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ABSTRACT

We have developed an approximate method to derive sim-
ple expressions for the reflection coefficients of P- and SV-
waves for a thin transversely isotropic layer with a vertical
symmetry axis (VTI) embedded in a homogeneous VTI back-
ground. The layer thickness is assumed to be much smaller
than the wavelengths of P- and SV-waves inside. The exact
reflection and transmission coefficients are derived by the
propagator matrix method. In the case of normal incidence,
the exact reflection and transmission coefficients are ex-
pressed in terms of the impedances of vertically propagating
P- and S-waves. For subcritical incidence, the approximate
reflection coefficients are expressed in terms of the contrast
in the VTI parameters between the layer and the background.
Numerical examples are designed to analyze the reflection
coefficients at normal and oblique incidence and investigate
the influence of transverse isotropy on the reflection coeffi-
cients. Despite giving numerical errors, the approximate
formulas are sufficiently simple to qualitatively analyze the
variation of the reflection coefficients with the angle of inci-
dence.

INTRODUCTION

Reflection and transmission coefficients of plane waves are of
importance in studying wave propagation. In reflection seismology,
the main application of reflection coefficient studies is to analyze
the amplitude variation with offset (AVO). Parameters of reservoir
rocks such as fluid content, density, and seismic wave velocities
may be determined from the variation of amplitude with incidence
angle and azimuth.

For an interface separating two elastic half-spaces, the exact
plane-wave reflection and transmission coefficients can be derived
from the boundary condition that displacement and traction are con-
tinuous across the interface (Aki and Richards, 2002). Although it is
straightforward to numerically calculate the reflection and transmis-
sion coefficients, the exact formulas suffer from high algebraic com-
plexity. Simple approximate formulas help to analyze the influence
of the changes in the medium parameters across the interface on the
reflection and transmission coefficients. For isotropic and anisotropic
media, these approximate formulas can be found, for example, in Aki
and Richards (2002), Thomsen (1993), Rüger (1996, 1997, 1998),
Ursin and Haugen (1996), Vavryčuk and Pšenčík (1998), and Vav-
ryčuk (1999). These approximations assume a weak contrast in
density and velocity parameters, and weak anisotropy for a specific
parameterization of the considered medium.
For horizontally layered elastic models, reflection and transmis-

sion of plane waves can be described by the propagator matrix
method. For a single horizontal layer, the propagator matrix is con-
structed by considering the continuity of the particle displacement
and traction at the top and bottom of the layer. For horizontally lay-
ered media, the whole propagator matrix linking the displacement
and traction at the top to those at the bottom is represented by the
product of the individual propagator matrices. The propagator matrix
method to calculate reflection and transmission coefficients is sys-
tematically discussed in the monographs by Brekhovskikh (1980),
Kennett (1983), Brekhovskikh and Godin (1989), Nayfeh (1995),
and Chapman (2004). The propagator matrix method for anisotropic
media can be found in Fryer and Frazer (1984, 1987). More literature
related to the propagator matrix method is referenced in these mono-
graphs.
In this paper, we study the reflection and transmission of plane

waves from a thin homogeneous transversely isotropic layer with a
vertical symmetry axis (VTI) embedded in a homogeneous VTI
background (Figure 1). The term “thin” means that the thickness
of the layer is much smaller than the wavelengths of the waves
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propagating inside it. We consider the cases of P- and SV-wave in-
cidence from the upper half-space. In addition to the Voigt notation,
Thomsen’s (1986) notation is used to describe a VTI medium. In
Thomsen’s (1986) notation, υP0 and υS0 denote the velocities of the
vertically propagating P- and S-waves; ε and δ denote Thomsen’s
(1986) anisotropy parameters. The density of the medium is de-
noted by ρ. The stiffness coefficients can be explicitly expressed
in terms of Thomsen’s parameters and density. For brevity, the term
“plane” is omitted when describing P- and SV-waves throughout
this paper.
The rest of the paper is organized as follows: First, we introduce

the exact and approximate propagator matrices for a horizontal
homogeneous VTI layer. Then, we present equations for the reflec-
tion and transmission coefficients for a layer embedded in a homo-
geneous VTI background. Next, we introduce specific assumptions
for the parameters of the layer and background, and we derive rel-
atively simple formulas for the reflection and transmission coeffi-
cients. Finally, we implement the proposed formulas to analyze the
reflection and transmission coefficients for several VTI models.

PROPAGATOR MATRIX FOR A SINGLE VTI
LAYER

The horizontal slowness component is preserved for the incident,
reflected, and transmitted waves in a horizontal layer (Figure 1). For

all these waves, the unit polarization vector and the vertical slow-
ness can be expressed in terms of the horizontal slowness compo-
nent. The particle displacement and the traction are continuous
across the upper and lower interfaces of the layer. The particle
velocity, as the first-order derivative of particle displacement with
respect to time, is also continuous across these interfaces. The par-
ticle velocity and the traction at the upper interface are linked to
those at the lower interface by the propagator matrix Bij (Appen-
dix A)
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where Bij are the functions of the horizontal slowness component
(explicit expressions for Bij are given in equations A-9–A-18 in
Appendix A), υx and υz are the horizontal and vertical components
of the particle velocity, τzx and τzz denotes two components of a
stress tensor, and z ¼ 0 and z ¼ h correspond to the top and bottom
of the layer.
Equation 1 plays the role of the boundary condition, which is

used to link the incident and reflected waves in the upper half-space
to the transmitted waves in the lower half-space. As illustrated in
equations A-9–A-18 in Appendix A, the layer thickness h appears
in Bij in the dimensionless terms hqPω and hqSω, where qP and qS
denote the vertical slowness components of the P- and SV-waves,
respectively. If the layer thickness is much smaller than the wave-
lengths of the P- and SV-waves propagating inside this layer, then
hqPω < hqSω ≪ 1. We expand equation 1 in hqPω and hqSω, and
we then further expand qP and qS in the horizontal slowness p. The
final expression is truncated after the quadratic terms in h
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(2)

where i denotes the imaginary unity, ω denotes the angular fre-

quency, and the nonzero elements Bð1Þ
ij and Bð2Þ

ij are given by equa-
tions A-21–A-30.

EXACT REFLECTION AND TRANSMISSION
COEFFICIENTS

As illustrated in Figure 1, we consider the reflection and trans-
mission for P- and SV-waves separately incident upon the top of the
layer. For the incident, reflected, and transmitted P- and SV-waves,

Figure 1. Schematic plots for plane-wave reflection and transmis-
sion from a single VTI layer: (a) P-wave incidence and (b) SV-wave
incidence. The waves propagate in the [x, z] plane of a Cartesian
coordinate system. The symbol A denotes the homogeneous VTI
background, andM denotes the layer. (a) The symbols IP, RPP, RPS,
TPP, and TPS denote the incident P-wave, the P-P reflected wave, the
P-SV reflected wave, the P-P transmitted wave, and the P-SV trans-
mitted wave, respectively. (b)The symbols IS, RSP, RSS, TSP, and
TSS denote the incident SV-wave, the SV-P reflected wave, the
SV-SV reflected wave, the SV-P transmitted wave, and the SV-
SV transmitted wave, respectively.
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the horizontal component of the polarization unit vector is chosen to
be always nonnegative, which agrees with the convention in Aki
and Richards (2002).

P-wave incidence

Referring to Figure 1a, the particle displacement functions of the
incident, reflected, and transmitted waves are defined as follows in
terms of the horizontal slowness component:

• incident P-wave

uðA−ÞP↓ ¼ ðlP; 0; mPÞT expð−iωðt − px − qPzÞÞ;
z ∈ ð−∞; 0Þ (3)

• reflected P-wave

uðA−ÞP↑ ¼ RPPðlP; 0;−mPÞT expð−iωðt − pxþ qPzÞÞ;
z ∈ ð−∞; 0Þ (4)

• reflected SV-wave

uðA−ÞS↑ ¼ RPSðlS; 0; mSÞT expð−iωðt − pxþ qSzÞÞ;
z ∈ ð−∞; 0Þ (5)

• transmitted P-wave

uðAþÞ
P↓ ¼ TPPðlP; 0; mPÞT expð−iωðt − px − qPzÞÞ;
z ∈ ðh;þ∞Þ (6)

• transmitted SV-wave

uðAþÞ
S↓ ¼ TPSðlS; 0;−mSÞT expð−iωðt − px − qSzÞÞ;
z ∈ ðh;þ∞Þ; (7)

where u denotes the vector of particle displacement, the superscripts
A− and Aþ denote the upper (A−) and lower (Aþ) half-spaces rel-
ative to the layer, T denotes the transpose of a vector, the subscripts
P and S denote P- and SV-waves, the arrows ↓ and ↑ in the sub-
scripts denote upgoing and downgoing waves, l and m denote
the absolute values of the horizontal and vertical components of
the unit polarization vector of a considered wave, p denotes the
horizontal slowness component, and qP and qS denote the magni-
tudes of the vertical slowness components of the P- and SV-waves.
Explicit expressions for the polarization and slowness components
can be found in Rüger (1996); RPP and RPS denote the P-P and P-SV
reflection coefficients, and TPP and TPS denote the P-P and P-SV
transmission coefficients, where the first subscript denotes the in-
cident wave and the second subscript denotes the reflected or trans-
mitted wave; i is the imaginary unity; and t and ω denote the time
and angular frequency, x and z denote the horizontal and vertical
coordinates, and h denotes the layer thickness.

SV-wave incidence

As illustrated in Figure 1b, we consider the SV-wave incident
from the upper half-space. By analogy with the definitions in equa-
tions 3–7, the particle displacement functions of the incident, re-
flected, and transmitted waves are found as follows:

• incident SV-wave

uðA−ÞS↓ ¼ ðlS; 0;−mSÞT expð−iωðt − px − qSzÞÞ;
z ∈ ð−∞; 0Þ (8)

• reflected P-wave

uðA−ÞP↑ ¼ RSPðlP; 0;−mPÞT expð−iωðt − pxþ qPzÞÞ;
z ∈ ð−∞; 0Þ (9)

• reflected SV-wave

uðA−ÞS↑ ¼ RSSðlS; 0; mSÞT expð−iωðt − pxþ qSzÞÞ;
z ∈ ð−∞; 0Þ (10)

• transmitted P-wave

uðAþÞ
P↓ ¼ TSPðlP; 0; mPÞT expð−iωðt − px − qPzÞÞ;
z ∈ ðh;þ∞Þ (11)

• transmitted SV-wave

uðAþÞ
S↓ ¼ TSSðlS; 0;−mSÞT expð−iωðt − px − qSzÞÞ;
z ∈ ðh;þ∞Þ; (12)

where RSP and RSS denote the SV-P and SV-SV reflection coeffi-
cients and TSP and TSS denote the corresponding transmission co-
efficients.

Equations for reflection and transmission coefficients

Using the displacement functions 3–7, we can obtain the particle
velocity and traction in the upper and lower half-spaces. The sub-
stitution of the particle velocity and traction into equation 1 allows
us to derive a system of equations for the reflection and transmission
coefficients for an incident P-wave. Similarly, we may also obtain
another system of equations for the reflection and transmission co-
efficients in the case of SV-wave incidence. After combining the
two systems, we obtain the following system of equations for
the reflection and transmission coefficients:

0
BB@
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−mP mS E2 F2
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(13)
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with

aP ¼ c55ðqPlP þ pmPÞ; (14)

bS ¼ c55ðqSlS − pmSÞ; (15)

cP ¼ c13plP þ c33qPmP; (16)

dS ¼ c13plS − c33qSmS; (17)

Ei ¼ ðBi4aP þ Bi3cP − Bi1lP − Bi2mPÞ expðiωqPhÞ; (18)

Fi ¼ ðBi4bS þ Bi3dS − Bi1lS þ Bi2mSÞ expðiωqShÞ; (19)

where Bij correspond to the layer, whereas the other quantities in-
cluding the stiffness coefficients c11, c13, c33, and c55, the absolute
values l andm of the components of the polarization vector, and the
vertical slowness component q, correspond to the upper and lower
half-spaces. Equation 13 describes the exact reflection and trans-
mission coefficients for a homogeneous, horizontal VTI layer em-
bedded in a homogeneous VTI background.
In the case of normal incidence, the horizontal slowness vanishes,

and the reflection and transmission coefficients are given by

RPP ¼ 2rP0 sin kðMÞ
P0

ð1þ r2P0Þ sin kðMÞ
P0 þ ið1 − r2PPÞ cos kðMÞ

P0

; (20)

RSS ¼
2rS0 sin kðMÞ

S0

ð1þ r2S0Þ sin kðMÞ
S0 þ ið1 − r2S0Þ cos kðMÞ

S0

; (21)

TPP ¼ 1 − r2P0
ð1 − r2P0Þ cos kðMÞ

P0 − ið1þ r2P0Þ sin kðMÞ
P0

; (22)

TSS ¼ 1 − r2S0
ð1 − r2S0Þ cos kðMÞ

S0 − ið1þ r2S0Þ sin kðMÞ
S0

; (23)

with

rP0 ¼
ZðMÞ
P0 − ZðAÞ

P0

ZðMÞ
P0 þ ZðAÞ

P0

; rS0 ¼
ZðMÞ
S0 − ZðAÞ

S0

ZðMÞ
S0 þ ZðAÞ

S0

; (24)

kðMÞ
P0 ¼ hω

υðMÞ
P0

; kðMÞ
S0 ¼ hω

υðMÞ
S0

; (25)

where ZP0 ¼ ρυP0 and ZS0 ¼ ρυS0 denote the impedances of the
vertically propagating P- and S-waves and the superscripts M and
A denote the layer and the background, respectively.

APPROXIMATE REFLECTION AND
TRANSMISSION COEFFICIENTS

By analogy with the weak-contrast, weak-anisotropy approxima-
tions for the reflection and transmission coefficients at an interface
separating two VTI half-spaces (Thomsen, 1993), we make the fol-
lowing assumptions to derive approximate formulas for the reflec-
tion coefficients from a thin layer.
First, we assume a small contrast in the elastic properties (includ-

ing the density ρ, the P-wave vertical velocity υP0, and the S-wave
vertical velocity υS0) at the top and bottom of the layer

����ΔυP0ῡS0

���� ≪ 1;

����ΔυS0ῡS0

���� ≪ 1;

����Δρρ̄
���� ≪ 1; (26)

where Δα ¼ αðMÞ − αðAÞ, and ᾱ ¼ ðαðMÞ þ αðAÞÞ∕2 denote the dif-
ference and the average of the medium parameters α in the layer
(corresponding to the superscript M) and background (correspond-
ing to the superscript A).
Second, we assume weak anisotropy for the layer and back-

ground:

jεðμÞj ≪ 1; jδðμÞj ≪ 1; (27)

where the superscript μ is taken as M and A for the layer and back-
ground, respectively.
Finally, the VTI layer is assumed to be so thin that it satisfies the

following inequality:

hqðMÞ
P ω < hqðMÞ

s ω ≪ 1; (28)

where qðMÞ
P and qðMÞ

S denote the vertical slowness components of the
P- and SV-waves, respectively, in the layer and are functions of the
horizontal slowness component.
We start with equation 13 for the reflection and transmission

coefficients, where the propagator matrix Bij is approximated by
equation 2. The exponential functions in equations 18 and 19 are
expanded with respect to hqPω and hqSω, and then qP and qS are
expanded with respect to the horizontal slowness component. The
horizontal slowness component is expressed in terms of incidence
angles θP and θS for the P- and SV-waves, respectively. The density
and velocity parameters of the background medium and the layer
are expressed in terms of their averages and differences. These op-
erations allow us to expand the exact reflection coefficients with
respect to the contrasts in the density, the velocities of vertically
propagating P- and S-waves, Thomsen’s anisotropy parameters, and
the layer thicknesses normalized by the velocities of the vertically
propagating P- and S-waves. We also consider the expansion of the
reflection coefficients with respect to the sine of the incident angles
to obtain simple expressions for the approximate reflection coeffi-
cients. As a result, the approximate reflection coefficients are as
follows:
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• P-P-wave reflection coefficient

RPP ≈ jrPPj expðiϕPPÞ; (29)

with

rPP ¼ ωhðaPP þ bPP sin2 θPÞ; (30)

ϕPP ¼
π

2
signðrPPÞ þ tan−1

�
ωh
ῡP0

cosðθPÞ
�
; (31)

where θP denotes the angle of incidence of P-waves, and
explicit expressions for aPP and bPP are given in equa-
tions B-1 and B-2 of Appendix B.

P-SV reflection coefficient

RPS ≈ jrPSj expðiϕPSÞ; (32)

with

rPS ¼ ωh sin θPðaPS þ bPS sin2 θPÞ; (33)

ϕPS ¼
π

2
signðrPSÞ þ tan−1

�
ωh

cPS þ dPS sin2 θP
aPS þ bPS sin2 θP

�
; (34)

where explicit expressions for aPS, bPS, cPS, and dPS are given in
equations B-3–B-6 of Appendix B.

SV-SV reflection coefficient

RSS ≈ jrSSj expðiϕSSÞ; (35)

with

rSS ¼ ωhðaSS þ bSS sin2 θSÞ; (36)

ϕSS ¼
π

2
signðrSSÞ þ tan−1

�
ωh
ῡS0

cosðθSÞ
�
; (37)

where θS denotes the angle of incidence of SV-waves, and explicit
expressions for aSS and bSS are given in equations B-7 and B-8 of
Appendix B.

SV-P reflection coefficient

RSP ≈ jrSPj expðiϕSPÞ; (38)

with

rSP ¼ ωh sin θSðaSP þ bSP sin2 θSÞ; (39)

ϕSP ¼ π

2
signðrSPÞ þ tan−1

�
ωh

cSP þ dSP sin2 θS
aSP þ bSP sin2 θS

�
; (40)

where aSP ¼ aPS, and explicit expressions for aPS, bPS, cPS, and dPS
are given in equations B-9–B-12 of Appendix B.
In equations 30 and 36, the coefficients aPP and aSS determine the

magnitudes of the P-P and SV-SV reflection coefficients at normal
incidence, and the coefficients bPP and bSS govern the curvatures of
the reflection-coefficient magnitudes with respect to the incidence
angles. In equations 33 and 39, the coefficients aPS and aSP describe
the gradients of the magnitudes of the P-SV- and SV-P-wave reflec-
tion coefficients with respect to the corresponding incidence angles
and the coefficients bPS and bSP describe the higher order terms with
respect to θP and θS. For small incidence angles, the converted-
wave reflection coefficients are mostly controlled by the coeffi-
cients aPS and aSP.
Referring to equations in Appendix B, the approximate reflection

coefficients indicate that (1) the reflection coefficients vanish when
the layer thickness tends to zero because the medium properties
above and below the layer are identical; (2) the magnitude of the
reflection coefficients increases with frequency, albeit just for the
limited frequency range in which the layer remains thin compared
with the predominant wavelength; (3) the curvatures of the magni-
tudes of the P-P and SV-SV wave reflection coefficients with re-
spect to the incidence angles are controlled by the changes in
the anisotropy parameters δ and σ across the layer boundaries (σ
is the combination of Thomsen’s parameters, defined after equa-
tion B-6); (4) the gradient and torsion of the magnitude of the
P-SV-wave reflection coefficient with respect to the incidence angle
depend on the changes in δ and σ (respectively) across the layer boun-
daries; (5) the gradient of the magnitude of the SV-P-wave reflection
coefficient with respect to the incidence angle is identical to that of the
P-SV-wave reflection coefficient; and (6) the torsion of the magnitude
of the SV-P-wave reflection coefficient with respect to the incidence
angle involves the changes in ε and δ across the layer boundaries and
cannot be described in terms of the single parameter σ.

NUMERICAL EXAMPLES

We use two single-layer models (Figure 1) to investigate the re-
flection coefficients of the incident P- and SV-waves. The first
model includes a high-velocity thin VTI layer embedded in a homo-
geneous isotropic background. The second model includes a low-
velocity thin VTI layer embedded in the same isotropic background.
The second model is obtained by reducing the layer velocities υðMÞ

P0

and υðMÞ
S0 from the first model, whereas all other parameters remain

the same.
In the first example, we investigate the influence of wavelength

on the P-P- and S-S-wave normal-incidence reflection coefficients
(equations 20 and 21). Figures 2 and 3 show that those coefficients
are periodic functions of wavelength. A comparison of Figures 2
and 3 shows that the magnitudes of the P-P and S-S reflection coef-
ficients for the high- and low-velocity layers are similar, whereas the
phases are different. When the layer thickness is much smaller than the
wavelengths of the vertically propagating P- and S-waves inside the
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layer (i.e., h∕λP0 ≤ 0.2 and h∕λS0 ≤ 0.2), the magnitudes of the re-
flection coefficients have a sinusoidal shape, and the phases increase
linearly with the normalized layer thickness.
Next, we investigate the influence of the anisotropy parameters on

the reflection coefficients. The coefficients bPP and bSS determine the
curvatures of the magnitudes of the P-P- and SV-SV-wave reflection
coefficients with respect to the incidence angles. Figures 4 and 5 show
that bPP and bSS vary linearly with the changes in δ and σ (respec-
tively) across the layer boundaries. A comparison of Figures 6 and 7
indicates that the coefficients aPS and bPS, which determine the gra-
dient and torsion of the magnitude of the P-SV-wave reflection coef-

ficients, also have a linear dependence on the changes in δ and σ
(respectively) across the layer boundaries. The coefficients aSP and
bSP control the magnitude of the P-SV-wave reflection coefficients.
The coefficient aSP is identical to aPS (equation B-9), whereas the
coefficient bSP (equation B-10) cannot be expressed in terms of
the change in the single parameter σ, as discussed above. Figure 8

Figure 4. The dependence of the coefficient bPP (equation B-2) on
the change in the parameter δ across the layer boundaries. The black
and gray lines correspond to the high- and low-velocity layer models,
respectively. The medium parameters of both models are explained in
the captions of Figures 2 and 3, respectively; only the parameter δðMÞ
of the layer is changed to generate the dependence on Δδ.

Figure 5. The dependence of the coefficient bSS (equation B-8) on
the change in the parameter σ across the layer boundaries. The black
and gray lines correspond to the high- and low-velocity layer mod-
els, respectively. The high- and low-velocity layer models are ex-
plained in the captions of Figures 2 and 3, respectively; only the
parameter δðMÞ is changed to generate the dependence on σ.

Figure 6. The dependence of coefficients aPS (equation B-3) and aSP
(equation B-9) on the changes in the parameter δ across the layer
boundaries. The black and gray lines correspond to the high- and
low-velocity layer models, respectively. The high- and low-velocity
models are explained in the captions of Figures 2 and 3, respectively.

a) c)

b) d)

Figure 3. Similar to Figure 2, but for the low-velocity layer model.
The vertical velocities in the layer are changed to υðMÞ

P0 ¼ 2.8 km∕s
and υðMÞ

S0 ¼ 1.4 km∕s, whereas the other model parameters are the
same as for the model in Figure 2.

a) c)

b) d)

Figure 2. P-P- and S-S-wave normal-incidence reflection coeffi-
cients for the high-velocity VTI layer as a function of the layer thick-
ness normalized by thewavelength. (a b) The magnitude and phase of
the P-P-wave reflection coefficient. (c d) The magnitude and phase of
the S-S-wave reflection coefficient. The symbols λP0 and λS0 denote
the wavelengths of the vertically propagating P- and S-waves inside
the layer, respectively, and h is the layer thickness. The parameters of
the isotropic background include υðAÞP0 ¼ 3.0 km∕s, υðAÞS0 ¼ 1.5 km∕s,
and ρðAÞ ¼ 2.6 g∕cm3, and the parameters of the VTI layer include
υðMÞ
P0 ¼ 3.2 km∕s, υðMÞ

S0 ¼ 1.6 km∕s, ρðMÞ ¼ 2.8 g∕cm3, εðMÞ ¼ 0.1,
δðMÞ ¼ 0.2, and h ¼ 15 m.
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shows that coefficient bSP has an opposite dependence on the changes
in parameters ε and δ across the layer boundaries. This implies that
simultaneous increases or decreases in Δε and Δδ partially cancel
each other out in coefficient bSP.
In the third example, we test the accuracy of the approximate

reflection coefficients (equations 29, 32, 35, and 38) for the low-
and high-velocity layer models. The frequency of the incident
waves is set to f ¼ 20 Hz. Figures 9, 10, 11, and 12 show the an-
gular variation of the reflection coefficients for subcritical inci-
dence. All approximate coefficients generally reproduce the
correct trend of the exact solutions. The phases of all the reflection
coefficients vary with the incidence angle. The accuracy of the
approximate P-P-wave reflection coefficient is generally acceptable,

especially for the low-velocity model (Figure 11a). The angular
variation of the magnitudes of the P-P- and SV-SV-wave reflection
coefficients for the low-velocity model (Figures 11a and 12a) is
more significant than those for the high-velocity model (Figures 9a
and 10a). The magnitudes of the P-SV- and SV-P-wave reflection
coefficients for the high-velocity model (Figures 9c and 10c) are
generally much smaller than that for the low-velocity model (Fig-
ures 11c and 12c). Except for the approximate P-P reflection coef-
ficient, all other approximations produce significant errors either in
amplitude or phase, so they should not be applied to AVO inversion.
Higher order expansions of the reflection coefficients with respect
to the changes in the medium parameters across the layer bounda-
ries may improve the accuracy of the solutions but would signifi-
cantly increase their complexity.

a) c)

b) d)

Figure 10. SV-SV- and SV-P-wave reflection coefficients for the
high-velocity layer. The medium parameters are given in Figure 2.
Plots (a and b) show the magnitude and phase, respectively, of the
SV-SV-wave reflection coefficient. (c d) The magnitude and phase,
respectively, of the SV-P-wave reflection coefficient. The red and
blue lines mark the exact and approximate solutions, respectively.

a) c)

b) d)

Figure 9. P-P- and P-SV-wave reflection coefficients for the high-
velocity layer. The medium parameters are given in Figure 2. (a b)
The magnitude and phase respectively of the P-P-wave reflection
coefficient. (c d) The magnitude and phase respectively of the P-
SV-wave reflection coefficient. The red and blue lines mark the
exact and approximate solutions, respectively.

Figure 7. Similar to Figure 5, but for the coefficient bPS (equa-
tion B-4).

a)

b)

Figure 8. Variation of the coefficient bSP (equation B-10) with the
changes in the parameters (a) ε and (b) δ across the layer boundaries.
The black and gray lines correspond to the high- and low-velocity
layer models, respectively. The models are designed in a way similar
to that explained in Figure 2, except that Δδ ¼ 0 and εðMÞ is changed
to obtain Δε in plot (a), whereas Δε ¼ 0 and δðMÞ is changed to ob-
tain Δδ in plot (b).
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CONCLUSION

The exact reflection and transmission coefficients for a thin VTI
layer embedded in a VTI medium are derived using the propagator
matrix method. The exact normal-incidence reflection and transmis-
sion coefficients, expressed in terms of the impedances of the ver-
tically propagating P- and SV-waves, are periodic functions of
wavelength and frequency. The magnitudes of the P-P- and S-S-
wave normal-incidence reflection coefficients have a similar
dependence on layer thickness. The phase curve of the P-P-wave
normal-incidence reflection coefficient for a low-velocity layer is
similar to that of the S-S-wave coefficient from a high-velocity
layer, and vice versa.
In the case of subcritical incidence, the approximate reflection co-

efficients are derived under the following assumptions: (1) the layer
thickness is much smaller than the wavelength of P- and SV-waves
inside the layer, (2) the contrasts in density and in the velocities of the
vertically propagating P- and SV-waves are small, and (3) the layer
and the background are weakly anisotropic.
The influence of transverse isotropy on the reflection coefficients

from the layer is described in terms of the changes in the anisotropy

parameters across the layer boundaries. The change in Thomsen’s
parameter δ across the layer boundaries determines the anisotropy
contribution to the P-P-wave reflection coefficient, whereas the
change in the anisotropy parameter σ contributes to the SV-SV-
wave reflection coefficient. The change in δ across the layer boun-
daries has the same influence on the gradient term of the magnitudes
of the P-SV- and SV-P-waves reflection coefficients. The change in
σ across the layer boundaries contributes to the torsion term of the
magnitude of the P-SV-wave reflection coefficients. The anisotropy
contribution to the torsion terms of the SV-P-wave reflection coef-
ficients is determined by the changes in ε and δ and cannot be ex-
pressed in terms of a single anisotropy coefficient.
Except for the approximate P-P-wave reflection coefficient, the

other obtained approximations for the reflection coefficients are not
accurate enough for quantitative AVO analysis or AVO inversion.
However, they provide analytic insight into the behavior of the re-
flection coefficients and may qualitatively guide a numerical inver-
sion based on the exact equations.
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APPENDIX A

PROPAGATOR MATRIX FOR A HORIZONTAL
VTI LAYER

In this appendix, we adopt the method presented in Brekhovskikh
(1980) to derive the propagator matrix for a horizontal VTI layer
(Figure 1). The propagator matrix depends only on the layer param-
eters. For simplicity, we omit the superscript M, which is used to
distinguish the layer from the upper and lower half-spaces, in the
horizontal and vertical slowness components l and m and the ver-
tical slowness component q. The in-plane wavefield inside the layer
can always be represented by a superposition of upgoing and down-
going P- and SV-waves. We define the following particle displace-
ment functions of these waves:

uP↓ ¼ AP↓ðlP; 0; mPÞT expð−iωðt − px − qPzÞÞ; (A-1)

uS↓ ¼ AS↓ðlS; 0;−mSÞT expð−iωðt − px − qSzÞÞ; (A-2)

uP↑ ¼ AP↑ðlP; 0;−mPÞT expð−iωðt − pxþ qPzÞÞ; (A-3)

uS↑ ¼ AS↑ðlS; 0;−mSÞT expð−iωðt − pxþ qSzÞÞ; (A-4)

where subscripts ↑ and ↓ denote the upgoing and downgoing waves,
respectively, and subscripts P and S denote the P- and S-waves, re-
spectively. The horizontal components of the unit polarization

a) c)

b) d)

Figure 11. Similar to Figure 9, but for the low-velocity layer. The
medium parameters are given in the captions of Figures 2 and 3.

a) c)

b) d)

Figure 12. Similar to Figure 10, but for the low-velocity layer. The
medium parameters are shown in the captions of Figures 2 and 3.
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vectors of these waves are chosen to be nonnegative, which agrees
with the convention used in Aki and Richards (2002) to derive the
reflection and transmission coefficients for an interface separating
two isotropic half-spaces.
The total displacement inside the layer is given by

u ¼ uP↓ þ uS↓ þ uP↑ þ uS↑: (A-5)

The components of the stress vector are expressed in terms of the
displacement components (Graebner, 1992)

τzx ¼ c55

�
∂ux
∂z

þ ∂uz
∂x

�
; (A-6)

τzz ¼ c13
∂ux
∂x

þ c33
∂uz
∂z

; (A-7)

where τzx and τzz denote the horizontal and vertical components of
the traction vector acting across a horizontal surface, and ux and uz
denote the horizontal and vertical components of the particle dis-
placement.
The displacements and tractions at the top and bottom of the layer

are obtained by setting z ¼ 0 and z ¼ h in equations A-5–A-7. As
a result, we obtain eight linear equations involving the particle
velocities and tractions at the top and bottom of the layer and the
amplitudes of the upgoing and downgoing waves, where the particle
velocity is the first-order derivative of the particle displacement with
respect to time. Canceling the amplitudes of the upgoing and down-
going waves from these equations, we link the particle velocity and
the traction at the bottom interface to the particle velocity and the
traction at the top interface

0
BB@

υx
υz
τzz
τzx

1
CCA
��������
z¼0

¼

0
BB@

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

1
CCA
0
BB@

υx
υz
τzz
τzx

1
CCA
��������
z¼h

;

(A-8)

where υx and υz denote the horizontal and vertical components of
the particle velocity, and Bij is the transfer matrix. The elements Bij

are given by

B14¼ iðlPmS sinðhqPωÞþlSmP sinðhqSωÞÞ∕ðξc55Þ; (A-9)

B23¼iðlSmP sinðhqPωÞþlPmS sinðhqSωÞÞ∕ðζc33Þ; (A-10)

B32¼−iððc13lPpþc33mPqPÞðmSp−lSqSÞsinðhqPωÞ
þðmPpþlPqPÞðc13lSp−c33mSqSÞsinðhqSωÞÞ∕ξ; (A-11)

B41 ¼ −ic55ððmPpþ lPqPÞðc13lSp − c33mSqSÞ sinðhqPωÞ
þ ðc13lPpþ c33mPqPÞðmSp − lSqSÞ sinðhqSωÞÞ∕ðζc33Þ;

(A-12)

B31 ¼ B42 ¼ c55ðmPpþ lPqPÞðmSp − lSqSÞ
× ðcosðhqPωÞ − cosðhqSωÞÞ∕ξ; (A-13)

B21 ¼ B43 ¼ −ic55ðlSðmPpþ lPqPÞ sinðhqPωÞ
þ lPðmSp − lSqSÞ sinðhqSωÞÞ∕ðζc33Þ; (A-14)

B11 ¼ B44 ¼ ðmSðmPpþ lPqPÞ cosðhqPωÞ
þmPð−mSpþ lSqSÞ cosðhqSωÞÞ∕ξ; (A-15)

B13 ¼ B24 ¼ lPlSð− cosðhqPωÞ þ cosðhqSωÞÞ∕ðζc33Þ;
(A-16)

B22 ¼ B33 ¼ ðmPð−mSpþ lSqSÞ cosðhqPωÞ
þmSðmPpþ lPqPÞ cosðhqSωÞÞ∕ξ; (A-17)

B12 ¼ B34 ¼ iðlPðmSp − lSqSÞ sinðhqPωÞ
þ lSðmPpþ lPqPÞ sinðhqSωÞÞ∕ξ; (A-18)

with

ξ ¼ lPmSqP þ lSmPqS; ζ ¼ lSmPqP þ lPmSqS: (A-19)

Assuming the layer to be thin and weakly anisotropic, we can
expand Bij with respect to hqPω and hqSω up to second order. Fur-
thermore, qP and qS are approximated by their second-order series
expansions with respect to the horizontal slowness p. Weak
anisotropy approximation is also considered to derive simple
approximation for Bij. Finally, the approximation for Bij is given
by

0
BBBB@

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

1
CCCCA≈

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCA

þihω

0
BBBBB@

0 Bð1Þ
12 0 Bð1Þ

14

Bð1Þ
21 0 Bð1Þ

23 0

0 Bð1Þ
32 0 Bð1Þ

34

Bð1Þ
41 0 Bð1Þ

43 0

1
CCCCCA
−h2ω2

0
BBBBB@

Bð2Þ
11 0 Bð2Þ

13 0

0 Bð2Þ
22 0 Bð2Þ

24

Bð2Þ
31 0 Bð2Þ

33 0

0 Bð2Þ
42 0 Bð2Þ

44

1
CCCCCA
;

(A-20)

where

Bð1Þ
21 ¼ Bð1Þ

43 ¼ pðð1 − 2r2Þ þ δÞ; (A-21)
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Bð1Þ
12 ¼ Bð1Þ

34 ¼ p; (A-22)

Bð1Þ
14 ¼ 1

ρυ2S0
; (A-23)

Bð1Þ
23 ¼ 1

ρυ2P0
; (A-24)

Bð1Þ
32 ¼ ρ; (A-25)

Bð1Þ
41 ¼ρð1−4p2υ2S0ð1−r2ÞÞþ2δρυ2P0ð1−2r2Þp2−2ερυ2P0p

2;

(A-26)

Bð2Þ
11 ¼Bð2Þ

44 ¼
1

2

�
1

υ2S0
−p2ð3−2r2Þ

�
þδð2−3r2Þp2

2r2
−
εp2

r2
;

(A-27)

Bð2Þ
13 ¼ Bð2Þ

24 ¼ ð1 − r2Þp
2ρυ2S0

þ δp
2ρυ2S0

; (A-28)

Bð2Þ
22 ¼ Bð2Þ

33 ¼ 1

2
ð1þ ð1 − 2r2Þp2Þ þ δp2

2
; (A-29)

Bð2Þ
31 ¼ Bð2Þ

42 ¼ ð1 − r2Þð1 − 2υ2S0p
2Þρp

þ 1

2
δρð1þ 2ð1 − 2r2Þυ2P0p2Þp − ερυ2P0p

3; (A-30)

with

r ¼ υS0
υP0

; (A-31)

where ε and δ are the Thomsen’s (1986) parameters.

APPENDIX B

THE FUNCTIONS IN THE APPROXIMATE
REFLECTION COEFFICIENTS

In this appendix, we give explicit expressions for the functions in
the approximate reflection coefficients.

The functions aPP and bPP in equation 30 are given by

aPP ¼ −
ΔZP

ῡP0Z̄P

; (B-1)

bPP ¼ 1

ῡP0

�
4r̄2

ΔG
Ḡ

−
ΔυP0
ῡP0

þ ΔZP

2Z̄P

− Δδ
�
; (B-2)

where r̄ ¼ ῡS0∕ῡP0 denotes the ratio between the velocities of the
vertically propagating P- and S-waves, Z̄P0 ¼ ρ̄ῡP0 denotes the P-
wave impedance, and Ḡ ¼ ρ̄ῡ2S0 denotes the shear modulus.
The functions aPS, bPS, cPS, and dPS in equations 33 and 34 are

given by

aPS ¼
1þ 3r̄þ 2r̄2

2ῡS0

Δρ
ρ̄

þ 2ð1þ r̄Þ
ῡP0

ΔυS0
ῡS0

−
1

2ῡS0
Δδ; (B-3)

bPS¼−
3þ8r̄þ5r̄2

4ῡP0

Δρ
ρ̄
−
1þ4r̄þ3r̄2

ῡP0

ΔυS0
ῡS0

−
1

ῡS0
ðΔε−ΔδÞ;

≈−
3þ8r̄þ5r̄2

4ῡP0

Δρ
ρ̄
−
1þ4r̄þ3r̄2

ῡP0

ΔυS0
ῡS0

−
r̄2

ῡS0
Δσ; (B-4)

cPS ¼ ð1þ r̄Þ2ð1þ 2r̄Þ
4ῡ2S0

Δρ
ρ̄

þ ð1þ r̄Þ2
ῡP0ῡS0

ΔυS0
ῡS0

−
1þ r̄
4ῡ2S0

Δδ;

(B-5)

dPS ¼ −
ð1þ r̄Þ2ð4þ 7r̄Þ

8ῡP0ῡS0

Δρ
ρ̄

−
ð1þ r̄Þ2ð1þ 4r̄Þ

2ῡP0ῡS0

ΔυS0
ῡS0

−
1þ r̄
2ῡ2S0

Δεþ 4þ 5r̄þ r̄2

8ῡ2S0
Δδ; (B-6)

where σ ≡ ðυP0∕υS0Þ2ðε − δÞ is the combination of Thomsen’s
parameters primarily responsible for SV-wave propagation (Tsvan-
kin, 2012, equation 1.67).
The functions aSS and bSS in equation 36 are given by

aSS ¼ 1

ῡS0

�
ΔG
Ḡ

−
ΔυS0
ῡS0

�
; (B-7)

bSS ¼ −
1

ῡS0

�
9

2

ΔG
Ḡ

−
3

2

ΔυS0
ῡS0

þ 1

r̄2
ðΔε − ΔδÞ

�
;

≈ −
1

ῡS0

�
9

2

ΔG
Ḡ

−
3

2

ΔυS0
ῡS0

þ Δσ
�
; (B-8)

where σ is defined after equation B-6.
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The functions aSP, bSP, cSP, and dSP in equations 39 and 40 are
given by

aSP ¼ aPS; (B-9)

bSP ¼ 1

ῡP0

�
1 − 7r̄2 − 8r̄3 − 2r̄4

4r̄3
Δρ
ρ̄

−
3þ 4r̄þ r̄2

r̄
ΔυS0
ῡS0

�

−
1

ῡS0

�
1

r̄2
Δε −

3þ r̄2

4r̄2
Δδ

�
; (B-10)

cSP ¼ cPS; (B-11)

dSP ¼
ð1þ r̄Þ2ð1−2r̄−8r̄2−2r̄3Þ

8r̄2ῡ2S0

Δρ
ρ̄

−
ð1þ r̄Þ2ð4þ r̄Þ

2ῡ2S0

ΔυS0
ῡS0

−
1þ r̄
2r̄2ῡ2S0

Δεþ 3þ4r̄þ2r̄2þ r̄3

8r̄2ῡ2S0
Δδ; (B-12)

where aPS and cPS are given in equations B-3 and B-5.
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