)

Hence, by linearity,

R̃N,M (μ) =

M̄∑
i=1

ϕi(μ)h̃i. (3.69)

We next consider the inner products (h̃i, h̃j)X , 1 ≤ i, j ≤ M̄ . We note that
h̃i ∈ XN may be written as

h̃i =

N∑
n=1

ηinζn, 1 ≤ i ≤ M̄, (3.70)

where the coefficients ηi1, . . . , ηiN satisfy

N∑
n=1

ηin (ζn, ζm)X︸ ︷︷ ︸
δm,n

= ηim = Hi(ζm), 1 ≤ m ≤ N, (3.71)

thanks to the X-orthonormal basis for XN . Hence

(h̃i, h̃j)X =

N∑
m=1

N∑
n=1

ηimη
j
n (ζm, ζn)X︸ ︷︷ ︸

δm,n

=

N∑
n=1

Hi(ζn)Hj(ζn), (3.72)

for 1 ≤ i, j ≤ M̄ .
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We may now identify the construction and evaluation stages. In the con-
struction stage we compute the inner products (h̃i, h̃j)X , 1 ≤ i, j ≤ M̄ , from
(3.72) at cost O(NM̄2); note thatHi(ζn), 1 ≤ i ≤ M̄ , 1 ≤ n ≤ N , may be evalu-
ated from (3.53) and (3.59) at cost O(N2M̄) since the matrices Aq

N , 1 ≤ q ≤ Qa,
and vectors F q

N , 1 ≤ q ≤ Qf , are computed and stored during the construction
stage for the intermediate RB output. In the evaluation stage, given the DRB
solution coefficients for any μ ∈ D, we evaluate ϕi(μ), 1 ≤ i ≤ M̄ , at cost
O(Qf +QaM), and perform the summation

‖R̃N,M (μ)‖2X =

M̄∑
i=1

M̄∑
j=1

ϕi(μ)ϕj(μ)(h̃i, h̃j)X , (3.73)

at cost O(M̄2) = O(Q2M2).
We note that as an alternative to the bound Δ̃N,M (μ) we may directly

compute ‖uN (μ) − uN,M (μ)‖X at cost O(QN2 + N3). However typically M
is significantly smaller than N and thus computation of Δ̃N,M (μ) is typically
less expensive than computation of ‖uN (μ) − uN,M (μ)‖X when the bound is
required for many μ as in the GreedyDRB algorithm.

4 Focus Calculations

In the context of focus calculations we require many (or real-time) RB output (or
RB error bound) evaluations over a parameter subset or submanifold D′ ⊂ D.
Given an intermediate RB model developed for the parameter domain D, a
smaller DRB model is typically sufficient over D′ ⊂ D. This smaller DRB
model may yield significant speedup compared to the standard RB alternative
while preserving numerical accuracy.

4.1 Offline–Online Decomposition
We now discuss the offline-online decomposition associated with the focus cal-
culation context. The offline stage is the construction of the intermediate RB
model over D: we perform GreedyRB (Algorithm 1) for a specified initial pa-
rameter value μ1 ∈ D and a specified error bound tolerance εRBtol (to be satisfied
over the training set ΞD

train ⊂ D). This stage is expensive — the cost is O(N •)
— but performed only once as preprocessing.
In the online stage, given a parameter subdomain or submanifold D′ ⊂ D,

we first construct the DRB model: we perform GreedyDRB (Algorithm 2) for
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a specified initial parameter value μ′
1 ∈ D′, a specified intermediate RB space

(constructed offline and upon which the DRB approximation is built) dimension
N ≤ Nmax, and a specified error bound tolerance εDRBtol (to be satisfied over the
training set ΞD′

train ⊂ D′). The cost of this step derives from RB snapshot
computation and RB error bound preprocessing and evaluation; below M̄max ≡
Qf +QaMmax.

1. RB snapshot computation. We computeMmax intermediate RB snapshots
of complexity Nmax. The cost is O(Mmax(QN

2
max + N3

max)) (we must
anticipate that the RB system is dense).

2. DRB construction. We obtain the parameter independent matrices and
vectors associated with the DRB system at cost O(QN2

maxMmax); note
that we obtain these entities directly from the respective intermediate RB
entities (computed offline).

3. DRB error bound preprocessing. We must compute M̄2
max inner products

(3.72) for our error bound Δ̃N,M (used in the GreedyDRB sampling proce-
dure) and M̄2

max inner products (3.61)–(3.64) for our error bound ΔN,M

(used for DRB output certification). The total cost is O(Q2N2
maxMmax).

4. DRB error bound evaluation. We compute the DRB approximation and
evaluate the DRB error bound Δ̃N,M over the training set ΞD′

train at each
GreedyDRB iteration. The cost is, to leading order, O(Mmax|ΞD′

train|(M3
max+

M2
maxQ

2)).

5. DRB focus calculations. For any new parameter value μ ∈ D′ and given
1 ≤ M ≤ Mmax, we perform DRB evaluation: computation of the DRB
solution, DRB output, and DRB error bound with respect to the truth
approximation at cost O(M3 +M2Q2).

Note that the focus calculation online stage includes the construction of the
DRB model over D′ — steps 1-4 above. The key point is that this DRB model
is built inexpensively (N -independently) upon the underlying intermediate RB
model; the subsequent DRB evaluation stage (step 5 above, performed many
times over D′) is then independent of N and N . As a result, in the many-
query context, a DRB approach may provide significant speedup compared to
the standard RB alternative.
We finally note the important role of the sum factorization invoked in (3.37)

and (3.64). The complexity reduction — a factor of M — is significant in
practice in particular for focus calculations since the calculations (3.37) and
(3.64) are performed online.
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Figure 4: The RB output values on D′ for the thermal block; note that the DRB
and standard RB outputs are indistinguishable.

4.2 Numerical Results

4.2.1 Thermal Block

We develop a DRB approximation for the thermal block problem introduced
in Section 2.2.1 in order to accelerate a focus calculation. We first gener-
ate an intermediate RB approximation of dimension Nmax = 96: we per-
form GreedyRB for μ1 = (0.75, 0.75) and εRBtol = 10−4 over a uniformly dis-
tributed random training set ΞD

train ⊂ D of size |ΞD
train| = 104. We then

specify a two-dimensional submanifold D′ ≡ [0.75, 1.5]2 × {μfixed} ⊂ D, where
μfixed = (0.7, 0.8, 0.9, 1.0, 1.1) ∈ R5, and we perform RB focus calculations with
this standard RB model over a 100 × 100 uniform grid of parameter values,
Ξfocus ⊂ D′. The RB outputs (evaluated for each μ ∈ ΞD

train via (2.20)) are
shown in Figure 4; the RB output error bounds are shown in Figure 5 (top).
We then consider the corresponding DRB approach. We generate a DRB

model of dimension Mmax = 9 which satisfies a tolerance εDRBtol = 10−4 (with
respect to the Nmax = 96 intermediate RB model) over a uniformly distributed
random training set ΞD′

train ⊂ D′ of size |ΞD′
train| = 100. We then calculate

the DRB outputs and DRB output error bounds over Ξfocus; in this case the
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Figure 5: Standard RB output error bounds on D′ with respect to the truth dis-
cretization (top); and DRB output error bounds on D′ with respect to the truth
discretization (bottom).
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DRB online computation (including execution of GreedyDRB and evaluation
over Ξfocus) is a factor of 63 faster than the standard RB alternative. More-
over, as shown in Figure 5, the maximum output error bounds (with respect
to the underlying truth FE approximation) in the standard RB and derived
RB approximations are 3.6 · 10−5 and 14 · 10−5, respectively; hence the DRB
yields a significant speedup with only very mild impact on the accuracy of the
approximation over D′.

4.2.2 Acoustic Horn

We develop a DRB approximation for the acoustic horn problem introduced in
Section 2.2.2 in order to accelerate a focus calculation. We first generate an in-
termediate RB approximation of dimension Nmax = 109: we perform GreedyRB
for μ1 = (1.4, 2.15, 1.0) and εRBtol = 10−4 over a uniformly distributed random
training set ΞD

train ⊂ D of size |ΞD
train| = 104. We then specify a one-dimensional

slice D′ ≡ {μfixed} × [0.5, 1.0] ⊂ D, where μfixed = (1.4, 2.2) ∈ R2, and we per-
form RB focus calculations with this standard RB model over a uniform grid of
1000 parameter values, Ξfocus ⊂ D′.

We then consider the corresponding DRB approach. We generate a DRB
model of dimension Mmax = 11 which satisfies a tolerance εDRBtol = 10−4 (with
respect to the Nmax = 109 intermediate RB model) over a uniformly distributed
random training set ΞD′

train ⊂ D′ of size |ΞD′
train| = 1000. We then calculate the

DRB outputs and DRB output error bounds over Ξfocus; in this case the online
computation (including execution of GreedyDRB and evaluation over Ξfocus) is
a factor of 10 faster than the standard RB alternative. The focus calculation
speedup here is less than for the thermal block because, first, D′ is not so
“small” compared to D, and second and more importantly, we perform fewer
focus calculations (by a factor of 10). As shown in Figure 6, the maximum
output error bounds (with respect to the underlying truth FE approximation)
in the standard RB and derived RB approximations are 9.8 ·10−5 and 1.2 ·10−4,
respectively; hence the DRB yields a significant speedup with only very mild
impact on the accuracy of the approximation over D′.
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Figure 6: The RB output values on D′ for the acoustic horn (top), and the output
error bounds on D′ with respect to the truth discretization for the standard RB and
DRB approximations (bottom).
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5 hp-RB Approximation

5.1 Summary of the hp-RB Method
The hp-RB method introduced in [7] (see also [6, 11]) provides a partition of
the parameter domain D into K parameter subdomains Vk ⊂ D, 1 ≤ k ≤ K;
for each parameter subdomain Vk, the algorithm generates an associated RB
approximation space Xk

Nk ⊂ X of dimension Nk spanned by truth FE snapshots
associated with parameter values within Vk. The approach is motivated by
order reduction: we may choose the dimension Nk of the “local” space Xk

Nk

relatively small compared to the dimension N of the “global” space XN while
preserving numerical accuracy. We thus obtain significant speedup of the RB
output and RB error bound evaluation. However, the offline (precomputation)
cost associated with an hp-RB approach is significantly larger than the offline
cost associated with the standard RB procedure, and must thus in practice be
taken into consideration.
We now review the hp-RB method. We first describe the splitting procedure

for an arbitrary subdomain V ⊆ D. Given V ⊆ D and a parameter “anchor
point” μV

1 ∈ V, we compute the truth FE snapshot u(μV
1 ) and define the one-

dimensional “temporary” RB space

XV
1 = span{u(μV

1 )} (5.1)

associated with V. We next introduce a finite training set ΞV
train ⊂ V; we then

evaluate the RB error bound ΔV
N=1 for the RB approximation associated with

the space XV
N=1 (essentially (3.9) with an appropriate change of notation) for

each parameter value μ ∈ ΞV
train — essentially one iteration of the GreedyRB

algorithm restricted to V ⊂ D — in order to identify a second parameter value

μV
2 = arg max

μ∈ΞV
train

ΔV
N=1(μ). (5.2)

We then split V into two subdomains Vleft ⊂ V and Vright ⊂ V based on (Eu-
clidean, say) distance ‖ · ‖2 to the points μV

1 and μV
2 : any point μ ∈ V belongs

to Vleft if and only if ‖μ − μV
1 ‖2 ≤ ‖μ − μV

2 ‖2; otherwise, μ ∈ V belongs to
Vright. Finally, we define μV

1 as the anchor point for Vleft and we define μV
2 as

the anchor point for Vright.
We may now describe the hp-RB method. The first step is h-refinement:

We apply the splitting scheme discussed above for V = D, and then recursively
for V = Vleft and V = Vright (sketched in Figure 7 for two levels of splitting).
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Figure 7: h-refinement partition procedure.

We terminate the splitting of a subdomain V if maxμ∈ΞV
train

ΔV
N=1(μ) ≤ εhtol,

where εhtol is a specified tolerance for the h-refinement step. The result of this
hierarchical procedure is K = K(εhtol) parameter subdomains Vk ⊂ D, 1 ≤ k ≤
K.

The next step is p-refinement: Greedy construction of the approximation
spaces Xk

Nk , 1 ≤ k ≤ K. We here choose Nk, 1 ≤ k ≤ K, such that a specified
tolerance εptol ≤ εhtol is satisfied over training sets Ξ

Vk

train ⊂ Vk, 1 ≤ k ≤ K. Note
that this step is essentially execution of the GreedyRB algorithm for εRBtol = εptol
restricted to each subdomain Vk ⊂ D, 1 ≤ k ≤ K.

In practice, we also apply if necessary an additional splitting step (see [6])
after the p-refinement. Essentially, this step performs additional h-refinement
of a subdomain if εptol is not satisfied for specified N

hp
max basis functions. The ad-

ditional splitting proceeds recursively with h-refinement and p-refinement steps
until εptol is satisfied for N

hp
max basis functions, thus providing for direct control

of the tolerance εptol and the RB space dimension.

Thanks to the hierarchical construction of the partition, we may organize
the subdomains (and associated approximation spaces) as the leaf nodes in a
binary tree with Boolean flags, as illustrated in Figure 7. This tree-structure
partiton is important in the hp-RB online stage: the cost to determine which
subdomain Vk∗

contains any given μ ∈ D is O(log(K)) for K subdomains [7].

The hp-RB approximation reads as follows: first, given any μ ∈ D, determine
k∗ = k∗(μ) ∈ [1,K] and hence Vk∗

and Xk∗
Nk∗ through a binary search; given

1 ≤ N ≤ Nhp
max, we write N̂ = min{N,Nk∗} and Xhp

N = Xk∗

N̂
. Then, determine
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uKN (μ) ∈ Xhp
N such that

a(uKN (μ), v;μ) = f(v;μ), ∀v ∈ Xhp
N ; (5.3)

finally evaluate the hp-RB output approximation

sKN (μ) = �(uKN (μ)). (5.4)

We define the hp-RB error bound as

ΔK
N (μ) =

‖RK
N (μ)‖X
αLB(μ)

, (5.5)

where RK
N (μ) ∈ X denotes the Riesz representation of the residual

rKN (·;μ) = a(uKN (μ), ·;μ)− f(·;μ) ∈ X ′. (5.6)

We may readily show that ‖u(μ)− uKN (μ)‖X ≤ ΔK
N (μ) by arguments analogous

to (3.10)–(3.12).

5.2 DRB Modification
We now discuss the application of the two-step RB approach within the hp-RB
context. We introduce a “global” intermediate RB approximation space XNmax

of dimension Nmax constructed by GreedyRB (Algorithm 1) for a specified initial
parameter value μ1 ∈ D and a specified error bound tolerance εRBtol (to be satisfied
over the training set ΞD

train ⊂ D). The necessary modifications to the hp-RB
method discussed in the previous subsection are then as follows. First, during
the h-refinement step we replace the truth snapshot u(μV

1 ) by an RB snapshot
uNmax

(μV
1 ) ≈ u(μV

1 ); we thus replace the RB space XV
1 in (5.1) by the DRB

space

XV
Nmax,1 = span{uNmax

(μV
1 )}. (5.7)

We further replace the RB error bound ΔV
N=1 in (5.2) by a DRB error bound

Δ̃V
Nmax,M=1 (essentially (3.17) with an appropriate change of notation). We then

invoke this DRB error bound (with respect to the underlying RB approximation)
to determine a second parameter value

μV
2 = arg max

μ∈ΞV
Δ̃V

Nmax,M=1(μ). (5.8)
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As before, μV
1 and μV

2 determine the splitting of V into Vleft and Vright. Note that
we terminate the splitting of a subdomain V if maxμ∈ΞV

train
Δ̃V

Nmax,M=1(μ) ≤ εhtol;
typically εhtol is chosen much greater than ε

RB
tol . As before, we apply the splitting

procedure recursively until convergence; the result is K = K(εhtol) subdomains
Vk ⊂ D, 1 ≤ k ≤ K.
Next, in the p-refinement step, we associate to each Vk a DRB approximation

space XNmax,Mk , 1 ≤ k ≤ K; the p-refinement step is thus essentially execution
of GreedyDRB for εRBtol = εptol restricted to each Vk, 1 ≤ k ≤ K. We typically
choose εptol such that ε

RB
tol ≤ εptol < εhtol. As before, we apply in practice an

additional splitting step which provides simultaneous control over the tolerance
εptol and the maximum DRB space dimension M

hp
max.

With the modificatins above, the hp-DRB approximation reads as follows:
first, given any μ ∈ D, determine k∗ = k∗(μ) and hence Vk∗

and Xk∗
Nmax,Mk∗

through a binary search; given 1 ≤ M ≤ Mhp
max, we write M̂ = min{M,Mk∗}

and Xhp
Nmax,M

= Xk∗
Nmax,M̂

. Then, determine uKNmax,M
(μ) ∈ Xhp

Nmax,M
such that

a(uKNmax,M (μ), v;μ) = f(v;μ), ∀v ∈ Xhp
Nmax,M

; (5.9)

finally evaluate the hp-DRB output approximation

sKNmax,M (μ) = �(uKNmax,M (μ)). (5.10)

We define the hp-DRB error bound as

ΔK
Nmax,M (μ) =

‖RK
Nmax,M

(μ)‖X
αLB(μ)

, (5.11)

where RK
Nmax,M

(μ) ∈ X denotes the Riesz representation of the residual

rKNmax,M (·;μ) = a(uKNmax,M (μ), ·;μ)− f(·;μ) ∈ X ′. (5.12)

We may readily show that ‖u(μ)− uKNmax,M
(μ)‖X ≤ ΔK

Nmax,M
(μ) by arguments

analogous to (3.10)–(3.12). We recall from our discussion in Section 3.4.2 that
we may evaluate ΔK

Nmax,M
(μ) inexpensively at cost independent of N and N .

We emphasize that with these modifications we access entities of truth com-
plexity N only for the construction of the intermediate RB model (of complexity
N � N ) upon which the hp-DRB approximation is constructed. We discuss
the offline-online decoupling of the hp-DRB method in the next subsection.
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5.3 Offline–Online Decomposition

The hp-DRB offline stage comprises intermediate RB model construction and
then hp-DRB partition and approximation space construction based on this
underlying RB model.

1. RB model construction. We construct an intermediate RB model over D:
we perform GreedyRB (Algorithm 1) for specified μ1 ∈ D and εRBtol . The
cost is N -dependent.

2. hp-DRB partition and approximation space construction. We construct
an hp-DRB model based on the intermediate RB model in step 1 as dis-
cussed in the previous two subsections. This step includes, for each DRB
approximation space, construction of the parameter-independent entities
required for DRB output and DRB error bound evaluation. The cost is
N -independent.

The offline stage may be expensive; however with the DRB modification in
step 2 above we significantly reduce the offline computational cost compared to
a standard hp-RB approach: the Ntotal =

∑K
k=1N

k truth FE snapshots of N -
dependent complexity required by the standard hp-RB offline stage are replaced
by Mtotal =

∑K
k=1M

k RB snapshots of Nmax-dependent complexity.6

In the online stage, given any new parameter value μ ∈ D, we first determine
which subdomain Vk∗ ⊂ D contains μ through a binary search at cost O(logK).
Then, for given 1 ≤ M ≤ Mhp

max, we compute the DRB solution, DRB output,
and DRB error bound at cost O(M3 +M2Q2). We note that the online cost is
independent of the truth complexity N and the complexity N associated with
the underlying intermediate RB model. We emphasize that in the online stage,
we invoke the DRB error bound with respect to the FE truth approximation.
We finally note that the offline–online decomposition associated with the

hp-DRB approximation is rather different from the offline–online decomposition
associated with focus calculations: the DRB “technology” is invoked in the offline
(and not online) stage.

6Note that we expect here thatMk ≈ Nk as long asMk is significantly smaller than Nmax,
1 ≤ k ≤ K. Also note that for simplicity in this argument we assume that K is the same for
the hp-RB and hp-DRB approaches.
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Figure 8: Maximum RB (squares) and hp-DRB (circles) error bounds over random
test parameter values as a function of approximation space dimension.

5.4 Numerical Results

5.4.1 Thermal Block

We now apply the hp-DRB method to the thermal block problem introduced
in Section 2.2.1. For the underlying intermediate RB space XNmax we use the
same space as for the thermal block focus calculation example: Nmax = 96.
We then pursue the hp-DRB procedure discussed above for εhtol = 0.3, εptol =
10−3, and Mhp

max = 25; the initial parameter value for the partition procedure
is μD

1 = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5). The hp-DRB offline computation results
in a partition of D into K = 7565 subdomains, each of which has an associated
DRB approximation space of dimension at most Mhp

max = 25.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of size

|Ξtest| = 1000. We then define, for 1 ≤ N ≤ Nmax, the maximum error bound
associated with the RB approximation,

εΞtest

N = max
μ∈Ξtest

ΔN (μ); (5.13)

we also define, for 1 ≤ M ≤ Mhp
max, the maximum error bound associated with
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the hp-DRB approximation,

εK,Ξtest

Nmax,M
= max

μ∈Ξtest

ΔK
Nmax,M (μ). (5.14)

In Figure 8 we compare εΞtest

N and εK,Ξtest

Nmax,M
as functions of the approximation

space dimensions N and M , respectively: clearly the hp-DRB approximation
provides significant dimension reduction. For example, N = 30 and M = 15
basis functions are required for an error bound of approximately 10−2 for the
RB and hp-DRB approximation, respectively. The hp-DRB thus provide in this
case online computational savings by a factor of 8 (provided the dense system
matrix LU-factorization dominates online cost).
The main point of this example is not the dimension reduction provided

by the hp-DRB procedure per se: we would have obtained similar dimension
reduction were we to use a standard hp-RB procedure. Our emphasis here is
on the offline stage, which requires 232608 snapshots: this task is feasible in the
hp-DRB case in which each snapshot is an RB calculation (Nmax = 96 degrees
of freedom), but would clearly be prohibitive in the standard hp-RB case in
which each snapshot is a truth calculation (N = 9261 degrees of freedom).

5.4.2 Acoustic Horn

We now apply the hp-DRB method to the acoustic horn problem introduced
in Section 2.2.2. For the underlying intermediate RB space XNmax we use the
same space as for the acoustic horn focus calculation example: Nmax = 109. We
then pursue the hp-DRB procedure discussed above for εhtol = 10, εptol = 10−4,
and Mhp

max = 30; the initial parameter value for the partition procedure is μD
1 =

(1.4, 2.15, 1.0). The hp-DRB offline computation results in a partition of D into
K = 997 subdomains as shown in Figure 9, each of which has an associated
DRB approximation space of dimension at most Mhp

max = 30.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of size

|Ξtest| = 1000 and show in Figure 10 εΞtest

N and εK,Ξtest

Nmax,M
as functions of the

approximation space dimensions N and M , respectively: clearly the hp-DRB
approximation provides significant dimension reduction. As for the thermal
block example, our main point here is that the DRB strategy enables a feasible
hp-DRB offline computation, compared to a prohibitive or infeasible hp-RB
offline computation.
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Figure 9: The parameter domain partition associated with the hp-DRB approxima-
tion for the acoustic horn problem; note that one octant of the parameter domain is
hidden.

185



Paper 4

0 20 40 60 80 100
10−4

10−2

100

102

104

Dimension

M
ax

 e
rr

or
 b

ou
nd

εK,Ξtest

Nmax,M

εΞtest

N

Figure 10: Maximum RB (squares) and hp-DRB (circles) error bounds over random
test parameter values as a function of approximation space dimension.

6 Conclusions and Future Work

We have demonstrated that the new DRB method may provide significant on-
line speedup in the context of focus calculations, for example for visualization or
optimization of RB outputs and RB error bounds over a subdomain or subman-
ifold of the original parameter domain. Further, we have demonstrated that the
DRB method may provide significant offline speedup for hp-RB computations,
or indeed enable hp-RB computations for problems for which the cost of the
standard hp-RB offline stage is prohibitive.
There are several opportunities for extensions. First, the DRB method read-

ily extends to linear parabolic (coercive or non-coercive) problems; we refer to
[10, 12] and [6] for (standard) RB and hp-RB treatment of this class of prob-
lems, respectively. We may also straightforwardly apply the DRB approach
to quadratically nonlinear problems; see [6] for hp-RB treatment of the un-
steady incompressible Navier-Stokes equations. Second, we believe that the
DRB method will further increase the efficacy of the RB method in applications
on “lightweight” hardware [15] where it is crucial to minimize the cost of a re-
duced order model both in terms of computation time and memory footprint.
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In future work we plan to investigate applications of DRB technology in a range
of new areas such as in situ parameter estimation, uncertainty quantification
and design/optimization.

Acknowledgements

This work has been supported by AFOSR Grant number FA9550-07-1-0425,
OSD/AFOSR Grant number FA9550-09-1-0613, and the Norwegian University
of Science and Technology.

Bibliography

[1] B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global
shape functions in structural analysis. AIAA Journal, 16:525–528, 1978.

[2] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical in-
terpolation’ method: application to efficient reduced-basis discretization of
partial differential equations. Comptes Rendus Mathematique, 339(9):667–
672, 2004.

[3] S. Boyaval. Reduced-basis approach for homogenization beyond the peri-
odic setting. Multiscale Modeling & Simulation, 7(1):466–494, 2008.

[4] S. Boyaval, C. Le Bris, Y. Maday, N. C. Nguyen, and A. T. Patera. A
reduced basis approach for variational problems with stochastic parameters:
Application to heat conduction with variable robin coefficient. Computer
Methods in Applied Mechanics and Engineering, 198(41-44):3187 – 3206,
2009.

[5] C. Canuto, T. Tonn, and K. Urban. A posteriori error analysis of the
reduced basis method for nonaffine parametrized nonlinear PDEs. SIAM
Journal on Numerical Analysis, 47(3):2001–2022, 2009.

[6] J. L. Eftang, D. J. Knezevic, and A. T Patera. An hp certified reduced basis
method for parametrized parabolic partial differential equations. Mathe-
matical and Computer Modelling of Dynamical Systems, to appear, 2011.
http://augustine.mit.edu.

187



Paper 4

[7] J. L. Eftang, A. T. Patera, and E. M. Rønquist. An “hp” certified reduced
basis method for parametrized elliptic partial differential equations. SIAM
Journal on Scientific Computing, 32(6):3170–3200, 2010.

[8] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Bal-
timore, MD, third edition, 1996.

[9] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient reduced-
basis treatment of nonaffine and nonlinear partial differential equations.
ESAIM: Mathematical Modelling and Numerical Analysis, 41(3):575–605,
2007.

[10] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis
approximations of parametrized parabolic partial differential equations.
ESAIM: Mathematical Modelling and Numerical Analysis, 39(1):157–181,
2005.

[11] B. Haasdonk, M. Dihlmann, and M. Ohlberger. A Training Set and Multi-
ple Bases Generation Approach for Parametrized Model Reduction Based
on Adaptive Grids in Parameter Space. Technical Report 28, SRC SimTech,
2010.

[12] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume
approximations of parametrized linear evolution equations. ESAIM: Math-
ematical Modelling and Numerical Analysis, 42(2):277–302, 2008.

[13] B. Haasdonk and M Ohlberger. Efficient reduced models and a posteri-
ori error estimation for parametrized dynamical systems by offline/online
decomposition. Mathematical and Computer Modelling of Dynamical Sys-
tems, 2011. 10.1080/13873954.2010.514703.

[14] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera. Certified reduced basis
model characterization: a frequentistic uncertainty framework. Computer
Methods in Applied Mechanics and Engineering, submitted, January 2011.
http://augustine.mit.edu.

[15] D. B. P. Huynh, D. J. Knezevic, J. W. Peterson, and A. T. Patera. High-
fidelity real-time simulation on deployed platforms. Computers & Fluids,
43(1):74 – 81, 2011. Symposium on High Accuracy Flow Simulations. Spe-
cial Issue Dedicated to Prof. Michel Deville, Symposium on High Accuracy
Flow Simulations.

188



A Two-Step Certified Reduced Basis Method

[16] D. B. P. Huynh, D.J. Knezevic, Y. Chen, J.S. Hesthaven, and A.T. Pat-
era. A natural-norm successive constraint method for inf-sup lower bounds.
Computer Methods in Applied Mechanics and Engineering, 199(29-32):1963
– 1975, 2010.

[17] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint
linear optimization method for lower bounds of parametric coercivity and
inf-sup stability constants. Comptes Rendus Mathematique, 345(8):473 –
478, 2007.

[18] M. Kamon, F. Wang, and J. White. Generating nearly optimally compact
models from Krylov-subspace based reduced-order models. IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing,
47(4):239 –248, apr. 2000.

[19] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A
C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simula-
tions. Engineering with Computers, 22(3–4):237–254, 2006.

[20] D. J. Knezevic and A. T. Patera. A certified reduced basis method for
the fokker–planck equation of dilute polymeric fluids: Fene dumbbells in
extensional flow. SIAM Journal on Scientific Computing, 32(2):793–817,
2010.

[21] D. J. Knezevic and J. W. Peterson. A high-performance parallel implemen-
tation of the certified reduced basis method. Computer Methods in Applied
Mechanics and Engineering (submitted), 2010.

[22] B. Moore. Principal component analysis in linear systems: Controllabil-
ity, observability, and model reduction. IEEE Transactions on Automatic
Control, 26(1):17 – 32, February 1981.

[23] N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis
approximation and a posteriori error estimation for parametrized parabolic
pdes: Application to real-time bayesian parameter estimation. In Biegler,
Birosa, Ghattas, Heinkenschloss, Keyes, Mallick, Marzouk, Tenorio, Waan-
ders, and Willcox, editors, Large-Scale Inverse Problems and Quantification
of Uncertainty, pages 151–177. John Wiley & Sons, Ltd, 2010.

[24] A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis
of structures. AIAA Journal, 18:455–462, 1980.

189



Paper 4

[25] T. A. Porsching. Estimation of the error in the reduced basis method
solution of nonlinear equations. Mathematics of Computation, 45(172):487–
496, 1985.

[26] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive
partial differential equations: application to transport and continuum me-
chanics. Archives of Computational Methods in Engineering, 15(3):229–275,
2008.

[27] R. Udawalpola and M. Berggren. Optimization of an acoustic horn with
respect to efficiency and directivity. International Journal for Numerical
Methods in Engineering, 73:1571–1606, 2008.

[28] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera. A posteriori
error bounds for reduced-basis approximation of parametrized noncoercive
and nonlinear elliptic partial differential equations. In Proceedings of the
16th AIAA Computational Fluid Dynamics Conference, 2003. AIAA Paper
2003-3847.

[29] K. Willcox and A. Megretski. Fourier series for accurate, stable, reduced-
order models in large-scale linear applications. SIAM Journal on Scientific
Computing, 26(3):944–962 (electronic), 2005.

190



PAPER 5

PARAMETER MULTI-DOMAIN “hp” EMPIRICAL
INTERPOLATION

JENS L. EFTANG AND BENJAMIN STAMM

NTNU Preprint Numerics No. 3/2011

Submitted to
International Journal for Numerical Methods in Engineering,

2011





PARAMETER MULTI-DOMAIN “hp” EMPIRICAL
INTERPOLATION

JENS L. EFTANG∗ AND BENJAMIN STAMM†,‡

∗Department of Mathematical Sciences,
Norwegian University of Science and Technology,

Trondheim, Norway
†Department of Mathematics,

University of California, Berkeley,
Berkeley, California, USA

‡Lawrence Berkeley National Laboratory,
Berkeley, California, USA

Abstract

In this paper, we introduce two parameter multi-domain “hp” techniques
for the empirical interpolation method (EIM). In both approaches, we
construct a partition of the original parameter domain into parame-
ter subdomains: h-refinement. We apply the standard EIM indepen-
dently within each subdomain to yield local (in parameter) approximation
spaces: p-refinement. Further, for a particularly simple case we introduce
a priori convergence theory for the partition procedure. We show through
two numerical examples that our approaches provide significant reduction
in the EIM approximation space dimension, and thus significantly reduce
the computational cost associated with EIM approximations.

1 Introduction

The Empirical Interpolation Method (EIM) was first introduced in [1, 7] as a tool
within the Reduced Basis (RB) framework [12] for parametrized partial differ-
ential equations (PDEs). The EIM serves to construct “affine” (more precisely,
affine in functions of the parameter) approximations of non-affine parametrized
differential operators. This approximation is achieved through an affine approx-
imation of the coefficient function which separates the parameter and spatial
dependence. An affine decomposition of the differential operator is necessary
to enable efficient RB offline-online computational procedures. The EIM thus
expands the class of PDEs amenable to RB treatment; other applications of the
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EIM include rapid numerical approximation of parametrized integrals and are
discussed in [9].
Given “any” parametrized function, the EIM precomputation (henceforth of-

fline) stage serves to construct an approximation space spanned by “snapshots”
of this function for judiciously chosen parameter values from a predefined pa-
rameter domain and a set of judiciously chosen spatial interpolation nodes from
the spatial domain. In the EIM online stage, given any new parameter value
from the parameter domain, the EIM approximation to the original function is
the particular linear combination of the EIM basis functions that interpolates
the original function at the spatial interpolation nodes.
Under the assumption that the function under consideration depends suf-

ficiently smoothly on the parameters, the EIM typically provides exponential
convergence [9]. However, for many problems in which the function exhibits
large (albeit smooth) variations with the parameters, a snapshot from one region
of the parameter domain contributes little to the approximation of the function
associated with a parameter value from another region of the parameter do-
main. The global (in parameter, but of course also space) EIM approximation
space is thus in some sense unnecessecarily large, and consequently the online
computation of the EIM approximation is unnecessecarily expensive.
In this paper, we introduce two approaches that both serve to reduce the

dimension of the EIM approximation space. Both approaches share the same
underlying idea: an adaptive partition of the parameter domain into parame-
ter subdomains — h-refinement — and construction of standard EIM approx-
imation spaces and associated EIM interpolation nodes restricted to each of
these parameter subdomains — p-refinement. This parameter multi-domain,
or hp, strategy provides significant dimension reduction since the smaller local
(in parameter) EIM approximation spaces are optimized with respect to the
parametric variations within each subdomain; the online evaluation of the EIM
interpolant is thus much faster.
Our first approach is the anchor point (AP) splitting scheme. This method

is an adaption of the hp-RB method introduced in [4] to the context of the
EIM. The parameter subdomains are hierarchically defined based on proximity
to “anchor points” identified by the EIM Greedy sampling procedure within each
subdomain at each level of h-refinement; subsequently, in the p-refinement stage,
the standard EIM is applied within each subdomain. Our second approach
is the gravity center (GC) splitting scheme. The parameter subdomains are
hierarchically defined based on the “gravity center” of a cloud of points identified
by the EIM Greedy sampling procedure at each level of concurrent h- and p-
refinement.
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We provide in the next section the problem statement along with notation
required later. We then review in Section 3 the standard EIM applied to the
entire parameter domain D. Then, we present in Section 4 and Section 5 the
AP and GC splitting procedures, respectively. In Section 6 we discuss the
computational cost associated with both methods. In Section 7 we compare
our two approaches relative to the standard EIM through two model problems.
Finally, we provide some concluding remarks in Section 8.

2 Problem statement

We introduce a spatial domain Ω ⊂ Rd for some integer d > 0; we shall denote
a particular spatial point x ∈ Ω as x = (x(1), . . . , x(d)). We next introduce
a parameter domain D ⊂ RP ; we shall denote a particular parameter value
μ ∈ D as (μ(1), . . . , μ(P )). We then introduce a (given) parametrized function
G : Ω × D → R such that G(·;μ) ∈ L∞(Ω) for all μ ∈ D; here L∞(Ω) = {v :
ess supx∈Ω |v(x)| < ∞}. We finally introduce a triangulation T N (Ω) with N
vertices over which we shall in practice realize G(·;μ), μ ∈ D, as a piecewise
linear function.1

For any μ ∈ D, we consider the construction of an approximation GM (·;μ) ≈
G(·;μ), where GM (·;μ) resides in a parameter-independent M -dimensional lin-
ear approximation spaceWM ,M <∞. The problem is thus twofold: i) the con-
struction of a goodM -dimensional approximation spaceWM = span{q1, . . . , qM}
and ii) given any μ ∈ D and the space WM , the computation of parameter de-
pendent coefficients ϕ1(μ), . . . , ϕM (μ) such that

GM (·;μ) =
M∑
i=1

ϕi(μ)qi ≈ G(·;μ) (2.1)

is a good approximation. Clearly, classical polynomial interpolation proce-
dures may be considered for this problem; however in our context here stan-
dard polynomial approximation spaces are far too general and hence the re-
quired dimension M is too large to accomodate efficient online evaluation of
ϕ1(μ), . . . , ϕM (μ). In contrast, the EIM provides a much smaller approxima-
tion space specifically targeted at the parametrized function at hand.

1We emphasize that the EIM is not restricted to functions that are piecewise linear; how-
ever, for the computational procedures involved, a finite-dimensional representation of G(·;μ),
μ ∈ D, is required.
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The following simple problem illustrates how the EIM may be invoked in
practice. Consider the integral

F (μ) =

∫
Ω

f(·;μ)u, (2.2)

where f : Ω × D → R with f(·;μ) ∈ L∞(Ω) for any μ ∈ D and u : Ω → R
is a parameter independent function (we assume that the product f(·;μ)u is
integrable). In general, evaluation of F (μ) with standard quadrature rules may
be expensive; in particular, the evaluation cost may be prohibitive when F (μ)
has to be computed for many μ ∈ D or in real time. The EIM serves to construct
an approximation fM (·;μ) =∑M

m=1 ϕm(μ)qm to f(·;μ) such that

FM (μ) ≡
∫
Ω

fM (·;μ)u =
M∑

m=1

ϕm(μ)

∫
Ω

qmu (2.3)

is a good approximation to F (μ). The key point is that the separation provided
by the EIM allows precomputation of the integrals in (2.3) (by for example
standard quadrature rules). Hence subsequent evaluation μ → FM (μ) may be
performed very fast.

3 The empirical interpolation method

The EIM was originally proposed in [1] (see also [7] for a more elaborate pre-
sentation). In this paper however we shall employ the particular version of
the EIM introduced in [9], which invokes the less expensive interpolation error
rather than the more expensive projection error as a tool in the offline construc-
tion of the EIM approximation space. We now briefly review the EIM applied
to the entire parameter domain D; in the next sections we then consider the
EIM within the hp context.
We first introduce the empirical interpolation of a function G : Ω×D → R; we

require that G(·;μ) ∈ L∞(Ω) for all μ ∈ D. We introduce the EIM space WM =
span{qm}Mm=1 of dimensionM and theM EIM interpolation nodes t1, . . . , tM ∈
Ω (the EIM basis functions qm, 1 ≤ m ≤ M , and interpolation nodes will be
defined shortly). We may now define, for any μ ∈ D, the empirical interpolation
GM (·;μ) ≈ G(·;μ), as the particular function in WM that interpolates G(·;μ) at
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the M interpolation nodes:

GM (·;μ) =
M∑
i=1

ϕi(μ)qi, (3.1)

where the coefficients ϕi(μ), 1 ≤ i ≤M , solve the linear system

M∑
j=1

ϕj(μ)qj(ti) = G(ti;μ), 1 ≤ i ≤M. (3.2)

It is easy to see that GM (ti;μ) = G(ti;μ), 1 ≤ i ≤M , for all μ ∈ D.
We now define the EIM basis functions and the EIM interpolation nodes

recursively through a Greedy sampling algorithm. To this end we require
a (typically rich) training set Ξtrain ⊂ D of finite size |Ξtrain| which shall
serve as our computational surrogate for D. First, for M = 1, we choose
(randomly, say) an initial parameter value μ1 ∈ D; the first EIM interpola-
tion node is then t1 ≡ arg supx∈Ω |G(x;μM )|;2 the first EIM basis function is
qM ≡ G(·;μM )/G(tM ;μM ). Then, for 2 ≤ M ≤ Mmax < ∞, we compute for
all μ ∈ Ξtrain ⊂ D the empirical interpolation GM−1(·;μ) ≈ G(·;μ); the next
parameter is then chosen as the maximizer of the L∞(Ω) interpolation error
over Ξtrain:

μM ≡ arg max
μ∈Ξtrain

‖GM−1(·;μ)− G(·;μ)‖L∞ . (3.3)

We define rM ≡ GM−1(·;μM )−G(·;μM ) and choose the next EIM interpolation
node as

tM ≡ arg sup
x∈Ω

|rM (x)|. (3.4)

We may now finally define the next EIM basis function as

qM ≡ rM
rM (tM )

. (3.5)

We have thus obtained Mmax basis functions and Mmax interpolation nodes.
We note that by construction rM (ti) = 0 for 1 ≤ i ≤M−1; hence qM (ti) = 0 for
1 ≤ i ≤M − 1 and qM (tM ) = 1 thanks to the normalization (3.5). The matrix

2Note that supx∈Ω |G(x;μ)| is in practice realized as the maximum of |G(x;μ)| over the N
vertices of T N (Ω).
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{qj(ti)}i j in (3.2) is thus lower triangular with unity diagonal; as a result, for
any μ ∈ D, the cost associated with the computation of the coefficients ϕj(μ),
1 ≤ j ≤M , is O(M2).
For 1 ≤M ≤Mmax, we define the “Lebesgue constant” [10]

ΛM ≡ sup
x∈Ω

M∑
m=1

|VM
m (x)|, (3.6)

where VM
m ∈WM , 1 ≤ m ≤M , are the “characteristic functions” of WM , which

satisfy VM
m (tn) = δmn; here δmn is the Kronecker delta symbol. It can be proven

[1, 7] that the EIM approximation error satisfies

‖G(·;μ)− GM (·;μ)‖L∞ ≤ (1 + ΛM ) inf
z∈WM

‖G(·;μ)− z‖L∞ , 1 ≤M ≤Mmax,

(3.7)

Furthermore, it can be proven that ΛM ≤ 2M − 1; however in actual practice
the behavior of ΛM is much better [1, 7, 9].

4 An anchor point splitting scheme

4.1 Procedure
In this section we introduce the anchor point (AP) splitting procedure for the
partition of the parameter domain; this procedure is an adaption of the approach
introduced for the hp reduced basis method in [3, 4]. We shall require a distance
function d : D × D → R, which we choose in this paper as the Euclidean
distance between the two arguments; however, other distance functions may be
considered.
We first describe the splitting of an arbitrary subdomain V ⊆ D into two

distinct subdomains V0 ⊂ V and V1 ⊂ V; the application of this splitting step to
the construction of a partition of D is straightforward and is discussed shortly.
We assume that V is equipped with a sufficiently dense training set ΞV

train ⊂ V.
Given an anchor point μ∗

0 ∈ V, we set μ1 = μ∗
0; we then compute G(·;μ1), t1 =

arg supx∈Ω |G(x;μ1)|, and perform one iteration of the standard EIM Greedy
procedure restricted to ΞV

train (hence Mmax = 2). We then define μ∗
1 ≡ μ2 and

we denote the maximum interpolation error over ΞV
train by

εV ≡ max
μ∈ΞV

train

‖G1(·;μ)− G(·;μ)‖L∞ . (4.1)
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We can now define two distinct subdomains V0 ⊂ V and V1 ⊂ V based on
proximity to the two points μ∗

0 and μ∗
1 as

V0 = {μ ∈ V : d(μ, μ∗
0) < d(μ, μ∗

1)}, (4.2)
V1 = {μ ∈ V : d(μ, μ∗

1) ≤ d(μ, μ∗
0)}. (4.3)

We say that μ∗
0 is to the anchor point of V0 and that μ∗

1 is the anchor point of
V1.
We apply this “h-refinement” splitting scheme in a recursive manner in order

to construct a hierarchical partition of the entire domain D: we first choose the
initial anchor point—typically a corner of D—and split D into two new subdo-
mains. We then apply the splitting scheme within each of the two generated
subdomains. We continue recursively until convergence: we split a subdomain
V as long as the maximum error εV in (4.1) is larger than a prescribed tolerance
εhtol > 0. If εV < εhtol we stop the splitting process. We note that each subdomain
(except the “root” D) has a single “parent” and one “sibling.” Thanks to this
structure we may organize the splitting procedure in a binary tree as illustrated
in Figure 1.
When the tolerance εhtol is satisfied over Ξ

V
train, we perform “p-refinement”

within V: application of the standard EIM to V for specified Mmax > 1 and
target tolerance εptol < εhtol. If the target tolerance ε

p
tol is not satisfied after p-

refinement (for Mmax basis functions), we successively perform additional “h”
and “p” refinement steps until the tolerance is satisfied for at most Mmax EIM
basis functions. Our procedure thus enables simultaneous control over the EIM
error (over the training set) and the EIM space dimension (and thus online
cost).
This hp-EIM anchor point refinement procedure results in a finite number K

of parameter subdomains, which we label V1, . . . ,VK . Each of these subdomains
has an associated nested set of EIM approximation spaces,W k

M = span{qkm}Mm=1,
1 ≤M ≤Mk

max, 1 ≤ k ≤ K, and an associated set of nested EIM interpolation
nodes T k

M = {tk1 , . . . , tkM}, 1 ≤M ≤Mk
max, 1 ≤ k ≤ K. Here, the qkm denote the

EIM basis functions, and Mk
max denotes the space dimension required in order

to reach the target tolerance for subdomain k. Note that theMk
max, 1 ≤ k ≤ K,

are in general different but bounded by Mmax.
Given the partition of D intoK subdomains with associated EIM approxima-

tion spaces and interpolation nodes, we now define the AP hp-EIM interpolant.
Given any μ ∈ D, we first determine k∗ = k∗(μ) such that μ ∈ Vk∗ . Note that
thanks to the binary tree structure of the partition, determination of k∗ is an
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h-refinement
p-refinement

D

Figure 1: Two levels of h-refinement and subsequent p-refinement for the anchor
point splitting procedure.

efficient binary search. We then compute the EIM approximation as

GM,K(·;μ) ≡ Gk∗
M,K(·;μ) =

M∑
i=1

ϕk∗
M,i(μ)q

k∗
i , (4.4)

where the coefficients ϕk∗
M,i(μ), 1 ≤ i ≤M , solve the linear system

M∑
j=1

ϕk∗
M,j(μ)q

k∗
j (tk

∗
i ) = G(tk∗

i ;μ), 1 ≤ i ≤M, (4.5)

Remark 1. We note that the partition of D can be organized in a binary tree as
indicated in Figure 1 regardless of the parameter dimension P , since we always
subdivide a subdomain into two new subdomains at each level of refinement. The
method thus allows the partition to reflect anisotropy in the underlying parameter
dependence of G(·;μ).

4.2 An a priori convergence theory for the AP procedure

We present here an a priori theory for the convergence of the initial partition
algorithm (h-refinement) presented above. The theory does not consider the
subsequent p-refinement however this step will ultimately (trivially) converge
since the training sets are of finite size. Our interest is not in the asymp-
totic convergence of the partition procedure per se, since in practice we will
always invoke an hp-type approximation rather than a pure h-type approxima-
tion. However, the theory suggests that our procedure generates a meaningful
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partition, and furthermore guarantees that the partition procedure does in fact
terminate for specified εhtol. We consider the case with P = 1 parameter for
simplicity.

Proposition 1. Let D ⊂ R and let |D| denote the length of D. Suppose that
G(·;μ) is Lipschitz-continuous in μ with Lipschitz constant L < ∞: for any
μ1 ∈ D, μ2 ∈ D,

‖G(·;μ1)− G(·;μ2)‖L∞ ≤ L|μ1 − μ2|. (4.6)

For any specified εhtol > 0, the AP splitting procedure is then convergent for
K = K(εhtol) subdomains; moreover, the convergence is first order in the sense
that

K(εhtol) ≤ max

{
1,
4L|D|
εhtol

}
, (4.7)

where |D| is the length of D.

Proof. We consider our splitting procedure after generation of K̃ subdomains.
Either we obtain convergence for K̃ = 1 (i.e., K = 1) — in which case the proof
is complete — or K̃ > 1. We henceforth consider the case K̃ > 1.
We consider the splitting of an arbitrary subdomain V ⊂ D into distinct

subdomains V0 ⊂ V and V1 ⊂ V as discussed in the previous subsection. We
assume that the error tolerance εhtol is not satisfied, hence ε

V > εhtol. Let μ
∗
0 ∈ V

denote the anchor point associated with V. We then consider the empirical
interpolation G̃(·;μ) = ϕ̃(μ)G(·;μ∗

0) ≈ G(·;μ) for any μ ∈ V. For the error in
this approximation we obtain

‖G(·;μ)− G̃(·;μ)‖L∞ ≤ (1 + Λ(M=1)) inf
z∈span{G(·;μ∗

0)}
‖G(·;μ)− z‖L∞

≤ 2‖G(·;μ)− G(·;μ∗
0)‖L∞

≤ 2L|μ− μ∗
0|, (4.8)

where we first invoke (3.7), then choose z = G(·;μ∗
0), and finally invoke (4.6).

Note that it follows from the definition of Λ1 (Eq. (3.6)) and the characteristic
function V 1

1 that Λ1 = 1.
We now let μ = μ∗

1 denote the anchor point associated with V1, identified
by the single EIM Greedy iteration over V. Eq. (4.8) then yields

‖G(·;μ∗
1)− G̃(·;μ∗

1)‖L∞ ≤ 2L|μ∗
1 − μ∗

0|. (4.9)
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Since the error tolerance is not satisfied over V, we have εV = ‖G(·;μ∗
1) −

G̃(·;μ∗
1)‖L∞ > εhtol. Hence

εhtol < 2L|μ∗
1 − μ∗

0|. (4.10)

We split V into V0 ⊂ V, V1 ⊂ V based on Euclidean distance to the two anchor
points. It is clear that the length of each subdomain, |V0| and |V1|, is at least
as large as half the distance between the anchor points. We thus obtain

|Vi| ≥
|μ∗
1 − μ∗

0|
2

>
εhtol
4L

, i = 0, 1. (4.11)

We denote the K̃ subdomains generated by the algorithm so far by Sk ⊂ D,
1 ≤ k ≤ K̃; we denote the length of Sk by |Sk|. Each of these subdomains
results from a splitting of a subdomain S̃k ⊃ Sk one level further up in the tree.
Since V above was arbitrary, we can for any k, 1 ≤ k ≤ K̃, set V = S̃k and
conclude that

|Sk| >
εhtol
4L

, 1 ≤ k ≤ K̃. (4.12)

We define the length of the smallest subdomain as δK̃ ≡ min1≤k≤K̃ |Sk|, and
hence in particular δK̃ > εhtol/(4L).
We complete the proof by a contradiction argument. Assume that K̃ >

4L|D|/εhtol. In this case

K̃δK̃ >
4L|D|
εhtol

δK̃ >
4L|D|
εhtol

· ε
h
tol

4L
= |D|. (4.13)

On the other hand, it is clear that K̃δK̃ ≤ |D| for K̃ subdomains. We have thus
reached a contradiction, and we conclude that the algorithm can not generate
K̃ > 4L|D|/εhtol subdomains as long as the error tolerance is not satisfied. Hence
the error tolerence must be satisfied for, and thus the algorithm must terminate
for, K ≤ 4L|D|/εhtol subdomains.

5 A gravity center splitting scheme

5.1 Procedure
In this section we introduce the gravity center (GC) splitting procedure. The
GC procedure is similar to the AP procedure of the previous section: both
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approaches invoke the standard EIM greedy sampling procedure in a recursive
way in order to generate hierarchical partitions. However the GC procedure also
differs significantly from the AP procedure in several ways: the GC procedure
splits a given subdomain in a structured way based on the location of the gravity
center of Mmax > 2 parameter values. Hence the GC splitting procedure also
involves higher order approximation terms and, in contrast to the AP splitting,
leads to a tensorized partition structure. Below, we shall require an operation
op(i, j) defined as

op(i, j) =

{
≤ if bin(i− 1)(j) = 0
> if bin(i− 1)(j) = 1

(5.1)

where bin(i) is the binary representation of i as a vector in {0, 1}P .
We first describe the splitting of an “arbitrary” subdomain V = [a(1), b(1)]×

. . . × [a(P ), b(P )] ⊂ D into 2P distinct subdomains Vi ⊂ V , 1 ≤ i ≤ 2P , each of
which may be written on tensor-product form Vi = [ai(1), b

i
(1)]× . . .× [ai(P ), bi(P )].

The application of this splitting step to the construction of a partition of D is
discussed shortly.
First, we perform a standard EIM procedure within V for a target tolerance

εptol and a maximum EIM space dimension Mmax. If the target tolerance is
satisfied over V, i.e., εV < εptol, we terminate the procedure since further splitting
of V domain is not required. If the target tolerance is not satisfied over V, we
obtainMmax parameter values {μ1, . . . , μMmax} from the EIM greedy procedure.
We then define the gravity point of the point cloud {μi}Mmax

i=1 by

g =
1

Mmax

Mmax∑
i=1

μi. (5.2)

The ith subdomain Vi is defined by

Vi = {μ ∈ V : μ(j) op(i, j) g(j), ∀ 1 ≤ j ≤ P}; (5.3)

where μ(j) and g(j) represents the jth element of μ and g, respectively,
As with the AP procedure, we apply the GC splitting scheme recursively in

order to construct a hierarchical partition of the original domain D: we start
with a standard EIM greedy procedure within D, and split D into 2P new
subdomains. We then apply the GC scheme within each of these subdomains,
and continue the procedure recursively until convergence: the target tolerance
is achieved over each subdomain with maximum EIM space dimension Mmax.
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Figure 2: Two levels of parameter domain splitting for the gravity center procedure.

This hp-EIM refinement procedure results in K parameter subdomains,
which we label V1, . . . ,VK . Each of these subdomains has an associated nested
set of EIM approximation spaces, W k

M = span{qkm}Mm=1, 1 ≤ M ≤ Mk
max,

1 ≤ k ≤ K, and an associated set of nested EIM interpolation nodes T k
M =

{tk1 , . . . , tkM}, 1 ≤ M ≤ Mk
max, 1 ≤ k ≤ K; as before Mk

max denotes the space
dimension required in order to satisfy the target tolerance εptol for subdomain
k.3
Given the partition of D into K subdomains with associated EIM approxi-

mation spaces and interpolation nodes, we now define the GC hp-EIM approx-
imation. Given any μ ∈ D, we first determine k∗ = k∗(μ) such that μ ∈ Vk∗ .
Note that thanks to the hierarchical structure of the partition, determination of
k∗ is an efficient 2P -order search. We then compute the EIM approximation as

GM,K(·;μ) ≡ Gk∗
M,K(·;μ) =

M∑
i=1

ϕk∗
M,i(μ)q

k∗
i , (5.4)

where the coefficients ϕk∗
M,i(μ), 1 ≤ i ≤M , solve the linear system

M∑
j=1

ϕk∗
M,j(·;μ)qk

∗
j (tk

∗
i ) = G(tk∗

i ;μ), 1 ≤ i ≤M. (5.5)

Remark 2. We note that the partition of D can be organized in a 2P order
tree as indicated in Figure 2, since at each level of refinement we subdivide a

3Strictly speaking, we should here introduce separate notatition for the AP and GC split-
ting procedures. In particular, the number of subdomains K as well as entities associated
with each subdomain (such as Wk

M , Tk
M ,Mk

max) should bear subscripts AP and GC. However,
we omit these subscripts for simplicity of notation. When we later compare the two approches
in terms of numerical results, we introduce separate notation only as necessary.
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subdomain into 2P new subdomains. As a result, the scheme does only take
anisotropy in the underlying parameter dependence into account in a weak man-
ner, and as a consequence may construct more subdomains than required. We
provide further comments on this issue in Section 7.

5.2 An a priori convergence theory for the GC procedure

We present here an a priori theory for the convergence of the GC partition algo-
rithm. The theory ensures that the algorithm does in fact terminate for specified
εptol and Mmax. We consider the case with P = 1 parameter for simplicity.

Proposition 2. Let D ⊂ R and let |D| denote the length of D. Suppose that
G(·;μ) is Lipschitz-continuous in μ with Lipschitz constant L < ∞: for any
μ1 ∈ D, μ2 ∈ D,

‖G(·;μ1)− G(·;μ2)‖L∞ ≤ L|μ1 − μ2|. (5.6)

For any specified εptol > 0 and Mmax ≥ 2, the “gravity center” splitting procedure
is then convergent for K = K(εptol) subdomains; moreover, the convergence is
first order in the sense that

K(εhtol) ≤ max

{
1,
2(1 + ΛmaxM )L|D|

εptol

}
, (5.7)

where |D| is the length of D and ΛmaxM ≡ max1≤M≤Mmax
ΛM .

Proof. We demonstrate here only a lower bound for the length of a subdomain
(analogously to (4.11)). The remainder of the proof is then identical to the
proof of Proposition 1.
We consider the splitting of an arbitrary subdomain V = [a, b] ⊂ D into

distinct subdomains V1 and V2 as discussed in the previous subsection. We
assume that the error tolerance εptol is not satisfied. In V we choose by virtue
of the standard EIM procedure Mmax parameter values μm, 1 ≤ m ≤ Mmax,
and compute the associated snapshots G(·;μm), 1 ≤ m ≤ Mmax. For any
μ ∈ V and 1 ≤ M ≤ Mmax we consider the empirical interpolation G̃M (·;μ) =∑M

m=1 ϕ̃m(μ)G(·;μm) ≈ G(·;μ). Let W̃M = span{G(·;μm)}Mm=1 denote the EIM
space associated with the current subdomain. For the EIM approximation error
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we obtain, for any μ ∈ V,

‖G(·;μ)− G̃M (·;μ)‖L∞ ≤ (1 + ΛM ) inf
z∈W̃M

‖G(·;μ)− z‖L∞ (5.8)

≤ (1 + ΛM )‖G(·;μ)− G(·;μm)‖L∞ (5.9)
≤ (1 + ΛM )L|μ− μm|, (5.10)

for 1 ≤ m ≤ M and 1 ≤ M ≤ Mmax. Since the error tolerance has not been
satisfied, we have εptol ≤ ‖G(·;μM+1) − G̃M (·;μM+1)‖L∞(Ω) for 1 ≤ M ≤ Mmax

(note that here, μMmax+1 is the parameter value at which the maximum error
is obtained with Mmax basis functions). With (5.10) we thus obtain

|μM+1 − μm| ≥
εptol

(1 + ΛM )L
(5.11)

for 1 ≤ m ≤M and 1 ≤M ≤Mmax.
The subdomain V is split at its gravity center g defined in (5.2): V1 = [a, g]

and V2 = (g, b]. We now bound g away from a and b, and thus obtain a lower
bound for |V1| = |g − a| and |V2| = |b − g|. We consider only |V1| since the
argument for |V2| is analogous.
It is clear that there exist i, j, 1 ≤ i, j ≤Mmax, such that μi < g < μj since

the gravity center must reside inside the convex hull of the Mmax ≥ 2 Greedily
chosen parameter values. We consider the situation in which only one of these
Mmax parameter values resides to the left of g (otherwise |V1| ≥ |μM+1 − μm|
for some 1 ≤M ≤Mmax − 1 and some 1 ≤ m ≤M). We denote this particular
parameter value by μi. In this case at least one Greedily chosen parameter value
μj resides to the right of g; hence |g − μi| ≥ |μi − μj |/2 since g must be closer
to μj than to μi. Next, assume that μi was chosen by the Greedy algorithm
at iteration M for 1 ≤ M ≤ Mmax − 1, and that μj was chosen at iteration m
for 1 ≤ m ≤ M − 1. We thus set μM+1 = μi and μm = μj in (5.11) (if μi was
chosen by the Greedy algorithm before μj , we set μM+1 = μj and μm = μi in
(5.11)). We then obtain |g − μi| ≥ εptol/(2(1 + ΛM )L) by (5.11).
We finally note that either, a = μi or a resides to the left of μi. We thus

obtain

|g − a| ≥ |g − μi| ≥
εptol

2(1 + ΛM )L
≥ εptol
2(1 + ΛmaxM )L

. (5.12)

The result for |b− g| is identical and invokes analogous arguments.
The remainder of the argument is now identical to the argument for the

proof of Proposition 1.
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6 Computational cost

We now discuss the computational cost associated with the hp-EIM approaches
presented above. We discuss the cost for the two methods concurrently since
the separation of the computations in offline and online stages is very similar.
In the hp-EIM offline stage, we perform h- and p-refinement: parameter do-

main partition and construction of EIM spaces and EIM interpolation nodes
restricted to each parameter subdomain. The offline stage is expensive, since
the cost depends on the (typically large) number N of vertices in the triangu-
lation T N (Ω). In particular, if we assume that the generated partition has K
subdomains, we must perform KMN function evaluations in order to construct
an EIM space of dimension M associated with each subdomain. For the GC
approach, we must also performMN function evaluations for each intermediate
space associated with an intermediate subdomain; for this reason we expect the
GC approach to be more expensive than the AP approach in the offline stage.
In the hp-EIM online stage, given any new parameter value μ ∈ D, we

first determine to which subdomain Vk∗ ⊂ D the new parameter value belongs.
For the AP approach this search can be performed at cost O(log2(K)) for K
subdomains since the subdomains can be organized in a binary tree: at each
level in the tree a comparison between the distances from μ to two anchor
points determines whether to proceed to the left or to the right branch. For
the GC approach this search can be performed at cost O(log2P (K)) since the
subdomains can be organized in a tree of order 2P : at each level in the tree
an elementwise comparison between μ and the gravity center g determines to
which of the 2P branches to proceed at the next level. We note that for the
same number of subdomains and for P > 1 parameters, we expect that the GC
approach yields the more efficient search since the tree has fewer levels and the
cost at each level is roughly the same — O(P ) for both approaches. However
the cost of this search is in any event typically negligible.
Once the correct subdomain Vk∗ that contains the given parameter value

μ has been determined, we perform the standard EIM online stage: we solve
a system of the form (3.2) at cost O(M2). The key point is that function
evaluations of G(·;μ) are required only at the M spatial interpolation nodes in
T k∗
. Of course, if we wish to additionally visualize GM (x;μ) for all x ∈ Ω, the

cost becomes N -dependent.
We emphasize that our hp-EIM procedures provide a reduction in the O(M2)

online computational cost through reduction in the number of EIM basis func-
tions, M . A smaller M requires a larger number of subdomains, K. However,
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the reduction in M does not balance the increase in K: the product KM in-
creases with K. As a result the hp-EIM offline stage is more expensive than
than the standard EIM offline stage.
We finally note that an alternative “discretely orthogonal” basis for WM is

{VM
m , 1 ≤ m ≤ M}. This basis enables O(M)-complexity computation of the

EIM approximation since qj(ti) in (3.2) is in this case replaced by δji. However,
this basis is not hierarchical since {VM−1

m , 1 ≤ m ≤M−1} � {VM
m , 1 ≤ m ≤M}

and hence the computation of the characteristic functions would have to be
computed as an additional final step in the EIM precomputation procedure. In
any event, when the EIM is applied within the reduced basis framework, the
computational cost of the RB online stage scales as M2 independent of the
choice of the EIM basis [7]. For this reason, and for simlicity of exposition, we
consider in this paper the standard EIM basis functions qm, 1 ≤ m ≤M .

7 Numerical results

We present in this section numerical results for our two hp-EIM approaches
applied to two model problems. In all cases, the hp-EIM yields signifact (online)
speedup compared to the standard EIM.

7.1 Example 1: 2D Gaussian surface

We define the spatial domain Ω ≡ (0, 1) × (0, 1) ⊂ R2, and we introduce a
triangulation T N (Ω) with N = 2601 vertices. We define the parameter domain
D ≡ [0.3, 0.7]× [0.3, 0.7] ⊂ R2, and we introdue a “tensor-product” train sample
Ξtrain ⊂ D of size 1600. We consider the Gaussian function

G(x;μ) ≡ exp

(
− (x(1) − μ(1))

2

0.02
− (x(2) − μ(2))2

0.02

)
, (7.1)

for x = (x(1), x(2)) ∈ Ω and μ = (μ(1), μ(2)) ∈ D. The function G is thus
parametrized by the location of the Gaussian source.
Clearly, G is particularly well suited for hp-adaptivity: snapshots associated

with μ in one region of D do not provide a good approximation for functions
assocaited with μ in another region of D. We thus expect an hp-EIM procedure
to provide significant reduction in M for this example.
To obtain a benchmark for comparison, we first pursue the standard EIM

with Mmax = 196, which corresponds to a tolerance 10−8 satisfied over Ξtrain.
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Mmax εhtol K(Mmax, ε
h
tol)

Computation 1 143 1 2
Computation 2 77 0.99 12
Computation 3 40 0.8 55
Computation 4 30 0.6 106

Table 1: Specified Mmax and εhtol, and the required number of subdomains
K(Mmax, ε

h
tol) for the anchor point procedure applied to Example 1.

Mmax K(Mmax)

Computation 1 99 4
Computation 2 58 16
Computation 3 38 64
Computation 4 27 256

Table 2: Specified Mmax and the required number of subdomains K(Mmax) for the
gravity center procedure applied to Example 1.

We note that the standard EIM is a special case both of the AP procedure and
of the GC procedure for K = 1 subdomain.
We next pursue the AP splitting procedure. We specify εptol = 10−8 as the

tolerance to be satisfied over the training set on each subdomain. We then
perform four computations for different Mmax and εhtol and obtain partitions
with K(Mmax, ε

h
tol) subdomains as listed in Table 1. In Figure 3(a) we show the

maximum error during each of the four computations,

εK,AP
Mmax = max

μ∈Ξ̃AP
train

‖GAPM,K(·;μ)− G(·;μ)‖L∞ , (7.2)

for K = 2, 12, 55, 106; here Ξ̃APtrain denotes the union of the train samples over
each of the subdomains (we also show in Figure 3(a) the benchmark convergence
for the case K = 1). In Figures 4(a) and 4(b) we show the partitions of D with
K = 12 and K = 55 subdomains, respectively. We note that the size of the
subdomains is rather uniform over D, which reflects the uniform parameter
dependence of G, as expected.
We then pursue the GC splitting procedure. We specify εptol = 10−8 as the

tolerance to be satisfied over the training set on each subdomain. We then per-
form four computations for differentMmax and obtain partitions with K(Mmax)
subdomains as listed in Table 2. In Figure 3(b) we show the maximum error
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(a) Anchor point procedure.
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(b) Gravity center procedure.

Figure 3: Convergence for Example 1.

during each of the four computations,

εK,GC
M,max = max

μ∈Ξ̃GC
train

‖GGCM,K(·;μ)− G(·;μ)‖L∞ , (7.3)

for K = 4, 16, 64, 256; here Ξ̃GCtrain denotes the union of the train samples over
each of the subdomains. In Figures 4(c) and 4(d) we show the partitions of D
with K = 16 and K = 64 subdomains, respectively. We note that the size of
the subdomains is uniform.

We finally compare in Figure 5 our two approaches in terms of the number
of required subdomains K for specified Mmax such that ε

p
tol = 10−8 is satisfied

over train samples over all subdomains. We note that there is an algebraic
relationship between K and Mmax, and that for Example 1 the two approaches
perform very similarly in terms of the number of subdomains required for a
specified tolerance. We further note that the product KMmax increases with K,
and thus a smaller Mmax yields larger offline cost. However, we would expect
less steep curves in Figure 5 had we decreased the half-width of the Gaussian:
a narrower Gaussian would have even more local parameter dependence and
hence benefit more from hp-treatment.
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(a) Anchor point procedure, K = 12. (b) Anchor point procedure, K = 55.

(c) Gravity center procedure, K = 16. (d) Gravity center procedure, K = 64.

Figure 4: Parameter domain partitions for Example 1.
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Figure 5: The number of required subdomains K as a function of specified Mmax for
a given satisfied tolerance εptol.

7.2 Example 2: 3D wave function with near-singularity

Denote by BR(O) a ball in R3 with radius R and centered at the origin O.
Then, consider the scalar function

G(x;μ) = cos (k|x− c(μ)|)
k|x− c(μ)| , x = (x(1), x(2), x(3)) ∈ Ω = B1(O), (7.4)

with μ = (k, r, θ, ϕ) ∈ D and c(μ) = r (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) ∈ R3.
The parameter domain D is defined by D = [1, 10]× [1.1, 20]× [0, π/2]× [0, π/2].
The spatial domain Ω and the parameter domain D are discretized by 15×15×15
and 8×8×8×8 tensorized grids, respectively, leading to discrete versions T N (Ω)
and Ξtrain, respectively.
We note that G is particularly well suited for hp-adaptivity: the function has

a very different structure for different wave numbers k and different locations
of the pulse c ∈ R3. Snapshots with rapid and slow oscillations have little in
common, and thus snapshots associated with k large contribute little to ap-
proximations of functions associated with k small, and vice versa. Similarly,
snapshots with the singularity at c (outside but) close to Ω have high amplitude
close to c and moderate amplitude elsewhere; such functions contribute little to
the approximation of functions associated with c far from Ω, which have almost
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Figure 6: Example of the 3D wave function for a fixed z = 0 and parameter values
k = 10, c = (1.1, 0, 0) (left) and k = 10, c = (0, 20, 0) (right).

Mmax εhtol K(Mmax, ε
h
tol)

Computation 1 286 8 6
Computation 2 191 5 17
Computation 3 100 4 206

Table 3: Specified Mmax and εhtol, and the required number of subdomains
K(Mmax, ε

h
tol) for the anchor point procedure applied to Example 2.

constant amplitude. Two examples of G for fixed x(3) = 0 and parameter values
k = 10, c = (1.1, 0, 0) and k = 10, c = (0, 20, 0) are shown in Figure 6; we note
in particular the effect of c on the amplitude of the function.
To obtain a benchmark for comparison, we first pursue the standard EIM

with Mmax = 420, which corresponds to a tolerance 10−3 satisfied over Ξtrain.
We next pursue the AP splitting procedure. We specify εptol = 10−3 as the

tolerance to be satisfied over the training set on each subdomain. We then
perform three computations for three different Mmax and εhtol and obtain par-
titions with K(Mmax, ε

h
tol) subdomains as listed in Table 3. In Figure 7(a) we

show the maximum error during each of the three computations, εK,AP
M,max, for

K = 6, 17, 206.
We then pursue the GC splitting procedure. We specify εptol = 10−3 as the

tolerance to be satisfied over the training set on each subdomain. We then
perform three computations for four different Mmax and obtain partitions with
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Mmax K(Mmax)

Computation 1 301 16
Computation 2 238 76
Computation 3 200 151
Computation 4 146 676

Table 4: Specified Mmax and the required number of subdomains K(Mmax) for the
gravity center procedure applied to Example 2.
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(a) Anchor point procedure.
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(b) Gravity center procedure.

Figure 7: Convergence for Example 2.
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Figure 8: The number of required subdomains K as a function of specified Mmax for
a given satisfied tolerance εptol.

K(Mmax) subdomains as listed in Table 4. In Figure 7(b) we show the maximum
error during each of the four computations, εK,GC

M,max for K = 16, 76, 151, 676.
We finally compare in Figure 8 our two approaches in terms of the number

of required subdomains K for specified Mmax such that ε
p
tol = 10−3 is satisfied

over the training sample on each subdomain. We note that there is an algebraic
relationship between K andM , and that for Example 2 the AP approach seems
to provide the somewhat more optimal partition.

8 Closing remarks

The hp-EIM procedures derived in this paper provide a partition of the full
parameter domain into parameter subdomains; a standard EIM approxima-
tion is pursued on each subdomain in order to satisfy a specified tolerance εptol
for a specified maximum number Mmax of EIM basis functions. Two differ-
ent approaches are discussed. The first approach — the anchor point splitting
procedure — is based on the first two modes associated with a standard EIM ap-
proximation: a given parameter (sub)domain is split into two new subdomains
by a hyperplane equidistant from the the first two parameter values identified
by the standard EIM Greedy sampling procedure. The second approach — the
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gravity center splitting procedure — is based on all Mmax modes associated
with a standard EIM approximation: a given parameter (sub)domain is split
into 2P tensorized new subdomains at the gravity center of theMmax parameter
values identified by the EIM Greedy sampling procedure (recall that P is the
dimension of the parameter domain). For both approaches, a priori convergence
theory guarantees successfull termination of the partition process.

Through two numerical examples we demonstrate that both the AP and
GC approaches provide significant computational speedup (approximation space
dimension reduction) in the EIM online stage through reduction in the required
EIM space dimension. Admittedly, our two examples are particularly well suited
for hp-treatment. Functions with very smooth parameter dependence will be less
well suited for hp-treatment. In this case we expect that the required number of
subdomains for specified dimension reduction (and specified tolerance) is large,
and hence the offline cost might be large.

The AP approach seems to be somewhat better suited for higher dimensional
parameter domains in particular when the parameter dependence of the function
under consideration is anisotropic: only two new subdomains are introduced
for each splitting. The GC approach is on the other hand arguably simpler
in terms of implementation; in particular, the tensorized subdomain structure
enables explicit construction of the parameter training sets associated with each
subdomain.

A straightforward application of the hp-EIM procedures is within the re-
duced basis (RB) framework for order reduction of non-affine parametrized par-
tial differential equations. In this context, the (hp-EIM or) EIM accomodates
efficient offline-online computational procedures through affine approximations
of the non-affine differential operator [1, 6, 7, 8, 11]. The cost of the RB online
stage grows quadratically with the number of terms in the affine approxima-
tion of the operator (M) and hence the hp-EIM approach will reduce the RB
online cost. Similarly, the hp-EIM approach may be applied within the related
hp-RB framework [4]. In [5] the gravity center approach discussed in this paper
is applied within an RB framework for the electric field integral equation.

The hp-EIM method may also provide an improvement of the rigorous a
posteriori error bounds recently introduced for the EIM [2]. Currently these
bounds are global in parameter, and the hp-EIM thus provides a natural way
of localizing, and hence in effect sharpen, the bounds.
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Abstract

We present rigorous a posteriori error bounds for the Empirical Interpo-
lation Method (EIM). The essential ingredients are (i) analytical upper
bounds for the parametric derivatives of the function to be approximated,
(ii) the EIM “Lebesgue constant,” and (iii) information concerning the
EIM approximation error at a finite set of points in parameter space.
The bound is computed “offline” and is valid over the entire parameter
domain; it is thus readily employed in (say) the “online” reduced basis
context. We present numerical results that confirm the validity of our
approach.

1 Introduction

The Empirical Interpolation Method (EIM), introduced in [1], serves to con-
struct “affine” approximations of “non-affine” parametrized functions. The EIM
is frequently applied in reduced basis approximation of parametrized partial
differential equations with non-affine parameter dependence [6]; the affine ap-
proximation of the coefficient functions is crucial for computational efficiency.
In previous work [1, 6] an estimator for the interpolation error is developed; this
estimator is often very accurate, however it is not a rigorous upper bound. In
this paper, we develop a rigorous a posteriori upper bound for the interpolation
error and we present numerical results that confirm the validity of our approach.
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To begin, we summarize the EIM [1, 6]. We are given a function G : Ω×D →
R such that, for all μ ∈ D, G(·;μ) ∈ L∞(Ω); here, D ⊂ RP is the parameter
domain, Ω ⊂ R2 is the spatial domain—a point in which shall be denoted by
x = (x1, x2)—and L∞(Ω) ≡ {v | ess supx∈Ω |v(x)| < ∞}. We introduce a finite
train sample Ξtrain ⊂ D which shall serve as our D surrogate, and a triangulation
TN (Ω) of Ω with N vertices over which we shall in practice realize G(·;μ) as a
piecewise linear function.
We first define the nested EIM approximation spaces WG

M , 1 ≤M ≤Mmax.
We first choose μ1 ∈ D, compute g1 ≡ G(·;μ1), and define WG

1 ≡ span{g1};
then, for 2 ≤M ≤Mmax, we determine

μM ≡ arg max
μ∈Ξtrain

inf
z∈WG

M−1

‖G(·;μ)− z‖L∞(Ω), (1.1)

compute gM ≡ G(·;μM ), and define WG
M ≡ span{gm}Mm=1.

We next define the nested set of EIM interpolation nodes TG
M ≡ {t1, . . . , tM},

1 ≤ M ≤ Mmax. We first set t1 ≡ arg supx∈Ω |g1(x)| and q1 ≡ g1/g1(t1); then,
for 2 ≤M ≤Mmax, we solve the linear system

M−1∑
j=1

ωM−1
j qj(ti) = gM (ti), 1 ≤ i ≤M − 1, (1.2)

and set rM (x) = gM (x)−∑M−1
j=1 ωM−1

j qj(x),

tM ≡ arg sup
x∈Ω

|rM (x)|, (1.3)

and qM = rM/rM (tM ). For 1 ≤M ≤Mmax, we define the matrix BM ∈ RM×M

such that BM
ij ≡ qj(ti), 1 ≤ i, j ≤M ; we note that BM is lower triangular with

unity diagonal and that {qm}Mm=1 is a basis for W
G
M [1, 6].

We are now given a function H : Ω × D → R such that, for all μ ∈ D,
H(·;μ) ∈ L∞(Ω). We define for any μ ∈ D the EIM interpolant HWG

M
(·;μ) ∈

WG
M as the interpolant of H(·;μ) over the set TG

M . Specifically

HWG
M
(·;μ) ≡

M∑
m=1

φM m(μ)qm, (1.4)

where
M∑
j=1

BM
ij φM j(μ) = H(ti;μ), 1 ≤ i ≤M. (1.5)
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Note that the determination of the coefficients φM m(μ) requires only O(M2)
computational cost.
Finally, we define a “Lebesgue constant” [7] ΛM ≡ supx∈Ω

∑M
m=1 |VM

m (x)|,
where VM

m ∈ WG
M are the characteristic functions of WG

M satisfying VM
m (tn) ≡

δmn, 1 ≤ m,n ≤M ; here, δmn is the Kronecker delta symbol. We recall that (i)
the set of all characteristic functions {VM

m }Mm=1 is a basis for W
G
M , and (ii) the

Lebesgue constant ΛM satisfies ΛM ≤ 2M − 1 [1, 6]. In applications, the actual
asymptotic behavior of ΛM is much better, as we shall observe subsequently.

2 A Posteriori Error Estimation

We now develop the new and rigorous upper bound for the error associated with
the empirical interpolation of a function F : Ω×D → R. We shall assume that F
is parametrically smooth; for simplicity here, we suppose F ∈ C∞(D, L∞(Ω)).
Our bound depends on the parametric derivatives of F and on the EIM in-
terpolant of these derivatives. For this reason, we introduce a multi-index of
dimension P , β ≡ (β1, . . . βP ), where the βi, 1 ≤ i ≤ P , are non-negative in-
tegers; we further define the length |β| ≡ ∑P

i=1 βi, and denote the set of all
distinct multi-indices β of dimension P of length I byMP

I . The cardinality of
MP

I is given by card(MP
I ) =

(
P+I−1

I

)
. For any multi-index β, we define

F (β)(x;μ) ≡ ∂|β|F
∂μβ1

(1) . . . μ
βP

(P )

(x;μ); (2.1)

we require that maxμ∈Dmaxβ∈MP
p
‖F (β)(·;μ)‖L∞(Ω) ≤ σp (< ∞) for integer

p ≥ 0.
Given any μ ∈ D, we define for 1 ≤ M ≤ Mmax the interpolants of F(·;μ)

and F (β)(·;μ) as FM (·;μ) ≡ FWF
M
(·;μ) and (F (β))M (·;μ) ≡ F (β)

WF
M

(·;μ), re-
spectively. We emphasize that both interpolants FM (·;μ) and (F (β))M (·;μ)
lie in the same space WF

M—we do not introduce a separate space, W
F(β)

M ,
spanned by solutions of F (β)(·;μM ), 1 ≤M ≤Mmax. It is thus readily demon-
strated that (F (β))M (·;μ) = (FM )(β)(·;μ), which we thus henceforth denote
F (β)

M (·;μ).1 Note that F (β)
M (·;μ) ∈ WF

M is the unique interpolant satisfying

1Let Zq = [q1 . . . qM ] and t̄M = [t1 . . . tM ]. We then have FM (·;μ) = Zq(BM )−1F(t̄M ;μ)
and (F(β))M (·;μ) = Zq(BM )−1F(β)(t̄M ;μ). Since BM and the basis functions qi, 1 ≤
i ≤ M , are independent of μ, it follows that (FM )(β)(·;μ) = (Zq(BM )−1F(t̄M ;μ))(β) =
Zq(BM )−1F(β)(t̄M ;μ) = (F(β))M (·;μ).
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F (β)
M (tm;μ) = F (β)(tm;μ), 1 ≤ m ≤ M . We can further demonstrate [3] in
certain cases that if FM (·;μ) tends to F(·;μ) as M →∞ then F (β)

M (·;μ) tends
to F (β)(·;μ) as M →∞.
We now develop the interpolation error upper bound. To begin, we introduce

a set of points Φ ⊂ D of size nΦ and define ρΦ ≡ maxμ∈Dminτ∈Φ |μ − τ |; here
| · | is the usual Euclidean norm. We then define

δM,p ≡ (1 + ΛM )
σp
p!
ρpΦ P

p/2

+ sup
τ∈Φ

⎛
⎝p−1∑

j=0

ρjΦ
j!
P j/2 max

β∈MP
j

‖F (β)(·; τ)−F (β)
M (·; τ)‖L∞(Ω)

⎞
⎠ . (2.2)

We can now demonstrate

Proposition 1. For given positive integer p,

max
μ∈D

‖F(·;μ)−FM (·;μ)‖L∞(Ω) ≤ δM,p, (2.3)

∀μ ∈ D, 1 ≤M ≤Mmax.

Proof. We present the proof for P = 1 and refer the reader to [2] for the gen-
eral case P ≥ 1. For brevity, we first define (assuming existence) Ap

G(τ, μ) ≡∑p−1
j=0 G(j)(·; τ)

(μ−τ)j

j! as the first p terms in the Taylor series of G around τ . We
then choose τ as τ∗(μ) ≡ argminτ̃∈Φ |μ− τ̃ |. We note that

‖F(·;μ)−FM (·;μ)‖L∞(Ω) ≤ ‖F(·;μ)−A
p
F (τ

∗, μ)‖L∞(Ω)

+ ‖Ap
F (τ

∗, μ)−FM (·;μ)‖L∞(Ω) (2.4)

for all μ ∈ D. We recall the univariate Taylor series expansion with remainder
in integral form F(x;μ) = Ap

F (τ, μ) +
∫ μ

τ
F (p)(x; τ̄) (μ−τ̄)p−1

(p−1)! dτ̄ . We can now
bound the first term on the right hand side of (2.4) by

‖F(·;μ)−Ap
F (τ

∗, μ)‖L∞(Ω) ≤
∣∣∣∣∣
∫ μ

τ∗

∥∥∥∥F (p)(·; τ̄) (μ− τ̄)
p−1

(p− 1)!

∥∥∥∥
L∞(Ω)

dτ̄

∣∣∣∣∣ ≤ σp
p!
ρpΦ

(2.5)
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for all μ ∈ D. For the second term in (2.4), we obtain

‖Ap
F (τ

∗, μ)−FM (·;μ)‖L∞(Ω) ≤
∥∥Ap

F (τ
∗, μ)−Ap

FM
(τ∗, μ)

∥∥
L∞(Ω)

+
∥∥Ap

FM
(τ∗, μ)−FM (·;μ)

∥∥
L∞(Ω)

(2.6)

for all μ ∈ D. For the first term in (2.6) we note that∥∥Ap
F (τ

∗, μ)−Ap
FM

(τ∗, μ)
∥∥
L∞(Ω)

≤ sup
τ∈Φ

⎛
⎝p−1∑

j=0

ρjΦ
j!

∥∥∥F (j)(·; τ)−F (j)
M (·; τ)

∥∥∥
L∞(Ω)

⎞
⎠ , ∀μ ∈ D. (2.7)

From the definition of the characteristic functions VM
m , we obtain

p−1∑
j=0

F (j)
M (x; τ∗)

(μ− τ∗)j
j!

−FM (x;μ)

=

M∑
m=1

⎡
⎣p−1∑
j=0

F (j)
M (tm; τ

∗)
(μ− τ∗)j

j!
−FM (tm;μ)

⎤
⎦VM

m (x). (2.8)

We then invoke the interpolation property (for any non-negative integer j)
F (j)

M (tm;μ) = F (j)(tm;μ), 1 ≤ m ≤ M , and the definition of the Lebesgue
constant ΛM , to bound the second term in (2.6) by∥∥Ap

FM
(τ∗, μ)−FM (·;μ)

∥∥
L∞(Ω)

≤ ‖Ap
F (τ

∗, μ)−F(·;μ)‖L∞(Ω) ΛM ≤ σp
p!
ρpΦ ΛM , ∀μ ∈ D. (2.9)

The desired result (for P = 1) directly follows.

We make several remarks concerning this result. First, we may choose p
such that the two terms in (2.2) balance—a higher p will reduce the contri-
bution of the first term but will increase the contribution of the second term.
Second, we note that the bound δM,p is μ-independent. We can readily develop
a μ-dependent bound by replacing ρΦ with the actual distance between μ and
the closest τ ∈ Φ; this μ-dependent bound can serve (i) to adaptively construct
an economical point set Φ, and (ii) to replace the true (expensive) error in the
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greedy identification of the EIM spaces WG
M . Third, we can increase the sharp-

ness of the bound by localizing the derivative bounds σp: this is best achieved
through an “hp” approach for the EIM; we note that the “hp” framework devel-
oped in [4] for the reduced basis method readily adapts to the EIM (see also [5]
for an alternative approach). Fourth, we note that in the “limit” ρΦ → 0 the
effectivity of the bound approaches unity; of course, we will never in practice let
ρΦ → 0 because this implies the computation of the interpolant at every point
in D. Fifth, we note that our bound at no point requires computation of spatial
derivatives of the function to be approximated.
We conclude this section by summarizing the computational cost associ-

ated with δM,p. We assume that the bounds σp can be obtained analyti-
cally. We compute ΛM in O(M2N ) operations, and we compute the inter-
polation errors ‖F (β)(·; τ) − F (β)

M (·; τ)‖L∞(Ω), 0 < |β| < p − 1, for all τ ∈ Φ,
in O(nΦMN )

∑p−1
j=0 card(MP

j ) operations (we assume M � N ); certainly the
growth of MP

p will preclude large P . Note the computational cost is “offline”
only—the bound is valid for all μ ∈ D.

3 Numerical Results

We shall consider the empirical interpolation of a Gaussian function F(·;μ) over
two different parameter domains D = DI and D = DII. The spatial domain is
Ω ≡ [0, 1]2; we introduce a triangulation TN (Ω) with N = 2601 vertices. We
shall compare our bound with the true interpolation error over the parameter
domain. To this end, we define the maximum error εM ≡ maxμ∈Ξtrain eM (μ) and
the average effectivity η̄M,p ≡ meanμ∈ΞtestδM,p/eM (μ); here, eM (μ) ≡ ‖F(·;μ)−
FM (·;μ)‖L∞(Ω), and Ξtest ⊂ D is a test sample of finite size nΞtest

.
We first consider the case D = DI ≡ [0.1, 1] and hence P = 1; we let

F(x;μ) = FI(x;μ) ≡ exp

(
−(x1 − 0.5)2 − (x2 − 0.5)2

2μ2

)
. (3.1)

We introduce an equidistant train sample Ξtrain ⊂ D of size 500; we take μ1 = 1
and pursue the EIM with Mmax = 12. In Figure 1 we report εM and δM,p,
p = 1, 2, 3, 4, for 1 ≤ M ≤ Mmax; we consider nΦ = 41 and nΦ = 141
(ρΦ = 1.125E – 2 and ρΦ ≈ 3.21E – 3, respectively). We observe that the er-
ror bounds initially decrease, but then “plateau” in M . The bounds are very
sharp for sufficiently small M , but eventually the first term in (2.2) dominates
and compromises the sharpness of the bounds; for larger p, the bound is better
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Figure 1: Error bounds δM,p for P = 1 and p = 1, 2, 3, 4 with nΦ = 41 (left) and
nΦ = 141 (right).
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Figure 2: Error bounds δM,p for P = 2 and p = 1, 2, 3, 4 with nΦ = 100 (left) and
nΦ = 1600 (right).

for a larger range of M . We find that 1 ≤ ΛM ≤ 5.18 for 1 ≤ M ≤ Mmax

and, for the case p = 4 with nΦ = 141, η̄M,p ∼ O(10) (nΞtest = 150) except for
large M . The modest growth of the Lebesgue constant is crucial to the good
effectivity.
We next consider the case D = DII ≡ [0.4, 0.6]2 and hence P = 2; we

introduce

F = FII(x;μ) = exp

(
−(x1 − μ(1))2 − (x2 − μ(2))2

2(0.1)2

)
, (3.2)

where μ ≡ (μ(1), μ(2)). We introduce a deterministic grid Ξtrain ⊂ D of size 1600;
we take μ1 = (0.4, 0.4) and pursue the EIM with Mmax = 60. In Figure 2 we
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report εM and δM,p, p = 1, 2, 3, 4, for 1 ≤M ≤Mmax; we consider nΦ = 100 and
nΦ = 1600 (ρΦ ≈ 1.57E – 2 and 3.63E – 3, respectively). We observe the same
behavior as for the P = 1 case: the errors initially decrease, but then “plateau”
in M depending on the particular value of p. We find that 1 ≤ ΛM ≤ 39.9
and, for the case p = 4 with nΦ = 1600, η̄M,p ∼ O(10) (nΞtest

= 225) for
1 ≤M ≤Mmax.
Our results demonstrate that we can gainfully increase p—the number of

terms in the Taylor series expansion—in order to reduce the role of the first
term of δM,p and to limit the size of Φ. We also note that for the examples
presented here the terms in the sum of (2.2) are well behaved, even though (for
our P = 2 example in particular) it is not obvious that the space WF

M contains
good interpolants of the functions F (β)(·, μ), |β| �= 0.
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Abstract

We introduce a general a priori convergence result for the approximation
of parametric derivatives of parametrized functions. We show, with rather
general assumptions on the particular approximation scheme, that the ap-
proximations of parametric derivatives of a given parametrized function
are convergent provided that the approximation to the function itself is
convergent. We present numerical results with one particular method for
the approximation of parametrized functions — the Empirical Interpola-
tion Method — to illustrate the general theory.

1 Introduction

We consider in this paper the approximation of parametrized functions, i.e.,
functions that in addition to spatial variables depend on one or several scalar
parameters. In particular, we are concerned with the approximation of para-
metric derivatives of such functions, i.e., derivatives of parametrized functions
with respect to the parameters. We develop a new convergence theory that
demonstrates — with rather general assumptions on the particular approxima-
tion scheme — that the approximations of parametric derivatives of a given
parametrized function are convergent provided that the approximation to the
function itself is convergent.
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The Empirical Interpolation Method (EIM), introduced in [1, 5], is an inter-
polation method specifically constructed for the approximation of parametrized
functions.1 The main focus of this paper is the EIM approximation of parametric
derivatives of parametrized functions. The new convergence theory is developed
with the EIM in mind, and is discussed and applied within the context of the
EIM.

However, our new theoretical results here also apply to rather general ap-
proximation schemes other than the EIM; in particular, we may consider both
projection-based and interpolation-based approximation. The main limitation
of the theory is related to regularity assumptions in space and parameter on the
parametrized function.

The results in this paper have several useful implications. First, if the EIM
is employed for evaluation of an objective function subject to optimization with
respect to a set of parameters, our theory shows that we may accurately compute
the parametric Jacobian without expensive generation of additional EIM spaces,
or alternatively finite difference Jacobian approximations. Second, the rigorous
a posteriori bounds for the error in the EIM approximation recently introduced
in [3] require computation of the EIM approximation of parametric derivatives at
a finite number of points in the parameter domain; smaller EIM errors associated
with these derivatives imply sharper EIM error bounds. This second point in
particular motivates our work here.

The remainder of the paper is organized as follows. First, in Section 2
we introduce notation and recall some results from polynomial approximation
theory. Next, in Section 3, we present the new general a priori convergence
result. Then, in Section 4 we review the EIM and apply the new convergence
theory in this particular context. Subsequently, in Section 5, we demonstrate
the theory within the context of the EIM through numerical results. Finally, in
Section 6 we provide some concluding remarks.

1In particular, the EIM serves to construct parametrically affine approximations of pa-
rameter dependent non-affine or non-linear differential operators within the Reduced Basis
(RB) framework for parametric reduced order modelling of partial differential equations [10].
An affine representation (or approximation) of the operator allows an efficient “offline-online”
computational decoupling, which in turn is a crucial ingredient in the RB computational
framework. We refer to [4, 5] for the application of the EIM for RB approximations.
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2 Preliminaries

2.1 Notation

We denote by Ω ⊂ Rd the spatial domain (d = 1, 2, 3); a particular point x ∈ Ω
shall be denoted by x = (x(1), . . . , x(d)). We denote by D ⊂ RP the parameter
domain (P ≥ 1); a particular parameter value μ ∈ D shall be denoted by
μ = (μ(1), . . . , μ(P )).
We introduce a sufficiently smooth function F : Ω × D → R. We sup-

pose that F(·;μ) ∈ L∞(Ω) for all μ ∈ D, and, for purposes of our theoretical
arguments later, that F(x; ·) ∈ C2(D) for all x ∈ Ω. Here, L∞(Ω) = {v :
ess supx∈Ω |v(x)| < ∞} and Cs(O) denotes the space of functions with contin-
uous s-order derivatives over a domain O. We then introduce a multi-index of
dimension P ,

β = (β1, . . . , βP ), (2.1)

where the entries βi, 1 ≤ i ≤ P , are non-negative integers. We define for any
multi-index β the parametric derivatives of F ,

F (β) =
∂|β|F

∂μβ1

(1) · · · ∂μ
βP

(P )

, (2.2)

where

|β| =
P∑
i=1

βi (2.3)

is the length of β and hence the differential order. We denote the set of all
distinct multi-indices β of dimension P of length p byMP

p .
For our theoretical arguments in Section 3 we shall write D as the tensor

product D = D(1) × · · · × D(P ), where D(i) ⊂ R, 1 ≤ i ≤ P . We shall further
consider any particular parameter dimension S ≡ Dj , 1 ≤ j ≤ P , and assume
without loss of generality2 that S = [−1, 1]. In this case we fix the P − 1
parameter values μ(i) ∈ D(i), 1 ≤ i ≤ P , i �= j, and we introduce the function
Jβ,j : Ω× S → R defined for x ∈ Ω and κ ∈ S by

Jβ,j(x;κ) ≡ F (β)
(
x; (μ(1), . . . , μ(j−1), κ, μ(j+1), . . . , μ(P ))

)
. (2.4)

2We may always transform our parameter dependent function such that the parameters
reside in the hypercube [−1, 1]P .
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2.2 Polynomial Approximation
In this section we recall some results from polynomial interpolation theory.
We first describe a general interpolation framework for which we state three
hypotheses. These hypotheses are the key ingredients in the proof of our new
convergence theory in Section 3.
Let Γ = [−1, 1], and let f : Γ → R be a sufficiently smooth function.

We introduce N + 1 distinct interpolation nodes yN,i ∈ Γ, 0 ≤ i ≤ N , and
N + 1 characteristic functions χN,i, 0 ≤ i ≤ N , that satisfy χN,i(yN,j) = δi,j ,
0 ≤ i, j ≤ N . We finally introduce an interpolation operator IN defined by
INf =

∑N
i=0 f(yN,i)χN,i. We may now formally state our three hypotheses.

Hypothesis 1. The error in the derivative of the interpolant INf satisfies

|f ′(x)− (INf)
′(x)| ≤ Gf (N), ∀x ∈ Γ, (2.5)

where for a given f the function Gf : N→ (0,∞) with Gf (N)→ 0 as N →∞.

Hypothesis 2. The characteristic functions χN,i, 0 ≤ i ≤ N , satisfy

N∑
i=0

|χ′
N,i(x)| ≤ D(N), ∀x ∈ Γ, (2.6)

where the function D : N → (0,∞) is fixed (for a given interpolation scheme)
with D(N)→∞ as N →∞.

Hypothesis 3. Let ε ∈ R+, and consider the equation

Gf (N) = D(N)ε (2.7)

for the unknown N as ε→ 0. Equation (2.7) has a solution N = N(ε) ≥ 0 that
satisfies

εD
(
N(ε)

)
→ 0 (2.8)

as ε→ 0.

We next consider several interpolation schemes and in each case confirm the
corresponding instantiations of our hypotheses under suitable regularity condi-
tions. First, we assume f ∈ C2(Γ) and consider piecewise linear interpolation
over equidistant interpolation nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . In
this case the characteristic functions χN,i are continuous and piecewise linear
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“hat functions” with support only on the interval [yN,0, yN,1] for i = 0, only
on the interval [yN,i−1, yN,i+1] for 1 ≤ i ≤ N − 1, and only on the interval
[yN,N−1, yN,N ] for i = N . For piecewise linear interpolation Hypothesis 1 and
Hypothesis 2 obtain for

Gf (N) = 2N−1‖f ′′‖L∞(Γ), (2.9)
D(N) = N, (2.10)

respectively. In this case (2.6) in Hypothesis 2 obtains with equality. We include
the proofs in Appendix A.1. It is straightforward to demonstrate Hypothesis 3:
we note that

N−1 = Nε (2.11)

has the solution N(ε) = ε−1/2 and that ε−1/2ε→ 0 as ε→ 0.
Next, we assume f ∈ C3(Γ) and consider piecewise quadratic interpolation

over equidistant interpolation nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . We as-
sume that N is even such that we may divide Γ into N/2 intervals [yN,i, yN,i+2],
for i = 0, 2, 4, . . . , N − 2. The characteristic functions are for x ∈ [yN,i, yN,i+2]
then given as

χN,i(x) =
(x− yN,i+1)(x− yN,i+2)

2h2
, (2.12)

χN,i+1(x) =
(x− yN,i)(x− yN,i+2)

−h2 , (2.13)

χN,i+2(x) =
(x− yN,i)(x− yN,i+1)

2h2
, (2.14)

for i = 0, 2, 4, . . . , N − 2, where h = 2/N = yN,j+1 − yN,j , 0 ≤ j ≤ N − 1. For
piecewise quadratic interpolation Hypothesis 1 and Hypothesis 2 obtain for

Gf (N) = const ·N−2‖f ′′′‖L∞(Γ), (2.15)

D(N) =
5

2
N, (2.16)

respectively. We include the proofs in Appendix A.2. It is straightforward to
demonstrate Hypothesis 3: we note that

N−2 = Nε (2.17)

has the solution N(ε) = ε−1/3 and that ε−1/3ε→ 0 as ε→ 0.
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Finally, we assume that f is analytic in Γ and consider standard Chebyshev
interpolation over the usual Chebyshev-nodes yN,i = − cos(iπ/N), 0 ≤ i ≤ N .
The characteristic functions are in this case the Lagrange polynomials χN,i ∈
PN (Γ) that satisfy χN,i(yN,j) = δij , 0 ≤ i, j ≤ N . For Chebyshev interpolation
Hypothesis 1 and Hypothesis 2 obtain for

Gf (N) = cfNe
−N log(ρf ), (2.18)

D(N) = N2, (2.19)

respectively, where cf > 0 and ρf > 1 depend only on f . In this case (2.6)
in Hypothesis 2 obtains with equality. We refer to Reddy and Weideman [8]
for a proof of (2.18) and to Rivlin [9, pp. 119–121] for a proof of (2.19). We
finally demonstrate Hypothesis 3: we let η = log(ρf ) > 0 and we note that the
transcendental equation

Ne−Nη = N2ε. (2.20)

admits the solution

N(ε) =
1

η
W
(η
ε

)
, (2.21)

where W denotes the LambertW function(s) defined by ξ =W(ξ)eW(ξ) for any
ξ ∈ C. As ξ → ∞, ξ ∈ R, it can be shown [2] that W(ξ) < log(ξ). Thus, as
ε→ 0, we obtain

N(ε) <
1

η
log
(η
ε

)
=
1

η

(
log(η) + log(1/ε)

)
≤ A log(1/ε) (2.22)

for some sufficiently large constant A. We now consider the product ε(N(ε))2 as
ε → 0. By application of L’Hôpital’s rule twice (Eqs. (2.25) and (2.27) below)
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we obtain

lim
ε→0

ε(N(ε))2 ≤ A2 lim
ε→0

ε(log(1/ε))2 (2.23)

= A2 lim
ε→0

(
log(ε)

)2
1/ε

(2.24)

= A2 lim
ε→0

2 log(ε)/ε

−1/ε2 (2.25)

= 2A2 lim
ε→0

log(ε)

−1/ε (2.26)

= 2A2 lim
ε→0

1/ε

1/ε2
(2.27)

= 2A2 lim
ε→0

ε = 0. (2.28)

Hypothesis 3 thus holds.

3 A General Convergence Result

We introduce an approximation space WM ≡ WM (Ω) of finite dimension M .
For any μ ∈ D, our approximation to the function F(·;μ) : Ω → R shall reside
in WM ; the particular approximation procedure invoked is not relevant for our
theoretical results in this section. We show here that if, for any μ ∈ D, the error
in the best L∞(Ω) approximation to F(·;μ) in WM goes to zero as M → ∞,
then, for any multi-index β, |β| ≥ 0, the error in the best L∞(Ω) approximation
to F (β)(·;μ) inWM also goes to zero asM →∞. Of course, only modestM are
of interest in practice: the computational cost associated with the approximation
is M -dependent. However, our theoretical results in this section provide some
promise that we may in practice invoke the “original” approximation space and
approximation procedure also for the approximation of parametric derivatives.
We introduce, for any fixed p ≥ 0 and any M ≥ 1,

epM ≡ max
β∈MP

p

max
μ∈D

inf
w∈WM

‖F (β)(·;μ)− w‖L∞(Ω). (3.1)

We then recall the definition of Jβ,j from (2.4), and state

Proposition 1. Let p be a fixed non-negative integer. Assume that Hypotheses
1, 2, and 3 hold for f = Jβ,j(x; ·), 1 ≤ j ≤ P , for all x ∈ Ω, and for all
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β ∈MP
p . In this case, if e

p
M → 0 as M →∞, then

ep+1M → 0 (3.2)

as M →∞.

Proof. For each x ∈ Ω, we introduce the interpolant JN,β,j(x; ·) ≡ INJβ,j(x; ·) ∈
PN (S) given by

JN,β,j(x; ·) ≡ INJβ,j(x; ·) =
N∑
i=0

Jβ,j(x; yN,i)χN,i(·); (3.3)

recall that here, χN,i : S → R, 0 ≤ i ≤ N , are characteristic functions that
satisfy χN,i(yN,j) = δi,j , 0 ≤ i, j ≤ N .

Let ′ denote differentiation with respect to the variable κ in (2.4). For
each x ∈ Ω we consider an approximation to J ′

β,j(x; ·) which we write as∑N
i=0 χ

′
N,iwi(x), where wi ∈ WM , 1 ≤ i ≤ N . We note that

∑N
i=0 χ

′
N,i(κ)wi ∈

WM for all κ ∈ S (we define the wi shortly; however we note that in gen-
eral Jβ,j(·; yN,i) /∈ WM , 1 ≤ i ≤ N , are not valid choices). For the error in
this approximation we note by the triangle inequality that (for any wi ∈ WM ,
1 ≤ i ≤ N)

∥∥∥J ′
β,j −

N∑
i=0

χ′
N,iwi

∥∥∥
L∞(Ω×S)

=
∥∥∥J ′

N,β,j −
N∑
i=0

χ′
N,iwi+J ′

β,j −J ′
N,β,j

∥∥∥
L∞(Ω×S)

≤
∥∥∥J ′

N,β,j −
N∑
i=0

χ′
N,iwi

∥∥∥
L∞(Ω×S)

+
∥∥∥J ′

β,j − J ′
N,β,j

∥∥∥
L∞(Ω×S)

. (3.4)

Here, J ′
N,β,j ≡ (JN,β,j)

′ =
∑N

i=0 Jβ,j(·; yN,i)χ
′
N,i(·).

In our approximation, we use as coefficient functions χ′
N,i (and not, for

example, χN,i). With this choice and the definition of J ′
β,j , we may relate the

error in our approximation to the error in the approximation of Jβ,j , which is
our ultimate goal. For the first term on the right hand side of (3.4) we first
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invoke (3.3), then the triangle inequality, and finally Hypothesis 2 to obtain

∥∥∥J ′
N,β,j −

N∑
i=0

χ′
N,iwi

∥∥∥
L∞(Ω×S)

=
∥∥∥ N∑
i=0

(Jβ,j(·; yN,i)− wi)χ
′
N,i

∥∥∥
L∞(Ω×S)

≤
∥∥∥ N∑
i=0

|χ′
N,i||Jβ,j(·; yN,i)− wi|

∥∥∥
L∞(Ω×S)

≤
∥∥∥ max
0≤i≤N

|Jβ,j(·; yN,i)− wi|
N∑
j=0

|χ′
N,j |
∥∥∥
L∞(Ω×S)

≤ D(N) max
0≤i≤N

‖Jβ,j(·; yN,i)− wi‖L∞(Ω). (3.5)

Next, for any κ ∈ S we introduce the functions

w∗
β,j(·;κ) ≡ arg inf

w∈WM

‖Jβ,j(·;κ)− w‖L∞(Ω). (3.6)

We then consider (3.5) for wi = w∗
β,j(·; yN,i) and note that

∥∥∥J ′
N,β,j −

N∑
i=0

χ′
N,iw

∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

≤ D(N) max
0≤i≤N

‖Jβ,j(·; yN,i)− w∗
β,j(·; yN,i)‖L∞(Ω)

≤ D(N)max
κ∈S

‖Jβ,j(·;κ)− w∗
β,j(·;κ)‖L∞(Ω)

= D(N)max
κ∈S

inf
w∈WM

‖Jβ,j(·;κ)− w‖L∞(Ω) ≤ D(N)epM , (3.7)

where the last step follows from the definition of epM in (3.1).
For the second term on the right hand side of (3.4) we invoke Hypothesis 1

for f = f̃β,j ≡ Jβ,j(x̃β,j ; ·) to obtain

‖J ′
β,j − J ′

N,β,j‖L∞(Ω×S) ≤ Gf̃β,j
(N); (3.8)

here x̃β,j ∈ Ω is the particular point in Ω such that for given β and j, f̃β,j yields
the “worst” behavior of the right-hand-side.
We now combine (3.4) for wi = w∗

β,j(·; yN,i) with (3.7) and (3.8) to obtain

∥∥∥J ′
β,j −

N∑
i=0

χ′
N,iw

∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

≤ Gf̃β,j
(N) +D(N)epM . (3.9)
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We then introduce β+j = β + ej where ej is the canonical unit vector with the
j’th entry equal to unity; we recall that β has length |β| = p and hence β+j
has length |β+j | = p+ 1. We note that the multi-index β, the parameter values
μ(i) ∈ D(i), 1 ≤ i ≤ P , i �= j, as well as the dimension j, were chosen arbitrarily
above. We may thus conclude

max
β∈MP

p

max
1≤j≤P

max
μ∈D

∥∥∥F (β+
j )(·;μ)−

N∑
i=0

χ′
N,i(μ(j))w

∗
β,j(·; yN,i)

∥∥∥
L∞(Ω)

≤ Gf̂ (N) +D(N)epM (3.10)

(recall above we wrote κ = μ(j) for each fixed j); here, f̂ = Jβ̃,j̃(x̃β̃,j̃ ; ·), where
1 ≤ j̃ ≤ P and β̃ ∈MP

p are the particular indices that yield the “worst” behavior
of the right-hand-side.
We note that

∑N
i=0 χ

′
N,i(μ(j))w

∗
β,j(·; yN,i) is a particular member of WM for

any β ∈MP
p , any μ(j) ∈ D(j), and any 1 ≤ j ≤ P . We thus obtain

ep+1M = max
β∈MP

p+1

max
μ∈D

inf
w∈WM

‖F (β)(·;μ)− w‖L∞(Ω) ≤ Gf̂ (N) +D(N)epM . (3.11)

The final step is to bound the right-hand side of (3.11) in terms of epM . To
this end we note that we may choose N freely. In particular we may choose N as
the minimizer N = Nmin(e

p
M ) > 0 of the right hand side of (3.11); however for

simplicity we shall make a different choice for N . Let Nbal(e
p
M ) denote the value

of N that balances the two terms on the right hand side of (3.11); by Hypothesis
3 Nbal(e

p
M ) exists for sufficiently small epM . We then choose N = Nbal(e

p
M ) in

(3.11) to obtain

ep+1M ≤ 2D(Nbal(e
p
M ))epM , (3.12)

where ep+1M → 0 as epM → 0 by Hypothesis 3.

We now provide three lemmas. The first lemma quantifies the convergence
in Proposition 1 in the case that F(x, ·) ∈ C2(D) for all x ∈ Ω.
Lemma 1. Assume F(x, ·) ∈ C2(D) for any x ∈ Ω. If for any fixed p ≥ 0
epM → 0 as M →∞, then there is a constant Cp+1 > 0 such that

ep+1M ≤ Cp+1

√
epM (3.13)

as M →∞.
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Proof. In this case we may invoke piecewise linear interpolation as our inter-
polation system in the proof of Proposition 1. By (2.9) and (2.10) we obtain
Nbal(e

p
M ) = (2‖f̂ ′′‖L∞(Γ)/e

p
M )1/2 and hence (3.12) for D(N) = N becomes

ep+1M ≤ 2(2‖f̂ ′′‖L∞(Γ)/e
p
M )1/2epM . The result follows for Cp+1 = 2(2‖f̂ ′′‖L∞(Γ))

1/2.

The next lemma quantifies the convergence in Proposition 1 in the case that
F(x, ·) ∈ C3(D) for all x ∈ Ω.
Lemma 2. Assume F(x, ·) ∈ C3(D) for any x ∈ Ω. If for any fixed p ≥ 0
epM → 0 as M →∞, then there is a constant Cp+1 > 0 such that

ep+1M ≤ Cp+1(e
p
M )2/3 (3.14)

as M →∞.
Proof. In this case we may invoke piecewise quadratic interpolation as our inter-
polation system in the proof of Proposition 1. By (2.15) and (2.16) we obtain,
for a positive constant c̃, Nbal(e

p
M ) = c̃(‖f̂ ′′′‖L∞(Γ)/e

p
M )1/3 and hence (3.12) for

D(N) = 5N/2 becomes ep+1M ≤ 5c̃(‖f̂ ′′′‖L∞(Γ)/e
p
M ))1/3epM . The result follows

for Cp+1 = 5c̃‖f̂ ′′′‖1/3L∞(Γ).

We make the following remark concerning Lemma 1 and Lemma 2 in the
case of algebraic convergence.

Remark 1. Let |β| = p, and assume that F (β)(x, ·) ∈ Cqp(D), qp > 0, for all
x ∈ Ω. Assume that epM ∼M−rp , rp > 0, as M →∞; here the convergence rate
rp typically depends on the regularity qp. For qp = 2 we may invoke Lemma 1
to obtain

ep+1M ≤ Cp+1(e
p
M )1/2 ∼M−rp/2 ∼M1−rp+(rp/2−1) ∼M1+(rp/2−1)epM . (3.15)

Similarly, for qp = 3 we may invoke Lemma 2 to obtain

ep+1M ≤ Cp+1(e
p
M )2/3 ∼M−2rp/3 ∼M1−rp+(rp/3−1) ∼M1+(rp/3−1)epM . (3.16)

More generally, with higher-regularity versions of Lemma 1 and Lemma 2, we
expect for any qp > 0 that

ep+1M ≤ Cp+1(e
p
M )1−1/qp ∼M−rp(1−1/qp) ∼M1−rp+(rp/qp−1) ∼M1+(rp/qp−1)epM .

(3.17)

for any qp > 0. We shall comment on these estimates further in our discussion
of numerical results in Section 5.
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The third lemma quantifies the convergence in Proposition 1 in the case that
F(x, ·) is analytic over D.

Lemma 3. Assume F(x, ·) : D → R is analytic over D for any x ∈ Ω. If for
any fixed p ≥ 0 epM → 0 as M → ∞, then there is a constant Cp+1 > 0 such
that

ep+1M ≤ Cp+1(log(e
p
M ))2epM (3.18)

as M →∞. In particular, if for some p

epM ∼Mσe−γM (3.19)

as M → ∞, where σ is a non-negative constant and γ is a positive constant,
then there is a constant Cp+1 such that

ep+1M ≤ Cp+1M
σ+2e−γM (3.20)

as M →∞.

Proof. In this case we may invoke Chebyshev interpolation as our interpolation
system in the proof of Proposition 1. By (2.18), (2.19), and (2.22) we obtain
Nbal(e

p
M ) < ĉ log(1/epM ) for a sufficiently large constant ĉ. Hence, with D(N) =

N2 and (3.12), we obtain ep+1M ≤ 2ĉ2(log(1/epM ))2epM . The result (3.18) follows
for Cp+1 = 2ĉ2 since (log(1/ePM ))2 = (log(ePM ))2. The result (3.20) follows under
the additional assumption (3.19) since in this case there is a constant B such
that

Nbal(e
p
M ) ≤ B log

( 1

Mσe−γM

)
= B(−σ logM + γM) < BγM, (3.21)

and D(Nbal(e
p
M )) ≤ (BγM)2.

Remark 2. Note that, in Lemma 3, we can not obtain an explicit expression
for the convergence rate of derivatives of order larger than p+1 (by for example
an induction argument) since the result (3.20) is not sharp; an asymptotic lower
bound for ep+1M is required to explicitly bound Nbal(e

p+1
M ) as M →∞. Hence, we

invoke an exact asymptotic relation in the assumption (3.19) in order to bound
the convergence of the “next” derivative approximation based on the “current”
derivative approximation.
We also note that if the bound (3.20) were sharp, we could invoke the argu-

ment recursively to obtain an estimate of the form εpM ∼Mσ+2pe−γM .
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4 The Empirical Interpolation Method

In this section we first recall the empirical interpolation method (EIM) [1, 5, 6]
and then consider the convergence theory of the previous section applied to the
EIM. The EIM approximation space is spanned by precomputed snapshots of
a parameter dependent “generating function” for judicuosly chosen parameter
values from a predefined parameter domain. Given any new parameter value in
this parameter domain, we can construct an approximation to the generating
function at this new parameter value — or in fact an approximation to any
function defined over the same spatial domain — as a linear combination of the
EIM basis functions. The particular linear combination is determined through
interpolation at judiciuosly chosen points in the spatial domain. For paramet-
rically smooth functions, the EIM approximation to the generating function
yields rapid, typically exponential, convergence.

4.1 Procedure

We introduce the generating function G : Ω × D → R such that for all μ ∈ D,
G(·;μ) ∈ L∞(Ω). We introduce a training set Ξtrain ⊂ D of finite cardinality
|Ξtrain| which shall serve as our computational surrogate for D. We also intro-
duce a triangulation TN (Ω) of Ω with N vertices over which we shall in practice,
for any μ ∈ D, realize G(·;μ) as a piecewise linear function.
Now, for 1 ≤ M ≤ Mmax < ∞, we define the EIM approximation space

WG
M and the EIM interpolation nodes TG

M associated with G; here, Mmax is
a specified maximum EIM appproximation space dimension. We first choose
(randomly, say) an initial parameter value μ1 ∈ D; we then determine the first
EIM interpolation node as t1 = arg supx∈Ω |G(x;μ1)|; we next define the first
EIM basis function as q1 = G(·;μ1)/G(t1;μ1). We can then, for M = 1, define
WG

M = span{q1} and TG
M = {t1}. We also define a nodal value matrix B1 with

(a single) element B1
1,1 = q1(t1) = 1.

Next, for 2 ≤ M ≤ Mmax, we first compute the empirical interpolation of
G(·;μ) for all μ ∈ Ξtrain: we solve the linear system

M−1∑
j=1

φM−1
j (μ)BM−1

i,j = G(ti;μ), 1 ≤ i ≤M − 1, (4.1)
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and compute the empirical interpolation GM−1(·;μ) ∈WG
M−1 as

GM−1(·;μ) =
M−1∑
i=1

φM−1
i (μ)qi, (4.2)

for all μ ∈ Ξtrain. We then choose the next parameter μM ∈ D as the maximizer
of the EIM interpolation error over the training set,

μM = arg max
μ∈Ξtrain

‖GM−1(·;μ)− G(·;μ)‖L∞(Ω); (4.3)

note that thanks to our piecewise linear realization of G(·;μ), the norm eval-
uation is a simple comparison of function values at the N vertices of TN (Ω).
We now choose the next EIM interpolation node as the point in Ω at which the
EIM error associated with GM−1(μM ) is largest,

tM = arg sup
x∈Ω

|GM−1(x;μM )− G(x;μM )|. (4.4)

The next EIM basis function is then

qM =
GM−1(·;μM )− G(·;μM )

GM−1(tM ;μM )− G(tM ;μM )
. (4.5)

We finally enrich the EIM space: WG
M = span{q1, . . . , qM}; expand the set of

nodes: TG
M = {t1, . . . , tM}; and expand the nodal value matrix: BM

i,j = qj(ti),
1 ≤ i, j ≤M .
Now, given any function F : Ω × D → R (in particular, we shall consider

F = G(β)), we define for any μ ∈ D and for 1 ≤ M ≤ Mmax the empirical
interpolation of F(·;μ) in the space WG

M (the space generated by G) as

FG
M (·;μ) =

M∑
i=1

φMi (μ)qi, (4.6)

where the coefficients φMi (μ), 1 ≤ i ≤M , solve the linear system

M∑
j=1

φMj (μ)BM
i,j = F(ti;μ), 1 ≤ i ≤M. (4.7)

We note that by construction the matrices BM ∈ RM×M , 1 ≤ M ≤ Mmax,
are lower triangular: by (4.1), GM−1(tj ;μM ) = G(tj ;μM ) for j < M . As a
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result, computation of the EIM coefficients φMj , 1 ≤ j ≤ M , in (4.7) and (4.1)
are O(M2) operations. We emphasize that the computational cost associated
with the EIM approximation (4.6)–(4.7) (after snapshot precomputation), is
independent of the number N of vertices in the triangulation TN (Ω). We may
thus choose N conservatively.
We next note that, for any multi-index β,

(FG
M )(β) =

( M∑
i=1

φMi (μ)qi

)(β)
=

M∑
i=1

ϕM
i (μ)qi, (4.8)

where ϕM
i (μ) = (φMi )(β)(μ), 1 ≤ i ≤M , solve the linear system (recall that the

matrix BM is μ-independent)

M∑
j=1

ϕM
j (μ)BM

i,j = F (β)(ti;μ), 1 ≤ i ≤M. (4.9)

Hence,

(FG
M )(β) = (F (β))GM , (4.10)

that is, the parametric derivative of the approximation is equivalent to the
approximation of the parametric derivative. We note that this equivalence holds
since we invoke the same approximation spaceWG

M for both EIM approximations
FG

M and (F (β))GM .

4.2 Convergence theory applied to the EIM

We introduce the Lebesgue constants [7]

ΛM = sup
x∈Ω

M∑
i=1

|VM
i (x)|, 1 ≤M ≤Mmax, (4.11)

where VM
i ∈WG

M are the characteristic functions associated with WG
M and TG

M :
VM
i (tj) = δij , 1 ≤ i, j ≤M , where δ is the Kroenecker delta symbol. It can be
proven [1, 5] that the EIM error satisfies

‖F(·;μ)−FG
M (·;μ)‖L∞(Ω) ≤ (1 + ΛM ) inf

w∈WG
M

‖F(·;μ)− w‖L∞(Ω), (4.12)
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for 1 ≤M ≤Mmax. It can furthermore be proven that ΛM < 2M − 1; however,
in actual practice the growth of ΛM is much slower, as we shall observe below
(see also results in [1, 5, 6]).
Our theory of Section 3 considers the convergence in the best approximation

error. In the following remark we apply Lemma 3 within the context of the
EIM.

Remark 3. It can be shown [1, 5] that the error in the EIM derivative approx-
imation satisfies

‖F (β)(·;μ)− (F (β))GM (·;μ)‖L∞(Ω)

≤ (1 + ΛM ) inf
w∈WG

M

‖F (β)(·;μ)− w‖L∞(Ω), (4.13)

for any μ ∈ D and any multi-index β. Assume that the best approximation error

epM = max
μ∈D

inf
w∈WG

M

‖F (β)(·;μ)− w‖L∞(Ω) → 0 (4.14)

as M → ∞ for all μ ∈ D and any multi-index β such that |β| = p is a non-
negative integer. We may then conclude from Lemma 3 and (4.13) that

max
μ∈D

‖F (β′)(·;μ)− (F (β′))GM (·;μ)‖L∞(Ω) ≤ (1 + ΛM )ep+1M

≤ (1 + ΛM )Cp+1(log(e
p
M ))2epM , (4.15)

for any multi-index β′ such that |β′| = p+ 1.
The term epM → 0 as M →∞ by assumption and thus ep+1M → 0 as M →∞

by Proposition 1. Hence, the convergence of the EIM derivative approximation
associated with derivatives of order p+1 depends on the growth of the Lebesgue
constant; precisely, we must require

ΛMe
p+1
M → 0 (4.16)

as M →∞. We recall that the Lebesgue constant typically grows only modestly
and thus we expect in practice convergence of the EIM derivative approximation.
Clearly, if the EIM approximation associated with derivatives of order p con-

verges, then the best approximation associated with derivatives of order p con-
verges as well. Hence covergence of the EIM approximation associated with
derivatives of order p implies convergence of the EIM approximation associated
with derivatives of order p+1 provided the Lebesgue constant grows sufficiently
modestly.
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We expect that Remark 1, Remark 2, and Remark 3 may be applied (non-
rigorously) to EIM convergence if the growth of the Lebesgue constant is modest,
since then the convergence rates associated with the best approximation and
EIM approximation can not be very different.
For any p ≥ 0 we introduce the maximum EIM error over E ⊆ D

εpM,max(E) ≡ max
μ∈E

max
β∈MP

p

‖F (β)(·;μ)− (F (β))GM (·;μ)‖L∞(Ω) (4.17)

for |β| = p and 1 ≤ M ≤ Mmax. We also introduce a function RM : D → R
such that

‖F (β)(·;μ)− (F (β))GM (·;μ)‖L∞(Ω) = RM (μ) inf
w∈WG

M

‖F (β)(·;μ)− w‖L∞(Ω)

(4.18)

for 1 ≤M ≤Mmax. We note that by (4.13) 1 ≤ RM (μ) ≤ 1+ΛM for all μ ∈ D.
With (4.17) and (4.18) we then obtain, for any p ≥ 0,

εpM,max(E) = max
μ∈E

max
β∈MP

p

‖F (β)(·;μ)− (F (β))GM (·;μ)‖L∞(Ω)

= max
μ∈E

max
β∈MP

p

(
RM (μ) inf

w∈WG
M

‖F (β)(·;μ)− w‖L∞(Ω)

)
= RM (μ̂p)e

p
M (4.19)

for a particular μ̂p ∈ E . We now introduce the EIM error degradation factor

ρM,p(E) ≡
εpM,max(E)
ε0M,max(E)

, (4.20)

and note that

ρM,p(E) =
RM (μ̂p)e

p
M

RM (μ̂0)e0M
≤ (1 + ΛM )

epM
e0M

. (4.21)

We make two observations. First, the EIM error degradation factor is similar
(for fixed p as a function of M) to the best approximation error degradation
factor ρ∗M,p ≡ epM/e

0
M if the Lebesgue constant grows slowly. Second, if the

ratio RM (μ̂p)/RM (μ̂0) ∼ 1 as M → ∞, then ρM,p(E) will be similar to ρ∗M,p

independent of the Lebesgue constant.
In our discussion of each of our numerical examples in the next section

we plausibly assume that the Lebesgue constant grows only modestly, and in
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particular that ρM,p(E) is similar to ρ∗M,p. We confirm this assumption with
explicit calculation of the Lebesgue constant.
The following remark is particularly relevant in our subsequent discussion of

the sharpness of our theoretical results.

Remark 4. Assume that the Lebesgue constant grows slowly and thus that
the convergence rate associated with the EIM approximation is similar to the
convergence rate associated with the best approximation. Consider the case of
exponential convergence and assume that the bound provided by Lemma 3 is
sharp. If ε0M,max(D) ∼ Mσe−γM for σ, γ > 0, we expect that εpM,max(D) ∼
Mσ+2pe−γM , and thus an EIM error degradation factor ρM,p ∼ (M2p). As we
shall observe shortly for our numerical results this estimate for the degradation
factor is not quite sharp.
We may obtain an expression for the EIM error degradation factor also in

the case of algebraic convergence. However, the relation between the regularity
of the function (qp in Remark 1) and the convergence (rp in Remark 1) is not a
priori known for the EIM (or best) approximation. We thus save the discussion
of the EIM error degradation factor in the case of algebraic convergence for our
numerical results section, in which we compute the relation between qp and rp a
posteriori.

5 Numerical Results

5.1 Example 1: Parametrically smooth Gaussian surface

We introduce the spatial domain Ω = [0, 1]2 and the parameter domain D =
[0.4, 0.6]2. We consider the 2D Gaussian F : Ω×D → R defined by

F(x;μ) = exp

(
−(x(1) − μ(1))2 − (x(2) − μ(2))2

2σ2

)
(5.1)

for x ∈ Ω, μ ∈ D, and σ ≡ 0.1. This function is thus parametrized by the
location of the maximum of the Gaussian surface. We note that for all x ∈ Ω
the function F(x; ·) ∈ C∞(D); we may thus invoke Lemma 3.
We introduce a triangulation TN (Ω) with N = 2601 vertices; we introduce

an equi-distant training set “grid” Ξtrain ⊂ D of size |Ξtrain| = 900 = 30 × 30.
We then pursue the EIM with G = F for Mmax = 130.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of

size 1000. In Figure 1 we show the maximum interpolation errors εpM,max(Ξtest)
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Figure 1: The maximum EIM error over the test set εpM,max(Ξtest) for 0 ≤ p ≤ 3 for
Example 1.

for p = 0, 1, 2, 3; the convergence is exponential (note the lin-log scaling of
the axes). We note that for large M , the rate of convergence associated with
the derivatives (p > 1) is close to the rate of convergence associated with the
generating function (p = 0).
In Figure 2 we show the EIM error degradation factors ρM,p(Ξtest) for

p = 1, 2, 3 as functions of M . We observe that the degradation factors behave
approximately as Mp: there is an Mp degradation of the convergence associ-
ated with the derivative approximation for p > 0 compared to the convergence
associated with the original function.
From Remark 4 we recall that we would have expected ρM,p(Ξtest) ∼M2p if

our theoretical result (3.20) were sharp. Since in practice we observe ρM,p(Ξtest) ∼
Mp, we conclude that the result (3.20) is not in general sharp. We also note
that the factor M2 in (3.20) originates from the sharp result (2.19); hence with
our present strategy for the proof of Proposition 1 it is not clear how to sharpen
(3.20). However, we note that our theory captures the correct qualitative be-
havior: a degradation by an algebraic factor for the derivative approximation.
Finally, in Figure 3, we report the Lebesgue constant ΛM . We note that the

growth of the Lebesgue constant is only modest. The EIM derivative approxi-
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Figure 2: EIM error degradation factors ρM,p(Ξtest), p = 1, 2, 3, for Example 1. The
shorter solid gray lines represent exact rates Mp.
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Figure 3: The Lebesgue constant ΛM for Example 1.
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Figure 4: The maximum EIM error over the test set εpM,max(Ξtest) for 0 ≤ p ≤ 3 for
Example 2. The shorter gray lines represent exact rates M−5+p.

mation is thus close to the best L∞(Ω) approximation in the space WF
M .

5.2 Example 2: A parametrically singular function

We introduce the spatial domain Ω = [−1, 1] and the parameter domain D =
[−1, 1]. We consider the function F : Ω×D → R defined by

F(x;μ) = |x− μ|5 (5.2)

for x ∈ Ω and μ ∈ D. The function thus has a singularity at x = μ for any
μ ∈ D. For any x ∈ Ω we have F(x; ·) ∈ C4(D). More generally, for any x ∈ Ω
and p = 0, 1, 2, 3, we have F (p)(x; ·) ∈ Cqp(D) for qp = 4− p.
We introduce a triangulation TN (Ω) with N = 1000 vertices; we introduce

an equi-distant training set “grid” Ξtrain ⊂ D of size |Ξtrain| = 1000. We then
pursue the EIM with G = F for Mmax = 420.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of size

1000. In Figure 4 we show the maximum interpolation errors εpM,max(Ξtest) for
p = 0, 1, 2, 3; we observe for the convergence εpM,max(Ξtest) ∼ M−5+p. These
results suggest that, in general, if F (p) ∈ Cqp(D), then epM ∼ M−qp−1, which
corresponds to rp = qp + 1 in Remark 1.
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Figure 5: EIM error degradation factors ρM,p(Ξtest), p = 1, 2, 3, for Example 2. The
shorter solid gray lines represent exact rates Mp.

In Figure 5 we show the EIM error degradation factors ρM,p(Ξtest) for p =
1, 2, 3 as functions of M . As for Example 1, we note that ρM,p(Ξtest) ∼Mp (of
course this factor may in this case be interpreted directly from Figure 4).
With rp = qp + 1 in Remark 1, the estimate (3.17) in Remark 1 becomes

ep+1M ≤M
1+ 1

qp epM =M1+ 1
4−p epM . (5.3)

If this is a sharp estimate, we expect for our example with qp = 4− p

e1M ∼M1+ 1
4 e0M , (5.4)

e2M ∼M1+ 1
3 e1M ∼M2+ 1

3+
1
4 e0M , (5.5)

e3M ∼M1+ 1
2 e2M ∼M3+ 1

2+
1
3+

1
4 e0M . (5.6)

From these estimates we may expect EIM error degradation factors

ρM,p(Ξtrain) ∼Mp+
∑p−1

j=0
1

4−j , p = 1, 2, 3. (5.7)

However, from our computations we see that this is not the case in practice: our
results show ρM,p(Ξtest) ∼ Mp. We thus conclude that our theoretical results
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Figure 6: The Lebesgue constant ΛM for Example 2.

in Lemma 1 and Lemma 2 (and higher order versions of these as indicated in
Remark 1) are not sharp. The bounds predict ep+1M ≤ Cp+1M

1+1/qpepM for
F (p)(x; ·) ∈ Cqp(D): a non-optimality of a factor M1/qp . We note that for
functions with high regularity — large qp — the sharpness of the bounds will
improve since ep+1M ≤M1+1/qpepM →MepM as qp →∞.
Finally, in Figure 6 we report the Lebesgue constant ΛM ; any growth of the

Lebesgue constant is hardly present. The EIM derivative approximation is thus
close to the best L∞(Ω) approximation in the space WF

M .

6 Concluding remarks

We have introduced new a priori convergence theory for the approximation
of parametric derivatives by a general approximation scheme. In particular,
we have focused on approximation by the EIM both in our discussion and for
our numerical results. The results suggest that the EIM may be invoked in
practice for the approximation of parametric derivatives without construction of
additional EIM spaces with the parametric derivatives as generating functions,
or alternatively enrichment of the original space with parametric derivatives.
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There are several opportunities for improvements of the theory. First, our
numerical results suggest that it should be possible to sharpen the theoretical
bounds. We note in our numerical results an EIM error degradation factor Mp

for the convergence associated with the approximation of p’th order derivatives
for both parametrically analytic and parametrically non-analytic functions. In
contrast, our theory and remarks predict a degradation factorM2p for paramet-
rically analytic functions, and a degradation factor Mp+

∑p−1
j=0

1
s−j for paramet-

rically non-analytic functions when the original function resides in Cs(D) (but
not in Cs+α(D) for arbitrarily small α > 0).
Second, we would like to extend the validity of the theory to other (e.g.

Sobolev) norms; in this case we may for example consider reduced basis [10] ap-
proximations to parametric derivatives of solutions to partial differential equa-
tions.

A Proofs for Hypotheses 1 and 2

A.1 Piecewise linear interpolation
We consider piecewise linear interpolation over the equidistant interpolation
nodes yN,i = (2i/N−1) ∈ Γ = [−1, 1], 0 ≤ i ≤ N . In this case the characteristic
functions χN,i are continuous and piecewise linear “hat functions” with support
only on the interval [yN,0, yN,1] for i = 0, on [yN,i−1, yN,i+1] for 1 ≤ i ≤ N − 1,
and on [yN,N−1, yN,N ] for i = N .
We recall the results (2.9) and (2.10) from Section 2.2. Let f : Γ→ R with

f ∈ C2(Γ). We then have, for any x ∈ Γ,

|f ′(x)− (INf)
′(x)| ≤ 2N−1‖f ′′‖L∞(Γ) (A.1)

as N →∞. Further, for all x ∈ Γ, the characteristic functions χN,i, 0 ≤ i ≤ N ,
satisfy

N∑
i=0

|χ′
N,i(x)| = N. (A.2)

We first demonstrate (A.1) (and hence (2.9)). For x ∈ [yN,i, yN,i+1], 0 ≤ i ≤
N − 1, we have

(INf)
′(x) =

1

h

(
f(yN,i+1)− f(yN,i)

)
, (A.3)
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where h = 2/N . We next write f(yN,i) and f(yN,i+1) as Taylor series around x
as

f(yN,i) =

1∑
j=0

f (j)(x)

j!
(yN,i − x)j +

∫ yN,i

x

f ′′(t)(yN,i − t) dt, (A.4)

f(yN,i+1) =
1∑

j=0

f (j)(x)

j!
(yN,i+1 − x)j +

∫ yN,i+1

x

f ′′(t)(yN,i+1 − t) dt, (A.5)

which we then insert in the expression (A.3) for (INf)′ to obtain

(INf)
′(x)−f ′(x) = 1

h

∫ yN,i+1

x

f ′′(t)(yN,i+1− t) dt−
1

h

∫ yN,i

x

f ′′(t)(yN,i− t) dt

≤ 1

h
‖f ′′‖L∞(Γ) max

x∈[yN,i,yN,i+1]

(
|yN,i+1 − x|2 + |yN,i − x|2

)
≤ h‖f ′′‖L∞(Γ) = 2N−1‖f ′′‖L∞(Γ). (A.6)

We next demonstrate (A.2) (and hence (2.10)). It suffices to consider x ∈
[yN,i, yN,i+1] for 0 ≤ i ≤ N − 1. On [yN,i, yN,i+1] only |χ′

N,i(x)| and |χ′
N,i+1(x)|

contribute to the sum; furthermore we have |χ′
N,i(x)| = |χ′

N,i+1(x)| = 1/h =
N/2, from where the result (A.2) follows.

A.2 Piecewise quadratic interpolation
We consider piecewise quadratic interpolation over equidistant interpolation
nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . We consider N equal such that
we may divide Γ into N/2 intervals [yN,i, yN,i+2], for i = 0, 2, 4, . . . , N − 2. The
characteristic functions χN,i are for x ∈ [yN,i, yN,i+2] given as

χN,i(x) =
(x− yN,i+1)(x− yN,i+2)

2h2
, (A.7)

χN,i+1(x) =
(x− yN,i)(x− yN,i+2)

−h2 , (A.8)

χN,i+2(x) =
(x− yN,i)(x− yN,i+1)

2h2
, (A.9)

for i = 0, 2, 4, . . . , N .
We recall the results (2.15) and (2.16) from Section 2.2. Let f : Γ→ R with

f ∈ C3(Γ). We then have, for any x ∈ Γ,
|f ′(x)− (INf)

′(x)| = O(N−2) (A.10)
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as N →∞. Further, for all x ∈ Γ, the characteristic functions χN,i, 0 ≤ i ≤ N ,
satisfy

N∑
i=0

|χ′
N,i(x)| =

5

2
N. (A.11)

We first demonstrate (A.10). It suffices to consider the interpolant INf(x)
for x ∈ [yN,i, yN,i+2], in which case

INf(x) = f(yN,i)χN,i(x) + f(yN,i+1)χN,i+1(x) + f(yN,i+2)χN,i+2(x). (A.12)

Insertion of (A.7)–(A.9) and differentiation yields

(INf)
′(x) =

1

2h2

(
f(yN,i)(2x− yN,i+1 − yN,i+2)

− 2f(yN,i+1)(2x− yN,i − yN,i+2) + f(yN,i+2)(2x− yN,i − yN,i+1)
)
. (A.13)

We next write f(yN,i), f(yN,i+1), and f(yN,i+2) as Taylor series around x as

f(yN,i) =

3∑
j=0

f (j)(x)

j!
(yN,i − x)j +O(h4), (A.14)

f(yN,i+1) =
3∑

j=0

f (j)(x)

j!
(yN,i+1 − x)j +O(h4), (A.15)

f(yN,i+2) =

3∑
j=0

f (j)(x)

j!
(yN,i+2 − x)j +O(h4), (A.16)

where h = 2/N = yN,j+1 − yN,j , 0 ≤ j ≤ N − 1. We may then insert the
expressions (A.14)–(A.16) into (A.13) to obtain

(INf)
′(x) = f ′(x) +O(h2). (A.17)

(For j = 0 and j = 2 the terms on the right-hand-side of (A.13) cancel. For
j = 1 we obtain f ′(x) and for j = 3 we obtain O(h2).)
We next demonstrate (A.11). It suffices to consider x ∈ Γi ≡ [yN,i, yN,i+2].

On Γi only χ′
N,i(x), χ

′
N,i+1(x), and χ

′
N,i+2(x) contribute to the sum. With
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h = 2/N = yj+1 − yj , 0 ≤ j ≤ N − 1, we have

max
x∈Γi

|χ′
N,i(x)| =

N2

8
max
x∈Γi

|2x− yN,i+1 − yN,i+2| =
3

4
N, (A.18)

max
x∈Γi

|χ′
N,i+1(x)| =

N2

4
max
x∈Γi

|2x− yN,i − yN,i+2| = N, (A.19)

max
x∈Γi

|χ′
N,i+2(x)| =

N2

8
max
x∈Γi

|2x− yN,i − yN,i+1| =
3

4
N. (A.20)

The result then follows.

Bibliography

[1] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical in-
terpolation’ method: application to efficient reduced-basis discretization of
partial differential equations. Comptes Rendus Mathematique, 339(9):667–
672, 2004.

[2] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth. On the
LambertW function. Advances in Computational Mathematics, 5:329–359,
1996.

[3] J. L. Eftang, M. A. Grepl, and A. T. Patera. A posteriori error bounds
for the empirical interpolation method. Comptes Rendus Mathematique,
348(9-10):575 – 579, 2010.

[4] M. Grepl. A Posteriori Error Bounds for Reduced-Basis Approximations
of Nonaffine and Nonlinear Parabolic Partial Differential Equations. Math-
ematical Models and Methods in Applied Sciences, submitted, 2010.

[5] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient reduced-
basis treatment of nonaffine and nonlinear partial differential equations.
ESAIM: Mathematical Modelling and Numerical Analysis, 41(3):575–605,
2007.

[6] Y. Maday, N. C. Nguyen, A. T. Patera, and G. S. H. Pau. A general
multipurpose interpolation procedure: The magic points. Communications
in Pure and Applied Mathematics, 8:383–404, 2009.

[7] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, volume 37
of Texts Appl. Math. Springer, New York, 1991.

259



Paper 7

[8] S. C. Reddy and J. A. C. Weideman. The accuracy of the Chebyshev
differencing method for analytic functions. SIAM Journal on Numerical
Analysis, 42(5):2176–2187 (electronic), 2005.

[9] T. J. Rivlin. The Chebyshev polynomials. Wiley-Interscience [John Wiley
& Sons], New York, 1974. Pure and Applied Mathematics.

[10] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive
partial differential equations: application to transport and continuum me-
chanics. Archives of Computational Methods in Engineering, 15(3):229–275,
2008.

260




